

US007202343B2

(12) **United States Patent**
Gudas et al.

(10) **Patent No.:** US 7,202,343 B2
(45) **Date of Patent:** Apr. 10, 2007

(54) **ANTIBODIES DIRECTED TO MONOCYTE CHEMO-ATTRACTANT PROTEIN-1 (MCP-1) AND USES THEREOF**

(75) Inventors: **Jean M. Gudas**, Pacific Palisades, CA (US); **Mary Haak-Frendscho**, Newark, CA (US); **Orit Foord**, Foster-City, CA (US); **Meina L. Liang**, Danville, CA (US); **Kiran Ahluwalia**, Fremont, CA (US); **Sunil Bhakta**, Hayward, CA (US)

(73) Assignee: **Abgenix, Inc.**, Fremont, CA (US)

(*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 302 days.

(21) Appl. No.: **10/644,277**

(22) Filed: **Aug. 19, 2003**

(65) **Prior Publication Data**

US 2005/0058639 A1 Mar. 17, 2005

Related U.S. Application Data

(60) Provisional application No. 60/404,802, filed on Aug. 19, 2002.

(51) **Int. Cl.**
C07K 16/00 (2006.01)

(52) **U.S. Cl.** **530/387.1**; 530/387.9; 514/2; 514/8; 514/12; 424/154.1; 424/139.1

(58) **Field of Classification Search** 424/154.1, 424/139.1; 530/387.1, 387.9; 514/2, 8, 514/12

See application file for complete search history.

(56) **References Cited**

U.S. PATENT DOCUMENTS

2004/0047860 A1 3/2004 Hiestand et al.

FOREIGN PATENT DOCUMENTS

WO WO 01/89565 11/2001

WO WO 01/89565 A1 11/2001

WO WO 02/02640 1/2002

OTHER PUBLICATIONS

Stancoviski et al. (Proceedings of the National Academy of Science USA. 1991; 88: 8691-8695).*

Jiang et al. (J. Biol. Chem. Feb. 11, 2005; 280 (6): 4656-4662).*

Reimer et al. (Mol. Immunol. 2005; 42: 1121-1124).*

Patent Abstracts of Japan. vol. 1999, No. 8 (1999). 11 06052, Teijin Ltd.

Patent Abstracts of Japan. vol. 1997, No. 7 (1997). 09 067399, Mitsui Toatsu Chem. Inc.

Kaji et al. "Analysis of peptide motifs recognized with anti-MCP-1 monoclonal antibody." *Peptide Science*. 33-36 (1999).

Yoshimura et al. "Production and characterization of mouse monoclonal antibodies against human monocyte chemoattractant protein-1." *Journal of Immunology*. 147(7):2229-2233 (1991).

Zhang et al. "Structure/activity analysis of human monocyte chemoattractant protein-1 (MCP-1) by mutagenesis. Identification of a mutated protein that inhibits MCP-1 mediated protein that inhibits MCP-1 mediated monocyte chemotaxis." *Journal of Biological Chemistry*. 269(22):15918-15924 (2003).

PCT International Search Report, International Application No. PCT/US03/26232.

Bradwell et al., "Control of hypercalcaemia of parathyroid carcinoma by immunisation." *Lancet*, 353: 370-373 (1999).

Hemmerich et al., "Identification of Residues in the Monocyte Chemotactic Protein-1 That Contact the MCP-1 Receptor, CCR2," *Biochemistry*, 38: 13013-13025 (1999).

Jamagin et al., "Identification of Surface Residues of the Monocyte Chemotactic Protein 1 That Affect Signaling through the Receptor CCR2," *Biochemistry*, 38: 16167-16177 (1999).

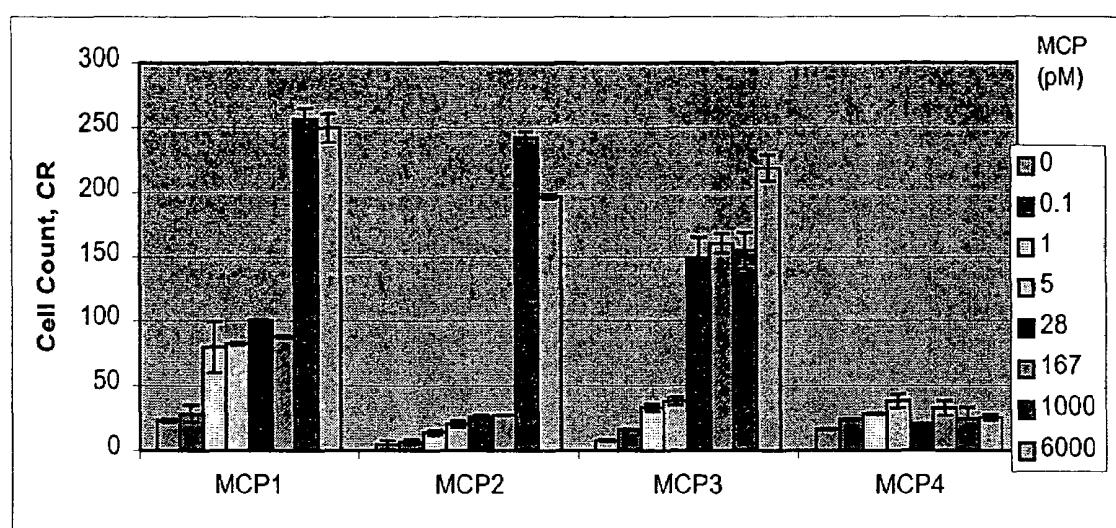
Logue et al., "Production and characterisation of monoclonal antibodies to parathyroid hormone (1-34)," *J. Immunol. Methods*, 137: 159-166 (1991).

Magerlein et al., "Production of Sequence Specific Polyclonal Antibodies to Human Parathyroid Hormone 1-37 by Immunization with Multiple Antigenic Peptides," *Drug Res.*, 48: 783-787 (1998).

Vieira et al., "Monoclonal Antibodies to Bovine Parathyroid Hormone: Production and Characterization," *Braz. J. Med. Biol. Res.*, 21: 1005-1011 (1988).

Visser et al., "Production and Characterization of Antisera to Synthetic 1-34 Human Parathyroid Hormone Fragments: Possible Implications for the Correctness of Proposed Structures," *Acta Endocrinol.*, 90: 90-102 (1979).

* cited by examiner


Primary Examiner—Sheela Huff

Assistant Examiner—Parithosh K. Tungaturthi

(74) *Attorney, Agent, or Firm*—Knobbe Martens Olson & Bear LLP

(57) **ABSTRACT**

Embodiments of the invention described herein relate to antibodies directed to the antigen monocyte chemo-attractant protein-1 (MCP-1) and uses of such antibodies. In particular, in accordance with some embodiments, there are provided fully human monoclonal antibodies directed to the antigen MCP-1. Nucleotide sequences encoding, and amino acid sequences comprising, heavy and light chain immunoglobulin molecules, particularly sequences corresponding to contiguous heavy and light chain sequences spanning the framework regions and/or complementarity determining regions (CDRs), specifically from FR1 through FR4 or CDR1 through CDR3, are provided. Hybridomas or other cell lines expressing such immunoglobulin molecules and monoclonal antibodies are also provided.

Figure 1

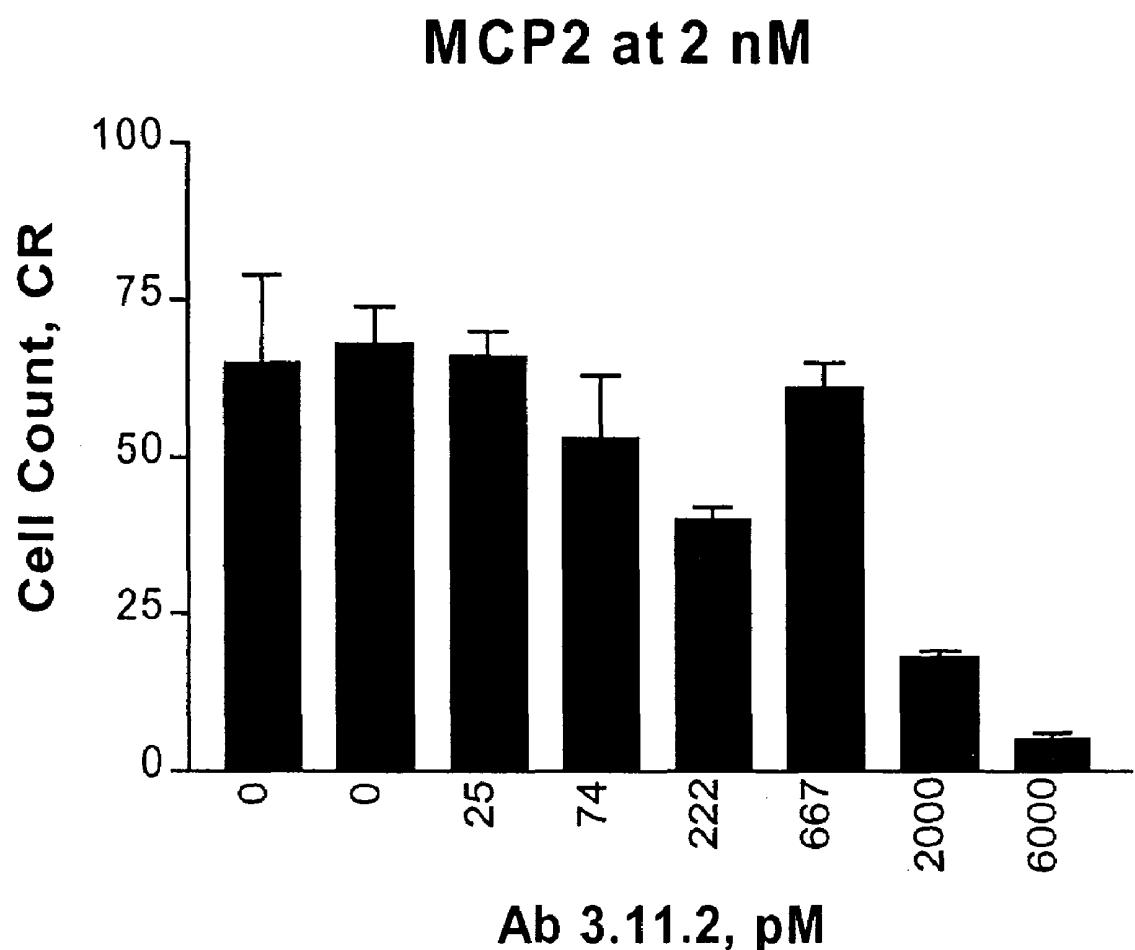
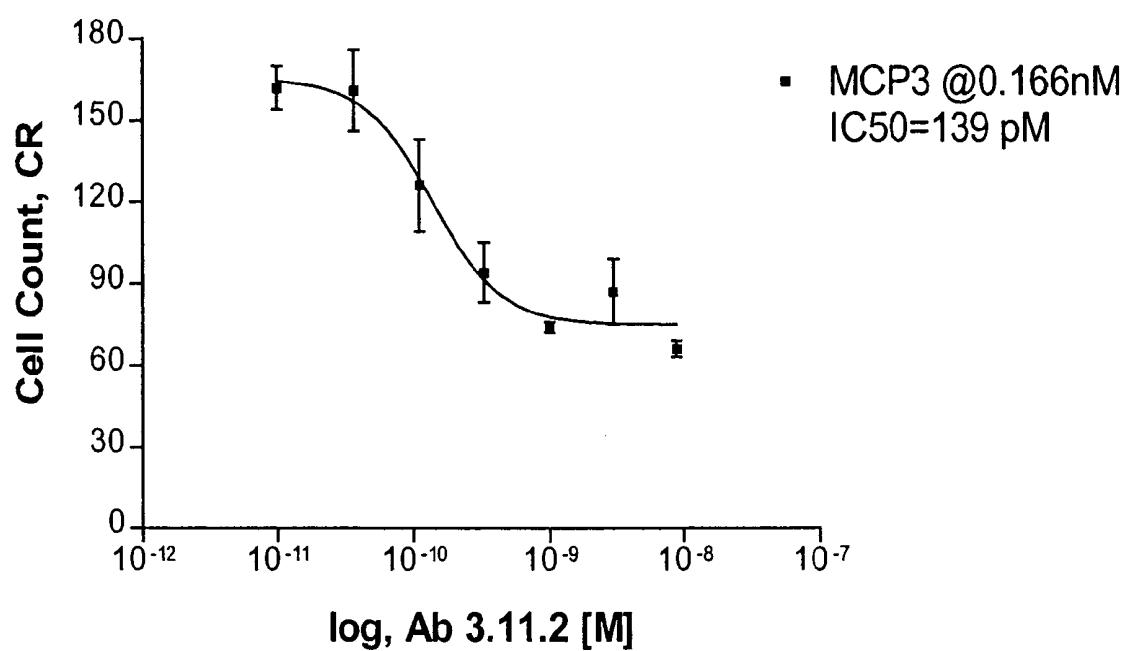


Figure 2

Figure 3

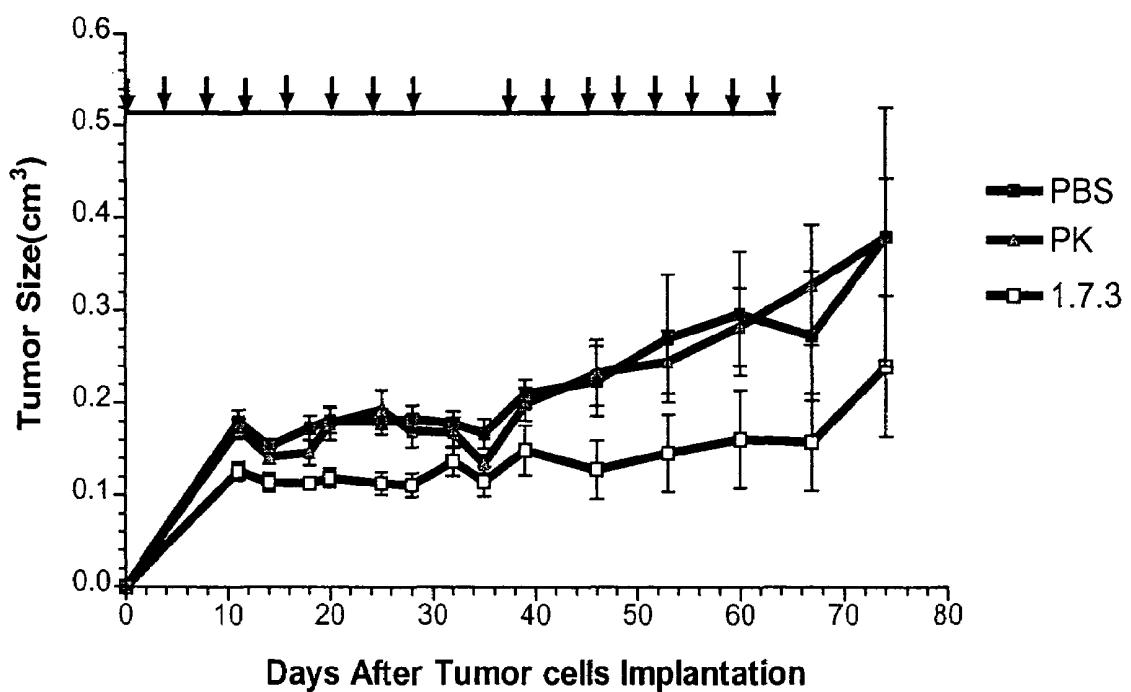

Figure 4**Effect of Anti-MCP1 Antibody 1.7.3 on Pancreatic Tumor Panc-1 Growth**

Figure 5

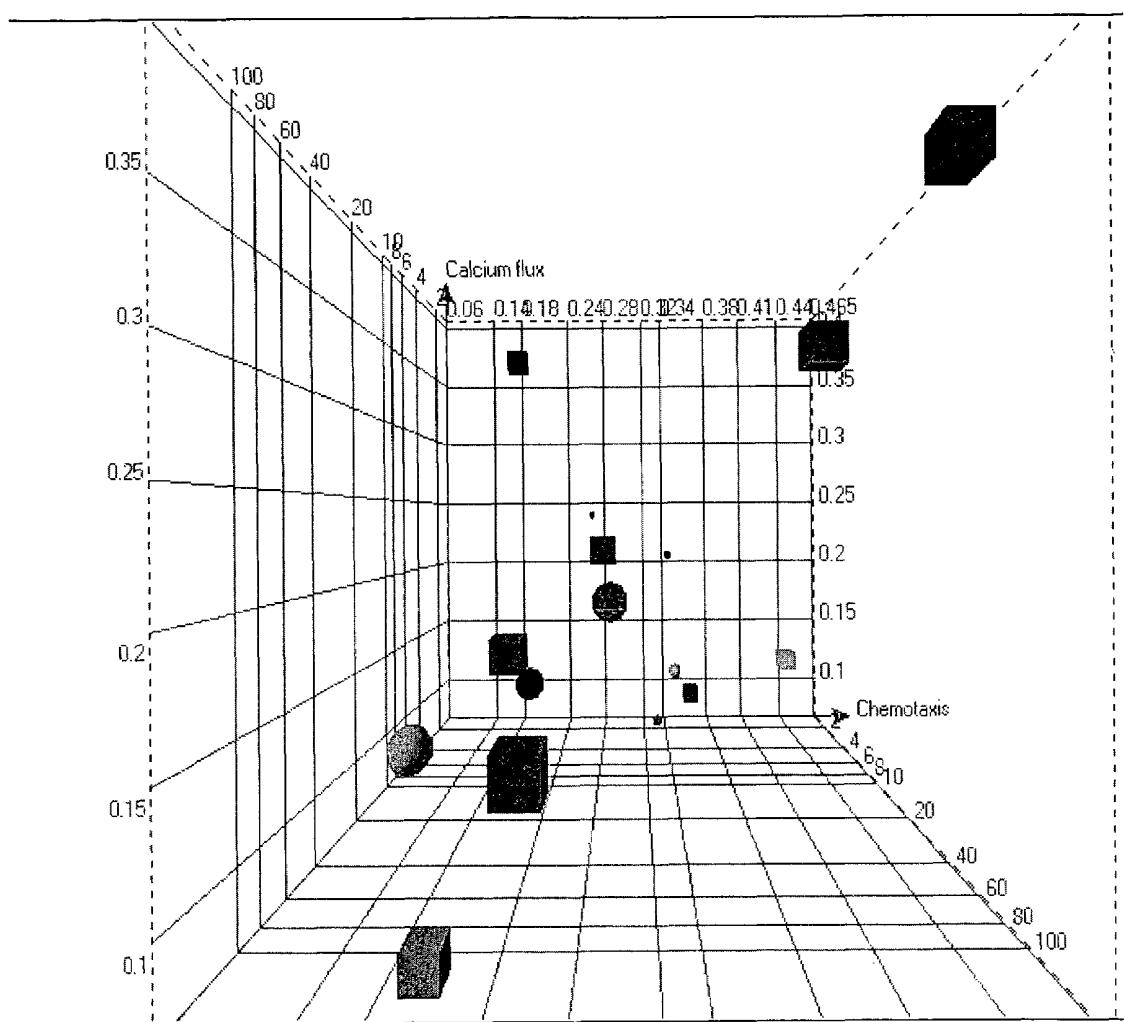

MCP1 mAbs

Figure 6

Scatter Plot

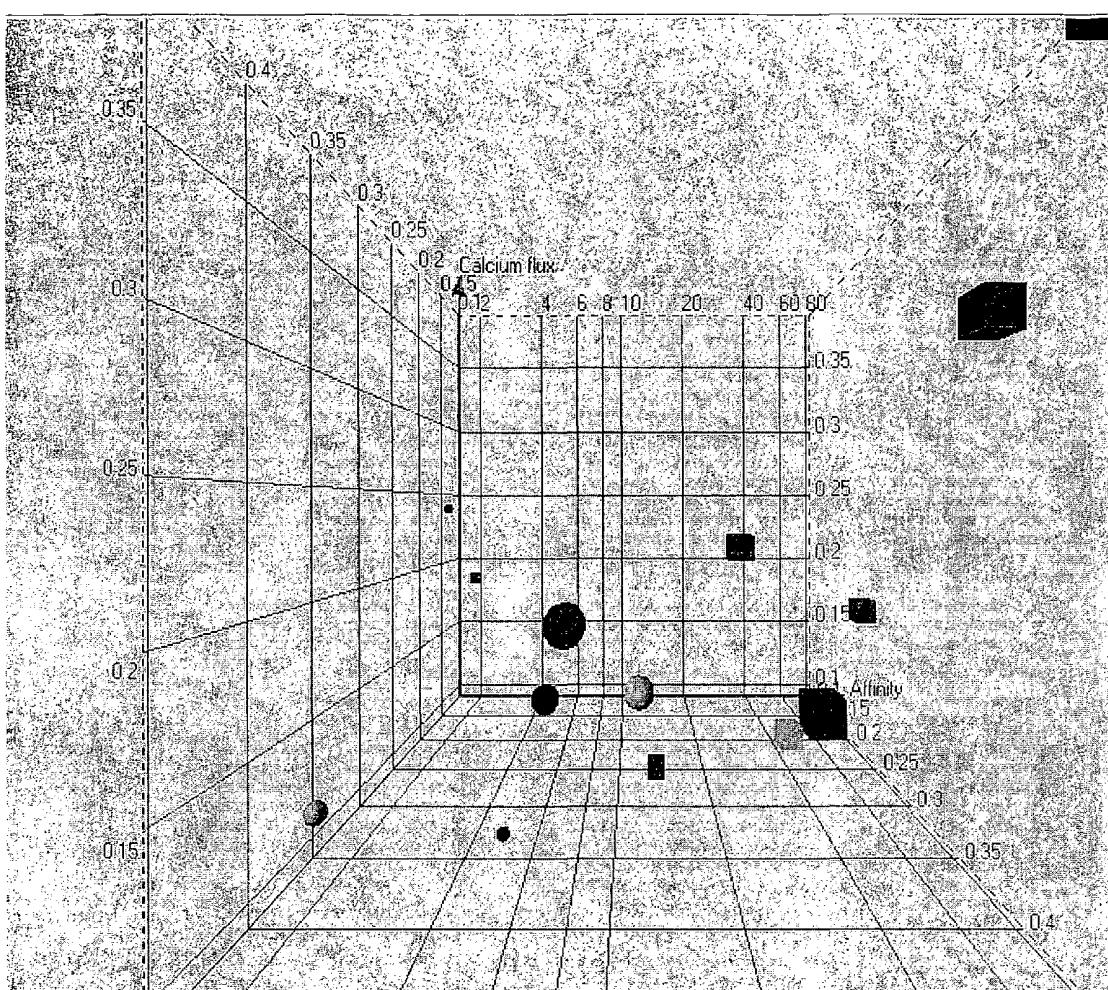


Figure 7A

Alignment of sequences using VH1-24

	CDR1	CDR2
VH1-24	QVQLVQSGAEVKKPGASVKVSCKVSGYTLTELSMHWVRQAPGKGLEWMGGFDPEDGETIY	
MCP1-1.1.1_HC	QVQLVQSGAEVKKPGASVKVSCKVSGYTLTELSMHWVRQAPGNGLEWMGGFDPEDGETIY	
MCP1-1.10_HC	QVQLVQSGAEVKKPGASVKVSCKVSGYTLTELSMHWVRQAPGKGLEWMGGFDPEDGETIY	
MCP1-1.11_HC	QVQVQSGAEVKNPGASVKVSCKVSGSTLTELMSMHWVRQAPGKGLEWMGGFDPEDGETIY	
MCP1-1.12_HC	QVQLVQSGAEVKKPGASVKVSCKVSGYTLTELSMHWVRQAPGKGLEWMGGFDPEDGETIY	
MCP1-1.13_HC	QVQLVQSGAEVKKPGASVKVSCKVSGHTLTELMSMHWVRQAPGKGLEWMGGFDPEDDETIY	
MCP1-1.18_HC	QVQLVQSGAEVKKPGASVKVSCKVSGYTLTELSMHWVRQAPGKGLEWMGGFDPEDGETIY	
MCP1-1.2_HC	QVQLVQSGAEVKKPGASVKVSCKVSGYTFTELSMHWVRQAPGKGLEWMGGFDPEDGETSY	
MCP1-1.3_HC	QVQLVQSGAEVKKPGASVKVSCKVSGYTLTELSMHWVRRIPGKGLEWMGGFDPEDGETIY	
MCP1-1.5.1_HC	QVQLVQSGAEVKKPGASVKVSCKVSGYTLTELSMHWVRQAPGKGLEWMGGFDPEDDETIY	
MCP1-1.6_HC	QVQLVQSGAEVKKPGASVKVSCKVSGYTLTELSMHWVRQAPGKGLEWMGGFDPEDGETIY	
MCP1-1.7_HC	QVQLVQSGAEVKKPGASVKVSCKVSGYTLTELSMHWVRQAPGKGLEWMGGFDPEDGETIY	
MCP1-1.8_HC	QVQLVQSGAEVKKPGASVKVSCKVSGHIFTTELSIHWVRQAPGKGLEWMGGFDPEDGETIY	
MCP1-1.9_HC	QVQLVQSGAEVKKPGASVKVSCKVSGYTLTELSMHWVRQAPGKGLEWMGGFDPEDGETIN	
MCP1-2.3_HC	QVQLVQSGAEVKKPGASVKVSCKVSGYTLTELSMHWVRQAPGKGLEWMGGFDPEDDETIY	
MCP1-3.10_HC	QVQLVQSGAEVKKPGASVKVSCKVSGYTLTELSMHWVRQAPGKGLEWMGGFDPEDGETIY	
MCP1-3.15_HC	QVQLVQSGAEVKKPGASVKVSCKVSGDTLTELMSMHWVRQAPGKGLEWMGGFDPEDGETIY	
MCP1-3.16_HC	QVQLVQSGAEVKKPGASVKVSCKVSGYTLTELSMHWVRQAPGKGLEWMGGFDPEDGETIY	
MCP1-3.2_HC	QVQLVQSGAEVKKPGASVKVSCKVSGYTLTELSMHWVRQAPGKGLEWMGGFDPEDGETI	
MCP1-3.4_HC	QVQLVQSGAEVKKPGASVKVSCKVSGYTLTELSMHWVRQAPGKGLEWMGGFDPEDGETI	
MCP1-3.5_HC	QVQLVQSGAEVKKPGASVKVSCKVSGYTLTELSMHWVRQAPGKGLEWMGGFDPEDDETIY	
MCP1-3.6_HC	QVQLVQSGAEVKKPGASVKVSCKVSGYTLTELSMHWVRQAPGKGLEWMGGFDPEDGETIY	
MCP1-3.7_HC	QVQLVQSGAEVKKPGASVKVSCKVSGYTLTELSMHWVRQTPGKGLEWMGGFDPEDGETIY	
MCP1-3.8_HC	QVQLVQSGAEVKKPGASVKVSCKVSGYTLTELSMHWVRQAPGKGLEWMGGFDPENGETI	
MCP1-4.5_HC	QVQLVQSGAEVKKPGASVKVSCKVSGYTLTELSMHWVRQAPGKGLEWMGGFDPEDGETIY	
MCP1-4.6.3_HC	QVQLVQSGAEVKKPGASVKVSCKVSGYTLTELSMHWVRQAPGKGLEWMGGFDPEDGETIY	
MCP1-4.7_HC	QVQLVQSGAEVKKPGASVKVSCKVSGYTLTELSMHWVRQAPGKGLEWMGGFDPEDGETIY	
MCP1-5.3_HC	QVQLVQSGAEVKKPGASVKVSCKVSGYTLTELSMHWVRQAPGKGLEWMGGFDPEDGETIY	
MCP1-4.8.1_HC	QVQLVQSGAEVKKPGASVKVSCKVSGYTLTELSMHWVRQAPGKGLEWMGGFDPEDGETIY	

Figure 7A (cont.)

CDR2 CDR3

VH1-24	AQKFQGRVTMTEDTSTDAYMELSSLRSEDTAVYYCAT-----
MCP1-1.1.1_HC	AQRFQGRVVMTEDPSTDAYMELSSLRSEDTAVYYCATNEFWSGYF----DYWGQGTLV
MCP1-1.10_HC	AQKFQGRVTMTEDTSTDAYMELSSLRSEDTAVYYCATNEFWSGYF----DYWGQGTLV
MCP1-1.11_HC	AQKFQGRVTMTEDTSTDVYMEMLSSLRSEDTAVYYCATNDFWSGYF----DYWGQGTLV
MCP1-1.12_HC	AQKFQGRVTMTEDTSTDVYMEMLSSLRSEDTAVYYCATNDFWSGYF----DYWGQGTLV
MCP1-1.13_HC	AQKFQGRVTMTEDTSTDVYMEMLSSLRSEDTAVYYCATNDFWSGYY----NYWGQGTLV
MCP1-1.18_HC	AQKFQDRVTMTEDTSTDAYMELSSLRSEDTAVYYCATNDFWSGYF----DCWGQGTLV
MCP1-1.2_HC	AQKFQGRVTMTEDTSTDVYMEMLSSLRSEDTAMYYCATREFWTGYF----DHWGQGTLV
MCP1-1.3_HC	AQKFQGRVTMTEDTSTDAYMELSSLRSEDTAVYYCATNDFWSGYF----DYWGQGTLV
MCP1-1.5.1_HC	AQKFQGRVTMTEDTSTDAYMELSSLRSEDTAVYYCATNDFWSGYF----GHWGQGTLV
MCP1-1.6_HC	AQKFQGRVTMTEDTSTDAYMELSSLRSEDTAVYYCATWYSGIYLAF----DIWGQGTMV
MCP1-1.7_HC	AQKFQGRVSMTEDTSTDAYMELSSLRSEDTAVYFCATNEFWSGYF----DYWGQGTLV
MCP1-1.8_HC	AQKFQGRVTMTEDTSTDVYMEMLSSLRSEDTAVYYCATNDFWSGYF----DYWGQGTLV
MCP1-1.9_HC	AQKFQGRVTMTEDTSTDAYMELSSLRSEDTAVYYCATDPGGYSGYF----DHWGQGTLV
MCP1-2.3_HC	AQKFQGRVTMTEDTSTHTAYMELSSLRSEDTAVYYCATHDFWSAYF----YYWGQGTLV
MCP1-3.10_HC	AQKFQGRVMMTEDTSTDAYMELSSLRSEDTAVYYCATDDMLTPHYLYFGMDVWGQGTTV
MCP1-3.15_HC	ARKFQGRVTMTEDTSTDVYMEMLSSLRSEDTAVYFCATDSRGYSGYF----DNWGQGTLV
MCP1-3.16_HC	AQKFQGRVTMTEDTSTDAYMELSSLRSEDTAVYYCATHEFWSGYF----DYWGQGTLV
MCP1-3.2_HC	AQKFQGRVTMTEDTSTDAYMELSSLRSEDTAVYYCATGDFWSGYLY----DWWGQGTLV
MCP1-3.4_HC	AQKFQGRVTMTEDTSTDAYMELSSLRSEDTAVYYCATDDFWSGYF----DYWGQGTLV
MCP1-3.5_HC	AQKFQGRVTMTEDTSTDAYMELSSLRSEDTAVYYCATDFWSGYF----HYWGQGTLV
MCP1-3.6_HC	AQKFQGRVTMTEDTSTDAYMELSSLRSEDTAVYYCAIHEFWSGYF----DYWGQGTLV
MCP1-3.7_HC	AQKFQDRVTMTEDTSTDAYMELSSLRSEDTAVYYCATNDFWTGYY----DYWGQGTLV
MCP1-3.8_HC	AQKFQGRVIMTEDTSTDAYMELSSLRSEDTAVYYCATDQGGYSGYF----DCWGQGTLV
MCP1-4.5_HC	AQKFQGRVTMTEDTSTDAYMELSSLRSEDTAVYYCATDDFWSGYF----DYWGQGTLV
MCP1-4.6.3_HC	AQKFQGRVTMTEDTSTDAYMELSSLRSEDTAVYYCATDDFWSGYF----DYWGQGTLV
MCP1-4.7_HC	AQKFQGRVTMTEDTSTDAYMELSSLRSEDTAVYYCATDDFWSGYF----DYWGQGTLV
MCP1-5.3_HC	AQKFQGRVTMTEDTSTDAYMELSSLRSEDTAVFYCATKREYSGYF----DYWGQGTLV
MCP1-4.8.1_HC	AQKFQGRVTMTEDTSTDAYMELSSLRTEDTAVYYCTTDDFWSGYF----DYWGQGTLV

Figure 7A (cont.)

VH1-24	---
MCP1-1.1.1_HC	VSS
MCP1-1.10_HC	VSS
MCP1-1.11_HC	VSS
MCP1-1.12_HC	VSS
MCP1-1.13_HC	VSS
MCP1-1.18_HC	VSS
MCP1-1.2_HC	VSS
MCP1-1.3_HC	VSS
MCP1-1.5.1_HC	VSS
MCP1-1.6_HC	VSS
MCP1-1.7_HC	VSS
MCP1-1.8_HC	VSS
MCP1-1.9_HC	VSS
MCP1-2.3_HC	VSS
MCP1-3.10_HC	VSS
MCP1-3.15_HC	VSS
MCP1-3.16_HC	VSS
MCP1-3.2_HC	VSS
MCP1-3.4_HC	VSS
MCP1-3.5_HC	VSS
MCP1-3.6_HC	VSS
MCP1-3.7_HC	VSS
MCP1-3.8_HC	VSS
MCP1-4.5_HC	VSS
MCP1-4.6.3_HC	VSS
MCP1-4.7_HC	VSS
MCP1-5.3_HC	VSS
MCP1-4.8.1_HC	VSS

Figure 7B

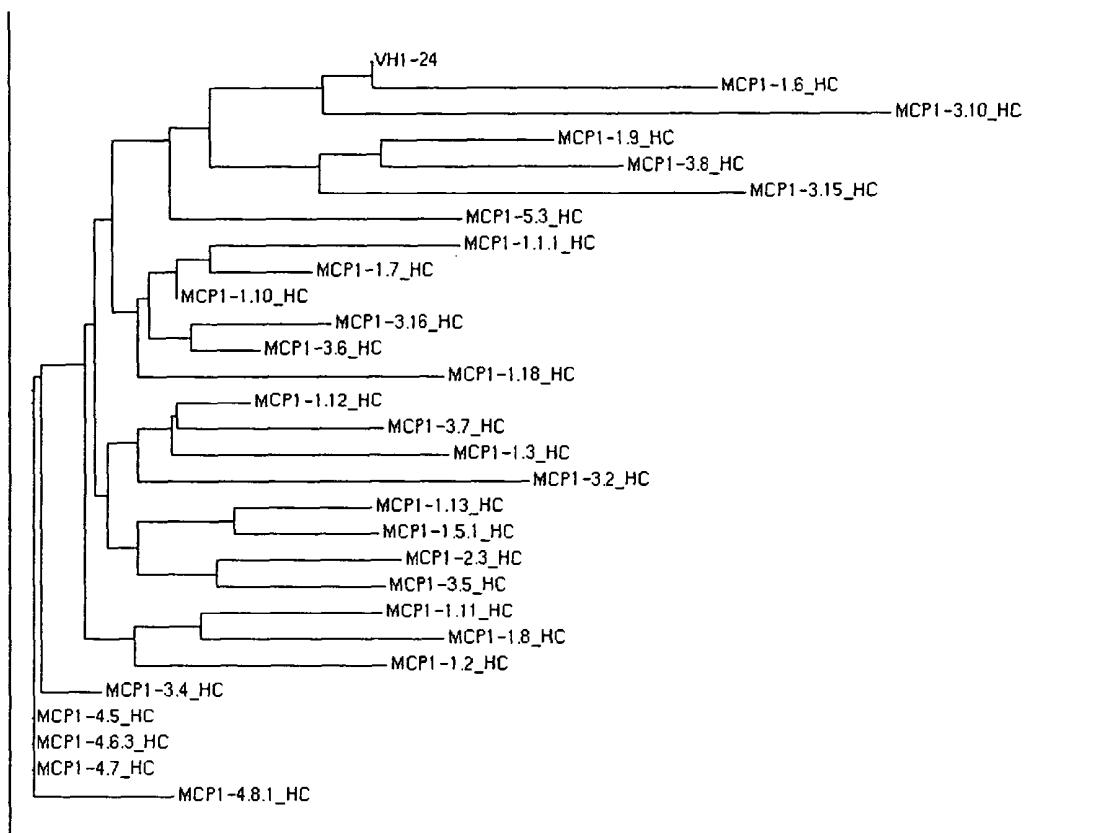

Dendrogram:

Figure 8A

Alignment of sequences using VK-B3

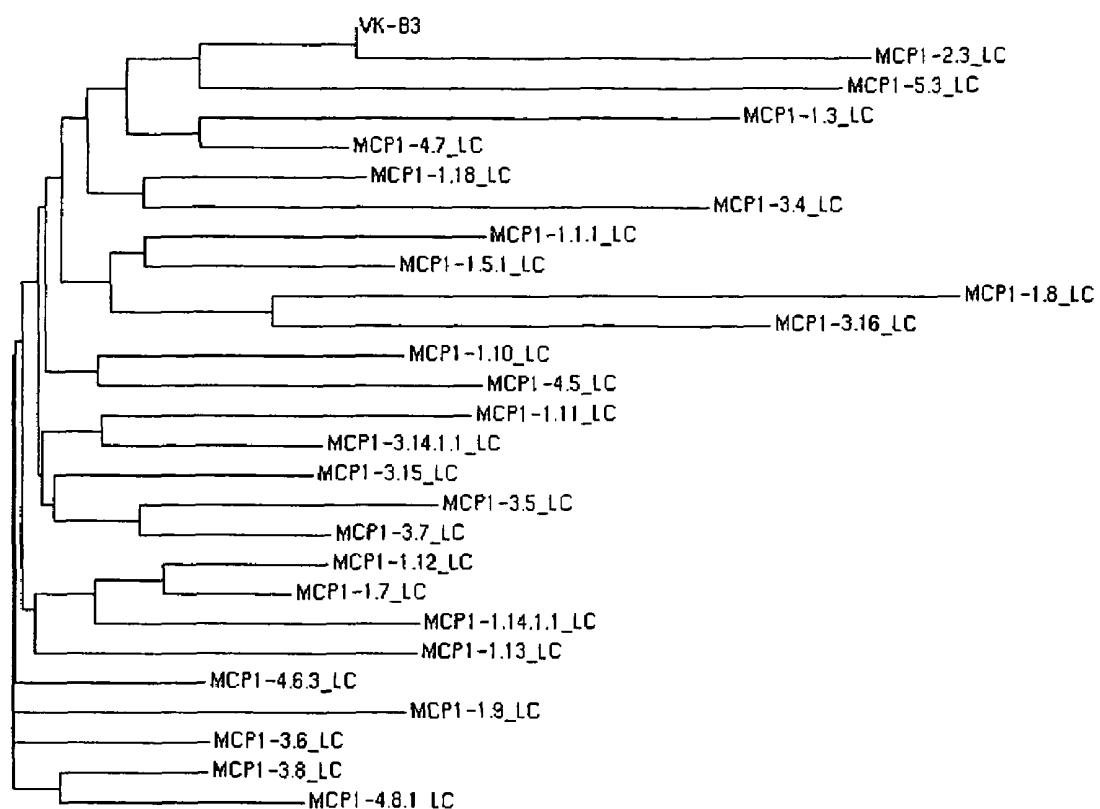

	CDR1	CDR2
VK-B3	DIVMTQSPDSLAVSLGERATINCKSSQSVLYSSNNKNYLAWYQQKPGQPPKLLIYWASTR	
MCP1-1.1.1_LC	DIVMTQSPDSLAMSLGERATINCKSSQSVLYSSNNKNYLWYQQKPGQPPKLLIYWASTR	
MCP1-1.10_LC	DIVMTQSPASIAESLGERATINCKSSQSVLYSSNNKNYLWYQQKPGQPPKLLIYWASTR	
MCP1-1.11_LC	DIVMTQSPDSLAVSLGERATITCKSSQTVLYSSNNKNYLWYQQKSGQPPKLLIHWASIR	
MCP1-1.12_LC	DIVMTQSPDSLAVSLGERATINCKSSQSVLYSSNNKNYLWYQQKPGQPPKLLIYWASTR	
MCP1-1.13_LC	DIVMTQSPDSLAVCLGERATINCKSSQSVLYSPNNKNFLWYQQRPGQPPKLLIYWASTR	
MCP1-1.14.1.1_LC	DIVMTQSPDSLAVSLGERATINCKSSQSVLYSSNNKNYIVWYQQKPGQPPKLLIYWTSTR	
MCP1-1.18_LC	DIVMTQSPDSLAVSLGERATINCKSSQSVLYSSNNKNYLWYQQKPGQPPKLLIYWASTR	
MCP1-1.3_LC	DIVMTQSPDSLAVSLGERATINCKSSQSVLYSSNNKNYLWYQQKPGQPPKLLIYWTYIR	
MCP1-1.5.1_LC	DIVMTQSPDSLAAISLGERATINCKSSQSVLYRSNNKNYLWYQQKPGQPPKLLIYWASTR	
MCP1-1.7_LC	DIVMTQSPDSLAVSLGERATINCKSSQSVLYSSNNKNYLWYQQRPGQPPKLLIYWASTR	
MCP1-1.8_LC	DIVMTQSPGSLAVSLGERATINCKSSQSVLYSSNNKNYLWYQQKPGQPPKLLIYWASTR	
MCP1-1.9_LC	DIVMTQSPDFLAVSLGERPTINCKSSQSVFYSSNNKNYLWYQQKPGQPPKLLIYWASTR	
MCP1-2.3_LC	DIVMTQSPDSLAVSLGERATINCKSSQSVLYGNSNNKSYLAWYQQKPGQPPKLLIYWASTR	
MCP1-3.14.1.1_LC	DIVMTQSPDSLAVSLGERAIAINCKSSQTVLYSSNNKNYLWYQQKPGQPPKLLIYWASTR	
MCP1-3.15_LC	DIVMTQSPDSLAVSLGERATINCKSSQSVLYSSNNNNYLWYQQKPGQPPKLLIYWASTR	
MCP1-3.16_LC	DIVMTQSPDSLAVSLGERATINCKSSQSVLFSSNNKSYLTWYQQKPGQPPKLLIFWASIR	
MCP1-3.4_LC	DIVMTQSPDSLAVSLDERATINCKSSQSVLYSPNQKNYLWYQQKPGQPPKLLIYWASTR	
MCP1-3.5_LC	DIVMTQSPDSLAVSLGERATINCKSSQSVLYSSDNKSYLWYQQKPGQPPKVLIIYWASTR	
MCP1-3.6_LC	DIVMTQSPDSLAVSLGERATINCKSSLQSVLYSSNNKNYLWYQQKPGQPPKLLIYWASTR	
MCP1-3.7_LC	DIVMTQSPDSLAVSLGERATINCKSSQSVLYSSNNKNYLWYQQKPGQPPKTLIYWASTR	
MCP1-3.8_LC	DIVMTQSPDSLAVSLGERATINCKSSQSVLYSSNNKNYLWYQQKPGQPPKLLIYWASTR	
MCP1-4.5_LC	DIVMTQSPDSLAVSLGERATINCKSSQSVLYRSNNKSYLWYQQKLGQSPKLLIYWASTR	
MCP1-4.6.3_LC	DIVMTQSPDSLAVSLGERATINCKSSQSVLYSSNNKNYLWYQQKPGQPPKLLIYWASTR	
MCP1-4.7_LC	DIVMTQSPDSLAVSLGERATINCKSSQSVLYSSNNKNYLAWYQQKPGQPPKLLIYWTSTR	
MCP1-4.8.1_LC	DIVMTQSPDSLAVSLGERATINCKSSQSLLYSSNNKNYLWYQQKPGQPPKLLINWASTR	
MCP1-5.3_LC	DIVMTQSPDSLAVSLGERATINCKSSQSVLYSSNSNKNYLAWFQQKPGQPPKLLIYWASTR	

Figure 8A (cont.)

CDR2

CDR3

VK-B3
MCP1-1.1.1_LC
MCP1-1.10_LC
MCP1-1.11_LC
MCP1-1.12_LC
MCP1-1.13_LC
MCP1-1.14.1.1_LC
MCP1-1.18_LC
MCP1-1.3_LC
MCP1-1.5.1_LC
MCP1-1.7_LC
MCP1-1.8_LC
MCP1-1.9_LC
MCP1-2.3_LC
MCP1-3.14.1.1_LC
MCP1-3.15_LC
MCP1-3.16_LC
MCP1-3.4_LC
MCP1-3.5_LC
MCP1-3.6_LC
MCP1-3.7_LC
MCP1-3.8_LC
MCP1-4.5_LC
MCP1-4.6.3_LC
MCP1-4.7_LC
MCP1-4.8.1_LC
MCP1-5.3_LC

Figure 8B**Dendrogram:**

Figure 9A**Alignment of sequences using VK-O8**

	CDR1	CDR2
VK-08	DIQMTQSPSSLSASVGDRVТИTCQASQDISNYLNWYQQKPGKAPKLLIYDASNLETGVPS	
MCP1-2.4 LC	DIQMTQSPSSLSASVGDRVТИTCQASQDITTYLNWYQQKPGKAPKLLIYDASNLETGVPS	
MCP1-3.11 LC	DIQMTQSPSSLSASVGDRVТИTCQASQDISNYLNWYQQKPGKAPKLLIYDASNLETGVPS	
	*****:*****	*****:*****
	CDR3	
VK-08	RFSGSGSGTDFTFTISSLQPEDIATYYCQQYDNLP-----	
MCP1-2.4 LC	RFSGSGSGTDFTFTISSLQPEDIATYYCQQYDNLPITFGQGTRLEIK	
MCP1-3.11 LC	RFSGSGSGTDFTFTINSLQPEDIATYYCQEYNNLPYSFGQGTKLEIK	
	*****:*****	*****:*****

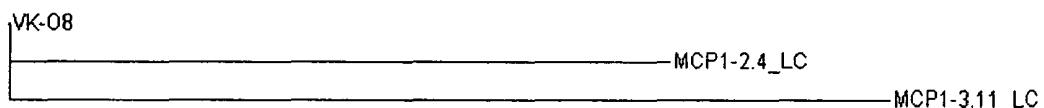

Figure 9B**Dendrogram:**

Figure 10A

Alignment of sequences using VH6-1

	<u>CDR1</u>	<u>CDR2</u>	<u>CDR3</u>
VH6-1	QVQLQQSGPGLVKPSQTLSLTCAISGDSVSSNSAAWNWIQSPSRGLEWLGRYYRSKWY		
MCP1-1.4.1.1_HC	QVQAEQSGPGLVKPSQTLSLTCAISGDSVSSNSAAWNWIQSPSRGLEWLGRYYRSKWY		
MCP1-1.14.1.1_HC	QVQAEQSGPGLVKPSQTLSLTCAISGDSVSSYSAAWNWIQSPSRGLEWLGRYYRSKWY		
MCP1-3.14.1.1_HC	QVQAEQSGPGLVKPSQTLSLTCAISGDSVSSNSAAWNWIQSPSRGLEWLGRYYRSKWY		
		<u>CDR2</u>	<u>CDR3</u>
VH6-1	NDYAVSVKSRITINPDTSKNQFSLQLNSVTPEDTAVYYCAR-----		
MCP1-1.4.1.1_HC	SDHAVSVRSRITIYPDTSKNQFSLQLNSVTPEDTAVYYCARDRISGTYVGMDVWGQGTTV		
MCP1-1.14.1.1_HC	SDHAVSVRSRITIYPDTSKNQFSLQLNSVTPEDTAVYYCARDRISGTYVGMDVWGQGTTV		
MCP1-3.14.1.1_HC	SDHAVSVRSRITIYPDTSKNQFSLQLNSVTPEDTAVYYCARDRISGTYVGMDVWGQGTTV		
VH6-1	---		
MCP1-1.4.1.1_HC	VSS		
MCP1-1.14.1.1_HC	VSS		
MCP1-3.14.1.1_HC	VSS		

Figure 10B

Dendrogram:

**ANTIBODIES DIRECTED TO MONOCYTE
CHEMO-ATTRACTANT PROTEIN-1 (MCP-1)
AND USES THEREOF**

PRIORITY CLAIM

This application claims priority under 35 U.S.C. § 119(e) to U.S. Provisional Application No. 60/404,802, filed Aug. 19, 2002, which is hereby expressly incorporated by reference.

BACKGROUND OF THE INVENTION

1. Field of the Invention

Embodiments of the invention described herein relate to antibodies directed to the antigen monocyte chemo-attractant protein-1 (MCP-1) and uses of such antibodies. In particular, in accordance with embodiments of the invention, there are provided fully human monoclonal antibodies directed to the antigen MCP-1. Nucleotide sequences encoding, and amino acid sequences comprising, heavy and light chain immunoglobulin molecules, particularly sequences corresponding to contiguous heavy and light chain sequences spanning the framework regions and/or complementarity determining regions (CDRs), specifically from FR1 through FR4 or CDR1 through CDR3, are provided. The antibodies of the invention find use as diagnostics and as treatments for diseases associated with the overproduction of MCP-1. Hybridomas or other cell lines expressing such immunoglobulin molecules and monoclonal antibodies are also provided.

2. Description of the Related Art

An increased production of angiogenic factors and decreased production of angiogenesis inhibitors by cancer cells, vascular endothelial cells and other stromal cell types are believed to induce tumor angiogenesis. Stroma, comprised of interstitial connective tissues, basal lamina, blood cells, blood vessels and fibroblastic cells, surround almost all solid tumor cells. Interactions between the stroma and cancer cells play a critical role in the neovascularization of tumors. Further, macrophage, which are also stromal components, are important in tumor angiogenesis. (M. Ono et al., *Cancer Chemother. Pharmacol.* (1999) 43(Suppl.): S69-S71).

Macrophages are the major terminally differentiated cell type of the mononuclear phagocyte system, and are also one of the key angiogenic effector cells, producing a number of growth stimulators and inhibitors. A number of angiogenic cytokines are known to be produced by macrophages, including monocyte chemo-attractant protein 1 (MCP-1).

MCP-1 is known to be chemotactic for T lymphocytes, basophils and NK cells. MCP-1 is one of the most potent macrophage recruiting molecules. Once recruited to sites of inflammation or tumors, macrophages can generate a number of angiogenic cytokines, thereby stimulating pathologic angiogenesis. A number of studies have shown a relationship between angiogenesis, macrophage recruitment, and prognosis in patients with various kinds of tumors (G. Fantanini et al., *Int. J. Cancer* (1996) 67:615; N. Weidner et al., *J. Natl. Cancer Inst.* (1992) 84:1875). Leek et al. have further demonstrated that focally increased macrophage numbers are closely related to vascularization and prognosis in breast cancer patients (*Cancer Res.* (1996) 56:4625). R. Huang et al. (*Cancer Res.* (2002) 62:2806-2812) have shown that Connexin 43 suppresses human glioblastoma cell growth by down regulation of MCP-1, as discovered by using protein array technology.

Goede et al. (*Int. J. Cancer* (1999) 82: 765-770) first demonstrated that MCP-1 had an angiogenic potency which was equivalent to that of VEGF when tested in a rabbit corneal model. In their model, the angiogenic activity induced by MCP-1 was associated with an intense recruitment of macrophages into the rabbit cornea. Salcedo et al. have reported that MCP-1 induced chemotaxis of human endothelial cells at nanomolar concentrations. This chemotactic response was inhibited by a polyclonal antibody to human MCP-1 (R. Salcedo et al., *Blood* (2000) 96(1): 34-40).

MCP-1 is the predominant chemokine expressed in ovarian cancer (Negus, R. P. M. et al., *J. Clin. Investig.* (1995) 95: 2391-96; Sica, A. et al., *J. Immunology* (2000) 164(2): 733-8). MCP-1 is also elevated in a number of other human cancers including bladder, breast, lung, and glioblastomas.

In addition, the importance of MCP-1 in inflammation has been shown in a number of studies. For example, H. J. Anders et al., have demonstrated chemokine and chemokine receptor expression during initiation and resolution of immune complex glomerulonephritis (*J. Am. Soc. Nephrol.* (2001) 12: 919-2001). Segerer et al. (*J. Am. Soc. Nephrol.* (2000) 11:2231-2242) also have studied the expression of MCP-1 and its receptor chemokine receptor 2 in human crescentic glomerulonephritis. J. A. Belperio et al. have shown a critical role for the chemokine MCP-1/CCR2 in the pathogenesis of bronchiolitis obliterans syndrome (*J. Clin. Investig.* (2001) 108: 547-556). N. G. Frangogiannis et al. have delineated the role of MCP-1 in the inflammatory response in myocardial infarction (*Cardiovascular Res.* (2002) 53: 31-47). Gerard and Rollins (*Nature Immunol.* (2001) 2:108-115) and Reape and Groot (*Atherosclerosis* (1999) 147: 213-225) have discussed the role of MCP-1 in atherosclerosis and other diseases. Also, Schmidt and Stem (*Arterioscler. Thromb. Vasc. Biol.* (2001) 21:297-299) describe MCP-1 interactions in restenosis.

Human MCP-1, a 76-amino-acid CC chemokine with an N-terminal pyroglutamic acid, was originally purified from several sources including phytohemagglutinin-stimulated human lymphocytes (Yoshimura, T. et al., *J. Immunol.* (1989) 142:1956-62), a human glioma cell line (Yoshimura, T., et al., *J. Exp. Med.* (1989) 169:1449-59), and the human myelomonocytic cell line THP-1 (Matsushima, K., et al., (1989) *J. Exp. Med.* (1989) 169: 1485-90). MCP-1 was first described as lymphocyte-derived chemotactic factor (LDCF). Other names for the protein are tumor-cell-derived chemotactic factor (TDCF), glioma-derived monocyte chemotactic factor (TDCF), glioma-derived monocyte chemotactic factor (GDCF), smooth muscle cell-derived chemotactic factor (SMC-CF), monocyte chemotactic activating factor (MCAF) and CCL2. Molecular cloning of the cDNA encoding MCP-1 (Furutani, Y., et al., (1989) *Biochem. Biophys. Res. Comm.* (1989) 169:249-55; B. J. Rollins, et al., *Mol. Cell. Biol.* (1989) 9:4687-95; Chang, H. C., et al., *Int. Immunol.* (1989) 1:388-97) revealed an open reading frame of 99 amino acids, including a signal peptide of 23 amino acids. The mouse homologue gene of MCP-1 was named JE (B. J. Rollins et al., 1989).

WO 200189565, published Nov. 29, 2001, discloses polyclonal antibodies to human MCP-1 and describes the inhibition of tumor growth in a nude mouse model by the use of such polyclonal antibodies.

Embodiments of the invention described herein relate to fully human monoclonal antibodies to human MCP-1 that block MCP-1-induced chemotaxis of THP-1 cells, a cell line derived from a patient with acute monocytic leukemia. These cells are used as a surrogate for assessing the migratory

tion of normal human mononuclear cells in circulation. Mononuclear cell infiltration stimulated by MCP-1 plays a pathologic role in a number of inflammatory conditions including rheumatoid arthritis, glomerulonephritis, atherosclerosis, transplant rejection, psoriasis, restenosis, and autoimmune diseases such as multiple sclerosis. An antibody that blocks MCP-1 activity and prevents monocyte infiltration will find use as a treatment for these and other inflammatory diseases.

SUMMARY OF THE INVENTION

Embodiments of the invention described herein related to monoclonal antibodies that were found to bind MCP-1 and affect MCP-1 function. Other embodiments relate to human anti-MCP-1 antibodies and anti-MCP-1 antibody preparations with desirable properties from a therapeutic perspective, including strong binding affinity for MCP-1, the ability to neutralize MCP-1 in vitro, and the ability to inhibit neovascularization of solid tumors.

One embodiment of the invention is a fully human monoclonal antibody that binds to MCP-1 and has a heavy chain amino acid sequence selected from the group consisting of SEQ ID NOS: 2, 6, 10, 14, 18, 22, 26, 30, 34, 38, 42, 46, 50, 54, 58, 62, 66, 70, 74, 78, 82, 86, 90, 94, 98, 102, 106, 110, 114, 118, 122, 126, 130, 134, 138, 142 and 146. In one embodiment, the antibody further comprises a light chain amino acid sequence selected from the group consisting of SEQ ID NOS: 4, 8, 12, 16, 20, 24, 28, 32, 36, 40, 44, 48, 52, 56, 60, 64, 68, 72, 76, 80, 84, 88, 92, 96, 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144 and 148.

Accordingly, one embodiment of the invention described herein provides isolated antibodies, or fragments of those antibodies, that bind to MCP-1. As known in the art, the antibodies can advantageously be, for example, monoclonal, chimeric and/or human antibodies. Embodiments of the invention described herein also provide cells for producing these antibodies.

Another embodiment of the invention is a fully human antibody that binds to MCP-1 that comprises a heavy chain amino acid sequence having the CDRs comprising the sequences shown in FIGS. 7 and 10. It is noted that CDR determinations can be readily accomplished by those of ordinary skill in the art. In general, CDRs are presented in the invention described herein as defined by Kabat et al., in *Sequences of Proteins of Immunological Interest* vols. 1-3 (Fifth Edition, NIH Publication 91-3242, Bethesda Md. 1991).

Yet another embodiment of the invention is a fully human antibody that binds to MCP-1 and comprises a light chain amino acid sequence having the CDRs comprising the sequences shown in FIGS. 8 and 9.

A further embodiment of the invention is a fully human antibody that binds to MCP-1 and comprises a heavy chain amino acid sequence having the CDRs comprising the sequences shown in FIGS. 7 and 10 and a light chain amino acid sequence having the CDRs comprising the sequences shown in FIGS. 8 and 9.

Another embodiment of the invention is a fully human antibody that binds to other MCP-1 family members including, but not limited to, MCP-2, MCP-3 and MCP-4. A further embodiment of the invention is an antibody that cross-competes for binding to MCP-1 with the fully human antibodies of the invention.

It will be appreciated that embodiments of the invention are not limited to any particular form of an antibody or method of generation or production. For example, the anti-

MCP-1 antibody may be a full-length antibody (e.g., having an intact human Fc region) or an antibody fragment (e.g., a Fab, Fab' or F(ab')₂). In addition, the antibody may be manufactured from a hybridoma that secretes the antibody, or from a recombinantly produced cell that has been transformed or transfected with a gene or genes encoding the antibody.

Other embodiments of the invention include isolated nucleic acid molecules encoding any of the antibodies described herein, vectors having an isolated nucleic acid molecules encoding any of such the anti-MCP-1 antibodies, a host cell transformed with any of such nucleic acid molecules. In addition, one embodiment of the invention is a method of producing an anti-MCP-1 antibody by culturing host cells under conditions wherein a nucleic acid molecule is expressed to produce the antibody followed by recovering the antibody.

A further embodiment of the invention includes a method of producing high affinity antibodies to MCP-1 by immunizing a mammal with human MCP-1 or a fragment thereof and one or more orthologous sequences or fragments thereof.

Embodiments of the invention described herein are based upon the generation and identification of isolated antibodies that bind specifically to MCP-1. MCP-1 is expressed at elevated levels in neoplastic diseases, such as tumors, and other inflammatory diseases. Inhibition of the biological activity of MCP-1 can prevent further infiltration of mononuclear cells into tissues.

Another embodiment of the invention includes a method of diagnosing diseases or conditions in which an antibody prepared according to the invention described herein is utilized to detect the level of MCP-1 in a patient sample. In one embodiment, the patient sample is blood or blood serum. In further embodiments, methods for the identification of risk factors, diagnosis of disease, and staging of disease is presented which involves the identification of the overexpression of MCP-1 using anti-MCP-1 antibodies.

In another embodiment, the invention includes a method for diagnosing a condition associated with the expression of MCP-1 in a cell, comprising contacting the cell with an anti-MCP-1 antibody, and detecting the presence of MCP-1. Preferred conditions include, but are not limited to, neoplastic diseases including, without limitation, tumors, cancers, such as breast, ovarian, stomach, endometrial, salivary gland, lung, kidney, colon, colorectal, thyroid, pancreatic, prostate and bladder cancer, as well as other inflammatory conditions, including, but not limited to, rheumatoid arthritis, glomerulonephritis, atherosclerosis, psoriasis, organ transplants, restenosis and autoimmune diseases.

In another embodiment, the invention includes an assay kit for the detection of MCP-1 and MCP-1 family members in mammalian tissues or cells to screen for neoplastic diseases or inflammatory conditions, comprising an antibody that binds to MCP-1 and a means for indicating the reaction of the antibody with the antigen, if present. Preferably the antibody is a monoclonal antibody. In one embodiment, the antibody that binds MCP-1 is labeled. In another embodiment the antibody is an unlabeled first antibody and the means for indicating the reaction comprises a labeled second antibody that is an anti-immunoglobulin. Preferably the antibody is labeled with a marker selected from the group consisting of a fluorochrome, an enzyme, a Radionuclide and a radiopaque material.

Other embodiments of the invention include pharmaceutical compositions comprising an effective amount of the antibody of the invention in admixture with a pharmaceu-

tically acceptable carrier or diluent. In yet other embodiments, the anti-MCP-1 antibody or fragment thereof is conjugated to a therapeutic agent. The therapeutic agent can be a toxin or a radioisotope. Preferably, such antibodies can be used for the treatment of diseases, such as, for example, tumors, including, without limitation, cancers, such as breast, ovarian, stomach, endometrial, salivary gland, lung, kidney, colon, colorectal, thyroid, pancreatic, prostate and bladder cancer, as well as other inflammatory conditions, including, but not limited to, rheumatoid arthritis, glomerulonephritis, atherosclerosis, psoriasis, organ transplants, restenosis and autoimmune diseases.

Yet another embodiment of the invention provides a method for treating diseases or conditions associated with the expression of MCP-1 in a patient, comprising administering to the patient an effective amount of an anti-MCP-1 antibody. The method can be performed in vivo. The patient is a mammalian patient, preferably a human patient. In a preferred embodiment, the method concerns the treatment of tumors, including, without limitation, cancers, such as breast, ovarian, stomach, endometrial, salivary gland, lung, kidney, colon, colorectal, thyroid, pancreatic, prostate and bladder cancer. In another embodiment, the method concerns the treatment of inflammatory conditions, including, but not limited to, rheumatoid arthritis, glomerulonephritis, atherosclerosis, psoriasis, organ transplants, restenosis and autoimmune diseases. Additional embodiments include methods for the treatment of diseases and conditions associated with the expression of MCP-1, which can include identifying a mammal in need of treatment for overexpression of MCP-1 and administering to the mammal, a therapeutically effective dose of anti-MCP-1 antibodies.

In another embodiment, the invention provides an article of manufacture comprising a container, comprising a composition containing an anti-MCP-1 antibody, and a package insert or label indicating that the composition can be used to treat neoplastic and inflammatory diseases characterized by the overexpression of MCP-1. Preferably a mammal, and more preferably, a human receives the anti-MCP-1 antibody. In a preferred embodiment, tumors, including, without limitation, cancers, such as breast, ovarian, stomach, endometrial, salivary gland, lung, glioblastomas, kidney, colon, colorectal, thyroid, pancreatic, prostate and bladder cancer, as well as other inflammatory conditions, including, but not limited to, rheumatoid arthritis, glomerulonephritis, atherosclerosis, psoriasis, organ transplants, restenosis and autoimmune diseases such as multiple sclerosis are treated.

In some embodiments, the anti-MCP-1 antibody is administered, followed by a clearing agent to remove circulating antibody from the blood.

In some embodiments, anti-MCP-1 antibodies can be modified to enhance their capability of fixing complement and participating in complement-dependent cytotoxicity (CDC). In one embodiment, the anti-MCP-1 antibody can be modified, such as by an amino acid substitution, to alter antibody clearance. For example, certain amino acid substitutions may accelerate clearance of the antibody from the body. Alternatively, the amino acid substitutions may slow the clearance of antibody from the body. In other embodiments, the anti-MCP-1 antibody can be altered such that it is eliminated less rapidly from the body.

Yet another embodiment is the use of an anti-MCP-1 antibody in the preparation of a medicament for the treatment of diseases such as neoplastic diseases and inflammatory conditions. In one embodiment, the neoplastic diseases include tumors and cancers, such as breast, ovarian, stomach, endometrial, salivary gland, lung, kidney, colon, col-

orectal, thyroid, pancreatic, prostate and bladder cancer. In an alternative embodiment, the inflammatory condition includes, but is not limited to, rheumatoid arthritis, glomerulonephritis, atherosclerosis, psoriasis, organ transplants, restenosis and autoimmune diseases.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 shows results of THP-1 monocyte migration studies in response to MCP-1, MCP-2, MCP-3 and MCP-4.

FIG. 2 shows inhibition by antibody 3.11.2 in a dose-dependent manner of the migration ability of THP-1 cells in response to MCP-2.

FIG. 3 shows inhibition by antibody 3.11.2 in a dose-dependent manner of the migration ability of THP-1 cells in response to MCP-3.

FIG. 4 shows the effect of anti-MCP-1 antibody 1.7.3 on pancreatic tumor Panc-1 growth.

FIG. 5 shows a 3-dimensional scatter plot of calcium flux, chemotaxis and affinity data for the MCP-1 antibodies.

FIG. 6 shows another orientation of a 3-dimensional scatter plot of calcium flux, chemotaxis and affinity data for the MCP-1 antibodies.

FIG. 7A shows a Clustal W comparison of anti-MCP-1 sequences using VH1-24, indicating the CDR1, CDR2, and CDR3 regions, and the associated dendrogram (FIG. 7B).

FIG. 8A shows a Clustal W comparison of anti-MCP-1 sequences using VK-B3, indicating the CDR1, CDR2, and CDR3 regions, and the associated dendrogram (FIG. 8B).

FIG. 9A shows a Clustal W comparison of anti-MCP-1 sequences using VK-08, indicating the CDR1, CDR2, and CDR3 regions, and the associated dendrogram (FIG. 9B).

FIG. 10A shows a Clustal W comparison of anti-MCP-1 sequences using VH6-1, indicating the CDR1, CDR2, and CDR3 regions, and the associated dendrogram (FIG. 10B).

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

Embodiments of the invention described herein relate to monoclonal antibodies that bind to MCP-1. In some embodiments, the antibodies bind to MCP-1 and affect MCP-1 function. Other embodiments provide fully human anti-MCP-1 antibodies and anti-MCP-1 antibody preparations with desirable properties from a therapeutic perspective, including strong binding affinity for MCP-1, the ability to neutralize MCP-1 in vitro, and the ability to inhibit the growth and neovascularization of solid tumors in vivo.

Accordingly, embodiments of the invention provide isolated antibodies, or fragments of those antibodies, that bind to MCP-1. As known in the art, the antibodies can advantageously be, e.g., monoclonal, chimeric and/or human antibodies. Embodiments of the invention also provide cells for producing these antibodies.

In some embodiments, the antibodies described herein possess therapeutic utilities. An anti-MCP-1 antibody can potentially block or limit the extent of tumor neovascularization and tumor growth. Many cancer cells including those from glioblastomas and renal cancers express the receptor for MCP-1, CCR2. The co-expression of ligand and receptor in the same tumor cell suggests that MCP-1 may regulate an autocrine growth loop in cancer cells that express both components. Huang et al. (*Cancer Res.* (2002) 62:2806-2812) have recently reported that MCP-1 can directly influence the growth and survival of tumor cells that express the CCR2 receptor for MCP-1. Thus, in addition to

its effects on angiogenesis, MCP-1 may also directly regulate tumor cell growth, migration and invasion.

In addition, embodiments of the invention provide for using these antibodies as a diagnostic or treatment for disease. For example, embodiments of the invention provide methods and antibodies for inhibition expression of MCP-1 associated with tumors and inflammatory conditions. Preferably, the antibodies are used to treat cancers, such as breast, ovarian, stomach, endometrial, salivary gland, lung, kidney, colon, colorectal, thyroid, pancreatic, prostate and bladder cancer, as well as other inflammatory conditions, including, but not limited to, rheumatoid arthritis, glomerulonephritis, atherosclerosis, psoriasis, organ transplants, restenosis and autoimmune diseases. In association with such treatment, articles of manufacture comprising antibodies of the invention described herein are provided. Additionally, an assay kit comprising antibodies in accordance with the invention described herein is provided to screen for tumors and inflammatory conditions.

Additionally, the nucleic acids described herein, and fragments and variants thereof, may be used, by way of nonlimiting example, (a) to direct the biosynthesis of the corresponding encoded proteins, polypeptides, fragments and variants as recombinant or heterologous gene products, (b) as probes for detection and quantification of the nucleic acids disclosed herein, (c) as sequence templates for pre-

paring antisense molecules, and the like. Such uses are described more fully in the following disclosure.

Furthermore, the proteins and polypeptides described herein, and fragments and variants thereof, may be used, in ways that include (a) serving as an immunogen to stimulate the production of an anti-MCP-1 antibody, (b) a capture antigen in an immunogenic assay for such an antibody, (c) as a target for screening for substances that bind to a MCP-1 polypeptide described herein, and (d) a target for a MCP-1 specific antibody such that treatment with the antibody affects the molecular and/or cellular function mediated by the target.

In view of its strong effects in modulating cell growth, an increase of MCP-1 polypeptide expression or activity can be used to promote cell survival. Conversely, a decrease in MCP-1 polypeptide expression can be used to induce cell death.

Further embodiments, features, and the like regarding the antibodies of the invention are provided in additional detail below.

Sequence Listing

The heavy chain and light chain variable region nucleotide and amino acid sequences of representative human anti-MCP-1 antibodies are provided in the sequence listing, the contents of which are summarized in Table 1 below.

TABLE 1

mAb ID No.:	Sequence	SEQ ID NO.:
1.1.1	Nucleotide sequence encoding the variable region of the heavy chain	1
	Amino acid sequence encoding the variable region of the heavy chain	2
	Nucleotide sequence encoding the variable region of the light chain	3
	Amino acid sequence encoding the variable region of the light chain	4
1.10.1	Nucleotide sequence encoding the variable region of the heavy chain	5
	Amino acid sequence encoding the variable region of the heavy chain	6
	Nucleotide sequence encoding the variable region of the light chain	7
	Amino acid sequence encoding the variable region of the light chain	8
1.12.1	Nucleotide sequence encoding the variable region of the heavy chain	9
	Amino acid sequence encoding the variable region of the heavy chain	10
	Nucleotide sequence encoding the variable region of the light chain	11
	Amino acid sequence encoding the variable region of the light chain	12
1.13.1	Nucleotide sequence encoding the variable region of the heavy chain	13
	Amino acid sequence encoding the variable region of the heavy chain	14
	Nucleotide sequence encoding the variable region of the light chain	15
	Amino acid sequence encoding the variable region of the light chain	16
1.18.1	Nucleotide sequence encoding the variable region of the heavy chain	17
	Amino acid sequence encoding the variable region of the heavy chain	18
	Nucleotide sequence encoding the variable region of the light chain	19
	Amino acid sequence encoding the variable region of the light chain	20
1.2.1	Nucleotide sequence encoding the variable region of the heavy chain	21
	Amino acid sequence encoding the variable region of the heavy chain	22
	Nucleotide sequence encoding the variable region of the light chain	23
	Amino acid sequence encoding the variable region of the light chain	24
1.3.1	Nucleotide sequence encoding the variable region of the heavy chain	25
	Amino acid sequence encoding the variable region of the heavy chain	26
	Nucleotide sequence encoding the variable region of the light chain	27
	Amino acid sequence encoding the variable region of the light chain	28
1.5.1	Nucleotide sequence encoding the variable region of the heavy chain	29
	Amino acid sequence encoding the variable region of the heavy chain	30
	Nucleotide sequence encoding the variable region of the light chain	31
	Amino acid sequence encoding the variable region of the light chain	32
1.6.1	Nucleotide sequence encoding the variable region of the heavy chain	33
	Amino acid sequence encoding the variable region of the heavy chain	34
	Nucleotide sequence encoding the variable region of the light chain	35
	Amino acid sequence encoding the variable region of the light chain	36
1.7.1	Nucleotide sequence encoding the variable region of the heavy chain	37
	Amino acid sequence encoding the variable region of the heavy chain	38
	Nucleotide sequence encoding the variable region of the light chain	39
	Amino acid sequence encoding the variable region of the light chain	40
1.8.1	Nucleotide sequence encoding the variable region of the heavy chain	41
	Amino acid sequence encoding the variable region of the heavy chain	42

TABLE 1-continued

TABLE 1-continued

mAb		SEQ ID
ID No.:	Sequence	NO:
	Nucleotide sequence encoding the variable region of the light chain	119
	Amino acid sequence encoding the variable region of the light chain	120
1.11.1	Nucleotide sequence encoding the variable region of the heavy chain	121
	Amino acid sequence encoding the variable region of the heavy chain	122
	Nucleotide sequence encoding the variable region of the light chain	123
	Amino acid sequence encoding the variable region of the light chain	124
1.14.1	Nucleotide sequence encoding the variable region of the heavy chain	125
	Amino acid sequence encoding the variable region of the heavy chain	126
	Nucleotide sequence encoding the variable region of the light chain	127
	Amino acid sequence encoding the variable region of the light chain	128
1.4.1	Nucleotide sequence encoding the variable region of the heavy chain	129
	Amino acid sequence encoding the variable region of the heavy chain	130
	Nucleotide sequence encoding the variable region of the light chain	131
	Amino acid sequence encoding the variable region of the light chain	132
3.14.1	Nucleotide sequence encoding the variable region of the heavy chain	133
	Amino acid sequence encoding the variable region of the heavy chain	134
	Nucleotide sequence encoding the variable region of the light chain	135
	Amino acid sequence encoding the variable region of the light chain	136
3.8	Nucleotide sequence encoding the variable region of the heavy chain	137
	Amino acid sequence encoding the variable region of the heavy chain	138
	Nucleotide sequence encoding the variable region of the light chain	139
	Amino acid sequence encoding the variable region of the light chain	140
4.8.1	Nucleotide sequence encoding the variable region of the heavy chain	141
	Amino acid sequence encoding the variable region of the heavy chain	142
	Nucleotide sequence encoding the variable region of the light chain	143
	Amino acid sequence encoding the variable region of the light chain	144
5.1	Nucleotide sequence encoding the variable region of the heavy chain	145
	Amino acid sequence encoding the variable region of the heavy chain	146
	Nucleotide sequence encoding the variable region of the light chain	147
	Amino acid sequence encoding the variable region of the light chain	148

Definitions

Unless otherwise defined, scientific and technical terms used in connection with the invention described herein shall have the meanings that are commonly understood by those of ordinary skill in the art. Further, unless otherwise required by context, singular terms shall include pluralities and plural terms shall include the singular. Generally, nomenclatures utilized in connection with, and techniques of, cell and tissue culture, molecular biology, and protein and oligo- or polynucleotide chemistry and hybridization described herein are those well known and commonly used in the art. Standard techniques are used for recombinant DNA, oligonucleotide synthesis, and tissue culture and transformation (e.g., electroporation, lipofection). Enzymatic reactions and purification techniques are performed according to manufacturer's specifications or as commonly accomplished in the art or as described herein. The foregoing techniques and procedures are generally performed according to conventional methods well known in the art and as described in various general and more specific references that are cited and discussed throughout the instant application. See, e.g., Sambrook et al., *Molecular Cloning: A Laboratory Manual* (2d ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. 1989), which is incorporated herein by reference. The nomenclatures utilized in connection with, and the laboratory procedures and techniques of, analytical chemistry, synthetic organic chemistry, and medicinal and pharmaceutical chemistry described herein are those well known and commonly used in the art. Standard techniques are used for chemical syntheses, chemical analyses, pharmaceutical preparation, formulation, and delivery, and treatment of patients.

As utilized in accordance with the embodiments provided herein, the following terms, unless otherwise indicated, shall be understood to have the following meanings:

The term "isolated polynucleotide" as used herein shall mean a polynucleotide of genomic, cDNA, or synthetic origin or some combination thereof, which by virtue of its origin the "isolated polynucleotide" (1) is not associated with all or a portion of a polynucleotide in which the "isolated polynucleotide" is found in nature, (2) is operably linked to a polynucleotide which it is not linked to in nature, or (3) does not occur in nature as part of a larger sequence.

The term "isolated protein" referred to herein means a protein of cDNA, recombinant RNA, or synthetic origin or some combination thereof, which by virtue of its origin, or source of derivation, the "isolated protein" (1) is not associated with proteins found in nature, (2) is free of other proteins from the same source, e.g. free of murine proteins, (3) is expressed by a cell from a different species, or (4) does not occur in nature.

The term "polypeptide" is used herein as a generic term to refer to native protein, fragments, or analogs of a polypeptide sequence. Hence, native protein, fragments, and analogs are species of the polypeptide genus. Preferred polypeptides in accordance with the invention comprise the human heavy chain immunoglobulin molecules and the human kappa light chain immunoglobulin molecules, as well as antibody molecules formed by combinations comprising the heavy chain immunoglobulin molecules with light chain immunoglobulin molecules, such as the kappa light chain immunoglobulin molecules, and vice versa, as well as fragments and analogs thereof.

The term "naturally occurring" as used herein as applied to an object refers to the fact that an object can be found in nature. For example, a polypeptide or polynucleotide sequence that is present in an organism (including viruses) that can be isolated from a source in nature and which has not been intentionally modified by man in the laboratory or otherwise is naturally occurring.

13

The term "operably linked" as used herein refers to positions of components so described are in a relationship permitting them to function in their intended manner. A control sequence "operably linked" to a coding sequence is ligated in such a way that expression of the coding sequence is achieved under conditions compatible with the control sequences.

The term "control sequence" as used herein refers to polynucleotide sequences which are necessary to effect the expression and processing of coding sequences to which they are ligated. The nature of such control sequences differs depending upon the host organism; in prokaryotes, such control sequences generally include promoter, ribosomal binding site, and transcription termination sequence; in eukaryotes, generally, such control sequences include promoters and transcription termination sequence. The term "control sequences" is intended to include, at a minimum, all components whose presence is essential for expression and processing, and can also include additional components whose presence is advantageous, for example, leader sequences and fusion partner sequences.

The term "polynucleotide" as referred to herein means a polymeric form of nucleotides of at least 10 bases in length, either ribonucleotides or deoxynucleotides or a modified form of either type of nucleotide. The term includes single and double stranded forms of DNA.

The term "oligonucleotide" referred to herein includes naturally occurring, and modified nucleotides linked together by naturally occurring, and non-naturally occurring oligonucleotide linkages. Oligonucleotides are a polynucleotide subset generally comprising a length of 200 bases or fewer. Preferably oligonucleotides are 10 to 60 bases in length and most preferably 12, 13, 14, 15, 16, 17, 18, 19, or 20 to 40 bases in length. Oligonucleotides are usually single stranded, e.g. for probes; although oligonucleotides may be double stranded, e.g. for use in the construction of a gene mutant. Oligonucleotides of the invention can be either sense or antisense oligonucleotides.

The term "naturally occurring nucleotides" referred to herein includes deoxyribonucleotides and ribonucleotides. The term "modified nucleotides" referred to herein includes nucleotides with modified or substituted sugar groups and the like. The term "oligonucleotide linkages" referred to herein includes oligonucleotides linkages such as phosphorothioate, phosphorodithioate, phosphoroselenoate, phosphorodiselenoate, phosphoroanilothioate, phosphoranylilate, phosphoroamidate, and the like. See e.g., LaPlanche et al. *Nucl. Acids Res.* 14:9081 (1986); Stec et al. *J. Am. Chem. Soc.* 106:6077 (1984); Stein et al. *Nucl. Acids Res.* 16:3209 (1988); Zon et al. *Anti-Cancer Drug Design* 6:539(1991); Zon et al. *Oligonucleotides and Analogs: A Practical Approach*, pp. 87-108 (F. Eckstein, Ed., Oxford University Press, Oxford England (1991)); Stec et al. U.S. Pat. No. 5,151,510; Uhlmann and Peyman *Chemical Reviews* 90:543 (1990), the disclosures of which are hereby incorporated by reference. An oligonucleotide can include a label for detection, if desired.

The term "selectively hybridize" referred to herein means to detectably and specifically bind. Polynucleotides, oligonucleotides and fragments thereof in accordance with the invention selectively hybridize to nucleic acid strands under hybridization and wash conditions that minimize appreciable amounts of detectable binding to nonspecific nucleic acids. High stringency conditions can be used to achieve selective hybridization conditions as known in the art and discussed herein. Generally, the nucleic acid sequence homology between the polynucleotides, oligonucleotides,

14

and fragments of the invention and a nucleic acid sequence of interest will be at least 80%, and more typically with preferably increasing homologies of at least 85%, 90%, 95%, 99%, and 100%. Two amino acid sequences are homologous if there is a partial or complete identity between their sequences. For example, 85% homology means that 85% of the amino acids are identical when the two sequences are aligned for maximum matching. Gaps (in either of the two sequences being matched) are allowed in maximizing matching; gap lengths of 5 or less are preferred with 2 or less being more preferred. Alternatively and preferably, two protein sequences (or polypeptide sequences derived from them of at least 30 amino acids in length) are homologous, as this term is used herein, if they have an alignment score of at more than 5 (in standard deviation units) using the program ALIGN with the mutation data matrix and a gap penalty of 6 or greater. See M. O. Dayhoff, in *Atlas of Protein Sequence and Structure*, Vol. 5, 101-110 and Supplement 2 to Vol. 5, 1-10 (National Biomedical Research Foundation 1972). The two sequences or parts thereof are more preferably homologous if their amino acids are greater than or equal to 50% identical when optimally aligned using the ALIGN program. The term "corresponds to" is used herein to mean that a polynucleotide sequence is homologous (i.e., is identical, not strictly evolutionarily related) to all or a portion of a reference polynucleotide sequence, or that a polypeptide sequence is identical to a reference polypeptide sequence. In contradistinction, the term "complementary to" is used herein to mean that the complementary sequence is homologous to all or a portion of a reference polynucleotide sequence. For illustration, the nucleotide sequence "TATAC" corresponds to a reference sequence "TATAC" and is complementary to a "GTATA".

The following terms are used to describe the sequence relationships between two or more polynucleotide or amino acid sequences: "reference sequence," "comparison window," "sequence identity," "percentage of sequence identity," and "substantial identity". A "reference sequence" is a defined sequence used as a basis for a sequence comparison; a reference sequence may be a subset of a larger sequence, for example, as a segment of a full-length cDNA or gene sequence given in a sequence listing or may comprise a complete cDNA or gene sequence. Generally, a reference sequence is at least 18 nucleotides or 6 amino acids in length, frequently at least 24 nucleotides or 8 amino acids in length, and often at least 48 nucleotides or 16 amino acids in length. Since two polynucleotides or amino acid sequences may each (1) comprise a sequence (i.e., a portion of the complete polynucleotide or amino acid sequence) that is similar between the two molecules, and (2) may further comprise a sequence that is divergent between the two polynucleotides or amino acid sequences, sequence comparisons between two (or more) molecules are typically performed by comparing sequences of the two molecules over a "comparison window" to identify and compare local regions of sequence similarity. A "comparison window," as used herein, refers to a conceptual segment of at least 18 contiguous nucleotide positions or 6 amino acids wherein a polynucleotide sequence or amino acid sequence may be compared to a reference sequence of at least 18 contiguous nucleotides or 6 amino acid sequences and wherein the portion of the polynucleotide sequence in the comparison window may comprise additions, deletions, substitutions, and the like (i.e., gaps) of 20 percent or less as compared to the reference sequence (which does not comprise additions or deletions) for optimal alignment of the two sequences. Optimal alignment of sequences for aligning a comparison

15

window may be conducted by the local homology algorithm of Smith and Waterman, *Adv. Appl. Math.* 2:482 (1981), by the homology alignment algorithm of Needleman and Wunsch, *J. Mol. Biol.* 48:443 (1970), by the search for similarity method of Pearson and Lipman, *Proc. Natl. Acad. Sci. (U.S.A.)* 85:2444 (1988), by computerized implementations of these algorithms (GAP, BESTFIT, FASTA, and TFASTA in the Wisconsin Genetics Software Package Release 7.0, (Genetics Computer Group, 575 Science Dr., Madison, Wis.), Geneworks, or MacVector software packages), or by inspection, and the best alignment (i.e., resulting in the highest percentage of homology over the comparison window) generated by the various methods is selected.

The term "sequence identity" means that two polynucleotide or amino acid sequences are identical (i.e., on a nucleotide-by-nucleotide or residue-by-residue basis) over the comparison window. The term "percentage of sequence identity" is calculated by comparing two optimally aligned sequences over the window of comparison, determining the number of positions at which the identical nucleic acid base (e.g., A, T, C, G, U, or I) or residue occurs in both sequences to yield the number of matched positions, dividing the number of matched positions by the total number of positions in the comparison window (i.e., the window size), and multiplying the result by 100 to yield the percentage of sequence identity. The terms "substantial identity" as used herein denotes a characteristic of a polynucleotide or amino acid sequence, wherein the polynucleotide or amino acid comprises a sequence that has at least 85 percent sequence identity, preferably at least 90 to 95 percent sequence identity, more usually at least 99 percent sequence identity as compared to a reference sequence over a comparison window of at least 18 nucleotide (6 amino acid) positions, frequently over a window of at least 24-48 nucleotide (8-16 amino acid) positions, wherein the percentage of sequence identity is calculated by comparing the reference sequence to the sequence which may include deletions or additions which total 20 percent or less of the reference sequence over the comparison window. The reference sequence may be a subset of a larger sequence.

As used herein, the twenty conventional amino acids and their abbreviations follow conventional usage. See *Immunology—A Synthesis* (2d ed., Golub, E. S. and Gren, D. R. eds., Sinauer Associates, Sunderland, Mass. 1991), which is incorporated herein by reference. Stereoisomers (e.g., D-amino acids) of the twenty conventional amino acids, unnatural amino acids such as α -, α -disubstituted amino acids, N-alkyl amino acids, lactic acid, and other unconventional amino acids may also be suitable components for polypeptides of the invention described herein. Examples of unconventional amino acids include: 4-hydroxyproline, γ -carboxyglutamate, ϵ -N,N,N-trimethyllysine, ϵ -N-acetyllysine, O-phosphoserine, N-acetylserine, N-formylmethionine, 3-methylhistidine, 5-hydroxylysine, σ -N-methylarginine, and other similar amino acids and imino acids (e.g., 4-hydroxyproline). In the polypeptide notation used herein, the left-hand direction is the amino terminal direction and the right-hand direction is the carboxy-terminal direction, in accordance with standard usage and convention.

Similarly, unless specified otherwise, the left-hand end of single-stranded polynucleotide sequences is the 5' end; the left-hand direction of double-stranded polynucleotide sequences is referred to as the 5' direction. The direction of 5' to 3' addition of nascent RNA transcripts is referred to as the transcription direction; sequence regions on the DNA strand having the same sequence as the RNA and which are 5' to the 5' end of the RNA transcript are referred to as

16

"upstream sequences"; sequence regions on the DNA strand having the same sequence as the RNA and which are 3' to the 3' end of the RNA transcript are referred to as "downstream sequences".

As applied to polypeptides, the term "substantial identity" means that two peptide sequences, when optimally aligned, such as by the programs GAP or BESTFIT using default gap weights, share at least 80 percent sequence identity, preferably at least 90 percent sequence identity, more preferably at least 95 percent sequence identity, and most preferably at least 99 percent sequence identity. Preferably, residue positions that are not identical differ by conservative amino acid substitutions. Conservative amino acid substitutions refer to the interchangeability of residues having similar side chains. For example, a group of amino acids having aliphatic side chains is glycine, alanine, valine, leucine, and isoleucine; a group of amino acids having aliphatic-hydroxyl side chains is serine and threonine; a group of amino acids having amide-containing side chains is asparagine and glutamine; a group of amino acids having aromatic side chains is phenylalanine, tyrosine, and tryptophan; a group of amino acids having basic side chains is lysine, arginine, and histidine; and a group of amino acids having sulfur-containing side chains is cysteine and methionine. Preferred conservative amino acids substitution groups are: valine-leucine-isoleucine, phenylalanine-tyrosine, lysine-arginine, alanine-valine, glutamic-aspartic, and asparagine-glutamine.

As discussed herein, minor variations in the amino acid sequences of antibodies or immunoglobulin molecules are contemplated as being encompassed by the invention described herein, providing that the variations in the amino acid sequence maintain at least 75%, more preferably at least 80%, 90%, 95%, and most preferably 99%. In particular, conservative amino acid replacements are contemplated. Conservative replacements are those that take place within a family of amino acids that are related in their side chains. Genetically encoded amino acids are generally divided into families: (1) acidic=aspartate, glutamate; (2) basic=lysine, arginine, histidine; (3) non-polar=alanine, valine, leucine, isoleucine, proline, phenylalanine, methionine, tryptophan; and (4) uncharged polar=glycine, asparagine, glutamine, cysteine, serine, threonine, tyrosine. More preferred families are: serine and threonine are aliphatic-hydroxy family; asparagine and glutamine are an amide-containing family; alanine, valine, leucine and isoleucine are an aliphatic family; and phenylalanine, tryptophan, and tyrosine are an aromatic family. For example, it is reasonable to expect that an isolated replacement of a leucine with an isoleucine or valine, an aspartate with a glutamate, a threonine with a serine, or a similar replacement of an amino acid with a structurally related amino acid will not have a major effect on the binding or properties of the resulting molecule, especially if the replacement does not involve an amino acid within a framework site. Whether an amino acid change results in a functional peptide can readily be determined by assaying the specific activity of the polypeptide derivative. Assays are described in detail herein. Fragments or analogs of antibodies or immunoglobulin molecules can be readily prepared by those of ordinary skill in the art. Preferred amino- and carboxy-termini of fragments or analogs occur near boundaries of functional domains. Structural and functional domains can be identified by comparison of the nucleotide and/or amino acid sequence data to public or proprietary sequence databases. Preferably, computerized comparison methods are used to identify sequence motifs or predicted protein conformation domains that occur in other proteins of known structure and/or function. Methods to

identify protein sequences that fold into a known three-dimensional structure are known. Bowie et al., *Science* 253:164 (1991). Thus, the foregoing examples demonstrate that those of skill in the art can recognize sequence motifs and structural conformations that may be used to define structural and functional domains in accordance with the invention.

Preferred amino acid substitutions are those which: (1) reduce susceptibility to proteolysis, (2) reduce susceptibility to oxidation, (3) alter binding affinity for forming protein complexes, (4) alter binding affinities, and (4) confer or modify other physicochemical or functional properties of such analogs. Analogs can include various mutants of a sequence other than the naturally occurring peptide sequence. For example, single or multiple amino acid substitutions (preferably conservative amino acid substitutions) may be made in the naturally occurring sequence (preferably in the portion of the polypeptide outside the domain(s) forming intermolecular contacts. A conservative amino acid substitution should not substantially change the structural characteristics of the parent sequence (e.g., a replacement amino acid should not tend to break a helix that occurs in the parent sequence, or disrupt other types of secondary structure that characterizes the parent sequence). Examples of art-recognized polypeptide secondary and tertiary structures are described in *Proteins, Structures and Molecular Principles* (Creighton, ed., W. H. Freeman and Company, New York 1984); *Introduction to Protein Structure* (Branden, C. and Tooze, J. eds., Garland Publishing, New York, N.Y. 1991); and Thornton et al., *Nature* 354:105 (1991), which are each incorporated herein by reference.

The term "polypeptide fragment" as used herein refers to a polypeptide that has an amino-terminal and/or carboxy-terminal deletion, but where the remaining amino acid sequence is identical to the corresponding positions in the naturally occurring sequence deduced, for example, from a full-length cDNA sequence. Fragments typically are at least 5, 6, 8 or 10 amino acids long, preferably at least 14 amino acids long, more preferably at least 20 amino acids long, usually at least 50 amino acids long, and even more preferably at least 70 amino acids long. The term "analog" as used herein refers to polypeptides which are comprised of a segment of at least 25 amino acids that has substantial identity to a portion of a deduced amino acid sequence and which has at least one of the following properties: (1) specific binding to a MCP-1, under suitable binding conditions, (2) ability to block appropriate MCP-1 binding, or (3) ability to inhibit MCP-1 expressing cell growth in vitro or in vivo. Typically, polypeptide analogs comprise a conservative amino acid substitution (or addition or deletion) with respect to the naturally occurring sequence. Analogs typically are at least 20 amino acids long, preferably at least 50 amino acids long or longer, and can often be as long as a full-length naturally occurring polypeptide.

Peptide analogs are commonly used in the pharmaceutical industry as non-peptide drugs with properties analogous to those of the template peptide. These types of non-peptide compound are termed "peptide mimetics" or "peptidomimetics." Fauchere, *J. Adv. Drug Res.* 15:29 (1986); Veber and Freidinger, *TINS* p. 392 (1985); and Evans et al., *J. Med. Chem.* 30:1229 (1987), which are incorporated herein by reference. Such compounds are often developed with the aid of computerized molecular modeling. Peptide mimetics that are structurally similar to therapeutically useful peptides may be used to produce an equivalent therapeutic or prophylactic effect. Generally, peptidomimetics are structurally similar to a paradigm polypeptide (i.e., a polypeptide that

has a biochemical property or pharmacological activity), such as human antibody, but have one or more peptide linkages optionally replaced by a linkage selected from the group consisting of: —CH₂NH—, —CH₂S—, —CH₂—CH₂—, —CH=CH— (cis and trans), —COCH₂—, —CH(OH)CH₂—, and —CH₂SO—, by methods well known in the art. Systematic substitution of one or more amino acids of a consensus sequence with a D-amino acid of the same type (e.g., D-lysine in place of L-lysine) may be used to generate more stable peptides. In addition, constrained peptides comprising a consensus sequence or a substantially identical consensus sequence variation may be generated by methods known in the art (Rizo and Giersch *Ann. Rev. Biochem.* 61:387 (1992), incorporated herein by reference); for example, by adding internal cysteine residues capable of forming intramolecular disulfide bridges which cyclize the peptide.

"Antibody" or "antibody peptide(s)" refer to an intact antibody, or a binding fragment thereof that competes with the intact antibody for specific binding. Binding fragments are produced by recombinant DNA techniques, or by enzymatic or chemical cleavage of intact antibodies. Binding fragments include Fab, Fab', F(ab')₂, Fv, and single-chain antibodies. An antibody other than a "bispecific" or "bifunctional" antibody is understood to have each of its binding sites identical. An antibody substantially inhibits adhesion of a receptor to a counterreceptor when an excess of antibody reduces the quantity of receptor bound to counterreceptor by at least about 20%, 40%, 60% or 80%, and more usually greater than about 85% (as measured in an in vitro competitive binding assay).

The term "epitope" includes any protein determinant capable of specific binding to an immunoglobulin or T-cell receptor. Epitopic determinants usually consist of chemically active surface groupings of molecules such as amino acids or sugar side chains and usually have specific three-dimensional structural characteristics, as well as specific charge characteristics. An antibody is said to specifically bind an antigen when the dissociation constant is $\leq 1 \mu\text{M}$, preferably $\leq 100 \text{ nM}$ and most preferably $\leq 10 \text{ nM}$.

The term "agent" is used herein to denote a chemical compound, a mixture of chemical compounds, a biological macromolecule, or an extract made from biological materials.

"Active" or "activity" for the purposes herein refers to form(s) of MCP-1 polypeptide which retain a biological and/or an immunological activity of native or naturally occurring MCP-1 polypeptides, wherein "biological" activity refers to a biological function (either inhibitory or stimulatory) caused by a native or naturally occurring MCP-1 polypeptide other than the ability to induce the production of an antibody against an antigenic epitope possessed by a native or naturally occurring MCP-1 polypeptide and an "immunological" activity refers to the ability to induce the production of an antibody against an antigenic epitope possessed by a native or naturally occurring MCP-1 polypeptide.

"Treatment" refers to both therapeutic treatment and prophylactic or preventative measures, wherein the object is to prevent or slow down (lessen) the targeted pathologic condition or disorder. Those in need of treatment include those already with the disorder as well as those prone to have the disorder or those in whom the disorder is to be prevented.

"Mammal" refers to any animal classified as a mammal, including humans, other primates, such as monkeys, chimpanzees and gorillas, domestic and farm animals, and zoo, sports, laboratory, or pet animals, such as dogs, cats, cattle,

19

horses, sheep, pigs, goats, rabbits, rodents, etc. For purposes of treatment, the mammal is preferably human.

“Carriers” as used herein include pharmaceutically acceptable carriers, excipients, or stabilizers which are non-toxic to the cell or mammal being exposed thereto at the dosages and concentrations employed. Often the physiologically acceptable carrier is an aqueous pH buffered solution. Examples of physiologically acceptable carriers include buffers such as phosphate, citrate, and other organic acids; antioxidants including ascorbic acid; low molecular weight (less than about 10 residues) polypeptide; proteins, such as serum albumin, gelatin, or immunoglobulins; hydrophilic polymers such as polyvinylpyrrolidone; amino acids such as glycine, glutamine, asparagine, arginine or lysine; monosaccharides, disaccharides, and other carbohydrates including glucose, mannose or dextrins; chelating agents such as EDTA; sugar alcohols such as mannitol or sorbitol; salt-forming counterions such as sodium; and/or nonionic surfactants such as TWEEN™, polyethylene glycol (PEG), and PLURONIC™.

Papain digestion of antibodies produces two identical antigen-binding fragments, called “Fab” fragments, each with a single antigen-binding site, and a residual “Fc” fragment, a designation reflecting the ability to crystallize readily. Pepsin treatment yields an “F(ab')₂” fragment that has two antigen-combining sites and is still capable of cross-linking antigen.

“Fv” is the minimum antibody fragment that contains a complete antigen-recognition and binding site of the antibody. This region consists of a dimer of one heavy- and one light-chain variable domain in tight, non-covalent association. It is in this configuration that the three CDRs of each variable domain interact to define an antigen-binding site on the surface of the VH-VL dimer. Collectively, the six CDRs confer antigen-binding specificity to the antibody. However, for example, even a single variable domain (e.g., the VH or VL portion of the Fv dimer or half of an Fv comprising only three CDRs specific for an antigen) may have the ability to recognize and bind antigen, although, possibly, at a lower affinity than the entire binding site.

A Fab fragment also contains the constant domain of the light chain and the first constant domain (CH1) of the heavy chain. Fab fragments differ from Fab' fragments by the addition of a few residues at the carboxy terminus of the heavy chain CH1 domain including one or more cysteines from the antibody hinge region. F(ab')₂ antibody fragments originally were produced as pairs of Fab' fragments which have hinge cysteines between them. Other chemical couplings of antibody fragments are also known.

“Solid phase” means a non-aqueous matrix to which the antibodies described herein can adhere. Examples of solid phases encompassed herein include those formed partially or entirely of glass (e.g., controlled pore glass), polysaccharides (e.g., agarose), polyacrylamides, polystyrene, polyvinyl alcohol and silicones. In certain embodiments, depending on the context, the solid phases can comprise the well of an assay plate; in others it is a purification column (e.g., an affinity chromatography column). This term also includes a discontinuous solid phase of discrete particles, such as those described in U.S. Pat. No. 4,275,149.

The term “liposome” is used herein to denote a small vesicle composed of various types of lipids, phospholipids and/or surfactant which is useful for delivery of a drug (such as a MCP-1 polypeptide or antibody thereto) to a mammal. The components of the liposomes are commonly arranged in a bilayer formation, similar to the lipid arrangement of biological membranes.

20

The term “small molecule” is used herein to describe a molecule with a molecular weight below about 500 Daltons.

As used herein, the terms “label” or “labeled” refers to incorporation of a detectable marker, e.g., by incorporation of a radiolabeled amino acid or attachment to a polypeptide of biotinyl moieties that can be detected by marked avidin (e.g., streptavidin containing a fluorescent marker or enzymatic activity that can be detected by optical or colorimetric methods). In certain situations, the label or marker can also be therapeutic. Various methods of labeling polypeptides and glycoproteins are known in the art and may be used. Examples of labels for polypeptides include, but are not limited to, the following: radioisotopes or radionuclides (e.g., ³H, ¹⁴C, ¹⁵N, ³⁵S, ⁹⁰Y, ⁹⁹Tc, ¹¹¹In, ¹²⁵I, ¹³¹I), fluorescent labels (e.g., FITC, rhodamine, lanthanide phosphors), enzymatic labels (e.g., horseradish peroxidase, β-galactosidase, luciferase, alkaline phosphatase), chemiluminescent, biotinyl groups, predetermined polypeptide epitopes recognized by a secondary reporter (e.g., leucine zipper pair sequences, binding sites for secondary antibodies, metal binding domains, epitope tags). In some embodiments, labels are attached by spacer arms of various lengths to reduce potential steric hindrance.

The term “pharmaceutical agent or drug” as used herein refers to a chemical compound or composition capable of inducing a desired therapeutic effect when properly administered to a patient. Other chemistry terms herein are used according to conventional usage in the art, as exemplified by *The McGraw-Hill Dictionary of Chemical Terms* (Parker, S., Ed., McGraw-Hill, San Francisco (1985)), incorporated herein by reference.

As used herein, “substantially pure” means an object species is the predominant species present (i.e., on a molar basis it is more abundant than any other individual species in the composition), and preferably a substantially purified fraction is a composition wherein the object species comprises at least about 50 percent (on a molar basis) of all macromolecular species present. Generally, a substantially pure composition will comprise more than about 80 percent of all macromolecular species present in the composition, more preferably more than about 85%, 90%, 95%, and 99%. Most preferably, the object species is purified to essential homogeneity (contaminant species cannot be detected in the composition by conventional detection methods) wherein the composition consists essentially of a single macromolecular species.

The term “patient” includes human and veterinary subjects.

50 Antibody Structure

The basic antibody structural unit is known to comprise a tetramer. Each tetramer is composed of two identical pairs of polypeptide chains, each pair having one “light” (about 25 kDa) and one “heavy” chain (about 50 to 70 kDa). The amino-terminal portion of each chain includes a variable region of about 100 to 110 or more amino acids primarily responsible for antigen recognition. The carboxy-terminal portion of each chain defines a constant region primarily responsible for effector function. Human light chains are classified as kappa and lambda light chains. Heavy chains are classified as mu, delta, gamma, alpha, or epsilon, and define the antibody's isotype as IgM, IgD, IgG, IgA, and IgE, respectively. Within light and heavy chains, the variable and constant regions are joined by a “J” region of about 12 or more amino acids, with the heavy chain also including a “D” region of about 10 more amino acids. See generally, *Fundamental Immunology* Ch. 7 (Paul, W., ed., 2nd ed.

Raven Press, N.Y. (1989)) (incorporated by reference in its entirety for all purposes). The variable regions of each light/heavy chain pair form the antibody-binding site. Thus, an intact antibody has two binding sites. Except in bifunctional or bispecific antibodies, the two binding sites are the same.

The chains all exhibit the same general structure of relatively conserved framework regions (FR) joined by three hyper variable regions, also called complementarity determining regions or CDRs. The CDRs from the two chains of each pair are aligned by the framework regions, enabling binding to a specific epitope. From N-terminal to C-terminal, both light and heavy chains comprise the domains FR1, CDR1, FR2, CDR2, FR3, CDR3 and FR4. The assignment of amino acids to each domain is in accordance with the definitions of Kabat, *Sequences of Proteins of Immunological Interest* (National Institutes of Health, Bethesda, Md. 1991) (1987), or Chothia and Lesk, *J. Mol. Biol.* 196:901-17 (1987); Chothia et al., *Nature* 342:878-83 (1989).

A bispecific or bifunctional antibody is an artificial hybrid antibody having two different heavy/light chain pairs and two different binding sites. Bispecific antibodies can be produced by a variety of methods including fusion of hybridomas or linking of Fab' fragments. See, e.g., Song-sivilai and Lachmann, *Clin. Exp. Immunol.* 79: 315-21 (1990); Kostelný et al., *J. Immunol.* 148:1547-53 (1992). Production of bispecific antibodies can be a relatively labor intensive process compared with production of conventional antibodies and yields and degree of purity are generally lower for bispecific antibodies. Bispecific antibodies do not exist in the form of fragments having a single binding site (e.g., Fab, Fab', and Fv).

Human Antibodies and Humanization of Antibodies

Human antibodies avoid certain of the problems associated with antibodies that possess murine or rat variable and/or constant regions. The presence of such murine or rat derived proteins can lead to the rapid clearance of the antibodies or can lead to the generation of an immune response against the antibody by a patient. In order to avoid the utilization of murine or rat derived antibodies, fully human antibodies can be generated through the introduction of human antibody function into a rodent so that the rodent produces fully human antibodies.

Human Antibodies

One method for generating fully human antibodies is through the use of XenoMouse® strains of mice that have been engineered to contain human heavy chain and light chain genes within their genome. For example, a XenoMouse® mouse containing 245 kb and 190 kb-sized germline configuration fragments of the human heavy chain locus and kappa light chain locus is described in Green et al., *Nature Genetics* 7:13-21 (1994). The work of Green et al. was extended to the introduction of greater than approximately 80% of the human antibody repertoire through utilization of megabase-sized, germline configuration YAC fragments of the human heavy chain loci and kappa light chain loci, respectively. See Mendez et al., *Nature Genetics* 15:146-56 (1997) and U.S. patent application Ser. No. 08/759,620, filed Dec. 3, 1996, the disclosures of which are hereby incorporated by reference. Further, XenoMouse® mice have been generated that contain the entire lambda light chain locus (U.S. Patent Application Ser. No. 60/334,508, filed Nov. 30, 2001). And, XenoMouse® mice have been generated that

produce multiple isotypes (see, e.g., WO 00/76310). XenoMouse® strains are available from Abgenix, Inc. (Fremont, Calif.).

The production of XenoMouse® mice is further discussed and delineated in U.S. patent application Ser. No. 07/466,008, filed Jan. 12, 1990, Ser. No. 07/610,515, filed Nov. 8, 1990, Ser. No. 07/919,297, filed Jul. 24, 1992, Ser. No. 07/922,649, filed Jul. 30, 1992, filed Ser. No. 08/031, 801, filed Mar. 15, 1993, Ser. No. 08/112,848, filed Aug. 27, 1993, Ser. No. 08/234,145, filed Apr. 28, 1994, Ser. No. 08/376,279, filed Jan. 20, 1995, Ser. No. 08/430,938, Apr. 27, 1995, Ser. No. 08/464,584, filed Jun. 5, 1995, Ser. No. 08/464,582, filed Jun. 5, 1995, Ser. No. 08/463,191, filed Jun. 5, 1995, Ser. No. 08/462,837, filed Jun. 5, 1995, Ser. No. 08/486,853, filed Jun. 5, 1995, Ser. No. 08/486,857, filed Jun. 5, 1995, Ser. No. 08/486,859, filed Jun. 5, 1995, Ser. No. 08/462,513, filed Jun. 5, 1995, Ser. No. 08/724,752, filed Oct. 2, 1996, and Ser. No. 08/759,620, filed Dec. 3, 1996 and U.S. Pat. Nos. 6,162,963, 6,150,584, 6,114,598, 6,075,181, and 5,939,598 and Japanese Patent Nos. 3 068 180 B2, 3 068 506 B2, and 3 068 507 B2. See also Mendez et al. *Nature Genetics* 15:146-156 (1997) and Green and Jakobovits *J. Exp. Med.*, 188:483-495 (1998). See also European Patent No., EP 463,151 B1, grant published Jun. 12, 1996, International Patent Application No., WO 94/02602, published Feb. 3, 1994, International Patent Application No., WO 96/34096, published Oct. 31, 1996, WO 98/24893, published Jun. 11, 1998, WO 00/76310, published Dec. 21, 2000. The disclosures of each of the above-cited patents, applications, and references are hereby incorporated by reference in their entirety.

In an alternative approach, others, including GenPharm International, Inc., have utilized a "minilocus" approach. In the minilocus approach, an exogenous Ig locus is mimicked through the inclusion of pieces (individual genes) from the Ig locus. Thus, one or more V_H genes, one or more D_H genes, one or more J_H genes, a mu constant region, and a second constant region (preferably a gamma constant region) are formed into a construct for insertion into an animal. This approach is described in U.S. Pat. No. 5,545,807 to Surani et al. and U.S. Pat. Nos. 5,545,806, 5,625,825, 5,625,126, 5,633,425, 5,661,016, 5,770,429, 5,789,650, 5,814,318, 5,877,397, 5,874,299, and 6,255,458 each to Lonberg and Kay, U.S. Pat. Nos. 5,591,669 and 6,023,010 to Krimpenfort and Berns, U.S. Pat. Nos. 5,612,205, 5,721,367, and 5,789,215 to Berns et al., and U.S. Pat. No. 5,643,763 to Choi and Dunn, and GenPharm International U.S. patent application Ser. No. 07/574,748, filed Aug. 29, 1990, Ser. No. 07/575, 962, filed Aug. 31, 1990, Ser. No. 07/810,279, filed Dec. 17, 1991, Ser. No. 07/853,408, filed Mar. 18, 1992, Ser. No. 07/904,068, filed Jun. 23, 1992, Ser. No. 07/990,860, filed Dec. 16, 1992, Ser. No. 08/053,131, filed Apr. 26, 1993, Ser. No. 08/096,762, filed Jul. 22, 1993, Ser. No. 08/155,301, filed Nov. 18, 1993, Ser. No. 08/161,739, filed Dec. 3, 1993, Ser. No. 08/165,699, filed Dec. 10, 1993, Ser. No. 08/209, 741, filed Mar. 9, 1994, the disclosures of which are hereby incorporated by reference. See also European Patent No. 546,073 B1, International Patent Application Nos. WO 92/03918, WO 92/22645, WO 92/22647, WO 92/22670, WO 93/12227, WO 94/00569, WO 94/25585, WO 96/14436, WO 97/13852, and WO 98/24884 and U.S. Pat. No. 5,981,175, the disclosures of which are hereby incorporated by reference in their entirety. See further Taylor et al., (1992), Chen et al., (1993), Tuailon et al., (1993), Choi et al., (1993), Lonberg et al., (1994), Taylor et al., (1994),

and Tuailon et al., (1995), Fishwild et al., (1996), the disclosures of which are hereby incorporated by reference in their entirety.

Kirin has demonstrated the generation of human antibodies from mice in which, through microcell fusion, large pieces of chromosomes, or entire chromosomes, have been introduced. See European Patent Application Nos. 773,288 and 843,961, the disclosures of which are hereby incorporated by reference.

Lidak Pharmaceuticals (now Xenorex) has also demonstrated the generation of human antibodies in SCID mice modified by injection of non-malignant mature peripheral leukocytes from a human donor. The modified mice exhibit an immune response characteristic of the human donor upon stimulation with an immunogen, which consists of the production of human antibodies. See U.S. Pat. Nos. 5,476,996 and 5,698,767, the disclosures of which are herein incorporated by reference.

Human anti-mouse antibody (HAMA) responses have led the industry to prepare chimeric or otherwise humanized antibodies. While chimeric antibodies have a human constant region and a murine variable region, it is expected that certain human anti-chimeric antibody (HACA) responses will be observed, particularly in chronic or multi-dose utilizations of the antibody. Thus, it would be desirable to provide fully human antibodies against MCP-1 in order to mitigate concerns and/or effects of HAMA or HACA response.

Humanization and Display Technologies

As discussed above in connection with human antibody generation, there are advantages to producing antibodies with reduced immunogenicity. To a degree, this can be accomplished in connection with techniques of humanization and display techniques using appropriate libraries. It will be appreciated that murine antibodies or antibodies from other species can be humanized or primatized using techniques well known in the art. See e.g., Winter and Harris, *Immunol Today* 14:43-46 (1993) and Wright et al., *Crit. Reviews in Immunol.* 12:125-168 (1992). The antibody of interest may be engineered by recombinant DNA techniques to substitute the CH1, CH2, CH3, hinge domains, and/or the framework domain with the corresponding human sequence (see WO 92/02190 and U.S. Pat. Nos. 5,530,101, 5,585,089, 5,693,761, 5,693,792, 5,714,350, and 5,777,085). Also, the use of Ig cDNA for construction of chimeric immunoglobulin genes is known in the art (Liu et al., *P.N.A.S.* 84:3439 (1987) and *J. Immunol.* 139:3521 (1987)). mRNA is isolated from a hybridoma or other cell producing the antibody and used to produce cDNA. The cDNA of interest may be amplified by the polymerase chain reaction using specific primers (U.S. Pat. Nos. 4,683,195 and 4,683,202). Alternatively, a library is made and screened to isolate the sequence of interest. The DNA sequence encoding the variable region of the antibody is then fused to human constant region sequences. The sequences of human constant regions genes may be found in Kabat et al., "Sequences of Proteins of Immunological Interest," N.I.H. publication no. 91-3242 (1991). Human C region genes are readily available from known clones. The choice of isotype will be guided by the desired effector functions, such as complement fixation, or activity in antibody-dependent cellular cytotoxicity. Preferred isotypes are IgG1, IgG3 and IgG4. Either of the human light chain constant regions, kappa or lambda, may be used. The chimeric, humanized antibody is then expressed by conventional methods.

Antibody fragments, such as Fv, F(ab')₂ and Fab may be prepared by cleavage of the intact protein, e.g., by protease or chemical cleavage. Alternatively, a truncated gene is designed. For example, a chimeric gene encoding a portion of the F(ab')₂ fragment would include DNA sequences encoding the CH1 domain and hinge region of the H chain, followed by a translational stop codon to yield the truncated molecule.

Consensus sequences of H and L J regions may be used to design oligonucleotides for use as primers to introduce useful restriction sites into the J region for subsequent linkage of V region segments to human C region segments. C region cDNA can be modified by site directed mutagenesis to place a restriction site at the analogous position in the human sequence.

Expression vectors include plasmids, retroviruses, YACs, EBV derived episomes, and the like. A convenient vector is one that encodes a functionally complete human CH or CL immunoglobulin sequence, with appropriate restriction sites engineered so that any VH or VL sequence can be easily inserted and expressed. In such vectors, splicing usually occurs between the splice donor site in the inserted J region and the splice acceptor site preceding the human C region, and also at the splice regions that occur within the human CH exons. Polyadenylation and transcription termination occur at native chromosomal sites downstream of the coding regions. The resulting chimeric antibody may be joined to any strong promoter, including retroviral LTRs, e.g., SV-40 early promoter, (Okayama et al., *Mol. Cell. Bio.* 3:280 (1983)), Rous sarcoma virus LTR (Gorman et al., *P.N.A.S.* 79:6777 (1982)), and moloney murine leukemia virus LTR (Grosschedl et al., *Cell* 41:885 (1985)). Also, as will be appreciated, native Ig promoters and the like may be used.

Further, human antibodies or antibodies from other species can be generated through display-type technologies, including, without limitation, phage display, retroviral display, ribosomal display, and other techniques, using techniques well known in the art and the resulting molecules can be subjected to additional maturation, such as affinity maturation, as such techniques are well known in the art. Wright and Harris, *supra.*, Hanes and Pluthau, *PNAS USA* 94:4937-4942 (1997) (ribosomal display), Parmley and Smith, *Gene* 73:305-318 (1988) (phage display), Scott, *TIBS* 17:241-245 (1992), Cwirla et al., *PNAS USA* 87:6378-6382 (1990), Russel et al., *Nucl. Acids Res.* 21:1081-1085 (1993), Hoganboom et al., *Immunol. Reviews* 130:43-68 (1992), Chiswell and McCafferty, *TIBTECH* 10:80-84 (1992), and U.S. Pat. No. 5,733,743. If display technologies are utilized to produce antibodies that are not human, such antibodies can be humanized as described above.

Using these techniques, antibodies can be generated against MCP-1 expressing cells, MCP-1 itself, forms of MCP-1, epitopes or peptides thereof, and expression libraries thereto (see, e.g., U.S. Pat. No. 5,703,057) which can thereafter be screened as described above for the activities described above.

Preparation of Antibodies

Antibodies in accordance with the invention were prepared through the utilization of the XenoMouse® technology, as described below. Such mice, then, are capable of producing human immunoglobulin molecules and antibodies and are deficient in the production of murine immunoglobulin molecules and antibodies. Technologies utilized for achieving the same are disclosed in the patents, applications, and references disclosed in the Background, herein. In

particular, however, a preferred embodiment of transgenic production of mice and antibodies therefrom is disclosed in U.S. patent application Ser. No. 08/759,620, filed Dec. 3, 1996 and International Patent Application Nos. WO 98/24893, published Jun. 11, 1998 and WO 00/76310, published Dec. 21, 2000, the disclosures of which are hereby incorporated by reference. See also Mendez et al., *Nature Genetics* 15:146-156 (1997), the disclosure of which is hereby incorporated by reference.

Antibodies, as described herein, are neutralizing high affinity antibodies to human MCP-1. Further, in some embodiments, the antibodies cross react with rat MCP-1. Several different methods have been used historically to generate monoclonal antibodies or polyclonal antibodies against the N-terminus of human MCP-1. These approaches have included immunizing with full length human MCP-1 (hMCP-1) or bovine MCP-1 (bMCP-1) (Vieira et al., *Braz. J. Med. Biol. Res.* 21:1005-1011 (1988)), synthetic peptides of human MCP-1 (1-34 or 1-37) (Visser et al., *Acta Endocrinol.* 90:90-102 (1979)); Logue et al., *J. Immunol. Methods* 137:159-66 (1991)), and multiple antigenic peptides (MAP) of hMCP-1 (1-10), hMCP-1 (9-18) and hMCP-1 (24-37) (Magerlein et al., *Drug Res.* 48:783-87 (1998)). These approaches did not produce antibodies suitable for human therapeutics. (See section entitled "Therapeutic Administration and Formulation" herein for therapeutic criteria.) High affinity antibodies to hMCP-1 are difficult to make because of B cell tolerance to the peptide. However, Bradwell et al., (1999) have demonstrated that immunization with a mixture of human MCP-1 (1-34) and bovine MCP-1 (1-34) MAPs followed by a mixture of human and bovine MAPs targeting the hMCP-1(51-84) and bMCP-1(51-86) was effective in breaking B-cell tolerance to MCP-1 in a human patient with an inoperable parathyroid tumor.

The approach described herein was designed to overcome B-cell tolerance to hMCP-1 as well as to produce a fully human monoclonal antibody suitable for therapeutic and diagnostic use. XenoMouse® animals were immunized with synthetic peptides of MCP-1 (hMCP-1(1-34) and rMCP-1 (1-34)), because synthetic peptides have been successfully used to generate antibodies specific to endogenous human MCP-1 (Visser et al., (1979)). Furthermore, because the N-terminus of murine MCP-1 is highly conserved with human MCP-1 (85% identity) and rat MCP-1 (91%), the combination of peptides was used as an immunogen to break B-cell tolerance to murine MCP-1 through molecular mimicry, thereby allowing the generation of high affinity human anti-human MCP-1 antibodies. These peptides were both coupled to keyhole limpet hemocyanin and emulsified in complete Freund's adjuvant or incomplete Freund's adjuvant to enhance the immunogenicity of these proteins.

After immunization, lymphatic cells (such as B cells) were recovered from the mice that expressed antibodies, and such recovered cell lines fused with a myeloid-type cell line to prepare immortal hybridoma cell lines. Such hybridoma cell lines were screened and selected to identify hybridoma cell lines that produced antibodies specific to the antigen of interest. Herein, the production of multiple hybridoma cell lines that produce antibodies specific to MCP-1 is described. Further, a characterization of the antibodies produced by such cell lines is provided, including nucleotide and amino acid sequence analyses of the heavy and light chains of such antibodies.

Embodiments of the invention provide for the production of multiple hybridoma cell lines that produce antibodies specific to MCP-1. Further embodiments relate to antibodies that bind to and neutralize the activity of the MCP-1

family members including MCP-2, MCP-3, and MCP-4. The supernatants are also screened for immunoreactivity against fragments of MCP-1 to further epitope map the different antibodies against related human chemokines and against rat MCP-1 and the mouse ortholog of MCP-1, JE, to determine species cross-reactivity. Further embodiments provide a characterization of the antibodies produced by such cell lines, including nucleotide and amino acid sequence analyses of the heavy and light chains of such antibodies.

Alternatively, instead of being fused to myeloma cells to generate hybridomas, B cells may be directly assayed. For example, CD19+ B cells may be isolated from hyperimmune XenoMouse® mice and allowed to proliferate and differentiate into antibody-secreting plasma cells. Antibodies from the cell supernatants are then screened by ELISA for reactivity against the MCP-1 immunogen. The supernatants are also screened for immunoreactivity against fragments of MCP-1 to further epitope map the different antibodies against related human chemokines and against rat MCP-1 and the mouse ortholog of MCP-1, JE, to determine species cross-reactivity. Single plasma cells secreting antibodies with the desired specificities are then isolated using a MCP-1-specific hemolytic plaque assay (Babcock et al., *Proc. Natl. Acad. Sci. USA*, 93:7843-7848 (1996)). Cells targeted for lysis are preferably sheep red blood cells (SRBCs) coated with the MCP-1 antigen. In the presence of a B cell culture containing plasma cells secreting the immunoglobulin of interest and complement, the formation of a plaque indicates specific MCP-1-mediated lysis of the sheep red blood cells surrounding the plasma cell of interest. The single antigen-specific plasma cell in the center of the plaque can be isolated and the genetic information that encodes the specificity of the antibody is isolated from the single plasma cell. Using reverse-transcriptase PCR, the DNA encoding the heavy and light chain variable regions of the antibody can be cloned. Such cloned DNA can then be further inserted into a suitable expression vector, preferably a vector cassette such as a pcDNA, more preferably such a pcDNA vector containing the constant domains of immunoglobulin heavy and light chain. The generated vector can then be transfected into host cells, preferably CHO cells, and cultured in conventional nutrient media modified as appropriate for inducing promoters, selecting transformants, or amplifying the genes encoding the desired sequences. The isolation of multiple single plasma cells that produce antibodies specific to MCP-1 is described below. Further, the genetic material that encodes the specificity of the anti-MCP-1 antibody can be isolated, introduced into a suitable expression vector that can then be transfected into host cells.

In general, antibodies produced by the fused hybridomas were human IgG2 heavy chains with fully human kappa or lambda light chains. In some embodiments, antibodies possess human IgG4 heavy chains as well as IgG2 heavy chains. Antibodies may also be of other human isotypes, including IgG1. The antibodies possessed high affinities, typically possessing a K_D of from about 10^{-6} through about 10^{-12} M or below, when measured by either solid phase and solution phase. Antibodies possessing a K_D of at least 10^{11} M are preferred to inhibit the activity of MCP-1.

Regarding the importance of affinity to therapeutic utility of anti-MCP-1 antibodies, it will be understood that one can generate anti-MCP-1 antibodies, for example, combinatorially, and assess such antibodies for binding affinity. One approach that can be utilized is to take the heavy chain cDNA from an antibody, prepared as described above and found to have good affinity to MCP-1, and combine it with

the light chain cDNA from a second antibody, prepared as described above and also found to have good affinity to MCP-1, to produce a third antibody. The affinities of the resulting third antibodies can be measured as described herein and those with desirable dissociation constants isolated and characterized. Alternatively, the light chain of any of the antibodies described above can be used as a tool to aid in the generation of a heavy chain that when paired with the light chain will exhibit a high affinity for MCP-1, or vice versa. These heavy chain variable regions in this library could be isolated from naive animals, isolated from hyper-immune animals, generated artificially from libraries containing variable heavy chain sequences that differ in the CDR regions, or generated by any other methods that produce diversity within the CDR regions of any heavy chain variable region gene (such as random or directed mutagenesis). These CDR regions, and in particular CDR3, may be a significantly different length or sequence identity from the heavy chain initially paired with the original antibody. The resulting library could then be screened for high affinity binding to MCP-1 to generate a therapeutically relevant antibody molecule with similar properties as the original antibody (high affinity and neutralization). A similar process using the heavy chain or the heavy chain variable region can be used to generate a therapeutically relevant antibody molecule with a unique light chain variable region. Furthermore, the novel heavy chain variable region, or light chain variable region, can then be used in a similar fashion as described above to identify a novel light chain variable region, or heavy chain variable region, that allows the generation of a novel antibody molecule.

Another combinatorial approach that can be utilized is to perform mutagenesis on germ line heavy and/or light chains that are demonstrated to be utilized in the antibodies in accordance with the invention described herein, particularly in the complementarity determining regions (CDRs). The affinities of the resulting antibodies can be measured as described herein and those with desirable dissociation constants isolated and characterized. Upon selection of a preferred binder, the sequence or sequences encoding the same may be used to generate recombinant antibodies as described above. Appropriate methods of performing mutagenesis on an oligonucleotide are known to those skilled in the art and include chemical mutagenesis, for example, with sodium bisulfite, enzymatic misincorporation, and exposure to radiation. It is understood that the invention described herein encompasses antibodies with substantial identity, as defined herein, to the antibodies explicitly set forth herein, whether produced by mutagenesis or by any other means. Further, antibodies with conservative or non-conservative amino acid substitutions, as defined herein, made in the antibodies explicitly set forth herein, are included in embodiments of the invention described herein.

Another combinatorial approach that can be used is to express the CDR regions, and in particular CDR3, of the antibodies described above in the context of framework regions derived from other variable region genes. For example, CDR1, CDR2, and CDR3 of the heavy chain of one anti-MCP-1 antibody could be expressed in the context of the framework regions of other heavy chain variable genes. Similarly, CDR1, CDR2, and CDR3 of the light chain of an anti-MCP-1 antibody could be expressed in the context of the framework regions of other light chain variable genes. In addition, the germline sequences of these CDR regions could be expressed in the context of other heavy or light chain variable region genes. The resulting antibodies can be

assayed for specificity and affinity and may allow the generation of a novel antibody molecule.

As will be appreciated, antibodies prepared in accordance with the invention described herein can be expressed in various cell lines. Sequences encoding particular antibodies can be used for transformation of a suitable mammalian host cell. Transformation can be by any known method for introducing polynucleotides into a host cell, including, for example packaging the polynucleotide in a virus (or into a viral vector) and transducing a host cell with the virus (or vector) or by transfection procedures known in the art, as exemplified by U.S. Pat. Nos. 4,399,216, 4,912,040, 4,740, 461, and 4,959,455 (which patents are hereby incorporated herein by reference). The transformation procedure used depends upon the host to be transformed. Methods for introduction of heterologous polynucleotides into mammalian cells are well known in the art and include dextran-mediated transfection, calcium phosphate precipitation, polybrene mediated transfection, protoplast fusion, electroporation, encapsulation of the polynucleotide(s) in liposomes, and direct microinjection of the DNA into nuclei.

Mammalian cell lines available as hosts for expression are well known in the art and include many immortalized cell lines available from the American Type Culture Collection (ATCC), including but not limited to Chinese hamster ovary (CHO) cells, HeLa cells, baby hamster kidney (BHK) cells, monkey kidney cells (COS), human hepatocellular carcinoma cells (e.g., Hep G2), and a number of other cell lines. Cell lines of particular preference are selected through determining which cell lines have high expression levels and produce antibodies with constitutive MCP-1 binding properties.

Additional Criteria for Antibody Therapeutics

As discussed herein, the function of the MCP-1 antibody appears important to at least a portion of its mode of operation. The anti-MCP-1 antibodies of the instant invention may be made capable of effector function, including complement-dependent cytotoxicity (CDC) and antibody-dependent cellular cytotoxicity (ADCC). There are a number of isotypes of antibodies that are capable of the same, including, without limitation, the following: murine IgM, murine IgG2a, murine IgG2b, murine IgG3, human IgM, human IgG1, and human IgG3. It will be appreciated that antibodies that are generated need not initially possess such an isotype but, rather, the antibody as generated can possess any isotype and the antibody can be isotype switched thereafter using conventional techniques that are well known in the art. Such techniques include the use of direct recombinant techniques (see, e.g., U.S. Pat. Nos. 4,816,397 and 6,331,415), cell-cell fusion techniques (see, e.g., U.S. Pat. Nos. 5,916,771 and 6,207,418), among others.

In the cell-cell fusion technique, a myeloma or other cell line is prepared that possesses a heavy chain with any desired isotype and another myeloma or other cell line is prepared that possesses the light chain. Such cells can, thereafter, be fused and a cell line expressing an intact antibody can be isolated.

By way of example, the MCP-1 antibodies discussed herein are human anti-MCP-1 IgG2 and IgG4 antibodies. If such antibody possessed desired binding to the MCP-1 molecule, it could be readily isotype switched to generate a human IgM, human IgG1, or human IgG3, IgA1 or IgG2A isotypes, while still possessing the same variable region (which defines the antibody's specificity and some of its affinity). Such molecule would then be capable of fixing complement and participating in CDC.

Accordingly, as antibody candidates are generated that meet desired "structural" attributes as discussed above, they can generally be provided with at least certain of the desired "functional" attributes through isotype switching.

Epitope Mapping

Immunoblot Analysis

The binding of the antibodies described herein to MCP-1 can be examined by a number of methods. For example, MCP-1 may be subjected to SDS-PAGE and analyzed by immunoblotting. The SDS-PAGE may be performed either in the absence or presence of a reduction agent. Such chemical modifications may result in the methylation of cysteine residues. Accordingly, it is possible to determine whether the anti-MCP-1 antibodies described herein bind to a linear epitope on MCP-1.

Surface-Enhanced Laser Desorption/Ionization (SELDI)

Epitope mapping of the epitope for the MCP-1 antibodies described herein can also be performed using SELDI. SELDI ProteinChip® arrays are used to define sites of protein-protein interaction. Antigens are specifically captured on antibodies covalently immobilized onto the Protein Chip array surface by an initial incubation and wash. The bound antigens can be detected by a laser-induced desorption process and analyzed directly to determine their mass. Such fragments of the antigen that bind are designated as the "epitope" of a protein.

The SELDI process enables individual components within complex molecular compositions to be detected directly and mapped quantitatively relative to other components in a rapid, highly-sensitive and scalable manner. SELDI utilizes a diverse array of surface chemistries to capture and present large numbers of individual protein molecules for detection by a laser-induced desorption process. The success of the SELDI process is defined in part by the miniaturization and integration of multiple functions, each dependent on different technologies, on a surface ("chip"). SELDI BioChips and other types of SELDI probes are surfaces "enhanced" such that they become active participants in the capture, purification (separation), presentation, detection, and characterization of individual target molecules (e.g., proteins) or population of molecules to be evaluated.

A single SELDI protein BioChip, loaded with only the original sample, can be read thousands of times. The SELDI protein BioChips from LumiCyte hold as many as 10,000 addressable protein docking locations per 1 square centimeter. Each location may reveal the presence of dozens of individual proteins. When the protein composition information from each location is compared and unique information sets combined, the resulting composition map reveals an image with sets of features that are used collectively to define specific patterns or molecular "fingerprints." Different fingerprints may be associated with various stages of health, the onset of disease, or the regression of disease associated with the administration of appropriate therapeutics.

The SELDI process may be described in further detail in four parts. Initially, one or more proteins of interest are captured or "docked" on the ProteinChip Array, directly from the original source material, without sample preparation and without sample labeling. In a second step, the

"signal-to-noise" ratio is enhanced by reducing the chemical and biomolecular "noise." Such "noise" is reduced through selective retention of target on the chip by washing away undesired materials. Further, one or more of the target protein(s) that are captured are read by a rapid, sensitive, laser-induced process (SELDI) that provides direct information about the target (molecular weight). Lastly, the target protein at any one or more locations within the array may be characterized in situ by performing one or more on-the-chip binding or modification reactions to characterize protein structure and function.

Phage Display

15 The epitope for the anti-MCP-1 antibodies described herein can be determined by exposing the ProteinChip Array to a combinatorial library of random peptide 12-mer displayed on Filamentous phage (New England Biolabs).

Phage display describes a selection technique in which a peptide is expressed as a fusion with a coat protein of a bacteriophage, resulting in display of the fused protein on the surface of the virion. Panning is carried out by incubation of a library of phage displayed peptide with a plate or tube coated with the target, washing away the unbound phage, and eluting the specifically bound phage. The eluted phage is then amplified and taken through additional binding and amplification cycles to enrich the pool in favor of binding sequences. After three or four rounds, individual clones binding are further tested for binding by phage ELISA assays performed on antibody-coated wells and characterized by specific DNA sequencing of positive clones.

After multiple rounds of such panning against the anti-MCP-1 antibodies described herein, the bound phage may be eluted and subjected to further studies for the identification and characterization of the bound peptide.

Monoclonal antibodies of the invention were shown to bind important residues in the core domain of MCP-1. The neutralizing monoclonal antibodies studied discriminate two functionally important sites in human MCP-1, involved with two residues that were previously shown to be required for binding to the receptor. One site was recognized by all tested antibodies, which competed with the receptor protein for MCP-1 binding and involved Arg 24. The second site was detected by the group of six antibodies that bound the conformational epitope, and their binding site appeared to involve Arg24 and Lys35, which are held in close proximity to the N-terminus by virtue of a disulfide bond between C11 and C36.

The MCP-1 variants described herein have been analyzed before with respect to biological activity, physical receptor binding and structural integrity (Jarnagin et al., (1999) *Biochemistry* 38: 16167-16177; Hemmerich et al, (1999) *Biochemistry* 38: 13013-13025) and provided valuable tools in determining the binding epitopes of the antibodies as described below.

Anti MCP-1 antibody 3.11.1 recognizes a conformational epitope and differs from other antibodies by its unique sequence of heavy and light chain, and its ability to cross-react with, and to cross-neutralize, other members of the MCP family, such as MCP-2, MCP-3 and MCP-4. As shown by the mutagenesis experiments, the binding site of mAb 3.11.1 was affected by the change R24A but not by K35A. These data are confirmed by the Lyc-C on chip digest result with SELDI, which delimits the binding epitope to be between residues 20-35 of MCP-1.

31

Determination that the epitope for 3.11.1 is between residues 20–35 was also supported by sequence alignment showing that R24, but not K35, was conserved across other members of the MCP family, specifically MCP-2, MCP-3 and MCP-4. Binding analyses by means of SPOTs peptide synthesized on membrane (Sigma-Genosys, The Woodlands, Tex.) revealed that binding site for at least eight mAbs with linear epitopes involved residues 20–25, and included R24. Given the similarities in the results in these binding studies and the significant homology between the variable gene structures for all the mAbs binding to linear epitopes on MCP-1, it appears that the antibodies all bind to this neutralizing epitope.

The cluster of the epitope around R24 and K35 explains the neutralizing activity of all 36 antibodies. The recognized epitope on MCP-1 does not appear to extend to the N-terminal residues up to Pro9. This residue appears to affect receptor signaling, but not binding affinity.

Diagnostic Use

Antibodies prepared in accordance with embodiments of the invention described herein are useful for assays, particularly in vitro diagnostic assays, for example, for use in determining the level of MCP-1 and all MCP-1 family members in patient samples. The patient samples can be, for example, bodily fluids, preferably blood, more preferably blood serum, synovial fluid, tissue lysates, and extracts prepared from diseased tissues. Examples of diagnostic assays include measuring the level of MCP family chemokines in, for example, human serum, synovial fluid and tissue lysates. Monitoring the level of specific MCP family members may be used as a surrogate measure of patient response to treatment and as a method of monitoring the severity of the disease in a patient. Elevated levels of MCP-1 compared to levels of other soluble markers would indicate the presence of inflammation. The concentration of the MCP-1 antigen present in patient samples is determined using a method that specifically determines the amount of the antigen that is present. Such a method includes an ELISA method in which, for example, antibodies of the invention may be conveniently immobilized on an insoluble matrix, such as a polymer matrix. Using a population of samples that provides statistically significant results for each stage of progression or therapy, a range of concentrations of the antigen that may be considered characteristic of each stage of disease can be designated.

In order to determine the degree of inflammation in a subject under study, or to characterize the response of the subject to a course of therapy, a sample of blood is taken from the subject and the concentration of the MCP-1 antigen present in the sample is determined. The concentration so obtained is used to identify in which range of concentrations the value falls. The range so identified correlates with a stage of disease progression or a stage of therapy identified in the various populations of diagnosed subjects, thereby providing a stage in the subject under study.

Gene amplification and/or expression may be measured in a sample directly, for example, by conventional Southern blotting, Northern blotting to quantitate the transcription of mRNA (Thomas, *Proc. Natl. Acad. Sci. USA*, 77:5201–5205 (1980)), dot blotting (DNA analysis), or in situ hybridization, using an appropriately labeled probe, based on the sequences provided herein. Alternatively, antibodies may be employed that can recognize specific duplexes, including DNA duplexes, RNA duplexes, and DNA-RNA hybrid duplexes or DNA-protein duplexes. The antibodies in turn may be labeled and the assay can be carried out where the

32

duplex is bound to a surface, so that upon the formation of duplex on the surface, the presence of antibody bound to the duplex can be detected.

For example, antibodies, including antibody fragments, can be used to qualitatively or quantitatively detect the expression of MCP-1 proteins. As noted above, the antibody preferably is equipped with a detectable, e.g., fluorescent label, and binding can be monitored by light microscopy, flow cytometry, fluorimetry, or other techniques known in the art. These techniques are particularly suitable if the amplified gene encodes a cell surface protein, e.g., a growth factor. Such binding assays are performed as known in the art.

In situ detection of antibody binding to the MCP-1 protein can be performed, for example, by immunofluorescence or immunoelectron microscopy. For this purpose, a tissue specimen is removed from the patient, and a labeled antibody is applied to it, preferably by overlaying the antibody on a biological sample. This procedure also allows for determining the distribution of the marker gene product in the tissue examined. It will be apparent for those skilled in the art that a wide variety of histological methods are readily available for in situ detection.

One of the most sensitive and most flexible quantitative methods for quantitating differential gene expression is RT-PCR, which can be used to compare mRNA levels in different sample populations, in normal and tumor tissues, with or without drug treatment, to characterize patterns of gene expression, to discriminate between closely related mRNAs, and to analyze RNA structure.

The first step in this process is the isolation of mRNA from a target sample. The starting material is typically total RNA isolated from a disease tissue and corresponding normal tissues, respectively. Thus, mRNA can be extracted, for example, from frozen or archived paraffin-embedded and fixed (e.g. formalin-fixed) samples of diseased tissue for comparison with normal tissue of the same type. Methods for mRNA extraction are well known in the art and are disclosed in standard textbooks of molecular biology, including Ausubel et al., *Current Protocols of Molecular Biology*, John Wiley and Sons (1997). Methods for RNA extraction from paraffin embedded tissues are disclosed, for example, in Rupp and Locker, *Lab Invest*, 56:A67 (1987), and De Andrés et al., *BioTechniques*, 18:42044 (1995). In particular, RNA isolation can be performed using purification kit, buffer set and protease from commercial manufacturers, such as Qiagen, according to the manufacturer's instructions. For example, total RNA from cells in culture can be isolated using Qiagen RNeasy mini-columns. Total RNA from tissue samples can be isolated using RNA Stat-60 (Tel-Test).

As RNA cannot serve as a template for PCR, the first step in differential gene expression analysis by RT-PCR is the reverse transcription of the RNA template into cDNA, followed by its exponential amplification in a PCR reaction. The two most commonly used reverse transcriptases are avilo myeloblastosis virus reverse transcriptase (AMV-RT) and Moloney murine leukemia virus reverse transcriptase (MMLV-RT). The reverse transcription step is typically primed using specific primers, random hexamers, or oligo-dT primers, depending on the circumstances and the goal of expression profiling. For example, extracted RNA can be reverse-transcribed using a GeneAmp RNA PCR kit (Perkin Elmer, Calif., USA), following the manufacturer's instructions. The derived cDNA can then be used as a template in the subsequent PCR reaction.

Although the PCR step can use a variety of thermostable DNA-dependent DNA polymerases, it typically employs the Taq DNA polymerase, which has a 5'-3' nuclease activity but lacks a 3'-5' endonuclease activity. Thus, TaqMan PCR typically utilizes the 5'-nuclease activity of Taq or Tth polymerase to hydrolyze a hybridization probe bound to its target amplicon, but any enzyme with equivalent 5' nuclease activity can be used. Two oligonucleotide primers are used to generate an amplicon typical of a PCR reaction. A third oligonucleotide, or probe, is designed to detect nucleotide sequence located between the two PCR primers. The probe is non-extendible by Taq DNA polymerase enzyme, and is labeled with a reporter fluorescent dye and a quencher fluorescent dye. Any laser-induced emission from the reporter dye is quenched by the quenching dye when the two dyes are located close together as they are on the probe. During the amplification reaction, the Taq DNA polymerase enzyme cleaves the probe in a template-dependent manner. The resultant probe fragments disassociate in solution, and signal from the released reporter dye is free from the quenching effect of the second fluorophore. One molecule of reporter dye is liberated for each new molecule synthesized, and detection of the unquenched reporter dye provides the basis for quantitative interpretation of the data.

TaqMan RT-PCR can be performed using commercially available equipments, such as, for example, ABI PRIZM 7700TM Sequence Detection System™ (Perkin-Elmer-Applied Biosystems, Foster City, Calif., USA), or Lightcycler (Roche Molecular Biochemicals, Mannheim, Germany). In a preferred embodiment, the 5' nuclease procedure is run on a real-time quantitative PCR device such as the ABI PRIZM 7700TM Sequence Detection System™. The system consists of a thermocycler, laser, charge-coupled device (CCD), camera and computer. The system amplifies samples in a 96-well format on a thermocycler. During amplification, laser-induced fluorescent signal is collected in real-time through fiber optics cables for all 96 wells, and detected at the CCD. The system includes software for running the instrument and for analyzing the data.

5'-Nuclease assay data are initially expressed as Ct, or the threshold cycle. As discussed above, fluorescence values are recorded during every cycle and represent the amount of product amplified to that point in the amplification reaction. The point when the fluorescent signal is first recorded as statistically significant is the threshold cycle (Ct). The ΔCt values are used as quantitative measurement of the relative number of starting copies of a particular target sequence in a nucleic acid sample when comparing the expression of RNA in a cell from a diseased tissue with that from a normal cell.

To minimize errors and the effect of sample-to-sample variation, RT-PCR is usually performed using an internal standard. The ideal internal standard is expressed at a constant level among different tissues, and is unaffected by the experimental treatment. RNAs most frequently used to normalize patterns of gene expression are mRNAs for the housekeeping genes glyceraldehyde-3-phosphate-dehydrogenase (GAPDH) and β -actin.

Differential gene expression can also be identified, or confirmed using the microarray technique. In this method, nucleotide sequences of interest are plated, or arrayed, on a microchip substrate. The arrayed sequences are then hybridized with specific DNA probes from cells or tissues of interest.

In a specific embodiment of the microarray technique, PCR amplified inserts of cDNA clones are applied to a substrate in a dense array. Preferably at least 10,000 nucle-

otide sequences are applied to the substrate. The microarrayed genes, immobilized on the microchip at 10,000 elements each, are suitable for hybridization under stringent conditions. Fluorescently labeled cDNA probes may be generated through incorporation of fluorescent nucleotides by reverse transcription of RNA extracted from tissues of interest. Labeled cDNA probes applied to the chip selectively hybridize to each spot of DNA on the array. After stringent washing to remove non-specifically bound probes, the chip is scanned by confocal laser microscopy. Quantitation of hybridization of each arrayed element allows for assessment of corresponding mRNA abundance. With dual color fluorescence, separately labeled cDNA probes generated from two sources of RNA are hybridized pairwise to the array. The relative abundance of the transcripts from the two sources corresponding to each specified gene is thus determined simultaneously. The miniaturized scale of the hybridization affords a convenient and rapid evaluation of the expression pattern for large numbers of genes. Such methods have been shown to have the sensitivity required to detect rare transcripts, which are expressed at a few copies per cell, and to reproducibly detect at least approximately two-fold differences in the expression levels (Schena et al., *Proc. Natl. Acad. Sci. USA*, 93(20)L106-49). The methodology of hybridization of nucleic acids and microarray technology is well known in the art.

MCP-1 Agonists and Antagonists

Embodiments of the invention described herein also pertain to variants of a MCP-1 protein that function as either MCP-1 agonists (mimetics) or as MCP-1 antagonists. Variants of a MCP-1 protein can be generated by mutagenesis, e.g., discrete point mutation or truncation of the MCP-1 protein. An agonist of the MCP-1 protein can retain substantially the same, or a subset of, the biological activities of the naturally occurring form of the MCP-1 protein. An antagonist of the MCP-1 protein can inhibit one or more of the activities of the naturally occurring form of the MCP-1 protein by, for example, competitively binding to a downstream or upstream member of a cellular signaling cascade which includes the MCP-1 protein. Thus, specific biological effects can be elicited by treatment with a variant of limited function. In one embodiment, treatment of a subject with a variant having a subset of the biological activities of the naturally occurring form of the protein has fewer side effects in a subject relative to treatment with the naturally occurring form of the MCP-1 protein.

Variants of the MCP-1 protein that function as either MCP-1 agonists (mimetics) or as MCP-1 antagonists can be identified by screening combinatorial libraries of mutants, e.g., truncation mutants, of the MCP-1 protein for protein agonist or antagonist activity. In one embodiment, a variegated library of MCP-1 variants is generated by combinatorial mutagenesis at the nucleic acid level and is encoded by a variegated gene library. A variegated library of MCP-1 variants can be produced by, for example, enzymatically ligating a mixture of synthetic oligonucleotides into gene sequences such that a degenerate set of potential MCP-1 sequences is expressible as individual polypeptides, or alternatively, as a set of larger fusion proteins (e.g., for phage display) containing the set of MCP-1 sequences therein. There are a variety of methods which can be used to produce libraries of potential MCP-1 variants from a degenerate oligonucleotide sequence. Chemical synthesis of a degenerate gene sequence can be performed in an automatic DNA synthesizer, and the synthetic gene then ligated into an appropriate expression vector. Use of a degenerate set of

genes allows for the provision, in one mixture, of all of the sequences encoding the desired set of potential MCP-1 variant sequences. Methods for synthesizing degenerate oligonucleotides are known in the art (see, e.g., Narang, *Tetrahedron* 39:3 (1983); Itakura et al., *Annu. Rev. Biochem.* 53:323 (1984); Itakura et al, *Science* 198:1056 (1984); Ike et al., *Nucl. Acid Res.* 11:477 (1983).

Design and Generation of Other Therapeutics

In accordance with embodiments of the invention described herein and based on the activity of the antibodies that are produced and characterized herein with respect to MCP-1, the design of other therapeutic modalities beyond antibody moieties is facilitated. Such modalities include, without limitation, advanced antibody therapeutics, such as bispecific antibodies, immunotoxins, and radiolabeled therapeutics, generation of peptide therapeutics, gene therapies, particularly intrabodies, antisense therapeutics, and small molecules.

In connection with the generation of advanced antibody therapeutics, where complement fixation is a desirable attribute, it may be possible to sidestep the dependence on complement for cell killing through the use of bispecifics, immunotoxins, or radiolabels, for example.

For example, in connection with bispecific antibodies, bispecific antibodies can be generated that comprise (i) two antibodies one with a specificity to MCP-1 and another to a second molecule that are conjugated together, (ii) a single antibody that has one chain specific to MCP-1 and a second chain specific to a second molecule, or (iii) a single chain antibody that has specificity to MCP-1 and the other molecule. Such bispecific antibodies can be generated using techniques that are well known for example, in connection with (i) and (ii) see e.g., Fanger et al. *Immunol Methods* 4:72-81 (1994) and Wright and Harris, *supra*, and in connection with (iii) see e.g., Traunecker et al. *Int. J. Cancer* (Suppl.) 7:51-52 (1992). In each case, the second specificity can be made to the heavy chain activation receptors, including, without limitation, CD16 or CD64 (see e.g., Deo et al. 18:127 (1997)) or CD89 (see e.g., Valerius et al. *Blood* 90:4485-4492 (1997)).

In connection with immunotoxins, antibodies can be modified to act as immunotoxins utilizing techniques that are well known in the art. See e.g., Vitetta *Immunol Today* 14:252 (1993). See also U.S. Pat. No. 5,194,594. In connection with the preparation of radiolabeled antibodies, such modified antibodies can also be readily prepared utilizing techniques that are well known in the art. See e.g., Junghans et al. in *Cancer Chemotherapy and Biotherapy* 655-686 (2d edition, Chafner and Longo, eds., Lippincott Raven (1996)). See also U.S. Pat. Nos. 4,681,581, 4,735,210, 5,101,827, 5,102,990 (RE 35,500), 5,648,471, and 5,697,902.

Therapeutic Administration and Formulations

Biologically active anti-MCP-1 antibodies prepared in accordance with the invention described herein may be used in a sterile pharmaceutical preparation or formulation to neutralize the activity of MCP-1 produced in diseased and inflamed tissues, thereby preventing the further infiltration of mononuclear cells into tissues. Such diseased and inflamed tissues occur in many types of human cancer, including breast, ovarian and lung cancer, and in conditions such as glomerulonephritis, arteriosclerosis, and multiple sclerosis. The biologically active anti-MCP-1 antibody of the instant invention may be employed alone or in combination with other therapeutic agents. For cancer, the anti-MCP-1 antibodies may be combined with traditional modes of chemotherapy such as taxol, doxorubicin, cis-platinum,

5-fluorouracil and other novel inhibitors of the angiogenic process. For treating inflammatory disease, the MCP-1 antibodies may be combined with steroids or antibodies to other cytokines and chemokines that contribute to the disease state.

When used for in vivo administration, the antibody formulation may be sterile. This can be readily accomplished by filtration through sterile filtration membranes, prior to or following lyophilization and reconstitution. The antibody ordinarily will be stored in lyophilized form or in solution. Therapeutic antibody compositions generally are placed into a container having a sterile access port, for example, an intravenous solution bag or vial having a stopper pierceable by a hypodermic injection needle.

The route of antibody administration can be in accord with known methods, e.g., injection or infusion by intravenous, intraperitoneal, intracerebral, intramuscular, intraocular, intraarterial, intrathecal, inhalation or intralesional routes, or by sustained release systems as noted below. The antibody is preferably administered continuously by infusion or by bolus injection.

An effective amount of antibody to be employed therapeutically will depend, for example, upon the therapeutic objectives, the route of administration, and the condition of the patient. Accordingly, it will be necessary for the therapist to titer the dosage and modify the route of administration as required to obtain the optimal therapeutic effect. Typically, the clinician will administer antibody until a dosage is reached that achieves the desired effect. The progress of this therapy is easily monitored by conventional assays or by the assays described herein.

The antibodies of the invention may be prepared in a mixture with a pharmaceutically acceptable carrier. This therapeutic composition can be administered intravenously or through the nose or lung, preferably as a liquid or powder aerosol (lyophilized). The composition may also be administered parenterally or subcutaneously as desired. When administered systematically, the therapeutic composition should be sterile, pyrogen-free and in a parenterally acceptable solution having due regard for pH, isotonicity, and stability. These conditions are known to those skilled in the art. Briefly, dosage formulations of the compounds of embodiments of the invention described herein are prepared for storage or administration by mixing the compound having the desired degree of purity with physiologically acceptable carriers, excipients, or stabilizers. Such materials are non-toxic to the recipients at the dosages and concentrations employed, and include buffers such as TRIS HCl, phosphate, citrate, acetate and other organic acid salts; antioxidants such as ascorbic acid; low molecular weight (less than about ten residues) peptides such as polyarginine, proteins, such as serum albumin, gelatin, or immunoglobulins; hydrophilic polymers such as polyvinylpyrrolidinone; amino acids such as glycine, glutamic acid, aspartic acid, or arginine; monosaccharides, disaccharides, and other carbohydrates including cellulose or its derivatives, glucose, mannose, or dextrans; chelating agents such as EDTA; sugar alcohols such as mannitol or sorbitol; counterions such as sodium and/or nonionic surfactants such as TWEEN, PLURONICS or polyethyleneglycol.

Sterile compositions for injection can be formulated according to conventional pharmaceutical practice as described in *Remington's Pharmaceutical Sciences* (18th ed, Mack Publishing Company, Easton, Pa. (1990)). For example, dissolution or suspension of the active compound in a vehicle such as water or naturally occurring vegetable oil like sesame, peanut, or cottonseed oil or a synthetic fatty

vehicle like ethyl oleate or the like may be desired. Buffers, preservatives, antioxidants and the like can be incorporated according to accepted pharmaceutical practice.

Suitable examples of sustained-release preparations include semipermeable matrices of solid hydrophobic polymers containing the polypeptide, which matrices are in the form of shaped articles, films or microcapsules. Examples of sustained-release matrices include polyesters, hydrogels (e.g., poly(2-hydroxyethyl-methacrylate) as described by Langer et al., *J. Biomed Mater. Res.*, 15:167-277 (1981) and Langer, *Chem. Tech.*, 12:98-105 (1982) or poly(vinylalcohol), polylactides (U.S. Pat. No. 3,773,919, EP 58,481), copolymers of L-glutamic acid and gamma ethyl-L-glutamate (Sidman et al., *Biopolymers*, 22:547-556 (1983)), non-degradable ethylene-vinyl acetate (Langer et al., *supra*), degradable lactic acid-glycolic acid copolymers such as the LUPRON Depot™ (injectable microspheres composed of lactic acid-glycolic acid copolymer and leuprolide acetate), and poly-D-(--)-3-hydroxybutyric acid (EP 133,988).

While polymers such as ethylene-vinyl acetate and lactic acid-glycolic acid enable release of molecules for over 100 days, certain hydrogels release proteins for shorter time periods. When encapsulated proteins remain in the body for a long time, they may denature or aggregate as a result of exposure to moisture at 37° C., resulting in a loss of biological activity and possible changes in immunogenicity. Rational strategies can be devised for protein stabilization depending on the mechanism involved. For example, if the aggregation mechanism is discovered to be intermolecular S—S bond formation through disulfide interchange, stabilization may be achieved by modifying sulphydryl residues, lyophilizing from acidic solutions, controlling moisture content, using appropriate additives, and developing specific polymer matrix compositions.

Sustained-release compositions also include liposomally entrapped antibodies of the invention. Liposomes containing such antibodies are prepared by methods known per se: U.S. Pat. No. DE 3,218,121; Epstein et al., *Proc. Natl. Acad. Sci. USA*, 82:3688-3692 (1985); Hwang et al., *Proc. Natl. Acad. Sci. USA*, 77:4030-4034 (1980); EP 52,322; EP 36,676; EP 88,046; EP 143,949; 142,641; Japanese patent application 83-118008; U.S. Pat. Nos. 4,485,045 and 4,544,545; and EP 102,324. The dosage of the antibody will be determined by the attending physician taking into consideration various factors known to modify the action of drugs including severity and type of disease, body weight, sex, diet, time and route of administration, other medications and other relevant clinical factors. Therapeutically effective dosages may be determined by either in vitro or in vivo methods.

The dosage of the antibody formulation for a given patient will be determined by the attending physician taking into consideration various factors known to modify the action of drugs including severity and type of disease, body weight, sex, diet, time and route of administration, other medications and other relevant clinical factors. Therapeutically effective dosages may be determined by either in vitro or in vivo methods.

An effective amount of the antibody of the invention to be employed therapeutically will depend, for example, upon the therapeutic objectives, the route of administration, and the condition of the patient. Accordingly, it will be necessary for the therapist to titer the dosage and modify the route of administration as required to obtain the optimal therapeutic effect. A typical daily dosage might range from about 0.001

mg/kg to up to 100 mg/kg or more, depending on the factors mentioned above. Desirable dosage concentrations include 0.001 mg/kg, 0.005 mg/kg, 0.01 mg/kg, 0.05 mg/kg, 0.1 mg/kg, 0.5 mg/kg, 1 mg/kg, 5 mg/kg, 10 mg/kg, 15 mg/kg, 20 mg/kg, 25 mg/kg, 30 mg/kg, 35 mg/kg, 40 mg/kg, 45 mg/kg, 50 mg/kg, 55 mg/kg, 60 mg/kg, 65 mg/kg, 70 mg/kg, 75 mg/kg, 80 mg/kg, 85 mg/kg, 90 mg/kg, 95 mg/kg, and 100 mg/kg or more. Typically, the clinician will administer the therapeutic antibody until a dosage is reached that achieves the desired effect. The progress of this therapy is easily monitored by conventional assays or as described herein.

EXAMPLES

The following examples, including the experiments conducted and results achieved are provided for illustrative purposes only and are not to be construed as limiting upon the embodiments of the invention described herein.

Example 1

MCP-1 Antigen Preparation

The human MCP-1 peptide used as the antigen in these studies had the following amino acid sequence:

25 QPDAINAPVTCCYNFTNRKISVQR LASYRRITSSK (SEQ ID NO: 149)
30 CPKEAVIFKTIVAKEICADPKQKWQDSMDHLDKQ
35 TQTPKT

This peptide was expressed recombinantly in *E. coli* and purchased from Prepro Tech (Rocky Hill, N.J.).

Example 2

Anti-MCP-1 Antibodies

Antibody Generation

45 Immunization and selection of animals for harvesting by ELISA. Monoclonal antibodies against MCP-1 were developed by sequentially immunizing XenoMouse® mice (XenoMouse® strains XMG2, XMG4 (3C-1 strain), and a hybrid strain produced through the crossing of XMG2 with an XMG4 (3C-1 strain) mouse, Abgenix, Inc. Fremont, Calif.) according to the schedule shown in Table 2. For instance, the initial immunization was with 10 μ g antigen admixed 1:1 v/v with TiterMax Gold. Subsequent boosts were made with 5 or 10 μ g antigen admixed 1:1 v/v with 100 μ g alum gel in pyrogen-free D-PBS. Some boosts were done with 50% TiterMax Gold, followed by three injections with 10 μ g antigen admixed 1:1 v/v with 10 μ g MCP-1 antigen in alum gel, and then a final boost of 10 μ g antigen in PBS. In particular, each mouse was immunized in the footpad by subcutaneous injection. The animals were immunized on days 0, 4, 7, 10, 14, 18, 27, 31, 35 and 42. The animals were bled on days 13 and 26 to obtain sera for harvest selection as described below.

TABLE 2

Group	Strain	# of 1 st mice	1 st injection	2 nd boost	3 rd boost	4 th boost	Bleed	5 th boost	6 th boost	7 th boost	8 th boost	9 th boost	10 th boost	Fusion	
1	xmg2	7	10 µg/ mouse	5 µg/ mouse	5 µg/ mouse	5 µg/ mouse		5 µg/ mouse	5 µg/ mouse	10 µg/ mouse	10 µg/ mouse	10 µg/ mouse	10 µg/ mouse		
2	3C-1	7	10 µg/ mouse	5 µg/ mouse	5 µg/ mouse	5 µg/ mouse		5 µg/ mouse	5 µg/ mouse	10 µg/ mouse	10 µg/ mouse	10 µg/ mouse	10 µg/ mouse		
3	(3C-1) × xmg2	7	10 µg/ mouse	5 µg/ mouse	5 µg/ mouse	5 µg/ mouse		5 µg/ mouse	5 µg/ mouse	10 µg/ mouse	10 µg/ mouse	10 µg/ mouse	10 µg/ mouse		
			TiterMax	Alum	Alum	Alum		TiterMax	Alum	Alum	Alum	Alum	D-PBS		
Day			0	4	7	10	13	14	18	26	27	31	35	42	46

Similarly, other XenoMouse® mice (XenoMouse® strains XMG2 and XMG2L3) were sequentially immunized according to the schedule shown in Table 3.

TABLE 3

Group	Strain	# of 1 st mice	1 st injection	2 nd boost	3 rd boost	4 th boost	Bleed	5 th boost	6 th boost	Fusion
4	xmg2	4	10 µg/ mouse	10 µg/ mouse	10 µg/ mouse	10 µg/ mouse		10 µg/ mouse	10 µg/ mouse	
5	xmg2L3	4	10 µg/ mouse	10 µg/ mouse	10 µg/ mouse	10 µg/ mouse		10 µg/ mouse	10 µg/ mouse	
			TiterMax	Alum	Alum	Gel		Alum	Alum	
Day		0	3	6	10	13	14	17	21	

Anti-MCP-1 antibody titers were determined by indirect ELISA. The titer value is the reciprocal of the greatest dilution of sera with an OD reading two-fold that of background. Briefly, MCP-1 (84 mer; 1 µg/mL) was coated onto Costar Labcoat Universal Binding Polystyrene 96 well plates overnight at four degrees. The solution containing unbound MCP-1 was removed and the plates were treated with UV light (365 nm) for 4 minutes (4000 microjoules). The plates were washed five times with dH₂O. XenoMouse® sera from the MCP-1 immunized animals, or naive XenoMouse® animals, were titrated in 2% milk/PBS at 1:2 dilutions in duplicate from a 1:100 initial dilution. The last well was left. The plates were washed five times with dH₂O.

35

TABLE 4

Group 1, footpad, xmg2, 7 mice				
	Mouse ID	bleed of Day 13 After 4 injections	bleed of Day 26 After 6 injections	
40	N160-1	1,000	73,000	300,000
	N160-2	6,500	600,000	600,000
	N160-3	2,300	250,000	125,000
45	N160-4	1,400	125,000	75,000
	N160-5	4,000	200,000	225,000
	N160-6	250	2,400	18,000
	N160-7	60	1,600	35,000
	NC	175	<100	200

50

A goat anti-human IgG Fc-specific HRP-conjugated antibody was added at concentration of 1 µg/mL for 1 hour at room temperature. The plates were washed five times with dH₂O. The plates were developed with the addition of TMB for 30 minutes and the ELISA was stopped by the addition of 1 M phosphoric acid. The specific titer of individual XenoMouse® animals was determined from the optical density at 450 nm and is shown in Tables 4, 5, 6, 7, and 8. The titer represents the reciprocal dilution of the serum and therefore the higher the number the greater the humoral immune response to MCP-1. Lymph nodes from all immunized XenoMouse® animals were harvested for fusion.

55

TABLE 5

Group 2, footpad, 3c-1, 7 mice			
	Mouse ID	bleed of Day 13 After 6 injections	fusion of Day 46 After 10 injections
60	M724-1	35,000	24,000
	M724-3	8,000	7,500
	M724-5	8,000	20,000
65	N600-4	9,000	7,500
	N600-5	1,800	75,000
	N600-6	2,200	20,000
	N600-7	800	25,000
	NC	<100	<100

TABLE 6

Group 3, footpad, 3c-1/xmg2 (F1), 7 mice			
Mouse ID	bleed of Day 13 After 4 injections	bleed of Day 26 After 6 injections	fusion of Day 46 After 10 injections
	Reactivity to MCP-1 Titers via hIgG	Reactivity to MCP-1 Titers via hIgG	Reactivity to MCP-1 Titers via hIgG
M219-1	50	2,200	8,000
M219-2	<100	9,000	18,000
M246-3	800	7,000	18,000
M246-5	850	18,000	65,000
M246-9	<100	18,000	55,000
M344-6	<100	800	12,000
M344-10	<100	6,000	25,000
NC	200	225	175

TABLE 7

Group 4, XMG2, footpad, 4 mice				
Mouse ID	Capture:			
	bleed of Day 13 after 4 injections	bleed of Day 21 after 6 injections	bleed of Day 21 after 6 injections	
	Human MCP-1 Reactivity to MCP-1 Human MCP-1 Reactivity to MCP-1 Human MCP-1 Reactivity to MCP-1 Human MCP-1 Reactivity to MCP-1			
	Titers via hIgG	Titers via hL	Titers via hIgG	Titers via hL
N493-1	<100	<100	2,500	<100
N493-2	<100	<100	1,000	<100
N493-3	300	<100	4,500	<100
N493-4	800	<100	10,000	<100
NC	900	100	600	<100
*PC	8,000		3,000	

TABLE 8

Group 5, XMG2L3, footpad, 4 mice				
Mouse ID	Capture:			
	bleed after 4 injections	bleed of after 6 injections	bleed of after 6 injections	
	Human MCP-1 Reactivity to MCP-1 Human MCP-1 Reactivity to MCP-1 Human MCP-1 Reactivity to MCP-1 Human MCP-1 Reactivity to MCP-1			
	Titers via hIgG	Titers via hL	Titers via hIgG	Titers via hL
N259-12	300	300	2,000	700
N259-14	100	400	2,500	650
N269-2	700	200	2,800	500
N263-3	900	900	24,000	8,000
NC	900	100	600	<100
*PC	8,000		3,000	

*For Tables 4–8, NC (negative control) = XMG2 KLH group 1, footpad L627-6 PC (positive control) = XMG2 MCP-1 group 1, footpad N160-1

Recovery of lymphocytes, B-cell isolations, fusions and generation of hybridomas. Immunized mice were sacrificed by cervical dislocation, and the lymph nodes harvested and pooled from each cohort. The lymphoid cells were dissociated by grinding in DMEM to release the cells from the tissues and the cells were suspended in DMEM. The cells were counted, and 0.9 mL DMEM per 100 million lymphocytes added to the cell pellet to resuspend the cells gently but completely. Using 100 μ L of CD90⁺ magnetic beads per 100 million cells, the cells were labeled by incubating the cells with the magnetic beads at 4° C. for 15 minutes. The

magnetically labeled cell suspension containing up to 10⁸ positive cells (or up to 2 \times 10⁹ total cells) was loaded onto a LS⁺ column and the column washed with DMEM. The total effluent was collected as the CD90-negative fraction (most of these cells are B cells).

P3 myeloma cells and B cell-enriched lymph node cells were combined in a ratio of 1:1 (myeloma: lymph nodes) into a 50 mL conical tube in DMEM. The combined cells were centrifuged at 800 \times g (2000 rpm) for 5–7 minutes and the supernatant immediately removed from the resulting pellet. Two to four mL of Pronase solution (CalBiochem, Cat. #53702; 0.5 mg/mL in PBS) was added to the cells to resuspend the cell pellet gently. The enzyme treatment was allowed to proceed for no more than two minutes and the reaction stopped by the addition of 3–5 mL of FBS. Enough ECF solution was added to bring the total volume to 40 mL and the mixture was centrifuged at 800 \times g (2000 rpm) for 5–7 minutes. The supernatant was removed and the cell pellet gently resuspended with a small volume of ECF solution, followed by enough ECF solution to make a total volume of 40 mL. The cells were mixed well and counted, then centrifuged at 800 \times g (2000 rpm) for 5–7 minutes. The supernatant was removed and the cells resuspended in a small volume of ECF solution. Enough additional ECF solution was added to adjust the concentration to 2 \times 10⁶ cells/mL.

The cells were then placed in an Electro-Cell-Fusion (ECF) generator (Model ECM2001, Genetronic, Inc., San Diego, Calif.) and fused according to the manufacturer's instructions. After ECF, the cell suspensions were carefully removed from the fusion chamber under sterile conditions and transferred into a sterile tube containing the same volume of Hybridoma Medium in DMEM. The cells were incubated for 15–30 minutes at 37° C., then centrifuged at 400 \times g (1000 rpm) for five minutes. The cells were gently resuspended in a small volume of 1/2 HA medium (1 bottle of 50 \times HA from Sigma, Cat. #A9666 and 1 liter of Hybridoma Medium) and the volume adjusted appropriately with more 1/2 HA medium (based on 5 \times 10⁶ B cells per 96-well plate and 200 μ L per well). The cells were mixed well and pipetted into 96-well plates and allowed to grow. On day 7 or 10, one-half the medium was removed, and the cells re-fed with 1/2 HA medium.

Selection of candidate antibodies for ELISA. After 14 days of culture, hybridoma supernatants were screened for MCP-1-specific monoclonal antibodies. The ELISA plates (Fisher, Cat. No. 12-565-136) were coated with 50 μ L/well of MCP-1 (2 μ g/mL) in Coating Buffer (0.1 M Carbonate Buffer, pH 9.6, NaHCO₃ 8.4 g/L), then incubated at 4° C. overnight. After incubation, the plates were washed with Washing Buffer (0.05% Tween 20 in PBS) three times. 200 μ L/well Blocking Buffer (0.5% BSA, 0.1% Tween 20, 0.01% Thimerosal in 1 \times PBS) were added and the plates incubated at room temperature for 1 hour. After incubation, the plates were washed with Washing Buffer three times. 50 μ L/well of hybridoma supernatants, and positive and negative controls were added and the plates incubated at room temperature for 2 hours.

The positive control used throughout was XMG2 MCP-1 Group 1, footpad N160-7 and the negative control was XMG2 KLH Group 1, footpad L627-6. After incubation, the plates were washed three times with Washing Buffer. 100 μ L/well of detection antibody goat anti-hulgGfc-HRP (Caltag, Cat. #H10507), (and goat anti-hlgkappa-HRP (Southern Biotechnology, Cat. # 2060-05) and goat anti-hlglambda (Southern Biotechnology, Cat. # 2070-05) in secondary screening) were added and the plates incubated at room

temperature for 1 hour. In the secondary screen, three sets of samples (positives in first screening) were screened, one set for hIgG detection, one set for hKappa detection, and one set for hlambda detection. After incubation, the plates were washed three times with Washing Buffer. 100 μ L/well of TMB (BioFX Lab. Cat. #TMSK-0100-01) were added and the plates allowed to develop for about 10 minutes (until negative control wells barely started to show color), then 50 μ L/well stop solution (TMB Stop Solution (BioFX Lab. Cat. #STPR-0100-01) were added and the plates read on an ELISA plate reader at wavelength 450 nm. The OD readings from the positive wells are presented in Table 9.

TABLE 9

mAb Clone	ELISA OD-MCP-1	IC50 Ca++ Flux (μ g/mL)	IC50 Chemotaxis (μ g/mL)	Affinity (pMol)	Cross-Reactivity
1.1.1	3.638	0.24 + 0.034	0.27 + 0.034	2.7	
1.2.1	3.466	0.18 + 0.008	0.24 + 0.034	77	
1.3.1	4	0.12 + 0.012	0.24 + 0.059	55	
1.4.1	4	0.11 + 0.005	0.51 + 0.035	96	
1.5.1	0.51	0.21 + 0.027	0.34 + 0.054	4.2	
1.6.1	3.918	1 + 0.24	12 + 5.8	228	
1.7.1	3.521	0.11 + 0.013	0.35 + 0.064	4.9	
1.8.1	3.472	0.26 + 0.076	0.88 + 0.21	4	
1.9.1	3.6561	1.2 + 0.38	35 + 54	96	
1.10.1	3.845	0.18 + 0.11	1.2 + 0.55	9.6	
1.11.1	3.905	0.098 + 0.008	0.81 + 0.24	4.2	
1.12.1	4	0.13 + 0.02	0.35 + 0.039	13	
1.13.1	4	0.11 + 0.015	0.5 + 0.091	71	
1.14.1	2.064	0.41 + 0.1	0.58 + 0.18	6	
1.18.1	0.9984	0.18 + 0.055	0.29 + 0.07	3.8	
2.3.1	3.876	0.14 + 0.021	0.58 + 0.085	96	
2.4.1	3.892	0.26 + 0.18	>5	14	mouse JE
3.2	3.96			ND	MCP-2, MCP-3, etoxatin
3.4.1	3.86	0.24 + 0.019	0.51 + 0.1	45	
3.5.1	3.765	0.58 + 0.29	3.1 + 1.1	100	
3.6.1	3.593	0.17 + 0.04	0.52 + 0.18	15	
3.7.1	4	0.094 + 0.023	0.98 + 0.019	4.8	
3.8.1	3.603	0.27 + 0.028	0.7 + 0.19	3.4	
3.10.1	3.634	0.3 + 0.1	0.25 + 0.1	90	MCP-2, MCP-3, etoxatin
3.11.1	4	0.092 + 0.023	0.33 + 0.47	3.3	MCP-2, MCP-3, MCP-4 etoxatin
3.14.1	4	1.3 + 0.3	1.4 + 0.47	ND	
3.15.1	4	0.12 + 0.034	0.89 + 0.1	3.4	
3.16.1	3.921	0.16 + 0.08	0.4 + 0.081	25	
4.5.1	3.38	0.27 + 0.074	0.75 + 0.18	61	
4.6.1	3.51	0.31 + 0.06	0.4 + 0.056	330	
4.7.1	3.843	0.39 + 0.063	0.45 + 0.11	280	
4.8.1	4	0.22 + 0.77	0.29 + 0.032	102	
4.9.1	3.415	0.083 + .0094	0.21 + 0.035	ND	
5.1	4	3.5 + 2.1	1.3 + 1.2	1610	
5.2.1	3.714	2.5 + 0.66	2.1 + 1.7	319	Rantes
5.3.1	4	1.8 + 0.56	2.6 + 0.31	450	

ND = not done

Characterization of Anti-MCP-1 Antibodies for Biologic Activity.

Neutralization of MCP-1 bioactivity with anti-MCP-1 antibodies—FLLPR assay. DMSO and Pluronic Acid (20% DMSO solution) were added to a vial of Fluo-4 (Molecular Probes) to yield a final concentration of 5 mM Fluo4. THP-1 cells were resuspended in prewarmed (37° C.) loading buffer at 3x10 e6/mL and 1 μ L of Fluo-4 dye per ml of cells was added to give a final concentration of dye at 5 μ M. The cells were incubated in the dark at 37° C. for 45–50 minutes. After incubation, the cells were centrifuged at 1000 RPM for 5–10 min. The cells were resuspended in loading buffer and the

centrifugation was repeated. The cells were resuspended at 1.667e6/mL. At a concentration of 200,000 cells/well, the cells were added to a 96-well plate and centrifuged gently. After taking a baseline reading, a second reading was taken 5 upon subsequent addition of 3.5 nM MCP-1 in the presence or absence of varying concentrations of anti-MCP-1 antibodies. Addition of MCP-1 to the THP-1 cells resulted in a rise of intracellular calcium leading to enhancement of fluorescence intensity of Fluo-4 dye. Upon addition of increasing concentrations of neutralizing antibody, the fluorescent dye intensity within the cells was decreased, thus indicating that the antibody tested was neutralizing. The concentration of antibody that yielded a 50% decrease in MCP-1 induced fluorescence intensity is presented in Table 9.

Neutralization of MCP-1-induced cell migration. An automated 96-well chemotaxis assay was developed using THP-1 cells and a Beckman Biomek F/X robotic system. Using a specially designed 96-well plate, a framed filter with 20 the filter membrane bonded to a rigid frame, the chemotaxis assay was run in a NeuroProbe 96-well disposable microplate with a well volume of either 30 μ L or 300 μ L and pore diameter ranging from 2–14 μ m. The Neuroprobe 96-well plate provides bottom wells for placing the MCP-1 chemoattractant and other reagents such as anti-MCP-1 antibodies in 25 cell-migration assays. No top wells were required because the framed filter was coated with a hydrophobic mask that confines each cell-suspension sample to its site on top of the filter.

30 The optimum conditions for this assay were: 100,000 cells/well with 90 min incubation at 37° C. Suspensions of THP-1 cells that had been pre-loaded with dye from Molecular Probes were pipetted directly onto the sites on the upper side of the filter and incubated at 37° C. for 1–2 hours. After 35 incubation, the cells that had migrated to the bottom of the filter and into the microplate were counted by placing the microplate into an FMAT purchased from Applied Biosystems.

30 MCP-1 induced cell migration for THP-1 cells and the maximal cell migration was reached at 1 nM with a signal to noise ratio of 10–15 fold. Using either hybridoma supernatants or fresh hybridoma media, MCP-1-dependent migration was detected. The variability of the assay was minimal (CV~15). The number of cells migrating to the bottom of 45 the filters was decreased in a dose dependent manner when antibodies to MCP-1 were included with the chemoattractant.

Determination of anti-MCP-1 antibody affinity using Biacore analysis. The antibody/MCP-1 interaction analysis was 50 performed at 25° C. using two CM5 chips docked in Biacore 3000 optical biosensors. Individual flow cells on each chip were activated with a 7-minute injection of NHS/EDC, carbohydrazide was coupled through the NHS ester using a 7-minute injection, and the residual activated groups were 55 blocked with a 7-minute injection of ethanolamine. The monosaccharide residues of each antibody were oxidized using 1 mM sodium metaperiodate in 100 mM sodium acetate, pH 5.5 at 4° C. for 30 minutes. The oxidized antibody was desalted into 100 mM sodium acetate, pH 5.0, to couple the antibody to the carbohydrazide-modified surface. The mAb surfaces were stabilized by reducing the hydrazone bond with 0.1 M sodium cyanoborohydride. The antigen/antibody interaction was tested by injecting 0, 0.049, 0.15, 0.4, 1.3, 4 and 12 nM of MCP-1 (Peprotech, N.J.) in running buffer (10 mM HEPES, 150 mM NaCl, 0.005% surfactant, 200 μ g/ml BSA, pH 7.4). The surfaces 60 were regenerated with a 12-second pulse of 15 mM H3PO4.

The antigen/antibody interaction was tested by injecting duplicate antigen samples diluted in running buffer (10 mM HEPES, 50 mM NaCl, 0.005% surfactant, 200 µg/mL BSA, pH 7.4), in a 300-fold concentration range. The surfaces were regenerated with a 12-second pulse of 15 mM H₃PO₄. To determine the kinetics of each interaction, the data sets were fit globally to a 1:1 interaction model that included a parameter for mass transport. The calculated affinities of interaction are reported in Table 9.

Determining cross-reactivity of anti-MCP-1 antibodies with other chemokines. ELISA plates (Fisher Cat. No. 12-565-136) were coated with 50 µL/well of MCP-1, MCP-2, MCP-3, MCP-4, RANTES, GRO-alpha, MIP-1 alpha, eotaxin, rat MCP-1 and mouse JE (2 µg/ml) in coating buffer (0.1 M carbonate buffer, pH 9.6, NaHCO₃ 8.4 g/L, then incubated at 4° C. overnight. After incubation, the plates were washed with washing buffer (0.05% Tween 20 in PBS) three times. 200 µL/well blocking buffer (0.5% BSA, 0.1% Tween 20, 0.01% Thimerosal in 1×PBS) were added and the plates incubated at room temperature for 1 hour. After incubation, the plates were washed with washing buffer three times. 50 µL/well of hybridoma supernatants, and positive and negative controls (positive control was anti-MCP-1 antibody purchased from R&D Sciences, and negative control was an antibody to Keyhole Limpet Hemocyanin produced at Abgenix) were added and the plates incubated at room temperature for 2 hours. After incubation, the plates were washed three times with washing buffer. 100 µL/well of detection antibody goat anti-hulgGfc-HRP (Cal-tag, Cat. #H10507), (goat anti-hlgkappa-HRP (Southern Biotechnology, Cat. #2060-05) and goat anti-hlglambda (Southern Biotechnology, Cat. #2070-05) in secondary screening) were added and the plates incubated at room temperature for 1 hour. After incubation, the plates were washed three times with washing buffer and 100 µL/well of TMB (BioFX Lab. Cat. #TMSK-0100-01) was added and the plates allowed to develop for about 10 minutes. At this time, 50 µL/well stop solution (TMB Stop Solution (BioFX Lab. Cat. #STPR-0100-01) were added and the plates read on an ELISA plate reader at wavelength 450 nm. The results presented in Table 10 demonstrate that several of the anti-MCP-1 antibodies cross-reacted with related chemokines.

TABLE 10

mAb	rmJE/MCP-1	rat MCP-1	rhMCP-2	rhMCP-3	rhMCP-4
	2 µg/mL	1 µg/mL	2 µg/mL	2 µg/mL	2 µg/mL
1.1.1	0.045	0.051	0.051	0.064	0.052
1.2.1	0.041	0.044	0.056	0.048	0.055
1.3.1	0.046	0.048	0.065	0.052	0.048
1.4.1	0.042	0.05	0.046	0.049	0.045
1.5.1	0.043	0.045	0.047	0.069	0.05
1.6.1	0.042	0.062	0.042	0.046	0.044
1.7.1	0.041	0.042	0.044	0.053	0.041
1.8.1	0.045	0.049	0.048	0.054	0.046
1.9.1	0.053	0.065	0.04	0.044	0.042
1.10.1	0.041	0.059	0.04	0.047	0.052
1.11.1	0.041	0.052	0.041	0.043	0.043
1.12.1	0.042	0.062	0.042	0.046	0.044
1.13.1	0.043	0.06	0.046	0.047	0.045
1.14.1	0.042	0.062	0.042	0.046	0.044
1.18.1	0.044	0.058	0.04	0.045	0.045
2.3.1	0.054	0.058	0.052	0.059	0.064
2.4.1	0.129	0.077	0.045	0.066	0.06
3.4.1	0.044	0.053	0.042	0.05	0.047
3.5.1	0.042	0.053	0.042	0.045	0.044
3.6.1	0.047	0.046	0.052	0.045	0.048
3.7.1	0.046	0.048	0.043	0.048	0.048
3.8	0.042	0.062	0.042	0.046	0.044
3.10.1	0.054	0.045	0.845	0.167	0.042

TABLE 10-continued

	3.11.1	0.063	0.057	0.336	1.317	0.981
5	3.14.1	0.044	0.046	0.045	0.05	0.045
	3.15.1	0.041	0.05	0.043	0.046	0.051
	3.16.1	0.042	0.046	0.049	0.043	0.043
	4.5.1	0.049	0.055	0.042	0.046	0.046
	4.6.1	0.049	0.05	0.047	0.05	0.047
	4.7.1	0.042	0.062	0.042	0.046	0.044
	4.8.1	0.042	0.091	0.041	0.043	0.039
10	4.9.1	0.05	0.05	0.046	0.049	0.05
	5.1	0.044	0.054	0.051	0.05	0.043
	5.2.1	0.04	0.054	0.041	0.048	0.041
	5.3.1	0.05	0.047	0.043	0.045	0.043
	3.2	0.059	0.07	0.535	0.449	0.041
15	(neat)					
	nc	0.042	0.134	0.045	0.084	0.074
	pc	0.263	ND	ND	1.084	0.215
						Positive control hMCP-1(1MCAF) 2 µg/mL
20	mAb	hGRO/MGSA 1 µg/mL	hMIP-1-alpha 1 µg/mL	hRANTES 1 µg/mL	hEotaxin 1 µg/mL	
	1.1.1	0.047	0.044	0.044	0.042	0.944
	1.2.1	0.044	0.04	0.04	0.044	1.159
	1.3.1	0.051	0.049	0.049	0.046	1.158
	1.4.1	0.044	0.041	0.046	0.043	0.738
25	1.5.1	0.048	0.041	0.049	0.043	1.178
	1.6.1	0.046	0.046	0.046	0.042	0.375
	1.7.1	0.041	0.04	0.039	0.04	1.17
	1.8.1	0.06	0.045	0.045	0.047	1.159
	1.9.1	0.043	0.044	0.042	0.042	0.446
	1.10.1	0.043	0.043	0.042	0.05	1.259
30	1.11.1	0.042	0.042	0.042	0.049	1.336
	1.12.1	0.046	0.046	0.046	0.044	0.933
	1.13.1	0.046	0.042	0.046	0.044	1.16
	1.14.1	0.046	0.046	0.046	0.042	1.129
	1.18.1	0.049	0.043	0.04	0.043	1.228
	2.3.1	0.062	0.067	0.055	0.045	0.087
35	2.4.1	0.048	0.061	0.046	0.084	0.462
	3.4.1	0.065	0.055	0.046	0.048	1.153
	3.5.1	0.048	0.047	0.044	0.043	0.194
	3.6.1	0.047	0.047	0.043	0.043	0.342
	3.7.1	0.045	0.049	0.067	0.043	1.276
	3.8	0.046	0.046	0.046	0.042	0.275
40	3.10.1	0.042	0.043	0.04	0.306	0.71
	3.11.1	0.054	0.053	0.064	0.339	0.803
	3.14.1	0.046	0.046	0.045	0.043	0.549
	3.15.1	0.044	0.045	0.049	0.045	0.948
	3.16.1	0.043	0.043	0.042	0.043	0.633
	4.5.1	0.045	0.046	0.049	0.041	0.957
	4.6.1	0.046	0.055	0.053	0.049	0.686
45	4.7.1	0.046	0.046	0.046	0.042	0.744
	4.8.1	0.042	0.041	0.044	0.043	1.136
	4.9.1	0.043	0.049	0.057	0.045	0.822
	5.1	0.044	0.043	0.043	0.042	0.521
	5.2.1	0.045	0.043	0.262	0.043	0.663
50	5.3.1	0.045	0.042	0.045	0.042	0.272
	3.2	0.042	0.041	0.043	0.194	0.235
	(neat)					
	nc	0.357	0.065	0.072	0.063	0.042
	pc	1.075	0.794	1.219	0.221	0.281

Coat: Ag @ 2 µg/mL or 1 µg/mL; O/N

Ab: MCP-1 purified clones 1:50

pc: 1 µg/mL;

nc: D39.2 IL8 @ 1 µg/mL

Detect samples with ghxG-Fc HRP 1:2K; controls with mix xmIgG1, 2a, 2b, 3 1:1K

60 To determine whether anti-MCP-1 antibody 3.11.2 could block the function of other MCP family members, migration assays as described above were performed. First, the ability of THP-1 monocytes to migrate in response to MCP-1, MCP-2, MCP-3, and MCP-4 was determined. MCP-1, -2 and -3 effectively induced migration of THP-1 cells, but MCP-4 was not active in this assay (see FIG. 1). When antibody 3.11.2 was added to the bottom side of the well at

varying concentrations, the ability of the THP-1 cells to migrate in response to MCP-2 and MCP-3 was inhibited in a dose dependent manner (FIGS. 2 and 3).

Example 3

Epitope Mapping of MCP-1

Monocyte chemo-attractant protein-1 (MCP-1) is a member of the beta chemokine family that acts through a specific seven-transmembrane receptor to recruit monocytes, basophils, and T lymphocytes to the site of inflammation. The antigen, a 76-amino-acid residue is nonglycosylated and has a predicted molecular mass of 8.7 kD. Human MCP-1, expressed in *E. coli*, was purchased from R&D #279MC/CF. Monkey MCP was expressed in 293F cells, and three monkey MCP-1 variants were used to analyze how defined amino-acid replacements affect binding affinity for each individual mAb.

Sequence analysis showed that the antibodies fell into five classes. The largest class included 28 antibodies highly related by their use of VH1-24, of which, 24 also use Vk gene B3. A class comprised of three antibodies use the VH6-1 gene, two of which use Vk B3. Three other classes are represented by one antibody each, using VH1-2, VH3-33 and VH4-31, of which two of these mAbs use the Vk08 gene. It should be noted that antibody names beginning with 1, 2, 3, or 4 represent different hybridoma fusions from independent cohorts of XenoMouse® mice. Therefore, these monoclonal antibodies arose from independent lineages of B cells maturing during independent primary and secondary immune responses in XenoMouse® mice. Because of their independence, the similarity in nucleotide and amino acid sequence of the antibody VH and Vk genes likely represents a convergent evolution and selection for a similar variable region structure that can bind to and potently neutralize MCP-1 (see Table 11).

TABLE 11-continued

Samples	Iso-type	VH	DH	JH	VK	JK	Epitope	
5	3.10.1	γ4/κ	VH1-24	D3-9(12)	JH6b	VK-A30	JK3	Conf.
	3.11.1	γ4/κ	VH4-31	D2-21(10)	JH3b	VK-08	JK2	Conf.
	3.14.1	γ4/κ	VH6-1	D1-26	JH6B	VK-B3	JK1	Conf.
	3.15.1	γ4/κ	VH1-24	D5-12(13)	JH4b	VK-B3	JK1	Linear
10	3.16.1	γ4/κ	VH1-24	D3-3(17)	JH4b	VK-B3	JK1	Conf.
	4.5.1	γ2/κ	VH1-24	D3-3(16)	JH4b	VK-B3	JK1	Conf.
	4.6.1	γ2/κ	VH1-24	D3-3	JH3b	VK-B3	JK1	ND
	4.7.1	γ2/κ	VH1-24	D3-3(16)	JH4b	VK-B3	JK1	Conf.
	4.8.1	γ2/κ	VH1-24	D3-3	JH4b	VK-B3	JK1	Conf.
	4.9.1	γ2/κ	ND	ND	ND	ND	ND	Conf.
15	5.1	γ2/λ	VH3-33	D6-6(15)	JH6B	V1-22	JK2	ND
	5.3.1	γ2/κ	VH1-24	D5-12(13)	JH4b	VK-B3	JK1	no binding

Conf. = conformational

ND = Not Done

No binding = No binding on western blot.

20 Whether each antibody bound to a linear or conformational epitope was determined by Western blot analysis. To determine whether disruption of the intramolecular bonds by a reducing agent changed the reactivity of selected anti-MCP-1 antibodies, purified MCP-1 was loaded on SDS/PAGE (4–20% gel) under non-reducing (NR) or reducing (R) conditions. SDS/PAGE was performed by the method of Laemmli, using a mini-gel system. Separated proteins were transferred onto nitrocellulose membrane. Membranes were blocked using PBS containing 5% (w/v) non-fat dried milk for at least 1 hour before developing, and probed for 1 hour with each antibody. Anti-MCP-1 antibodies were detected using HRP-conjugated goat anti-human immunoglobulins (1:8,000 dilution; Sigma Catalog No. A-8667). Membranes were developed by using enhanced Chemiluminescence (ECL®; Amersham Bioscience) according to the manufacturer's instructions.

25 Antibody-MCP-1 complexes were analyzed by three methods: (1) Surface Enhanced Laser Desorption Ionization (SELDI) (Protein chip technology) for linear and conformational epitopes; (2) Site Directed Mutagenesis for linear and conformational epitopes; and (3) SPOTs Peptide Array for linear epitopes. SELDI is a recently developed method for accurate, rapid and sensitive determination of the molecular 30 weights of peptides and proteins. Linear and conformational epitopes were mapped based on the mass of the bound fragment to immobilized antibody by SELDI protein chip technology. Mapping of linear epitopes by SELDI was carried out in three steps. In the first step, MCP-1 was 35 digested by highly specific proteolytic enzymes to generate sets of peptide fragments. In the second step, peptide fragments containing the linear epitopes were selected by their specific binding to the immobilized antibody on the protein chip. In this step, peptides that contain the epitope form complexes with the antibody, while other peptides that do not bind the antibody were removed by stringency wash. In the final step, the identity of the antibody-binding peptide was determined by its molecular weight by SELDI and the known digestion sites of the specific protease.

40 Antibodies 1.4.1, 1.8.1, 1.14.1, 1.18.1 reacted equally with native and denatured MCP-1 on the Western blot, indicating that these have a linear epitope. Their epitope was 45 mapped by SELDI. The experiments were carried out by carboxymethylation of MCP-1 antigen to prevent the formation of disulfide bonds between cysteine residues in the protein. Methylated MCP-1 was digested with Glu-C, an 50 endoproteinase that specifically cleaves peptide bonds on the

TABLE 11

Samples	Iso-type	VH	DH	JH	VK	JK	Epitope
1.1.1	γ2/κ	VH1-24	D3-3(17)	JH4b	VK-B3	JK1	Conf.
1.2.1	γ2/κ	VH1-24	D3-3(17)	JH4b	VK-L5	JK1	Linear
1.3.1	γ2/κ	VH1-24	D3-3(15)	JH4b	VK-B3	JK1	Conf.
1.4.1	γ2/κ	VH6-1	D1-26	JH4b	VK-A2	JH4	linear
1.5.1	γ2/κ	VH1-24	D3-3(17)	JH4b	VK-B3	JK1	Linear
1.6.1	γ2/κ	VH1-24	D1-26(18)	JH3b	VK-A10	JK4	Conf.
1.7.1	γ2/κ	VH1-24	D3-3(17)	JH4b	VK-B3	JK1	Conf.
1.8.1	γ2/κ	VH1-24	D3-3(17)	JH4b	VK-B3	JK1	Linear
1.9.1	γ2/κ	VH1-24	D5-12(13)	JH4b	VK-B3	JK1	no binding
1.10.1	γ2/κ	VH1-24	D3-3(17)	JH4b	VK-B3	JK1	Linear
1.11.1	γ2/κ	VH1-24	D3-3	JH4b	VK-B3	JK1	Linear
1.12.1	γ2/κ	VH1-24	D3-3(16)	JH4b	VK-B3	JK1	Conf.
1.13.1	γ2/κ	VH1-24	D3-3(17)	JH4b	VK-B3	JK1	Linear
1.14.1	γ2/κ	VH6-1	D1-26	JH6b	VK-B3	JK1	Linear
1.18.1	γ2/κ	VH1-24	D3-3(15)	JH4b	VK-B3	JK4	Linear
2.3.1	γ4/κ	VH1-24	D3-3(16)	JH4b	VK-B3	JK2	no binding
3.2	γ2/κ	VH1-24	D3-3(17)	JH4b	VK-L16	JK4	Conf.
2.4.1	γ4/κ	VH1-2	D6-13(15)	JH4b	VK-08	JK5	no binding
3.4.1	γ2/κ	VH1-24	D3-3(16)	JH4b	VK-B3	JK1	Linear
3.5.1	γ4/κ	VH1-24	D3-3(17)	JH4b	VK-B3	JK1	no binding
3.6.1	γ4/κ	VH1-24	D3-3(17)	JH4b	VK-B3	JK1	no binding
3.7.1	γ2/κ	VH1-24	D3-3(16)	JH4b	VK-B3	JK1	Conf.
3.8	γ4/κ	VH1-24	D3-3	JH4b	VK-B3	JK1	no binding

carboxy-terminal side of glutamic acid (E) residues. mAbs were covalently coupled to the Protein chip array, PS20. The chip surface was blocked with 1M ethanolamine and washed with PBS, 0.5% Triton. Glu-C fragments of methylated MCP-1 antigen were bound to the immobilized antibody. Unbound fragments were washed off with detergent (PBS, 0.1% Tween). Bound Glu-C fragments (epitope) were analyzed and identified by SELDI based on their mass. Table 12 summarizes the expected mass of each peptide generated from complete digest of methylated MCP-1 with Glu-C. MCP-1 was completely digested into three fragments. The theoretical pl was: 9.39/Mw (average mass): 8685.03/Mw (monoisotopic mass): 8679.44. After the wash, the fragment with the mass 4635, corresponding to the residues 1-39, remained bound to the antibody, indicating that the epitope of all these antibodies lies in the first 39 residues as same pattern was seen with each of these antibodies.

For mapping the epitope of the antibody 3.11.2, the size of the binding domain was minimized by using a different protease. Protein A (Calbiochem, 539202) was immobilized covalently to a PS20 chip. Residual binding sites were blocked with ethanolamine, pH 8.0. Antibody 3.11.2 was bound to protein A. The chip was washed with PBS and then with 50 mM Hepes, pH 7.5. MCP-1 antigen was bound to the antibody. Unbound antigen was removed by washing with 0.1% Tween in PBS, followed by 50 mM Hepes, pH 7.5, and 100 mM ammonium bicarbonate. One chip digestion of MCP-1 was carried out with the endoproteinase, Lys-C. The chip was washed with 0.1% Triton in PBS to remove the unbound fragments. The bound fragment was analyzed based on its mass on SELDI. Only one peak of mass 1861.8 was bound to the antibody, representing a 15-amino-acid sequence, located at residues 20 to 35 (Table 14; Theoretical pl: 9.39/Mw (average mass): 8685.03/Mw

TABLE 12

Mass	Position in SEQ ID NO: 149	Artif. #MC modification(s)	Peptide sequence
4458.2591	1-39	0 Cys_CM: 11, 12, 36 4632.2755	QPDAINAPVTCCYNFTNRKI SVQRLASYRRITSSKCPKE
3041.4819	51-76	0 Cys_CM: 52 3099.4873	ICADPKQKWVQDSMDHLDKQ TQTPKT
1218.7456	40-50	0	AVIFKTIVAKE

The SELDI approach was also used to map conformational epitopes. In this case, the protein A covalently bound to PS2 Protein chip arrays (Ciphergen Biosystems) was used to capture the mAbs, and subsequently incubated with MCP-1. After removal of unbound material, the complexes were digested with high concentration of specific proteases. MCP-1 antibodies (1.7.2, 3.11.2 and 3.7.2) do not bind to the reduced, denatured antigen on Western blots, indicating that the epitope is likely to be conformational. Antibodies 1.7.2 and 3.7.2 were first covalently coupled to the PS20 chip. Native MCP-1 was bound to the antibody and then digested with an endoproteinase (Lys-C in one experiment and Asp-N in the other). Unbound fragments were washed off with PBS+, 0.2% Triton followed with PBS and HPLC water wash. The epitope was determined by SELDI and identified by the mass of the fragment. Both these antibodies 1.7.2 and 3.7.2 had a fragment of mass 5712 corresponding to the residues 3-53 (Table 13; Theoretical pl: 9.39/Mw (average mass): 8685.03/Mw (monoisotopic mass): 8679.44) bound to it after the wash, indicating that the epitope lies in the 3 to 53 amino acid residues of the native MCP-1 antigen.

(monoisotopic mass): 8679.44) of MCP-1, with the mass of 1865 and the sequence ISVQRLASYRRITSSK (Position 20-35 of SEQ ID NO.: 149) was identified as the most tightly bound fragment.

TABLE 14

Mass	Position in SEQ ID NO: 149	#MC	Peptide sequence
2155.0059	1-19	0	QPDAINAPVTCCYNFTNRK
1865.0715	20-35	0	ISVQRLASYRRITSSK
1373.6154	59-69	0	WVQDSMDHLDK
775.3654	50-56	0	EICADPK
706.4134	39-44	0	EAVIFK

TABLE 13

Mass	Position in SEQ ID NO: 149	#MC	Peptide sequence
5720.0059	3-53	0	DAINAPVTCCYNFTNRKISV QRLASYRRITSSKCPKEAVI FKTIVAKEICA
1046.5476	68-76	0	DKQTQTPKT
1028.5523	54-61	0	DPKQKWVQ

TABLE 14-continued

Mass	Position in SEQ ID NO: 149	#MC	Peptide sequence
702.3781	70-75	0	QTQTPK
531.3500	45-49	0	TIVAK

Mutagenesis of MCP-1. It was previously shown that two clusters of primarily basic residues (R24, K35, K38, K49, and Y13) appear to make the largest contributions to the interaction between MCP-1 and its receptor (Hemmerich et al., (1999) *Biochemistry* 38, 13013-13025). Binding data revealed that the N-terminal residues contribute little to binding activity and that two important residues are important for signaling activity of the MCP-1: K35 and R24. K35 is the most functionally important residue, because K35A mutation has a significant effect on binding and activity, as well as alanine mutants of R24 (Hemmerich et al., (1999) *Biochemistry* 38, 13013-13025). Arg24 is conserved across different species of MCP-1 as well as in human MCP-2-4, but varies widely in other CC chemokines and therefore maybe involved in receptor specificity. To identify individual residues within the first 39 residues of MCP-1, representing the Glu-C digest, that were important for antibody binding, three MCP-1 mutants were generated: the three basic residues, R24, K35, and K38, were mutated by site-directed mutagenesis and mutant protein was further analyzed for binding to all 36 neutralizing antibodies by ELISA. Arg24 was mutated to alanine (R24A) and glutamic acid (R24E). Lys35 and K38 were mutated to alanine (K35A, K38A respectively). All mutations were introduced

in Monkey MCP-1 background. The monkey MCP-1 construct was generated recovered by performing RT-PCR on RNA isolated from monkey peripheral blood lymphocytes (cynomologus MCP-1 PCR3.1 bidirectional). Protein sequence alignment between human and Monkey MCP-1 revealed 99% homology with two amino-acids changes at the C-terminal (positions 71 and 76). The C-terminal residues 59-76 are not involved in interaction with the receptor and did not affect the binding of all 36 antibodies.

ELISA assays were performed using supernatant from 293 cells transfected with different MCP-1 mutated constructs. ELISA plates were coated with anti-human MCP-1 goat IgG Polyclonal antibody (R&D catalog No. AF279NA) diluted to 1 µg/mL in ELISA plate coating buffer. Expression of mutant MCP-1 constructs in 293 cells was confirmed by detection with biotinylated goat anti-human MCP-1 (R&D catalog No. BAF279) followed by streptavidin HRP. Binding of mutant MCP-1 to MCP-1 antibodies was detected with HRP conjugated goat anti-human IgG (Fc specific, Caltag Catalog No. H10507). ELISA results have shown that changing K38 did not have any effect of binding activity of all 36 antibodies. Binding of all antibodies to R24E and R24A MCP-1 mutant antigen was completely abolished (see Table 15). However, the K35A mutation inhibited the binding of only six antibodies (1.6.1, 1.9.1, 3.6.1, 3.10.1). All of these antibodies appear to have a conformational epitope, binding to which is affected by mutation of either Arg24 or Lys35. These data suggest that these four antibodies recognize a conformational epitope different, but overlapping with, the other antibodies.

TABLE 15

mAb	Epitope	Glu-C digest	Lys-C	Asp-N digest	Peptide	Residues	R24A/E	K35A
1.1.1	Conf.	ND	ND	ND	ND	ND	Inhibition	Inhibition
1.2.1	Linear	ND	ND	ND	7_11	21-25	Inhibition	No Inhibition
1.3.1	Conf.	ND	ND	ND	ND	ND	Inhibition	No Inhibition
1.4.1	Linear	1_39	ND	ND	7_11	21-25	Inhibition	No Inhibition
1.5.1	Linear	ND	ND	ND	7_11	21-25	Inhibition	No Inhibition
1.6.1	Conf.	ND	ND	ND	ND	ND	Inhibition	Inhibition
1.7.1	Conf.	ND	ND	3-53/5712	ND	ND	Inhibition	No Inhibition
1.8.1	Linear	1_39	ND	ND	7_11	21-25	Inhibition	No Inhibition
1.9.1	no binding	ND	ND	ND	ND	ND	Inhibition	Inhibition
1.10.1	Linear	ND	ND	ND	7_11	21-25	Inhibition	No Inhibition
1.11.1	Linear	ND	ND	ND	ND	ND	Inhibition	No Inhibition
1.12.1	Conf.	ND	ND	ND	ND	ND	Inhibition	No Inhibition
1.13.1	Linear	ND	ND	ND	7_11	21-25	Inhibition	No Inhibition
1.14.1	Linear	1_39	ND	ND	7_11	21-25	Inhibition	No Inhibition
1.18.1	Linear	1_39	ND	ND	7_11	21-25	Inhibition	No Inhibition
2.3.1	no binding	ND	ND	ND	ND	ND	Inhibition	No Inhibition
3.2	Conf.	ND	ND	ND	ND	ND	Inhibition	No Inhibition
2.4.1	no binding	ND	ND	ND	ND	ND	Inhibition	No Inhibition
3.4.1	Linear	ND	ND	ND	ND	ND	Inhibition	No Inhibition
3.5.1	no binding	ND	ND	ND	ND	ND	Inhibition	No Inhibition
3.6.1	no binding	ND	ND	ND	ND	ND	Inhibition	Inhibition
3.7.1	Conf.	ND	ND	3-53/5712	ND	ND	Inhibition	No Inhibition
3.8	no binding	ND	ND	ND	ND	ND	Inhibition	Inhibition
3.10.1	Conf.	ND	ND	ND	ND	ND	Inhibition	Inhibition
3.11.1	Conf.	ND	ND	20-35(1864)	ND	ND	Inhibition	No Inhibition
3.14.1	Conf.	ND	ND	ND	ND	ND	Inhibition	No Inhibition
3.15.1	Linear	ND	ND	ND	7_11	21-25	Inhibition	No Inhibition
3.16.1	Conf.	ND	ND	ND	ND	ND	Inhibition	No Inhibition
4.5.1	Conf.	ND	ND	ND	ND	ND	Inhibition	No Inhibition
4.6.1	ND	ND	ND	ND	ND	ND	Inhibition	No Inhibition

TABLE 15-continued

mAb	Epitope	Glu-C digest	Lys-C	Asp-N digest	Peptide	Residues	R24A/E	K35A
4.7.1	Conf.	ND	ND	ND	ND	ND	Inhibition	No Inhibition
4.8.1	Conf.	ND	ND	ND	ND	ND	Inhibition	No Inhibition
5.1	ND	ND	ND	ND	ND	ND	Inhibition	No Inhibition
5.3.1	no binding	ND	ND	ND	ND	ND	Inhibition	No Inhibition

ND = Not Done

No binding = No binding on Western blot.

For those antibodies binding to a linear epitope, their binding to a peptide epitope was studied in detail using the SPOTs technology. SPOTs is a technology that allows the solid-phase synthesis of hundreds of peptides in a format suitable for the systematic analysis of antibody epitopes. The system is simple, extremely rapid and economic in its use of reagents. A custom-made peptide array was obtained from Sigma-Genosys (The Woodlands, Tex.). A series of 32, 13-mer peptides were synthesized spanning residues 1-76 of the MCP-1 sequence. Each consecutive peptide was offset by two amino acids from the previous one, yielding a nested, overlapping library. The membrane carrying the 32 peptides was probed with eight MCP-1 antibodies (1 μ g/mL), detected with HRP-conjugated secondary antibody and followed by enhanced chemiluminescence (ECL). Reaction was observed with five consecutive peptide spots (7 to 11) corresponding to amino acids 21 to 25 of MCP-1. From these results, it appears that the core of the epitope for all of the tested MCP-1 antibodies binding to a linear epitope is SVQRL (21-25). The MCP-1 sequence is:

QPDAINAPVTCCYNFTNRK
ISVQRLASYRRITSSKCPKEAVIFKTIVAKEICADPK
QK WVQDSMDHLDKQTQTPKT (SEQ ID NO: 149)

Eight antibodies, which recognized a linear epitope, reacted with the same SPOTs: 1.2.1, 1.4.1, 1.5.1, 1.8.1, 1.10.1, 1.13.1, 1.14.1, and 1.18.1.

Example 4

Affinity Determination of Cross-Reacting Antibodies by High-Resolution Biacore Analysis

The interaction analysis was performed at 25° C. using two CM5 chips docked in Biacore 2000 optical biosensors. Individual flow cells on each chip were activated with a 7-minute injection of NHS/EDC, carbohydrazide was coupled through the NHS ester using a 7-minute injection, and the residual activated groups were blocked with a 7-minute injection of ethanolamine. The monosaccharide residues of mAb 3.11.2, diluted 1/50, were oxidized using 1 mM sodium metaperiodate in 100 mM sodium acetate, pH 5.5 at 4° C. for 30 minutes. The oxidized antibody was desalting into 10 mM sodium acetate, pH 5.0, to couple the antibody to the carbohydrazide-modified surface. A surface density of 250 RU mAb 3.11.2 was used to measure the reported interactions of MCP-1 and MCP-4, while a surface of 110 RU was used to measure the interactions of antigens MCP-2 and MCP-3 with mAb 3.11.2. The mAb surfaces were stabilized by reducing the hydrazone bond with 0.1 M sodium cyanoborohydride. The antigen/antibody interaction was tested by injecting duplicate antigen samples diluted in running buffer (10 mM HEPES, 150 mM NaCl, 0.005% surfactant, 200 μ g/mL BSA, pH 7.4), in a 300-fold concentration range. The surfaces were regenerated with a 12-second pulse of 15 mM H₃PO₄.

To determine the kinetics of each interaction, the data sets were fit globally to a 1:1 interaction model that included a parameter for mass transport. The estimated rate constants and the calculated affinities of interaction for antibody 3.11.2 are reported in Table 16. The data for all the other antibodies are presented in Table 8.

TABLE 16

Ag	k_a ($M^{-1} s^{-1}$)	k_d (s^{-1})	K_D (pM)
MCP-1	3.0×10^8	1.0×10^{-3}	3.3
MCP-2	2.6×10^8	1.2×10^{-2}	46
MCP-3	1.5×10^8	7.4×10^{-3}	49
MCP-4	1.5×10^8	5.5×10^{-4}	3.7

Example 5

Prevention of Angiogenesis with Antibodies to MCP-1

Angiogenesis was induced in a mouse model by admixing Matrigel with human bFGF (10 ng/mL), human VEGF165 (100 ng/mL) and 10 g/mL heparin or MCP-1 (250 ng/mL) and MCP-3 (100 ng/mL). About 0.5 mL of the suspension was subcutaneously injected into the right flank of 6-8 week-old, athymic, female, nude mice. Five mice were used for each dose of MCP-1 and MCP-3. In addition, as a negative control, Matrigel alone (no growth factors) was included. The Matrigel implants solidified *in situ* and were left undisturbed for 7 days. At the end of 7 days, the mice were anesthetized, and the Matrigel plugs were removed carefully using microsurgical instruments. Gels were photographed under transillumination. One part of the plugs was processed for paraffin embedded sectioning. Sections were cut at two different levels and stained with H/E. Another part of the gel was snap frozen in liquid nitrogen and subjected to immunocytochemical staining with rat monoclonal antibody directed against mouse CD31 antigen conjugated with phycoerythrin. H+E stained slides were elevated for the formation of the distinct, endothelial lined vessels. Anti-CD31-PE stained slides were observed under Fluorescence microscope (red filter) attached to a Spot Camera. Images were captured digitally using Metamorph software program. Microvessel density was determined by the method published by Wild et al. (2000).

Both MCP-1 and MCP-3 were found to show equivalent angiogenesis as the well-characterized angiogenic factors VEGF and bFGF. In addition, angiogenesis induced by MCP-1 or MCP-3 in animals, and by inference in human tumors or diseased tissue, can be prevented by treating with antibodies to MCP-1 or an antibody such as 3.11.2, which neutralizes the activity of all MCP family members. Accordingly, one would inject the anti-MCP antibodies into animals

at different doses ranging from approximately 0.1 to 0.5 mg per animal to obtain a dose-response relationship for treatment.

Example 6
MCP-1 Production by Tumor Cells

To determine whether tumor cells produced MCP-1 in cell culture, a panel of cell lines was examined for their ability to secrete MCP-1 into the culture medium. Cells were cultured in Dulbecco's Modified Eagles Medium (DMEM) containing 10% fetal bovine serum or an equivalent until confluent. The supernatant was removed and an aliquot tested for reactivity to MCP-1 using a commercially available ELISA kit from R & D Sciences. Table 17 shows a series of cancer cell lines that constitutively secrete MCP-1 and their respective MCP-1 levels as determined by ELISA.

TABLE 17

	Cell Line	MCP-1 (pg/mL)
1	Colon Carcinoma	COLO-205
2	Colon Carcinoma	HCT-15
3	Colon Carcinoma	HCT-116
4	Colon Carcinoma	HT-29
5	Cervical Cancer	HT-3
6	Colon Carcinoma	SW707
7	Colon Carcinoma	SW948
8	Colon Carcinoma	KM-12
9	Colon Carcinoma	HCC-2998
10	Gastric Carcinoma	NCI-N87
11	Gastric Carcinoma	NCI-SNU-1 4
12	Gastric Carcinoma	NCI-SNU-5
13	CNS Carcinoma	SF-268
14	CNS Carcinoma	SF-295
15	CNS Carcinoma	SF-593
16	CNS Carcinoma	SNB-19
17	CNS Carcinoma	SNB-75
18	CNS Carcinoma	U251
63	CNS	XF-498(Curg)
61	Glioblastoma	SF-295(Curg)
21	Medulloblastoma	TE 671 (u)
25	Leukemia	SR
26	Leukemia	A 673
27	Leukemia	K562
28	Leukemia	RPMI-8226
29	Leukemia	Jurkats
30	Leukemia	THP-1
31	Leukemia	HUT 78
32	Leukemia	JY
33	Leukemia	CEM
34	Lung Carcinoma	MV 522
35	Lung adenocarcinoma	EKVVX
36	Lung adenocarcinoma	HOP-62
37	Lung Carcinoma NSC	HOP-92
38	Lung Carcinoma NSC	NCI-H1299
39	Lung Carcinoma NSC	NCI-H2126
55	Lung adenocarcinoma	NCI-H522
42	Lung adenocarcinoma	NCI-H322M
40	IPF Lung fibroblasts	A 549
57	Lung adenocarcinoma	NCI-H292
43	Lung Carcinoma NSC	NCI-H460
45	Lung Squamous NSC	Skmes-1
44	Lung Carcinoma Small Cell	SHP-77
58	Lung Carcinoma Small Cell	NCI-H510A
56	Lung Carcinoma Small Cell	NCI-H69
53	Mammary Gland Carcinoma	HCC-2218
54	Mammary Gland Carcinoma	HCC-1954
46	Mammary Gland Carcinoma	ZR-75-30
47	Mammary Gland Carcinoma	MCF-7
48	Mammary Gland Carcinoma	MDA-MB-453
49	Mammary Gland Carcinoma	MDA-MB-231
50	Mammary Gland Carcinoma	MDA-MB-468
51	Mammary Gland Carcinoma	NCI/ADR
52	Mammary Gland Carcinoma	T47D

TABLE 17-continued

		Cell Line	MCP-1 (pg/mL)
5	22	Mammary Gland Carcinoma	SK-BR-3
	20	Mammary Gland Carcinoma	Hs 605T
	53	Melanoma	A431
	54	Melanoma	LOX IMVI
	55	Melanoma	M14
	56	Melanoma	RPMMI 7591
10	57	Melanoma	SK-MEL-28
	58	Melanoma	UACC-62
	59	Melanoma	UACC-257
	41	Melanoma	Hs 936.T
	24	Melanoma	SK-mel-5
	25	Melanoma	Hs 940.T
15	26	Melanoma	A375
	6	Melanoma	WM.266.4
	27	Pancreatic Carcinoma	HPAC
	29	Pancreatic Carcinoma	HPAF II
	41	Pancreatic Carcinoma	CAPAN-1
	60	Pancreatic Carcinoma	Panc-1
	30	Ovarian Carcinoma	ES2
	31	Ovarian Carcinoma	IGROV1
	32	Ovarian Carcinoma	MDA-H2774
	33	Ovarian Carcinoma	SK-OV-3
	34	Ovarian Carcinoma	OVCAR-3
	36	Ovarian Carcinoma	OVCAR-5
	37	Ovarian Carcinoma	OVCAR-8
20	38	Prostate Carcinoma	22Rv1
	39	Prostate Carcinoma	LNCaP
	40	Prostate Carcinoma	DU150
	42	Prostate Carcinoma	PC-3
	28	Prostate Carcinoma	DU145
	43	Renal Carcinoma	A498
	44	Renal Carcinoma	786-0(35h)
	45	Renal Carcinoma	SK-RC-01
	46	Renal Carcinoma	SK-RC-10
	47	Renal Carcinoma	Caki-1
	48	Renal Carcinoma	Caki-2
	49	Renal Carcinoma	RXF-393
	50	Renal Carcinoma	SK-RC-52
	51	Renal Carcinoma	SN12C
25	52	Renal Carcinoma	TK-10
	62	Renal Carcinoma	769-P
	23	Liver Carcinoma	C3A
	59	Liver Carcinoma	HepG2
	19	Cervical Cancer Epidermoid	MS 751
	35	Cervical Cancer	Hela
		Cervical	
		C-33A	20
	1	Cervical	Ca. Ski
	2	Cervical	ME-180
	3	Uterus	KLE
	4	Uterus	RL95-2
35	5	Uterus	HEC-1-A
			MCP-1

Example 7

Effect of Anti-MCP-1 Antibodies in Mouse Tumor Model

To evaluate the effect of anti-MCP-1 antibodies on the growth of a subcutaneous tumor, exponentially growing Panc-1 cells were harvested and resuspended in 0.2 ml of Hank's Balanced Salt solution (HBSS). Tumors were produced following the injection of 5×10^6 Panc-1 cells admixed with Growth factor reduced Matrigel into the flanks of female BALB/c nude mice. Beginning on the day of implantation, animals were treated with 5 mg of anti-MCP-1 antibody 1.7.3, and antibody PK, which was directed to KLH or PBS at the times indicated on the graph. Tumor growth was monitored weekly and the results presented as mean \pm SD (FIG. 4). The difference between the control and treated animals was statistically significant when compared

57

using the student T test ($P < 0.002$). Accordingly, anti-MCP-1 antibodies provide an effective treatment for reducing tumor growth in vivo.

Example 8

Software-Assisted Analysis of MCP-1 Antibodies

The above-described calcium flux, chemotaxis and affinity data for the MCP-1 antibodies were analyzed using Guided Analytic software available from Spotfire, Inc., Somerville, Mass. The results are shown in FIGS. 5 and 6.

Example 9

Structural Analysis of Anti-MCP-1 Antibodies

The variable heavy chains and the variable light chains for the antibodies shown in Table 1 were sequenced to determine their DNA sequences. The complete sequence information for all anti-MCP-1 antibodies are shown in the sequence listing with nucleotide and amino acid sequences for each gamma and kappa chain combination.

The variable heavy sequences were analyzed to determine the VH family, the D-region sequence and the J-region sequence. The sequences were then translated to determine the primary amino acid sequence and compared to the germline VH, D and J-region sequences to assess somatic hypermutations. FIG. 7 shows a Clustal W comparison of anti-MCP-1 sequences using VH1-24, indicating the CD, CDR1, CDR2, and CDR3 regions, and the associated dendrogram. FIG. 8 shows a Clustal W comparison of anti-MCP-1 sequences using VK-B3, indicating the CD, CDR1, CDR2, and CDR3 regions, and the associated dendrogram. FIG. 9 shows a Clustal W comparison of anti-MCP-1 sequences using VK-08, indicating the CD, CDR1, CDR2, and CDR3 regions, and the associated dendrogram. FIG. 10 shows a Clustal W comparison of anti-MCP-1 sequences using VH6-1, indicating the CD, CDR1, CDR2, and CDR3 regions, and the associated dendrogram.

Example 10

Use of Anti-MCP-1 Antibodies as a Diagnostic Agent

A. Detection of MCP-1 Antigen in a Sample

An Enzyme-Linked Immunosorbent Assay (ELISA) for the detection of MCP-1 antigen in a sample is developed. In the assay, wells of a microtiter plate, such as a 96-well microtiter plate or a 384-well microtiter plate, are adsorbed for several hours with a first fully human monoclonal antibody directed against the antigen. The immobilized antibody serves as a capture antibody for any of the antigen that may be present in a test sample. The wells are rinsed and treated with a blocking agent such as milk protein or albumin to prevent nonspecific adsorption of the analyte.

Subsequently the wells are treated with a test sample suspected of containing the antigen, or with a solution containing a standard amount of the antigen. Such a sample may be, for example, a serum sample from a subject suspected of having levels of circulating antigen considered to be diagnostic of pathology.

After rinsing away the test sample or standard, the wells are treated with a second fully human monoclonal anti-MCP-1 antibody that is labeled by conjugation with biotin.

58

The labeled anti-MCP-1 antibody serves as a detecting antibody. After rinsing away excess second antibody, the wells are treated with avidin-conjugated horseradish peroxidase (HRP) and a suitable chromogenic substrate. The concentration of the antigen in the test samples is determined by comparison with a standard curve developed from the standard samples.

This ELISA assay provides a highly specific and very sensitive assay for the detection of the MCP-1 antigen in a test sample.

B. Determination of MCP-1 Concentration in Patient Samples

A sandwich ELISA is developed to quantify MCP-1 levels in human serum. The two anti-MCP-1 antibodies used in the sandwich ELISA, preferably recognize different epitopes on the MCP-1 molecule (data not shown). The ELISA is performed as follows: 50 μ l of capture anti-MCP-1 antibody in coating buffer (0.1 M NaHCO₃, pH 9.6) at a concentration of 2 μ g/mL is coated on ELISA plates (Fisher). After incubation at 4° C. overnight, the plates are treated with 200 μ l of blocking buffer (0.5% BSA, 0.1% Tween 20, 0.01% Thimerosal in PBS) for 1 hr at 25° C. The plates are washed (3x) using 0.05% Tween 20 in PBS (washing buffer, WB). Normal or patient sera (Clinomics, Bioreclamation) are diluted in blocking buffer containing 50% human serum. The plates are incubated with serum samples overnight at 4° C., washed with WB, and then incubated with 100 μ l/well of biotinylated detection anti-MCP-1 antibody for 1 hr at 25° C. After washing, the plates are incubated with HRP-Streptavidin for 15 min, washed as before, and then treated with 100 μ l/well of o-phenylenediamine in H₂O₂ (Sigma developing solution) for color generation. The reaction is stopped with 50 μ l/well of H₂SO₄ (2M) and analyzed using an ELISA plate reader at 492 nm. Concentration of PRO antigen in serum samples is calculated by comparison to dilutions of purified MCP-1 antigen using a four-parameter curve-fitting program.

C. Staging of Cancer in a Patient

It will be appreciated that based on the results set forth and discussed in Examples 10A-10B, through use of embodiments of the invention described herein, it is possible to stage a cancer in a subject based on expression levels of the MCP-1 antigen. For a given type of cancer, samples of blood are taken from subjects diagnosed as being at various stages in the progression of the disease, and/or at various points in the therapeutic treatment of the cancer. The concentration of the MCP-1 antigen present in the blood samples is determined using a method that specifically determines the amount of the antigen that is present. Such a method includes an ELISA method, such as the method described in Examples 10A-10B. Using a population of samples that provides statistically significant results for each stage of progression or therapy, a range of concentrations of the antigen that may be considered characteristic of each stage is designated.

In order to stage the progression of the cancer in a subject under study, or to characterize the response of the subject to a course of therapy, a sample of blood is taken from the subject and the concentration of the MCP-1 antigen present in the sample is determined. The concentration so obtained is used to identify in which range of concentrations the value falls. The range so identified correlates with a stage of progression or a stage of therapy identified in the various populations of diagnosed subjects, thereby providing a stage in the subject under study.

59

Example 11

Uses of Anti-MCP-1 Antibodies for Tumor Treatment

To determine the in vivo effects of anti-MCP-1 antibody treatment in human patients with tumors, such human patients are injected over a certain amount of time with an effective amount of anti-MCP-1 antibody. At periodic times during the treatment, the human patients are monitored to determine whether their tumors progress, in particular, whether the tumors grow and metastasize.

A tumor patient treated with anti-MCP-1 antibodies has a lower level of tumor growth and metastasis compared to the level of tumor growth and metastasis of tumors in tumor patients treated with control antibodies. Control antibodies that may be used include antibodies of the same isotype as the anti-MCP-1 antibodies tested and further, may not have the ability to bind to MCP-1 tumor antigen.

60

The foregoing written specification is considered to be sufficient to enable one skilled in the art to practice the invention. The embodiments of the invention described herein are not to be limited in scope by the construct 5 deposited, since the deposited embodiment is intended as a single illustration of certain aspects of the invention and any constructs that are functionally equivalent are within the scope of this invention.

All references cited herein, including patents, patent 10 applications, papers, text books, and the like, and the references cited therein, to the extent that they are not already, are hereby incorporated herein by reference in their entirety.

The foregoing description and Examples detail certain 15 preferred embodiments of the invention and describes the best mode contemplated by the inventors. It will be appreciated, however, that no matter how detailed the foregoing may appear in text, the invention may be practiced in many ways and the invention should be construed in accordance with the appended claims and any equivalents thereof.

SEQUENCE LISTING

<160> NUMBER OF SEQ ID NOS: 149

```

<210> SEQ ID NO 1
<211> LENGTH: 1335
<212> TYPE: DNA
<213> ORGANISM: Homosapien

<400> SEQUENCE: 1

cagggtccagc tggtagcgtc tggggcttag gtaagaagc ctggggcctc agtgaaggc 60
tcctgcagg tttccggata caccctcact gaattatccca tgcactgggt ggcacaggct 120
cctggaaatg ggcttgagtg gatgggagggt tttgatccctg aagatgggtg aacaatctac 180
gcacagagggt tccagggcag agtcgtcatg accgaggacc catctacaga cacagcctac 240
atggagctga gcagcctgag atctgaggac acggccgtgtt attactgtgc aaccaacgag 300
ttttggagtg gttatattta ctactggggc cagggAACCC tggtcaccgt ctccctcagcc 360
tccaccaagg gccccatcggtt cttcccccgt ggcgcctgtt ccaggagcac ctccgagagc 420
acagcggccc tgggctgcctt ggtcaaggac tacttcccg aaccgggtgac ggtgtcggt 480
aactcaggcg ctctgaccag cggcggtcac accttcccg ctgtcctaca gtcttcagga 540
ctctactccctt tcagcagcgtt ggtgaccgtt ccctccagca acttcggcac ccagacccatc 600
acctgcaacg tagatcacaa gcccagcaac accaagggtgg acaagacagt tgagcgc当地 660
tgttgtgtcg agtgcccacc gtgcccagca ccacctgtgg caggaggcgtc agtcttcctc 720
ttccccccaa aaccccaagga caccctcatg atctcccgaa cccctgagggt cacgtgcgtt 780
gtgggtggacg tgagccacga agaccccgag gtccagttca actgggtacgt ggacggcggt 840
gaggtgcata atgccaagac aaagccacgg gaggagcgt tcaacagcac gttccgtgtt 900
gtcagcgtcc tcaccgttgtt gcaccaggac tggctgaacg gcaaggagta caagtgc当地 960
gtctccaaaca aaggcctccc agccccatc gagaaaaacca tctccaaaac caaaggcgac 1020
ccccgagaac cacaggtgtt caccctgccc ccattccggg aggagatgac caagaaccag 1080
gtcagcgtca cttgcctgtt caaaggcttc tacccagcg acatgcgtt ggagtggag 1140
agcaatgggc agccggagaa caactacaag accacacccctc ccatgcttggc ctccgacggc 1200
tccttcttcc tctacagcaa gtcaccgtt gacaagagca ggtggcagca ggggaacgac 1260

```

-continued

ttctcatgct ccgtgatgca tgaggctctg cacaaccact acacgcagaa gagcctctcc 1320
 ctgtctccgg gtaaa 1335

<210> SEQ_ID NO 2
 <211> LENGTH: 445
 <212> TYPE: PRT
 <213> ORGANISM: Homosapien

<400> SEQUENCE: 2

Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ala
 1 5 10 15

Ser Val Lys Val Ser Cys Lys Val Ser Gly Tyr Thr Leu Thr Glu Leu
 20 25 30

Ser Met His Trp Val Arg Gln Ala Pro Gly Asn Gly Leu Glu Trp Met
 35 40 45

Gly Gly Phe Asp Pro Glu Asp Gly Glu Thr Ile Tyr Ala Gln Arg Phe
 50 55 60

Gln Gly Arg Val Val Met Thr Glu Asp Pro Ser Thr Asp Thr Ala Tyr
 65 70 75 80

Met Glu Leu Ser Ser Leu Arg Ser Glu Asp Thr Ala Val Tyr Tyr Cys
 85 90 95

Ala Thr Asn Glu Phe Trp Ser Gly Tyr Phe Asp Tyr Trp Gly Gln Gly
 100 105 110

Thr Leu Val Thr Val Ser Ser Ala Ser Thr Lys Gly Pro Ser Val Phe
 115 120 125

Pro Leu Ala Pro Cys Ser Arg Ser Thr Ser Glu Ser Thr Ala Ala Leu
 130 135 140

Gly Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro Val Thr Val Ser Trp
 145 150 155 160

Asn Ser Gly Ala Leu Thr Ser Gly Val His Thr Phe Pro Ala Val Leu
 165 170 175

Gln Ser Ser Gly Leu Tyr Ser Leu Ser Ser Val Val Thr Val Pro Ser
 180 185 190

Ser Asn Phe Gly Thr Gln Thr Tyr Thr Cys Asn Val Asp His Lys Pro
 195 200 205

Ser Asn Thr Lys Val Asp Lys Thr Val Glu Arg Lys Cys Cys Val Glu
 210 215 220

Cys Pro Pro Cys Pro Ala Pro Pro Val Ala Gly Pro Ser Val Phe Leu
 225 230 235 240

Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu
 245 250 255

Val Thr Cys Val Val Val Asp Val Ser His Glu Asp Pro Glu Val Gln
 260 265 270

Phe Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala Lys Thr Lys
 275 280 285

Pro Arg Glu Glu Gln Phe Asn Ser Thr Phe Arg Val Val Ser Val Leu
 290 295 300

Thr Val Val His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys
 305 310 315 320

Val Ser Asn Lys Gly Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys
 325 330 335

Thr Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser
 340 345 350

Arg Glu Glu Met Thr Lys Asn Gln Val Ser Leu Thr Cys Leu Val Lys

-continued

355	360	365
Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln		
370	375	380
Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Met Leu Asp Ser Asp Gly		
385	390	395
Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln		
405	410	415
Gln Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu His Asn		
420	425	430
His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys		
435	440	445

<210> SEQ ID NO 3

<211> LENGTH: 660

<212> TYPE: DNA

<213> ORGANISM: Homosapien

<400> SEQUENCE: 3

gacatcgta tgacccagtc tccagactcc ctggctatgt ctctggcgaa gagggccacc	60
atcaactgta agtccagcca gagtgttta tacagctcca acaataagaa ctacttagtt	120
tggtaccaggc agaaaccagg acagcctcct aaactgctca tttactggc atctatccgg	180
gaatccgggg tccctgaccg attcagttcc agcgggtctg agacagattt cactctcacc	240
atcagcagcc tgcaggctga agatgtggc gtttattact gtcagcaata ttttagtagt	300
ccgtggacgt tcggccaagg gaccaaggta gaaatcaaac gaactgtggc tgcaccatct	360
gtcttcatct tcccgccatc tgatgacgag ttgaaatctg gaactgcctc tgggtgtgc	420
ctgctgaata acttctatcc cagagaggcc aaagtacagt ggaagggtgaa taacgcctc	480
caatcgggta actcccgagga gagtgtcaca gaggcggaca gcaaggacac cacctacagc	540
ctcagcagca ccctgacgct gagcaaagca gactacgaga aacacaaagt ctacgcctc	600
gaagtacaccc atcaggccct gagctcgccc gtcacaaaga gcttcaacag gggagagtgt	660

<210> SEQ ID NO 4

<211> LENGTH: 220

<212> TYPE: PRT

<213> ORGANISM: Homosapien

<400> SEQUENCE: 4

Asp Ile Val Met Thr Gln Ser Pro Asp Ser Leu Ala Met Ser Leu Gly		
1	5	10
		15

Glu Arg Ala Thr Ile Asn Cys Lys Ser Ser Gln Ser Val Leu Tyr Ser		
20	25	30

Ser Asn Asn Lys Asn Tyr Leu Val Trp Tyr Gln Gln Lys Pro Gly Gln		
35	40	45

Pro Pro Lys Leu Leu Ile Tyr Trp Ala Ser Ile Arg Glu Ser Gly Val		
50	55	60

Pro Asp Arg Phe Ser Ser Ser Gly Ser Glu Thr Asp Phe Thr Leu Thr		
65	70	75
		80

Ile Ser Ser Leu Gln Ala Glu Asp Val Ala Val Tyr Tyr Cys Gln Gln		
85	90	95

Tyr Phe Ser Ser Pro Trp Thr Phe Gly Gln Gly Thr Lys Val Glu Ile		
100	105	110

Lys Arg Thr Val Ala Ala Pro Ser Val Phe Ile Phe Pro Pro Ser Asp		
115	120	125

-continued

Glu Gln Leu Lys Ser Gly Thr Ala Ser Val Val Cys Leu Leu Asn Asn
 130 135 140

Phe Tyr Pro Arg Glu Ala Lys Val Gln Trp Lys Val Asp Asn Ala Leu
 145 150 155 160

Gln Ser Gly Asn Ser Gln Glu Ser Val Thr Glu Gln Asp Ser Lys Asp
 165 170 175

Ser Thr Tyr Ser Leu Ser Ser Thr Leu Thr Leu Ser Lys Ala Asp Tyr
 180 185 190

Glu Lys His Lys Val Tyr Ala Cys Glu Val Thr His Gln Gly Leu Ser
 195 200 205

Ser Pro Val Thr Lys Ser Phe Asn Arg Gly Glu Cys
 210 215 220

<210> SEQ ID NO 5

<211> LENGTH: 475

<212> TYPE: DNA

<213> ORGANISM: Homosapien

<400> SEQUENCE: 5

cagggtccagc tggtagtgc tggggctgag gtgaagaagc ctggggcctc agtgaaggctc 60
 tcctgcagg tttccggata caccctcaact gaattatcca tgcactgggt gcgcacaggct 120
 cctggaaaag ggcttgagtg gatgggaggt tttgtatcctg aagatggtga aacaatctac 180
 gcacagaagt tccagggcag agtcaccatg accgaggaca catctacaga cacagcctac 240
 atggagctga gcagcctgag atctgaggac acggccgtgtt attattgtgc aaccaacgaa 300
 ttttggagtgtt gttatgttgc tctactggggc cagggaaacc tggtcaccgt ctccctcagcc 360
 tccaccaagg gcccattcggt cttcccccctg gcgcctgtt ccaggagcac tacttcccc 420
 ggctgtgcaca cttcccccagc tgcctacag tcctcaggac tctactccct cagca 475

<210> SEQ ID NO 6

<211> LENGTH: 158

<212> TYPE: PRT

<213> ORGANISM: Homosapien

<400> SEQUENCE: 6

Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ala
 1 5 10 15

Ser Val Lys Val Ser Cys Lys Val Ser Gly Tyr Thr Leu Thr Glu Leu
 20 25 30

Ser Met His Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Met
 35 40 45

Gly Gly Phe Asp Pro Glu Asp Gly Glu Thr Ile Tyr Ala Gln Lys Phe
 50 55 60

Gln Gly Arg Val Thr Met Thr Glu Asp Thr Ser Thr Asp Thr Ala Tyr
 65 70 75 80

Met Glu Leu Ser Ser Leu Arg Ser Glu Asp Thr Ala Val Tyr Tyr Cys
 85 90 95

Ala Thr Asn Glu Phe Trp Ser Gly Tyr Phe Asp Tyr Trp Gly Gln Gly
 100 105 110

Thr Leu Val Thr Val Ser Ser Ala Ser Thr Lys Gly Pro Ser Val Phe
 115 120 125

Pro Leu Ala Pro Cys Ser Arg Ser Thr Thr Ser Pro Gly Val His Thr
 130 135 140

Phe Pro Ala Val Leu Gln Ser Ser Gly Leu Tyr Ser Leu Ser
 145 150 155

-continued

<210> SEQ ID NO 7
 <211> LENGTH: 477
 <212> TYPE: DNA
 <213> ORGANISM: Homosapien
 <400> SEQUENCE: 7

```

gacatcgta tgacccagtc tccagcctcc ctggctgagt ctctggcga gaggcccacc      60
atcaattgca agtccagcca gagtgttta tatagctcca acaataagaa ctacttagtt      120
tggtaccagc agaaaactagg acagccccct aagctgctca tttactggc atctacccgg      180
gaatccgggg tccctgaccg attcagtgcc agcgggtctg ggacagattt cactctcacc      240
atcagcagcc tgcaggctga agatgtggc gtttattact gtcaacaata ttatcgtagt      300
ccgtggacgt tcggccaagg gaccaagggtg gaaatcaaacc gaaactgtggc tgcaccatct      360
gtcttcatct tcccgccatc tgatgagcag ttgaaatctg gaaactgcctc tgggtgtgc      420
ctgctgaata acttctatcc cagagaggcc aaagtacagt ggaaggtgga taacgcc      477
  
```

<210> SEQ ID NO 8
 <211> LENGTH: 159
 <212> TYPE: PRT
 <213> ORGANISM: Homosapien
 <400> SEQUENCE: 8

```

Asp Ile Val Met Thr Gln Ser Pro Ala Ser Leu Ala Glu Ser Leu Gly
  1           5           10          15

Glu Arg Ala Thr Ile Asn Cys Lys Ser Ser Gln Ser Val Leu Tyr Ser
  20          25           30

Ser Asn Asn Lys Asn Tyr Leu Val Trp Tyr Gln Gln Lys Leu Gly Gln
  35          40           45

Pro Pro Lys Leu Leu Ile Tyr Trp Ala Ser Thr Arg Glu Ser Gly Val
  50          55           60

Pro Asp Arg Phe Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr
  65          70           75           80

Ile Ser Ser Leu Gln Ala Glu Asp Val Ala Val Tyr Tyr Cys Gln Gln
  85          90           95

Tyr Tyr Arg Ser Pro Trp Thr Phe Gly Gln Gly Thr Lys Val Glu Ile
  100         105          110

Lys Arg Thr Val Ala Ala Pro Ser Val Phe Ile Phe Pro Pro Ser Asp
  115         120          125

Glu Gln Leu Lys Ser Gly Thr Ala Ser Val Val Cys Leu Leu Asn Asn
  130         135          140

Phe Tyr Pro Arg Glu Ala Lys Val Gln Trp Lys Val Asp Asn Ala
  145         150          155
  
```

<210> SEQ ID NO 9
 <211> LENGTH: 556
 <212> TYPE: PRT
 <213> ORGANISM: Homosapien
 <400> SEQUENCE: 9

```

Cys Ala Gly Gly Thr Cys Cys Ala Gly Cys Thr Gly Gly Thr Ala Cys
  1           5           10          15

Ala Gly Thr Cys Thr Gly Gly Cys Thr Gly Ala Gly Gly Thr
  20          25           30

Gly Ala Ala Gly Ala Ala Gly Cys Cys Thr Gly Gly Gly Cys Cys
  35          40           45
  
```

-continued

Thr Cys Ala Gly Thr Gly Ala Ala Gly Gly Thr Cys Thr Cys Cys Thr
 50 55 60
 Gly Cys Ala Ala Gly Gly Thr Thr Thr Cys Cys Gly Gly Ala Thr Ala
 65 70 75 80
 Cys Ala Cys Cys Cys Thr Cys Ala Cys Thr Gly Ala Ala Thr Thr Ala
 85 90 95
 Thr Cys Cys Ala Thr Gly Cys Ala Cys Thr Gly Gly Thr Gly Cys
 100 105 110
 Gly Ala Cys Ala Gly Gly Cys Thr Cys Cys Thr Gly Gly Ala Ala Ala
 115 120 125
 Ala Gly Gly Gly Cys Thr Thr Gly Ala Gly Thr Gly Gly Ala Thr Gly
 130 135 140
 Gly Gly Ala Gly Gly Thr Thr Thr Gly Ala Thr Cys Cys Thr Gly
 145 150 155 160
 Ala Ala Gly Ala Thr Gly Gly Thr Gly Ala Ala Ala Cys Ala Ala Thr
 165 170 175
 Cys Thr Ala Cys Gly Cys Ala Cys Ala Gly Ala Ala Gly Thr Thr Cys
 180 185 190
 Cys Ala Gly Gly Cys Ala Gly Ala Gly Thr Cys Ala Cys Cys Ala
 195 200 205
 Thr Gly Ala Cys Cys Gly Ala Gly Gly Ala Cys Ala Cys Ala Thr Cys
 210 215 220
 Thr Ala Cys Ala Gly Ala Cys Ala Gly Cys Cys Cys Thr Ala Cys
 225 230 235 240
 Ala Thr Gly Ala Gly Cys Thr Gly Ala Gly Cys Ala Gly Cys Cys
 245 250 255
 Thr Gly Ala Gly Ala Thr Cys Thr Gly Ala Gly Gly Ala Cys Ala Cys
 260 265 270
 Gly Gly Cys Cys Gly Thr Gly Thr Ala Thr Thr Ala Cys Thr Gly Thr
 275 280 285
 Gly Cys Ala Ala Cys Ala Ala Ala Cys Gly Ala Thr Thr Thr Thr Thr
 290 295 300
 Gly Gly Ala Gly Thr Gly Gly Thr Ala Thr Thr Ala Thr Ala Ala
 305 310 315 320
 Cys Thr Ala Cys Thr Gly Gly Gly Cys Cys Ala Gly Gly Ala
 325 330 335
 Ala Cys Cys Cys Thr Gly Gly Thr Cys Ala Cys Cys Gly Thr Cys Thr
 340 345 350
 Cys Cys Thr Cys Ala Gly Cys Cys Thr Cys Cys Ala Cys Cys Ala Ala
 355 360 365
 Gly Gly Cys Cys Cys Ala Thr Cys Gly Gly Thr Cys Thr Thr Cys
 370 375 380
 Cys Cys Cys Cys Thr Gly Gly Cys Cys Cys Cys Thr Gly Cys Thr
 385 390 395 400
 Cys Cys Ala Gly Gly Ala Gly Cys Ala Cys Cys Thr Cys Cys Gly Ala
 405 410 415
 Gly Ala Gly Cys Ala Cys Ala Gly Cys Gly Gly Cys Cys Cys Thr Gly
 420 425 430
 Gly Gly Cys Thr Gly Cys Cys Thr Gly Gly Thr Cys Ala Ala Gly Gly
 435 440 445
 Ala Cys Thr Ala Cys Thr Thr Cys Cys Cys Gly Ala Ala Cys Cys
 450 455 460

-continued

Gly Gly Thr Gly Ala Cys Gly Gly Thr Gly Thr Cys Gly Thr Gly Gly
 465 470 475 480

Ala Ala Cys Thr Cys Ala Gly Gly Cys Gly Cys Thr Cys Thr Gly Ala
 485 490 495

Cys Cys Ala Gly Cys Gly Cys Gly Thr Gly Cys Ala Cys Ala Cys
 500 505 510

Cys Thr Thr Cys Cys Ala Gly Cys Thr Gly Thr Cys Cys Thr Ala
 515 520 525

Cys Ala Gly Thr Cys Cys Thr Cys Ala Gly Gly Ala Cys Thr Cys Thr
 530 535 540

Ala Cys Thr Cys Cys Cys Thr Cys Ala Gly Cys Ala
 545 550 555

<210> SEQ ID NO 10

<211> LENGTH: 185

<212> TYPE: PRT

<213> ORGANISM: Homosapien

<400> SEQUENCE: 10

Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ala
 1 5 10 15

Ser Val Lys Val Ser Cys Lys Val Ser Gly Tyr Thr Leu Thr Glu Leu
 20 25 30

Ser Met His Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Met
 35 40 45

Gly Gly Phe Asp Pro Glu Asp Gly Glu Thr Ile Tyr Ala Gln Lys Phe
 50 55 60

Gln Gly Arg Val Thr Met Thr Glu Asp Thr Ser Thr Asp Thr Ala Tyr
 65 70 75 80

Met Glu Leu Ser Ser Leu Arg Ser Glu Asp Thr Ala Val Tyr Tyr Cys
 85 90 95

Ala Thr Asn Asp Phe Trp Ser Gly Tyr Tyr Asn Tyr Trp Gly Gln Gly
 100 105 110

Thr Leu Val Thr Val Ser Ser Ala Ser Thr Lys Gly Pro Ser Val Phe
 115 120 125

Pro Leu Ala Pro Cys Ser Arg Ser Thr Ser Glu Ser Thr Ala Ala Leu
 130 135 140

Gly Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro Val Thr Val Ser Trp
 145 150 155 160

Asn Ser Gly Ala Leu Thr Ser Gly Val His Thr Phe Pro Ala Val Leu
 165 170 175

Gln Ser Ser Gly Leu Tyr Ser Leu Ser
 180 185

<210> SEQ ID NO 11

<211> LENGTH: 490

<212> TYPE: DNA

<213> ORGANISM: Homosapien

<400> SEQUENCE: 11

gacatcgta tgaccagtc tccagactcc ctggctgtgt ctctggcgaa gagggccacc 60

atcaactgca agtccagcca gagtgttta tacagctcca acaataaaga ctacttagtt 120

tggtaccaac agaaaccagg acagcctcct aaactgctca ttactggc atctatccgg 180

gaatccgggg tccctgaccg attcagtgcc agcgggtctg ggacagattt cactctcacc 240

atcaacagcc tgcaggctga agatgtggca gtttattact gtcagcagta tttttatagt 300

-continued

ccgtggacgt tcggccaagg gaccaagggt gaaatcaaac gaactgtggc tgcaccatct 360
 gtcttcatct tcccgccatc tgatgagcag ttgaaatctg gaactgcctc tgggtgtgc 420
 ctgctgaata acttctatcc cagagaggcc aaagtacagt ggaaggtgga taacgcctc 480
 caatcggta 490

<210> SEQ ID NO 12
 <211> LENGTH: 163
 <212> TYPE: PRT
 <213> ORGANISM: Homosapien

<400> SEQUENCE: 12

Asp	Ile	Val	Met	Thr	Gln	Ser	Pro	Asp	Ser	Leu	Ala	Val	Ser	Leu	Gly
1															
															15
Glu	Arg	Ala	Thr	Ile	Asn	Cys	Lys	Ser	Ser	Gln	Ser	Val	Leu	Tyr	Ser
20															30
Ser	Asn	Asn	Lys	Asn	Tyr	Leu	Val	Trp	Tyr	Gln	Gln	Lys	Pro	Gly	Gln
35															45
Pro	Pro	Lys	Leu	Leu	Ile	Tyr	Trp	Ala	Ser	Ile	Arg	Glu	Ser	Gly	Val
50															60
Pro	Asp	Arg	Phe	Ser	Gly	Ser	Gly	Thr	Asp	Phe	Thr	Leu	Thr		
65															80
Ile	Asn	Ser	Leu	Gln	Ala	Glu	Asp	Val	Ala	Val	Tyr	Tyr	Cys	Gln	Gln
85															95
Tyr	Phe	Tyr	Ser	Pro	Trp	Thr	Phe	Gly	Gln	Gly	Thr	Lys	Val	Glu	Ile
100															110
Lys	Arg	Thr	Val	Ala	Ala	Pro	Ser	Val	Phe	Ile	Phe	Pro	Pro	Ser	Asp
115															125
Glu	Gln	Leu	Lys	Ser	Gly	Thr	Ala	Ser	Val	Val	Cys	Leu	Leu	Asn	Asn
130															140
Phe	Tyr	Pro	Arg	Glu	Ala	Lys	Val	Gln	Trp	Lys	Val	Asp	Asn	Ala	Leu
145															160
Gln	Ser	Gly													

<210> SEQ ID NO 13
 <211> LENGTH: 543
 <212> TYPE: DNA
 <213> ORGANISM: Homosapien

<400> SEQUENCE: 13

caggtccacgt	tggtagcgt	tgggtctgag	gtgaagaagc	ctggggcctc	agtgaaggtc	60
tcctgcagg	tttccggaca	caccctact	gaattatcca	tgcactgggt	gcgacaggct	120
cctggaaaag	ggcttgagtg	gatggaggt	tttgcattctg	aagatgtat	aacaatctac	180
gcacagaatg	tccaggacag	agtcaccatg	accgaggaca	catctacaga	cacagcctac	240
atggagctga	gcagcctaag	atctgaggac	acggccgtgt	attactgtgc	aaccaacgtat	300
ttttggatgt	gttattttgt	ctgctggggc	caggaaaccc	tggtcaccgt	ctccctcagcc	360
tccaccaagg	gcccatcggt	tttccccctg	gcgcctgtct	ccaggagcac	ctccgagagc	420
acagcgcccc	tgggctgcct	ggtcaaggac	tacttccccg	aaccgggtac	ggtgtcggtgg	480
aactcaggcg	ctctgaccag	cggcgtgcac	accttcccag	ctgtcctaca	gtcctcagga	540
ctt						543

<210> SEQ ID NO 14

-continued

Glu	Arg	Ala	Thr	Ile	Asn	Cys	Lys	Ser	Ser	Gln	Ser	Val	Leu	Tyr	Ser
20															

Pro	Asn	Asn	Lys	Asn	Phe	Leu	Val	Trp	Tyr	Gln	Gln	Arg	Pro	Gly	Gln
35															

Pro	Pro	Lys	Leu	Leu	Ile	Tyr	Trp	Ala	Ser	Thr	Arg	Glu	Ser	Gly	Val
50															

Pro	Asp	Arg	Phe	Ser	Gly	Ser	Gly	Ser	Gly	Thr	Asp	Phe	Thr	Leu	Thr
65															

Ile	Ser	Ser	Leu	Gln	Ala	Glu	Asp	Val	Ala	Val	Tyr	Tyr	Cys	Gln	Gln
85															

Tyr	Tyr	Ser	Ser	Pro	Trp	Thr	Phe	Gly	Gln	Gly	Thr	Lys	Val	Glu	Ile
100															

Lys	Arg	Thr	Val	Ala	Ala	Pro	Ser	Val	Phe	Ile	Phe	Pro	Pro	Ser	Asp
115															

Glu	Gln	Leu	Lys	Ser	Gly	Thr	Ala	Ser	Val	Val	Cys	Leu	Leu	Asn	Asn
130															

Phe	Tyr	Pro	Arg	Glu	Ala	Lys	Val	Gln	Trp	Lys	Val	Asp	Asn	Ala	Leu
145															

Gln Ser Gly

<210> SEQ_ID NO 17

<211> LENGTH: 1335

<212> TYPE: DNA

<213> ORGANISM: Homosapien

<400> SEQUENCE: 17

caggtccagc	tggcacagtc	tggggctgag	gtgaagaagc	ctggggcctc	agtgaaggtc	60
tcctgcaagg	tttccggata	caccctcaact	gaatttatcca	tgcactgggt	gcgacaggct	120
cctggaaaag	ggcttgagtg	gatgggaggt	tttgcattctgt	aaatgggtga	aaacatctac	180
gcacagaagt	tccagggcag	agtcaccatg	accgaggaca	catctacaga	cacagtctac	240
atggagctga	gcagccttag	atctgaggac	acggccatgt	attactgtgc	aacacgggag	300
ttttggactg	gttattttga	ccactggggc	cagggaaacc	tggtcaccgt	ctcctcagcc	360
tccaccaagg	gcccatcggt	cttccccctg	gcgcctgtgt	ccaggagcac	ctccgagagc	420
acagcggccc	tgggctgcct	ggtcaaggac	tacttccccg	aaccgggtac	gggtgcgtgg	480
aactcaggcg	ctctgaccag	cggcgtgcac	accttccccg	ctgtcctaca	gtcctcaggaa	540
ctctactccc	tcaagcgtgt	ggtgaccgtg	ccctccagca	acttcggcac	ccagacactac	600
acctgcaacg	tagatcaca	gcccagcaac	accaagggtgg	acaagacagt	tgagcgcaaa	660
tgttgtgtcg	agtgcaccacc	gtgcccagca	ccacctgtgg	caggaccgtc	agtcttcctc	720
ttccccccaa	aacccaagga	caccctcatg	atctcccgaa	cccctgggt	cacgtgcgtg	780
gtgggtggacg	tgagccacga	agaccccgag	gtccagttca	actgggtacgt	ggacggcgtg	840
gaggtgcata	atgccaagac	aaagccacgg	gaggagcgt	tcaacagcac	gttccgtgtg	900
gtcagcgtcc	tcaccgtgt	gcaccaggac	tggctgaacg	gcaaggagta	caagtgcag	960
gtctccaaca	aaggcctccc	agccccatc	gagaaaacca	tctccaaaac	caaaggcag	1020
ccccgagaac	cacaggtgta	caccctgccc	ccatcccggg	aggagatgac	caagaaccag	1080
gtcagcctga	cctgccttgt	caaaggcttc	tacccagcg	acatcgccgt	ggagtggag	1140
agcaatggc	agccggagaa	caactacaag	accacaccc	ccatgtgg	ctccgacggc	1200
tccttcttcc	tctacagcaa	gctcaccgtg	gacaagagca	ggtggcagca	ggggaaacgtc	1260

-continued

ttctcatgct ccgtgatgca tgaggctctg cacaaccact acacgcagaa gagcctctcc 1320
 ctgtctccgg gtaaa 1335

<210> SEQ_ID NO 18
 <211> LENGTH: 445
 <212> TYPE: PRT
 <213> ORGANISM: Homosapien

<400> SEQUENCE: 18

Gln	Val	Gln	Leu	Val	Gln	Ser	Gly	Ala	Glu	Val	Lys	Lys	Pro	Gly	Ala
1				5				10			15				
Ser	Val	Lys	Val	Ser	Cys	Lys	Val	Ser	Gly	Tyr	Thr	Leu	Thr	Glu	Leu
	20				25						30				
Ser	Met	His	Trp	Val	Arg	Gln	Ala	Pro	Gly	Lys	Gly	Leu	Glu	Trp	Met
	35				40					45					
Gly	Gly	Phe	Asp	Pro	Glu	Asp	Gly	Glu	Thr	Ile	Tyr	Ala	Gln	Lys	Phe
	50				55				60						
Gln	Gly	Arg	Val	Thr	Met	Thr	Glu	Asp	Thr	Ser	Thr	Asp	Thr	Val	Tyr
	65				70				75			80			
Met	Glu	Leu	Ser	Ser	Leu	Arg	Ser	Glu	Asp	Thr	Ala	Met	Tyr	Tyr	Cys
	85					90				95					
Ala	Thr	Arg	Glu	Phe	Trp	Thr	Gly	Tyr	Phe	Asp	His	Trp	Gly	Gln	Gly
	100					105				110					
Thr	Leu	Val	Thr	Val	Ser	Ser	Ala	Ser	Thr	Lys	Gly	Pro	Ser	Val	Phe
	115					120			125						
Pro	Leu	Ala	Pro	Cys	Ser	Arg	Ser	Thr	Ser	Glu	Ser	Thr	Ala	Ala	Leu
	130				135				140						
Gly	Cys	Leu	Val	Lys	Asp	Tyr	Phe	Pro	Glu	Pro	Val	Thr	Val	Ser	Trp
	145				150				155			160			
Asn	Ser	Gly	Ala	Leu	Thr	Ser	Gly	Val	His	Thr	Phe	Pro	Ala	Val	Leu
	165					170				175					
Gln	Ser	Ser	Gly	Leu	Tyr	Ser	Leu	Ser	Ser	Val	Val	Thr	Val	Pro	Ser
	180					185				190					
Ser	Asn	Phe	Gly	Thr	Gln	Thr	Tyr	Thr	Cys	Asn	Val	Asp	His	Lys	Pro
	195					200					205				
Ser	Asn	Thr	Lys	Val	Asp	Lys	Thr	Val	Glu	Arg	Lys	Cys	Cys	Val	Glu
	210				215				220						
Cys	Pro	Pro	Cys	Pro	Ala	Pro	Pro	Val	Ala	Gly	Pro	Ser	Val	Phe	Leu
	225				230				235			240			
Phe	Pro	Pro	Lys	Pro	Lys	Asp	Thr	Leu	Met	Ile	Ser	Arg	Thr	Pro	Glu
	245					250				255					
Val	Thr	Cys	Val	Val	Val	Asp	Val	Ser	His	Glu	Asp	Pro	Glu	Val	Gln
	260					265				270					
Phe	Asn	Trp	Tyr	Val	Asp	Gly	Val	Glu	Val	His	Asn	Ala	Lys	Thr	Lys
	275				280				285						
Pro	Arg	Glu	Glu	Gln	Phe	Asn	Ser	Thr	Phe	Arg	Val	Val	Ser	Val	Leu
	290				295				300						
Thr	Val	Val	His	Gln	Asp	Trp	Leu	Asn	Gly	Lys	Glu	Tyr	Lys	Cys	Lys
	305				310				315			320			
Val	Ser	Asn	Lys	Gly	Leu	Pro	Ala	Pro	Ile	Glu	Lys	Thr	Ile	Ser	Lys
	325					330				335					
Thr	Lys	Gly	Gln	Pro	Arg	Glu	Pro	Gln	Val	Tyr	Thr	Leu	Pro	Pro	Ser
	340					345				350					
Arg	Glu	Glu	Met	Thr	Lys	Asn	Gln	Val	Ser	Leu	Thr	Cys	Leu	Val	Lys

-continued

355	360	365
Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln		
370	375	380
Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Met Leu Asp Ser Asp Gly		
385	390	395
Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln		
405	410	415
Gln Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu His Asn		
420	425	430
His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys		
435	440	445
<210> SEQ ID NO 19		
<211> LENGTH: 660		
<212> TYPE: DNA		
<213> ORGANISM: Homosapien		
<400> SEQUENCE: 19		
gacatcgta tgacccagtc tccagactcc ctggctgtgt ctctggcgaa gagggccacc	60	
atcaactgca agtccagcca gagtgttta tacagctcca acaataagaa ctacttagtt	120	
tggtatcagc agaaaccagg acagcctcct aaactgctca tttactggc atctatccgg	180	
gaatccgggg tcccgaccc attcagtggc agcgggtctg ggacagattt cactctcacc	240	
atcagcagcc tgcaggctga agatgtggc gtttattact gtcagcaata ttatagttact	300	
ccgctcactt tcggcgagg gaccaagggt gagatcaaac gaactgtggc tgcaccatct	360	
gtcttcatct tcccgccatc tgatgacag ttgaaatctg gaactgcctc tgggtgtgc	420	
ctgctgaata acttctatcc cagagaggcc aaagtacagt ggaagggtggta taacgcctc	480	
caatcgggta actcccgagga gagtgtcaca gaggcggaca gcaaggacac cacctacagc	540	
ctcagcagca ccctgacqct gagcaaagca gactacgaga aacacaaagt ctacgcctc	600	
gaagtacccc atcaggccc gagctcgccc gtcacaaaga gcttcaacag gggagagtgt	660	
<210> SEQ ID NO 20		
<211> LENGTH: 220		
<212> TYPE: PRT		
<213> ORGANISM: Homosapien		
<400> SEQUENCE: 20		
Asp Ile Val Met Thr Gln Ser Pro Asp Ser Leu Ala Val Ser Leu Gly		
1	5	10
15		
Glu Arg Ala Thr Ile Asn Cys Lys Ser Ser Gln Ser Val Leu Tyr Ser		
20	25	30
Ser Asn Asn Lys Asn Tyr Leu Val Trp Tyr Gln Gln Lys Pro Gly Gln		
35	40	45
Pro Pro Lys Leu Leu Ile Tyr Trp Ala Ser Ile Arg Glu Ser Gly Val		
50	55	60
Pro Asp Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr		
65	70	75
80		
Ile Ser Ser Leu Gln Ala Glu Asp Val Ala Val Tyr Tyr Cys Gln Gln		
85	90	95
Tyr Tyr Ser Thr Pro Leu Thr Phe Gly Gly Gly Thr Lys Val Glu Ile		
100	105	110
Lys Arg Thr Val Ala Ala Pro Ser Val Phe Ile Phe Pro Pro Ser Asp		
115	120	125

-continued

Glu Gln Leu Lys Ser Gly Thr Ala Ser Val Val Cys Leu Leu Asn Asn
 130 135 140
 Phe Tyr Pro Arg Glu Ala Lys Val Gln Trp Lys Val Asp Asn Ala Leu
 145 150 155 160
 Gln Ser Gly Asn Ser Gln Glu Ser Val Thr Glu Gln Asp Ser Lys Asp
 165 170 175
 Ser Thr Tyr Ser Leu Ser Ser Thr Leu Thr Leu Ser Lys Ala Asp Tyr
 180 185 190
 Glu Lys His Lys Val Tyr Ala Cys Glu Val Thr His Gln Gly Leu Ser
 195 200 205
 Ser Pro Val Thr Lys Ser Phe Asn Arg Gly Glu Cys
 210 215 220

<210> SEQ ID NO 21

<211> LENGTH: 543

<212> TYPE: DNA

<213> ORGANISM: Homosapien

<400> SEQUENCE: 21

caggtccagc tggtagtgc tggggctgag gtgaaagaagc ctggggcctc agtgaaggctc 60
 tcctgcagg tttccggata cactttact gaattatcca tgcactgggt gcgcacaggct 120
 cctggaaaag ggcttgagtg gatgggaggt tttgtatcctg aagatggtga aacaagctac 180
 gcacagaagt tccggggcag agtcaccatg accgaggaca catctacaga cacagccac 240
 atggagctga gcagcctgag atctgaggac acggccgtgt attactgtgc aaccaacgat 300
 ttttggatgtt gttatgttgc atattggggc cagggaaacc tggtcaccgt ctccctcagcc 360
 tccaccaagg gcccattcggt cttcccccctg gcgcctgtgtt ccaggagcac ctccgagagc 420
 acagcggccc tgggctgcct ggtcaaggac tacttccccc aaccgggtgac ggtgtcggtgg 480
 aactcaggcg ctctgaccag cggcgtgcac accttcccag ctgtcctaca gtcctcagga 540
 ctt 543

<210> SEQ ID NO 22

<211> LENGTH: 181

<212> TYPE: PRT

<213> ORGANISM: Homosapien

<400> SEQUENCE: 22

Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ala
 1 5 10 15
 Ser Val Lys Val Ser Cys Lys Val Ser Gly Tyr Thr Phe Thr Glu Leu
 20 25 30
 Ser Met His Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Met
 35 40 45
 Gly Gly Phe Asp Pro Glu Asp Gly Glu Thr Ser Tyr Ala Gln Lys Phe
 50 55 60
 Arg Gly Arg Val Thr Met Thr Glu Asp Thr Ser Thr Asp Thr Ala His
 65 70 75 80
 Met Glu Leu Ser Ser Leu Arg Ser Glu Asp Thr Ala Val Tyr Tyr Cys
 85 90 95
 Ala Thr Asn Asp Phe Trp Ser Gly Tyr Phe Asp Tyr Trp Gly Gln Gly
 100 105 110
 Thr Leu Val Thr Val Ser Ser Ala Ser Thr Lys Gly Pro Ser Val Phe
 115 120 125
 Pro Leu Ala Pro Cys Ser Arg Ser Thr Ser Glu Ser Thr Ala Ala Leu

-continued

130	135	140
Gly Cys Leu Val Lys Asp Tyr Phe Pro Glu	Pro Val Thr Val Ser Trp	
145 150	155	160
Asn Ser Gly Ala Leu Thr Ser Gly Val His	Thr Phe Pro Ala Val Leu	
165	170	175
Gln Ser Ser Gly Leu		
180		

<210> SEQ ID NO 23

<211> LENGTH: 460

<212> TYPE: DNA

<213> ORGANISM: Homosapien

<400> SEQUENCE: 23

gacatccaga tgacctcagtc tccatcttcc	gtgtctgcat ctgttaggaga cagagtcacc	60
atcaattgtc gggcgagtc gggatttgc acatctatgg	cctggtatca gcagaaaaccca	120
gggaaagccc ctaagctctt gatcaatgtc	gcatccagtt tgcaaaaacgg ggtccccctca	180
agggttcggcg gcagttggatc tgggacagat	ttcactctca ccatcagcgg cctgcagcct	240
gaagattttg caacttacta ttgtcaactg	acttactttt tcccgtggac gttcggccaa	300
gggaccaagg tggaaatcaa acgaaactgtg	gctgcaccat ctgtcttcat cttccggcca	360
tctgtatggc agttgaaatc tggaaactgcc	tctgttgtgt gctgtctgaa taacttctat	420
cccgagagg ccaaagtaca gtggaaagg	gataacgcgg	460

<210> SEQ ID NO 24

<211> LENGTH: 153

<212> TYPE: PRT

<213> ORGANISM: Homosapien

<400> SEQUENCE: 24

Asp Ile Gln Met Thr Gln Ser Pro Ser Ser Val	Ser Ala Ser Val Gly	
1 5	10	15
Asp Arg Val Thr Ile Thr Cys Arg Ala Ser Gln	Gly Ile Asp Ile Tyr	
20 25	30	
Leu Ala Trp Tyr Gln Gln Lys Pro Gly Lys	Ala Pro Lys Leu Leu Ile	
35 40	45	
Asn Ala Ala Ser Ser Leu Gln Asn Gly Val	Pro Ser Arg Phe Gly Gly	
50 55	60	
Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile	Ser Gly Leu Gln Pro	
65 70	75	80
Glu Asp Phe Ala Thr Tyr Tyr Cys Gln Leu	Thr Tyr Phe Phe Pro Trp	
85 90	95	
Thr Phe Gly Gln Gly Thr Lys Val Glu Ile	Lys Arg Thr Val Ala Ala	
100 105	110	
Pro Ser Val Phe Ile Phe Pro Pro Ser Asp	Glu Gln Leu Lys Ser Gly	
115 120	125	
Thr Ala Ser Val Val Cys Leu Leu Asn Asn	Phe Tyr Pro Arg Glu Ala	
130 135	140	
Lys Val Gln Trp Lys Val Asp Asn Ala		
145 150		

<210> SEQ ID NO 25

<211> LENGTH: 543

<212> TYPE: DNA

<213> ORGANISM: Homosapien

-continued

<400> SEQUENCE: 25

cagggtccagc	tggcacagtc	tggggctgag	gtgaagaagc	ctggggcctc	agtgaaggtc	60
tcctgcaagg	tttccggata	caccctcaact	gaattatcca	tgcactgggt	gcgacgaatt	120
ccctggaaag	ggcttgagtg	gatgggaggt	tttgaccctg	aagatggta	aacaatctac	180
gcacagaagt	tccagggcag	agtcaccatg	accgaggaca	catctacaga	cacagcctac	240
atggagctga	gcagcctgag	atctgaggac	acggccgtgt	attactgtgc	aacaaacgat	300
ttttggagtg	gctattgggg	ccactggggc	cagggAACCC	tggtcaccgt	ctccctcagcc	360
tccaccaagg	gcccacatcggt	cttcccccctg	gcgcctgct	ccaggagcac	ctccgagagc	420
acagcggccc	tggctgcct	ggtcaaggac	tacttcccg	aaccggtgac	ggtgtcggtgg	480
aactcaggcg	ctctgaccag	cggcgtgcac	accttccag	ctgtcctaca	gtcctcagga	540
ctt						543

<210> SEQ ID NO 26

<211> LENGTH: 181

<212> TYPE: PRT

<213> ORGANISM: Homosapien

<400> SEQUENCE: 26

Gln	Val	Gln	Leu	Val	Gln	Ser	Gly	Ala	Glu	Val	Lys	Lys	Pro	Gly	Ala
1				5					10			15			

Ser	Val	Lys	Val	Ser	Cys	Lys	Val	Ser	Gly	Tyr	Thr	Leu	Thr	Glu	Leu
	20				25					30					

Ser	Met	His	Trp	Val	Arg	Arg	Ile	Pro	Gly	Lys	Gly	Leu	Glu	Trp	Met
	35				40					45					

Gly	Gly	Phe	Asp	Pro	Glu	Asp	Gly	Glu	Thr	Ile	Tyr	Ala	Gln	Lys	Phe
	50			55					60						

Gln	Gly	Arg	Val	Thr	Met	Thr	Glu	Asp	Thr	Ser	Thr	Asp	Thr	Ala	Tyr
65					70				75			80			

Met	Glu	Leu	Ser	Ser	Leu	Arg	Ser	Glu	Asp	Thr	Ala	Val	Tyr	Tyr	Cys
	85					90				95					

Ala	Thr	Asn	Asp	Phe	Trp	Ser	Gly	Tyr	Trp	Gly	His	Trp	Gly	Gln	Gly
	100				105					110					

Thr	Leu	Val	Thr	Val	Ser	Ser	Ala	Ser	Thr	Lys	Gly	Pro	Ser	Val	Phe
115					120				125						

Pro	Leu	Ala	Pro	Cys	Ser	Arg	Ser	Thr	Ser	Glu	Ser	Thr	Ala	Ala	Leu
130				135					140						

Gly	Cys	Leu	Val	Lys	Asp	Tyr	Phe	Pro	Glu	Pro	Val	Thr	Val	Ser	Trp
145				150				155			160				

Asn	Ser	Gly	Ala	Leu	Thr	Ser	Gly	Val	His	Thr	Phe	Pro	Ala	Val	Leu
	165					170			175						

Gln	Ser	Ser	Gly	Leu											
	180														

<210> SEQ ID NO 27

<211> LENGTH: 459

<212> TYPE: DNA

<213> ORGANISM: Homosapien

<400> SEQUENCE: 27

gacatcgta	tgaccagtc	tccagactcc	ctggctgtgt	ctctggcgaa	gagggccacc	60
atcaactgca	agtccagcca	gagtgtttta	tacagctcca	acaataagaa	ctacctagct	120
tggtaccaag	ctgctcattt	actggacata	tatccggaa	tccgggtcc	ctgaccgatt	180

-continued

cagtggcagc	gggtctggga	cagattcac	tctcaccatc	agcagcctgc	aggctgaaga	240
tgtggcagtt	tattactgtc	aggaacat	tagtattccg	tggacgttcg	gccaggac	300
caagggtggaa	atcaaacgaa	ctgtggctgc	accatctgc	ttcatcttc	cgcacatctga	360
tgagcagttg	aactgcctct	gttgtgtgcc	tgctgaataa	cttctatccc	agagaggcca	420
aagtacagt	gaagggtggat	aacgcctcc	aatcgggta			459

<210> SEQ ID NO 28

<211> LENGTH: 149

<212> TYPE: PRT

<213> ORGANISM: Homosapien

<400> SEQUENCE: 28

Asp	Ile	Val	Met	Thr	Gln	Ser	Pro	Asp	Ser	Leu	Ala	Val	Ser	Leu	Gly
1								5					10		15

Glu	Arg	Ala	Thr	Ile	Asn	Cys	Lys	Ser	Ser	Gln	Ser	Val	Leu	Tyr	Ser
				20				25					30		

Ser	Asn	Asn	Lys	Asn	Tyr	Leu	Ala	Trp	Tyr	Leu	Leu	Ile	Tyr	Trp	Thr
					35				40				45		

Tyr	Ile	Arg	Glu	Ser	Gly	Val	Pro	Asp	Arg	Phe	Ser	Gly	Ser		
					50				55			60			

Gly	Thr	Asp	Phe	Thr	Leu	Thr	Ile	Ser	Ser	Leu	Gln	Ala	Glu	Asp	Val
					65				70			75		80	

Ala	Val	Tyr	Tyr	Cys	Gln	Glu	His	Tyr	Ser	Ile	Pro	Trp	Thr	Phe	Gly
					85				90			95			

Gln	Gly	Thr	Lys	Val	Glu	Ile	Lys	Arg	Thr	Val	Ala	Ala	Pro	Ser	Val
					100				105				110		

Phe	Ile	Phe	Pro	Pro	Ser	Asp	Glu	Gln	Leu	Asn	Cys	Leu	Cys	Cys	Val
					115				120			125			

Pro	Ala	Glu	Leu	Leu	Ser	Gln	Arg	Gly	Gln	Ser	Thr	Val	Glu	Gly	Gly
					130				135			140			

Arg	Pro	Pro	Ile	Gly											
				145											

<210> SEQ ID NO 29

<211> LENGTH: 524

<212> TYPE: DNA

<213> ORGANISM: Homosapien

<400> SEQUENCE: 29

caggtccagc	tggtagtgc	tgggtctgag	gtgaagaagc	ctggggctc	agtgaagg	60
tcctgcaagg	tttccggata	caccctact	gaattatcca	tgcactgggt	gcgacagg	120
cctggaaaag	ggcttgagtg	gatggaggt	tttgatcctg	aagatgtga	aacaatctac	180
gcacagaagt	tccagggcag	agtcaccat	accgaggaca	catctacaga	cacggcctac	240
atggagctga	gcagcctgag	atctgaggac	acggccgtgt	atttctgtgc	aaccaacgt	300
ttttggatgt	gttattttga	ctgctggac	cagggAACCC	tggtcaccgt	ctccctcagcc	360
tccaccaagg	gcccatcggt	tttccccctg	gcgcctgtct	ccaggaacac	ctccgagagc	420
acagcggccc	tgggctgcct	ggtcaaggac	tacttccccg	aaccgggtac	ggtgtcggt	480
aactcaggcg	ctctgaccag	cggcgtgcac	accttcccag	ctgt		524

<210> SEQ ID NO 30

<211> LENGTH: 174

<212> TYPE: PRT

-continued

Pro Pro Lys Leu Leu Ile Tyr Trp Ala Ser Ile Arg Glu Ser Gly Val
 50 55 60

Pro Asp Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr
 65 70 75 80

Ile Ser Ser Leu Gln Ala Glu Asp Val Ala Val Tyr Phe Cys Gln Gln
 85 90 95

Tyr Tyr Ser Ser Pro Trp Thr Phe Gly Gln Gly Thr Lys Val Glu Ile
 100 105 110

Lys Arg Thr Val Ala Ala Pro Ser Val Phe Ile Phe Pro Pro Ser Asp
 115 120 125

Glu Gln Leu Lys Ser Gly Thr Ala Ser Val Val Cys Leu Leu Asn Asn
 130 135 140

Phe Tyr Pro Arg Glu Ala Lys Val Gln Trp Lys Val Asp Asn Ala Leu
 145 150 155 160

Gln Ser Gly

<210> SEQ ID NO 33

<211> LENGTH: 545

<212> TYPE: DNA

<213> ORGANISM: Homosapien

<400> SEQUENCE: 33

caggtccagc tggcacatc tggggctgag gtgaagaagc ctggggcctc achtgaaggc 60
 tcctgcaagg tttccggata caccctcaact gaattatcca tgcactgggt gcgacaggct 120
 cctggaaaag ggcttgagtg gatggaggt tttgatccctg aagatggta aacaatctac 180
 gcacagaagt tccagggcag agtcaccatg accgaggaca catctacaga cacagcctac 240
 atggagctga gcagcctgatc atctgaggac acggccgtgt attactgtgc aaccctggat 300
 agtgggatct acttagcttt tgatatctgg ggc当地ggca caatggtcac cgtctttca 360
 gcctccacca agggccatc ggtttcccc ctggcgccct gctccaggag cacctccgag 420
 agcacagcgg ccctgggctg cctggtaag gactacttcc cc当地accggat gacgggtgtcg 480
 tggactcaag gcgtctgac cagcggcgtg cacaccccttcc cagctgtccct acagtcctca 540
 ggatt 545

<210> SEQ ID NO 34

<211> LENGTH: 181

<212> TYPE: PRT

<213> ORGANISM: Homosapien

<400> SEQUENCE: 34

Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ala
 1 5 10 15

Ser Val Lys Val Ser Cys Lys Val Ser Gly Tyr Thr Leu Thr Glu Leu
 20 25 30

Ser Met His Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Met
 35 40 45

Gly Gly Phe Asp Pro Glu Asp Gly Glu Thr Ile Tyr Ala Gln Lys Phe
 50 55 60

Gln Gly Arg Val Thr Met Thr Glu Asp Thr Ser Thr Asp Thr Ala Tyr
 65 70 75 80

Met Glu Leu Ser Ser Leu Arg Ser Glu Asp Thr Ala Val Tyr Tyr Cys
 85 90 95

Ala Thr Trp Tyr Ser Gly Ile Tyr Leu Ala Phe Asp Ile Trp Gly Gln

-continued

100	105	110	
Gly Thr Met Val Thr Val Ser Ser Ala Ser Thr Lys Gly Pro Ser Val			
115	120	125	
Phe Pro Leu Ala Pro Cys Ser Arg Ser Thr Ser Glu Ser Thr Ala Ala			
130	135	140	
Leu Gly Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro Val Thr Val Ser			
145	150	155	160
Trp Asn Ser Gly Ala Leu Thr Ser Gly Val His Thr Phe Pro Ala Val			
165	170	175	
Leu Gln Ser Ser Gly			
180			

<210> SEQ ID NO 35

<211> LENGTH: 472

<212> TYPE: DNA

<213> ORGANISM: Homosapien

<400> SEQUENCE: 35

gaaatttgtc tgactcaagtc tccagacttt cagtcgtgtca ctccaaaggg gaaagtccacc	60
atcacctgcc gggccaggta gaggcattgggt agtagcttac actggatccca gcagaaacca	120
gatcagtctc caaagctcct catcaagttat gcttcccagt ctttcctcagg ggtcccctcg	180
aggttcagtg gcagtggatc tggagacatgtt ttcaccctca ccatcaatacg cctggaaatgt	240
gaagatgctg caacgttata ctgtcatcag agtagtagtt tacctcacac tttcggcgaa	300
gggaccaagg tggagatcaa acgaaactgtg gctgcaccat ctgtcttcat cttcccgcca	360
tctgatgagc agttgaaatc tggaaactgccc tctgttgtgt gcctgctgaa taacttctat	420
cccaagagagg ccaaagtaca gtggaaagggtg gataacgccc tccaatcggt ta	472

<210> SEQ ID NO 36

<211> LENGTH: 157

<212> TYPE: PRT

<213> ORGANISM: Homosapien

<400> SEQUENCE: 36

1	5	10	15
Glu Ile Val Leu Thr Gln Ser Pro Asp Phe Gln Ser Val Thr Pro Lys			
20	25	30	
Glu Lys Val Thr Ile Thr Cys Arg Ala Ser Gln Ser Ile Gly Ser Ser			
35	40	45	
Leu His Trp Tyr Gln Gln Lys Pro Asp Gln Ser Pro Lys Leu Leu Ile			
50	55	60	
Lys Tyr Ala Ser Gln Ser Phe Ser Gly Val Pro Ser Arg Phe Ser Gly			
65	70	75	80
Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Asn Ser Leu Glu Ala			
85	90	95	
Thr Phe Gly Gly Thr Lys Val Glu Ile Lys Arg Thr Val Ala Ala			
100	105	110	
Pro Ser Val Phe Ile Phe Pro Pro Ser Asp Glu Gln Leu Lys Ser Gly			
115	120	125	
Thr Ala Ser Val Val Cys Leu Leu Asn Asn Phe Tyr Pro Arg Glu Ala			
130	135	140	
Lys Val Gln Trp Lys Val Asp Asn Ala Leu Gln Ser Gly			
145	150	155	

-continued

<210> SEQ ID NO 37

<211> LENGTH: 1335

<212> TYPE: DNA

<213> ORGANISM: Homosapien

<400> SEQUENCE: 37

cagggtccagt	tggtacagtc	tggggctgag	gtgaagaagc	ctggggcctc	agtgaaggtc	60
tcctgcaagg	tttccggata	caccctcaact	gaattatcca	tgcactgggt	gcgacaggct	120
cctggaaaag	ggcttgagtg	gatgggaggt	tttgatcctg	aagatggtga	aacaatctac	180
gcacagaagt	tccagggcag	agtcaagtatg	accgaggaca	catccacaga	cacagcctac	240
atgggagctga	gcagcctgag	atctgaggac	acggccgtgt	atttctgtgc	aaccaacgaa	300
ttttggagtg	gttattttga	ctactggggc	cagggAACCC	tggtcaccgt	ctcctcagcc	360
tccaccaagg	gcccacatcggt	cttcccccgt	gcgcctgtct	ccaggagcac	ctccgagagc	420
acagcggccc	tgggctgcct	ggtcaaggac	tacttccccg	aaccgggtgac	ggtgtcggt	480
aactcaggcg	ctctgaccag	cggcgtgcac	accttcccag	ctgtcctaca	gtcctcagga	540
ctctactccc	tcagcagcgt	ggtgaccgtg	ccctccagca	acttcggcac	ccagacctac	600
acctgcaacg	tagatcacaa	gcccagcaac	accaagggtgg	acaagacagt	tgagcgcaaa	660
tgttgtgtcg	agtgcaccacc	gtgcccagca	ccacctgtgg	caggaccgtc	agtcttcctc	720
ttccccccaa	aacccaagga	caccctcatg	atctcccgga	cccctgaggt	cacgtgcgtg	780
gtgggtggacg	tgagccacga	agaccccgag	gtccagttca	actggtacgt	ggacggcgtg	840
gaggtgcata	atgccaagac	aaagccacgg	gaggaggcgt	tcaacagcac	gttccgtgtg	900
gtcagcgtcc	tcaccgtgt	gcaccaggac	tggctgaacg	gcaaggagta	caagtgc当地	960
gtctccaaca	aaggcctccc	agccccatc	gagaaaaacca	tctccaaaac	caaaggcag	1020
ccccgagaac	cacaggtgt	caccctgccc	ccatcccggg	aggagatgac	caagaaccag	1080
gtcagcgtga	cctgcctggt	caaaggcttc	tacccagcg	acatcggcgt	ggagtggag	1140
agcaatgggc	agccggagaa	caactacaag	accacaccc	ccatgctgga	ctccgacggc	1200
tccttcttcc	tctacagcaa	gctcaccgt	gacaagagca	ggtggcagca	ggggAACGTC	1260
ttctcatgt	ccgtgtatgca	tgaggctctg	cacaaccact	acacgcagaa	gagcctctcc	1320
ctgtctccgg	gtaaaa					1335

<210> SEQ ID NO 38

<211> LENGTH: 445

<212> TYPE: PRT

<213> ORGANISM: Homosapien

<400> SEQUENCE: 38

Gln	Val	Gln	Leu	Val	Gln	Ser	Gly	Ala	Glu	Val	Lys	Lys	Pro	Gly	Ala
1				5				10			15				

Ser	Val	Lys	Val	Ser	Cys	Lys	Val	Ser	Gly	Tyr	Thr	Leu	Thr	Glu	Leu
							20			25		30			

Ser	Met	His	Trp	Val	Arg	Gln	Ala	Pro	Gly	Lys	Gly	Leu	Glu	Trp	Met
							35			40		45			

Gly	Gly	Phe	Asp	Pro	Glu	Asp	Gly	Glu	Thr	Ile	Tyr	Ala	Gln	Lys	Phe
							50			55		60			

Gln	Gly	Arg	Val	Ser	Met	Thr	Glu	Asp	Thr	Ser	Thr	Asp	Thr	Ala	Tyr
							65			70		75		80	

Met	Glu	Leu	Ser	Ser	Leu	Arg	Ser	Glu	Asp	Thr	Ala	Val	Tyr	Phe	Cys
							85			90		95			

-continued

Ala Thr Asn Glu Phe Trp Ser Gly Tyr Phe Asp Tyr Trp Gly Gln Gly
 100 105 110

Thr Leu Val Thr Val Ser Ser Ala Ser Thr Lys Gly Pro Ser Val Phe
 115 120 125

Pro Leu Ala Pro Cys Ser Arg Ser Thr Ser Glu Ser Thr Ala Ala Leu
 130 135 140

Gly Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro Val Thr Val Ser Trp
 145 150 155 160

Asn Ser Gly Ala Leu Thr Ser Gly Val His Thr Phe Pro Ala Val Leu
 165 170 175

Gln Ser Ser Gly Leu Tyr Ser Leu Ser Ser Val Val Thr Val Pro Ser
 180 185 190

Ser Asn Phe Gly Thr Gln Thr Tyr Thr Cys Asn Val Asp His Lys Pro
 195 200 205

Ser Asn Thr Lys Val Asp Lys Thr Val Glu Arg Lys Cys Cys Val Glu
 210 215 220

Cys Pro Pro Cys Pro Ala Pro Pro Val Ala Gly Pro Ser Val Phe Leu
 225 230 235 240

Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu
 245 250 255

Val Thr Cys Val Val Val Asp Val Ser His Glu Asp Pro Glu Val Gln
 260 265 270

Phe Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala Lys Thr Lys
 275 280 285

Pro Arg Glu Glu Gln Phe Asn Ser Thr Phe Arg Val Val Ser Val Leu
 290 295 300

Thr Val Val His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys
 305 310 315 320

Val Ser Asn Lys Gly Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys
 325 330 335

Thr Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser
 340 345 350

Arg Glu Glu Met Thr Lys Asn Gln Val Ser Leu Thr Cys Leu Val Lys
 355 360 365

Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln
 370 375 380

Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Met Leu Asp Ser Asp Gly
 385 390 395 400

Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln
 405 410 415

Gln Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu His Asn
 420 425 430

His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys
 435 440 445

<210> SEQ ID NO 39

<211> LENGTH: 660

<212> TYPE: DNA

<213> ORGANISM: Homosapien

<400> SEQUENCE: 39

gacatcgta tgaccagtc tccagactcc ctggctgtgt ctctggcgaa gagggccacc 60

atcaactgca agtccagcca gagtgttta tacagctcca acaataagaa ctatggtagtt 120

-continued

tggtaccaggc	agagaccagg	acagcctcct	aagctgctca	tttactgggc	atctaccgg	180
gaatccgggg	tccctgaccg	attcagtggc	agcgggtctg	ggacagattt	cactctcacc	240
atcagcagcc	tgcaggctga	agatgtggca	gtttattact	gtcagcaata	tttttattct	300
ccgtggacgt	tcggccaagg	gaccaaggta	gaaatcaaac	gaactgtggc	tgcaccatct	360
gtcttcatct	tcccgccatc	tgatgagcag	ttgaaatctg	gaactgcctc	tgttgtgc	420
ctgctgaata	acttctatcc	cagagaggcc	aaagtacagt	ggaaggtgga	taacgcccctc	480
caatcgggta	actcccagga	gagtgtcaca	gagcaggaca	gcaaggacag	cacccacagc	540
ctcagcagca	ccctgacgct	gagcaaagca	gactacgaga	aacacaaagt	ctacgcctgc	600
gaagtcaccc	atcaggccct	gagctcgccc	gtcacaaaga	gcttcaacag	gggagagtgt	660

<210> SEQ ID NO 40

<211> LENGTH: 220

<212> TYPE: PRT

<213> ORGANISM: Homosapien

<400> SEQUENCE: 40

Asp	Ile	Val	Met	Thr	Gln	Ser	Pro	Asp	Ser	Leu	Ala	Val	Ser	Leu	Gly
1								5					10		15
Glu	Arg	Ala	Thr	Ile	Asn	Cys	Lys	Ser	Ser	Gln	Ser	Val	Leu	Tyr	Ser
				20				25					30		
Ser	Asn	Asn	Lys	Asn	Tyr	Leu	Val	Trp	Tyr	Gln	Gln	Arg	Pro	Gly	Gln
						35			40				45		
Pro	Pro	Lys	Leu	Leu	Ile	Tyr	Trp	Ala	Ser	Thr	Arg	Glu	Ser	Gly	Val
					50				55				60		
Pro	Asp	Arg	Phe	Ser	Gly	Ser	Gly	Thr	Asp	Phe	Thr	Leu	Thr		
					65			70			75		80		
Ile	Ser	Ser	Leu	Gln	Ala	Glu	Asp	Val	Ala	Val	Tyr	Tyr	Cys	Gln	Gln
						85			90				95		
Tyr	Phe	Tyr	Ser	Pro	Trp	Thr	Phe	Gly	Gln	Gly	Thr	Lys	Val	Glu	Ile
					100			105			110				
Lys	Arg	Thr	Val	Ala	Ala	Pro	Ser	Val	Phe	Ile	Phe	Pro	Pro	Ser	Asp
					115			120			125				
Glu	Gln	Leu	Lys	Ser	Gly	Thr	Ala	Ser	Val	Val	Cys	Leu	Leu	Asn	Asn
						130		135			140				
Phe	Tyr	Pro	Arg	Glu	Ala	Lys	Val	Gln	Trp	Lys	Val	Asp	Asn	Ala	Leu
					145			150			155			160	
Gln	Ser	Gly	Asn	Ser	Gln	Glu	Ser	Val	Thr	Glu	Gln	Asp	Ser	Lys	Asp
					165			170			175				
Ser	Thr	Tyr	Ser	Leu	Ser	Ser	Thr	Leu	Thr	Leu	Ser	Lys	Ala	Asp	Tyr
					180			185			190				
Glu	Lys	His	Lys	Val	Tyr	Ala	Cys	Glu	Val	Thr	His	Gln	Gly	Leu	Ser
					195			200			205				
Ser	Pro	Val	Thr	Lys	Ser	Phe	Asn	Arg	Gly	Glu	Cys				
					210			215			220				

<210> SEQ ID NO 41

<211> LENGTH: 556

<212> TYPE: DNA

<213> ORGANISM: Homosapien

<400> SEQUENCE: 41

caggtccagc	tggtacagtc	tggggctgag	gtgaagaagc	ctggggcctc	agtgaaggtc	60
tccctgcaagg	tttccggaca	cattttcaact	gaattatcca	tacactgggt	gcgacaggct	120

-continued

cctggaaaag ggctcgagtg gatgggaggt tttgatcctg aagatggta aacaatctac 180
 gcacagaagt tccagggcag agtcaccatg accgaggaca catctacaga cacagtctac 240
 atggagctga gcagccttagt atctgaggac acggccgtgtt attactgtgc aaccaacgat 300
 ttttggagtg gttatggta ctactgggc cagggAACCC tggtcaccgt ctccctcagcc 360
 tccaccaagg gcccacatcggtt cttcccccgt ggcgcctgtt ccaggagcac ctccgagagc 420
 acagcggccc tgggctgcctt ggtcaaggac tacttccccg aaccgggtgac ggtgtcggtgg 480
 aactcaggcg ctctgaccag cggcgtgcac accttcccag ctgtcctaca gtcctcagga 540
 ctctactccc tcagca 556

<210> SEQ ID NO 42

<211> LENGTH: 185

<212> TYPE: PRT

<213> ORGANISM: Homosapien

<400> SEQUENCE: 42

Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ala
 1 5 10 15

Ser Val Lys Val Ser Cys Lys Val Ser Gly His Ile Phe Thr Glu Leu
 20 25 30

Ser Ile His Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Met
 35 40 45

Gly Gly Phe Asp Pro Glu Asp Gly Glu Thr Ile Tyr Ala Gln Lys Phe
 50 55 60

Gln Gly Arg Val Thr Met Thr Glu Asp Thr Ser Thr Asp Thr Val Tyr
 65 70 75 80

Met Glu Leu Ser Ser Leu Arg Ser Glu Asp Thr Ala Val Tyr Tyr Cys
 85 90 95

Ala Thr Asn Asp Phe Trp Ser Gly Tyr Phe Asp Tyr Trp Gly Gln Gly
 100 105 110

Thr Leu Val Thr Val Ser Ser Ala Ser Thr Lys Gly Pro Ser Val Phe
 115 120 125

Pro Leu Ala Pro Cys Ser Arg Ser Thr Ser Glu Ser Thr Ala Ala Leu
 130 135 140

Gly Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro Val Thr Val Ser Trp
 145 150 155 160

Asn Ser Gly Ala Leu Thr Ser Gly Val His Thr Phe Pro Ala Val Leu
 165 170 175

Gln Ser Ser Gly Leu Tyr Ser Leu Ser
 180 185

<210> SEQ ID NO 43

<211> LENGTH: 490

<212> TYPE: DNA

<213> ORGANISM: Homosapien

<400> SEQUENCE: 43

gacatcgta tgacccagtc tccaggctcc ctggctgtgtt ctctgggcga gagggccacc 60
 atcaactgca agtccagcca gagtattta ttccaggcaca acaataagaa ctatttaact 120
 tggtaccaggc agaaaccagg acagcctcctt aaactgctca ttactgggc atctatccgg 180
 gaatccgggg tccctgatcg attcagtggc agcgggtctg ggtcaaattt cacttcacc 240
 atcaccagcc tgcaggctga agatgtggca atttattact gtcagcaata ttatagtagt 300

-continued

ccgtggacgt tcggccaagg gaccaagggt gaaatcaaac gaactgtggc tgcaccatct	360
gtcttcatct tccccccatc tgatgagcag ttgaaatctg gaactgcctc tgggtgtgc	420
ctgtgtata acttctatcc cagagaggcc aaagtacagt ggaagggtgga taacgcctc	480
caatcggtta	490

<210> SEQ ID NO 44
 <211> LENGTH: 163
 <212> TYPE: PRT
 <213> ORGANISM: Homosapien

 <400> SEQUENCE: 44

Asp	Ile	Val	Met	Thr	Gln	Ser	Pro	Gly	Ser	Leu	Ala	Val	Ser	Leu	Gly
1				5						10				15	
Glu	Arg	Ala	Thr	Ile	Asn	Cys	Lys	Ser	Ser	Gln	Ser	Ile	Leu	Phe	Arg
	20						25						30		
Ser	Asn	Asn	Lys	Asn	Tyr	Leu	Thr	Trp	Tyr	Gln	Gln	Lys	Pro	Gly	Gln
	35					40						45			
Pro	Pro	Lys	Leu	Leu	Ile	Tyr	Trp	Ala	Ser	Ile	Arg	Glu	Ser	Gly	Val
	50					55					60				
Pro	Asp	Arg	Phe	Ser	Gly	Ser	Gly	Ser	Gly	Ser	Asn	Phe	Thr	Leu	Thr
	65				70			75					80		
Ile	Thr	Ser	Leu	Gln	Ala	Glu	Asp	Val	Ala	Ile	Tyr	Tyr	Cys	Gln	Gln
				85				90					95		
Tyr	Tyr	Ser	Ser	Pro	Trp	Thr	Phe	Gly	Gln	Gly	Thr	Lys	Val	Glu	Ile
				100			105						110		
Lys	Arg	Thr	Val	Ala	Ala	Pro	Ser	Val	Phe	Ile	Phe	Pro	Pro	Ser	Asp
	115						120						125		
Glu	Gln	Leu	Lys	Ser	Gly	Thr	Ala	Ser	Val	Val	Cys	Leu	Leu	Asn	Asn
	130					135					140				

```
<210> SEQ ID NO 45
<211> LENGTH: 559
<212> TYPE: DNA
<213> ORGANISM: Homosapien

<400> SEQUENCE: 45
cagggtccagc tggcacgtc tggggctgag gtgaagaagc ctggggcctc agtgaaggtc 60
tcctgcaagg tttccggata caccctcaact gaattatcca tgcactgggt gcgcacaggct 120
cctggaaaag ggcttgagtg gatgggaggt tttgtatcctg aagatggtga aacaatcaac 180
gcacagaagt tccagggcag agtcaccatg accgaggaca catctacaga cacaggctac 240
atggagactga gcagcctgag atctgaggac acggccgtgt attactgtgc aacagatcct 300
ggtggatata gtggctactt tgaccactgg ggccaggaa ccctggtcac cgtctcccta 360
gcctccacca agggcccatc ggtctcccc ctggcgcct gctccaggag cacctccag 420
agcacagcgg ccctgggtct cctggtaag gactacttcc ccgaaccgggt gacgggtgtc 480
tggaaactcag gcgctctgac cagcggcgtg cacaccttcc cagctgtcct acagtcccta 540
ggactctact ccctcagca 559
```

<210> SEQ ID NO 46
<211> LENGTH: 186

-continued

Ser Asn Asn Lys Asn Tyr Leu Val Trp Tyr Gln Gln Lys Pro Gly Gln
 35 40 45

Pro Pro Lys Leu Leu Tyr Trp Ala Ser Thr Arg Glu Ser Gly Val
 50 55 60

Pro Asp Arg Phe Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr
 65 70 75 80

Ile Ser Ser Leu Gln Ala Glu Asp Val Ala Val Tyr Tyr Cys Gln Gln
 85 90 95

Tyr Tyr Ser Ser Pro Trp Thr Phe Gly Gln Gly Thr Lys Val Glu Ile
 100 105 110

Lys Arg Thr Val Ala Ala Pro Ser Val Phe Ile Phe Pro Pro Ser Asp
 115 120 125

Glu Gln Leu Lys Ser Gly Thr Ala Ser Val Val Cys Leu Leu Asn Asn
 130 135 140

Phe Tyr Pro Arg Glu Ala Lys Val Gln Trp
 145 150

<210> SEQ ID NO 49

<211> LENGTH: 476

<212> TYPE: DNA

<213> ORGANISM: Homosapien

<400> SEQUENCE: 49

caggtccagc tggcacagtc tggggctgag gtgaagaagc ctggggcctc agtgaaggtc 60
 tcctgcaagg tttccggata caccctcaact gaattatcca tgcactgggt gcgcacaggct 120
 cctggaaaag ggcttgagtg gatgggaggt tttgatccctg aagatgtga aacaatctac 180
 gcacagaagt tccagggcag agtcaccatg accgaggaca catctacaca cacagcctac 240
 atggaaactga gcagcctgag atctgaggac acggccgtgt attactgtgc aacacacgat 300
 ttttggagtg cttattttta ctactggggc cagggAACCC tggtcaccgt ctcctcagct 360
 tccaccaagg gccccatccgt cttcccccctg gcgcctgct ccaggagcac ctccgagagc 420
 acagccgcccc tgggctgcct ggtcaaggac tacttccccc aaccggtgac ggtgtc 476

<210> SEQ ID NO 50

<211> LENGTH: 158

<212> TYPE: PRT

<213> ORGANISM: Homosapien

<400> SEQUENCE: 50

Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ala
 1 5 10 15

Ser Val Lys Val Ser Cys Lys Val Ser Gly Tyr Thr Leu Thr Glu Leu
 20 25 30

Ser Met His Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Met
 35 40 45

Gly Gly Phe Asp Pro Glu Asp Asp Glu Thr Ile Tyr Ala Gln Lys Phe
 50 55 60

Gln Gly Arg Val Thr Met Thr Glu Asp Thr Ser Thr His Thr Ala Tyr
 65 70 75 80

Met Glu Leu Ser Ser Leu Arg Ser Glu Asp Thr Ala Val Tyr Tyr Cys
 85 90 95

Ala Thr His Asp Phe Trp Ser Ala Tyr Phe Tyr Tyr Trp Gly Gln Gly
 100 105 110

Thr Leu Val Thr Val Ser Ser Ala Ser Thr Lys Gly Pro Ser Val Phe
 115 120 125

-continued

Pro Leu Ala Pro Cys Ser Arg Ser Thr Ser Glu Ser Thr Ala Ala Leu
 130 135 140

Gly Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro Val Thr Val
 145 150 155

<210> SEQ ID NO 51

<211> LENGTH: 490

<212> TYPE: DNA

<213> ORGANISM: Homosapien

<400> SEQUENCE: 51

gacatcgtga tgaccaggc tccagactcc ctggctgtgt ctctggcgaa gaggggccacc	60
atcaactgca agtccagcca gagtgttta tacggctcca acaataagag ctacttagct	120
tggtaccaggc agaaaccagg acagcctcct aagctgctca tttactggc atctacccgg	180
gaatccgggg tccctgaccg attcagtggc agcgggtctg ggacagattt cactctcacc	240
atcagcagcc tgcaggctgc agatgtggc gtttattact gtcagcaaca ttatagttact	300
ccgtgcgtt ttggccaggc gacaaactg gagatcaaac gaaactgtggc tgcaccatct	360
gtcttcatct tcccgccatc tgatgagcag ttgaaatctg gaactgcctc tgggtgtgc	420
ctgctgaata acttctatcc cagagaggcc aaagtacagt ggaagggtgaa taacgcctc	480
caatcggtta	490

<210> SEQ ID NO 52

<211> LENGTH: 163

<212> TYPE: PRT

<213> ORGANISM: Homosapien

<400> SEQUENCE: 52

Asp Ile Val Met Thr Gln Ser Pro Asp Ser Leu Ala Val Ser Leu Gly
 1 5 10 15

Glu Arg Ala Thr Ile Asn Cys Lys Ser Ser Gln Ser Val Leu Tyr Gly
 20 25 30

Ser Asn Asn Lys Ser Tyr Leu Ala Trp Tyr Gln Gln Lys Pro Gly Gln
 35 40 45

Pro Pro Lys Leu Leu Ile Tyr Trp Ala Ser Thr Arg Glu Ser Gly Val
 50 55 60

Pro Asp Arg Phe Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr
 65 70 75 80

Ile Ser Ser Leu Gln Ala Ala Asp Val Ala Val Tyr Tyr Cys Gln Gln
 85 90 95

His Tyr Ser Thr Pro Cys Ser Phe Gly Gln Gly Thr Lys Leu Glu Ile
 100 105 110

Lys Arg Thr Val Ala Ala Pro Ser Val Phe Ile Phe Pro Pro Ser Asp
 115 120 125

Glu Gln Leu Lys Ser Gly Thr Ala Ser Val Val Cys Leu Leu Asn Asn
 130 135 140

Phe Tyr Pro Arg Glu Ala Lys Val Gln Trp Lys Val Asp Asn Ala Leu
 145 150 155 160

Gln Ser Gly

<210> SEQ ID NO 53

<211> LENGTH: 550

<212> TYPE: DNA

<213> ORGANISM: Homosapien

-continued

<400> SEQUENCE: 53

caggtgcagc	tgggcagtc	tggggctgag	gtgaagaagc	ctggggcctc	agtgaaggc	60
tcctgcaagg	cttctggata	cacccacc	ggctactatc	tgcactgggt	gcgacaggcc	120
ccctggacaag	ggcttgagt	gatggatgg	atcaaccctt	acaatgtgg	cacaactat	180
gcacagaagt	ttcaggcag	ggtcaccatg	accagggaca	cgtccatcag	cacagcctac	240
atggagctga	gcaggcgtgag	atctgacgac	acggccgttt	attactgtgc	gagagatata	300
gccccagctg	gagccgtcta	ctttgactac	tggggccagg	gaaccctgg	caccgtctcc	360
tcagcttcca	ccaaggcccc	atccgtcttc	ccccctggcgc	cctgctccag	gagcacctcc	420
gagagcacag	ccgcctggg	ctgcctggc	aaggactact	ttcccccgaac	cggtgacgg	480
gtcggtggaa	tcaggcgccc	tgaccagcgg	cgtgcacacc	ttcccgctg	tcctacagtc	540
ctcaggactt						550

<210> SEQ ID NO 54

<211> LENGTH: 183

<212> TYPE: PRT

<213> ORGANISM: Homosapien

<400> SEQUENCE: 54

Gln	Val	Gln	Leu	Val	Gln	Ser	Gly	Ala	Glu	Val	Lys	Lys	Pro	Gly	Ala
1				5				10			15				

Ser	Val	Lys	Val	Ser	Cys	Lys	Ala	Ser	Gly	Tyr	Thr	Phe	Thr	Gly	Tyr
	20				25				30						

Tyr	Leu	His	Trp	Val	Arg	Gln	Ala	Pro	Gly	Gln	Gly	Leu	Glu	Trp	Met
		35			40				45						

Gly	Trp	Ile	Asn	Pro	Tyr	Asn	Asp	Gly	Thr	Asn	Tyr	Ala	Gln	Lys	Phe
	50				55			60							

Gln	Gly	Arg	Val	Thr	Met	Thr	Arg	Asp	Thr	Ser	Ile	Ser	Thr	Ala	Tyr
65					70			75			80				

Met	Glu	Leu	Ser	Arg	Leu	Arg	Ser	Asp	Asp	Thr	Ala	Val	Tyr	Tyr	Cys
	85				90			95							

Ala	Arg	Asp	Ile	Ala	Ala	Gly	Ala	Val	Tyr	Phe	Asp	Tyr	Trp	Gly
	100				105			110						

Gln	Gly	Thr	Leu	Val	Thr	Val	Ser	Ser	Ala	Ser	Thr	Lys	Gly	Pro	Ser
115				120				125							

Val	Phe	Pro	Leu	Ala	Pro	Cys	Ser	Arg	Ser	Thr	Ser	Glu	Ser	Thr	Ala
130				135				140							

Ala	Leu	Gly	Cys	Leu	Val	Lys	Asp	Tyr	Phe	Pro	Arg	Thr	Gly	Asp	Gly
145				150			155		160						

Val	Val	Glu	Leu	Arg	Arg	Pro	Asp	Gln	Arg	Arg	Ala	His	Leu	Pro	Gly
		165			170			175							

Cys	Pro	Thr	Val	Leu	Arg	Thr									
		180													

<210> SEQ ID NO 55

<211> LENGTH: 458

<212> TYPE: DNA

<213> ORGANISM: Homosapien

<400> SEQUENCE: 55

gacatccaga	tgaccagtc	tccatccctc	ctgtctgcat	ctgttaggaga	cagagtcc	60
atcacttgc	aggcgagtca	ggacattacc	acctatccat	atgggtatca	gcagaaacca	120
gggaaagccc	ctaagctctt	gatctacgt	gcatccaatt	tggaaacagg	ggtcccatca	180

-continued

```

aggttcagtg gaagtggatc tgggacagat tttactttca ccatcagcag cctgcagcct    240
gaagatattg caacatatta ctgtcaacaa tatgataatc tcccgatcac cttcggccaa    300
gggacacgac tggagattaa acgaaactgtg gctgcaccat ctgtcttcat cttccgcaca    360
tctgtatgagc agttgaaatc tggaaactgcc tctgttgtgt gcctgctgaa taacttctat    420
cccagagagg ccaaagtaca gggaaagggtgg ataacgcc                                458

```

<210> SEQ ID NO 56

<211> LENGTH: 152

<212> TYPE: PRT

<213> ORGANISM: Homosapien

<400> SEQUENCE: 56

```

Asp Ile Gln Met Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser Val Gly
 1           5           10          15

```

```

Asp Arg Val Thr Ile Thr Cys Gln Ala Ser Gln Asp Ile Thr Thr Tyr
 20          25          30

```

```

Leu Asn Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu Leu Ile
 35          40          45

```

```

Tyr Asp Ala Ser Asn Leu Glu Thr Gly Val Pro Ser Arg Phe Ser Gly
 50          55          60

```

```

Ser Gly Ser Gly Thr Asp Phe Thr Phe Thr Ile Ser Ser Leu Gln Pro
 65          70          75          80

```

```

Glu Asp Ile Ala Thr Tyr Tyr Cys Gln Gln Tyr Asp Asn Leu Pro Ile
 85          90          95

```

```

Thr Phe Gly Gln Gly Thr Arg Leu Glu Ile Lys Arg Thr Val Ala Ala
100          105         110

```

```

Pro Ser Val Phe Ile Phe Pro Pro Ser Asp Glu Gln Leu Lys Ser Gly
115          120         125

```

```

Thr Ala Ser Val Val Cys Leu Leu Asn Asn Phe Tyr Pro Arg Glu Ala
130          135         140

```

```

Lys Val Gln Gly Arg Trp Ile Thr
145          150

```

<210> SEQ ID NO 57

<211> LENGTH: 571

<212> TYPE: DNA

<213> ORGANISM: Homosapien

<400> SEQUENCE: 57

```

caggtccagc tggtagtc tggggctgag gtgaagaagc ctggggcctc agtgaaggtc    60
tcctgcaagg ttccggata caccctact gaattatcca tgcactgggt gcgcacaggct    120
cctggaaaag ggcttgagt gatggaggt tttatccctg aagatggta aacaatctac    180
gcacagaagt tccagggcag agtcatgtat accgaggaca catctacaga cacagccttc    240
atggacctga gcagcctgag atctgaggac acggccgtgt attactgtgc aacagacgtat    300
atgttgcacc ctcactacat ctacttcgtt atggacgtctt ggggccaagg gaccacggtc    360
accgtctccct cagttccac caagggccca tccgtcttcc cctggcgcc ctgtccagg    420
agcacctccg agagcacagc cgccctggc tgcctggta aggactactt ccccgaaaccg    480
gtgacgggtgt cgtgaaactc aggcgcctg accagcggcg tgcacacctt cccggctgtc    540
ctacagtccct caggactcta ctccctcagc a                                571

```

<210> SEQ ID NO 58

-continued

<211> LENGTH: 190
 <212> TYPE: PRT
 <213> ORGANISM: Homosapien

<400> SEQUENCE: 58

```

  Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ala
  1           5           10          15

  Ser Val Lys Val Ser Cys Lys Val Ser Gly Tyr Thr Leu Thr Glu Leu
  20          25          30

  Ser Met His Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Met
  35          40          45

  Gly Gly Phe Asp Pro Glu Asp Gly Glu Thr Ile Tyr Ala Gln Lys Phe
  50          55          60

  Gln Gly Arg Val Met Met Thr Glu Asp Thr Ser Thr Asp Thr Ala Phe
  65          70          75          80

  Met Asp Leu Ser Ser Leu Arg Ser Glu Asp Thr Ala Val Tyr Tyr Cys
  85          90          95

  Ala Thr Asp Asp Met Leu Thr Pro His Tyr Leu Tyr Phe Gly Met Asp
  100         105         110

  Val Trp Gly Gln Gly Thr Thr Val Thr Val Ser Ser Ala Ser Thr Lys
  115         120         125

  Gly Pro Ser Val Phe Pro Leu Ala Pro Cys Ser Arg Ser Thr Ser Glu
  130         135         140

  Ser Thr Ala Ala Leu Gly Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro
  145         150         155         160

  Val Thr Val Ser Trp Asn Ser Gly Ala Leu Thr Ser Gly Val His Thr
  165         170         175

  Phe Pro Ala Val Leu Gln Ser Ser Gly Leu Tyr Ser Leu Ser
  180         185         190

  <210> SEQ ID NO 59
  <211> LENGTH: 458
  <212> TYPE: DNA
  <213> ORGANISM: Homosapien

  <400> SEQUENCE: 59
  gacatccaga tgacccagtc tccatcctcc ctgtctgcat ctgttaggaga cagagtccac 60
  atcacttgcc gggcaagtca gggcattaga aatgatttag gctggtatca gcagaaacca 120
  gggaaagccc ctaagcgcct gatctatgc acatccaggat tgcaaagtgg ggtcccatca 180
  aggttcagcg gcagtggatc tgggacagaa ttcactctca caatcagcag cctgcagcct 240
  gaagattttg caacttattta ctgtctacag cataatactt acccattcac tttcgccct 300
  gggaccaaag tggatatcaa acgaaactgtg gctgcaccat ctgtcttcat cttccgcca 360
  tctgatgagc agttgaaatc tggaaactgcc tctgttgtgt gcctgctgaa taacttctat 420
  cccagagagg ccaaagtaca gtggaaagggtg gataacgc 458

  <210> SEQ ID NO 60
  <211> LENGTH: 152
  <212> TYPE: PRT
  <213> ORGANISM: Homosapien

  <400> SEQUENCE: 60
  Asp Ile Gln Met Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser Val Gly
  1           5           10          15

  Asp Arg Val Thr Ile Thr Cys Arg Ala Ser Gln Gly Ile Arg Asn Asp
  20          25          30
  
```

-continued

Leu Gly Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Arg Leu Ile
 35 40 45

Tyr Ala Thr Ser Ser Leu Gln Ser Gly Val Pro Ser Arg Phe Ser Gly
 50 55 60

Ser Gly Ser Gly Thr Glu Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro
 65 70 75 80

Glu Asp Phe Ala Thr Tyr Tyr Cys Leu Gln His Asn Thr Tyr Pro Phe
 85 90 95

Thr Phe Gly Pro Gly Thr Lys Val Asp Ile Lys Arg Thr Val Ala Ala
 100 105 110

Pro Ser Val Phe Ile Phe Pro Pro Ser Asp Glu Gln Leu Lys Ser Gly
 115 120 125

Thr Ala Ser Val Val Cys Leu Leu Asn Asn Phe Tyr Pro Arg Glu Ala
 130 135 140

Lys Val Gln Trp Lys Val Asp Asn
 145 150

<210> SEQ ID NO 61

<211> LENGTH: 1338

<212> TYPE: DNA

<213> ORGANISM: Homosapien

<400> SEQUENCE: 61

caggtgcagc tgcaggagtc gggccagga ctggtaagc cttcacagac cctgtccctc 60
 acctgcactg tctcaggatgg ctccatcagc agtggatggta actactggaa ctggatccgc 120
 cagcacccag ggaaggccct ggagtgaggatt gggatcatctt attacatgg aaacacctac 180
 tacaacccgt ccctcaagag tcgaattacc atatcaatag acacgtctaa gaaccagttc 240
 tccctgaccc ttagctctgt gactggcgcg gacacggccg tggatctactg tgccgagat 300
 ggtggagacg atgctttga tatctgggc caagggacaa tggtcaccgt ctcttcagct 360
 tccaccaagg gccccatccgt cttcccccgt gcgccctgct ccaggagcac ctccgagac 420
 acagccgccc tggctgcctt ggtcaaggac tacttcccg aaccggtgac ggtgtcgat 480
 aactcaggcg ccctgaccag cggcgtgcac accttcccg ctgtcctaca gtcctcagga 540
 ctctactccc tcagcagegt ggtgaccgtg ccctccagca gcttgggcac gaagacctac 600
 acctgcaacg tagatcacaa gcccagcaac accaaggatgg acaagagatg tgagtccaaa 660
 tatggtcccc catgccccatc atgcccagca cctgagttcc tggggggacc atcagtcttc 720
 ctgttccccca caaaacccaa ggacactctc atgatctccc ggaccctgaa ggtcacgtgc 780
 gtgggtggatgg acgtgagcca ggaagacccc gaggtccagt tcaactggta cgtggatggc 840
 gtggaggatgc ataatgccaa gacaaaggcc cgggaggagc agttcaacag cacgtaccgt 900
 gtgggtcagcg tcctcaccgt cctgcaccag gactggctga acggcaagga gtacaagtgc 960
 aaggcttcca acaaaggccct cccgtctcc atcgagaaaa ccattctccaa agccaaagg 1020
 cagccccgag agccacaggat gtacaccctg ccccatccc aggaggagat gaccaagaac 1080
 caggtcagcc tgacctgcctt ggtcaaggc ttctacccca gcgacatcgc cgtggatgg 1140
 gagagcaatg ggcagccgga gaacaactac aagaccacgc ctcccgatgc ggactccgac 1200
 ggctccttctt tcctctacag caggctaaacc gtggacaaga gcaggatggca ggaggggaaat 1260
 gtcttctcat gtcctgtat gcatgaggct ctgcacaacc actacacaca gaagagccctc 1320
 tccctgtctc tggtaaaa 1338

-continued

<210> SEQ ID NO 62
 <211> LENGTH: 446
 <212> TYPE: PRT
 <213> ORGANISM: Homosapien

 <400> SEQUENCE: 62

```

Gln Val Gln Leu Gln Glu Ser Gly Pro Gly Leu Val Lys Pro Ser Gln
  1           5           10          15

Thr Leu Ser Leu Thr Cys Thr Val Ser Gly Gly Ser Ile Ser Ser Gly
  20          25          30

Gly Asn Tyr Trp Asn Trp Ile Arg Gln His Pro Gly Lys Gly Leu Glu
  35          40          45

Trp Ile Gly Tyr Ile Tyr Tyr Ser Gly Asn Thr Tyr Tyr Asn Pro Ser
  50          55          60

Leu Lys Ser Arg Ile Thr Ile Ser Ile Asp Thr Ser Lys Asn Gln Phe
  65          70          75          80

Ser Leu Thr Leu Ser Ser Val Thr Ala Ala Asp Thr Ala Val Tyr Tyr
  85          90          95

Cys Ala Arg Asp Gly Gly Asp Asp Ala Phe Asp Ile Trp Gly Gln Gly
  100         105         110

Thr Met Val Thr Val Ser Ser Ala Ser Thr Lys Gly Pro Ser Val Phe
  115         120         125

Pro Leu Ala Pro Cys Ser Arg Ser Thr Ser Glu Ser Thr Ala Ala Leu
  130         135         140

Gly Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro Val Thr Val Ser Trp
  145         150         155         160

Asn Ser Gly Ala Leu Thr Ser Gly Val His Thr Phe Pro Ala Val Leu
  165         170         175

Gln Ser Ser Gly Leu Tyr Ser Leu Ser Ser Val Val Thr Val Pro Ser
  180         185         190

Ser Ser Leu Gly Thr Lys Thr Tyr Thr Cys Asn Val Asp His Lys Pro
  195         200         205

Ser Asn Thr Lys Val Asp Lys Arg Val Glu Ser Lys Tyr Gly Pro Pro
  210         215         220

Cys Pro Ser Cys Pro Ala Pro Glu Phe Leu Gly Gly Pro Ser Val Phe
  225         230         235         240

Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro
  245         250         255

Glu Val Thr Cys Val Val Val Asp Val Ser Gln Glu Asp Pro Glu Val
  260         265         270

Gln Phe Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala Lys Thr
  275         280         285

Lys Pro Arg Glu Glu Gln Phe Asn Ser Thr Tyr Arg Val Val Ser Val
  290         295         300

Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys
  305         310         315         320

Lys Val Ser Asn Lys Gly Leu Pro Ser Ser Ile Glu Lys Thr Ile Ser
  325         330         335

Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro
  340         345         350

Ser Gln Glu Glu Met Thr Lys Asn Gln Val Ser Leu Thr Cys Leu Val
  355         360         365

Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly
  370         375         380

```

-continued

Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp
 385 390 395 400

Gly Ser Phe Phe Leu Tyr Ser Arg Leu Thr Val Asp Lys Ser Arg Trp
 405 410 415

Gln Glu Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu His
 420 425 430

Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Leu Gly Lys
 435 440 445

<210> SEQ ID NO 63

<211> LENGTH: 642

<212> TYPE: DNA

<213> ORGANISM: Homosapien

<400> SEQUENCE: 63

gacatccaga tgacctcagtc tccatcctcc ctgtctgcat ctgttaggaga cagagtcacc 60
 atcacttgcc aggcgagtcgca ggacattagc aactatcaa attggatca gcagaaacca 120
 gggaaagccc ctaaactcct gatctacat gcatccaatt tggaaacagg ggtcccatca 180
 aggttcagtg gaagtggatc tgggacagat tttactttca ccatcaacag cctgcagcct 240
 gaagatattt caacatatta ctgtcaagaa tataataatc tcccgtacag ttttggccag 300
 gggaccaagt tggagatcaa acgaactgtg gctgcaccat ctgtcttcat cttcccgcca 360
 tctgtatgagc agttgaaatc tggaaactgcc tctgttggtgcctgctgaa taacttctat 420
 cccagagagg ccaaagtaca gtggaaagggt gataacgccc tccaatcggg taactccag 480
 gagagtgtca cagagcagga cagcaaggac agcacctaca gcctcagcag caccctgacg 540
 ctgagcaaag cagactacga gaaacacaaa gtctacgcct gcgaagtcac ccatcaggc 600
 ctgagctcgc ccgtcacaaa gagttcaac aggggagagt gt 642

<210> SEQ ID NO 64

<211> LENGTH: 214

<212> TYPE: PRT

<213> ORGANISM: Homosapien

<400> SEQUENCE: 64

Asp Ile Gln Met Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser Val Gly
 1 5 10 15

Asp Arg Val Thr Ile Thr Cys Gln Ala Ser Gln Asp Ile Ser Asn Tyr
 20 25 30

Leu Asn Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu Leu Ile
 35 40 45

Tyr Asp Ala Ser Asn Leu Glu Thr Gly Val Pro Ser Arg Phe Ser Gly
 50 55 60

Ser Gly Ser Gly Thr Asp Phe Thr Phe Thr Ile Asn Ser Leu Gln Pro
 65 70 75 80

Glu Asp Ile Ala Thr Tyr Tyr Cys Gln Glu Tyr Asn Asn Leu Pro Tyr
 85 90 95

Ser Phe Gly Gln Gly Thr Lys Leu Glu Ile Lys Arg Thr Val Ala Ala
 100 105 110

Pro Ser Val Phe Ile Phe Pro Pro Ser Asp Glu Gln Leu Lys Ser Gly
 115 120 125

Thr Ala Ser Val Val Cys Leu Leu Asn Asn Phe Tyr Pro Arg Glu Ala
 130 135 140

Lys Val Gln Trp Lys Val Asp Asn Ala Leu Gln Ser Gly Asn Ser Gln

-continued

145 150 155 160

Glu Ser Val Thr Glu Gln Asp Ser Lys Asp Ser Thr Tyr Ser Leu Ser
165 170 175Ser Thr Leu Thr Leu Ser Lys Ala Asp Tyr Glu Lys His Lys Val Tyr
180 185 190Ala Cys Glu Val Thr His Gln Gly Leu Ser Ser Pro Val Thr Lys Ser
195 200 205Phe Asn Arg Gly Glu Cys
210

<210> SEQ ID NO 65

<211> LENGTH: 1341

<212> TYPE: DNA

<213> ORGANISM: Homosapien

<400> SEQUENCE: 65

cagggtccagc	tggtacagtc	tggggctgag	gtgaagaagc	ctggggcctc	agtgcaggtc	60	
tcctgcaagg	tttccggaga	caccctca	ctt	gaattatcca	tgcactgggt	gcgacaggct	120
cctggaaaag	ggcttgagtg	gatggaggt	tttgcattctgt	aagatggta	aacaatctac	180	
gcacggaa	gttccaggcag	agtcaccatg	accgaggaca	catctacaga	cacagtttac	240	
atggagctga	gcagccttag	atctgaggac	acggccgtgt	atttctgtgc	aacagattca	300	
cgtggatata	gtggctactt	tgacaactgg	ggccaggaa	ccctggtcac	cgttcctca	360	
gcttccacca	agggccatc	cgtttcccc	ctggcgccct	gctccaggag	caccccgag	420	
agcacagccg	ccctgggctg	cctggtaag	gactacttcc	ccgaaccgg	gacgggtgtcg	480	
tggaaactca	gcgcctgac	cagcggcgtg	cacaccc	cggctgtcct	acagtcc	540	
ggactctact	ccctcagcag	cgtggtgacc	gtgccttcca	gcagcttggg	cacgaagacc	600	
tacacctgca	acgttagatca	caagccagc	aacaccaagg	tggacaagag	agttgagtcc	660	
aaatatggtc	ccccatgcc	atcatgccc	gcacctgagt	tcctgggggg	accatcagtc	720	
ttcctgttcc	ccccaaaacc	caaggacact	ctcatgatct	cccgacccc	tgaggtcacg	780	
tgcgtggtgg	tggacgttag	ccaggaagac	cccgagg	agttcaactg	gtacgtggat	840	
ggcgtggagg	tgcataatgc	caagacaaag	ccggggagg	agcagttcaa	cagcacgtac	900	
cgtgtggta	gcgtcc	cgtcctgac	caggactggc	tgaacggca	ggagttaca	960	
tgc	ccaacaaagg	cctccgtcc	tccatcgaga	aaaccatctc	caaagccaa	1020	
ggcagcccc	gagagccaca	ggtgtacacc	ctgc	cccaggagga	gatgaccaag	1080	
aaccaggta	gcctgac	cctggtaaa	ggcttctacc	ccagcgacat	cgccgtggag	1140	
tgggagagca	atggcagcc	ggagaacaac	tacaagacca	cgcccccgt	gctggactcc	1200	
gacggatct	tcttcctcta	cagcagg	accgtggaca	agagcagg	gcaggagg	1260	
aatgtttct	catgctccgt	gatgcatgag	gctctgcaca	accactacac	acagaagagc	1320	
ctctccctgt	ctctggtaa	a				1341	

<210> SEQ ID NO 66

<211> LENGTH: 447

<212> TYPE: PRT

<213> ORGANISM: Homosapien

<400> SEQUENCE: 66

Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ala
1 5 10 15

-continued

Ser Val Gln Val Ser Cys Lys Val Ser Gly Asp Thr Leu Thr Glu Leu
 20 25 30

Ser Met His Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Met
 35 40 45

Gly Gly Phe Asp Pro Glu Asp Gly Glu Thr Ile Tyr Ala Arg Lys Phe
 50 55 60

Gln Gly Arg Val Thr Met Thr Glu Asp Thr Ser Thr Asp Thr Val Tyr
 65 70 75 80

Met Glu Leu Ser Ser Leu Arg Ser Glu Asp Thr Ala Val Tyr Phe Cys
 85 90 95

Ala Thr Asp Ser Arg Gly Tyr Ser Gly Tyr Phe Asp Asn Trp Gly Gln
 100 105 110

Gly Thr Leu Val Thr Val Ser Ser Ala Ser Thr Lys Gly Pro Ser Val
 115 120 125

Phe Pro Leu Ala Pro Cys Ser Arg Ser Thr Ser Glu Ser Thr Ala Ala
 130 135 140

Leu Gly Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro Val Thr Val Ser
 145 150 155 160

Trp Asn Ser Gly Ala Leu Thr Ser Gly Val His Thr Phe Pro Ala Val
 165 170 175

Leu Gln Ser Ser Gly Leu Tyr Ser Leu Ser Ser Val Val Thr Val Pro
 180 185 190

Ser Ser Ser Leu Gly Thr Lys Thr Tyr Thr Cys Asn Val Asp His Lys
 195 200 205

Pro Ser Asn Thr Lys Val Asp Lys Arg Val Glu Ser Lys Tyr Gly Pro
 210 215 220

Pro Cys Pro Ser Cys Pro Ala Pro Glu Phe Leu Gly Gly Pro Ser Val
 225 230 235 240

Phe Leu Phe Pro Pro Lys Pro Asp Thr Leu Met Ile Ser Arg Thr
 245 250 255

Pro Glu Val Thr Cys Val Val Asp Val Ser Gln Glu Asp Pro Glu
 260 265 270

Val Gln Phe Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala Lys
 275 280 285

Thr Lys Pro Arg Glu Glu Gln Phe Asn Ser Thr Tyr Arg Val Val Ser
 290 295 300

Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys
 305 310 315 320

Cys Lys Val Ser Asn Lys Gly Leu Pro Ser Ser Ile Glu Lys Thr Ile
 325 330 335

Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro
 340 345 350

Pro Ser Gln Glu Glu Met Thr Lys Asn Gln Val Ser Leu Thr Cys Leu
 355 360 365

Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn
 370 375 380

Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser
 385 390 395 400

Asp Gly Ser Phe Phe Leu Tyr Ser Arg Leu Thr Val Asp Lys Ser Arg
 405 410 415

Trp Gln Glu Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu
 420 425 430

His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Leu Gly Lys

-continued

435

440

445

<210> SEQ ID NO 67
 <211> LENGTH: 660
 <212> TYPE: DNA
 <213> ORGANISM: Homosapien

<400> SEQUENCE: 67

```

gacatcgta tgacccagtc tccagactcc ctggctgtgt ctctggcgaa gaggggcacc 60
atcaactgca agtccagcca gagtgttta tacagctcca acaataacaa ctacttagtt 120
tggtaccaggc agaaaccagg acagcctcct aaattgctca tttactggc atctacccgg 180
gaattcgggg ttccctgaccg attcagtggc agcgggtctg ggacagattt cactctcacc 240
atcagcagcc tgcaggctga agatgtggc gtttattact gtcagcaata ttattttct 300
ccgtggacgt tccggcaagg gaccaagggt gaaatcaaac gaactgtggc tgcaccatct 360
gtcttcatct tcccgccatc tgatgagcag ttgaaatctg gaactgcctc tgggtgtgc 420
ctgctgaata acttctatcc cagagaggcc aaagtacagt ggaaggtgga taacgccctc 480
caatcgggta actcccagga gagtgtcaca gaggcggaca gcaaggacac cacctacaggc 540
ctcagcagca ccctgacgct gagcaaagca gactacgaga aacacaaagt ctacgcctgc 600
gaagtcaaccc atcaggccct gagctcgccc gtcacaaaga gcttcaacag gggagagtgt 660

```

<210> SEQ ID NO 68
 <211> LENGTH: 220
 <212> TYPE: PRT
 <213> ORGANISM: Homosapien

<400> SEQUENCE: 68

```

Asp Ile Val Met Thr Gln Ser Pro Asp Ser Leu Ala Val Ser Leu Gly
 1           5           10          15

Glu Arg Ala Thr Ile Asn Cys Lys Ser Ser Gln Ser Val Leu Tyr Ser
 20          25           30

Ser Asn Asn Asn Asn Tyr Leu Val Trp Tyr Gln Gln Lys Pro Gly Gln
 35          40           45

Pro Pro Lys Leu Leu Ile Tyr Trp Ala Ser Thr Arg Glu Phe Gly Val
 50          55           60

Pro Asp Arg Phe Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr
 65          70           75           80

Ile Ser Ser Leu Gln Ala Glu Asp Val Ala Val Tyr Tyr Cys Gln Gln
 85          90           95

Tyr Tyr Phe Ser Pro Trp Thr Phe Gly Gln Gly Thr Lys Val Glu Ile
100         105          110

Lys Arg Thr Val Ala Ala Pro Ser Val Phe Ile Phe Pro Pro Ser Asp
115         120          125

Glu Gln Leu Lys Ser Gly Thr Ala Ser Val Val Cys Leu Leu Asn Asn
130         135          140

Phe Tyr Pro Arg Glu Ala Lys Val Gln Trp Lys Val Asp Asn Ala Leu
145         150          155          160

Gln Ser Gly Asn Ser Gln Glu Ser Val Thr Glu Gln Asp Ser Lys Asp
165         170          175

Ser Thr Tyr Ser Leu Ser Ser Thr Leu Thr Leu Ser Lys Ala Asp Tyr
180         185          190

Glu Lys His Lys Val Tyr Ala Cys Glu Val Thr His Gln Gly Leu Ser
195         200          205

```

-continued

Ser	Pro	Val	Thr	Lys	Ser	Phe	Asn	Arg	Gly	Glu	Cys
210					215						220

<210> SEQ ID NO 69

<211> LENGTH: 556

<212> TYPE: DNA

<213> ORGANISM: Homosapien

<400> SEQUENCE: 69

caggtccagc	tggcacgtc	tggggctgag	gtgaagaagc	ctggggcctc	agtgaaggtc	60
tcctgcagg	tttccggata	caccctca	cttattatcca	tgcactgggt	gcgacaggct	120
cctggaaaag	ggcttgagtg	gatgggaggt	tttgcattctg	aagatggtga	aacaatctac	180
gcacagaagt	tccagggcag	agtcaccatg	accgaggaca	catcttcaga	cacagcctac	240
atggagctga	gcagcctgag	atctgaggac	acggccgtgt	attactgtgc	aaccacgaa	300
ttttggatgt	gttattttga	ctactggggc	cagggaaaccc	tggtcaccgt	ctcctcagct	360
tccaccaagg	gcccatccgt	cttccccctg	gcgcctgtct	ccaggagcac	ctccgagagc	420
acagccgccc	tgggctgcct	ggtcaaggac	tacttccccg	aaccgggtac	ggtgtcggtgg	480
aactcaggcg	ccctgaccag	cggcgtgcac	accttcccg	ctgtcctaca	gtcctcagga	540
ctctactccc	tcagca					556

<210> SEQ ID NO 70

<211> LENGTH: 185

<212> TYPE: PRT

<213> ORGANISM: Homosapien

<400> SEQUENCE: 70

Gln	Val	Gln	Leu	Val	Gln	Ser	Gly	Ala	Glu	Val	Lys	Lys	Pro	Gly	Ala
1				5				10			15				

Ser	Val	Lys	Val	Ser	Cys	Lys	Val	Ser	Gly	Tyr	Thr	Leu	Thr	Asp	Leu
					20			25			30				

Ser	Met	His	Trp	Val	Arg	Gln	Ala	Pro	Gly	Lys	Gly	Leu	Glu	Trp	Met
	35				40						45				

Gly	Gly	Phe	Asp	Pro	Glu	Asp	Gly	Glu	Thr	Ile	Tyr	Ala	Gln	Lys	Phe
	50			55				60							

Gln	Gly	Arg	Val	Thr	Met	Thr	Glu	Asp	Thr	Ser	Ser	Asp	Thr	Ala	Tyr
65					70			75						80	

Met	Glu	Leu	Ser	Ser	Leu	Arg	Ser	Glu	Asp	Thr	Ala	Val	Tyr	Tyr	Cys
	85					90			95						

Ala	Thr	His	Glu	Phe	Trp	Ser	Gly	Tyr	Phe	Asp	Tyr	Trp	Gly	Gln	Gly
	100				105			110							

Thr	Leu	Val	Thr	Val	Ser	Ser	Ala	Ser	Thr	Lys	Gly	Pro	Ser	Val	Phe
	115				120				125						

Pro	Leu	Ala	Pro	Cys	Ser	Arg	Ser	Thr	Ser	Glu	Ser	Thr	Ala	Ala	Leu
	130			135				140							

Gly	Cys	Leu	Val	Lys	Asp	Tyr	Phe	Pro	Glu	Pro	Val	Thr	Val	Ser	Trp
145				150				155			160				

Asn	Ser	Gly	Ala	Leu	Thr	Ser	Gly	Val	His	Thr	Phe	Pro	Ala	Val	Leu
	165				170				175						

Gln	Ser	Ser	Gly	Leu	Tyr	Ser	Leu	Ser
	180				185			

<210> SEQ ID NO 71

<211> LENGTH: 476

<212> TYPE: DNA

-continued

<213> ORGANISM: Homosapien

<400> SEQUENCE: 71

gacatcgta	tgaccaggc	tccagactcc	ctggctgtgt	ctctggcgaa	gaggcccacc	60
atcaactgca	agtccagcca	gagtgtttta	ttcagctcca	acaataagag	ctacttaact	120
tggtaccaggc	agaaaccagg	acagcctcct	aaattactca	ttttctggcg	atctatccgg	180
gaatccgggg	tccctgaccg	aatcgtggc	agcgggtctg	ggacagatct	cactctcacc	240
atcagcagcc	tgcaggctga	agatcggca	gttttattact	gtcagcaata	ttatagtagt	300
ccgtggacgt	tcggccaaagg	gaccaagggtg	gaaatcaaac	gaactgtggc	tgcaccatct	360
gtcttcatct	tcccgccatc	tgtatgacag	ttgaaatctg	gaactgcctc	tgttgtgtgc	420
ctgctgaata	acttctatcc	cagagaggcc	aaagtacagt	ggaagggtgga	taacgc	476

<210> SEQ ID NO 72

<211> LENGTH: 158

<212> TYPE: PRT

<213> ORGANISM: Homosapien

<400> SEQUENCE: 72

Asp	Ile	Val	Met	Thr	Gln	Ser	Pro	Asp	Ser	Leu	Ala	Val	Ser	Leu	Gly	
1								5						10		15
Glu	Arg	Ala	Thr	Ile	Asn	Cys	Lys	Ser	Ser	Gln	Ser	Val	Leu	Phe	Ser	
				20				25						30		
Ser	Asn	Asn	Lys	Ser	Tyr	Leu	Thr	Trp	Tyr	Gln	Gln	Lys	Pro	Gly	Gln	
					35				40					45		
Pro	Pro	Lys	Leu	Leu	Ile	Phe	Trp	Ala	Ser	Ile	Arg	Glu	Ser	Gly	Val	
					50				55					60		
Pro	Asp	Arg	Ile	Ser	Gly	Ser	Gly	Ser	Gly	Thr	Asp	Leu	Thr	Leu	Thr	
					65				70					75		80
Ile	Ser	Ser	Leu	Gln	Ala	Glu	Asp	Ala	Ala	Val	Tyr	Tyr	Cys	Gln	Gln	
					85				90					95		
Tyr	Tyr	Ser	Ser	Pro	Trp	Thr	Phe	Gly	Gln	Gly	Thr	Lys	Val	Glu	Ile	
					100				105					110		
Lys	Arg	Thr	Val	Ala	Ala	Pro	Ser	Val	Phe	Ile	Phe	Pro	Pro	Ser	Asp	
					115				120					125		
Glu	Gln	Leu	Lys	Ser	Gly	Thr	Ala	Ser	Val	Val	Cys	Leu	Leu	Asn	Asn	
					130				135					140		
Phe	Tyr	Pro	Arg	Glu	Ala	Lys	Val	Gln	Trp	Lys	Val	Asp	Asn			
					145				150					155		

<210> SEQ ID NO 73

<211> LENGTH: 546

<212> TYPE: DNA

<213> ORGANISM: Homosapien

<400> SEQUENCE: 73

caggccatc	tggtacagtc	tggggctgag	gtgaaagaac	ctggggcctc	agtgtggc	60
tccctgcaagg	tttccggata	caccctcagt	gaattatcca	tgcactgggt	gcgacaggct	120
cctggaaaag	ggcttgagtg	gatggggagg	tttgatcctg	aagatggtga	aataatccac	180
gcacagaatg	tccaggccag	agtccaccatg	accggaggaca	catctacaga	cacagcctac	240
atggagctga	gcagccctgag	atctgaggac	acggccgtgt	attactgtgc	aacaggcgat	300
ttttggatgt	gttattacact	tgactgggtgg	ggccaggggaa	ccctggtcac	cgtctccctca	360
gtttccacca	aggccccatc	ctggccccc	gttccaggag	caccccgag		420

-continued

agcacagccg ccctgggctg cctggtaag gactacttc ccgaaccggg gacgggtcgc	480
tggaactcgac gcgcctgac cagcggcgtg cacacccctcc cggctgtcct acagtcctca	540
ggactt	546

<210> SEQ ID NO 74
<211> LENGTH: 182
<212> TYPE: PRT
<213> ORGANISM: Homosapien

<400> SEQUENCE: 74

Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ala	
1 5 10 15	
Ser Val Lys Val Ser Cys Lys Val Ser Gly Tyr Thr Leu Ser Glu Leu	
20 25 30	
Ser Met His Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Met	
35 40 45	
Gly Gly Phe Asp Pro Glu Asp Gly Glu Ile Ile His Ala Gln Lys Phe	
50 55 60	
Gln Gly Arg Val Thr Met Thr Glu Asp Thr Ser Thr Asp Thr Ala Tyr	
65 70 75 80	
Met Glu Leu Ser Ser Leu Arg Ser Glu Asp Thr Ala Val Tyr Tyr Cys	
85 90 95	
Ala Thr Gly Asp Phe Trp Ser Gly Tyr Tyr Leu Asp Trp Trp Gly Gln	
100 105 110	
Gly Thr Leu Val Thr Val Ser Ser Ala Ser Thr Lys Gly Pro Ser Val	
115 120 125	
Phe Pro Leu Ala Pro Cys Ser Arg Ser Thr Ser Glu Ser Thr Ala Ala	
130 135 140	
Leu Gly Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro Val Thr Val Ser	
145 150 155 160	
Trp Asn Ser Gly Ala Leu Thr Ser Gly Val His Thr Phe Pro Ala Val	
165 170 175	
Leu Gln Ser Ser Gly Leu	
180	

<210> SEQ ID NO 75
<211> LENGTH: 457
<212> TYPE: DNA
<213> ORGANISM: Homosapien

<400> SEQUENCE: 75

gaaatagtga tgatgcagtc tccagccacc ctgtctgtgt ctccagggga aagagccacc	60
ctctcctgca gggccagtca gagtgtaac agcaacttag cctggatccca gcagaaacct	120
ggccaggctc ccaggctct catcaacggg gtcatccacca gggccactgg catcccagcc	180
aggttcagtgc cagtggtc tgggacagag ttacccctca ccatcagca gctgcaatgt	240
gaagattttgc caattttata ctgtcagcag tataatgact ggcctacgtt cactttcggc	300
ggagggacca aggtggagat caatcgaact gtggctgcac catctgtctt catttcccg	360
ccatctgtatc agcagttgaa atctggaaact gcctctgtt tgtgcctgct gaataacttc	420
tatcccagag aggccaaagt acagtggaa ggtggat	457

<210> SEQ ID NO 76
<211> LENGTH: 152
<212> TYPE: PRT

-continued

<213> ORGANISM: Homosapien

<400> SEQUENCE: 76

Glu	Ile	Val	Met	Met	Gln	Ser	Pro	Ala	Thr	Leu	Ser	Val	Ser	Pro	Gly
1															15
Glu	Arg	Ala	Thr	Leu	Ser	Cys	Arg	Ala	Ser	Gln	Ser	Val	Asn	Ser	Asn
20															30
Leu	Ala	Trp	Tyr	Gln	Gln	Lys	Pro	Gly	Gln	Ala	Pro	Arg	Leu	Leu	Ile
35															45
Asn	Gly	Ala	Ser	Thr	Arg	Ala	Thr	Gly	Ile	Pro	Ala	Arg	Phe	Ser	Gly
50															60
Ser	Gly	Ser	Gly	Thr	Glu	Phe	Thr	Leu	Thr	Ile	Ser	Ser	Leu	Gln	Ser
65															80
Glu	Asp	Phe	Ala	Ile	Tyr	Tyr	Cys	Gln	Gln	Tyr	Asn	Asp	Trp	Pro	Thr
85															95
Phe	Thr	Phe	Gly	Gly	Thr	Lys	Val	Glu	Ile	Asn	Arg	Thr	Val	Ala	
100															110
Ala	Pro	Ser	Val	Phe	Ile	Phe	Pro	Pro	Ser	Asp	Glu	Gln	Leu	Lys	Ser
115															125
Gly	Thr	Ala	Ser	Val	Val	Cys	Leu	Leu	Asn	Asn	Phe	Tyr	Pro	Arg	Glu
130															140
Ala	Lys	Val	Gln	Trp	Glu	Gly	Gly								
145															150

<210> SEQ ID NO 77

<211> LENGTH: 470

<212> TYPE: DNA

<213> ORGANISM: Homosapien

<400> SEQUENCE: 77

cagggtccagc	tggcacagtc	tggggctgag	gtgaagaagc	ctggggcctc	agtgaaggtc	60
tccctgcaagg	tttccggata	caccctcaact	gaatttatcca	tgcactgggt	gcgacaggt	120
cctggaaaag	ggcttgagtg	gatggaggt	tttgatccctg	aagatggta	aacaatgtac	180
gcacagaagt	tccagggcag	agtcaccatg	accgaggaca	catctacaga	cacagcctac	240
atggagctga	gcagcctgag	atctgaggac	acggccgtgt	attactgtgc	aaccgacgat	300
ttttggagtg	gttattttga	ctactggggc	cagggAACCC	tggtcaccgt	ctcctcagcc	360
tccaccaagg	gcccatcggt	cttccccctg	gcgcctgtct	ccaggagcac	ctccgagagc	420
acagcggccc	tgggctgcct	ggtcaaggac	tacttccccg	aaccggcagg		470

<210> SEQ ID NO 78

<211> LENGTH: 156

<212> TYPE: PRT

<213> ORGANISM: Homosapien

<400> SEQUENCE: 78

Gln	Val	Gln	Leu	Val	Gln	Ser	Gly	Ala	Glu	Val	Lys	Lys	Pro	Gly	Ala
1															15
Ser	Val	Lys	Val	Ser	Cys	Lys	Val	Ser	Gly	Tyr	Thr	Leu	Thr	Glu	Leu
20															30
Ser	Met	His	Trp	Val	Arg	Gln	Ala	Pro	Gly	Lys	Gly	Leu	Glu	Trp	Met
35															45
Gly	Gly	Phe	Asp	Pro	Glu	Asp	Gly	Glu	Thr	Met	Tyr	Ala	Gln	Lys	Phe
50															60
Gln	Gly	Arg	Val	Thr	Met	Thr	Glu	Asp	Thr	Ser	Thr	Asp	Thr	Ala	Tyr

-continued

65	70	75	80
Met Glu Leu Ser Ser Leu Arg Ser Glu Asp Thr Ala Val Tyr Tyr Cys			
	85	90	95
Ala Thr Asp Asp Phe Trp Ser Gly Tyr Phe Asp Tyr Trp Gly Gln Gly			
	100	105	110
Thr Leu Val Thr Val Ser Ser Ala Ser Thr Lys Gly Pro Ser Val Phe			
	115	120	125
Pro Leu Ala Pro Cys Ser Arg Ser Thr Ser Glu Ser Thr Ala Ala Leu			
	130	135	140
Gly Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro Ala			
	145	150	155

<210> SEQ ID NO 79

<211> LENGTH: 490

<212> TYPE: DNA

<213> ORGANISM: Homosapien

<400> SEQUENCE: 79

gacatcgta tgacccagtc tccagactcc ctggctgtgt ctctggacga gaggccacc	60
atcaactgca agtccagcca gagtgttta tacagtccca accaaaagaa ctacttagtt	120
tggtatcagc agaagccagg acagcctct aagctgcgcc ttactggc atctatccgg	180
gaatccgggg tccctgaccc attcagtggc agcgggtctg ggacagattt cactctacc	240
atcagcagcc tgcaggctga agatgtggca gtttattact gtcaacaaag ttatttact	300
ccgtggacgt tcggccaaagg gaccaagggt gaaatcaaacc gaaactgtggc tgccatct	360
gtcttcatct tccccccatc tgatgagcag ttgaaatctg gaaactgcctc tgggtgtgc	420
ctgctgaata acttctatcc cagagaggcc aaagtacagt ggaagggttga taacgcctc	480
caatcqqqta	490

<210> SEQ ID NO 80

<211> LENGTH: 163

<212> TYPE: PRT

<213> ORGANISM: Homosapien

<400> SEQUENCE: 80

Asp Ile Val Met Thr Gln Ser Pro Asp Ser Leu Ala Val Ser Leu Asp
1 5 10 15

Glu Arg Ala Thr Ile Asn Cys Lys Ser Ser Gln Ser Val Leu Tyr Ser
20 25 30

Pro Asn Gln Lys Asn Tyr Leu Val Trp Tyr Gln Gln Lys Pro Gly Gln
 35 40 45

Pro Pro Lys Leu Leu Leu Tyr Trp Ala Ser Ile Arg Glu Ser Gly Val
50 55 60

Pro Asp Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr
 65 70 75 80
 Ile Ser Ser Leu Gln Ala Glu Asp Val Ala Val Tyr Tyr Cys Gln Gln

Lys Arg Thr Val Ala Ala Pro Ser Val Phe Ile Phe Pro Pro Ser Asp

Glu Gln Leu Lys Ser Gly Thr Ala Ser Val Val Cys Leu Leu Asn Asn
 130 135 140

Phe Tyr Pro Arg Glu Ala Lys Val Gln Trp Lys Val Asp Asn Ala Leu

-continued

145	150	155	160
-----	-----	-----	-----

Gln Ser Gly

<210> SEQ ID NO 81
<211> LENGTH: 556
<212> TYPE: DNA
<213> ORGANISM: Homosapien

<400> SEQUENCE: 81

caggtccagc	tggcacagtc	tggggctgag	gtgaagaagc	ctggggcctc	agtgaaggtc	60
tcctgcaagg	tttccggata	caccctcagt	gaattatcca	tgcactgggt	gcgacaggct	120
cctggaaaag	ggcttgagtg	gatgggaggt	tttgcattctg	aagatgtga	aacaatctac	180
gcacagaagt	tccaggcag	agtcaccatg	accgaggaca	catctacaga	cacagccttc	240
atggagctga	gcagcctgag	atctgaggac	acggccgtgt	attactgtgc	aaccacgat	300
ttttggagtg	gttattttca	ctactgggc	caggaaaccc	tggtcaccgt	ctcctcagct	360
tccaccaagg	gcccatccgt	cttccccctg	gcgcctgct	ccaggagcac	ctccgagagc	420
acagccgccc	tgggctgcct	ggtcaaggac	tacttcccg	aaccgggtac	ggtgtcggt	480
aactcaggcg	ccctgaccag	cggcgtgcac	accccccgg	ctgtcctaca	gtcctcagga	540
ctctactccc	tcagca					556

<210> SEQ ID NO 82
<211> LENGTH: 185
<212> TYPE: PRT
<213> ORGANISM: Homosapien

<400> SEQUENCE: 82

Gln	Val	Gln	Leu	Val	Gln	Ser	Gly	Ala	Glu	Val	Lys	Lys	Pro	Gly	Ala
1	5									10		15			

Ser	Val	Lys	Val	Ser	Cys	Lys	Val	Ser	Gly	Tyr	Thr	Leu	Ser	Glu	Leu
	20						25				30				

Ser	Met	His	Trp	Val	Arg	Gln	Ala	Pro	Gly	Lys	Gly	Leu	Glu	Trp	Met
	35							40				45			

Gly	Gly	Phe	Asp	Pro	Glu	Asp	Asp	Glu	Thr	Ile	Tyr	Ala	Gln	Lys	Phe
	50						55			60					

Gln	Gly	Arg	Val	Thr	Met	Thr	Glu	Asp	Thr	Ser	Thr	Asp	Thr	Ala	Phe
65					70			75				80			

Met	Glu	Leu	Ser	Ser	Leu	Arg	Ser	Glu	Asp	Thr	Ala	Val	Tyr	Tyr	Cys
	85							90				95			

Ala	Thr	His	Asp	Phe	Trp	Ser	Gly	Tyr	Phe	His	Tyr	Trp	Gly	Gln	Gly
	100					105			110						

Thr	Leu	Val	Thr	Val	Ser	Ser	Ala	Ser	Thr	Lys	Gly	Pro	Ser	Val	Phe
	115						120			125					

Pro	Leu	Ala	Pro	Cys	Ser	Arg	Ser	Thr	Ser	Glu	Ser	Thr	Ala	Ala	Leu
130					135				140						

Gly	Cys	Leu	Val	Lys	Asp	Tyr	Phe	Pro	Glu	Pro	Val	Thr	Val	Ser	Trp
145					150				155			160			

Asn	Ser	Gly	Ala	Leu	Thr	Ser	Gly	Val	His	Thr	Phe	Pro	Ala	Val	Leu
	165							170				175			

Gln	Ser	Ser	Gly	Leu	Tyr	Ser	Leu	Ser							
	180						185								

<210> SEQ ID NO 83
<211> LENGTH: 476

-continued

<212> TYPE: DNA

<213> ORGANISM: Homosapien

<400> SEQUENCE: 83

gacatcgta	tgacccagtc	tccagactcc	ctggctgtgt	ctctggcgaa	gagggccacc	60
atcaactgca	agtccagcca	gagtgtttta	tacagctccg	acaataagag	ctacttagtt	120
tggtaaccagc	agaaaccagg	acagcctcct	aagggtctca	tttactgggc	atctattcgg	180
gaatccgggg	tccctgaccg	attcagtggc	agcgggtctg	ggacagattt	cactctcacc	240
atcagcagcc	tgcaggctga	agatgtggca	gttttattact	gtcagcaata	ttatactagt	300
ccgtggacgt	tccggcaagg	gaccaagggt	gaaatcaaac	gaactgtggc	tgcaccatct	360
gtcttcatct	tcccgccatc	tgtatgagcag	ttgaaatctg	gaactgcctc	tgttgtgtgc	420
ctgctgaata	acttctatcc	cagagaggcc	aaagtacagt	ggaaggtgga	taacgc	476

<210> SEQ ID NO 84

<211> LENGTH: 158

<212> TYPE: PRT

<213> ORGANISM: Homosapien

<400> SEQUENCE: 84

Asp	Ile	Val	Met	Thr	Gln	Ser	Pro	Asp	Ser	Leu	Ala	Val	Ser	Leu	Gly
1															
															15

Glu	Arg	Ala	Thr	Ile	Asn	Cys	Lys	Ser	Ser	Gln	Ser	Val	Leu	Tyr	Ser
															30
20															

Ser	Asp	Asn	Lys	Ser	Tyr	Leu	Val	Trp	Tyr	Gln	Gln	Lys	Pro	Gly	Gln
															45
35															

Pro	Pro	Lys	Val	Leu	Ile	Tyr	Trp	Ala	Ser	Ile	Arg	Glu	Ser	Gly	Val
															60
50															

Pro	Asp	Arg	Phe	Ser	Gly	Ser	Gly	Ser	Gly	Thr	Asp	Phe	Thr	Leu	Thr
															80
65															

Ile	Ser	Ser	Leu	Gln	Ala	Glu	Asp	Val	Ala	Val	Tyr	Tyr	Cys	Gln	Gln
															95
85															

Tyr	Tyr	Thr	Ser	Pro	Trp	Thr	Phe	Gly	Gly	Thr	Lys	Val	Glu	Ile	
															110
100															

Lys	Arg	Thr	Val	Ala	Ala	Pro	Ser	Val	Phe	Ile	Phe	Pro	Pro	Ser	Asp
															125
115															

Glu	Gln	Leu	Lys	Ser	Gly	Thr	Ala	Ser	Val	Val	Cys	Leu	Leu	Asn	Asn
															140
130															

Phe	Tyr	Pro	Arg	Glu	Ala	Lys	Val	Gln	Trp	Lys	Val	Asp	Asn		
															155
145															

<210> SEQ ID NO 85

<211> LENGTH: 543

<212> TYPE: DNA

<213> ORGANISM: Homosapien

<400> SEQUENCE: 85

cagggtccagc	tggtaacgtc	tggggctgag	gtgaagaagc	ctggggcctc	agtgaaggtc	60
tcctgttaagg	tttccggata	caccctcaact	gaattatcca	tgcactgggt	gcgacaggct	120
cctggaaaag	ggcttgagtg	gatgggaggt	tttgcattctg	aagatggta	aacaatctac	180
gcacagaagt	tccagggcag	agtcaccatg	accgaggaca	catctacaga	cacagcctac	240
atggagctga	gcagcctgag	atctgaggac	acggccgtgt	attactgtgc	aatccacgag	300
ttttggagtg	gttattttga	ctactggggc	cagggAACCC	tggtcaccgt	ctcttcagct	360

-continued

tccaccaagg	gcccacccgt	cttccccctg	gccccctgtc	ccaggaggac	ctccgagagc	420
acagccgccc	ttggctgcct	ggtcaaggac	tacttccccg	aaccggtgac	ggtgtcgtgg	480
aactcaggcg	ccctgaccag	cggcgtgcac	accttcccg	ctgtcctaca	gtcctcagg	540
ctt						543

<210> SEQ ID NO 86
<211> LENGTH: 181
<212> TYPE: PRT
<213> ORGANISM: Homosapien

<400> SEQUENCE: 86

Gln	Val	Gln	Leu	Val	Gln	Ser	Gly	Ala	Glu	Val	Lys	Lys	Pro	Gly	Ala
1				5				10			15				
Ser	Val	Lys	Val	Ser	Cys	Lys	Val	Ser	Gly	Tyr	Thr	Leu	Thr	Glu	Leu
	20				25				30						
Ser	Met	His	Trp	Val	Arg	Gln	Ala	Pro	Gly	Lys	Gly	Leu	Glu	Trp	Met
	35				40				45						
Gly	Gly	Phe	Asp	Pro	Glu	Asp	Gly	Glu	Thr	Ile	Tyr	Ala	Gln	Lys	Phe
	50				55			60							
Gln	Gly	Arg	Val	Thr	Met	Thr	Glu	Asp	Thr	Ser	Thr	Asp	Thr	Ala	Tyr
	65				70			75			80				
Met	Glu	Leu	Ser	Ser	Leu	Arg	Ser	Glu	Asp	Thr	Ala	Val	Tyr	Tyr	Cys
	85				90			95							
Ala	Ile	His	Glu	Phe	Trp	Ser	Gly	Tyr	Phe	Asp	Tyr	Trp	Gly	Gln	Gly
	100				105			110							
Thr	Leu	Val	Thr	Val	Ser	Ser	Ala	Ser	Thr	Lys	Gly	Pro	Ser	Val	Phe
	115				120			125							
Pro	Leu	Ala	Pro	Cys	Ser	Arg	Ser	Thr	Ser	Glu	Ser	Thr	Ala	Ala	Leu
	130			135			140								
Gly	Cys	Leu	Val	Lys	Asp	Tyr	Phe	Pro	Glu	Pro	Val	Thr	Val	Ser	Trp
	145			150			155		160						
Asn	Ser	Gly	Ala	Leu	Thr	Ser	Gly	Val	His	Thr	Phe	Pro	Ala	Val	Leu
	165			170			175								
Gln	Ser	Ser	Gly	Leu											
	180														

<210> SEQ ID NO 87
<211> LENGTH: 477
<212> TYPE: DNA
<213> ORGANISM: Homosapien

<400> SEQUENCE: 87

gacatcgta	tgacccagtc	tccagactcc	ctggctgtgt	ctctggcgca	gaggggccacc	60
atcaactgca	agtccagcc	gagtgtttta	tacagctcca	acaataaaga	ctathtagtt	120
tggcaccc	agaaaccagg	acagcctcct	aagttgctca	tttactggc	atctacccgg	180
gaatccgggg	tccctgaccg	attcagtggc	agcgggtctg	ggacagattt	cactctcacc	240
atcagcagcc	tgcaggccg	agatgtggc	gttttattact	gtcagcaata	ttatagttt	300
ccgtggacgt	tggccaagg	gaccaagggt	gaaatcaaac	gaactgtggc	tgcaccatct	360
gtcttcatct	tcccgccatc	tgtatgagcag	ttgaaatctg	gaactgcctc	tgttgtgtgc	420
ctgctgaata	acttctatcc	cagagaggcc	aaagtacagt	ggaaggtgga	taacgcc	477

<210> SEQ ID NO 88
<211> LENGTH: 159

-continued

<212> TYPE: PRT

<213> ORGANISM: Homosapien

<400> SEQUENCE: 88

Asp	Ile	Val	Met	Thr	Gln	Ser	Pro	Asp	Ser	Leu	Ala	Val	Ser	Leu	Gly
1															15

Glu	Arg	Ala	Thr	Ile	Asn	Cys	Lys	Ser	Ser	Leu	Ser	Val	Leu	Tyr	Ser
20															30

Ser	Asn	Asn	Lys	Asn	Tyr	Leu	Val	Trp	Tyr	Leu	Gln	Lys	Pro	Gly	Gln
35															45

Pro	Pro	Lys	Leu	Leu	Ile	Tyr	Trp	Ala	Ser	Thr	Arg	Glu	Ser	Gly	Val
50															60

Pro	Asp	Arg	Phe	Ser	Gly	Ser	Gly	Ser	Gly	Thr	Asp	Phe	Thr	Leu	Thr
65															80

Ile	Ser	Ser	Leu	Gln	Ala	Glu	Asp	Val	Ala	Val	Tyr	Tyr	Cys	Gln	Gln
85															95

Tyr	Tyr	Ser	Ser	Pro	Trp	Thr	Phe	Gly	Gln	Gly	Thr	Lys	Val	Glu	Ile
100															110

Lys	Arg	Thr	Val	Ala	Ala	Pro	Ser	Val	Phe	Ile	Phe	Pro	Pro	Ser	Asp
115															125

Glu	Gln	Leu	Lys	Ser	Gly	Thr	Ala	Ser	Val	Val	Cys	Leu	Leu	Asn	Asn
130															140

Phe	Tyr	Pro	Arg	Glu	Ala	Lys	Val	Gln	Trp	Lys	Val	Asp	Asn	Ala	
145															155

<210> SEQ_ID NO 89

<211> LENGTH: 1335

<212> TYPE: DNA

<213> ORGANISM: Homosapien

<400> SEQUENCE: 89

caggtccagc	tggtacagtc	tggggctgag	gtgaagaagc	ctggggcctc	agtgaaggtc	60
tcctgcagg	tttccggata	caccctca	gaattatcca	tgcactgggt	gcgacagact	120
cctggaaaag	ggcttgagtg	gatggaggt	tttgcattctg	aagatggta	aacaatctac	180
gcacagaagt	tccaggacag	agtcaccatg	accgaggaca	catctacaga	cacagcctac	240
atggaaactga	gcagcctgag	atctgaggac	acggccgtgt	attactgtgc	aacaacacgt	300
ttttggactg	gttattatga	ctactggggc	cagggAACCC	tggtcaccgt	ctccctcaggc	360
tccaccaagg	gcccatcggt	cttccccctg	gcgcctgtgt	ccaggagcac	ctccgagagc	420
acagcggccc	tgggctgcct	ggtcaaggac	tacttccccg	aaccgggtac	ggtgtcggt	480
aactcaggcg	ctctgaccag	cggcgtgcac	accccccag	ctgtcctaca	gtcctcaggaa	540
ctctactccc	tcagcagcg	gtgtgaccgt	ccctccagca	acttcggcac	ccagacactac	600
acctgcaacg	tagatcacaa	gcccagcaac	accaagggtgg	acaagacagt	tgagcgc当地	660
tgttgtgtcg	agtgcacc	gtgcccagca	ccacccgtgg	caggaccgtc	agtcttcctc	720
ttccccccaa	aacccaagga	caccctcatg	atctcccgga	cccccgtgg	cacgtgc当地	780
gtgggtggacg	tgagccacga	agaccccgag	gtccagttca	actggtacgt	ggacggcg	840
gaggtgcata	atgccaagac	aaagccacgg	gaggagcgt	tcaacagcac	gttccgtgt	900
gtcagcgtcc	tcaccgtgt	gcaccaggac	tggctgaacg	gcaaggagta	caagtgc当地	960
gtctccaaca	aaggcctccc	agccccatc	gagaaaacca	tctccaaaac	caaagggc当地	1020
ccccgagaac	cacaggtgta	caccctgccc	ccatcccg	aggagatgac	caagaaccag	1080

-continued

```

gtcagcctga cctgcctggc caaaggcttc taccccgacg acatcgccgt ggagtgggag 1140
agcaatgggc agccggagaa caactacaag accacacctc ccatgctgga ctccgacggc 1200
tccttcttcc tctacagcaa gctcaccgtg gacaagagca ggtggcagca gggaaacgtc 1260
ttctcatgct cctgtatgca tgaggctctg cacaaccact acacgcagaa gagcctctcc 1320
ctgtctccgg gtaaa 1335

```

```

<210> SEQ_ID NO 90
<211> LENGTH: 445
<212> TYPE: PRT
<213> ORGANISM: Homosapien

```

```
<400> SEQUENCE: 90
```

```

Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ala
 1           5           10          15

Ser Val Lys Val Ser Cys Lys Val Ser Gly Tyr Thr Leu Thr Glu Leu
 20          25          30

Ser Met His Trp Val Arg Gln Thr Pro Gly Lys Gly Leu Glu Trp Met
 35          40          45

Gly Gly Phe Asp Pro Glu Asp Gly Glu Thr Ile Tyr Ala Gln Lys Phe
 50          55          60

Gln Asp Arg Val Thr Met Thr Glu Asp Thr Ser Thr Asp Thr Ala Tyr
 65          70          75          80

Met Glu Leu Ser Ser Leu Arg Ser Glu Asp Thr Ala Val Tyr Tyr Cys
 85          90          95

Ala Thr Asn Asp Phe Trp Thr Gly Tyr Asp Tyr Trp Gly Gln Gly
100         105         110

Thr Leu Val Thr Val Ser Ser Ala Ser Thr Lys Gly Pro Ser Val Phe
115         120         125

Pro Leu Ala Pro Cys Ser Arg Ser Thr Ser Glu Ser Thr Ala Ala Leu
130         135         140

Gly Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro Val Thr Val Ser Trp
145         150         155         160

Asn Ser Gly Ala Leu Thr Ser Gly Val His Thr Phe Pro Ala Val Leu
165         170         175

Gln Ser Ser Gly Leu Tyr Ser Leu Ser Ser Val Val Thr Val Pro Ser
180         185         190

Ser Asn Phe Gly Thr Gln Thr Tyr Cys Asn Val Asp His Lys Pro
195         200         205

Ser Asn Thr Lys Val Asp Lys Thr Val Glu Arg Lys Cys Cys Val Glu
210         215         220

Cys Pro Pro Cys Pro Ala Pro Pro Val Ala Gly Pro Ser Val Phe Leu
225         230         235         240

Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu
245         250         255

Val Thr Cys Val Val Val Asp Val Ser His Glu Asp Pro Glu Val Gln
260         265         270

Phe Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala Lys Thr Lys
275         280         285

Pro Arg Glu Glu Gln Phe Asn Ser Thr Phe Arg Val Val Ser Val Leu
290         295         300

Thr Val Val His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys
305         310         315         320

Val Ser Asn Lys Gly Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys

```

-continued

325	330	335	
Thr Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser			
340	345	350	
Arg Glu Glu Met Thr Lys Asn Gln Val Ser Leu Thr Cys Leu Val Lys			
355	360	365	
Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln			
370	375	380	
Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Met Leu Asp Ser Asp Gly			
385	390	395	400
Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln			
405	410	415	
Gln Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu His Asn			
420	425	430	
His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys			
435	440	445	

<210> SEQ ID NO 91

<211> LENGTH: 660

<212> TYPE: DNA

<213> ORGANISM: Homosapien

<400> SEQUENCE: 91

gacatcgtga tgacccagtc tccagactcc ctggctgtgt ctctggcgca gagggccacc	60
atcaactgca agtccagcca gagtgttta tacagctcca acaataagaa ctacttagtt	120
tggtaccagg agaaaccagg acagcctcct aagacgctca tttactggc atctacccgg	180
gaatccgggg tccctgaccg attcagtggc agcgggtctg ggacagattt cacttcacc	240
atcagcagcc tgcaggctga agatgtggga gtttattact gtcaacaata ttatactgt	300
ccgtggacgt tcggccaagg gaccaagggt gaaatcaagc gaactgtggc tgcaccatct	360
gtcttcatct tcccgccatc tcatgagcag ttgaaatctg gaactgcctc tgggtgtgc	420
ctgctgaata acttctatcc cagagaggcc aaagtacagt ggaaggtgga taacgccctc	480
caatcgggta actcccagga gagtgtcaca gagcaggaca gcaaggacag cacctacagc	540
ctcagcagca ccctgacgct gagcaaagca gactacgaga aacacaaagt ctacgcctgc	600
gaagtcaccc atcagggcct gagctcgccc gtcacaaaga gttcaacag gggagagtgt	660

<210> SEQ ID NO 92

<211> LENGTH: 220

<212> TYPE: PRT

<213> ORGANISM: Homosapien

<400> SEQUENCE: 92

Asp Ile Val Met Thr Gln Ser Pro Asp Ser Leu Ala Val Ser Leu Gly			
1	5	10	15
Glu Arg Ala Thr Ile Asn Cys Lys Ser Ser Gln Ser Val Leu Tyr Ser			
20	25	30	
Ser Asn Asn Lys Asn Tyr Leu Val Trp Tyr Gln Gln Lys Pro Gly Gln			
35	40	45	
Pro Pro Lys Thr Leu Ile Tyr Trp Ala Ser Thr Arg Glu Ser Gly Val			
50	55	60	
Pro Asp Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr			
65	70	75	80
Ile Ser Ser Leu Gln Ala Glu Asp Val Gly Val Tyr Tyr Cys Gln Gln			
85	90	95	

-continued

Tyr Tyr Thr Ser Pro Trp Thr Phe Gly Gln Gly Thr Lys Val Glu Ile
 100 105 110

Lys Arg Thr Val Ala Ala Pro Ser Val Phe Ile Phe Pro Pro Ser Asp
 115 120 125

Glu Gln Leu Lys Ser Gly Thr Ala Ser Val Val Cys Leu Leu Asn Asn
 130 135 140

Phe Tyr Pro Arg Glu Ala Lys Val Gln Trp Lys Val Asp Asn Ala Leu
 145 150 155 160

Gln Ser Gly Asn Ser Gln Glu Ser Val Thr Glu Gln Asp Ser Lys Asp
 165 170 175

Ser Thr Tyr Ser Leu Ser Ser Thr Leu Thr Leu Ser Lys Ala Asp Tyr
 180 185 190

Glu Lys His Lys Val Tyr Ala Cys Glu Val Thr His Gln Gly Leu Ser
 195 200 205

Ser Pro Val Thr Lys Ser Phe Asn Arg Gly Glu Cys
 210 215 220

<210> SEQ ID NO 93

<211> LENGTH: 560

<212> TYPE: DNA

<213> ORGANISM: Homosapien

<400> SEQUENCE: 93

caggtgcagc tgcaggagtc gggcccagga ctggtaagc cgtcacagac cctgtccctc 60
 acctgcactg tctctgggg ctccatcagc agtgggggtt actactggag ctggatccgc 120
 cagcacccag ggaaggccct ggagtggatt gggtacatct attacagtgg gagcacctac 180
 tacaacccgt ccctcaagag tcgagttatc atatcaatgg acacgtctaa gaaccagttc 240
 tccctgaagc tgacctctgt gactgcccgc gacacggccg tggattactg tgcgagatca 300
 tatacgagct cgtccccact ggttcgaccc ctggggccag ggaaccctgg tcaccgtctc 360
 ctcagcttcc accaaggccc catccgtctt cccctggcg ccctgctcca ggagcacctc 420
 cgagagcaca gcccctgg gctgcctggt caaggactac ttcccccgaac cggtgacgg 480
 gtcgtggAAC tcaggcgccc tgaccagcgg cgtgcacacc ttcccggttg tcctacagtc 540
 ctcaggactc tactccctca 560

<210> SEQ ID NO 94

<211> LENGTH: 186

<212> TYPE: PRT

<213> ORGANISM: Homosapien

<400> SEQUENCE: 94

Gln Val Gln Leu Gln Glu Ser Gly Pro Gly Leu Val Lys Pro Ser Gln
 1 5 10 15

Thr Leu Ser Leu Thr Cys Thr Val Ser Gly Gly Ser Ile Ser Ser Gly
 20 25 30

Gly Tyr Tyr Trp Ser Trp Ile Arg Gln His Pro Gly Lys Gly Leu Glu
 35 40 45

Trp Ile Gly Tyr Ile Tyr Ser Gly Ser Thr Tyr Tyr Asn Pro Ser
 50 55 60

Leu Lys Ser Arg Val Ile Ile Ser Val Asp Thr Ser Lys Asn Gln Phe
 65 70 75 80

Ser Leu Lys Leu Thr Ser Val Thr Ala Ala Asp Thr Ala Val Tyr Tyr
 85 90 95

Cys Ala Arg Ser Tyr Ser Ser Ser Pro Leu Val Arg Pro Leu Gly

-continued

 100 105 110

 Pro Gly Asn Pro Gly His Arg Leu Leu Ser Phe His Gln Gly Pro Ile
 115 120 125

 Arg Leu Pro Pro Gly Ala Leu Leu Gln Glu His Leu Arg Glu His Ser
 130 135 140

 Arg Pro Gly Leu Pro Gly Gln Gly Leu Leu Pro Arg Thr Gly Asp Gly
 145 150 155 160

 Val Val Glu Leu Arg Arg Pro Asp Gln Arg Arg Ala His Leu Pro Gly
 165 170 175

 Cys Pro Thr Val Leu Arg Thr Leu Leu Pro
 180 185

<210> SEQ ID NO 95

<211> LENGTH: 458

<212> TYPE: DNA

<213> ORGANISM: Homosapien

<400> SEQUENCE: 95

 gacatccaga tgacccagtc tccatcctcc ctgtctgcat ctgttaggaga cagagtcacc 60
 atcacttgcc gggcaagtca gggcattaga aatgatttag gctggtatca gcagaaacca 120
 gggaaagccc ctaagcgcct gatctatgct gcatccagtt tgcaaagtgg ggtcccatca 180
 aggttcagcg gcagtggatc tgggacagaa ttcactctca caatcagcag cctgcagcct 240
 gaagattttgc caacttatta ctgtctacag cataatagtt acccattcac tttcggccct 300
 gggaccaaaag tggatatacaa acgaactgtg gctgcaccat ctgtcttcat cttccgcaca 360
 tctgatgagc agttgaaatc tggaaactgcc tctgttgtgt gcctgctgaa taacttctat 420
 cccagagagg ccaaagtaca gtgaaagggtg gataacgc 458

<210> SEQ ID NO 96

<211> LENGTH: 152

<212> TYPE: PRT

<213> ORGANISM: Homosapien

<400> SEQUENCE: 96

 Asp Ile Gln Met Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser Val Gly
 1 5 10 15

 Asp Arg Val Thr Ile Thr Cys Arg Ala Ser Gln Gly Ile Arg Asn Asp
 20 25 30

 Leu Gly Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Arg Leu Ile
 35 40 45

 Tyr Ala Ala Ser Ser Leu Gln Ser Gly Val Pro Ser Arg Phe Ser Gly
 50 55 60

 Ser Gly Ser Gly Thr Glu Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro
 65 70 75 80

 Glu Asp Phe Ala Thr Tyr Tyr Cys Leu Gln His Asn Ser Tyr Pro Phe
 85 90 95

 Thr Phe Gly Pro Gly Thr Lys Val Asp Ile Lys Arg Thr Val Ala Ala
 100 105 110

 Pro Ser Val Phe Ile Phe Pro Pro Ser Asp Glu Gln Leu Lys Ser Gly
 115 120 125

 Thr Ala Ser Val Val Cys Leu Leu Asn Asn Phe Tyr Pro Arg Glu Ala
 130 135 140

 Lys Val Gln Trp Lys Val Asp Asn
 145 150

-continued

<210> SEQ ID NO 97

<211> LENGTH: 559

<212> TYPE: DNA

<213> ORGANISM: Homosapien

<400> SEQUENCE: 97

cagggtccagc	tggtacagtc	tggggctgag	gtgaagaagc	ctggggcctc	agtgaaggtc	60
tcctgcaagg	tttccggata	caccctcaact	gaattatcca	tgcactgggt	gcgacaggct	120
cctggaaaag	ggcttgagtg	gatgggaggt	tttgatcctg	aagatggtga	aacaatctac	180
gcacagaagt	tccagggcag	agtccaccatg	accgaggaca	catctacaga	cacagcctac	240
atgggagctga	gcagcctgag	atctgaggac	acggccgtgt	attactgtgc	aacagatcgc	300
gagtttsga	gtgggttattt	ctaccactgg	ggccaggaa	ccctggcac	cgtctccctca	360
gcctccacca	agggcccatc	ggtcttcccc	ctggcgccct	gctccaggag	cacctccgag	420
agcacagcgg	ccctgggctg	cctggtaag	gactacttcc	ccgaaccgg	gacggtgtcg	480
tggaactca	gcgctctgac	cagcggcgtg	cacacccctcc	cagctgtcct	acagtcctca	540
ggactctact	ccctcagca					559

<210> SEQ ID NO 98

<211> LENGTH: 186

<212> TYPE: PRT

<213> ORGANISM: Homosapien

<400> SEQUENCE: 98

Gln	Val	Gln	Leu	Val	Gln	Ser	Gly	Ala	Glu	Val	Lys	Lys	Pro	Gly	Ala
1															15
Ser	Val	Lys	Val	Ser	Cys	Lys	Val	Ser	Gly	Tyr	Thr	Leu	Thr	Glu	Leu
															30
Ser	Met	His	Trp	Val	Arg	Gln	Ala	Pro	Gly	Lys	Gly	Leu	Glu	Trp	Met
															45
Gly	Gly	Phe	Asp	Pro	Glu	Asp	Gly	Glu	Thr	Ile	Tyr	Ala	Gln	Lys	Phe
															60
Gln	Gly	Arg	Val	Thr	Met	Thr	Glu	Asp	Thr	Ser	Thr	Asp	Thr	Ala	Tyr
															80
Met	Glu	Leu	Ser	Ser	Leu	Arg	Ser	Glu	Asp	Thr	Ala	Val	Tyr	Tyr	Cys
															95
Ala	Thr	Asp	Arg	Glu	Phe	Trp	Ser	Gly	Tyr	Phe	Tyr	His	Trp	Gly	Gln
															110
Gly	Thr	Leu	Val	Thr	Val	Ser	Ser	Ala	Ser	Thr	Lys	Gly	Pro	Ser	Val
															125
Phe	Pro	Leu	Ala	Pro	Cys	Ser	Arg	Ser	Thr	Ser	Glu	Ser	Thr	Ala	Ala
															140
Leu	Gly	Cys	Leu	Val	Lys	Asp	Tyr	Phe	Pro	Glu	Pro	Val	Thr	Val	Ser
															160
Trp	Asn	Ser	Gly	Ala	Leu	Thr	Ser	Gly	Val	His	Thr	Phe	Pro	Ala	Val
															175
Leu	Gln	Ser	Ser	Gly	Leu	Tyr	Ser	Leu	Ser						
															185

<210> SEQ ID NO 99

<211> LENGTH: 491

<212> TYPE: DNA

<213> ORGANISM: Homosapien

<400> SEQUENCE: 99

-continued

gacatcgta	tgaccagtc	tccagactcc	ctggctgtgt	ctctggcga	gaggcccacc	60
atcaactgca	agtccagcca	gagtgttta	tacagctcca	acaatgagaa	cttcttagct	120
tggtaccagc	agaaaccagg	acagcctcct	aaactgctca	tttactgggc	atctaccgg	180
gaatccgggg	tcccagaccg	cttcagtgcc	agcgggtctg	ggacagattt	cactctcacc	240
atcagcagcc	tgcaggctga	agatgtggca	gtttattact	gtcagcaata	ttataatagt	300
ccgtggacgt	tcggccaagg	gaccaagggtg	gaaatcaaac	gaactgtggc	tgcaccatct	360
gtcttcatct	tcccgccatc	tgatgagcag	ttgaaatctg	gaactgcctc	tgttgtgtgc	420
ctgctgaata	acttctatcc	cagagaggcc	aaagtacagt	ggaaggtgga	taacgcctcc	480
ccaatcgggt	a					491

<210> SEQ ID NO 100

<211> LENGTH: 163

<212> TYPE: PRT

<213> ORGANISM: Homosapien

<400> SEQUENCE: 100

Asp	Ile	Val	Met	Thr	Gln	Ser	Pro	Asp	Ser	Leu	Ala	Val	Ser	Leu	Gly
1								10							15

Glu	Arg	Ala	Thr	Ile	Asn	Cys	Lys	Ser	Ser	Gln	Ser	Val	Leu	Tyr	Ser
		20						25							30

Ser	Asn	Asn	Glu	Asn	Phe	Leu	Ala	Trp	Tyr	Gln	Gln	Lys	Pro	Gly	Gln
			35							40					45

Pro	Pro	Lys	Leu	Leu	Ile	Tyr	Trp	Ala	Ser	Thr	Arg	Glu	Ser	Gly	Val
		50							55						60

Pro	Asp	Arg	Phe	Ser	Gly	Ser	Gly	Thr	Asp	Phe	Thr	Leu	Thr		
65								70							80

Ile	Ser	Ser	Leu	Gln	Ala	Glu	Asp	Val	Ala	Val	Tyr	Tyr	Cys	Gln	Gln
			85						90						95

Tyr	Tyr	Asn	Ser	Pro	Trp	Thr	Phe	Gly	Gln	Gly	Thr	Lys	Val	Glu	Ile
		100						105							110

Lys	Arg	Thr	Val	Ala	Ala	Pro	Ser	Val	Phe	Ile	Phe	Pro	Pro	Ser	Asp
	115								120						125

Glu	Gln	Leu	Lys	Ser	Gly	Thr	Ala	Ser	Val	Val	Cys	Leu	Leu	Asn	Asn
	130								135						140

Phe	Tyr	Pro	Arg	Glu	Ala	Lys	Val	Gln	Trp	Lys	Val	Asp	Asn	Ala	Ser
145						150				155					160

Pro Ile Gly

<210> SEQ ID NO 101

<211> LENGTH: 543

<212> TYPE: DNA

<213> ORGANISM: Homosapien

<400> SEQUENCE: 101

caggtccagc	tggtagcgtc	tggggctgag	gtgaagaagc	ctggggcctc	agtgaaggtc	60
tcctgcaagg	tttccggata	caccctca	gaattatcca	tgcactgggt	gcgacaggct	120
cctggaaaag	ggcttgagtg	gatggaggt	tttgcattctg	aagatggta	aacaatctac	180
gcacagaagt	tccagggcag	agtcaccatg	accgaggaca	catctacaga	cacagcctac	240
atggagctga	gcagcctgag	atctgaggac	acggccgtgt	attactgtgc	aacggacgat	300
ttttggagtg	gttattttga	ctactggggc	cagggAACCC	tggtcaccgt	ctcctcagcc	360

-continued

tccaccaagg	gcccacatcggt	cttccccctg	gcccctgtgt	ccaggaggcac	ctccgagagc	420
acagcggccc	ttggctgcct	ggtcaaggac	tacttccccg	aaccggtgac	ggtgtcgtgg	480
aactcaggcg	ctctgaccag	cggcgtgcac	accttcccag	ctgtcctaca	gtcctcaggaa	540
ctt						543

<210> SEQ ID NO 102

<211> LENGTH: 181

<212> TYPE: PRT

<213> ORGANISM: Homosapien

<400> SEQUENCE: 102

Gln	Val	Gln	Leu	Val	Gln	Ser	Gly	Ala	Glu	Val	Lys	Lys	Pro	Gly	Ala
1				5				10			15				

Ser	Val	Lys	Val	Ser	Cys	Lys	Val	Ser	Gly	Tyr	Thr	Leu	Thr	Glu	Leu
	20				25				30						

Ser	Met	His	Trp	Val	Arg	Gln	Ala	Pro	Gly	Lys	Gly	Leu	Glu	Trp	Met
	35				40				45						

Gly	Gly	Phe	Asp	Pro	Glu	Asp	Gly	Glu	Thr	Ile	Tyr	Ala	Gln	Lys	Phe
	50			55				60							

Gln	Gly	Arg	Val	Thr	Met	Thr	Glu	Asp	Thr	Ser	Thr	Asp	Thr	Ala	Tyr
65				70			75			80					

Met	Glu	Leu	Ser	Ser	Leu	Arg	Ser	Glu	Asp	Thr	Ala	Val	Tyr	Tyr	Cys
	85				90			95							

Ala	Thr	Asp	Asp	Phe	Trp	Ser	Gly	Tyr	Phe	Asp	Tyr	Trp	Gly	Gln	Gly
	100				105			110							

Thr	Leu	Val	Thr	Val	Ser	Ser	Ala	Ser	Thr	Lys	Gly	Pro	Ser	Val	Phe
	115				120				125						

Pro	Leu	Ala	Pro	Cys	Ser	Arg	Ser	Thr	Ser	Glu	Ser	Thr	Ala	Ala	Leu
	130			135				140							

Gly	Cys	Leu	Val	Lys	Asp	Tyr	Phe	Pro	Glu	Pro	Val	Thr	Val	Ser	Trp
145				150			155			160					

Asn	Ser	Gly	Ala	Leu	Thr	Ser	Gly	Val	His	Thr	Phe	Pro	Ala	Val	Leu
	165				170			175							

Gln	Ser	Ser	Gly	Leu											
				180											

<210> SEQ ID NO 103

<211> LENGTH: 491

<212> TYPE: DNA

<213> ORGANISM: Homosapien

<400> SEQUENCE: 103

gacatcgta	tgacccagtc	tccagactcc	ctggctgtgt	ctctggcgca	gaggggccacc	60
atcaactgca	agtccagtc	gagtgtttta	tacaggctca	acaataagag	ctacttagtt	120
tggtaccagc	agaaaactagg	acagtctcct	aagctgctca	tttactggc	atctaccgg	180
gaatccgggg	tccctgaccg	attcagtgcc	agcgggtctg	ggacagattt	cactctcacc	240
atcagcagcc	tgcaggctga	agatgtggca	gttttatttt	gtcaacaata	ttatagttact	300
ccgtggacgt	tccgccaagg	gaccaagggt	gaaatcaaac	gaactgtggc	tgcaccatct	360
gtcttcatct	tcccgccatc	tgtatgagcag	ttgaaatctg	gaactgcctc	tttttgtgtgc	420
ctgctgaata	acttctatcc	cagagaggcc	aaagtacagt	ggaagggtgga	taacgccctc	480
ccaatcgggt	a					491

-continued

<210> SEQ ID NO 104

<211> LENGTH: 163

<212> TYPE: PRT

<213> ORGANISM: Homosapien

<400> SEQUENCE: 104

Asp	Ile	Val	Met	Thr	Gln	Ser	Pro	Asp	Ser	Leu	Ala	Val	Ser	Leu	Gly
1								10						15	

Glu	Arg	Ala	Thr	Ile	Asn	Cys	Lys	Ser	Ser	Gln	Ser	Val	Leu	Tyr	Arg
20								25						30	

Ser	Asn	Asn	Lys	Ser	Tyr	Leu	Val	Trp	Tyr	Gln	Gln	Lys	Leu	Gly	Gln
35										45					

Ser	Pro	Lys	Leu	Leu	Ile	Tyr	Trp	Ala	Ser	Thr	Arg	Glu	Ser	Gly	Val
50									55						60

Pro	Asp	Arg	Phe	Ser	Gly	Ser	Gly	Thr	Asp	Phe	Thr	Leu	Thr		
65								75				80			

Ile	Ser	Ser	Leu	Gln	Ala	Glu	Asp	Val	Ala	Val	Tyr	Tyr	Cys	Gln	Gln
85								90					95		

Tyr	Tyr	Ser	Thr	Pro	Trp	Thr	Phe	Gly	Gln	Gly	Thr	Lys	Val	Glu	Ile
100								105				110			

Lys	Arg	Thr	Val	Ala	Ala	Pro	Ser	Val	Phe	Ile	Phe	Pro	Pro	Ser	Asp
115								120				125			

Glu	Gln	Leu	Lys	Ser	Gly	Thr	Ala	Ser	Val	Val	Cys	Leu	Leu	Asn	Asn
130								135				140			

Phe	Tyr	Pro	Arg	Glu	Ala	Lys	Val	Gln	Trp	Lys	Val	Asp	Asn	Ala	Leu
145								150				155			160

Pro Ile Gly

<210> SEQ ID NO 105

<211> LENGTH: 499

<212> TYPE: DNA

<213> ORGANISM: Homosapien

<400> SEQUENCE: 105

caggtccagc tggtagtc tggggctgag gtgaagaagc ctggggctc agtgaaggc 60

tcctgcaagg tttccggata caccctcaact gaattatcca tgcactgggt gcgacaggct 120

cctggaaaag ggcttgagtg gatggaggt tttgatccgt aagatggta aacaatctac 180

gcacagaagt tccagggcag agtcaccatg accgaggaca catctacaga cacagcctac 240

atggagctga gcagcctgag atctgaggac acggccgtgt attactgtgc aacagacgt 300

ttttggagtg gttatgttgc tcaactggggc cagggaaacc tggtcaccgt ctccctcagcc 360

tccaccaagg gcccattcggt cttcccccgt gcgcctgtct ccaggagcac ctccgagagc 420

acagcggccc tgggctgcct ggtcaaggac tacttccccg aaccgggtac ggtgtcggtgg 480

aactcaggcg ctctgacca 499

<210> SEQ ID NO 106

<211> LENGTH: 166

<212> TYPE: PRT

<213> ORGANISM: Homosapien

<400> SEQUENCE: 106

Gln	Val	Gln	Leu	Val	Gln	Ser	Gly	Ala	Glu	Val	Lys	Lys	Pro	Gly	Ala
1								5						15	

Ser	Val	Lys	Val	Ser	Cys	Lys	Val	Ser	Gly	Tyr	Thr	Leu	Thr	Glu	Leu
20								25				30			

-continued

Ser Met His Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Met
 35 40 45

Gly Gly Phe Asp Pro Glu Asp Gly Glu Thr Ile Tyr Ala Gln Lys Phe
 50 55 60

Gln Gly Arg Val Thr Met Thr Glu Asp Thr Ser Thr Asp Thr Ala Tyr
 65 70 75 80

Met Glu Leu Ser Ser Leu Arg Ser Glu Asp Thr Ala Val Tyr Tyr Cys
 85 90 95

Ala Thr Asp Asp Phe Trp Ser Gly Tyr Phe Asp Tyr Trp Gly Gln Gly
 100 105 110

Thr Leu Val Thr Val Ser Ser Ala Ser Thr Lys Gly Pro Ser Val Phe
 115 120 125

Pro Leu Ala Pro Cys Ser Arg Ser Thr Ser Glu Ser Thr Ala Ala Leu
 130 135 140

Gly Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro Val Thr Val Ser Trp
 145 150 155 160

Asn Ser Gly Ala Leu Thr
 165

<210> SEQ ID NO 107

<211> LENGTH: 448

<212> TYPE: DNA

<213> ORGANISM: Homosapien

<400> SEQUENCE: 107

gacatcgta tgaccagtc tccagactcc ctggctgtgt ctctggcgaa gaggccacc 60
 atcaactgca agtccagcca gagtgttta tacagctcca acaataagaa ctacttagtt 120
 tggtaccaggc agaaaccagg acagcctcct aagctgctca tttactggc atctaccgg 180
 gaatccgggg tccctgaccg attcagtgcc agcgggtctg ggacagattt cacttcacc 240
 atcagcagcc tgcaggctga agatgtggc gtttattact gtcagcaata ttatagtcct 300
 acgtggacgt tcggccaaagg gaccaagggt gaaatcaaacc gaaactgtggc tgcaccatct 360
 gtcttcatct tccccccatc tgatgagcag ttgaaatctg gaaactgcctc tgggtgtgc 420
 ctgctgaata acttctatcc cagagagg 448

<210> SEQ ID NO 108

<211> LENGTH: 149

<212> TYPE: PRT

<213> ORGANISM: Homosapien

<400> SEQUENCE: 108

Asp Ile Val Met Thr Gln Ser Pro Asp Ser Leu Ala Val Ser Leu Gly
 1 5 10 15

Glu Arg Ala Thr Ile Asn Cys Lys Ser Ser Gln Ser Val Leu Tyr Ser
 20 25 30

Ser Asn Asn Lys Asn Tyr Leu Val Trp Tyr Gln Gln Lys Pro Gly Gln
 35 40 45

Pro Pro Lys Leu Leu Ile Tyr Trp Ala Ser Thr Arg Glu Ser Gly Val
 50 55 60

Pro Asp Arg Phe Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr
 65 70 75 80

Ile Ser Ser Leu Gln Ala Glu Asp Val Ala Val Tyr Tyr Cys Gln Gln
 85 90 95

Tyr Tyr Ser Pro Thr Trp Thr Phe Gly Gln Gly Thr Lys Val Glu Ile
 100 105 110

-continued

Lys Arg Thr Val Ala Ala Pro Ser Val Phe Ile Phe Pro Pro Ser Asp
 115 120 125

Glu Gln Leu Lys Ser Gly Thr Ala Ser Val Val Cys Leu Leu Asn Asn
 130 135 140

Phe Tyr Pro Arg Glu
 145

<210> SEQ ID NO 109

<211> LENGTH: 540

<212> TYPE: DNA

<213> ORGANISM: Homosapien

<400> SEQUENCE: 109

caggtccagc tggcacatc tggggctgag gtgaagaagc ctggggcctc agtgaaggctc 60
 tcctgcaggc ttccggata caccctacta gaattatcca tgcactgggt gcgcacaggct 120
 cctggaaaag ggcttgagtg gatgggaggt tttgatcctg aagatggta aacaatctac 180
 gcacagaagt tccagggcag agtcaccatg accgaggaca catctacaga cacagcctac 240
 atggagctga gcagcctgag atctgaggac acggccgtgtt attactgtgc aacggacgat 300
 ttttggagtg gttatgttga ctactggggc cagggaaacc cttgtcaccgt ctccctcagcc 360
 tccaccaagg gcccattcggtt cttcccccgtgcgcctgtgtt ccaggagcac ctccgagac 420
 acagcggcccc tgggctgcctt ggtcaaggac tacttccccg aaccgggtgac ggtgtcggtgg 480
 aactcaggcg ctctgaccag cggcgtgcac accttcccag ctgtcctaca gtcctcagga 540

<210> SEQ ID NO 110

<211> LENGTH: 180

<212> TYPE: PRT

<213> ORGANISM: Homosapien

<400> SEQUENCE: 110

Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ala
 1 5 10 15

Ser Val Lys Val Ser Cys Lys Val Ser Gly Tyr Thr Leu Thr Glu Leu
 20 25 30

Ser Met His Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Met
 35 40 45

Gly Gly Phe Asp Pro Glu Asp Gly Glu Thr Ile Tyr Ala Gln Lys Phe
 50 55 60

Gln Gly Arg Val Thr Met Thr Glu Asp Thr Ser Thr Asp Thr Ala Tyr
 65 70 75 80

Met Glu Leu Ser Ser Leu Arg Ser Glu Asp Thr Ala Val Tyr Tyr Cys
 85 90 95

Ala Thr Asp Asp Phe Trp Ser Gly Tyr Phe Asp Tyr Trp Gly Gln Gly
 100 105 110

Thr Leu Val Thr Val Ser Ser Ala Ser Thr Lys Gly Pro Ser Val Phe
 115 120 125

Pro Leu Ala Pro Cys Ser Arg Ser Thr Ser Glu Ser Thr Ala Ala Leu
 130 135 140

Gly Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro Val Thr Val Ser Trp
 145 150 155 160

Asn Ser Gly Ala Leu Thr Ser Gly Val His Thr Phe Pro Ala Val Leu
 165 170 175

Gln Ser Ser Gly
 180

-continued

<210> SEQ ID NO 111
 <211> LENGTH: 478
 <212> TYPE: DNA
 <213> ORGANISM: Homosapien
 <400> SEQUENCE: 111

```

gacatcgta tgacccagtc tccagactcc ctggctgtgt ctctggcga gaggcccacc      60
atcaactgca agtccagcca aggtgtttt tacagctcca acaataagaa ctacttagct      120
tggtaccagc agaaaccagg acagcctcct aagctgctca tttactggac atctaccgg      180
gaatccgggg tccctgaccg attcagtgcc agcgggtctg tgacagattt cactctcacc      240
atcagcagcc tgcaggctga agatgtggca gtttattact gtcagcaata ttatagttct      300
ccgtggacgt tcggccaagg gaccaagggtg gaaatcaaacc gaaactgtggc tgcaccatct      360
gtcttcatct tcccgccatc tgatgagcag ttgaaatctg gaaactgcctc tgttgtgtc      420
ctgctgaata acttctatcc cagagaggcc aaagtacagt ggaaggtgga taacgcct      478
  
```

<210> SEQ ID NO 112
 <211> LENGTH: 159
 <212> TYPE: PRT
 <213> ORGANISM: Homosapien
 <400> SEQUENCE: 112

```

Asp Ile Val Met Thr Gln Ser Pro Asp Ser Leu Ala Val Ser Leu Gly
  1           5           10          15

Glu Arg Ala Thr Ile Asn Cys Lys Ser Ser Gln Ser Val Leu Tyr Ser
  20          25           30

Ser Asn Asn Lys Asn Tyr Leu Ala Trp Tyr Gln Gln Lys Pro Gly Gln
  35          40           45

Pro Pro Lys Leu Leu Ile Tyr Trp Thr Ser Thr Arg Glu Ser Gly Val
  50          55           60

Pro Asp Arg Phe Ser Gly Ser Gly Ser Val Thr Asp Phe Thr Leu Thr
  65          70           75           80

Ile Ser Ser Leu Gln Ala Glu Asp Val Ala Val Tyr Tyr Cys Gln Gln
  85          90           95

Tyr Tyr Ser Ser Pro Trp Thr Phe Gly Gln Gly Thr Lys Val Glu Ile
  100         105          110

Lys Arg Thr Val Ala Ala Pro Ser Val Phe Ile Phe Pro Pro Ser Asp
  115         120          125

Glu Gln Leu Lys Ser Gly Thr Ala Ser Val Val Cys Leu Leu Asn Asn
  130         135          140

Phe Tyr Pro Arg Glu Ala Lys Val Gln Trp Lys Val Asp Asn Ala
  145         150          155
  
```

<210> SEQ ID NO 113
 <211> LENGTH: 542
 <212> TYPE: DNA
 <213> ORGANISM: Homosapien
 <400> SEQUENCE: 113

```

caggtccagc tggtagtc tggggctgag gtgaagaagc ctggggcctc agtgaaggc      60
tcctgcaagg ttccggata caccctcgtt gaattatcca tgcactgggt gcgacaggct      120
cctggaaaag ggcttgagt gatgggaggt tttgatcctg aagatggta aacaatctac      180
gcacagaagt tccagggcag agtcaccatc accgaggaca catctacaga cacagcctac      240
  
```

-continued

atggagctga	gcagcctgag	atctgaggac	acggccgtgt	tttactgtgc	aacaaagagg	300
gaatatagtg	gctactttga	ctactggggc	cagggAACCC	tggtcaccgt	ctccctcagcc	360
tccaccaagg	gccccatcggt	cttccccctg	gcgcctgtct	ccaggagcac	ctccgagagc	420
acagcggccc	tggctgcct	ggtcaaggac	tacttccccg	aaccggtgac	ggtgtcgctgg	480
aactcaggcg	ctctgaccag	cggcgtgcac	accttcccag	ctgtcctaca	gtcctcagga	540
ct						542

<210> SEQ ID NO 114

<211> LENGTH: 180

<212> TYPE: PRT

<213> ORGANISM: Homosapien

<400> SEQUENCE: 114

Gln	Val	Gln	Leu	Val	Gln	Ser	Gly	Ala	Glu	Val	Lys	Lys	Pro	Gly	Ala
1				5					10				15		

Ser	Val	Lys	Val	Ser	Cys	Lys	Val	Ser	Gly	Tyr	Thr	Leu	Ser	Glu	Leu
	20				25					30					

Ser	Met	His	Trp	Val	Arg	Gln	Ala	Pro	Gly	Lys	Gly	Leu	Glu	Trp	Met
	35				40					45					

Gly	Gly	Phe	Asp	Pro	Glu	Asp	Gly	Glu	Thr	Ile	Tyr	Ala	Gln	Lys	Phe
	50			55					60						

Gln	Gly	Arg	Val	Thr	Met	Thr	Glu	Asp	Thr	Ser	Thr	Asp	Thr	Ala	Tyr
65				70			75			80					

Met	Glu	Leu	Ser	Ser	Leu	Arg	Ser	Glu	Asp	Thr	Ala	Val	Phe	Tyr	Cys
		85				90				95					

Ala	Thr	Lys	Arg	Glu	Tyr	Ser	Gly	Tyr	Phe	Asp	Tyr	Trp	Gly	Gln	Gly
	100				105					110					

Thr	Leu	Val	Thr	Val	Ser	Ser	Ala	Ser	Thr	Lys	Gly	Pro	Ser	Val	Phe
115				120			125								

Pro	Leu	Ala	Pro	Cys	Ser	Arg	Ser	Thr	Ser	Glu	Ser	Thr	Ala	Ala	Leu
130				135			140								

Gly	Cys	Leu	Val	Lys	Asp	Tyr	Phe	Pro	Glu	Pro	Val	Thr	Val	Ser	Trp
145				150			155				160				

Asn	Ser	Gly	Ala	Leu	Thr	Ser	Gly	Val	His	Thr	Phe	Pro	Ala	Val	Leu
	165				170				175						

Gln	Ser	Ser	Gly
	180		

<210> SEQ ID NO 115

<211> LENGTH: 477

<212> TYPE: DNA

<213> ORGANISM: Homosapien

<400> SEQUENCE: 115

gacatcgta	tgaccagtc	tccagactcc	ctggctgtgt	ctctggcgaa	gagggccacc	60
atcaactgca	agtccagcca	gagtgtttta	tacagctcca	acagtaagaa	ctacttagct	120
tggttccagc	agaaaccagg	acagcctcct	aagctgctca	tttactgggc	atctacccgg	180
gaatccgggg	tccctgaccg	attcagtggc	agcgggtctg	ggacagattt	cactctcacc	240
atcagccgccc	tgcaggctga	agatgtggca	gtttatttcct	gtcagcaata	ttttattact	300
ccgtggacgt	tcggccaagg	gaccaagggt	gaactcaaac	gaactgtggc	tgcaccatct	360
gtcttcatct	tcccgccatc	tgatgagcag	ttgaaatctg	gaactgcctc	tgttgtgtgc	420
ctgctgaata	acttctatcc	cagagggcc	aaagtacagt	ggaagggtgga	taacgcc	477

-continued

<210> SEQ_ID NO 116
 <211> LENGTH: 159
 <212> TYPE: PRT
 <213> ORGANISM: Homosapien

 <400> SEQUENCE: 116

 Asp Ile Val Met Thr Gln Ser Pro Asp Ser Leu Ala Val Ser Leu Gly
 1 5 10 15

 Glu Arg Ala Thr Ile Asn Cys Lys Ser Ser Gln Ser Val Leu Tyr Ser
 20 25 30

 Ser Asn Ser Lys Asn Tyr Leu Ala Trp Phe Gln Gln Lys Pro Gly Gln
 35 40 45

 Pro Pro Lys Leu Leu Ile Tyr Trp Ala Ser Thr Arg Glu Ser Gly Val
 50 55 60

 Pro Asp Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr
 65 70 75 80

 Ile Ser Arg Leu Gln Ala Glu Asp Val Ala Val Tyr Ser Cys Gln Gln
 85 90 95

 Tyr Phe Ile Thr Pro Trp Thr Phe Gly Gln Gly Thr Lys Val Glu Leu
 100 105 110

 Lys Arg Thr Val Ala Ala Pro Ser Val Phe Ile Phe Pro Pro Ser Asp
 115 120 125

 Glu Gln Leu Lys Ser Gly Thr Ala Ser Val Val Cys Leu Leu Asn Asn
 130 135 140

 Phe Tyr Pro Arg Glu Ala Lys Val Gln Trp Lys Val Asp Asn Ala
 145 150 155

<210> SEQ ID NO 117
<211> LENGTH: 459
<212> TYPE: DNA
<213> ORGANISM: Homosapien

<400> SEQUENCE: 117

caggtgcagc ctgagcagtc ggggccagga ctgggtgaagc cctcgccagac cctctcactc 60
acctgtgcctt tctccgggaa cagttgtctt agcaacatgt ctgtttggaa ctggatcagg 120
cagttccctt cgagaggccct tgatgtggctg ggaaggacat actacaggcgtt caagtggat 180
atgtatcatgtt cagttatctgtt gagaagtgcataaaccatctt acccagacacatccaaagaaac 240
cagtttctccctt tgccagctgaa ctctgtgtactt cccggaggaca cggctgtgtt ttactgtgtca 300
agatcggtt ttagtgggacat ctatgtcggtt atggacgtctt gggggcaagg gaccacggc 360
accgttctccctt cagcctccac caagggccca tcgggtcttcc cccctggccgc cctgctccagg 420
qaqcacccatcc qaqaqcacaq cqcccttqqq ctqccctqqq 459

```

<210> SEQ ID NO 118
<211> LENGTH: 153
<212> TYPE: PRT
<213> ORGANISM: Homosapien

<400> SEQUENCE: 118

Gln Val Gln Pro Glu Gln Ser Gly Pro Gly Leu Val Lys Pro Ser Gln
 1           5           10          15

Thr Leu Ser Leu Thr Cys Ala Ile Ser Gly Asp Ser Val Ser Ser Asn
 20          25          30

Ser Ala Ala Trp Asn Trp Ile Arg Gln Ser Pro Ser Arg Gly Leu Glu
 35          40          45

```

-continued

Trp Leu Gly Arg Thr Tyr Tyr Arg Ser Lys Trp Tyr Ser Asp His Ala
 50 55 60

Val Ser Val Arg Ser Arg Ile Thr Ile Tyr Pro Asp Thr Ser Lys Asn
 65 70 75 80

Gln Phe Ser Leu Gln Leu Asn Ser Val Thr Pro Glu Asp Thr Ala Val
 85 90 95

Tyr Tyr Cys Ala Arg Asp Arg Ile Ser Gly Thr Tyr Val Gly Met Asp
 100 105 110

Val Trp Gly Gln Gly Thr Thr Val Thr Val Ser Ser Ala Ser Thr Lys
 115 120 125

Gly Pro Ser Val Phe Pro Leu Ala Pro Leu Leu Gln Glu His Leu Arg
 130 135 140

Glu His Ser Gly Pro Gly Leu Pro Gly
 145 150

<210> SEQ ID NO 119

<211> LENGTH: 526

<212> TYPE: DNA

<213> ORGANISM: Homosapien

<400> SEQUENCE: 119

ccagctcagc tcctggggct gctaatgctc tgggtccctg gatccaatga ggatatttg 60
 atgacccaga ctccactctc cctgcccgtc acccctggag agccggccctc catctcctgc 120
 aggtctagtc agagcctctt ggatagtgat gatggaaaca cctatttggc ctggtagctg 180
 cagaagccag ggcagtcctc acagctcctg atctatacgc tttccttcg ggcctctgg 240
 gtcccgacaca gttcagtg 240
 cagaagccag ggcagtcctc acagctcctg atctatacgc tttccttcg ggcctctgg 300
 gtcccgacaca gttcagtg 300
 cagaagccag ggcagtcctc acagctcctg atctatacgc tttccttcg ggcctctgg 360
 gtcccgacaca gttcagtg 360
 ttcggcggag ggaccaaggt ggagatcaa cgaactgtgg ctgcaccatc tgcaccatc 420
 ttcccgccat ctgatgagca gttgaaatct ggaactgcct ctgttggtg cctgctgaat 480
 aacttctatc ccagagggc caaagtacag tggaaagg 480
 aacttctatc ccagagggc caaagtacag tggaaagg 526

<210> SEQ ID NO 120

<211> LENGTH: 175

<212> TYPE: PRT

<213> ORGANISM: Homosapien

<400> SEQUENCE: 120

Pro Ala Gln Leu Leu Gly Leu Leu Met Leu Trp Val Pro Gly Ser Asn
 1 5 10 15

Glu Asp Ile Val Met Thr Gln Thr Pro Leu Ser Leu Pro Val Thr Pro
 20 25 30

Gly Glu Pro Ala Ser Ile Ser Cys Arg Ser Ser Gln Ser Leu Leu Asp
 35 40 45

Ser Asp Asp Gly Asn Thr Tyr Leu Asp Trp Tyr Leu Gln Lys Pro Gly
 50 55 60

Gln Ser Pro Gln Leu Leu Ile Tyr Thr Leu Ser Phe Arg Ala Ser Gly
 65 70 75 80

Val Pro Asp Arg Phe Ser Gly Ser Gly Thr Asp Phe Thr Leu
 85 90 95

Thr Ile Ser Arg Val Glu Ala Glu Asp Val Gly Val Tyr Tyr Cys Met
 100 105 110

Gln Arg Ile Glu Phe Pro Leu Thr Phe Gly Gly Thr Lys Val Glu
 115 120 125

-continued

Ile Lys Arg Thr Val Ala Ala Pro Ser Val Phe Ile Phe Pro Pro Ser
 130 135 140

Asp Glu Gln Leu Lys Ser Gly Thr Ala Ser Val Val Cys Leu Leu Asn
 145 150 155 160

Asn Phe Tyr Pro Arg Glu Ala Lys Val Gln Trp Lys Val Asp Asn
 165 170 175

<210> SEQ ID NO 121

<211> LENGTH: 499

<212> TYPE: DNA

<213> ORGANISM: Homosapien

<400> SEQUENCE: 121

caggtccagg tggcacatc tggggctgag gtgaagaacc ctggggcctc agtgaaggc 60
 tcctgcaagg ttcccgatc caccctact gaattatcca tgcactgggt gcgcacaggct 120
 cctggaaaag ggcttgatgt gatgggaggt tttgatcctg aagatggta aacaatctac 180
 gcacagaagt tccagggcag agtcaccatg accgaggaca catctacaga cacagtctac 240
 atggagctga gcagcctgat atctgaggac acggccgtgtt attactgtgc aaccaacgat 300
 ttttggatgt gttatgttgc ctactggggc cagggaaacc tggtcaccgt ctccctcagcc 360
 tccaccaagg gcccattcggtt cttcccccgt gcgcctgtt ccaggagcac ctccgagagc 420
 acagcggcccc tgggctgcctt ggtcaaggac tacttccccg aaccgggtgac ggtgtcggtgg 480
 aactcaggcg ctctgacca 499

<210> SEQ ID NO 122

<211> LENGTH: 166

<212> TYPE: PRT

<213> ORGANISM: Homosapien

<400> SEQUENCE: 122

Gln Val Gln Val Val Gln Ser Gly Ala Glu Val Lys Asn Pro Gly Ala
 1 5 10 15

Ser Val Lys Val Ser Cys Lys Val Ser Gly Ser Thr Leu Thr Glu Leu
 20 25 30

Ser Met His Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Met
 35 40 45

Gly Gly Phe Asp Pro Glu Asp Gly Glu Thr Ile Tyr Ala Gln Lys Phe
 50 55 60

Gln Gly Arg Val Thr Met Thr Glu Asp Thr Ser Thr Asp Thr Val Tyr
 65 70 75 80

Met Glu Leu Ser Ser Leu Arg Ser Glu Asp Thr Ala Val Tyr Tyr Cys
 85 90 95

Ala Thr Asn Asp Phe Trp Ser Gly Tyr Phe Asp Tyr Trp Gly Gln Gly
 100 105 110

Thr Leu Val Thr Val Ser Ser Ala Ser Thr Lys Gly Pro Ser Val Phe
 115 120 125

Pro Leu Ala Pro Cys Ser Arg Ser Thr Ser Glu Ser Thr Ala Ala Leu
 130 135 140

Gly Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro Val Thr Val Ser Trp
 145 150 155 160

Asn Ser Gly Ala Leu Thr
 165

<210> SEQ ID NO 123

-continued

<211> LENGTH: 536

<212> TYPE: DNA

<213> ORGANISM: Homosapien

<400> SEQUENCE: 123

caggatcttca	tttctctgtt	gctctggatc	tctgatgtct	atggggacat	cgtgatgacc	60
cagtctccag	actccctggc	tgtgtctctg	ggcgagaggg	ccaccatcac	ctgcaagtcc	120
agccagactg	ttttatacac	ctccaaacaat	aagaactact	tagtttggta	tcagcagaaa	180
tcaggacagc	ctcctaagct	gctcattcac	tggcatcta	tccggaaatc	cgggtccct	240
gaccgattca	gtggcagcgg	gtctggaca	gatttcacgc	tcaccatca	cagcctgcag	300
gctgaagatg	tggcagttt	ttactgtcag	caatattata	gtagtccgtg	gacggtcggc	360
caagggacca	aggtgaaat	caaacgaact	gtggctgcac	catctgtctt	catcttcccg	420
ccatctgtat	agcagttgaa	atctggaaact	gcctctgttg	tgtgcctgct	gaataacttc	480
tatcccagag	aggccaaagt	acagtggaaag	gtggataacg	cccttccaaat	cgggta	536

<210> SEQ ID NO 124

<211> LENGTH: 178

<212> TYPE: PRT

<213> ORGANISM: Homosapien

<400> SEQUENCE: 124

Gln	Val	Phe	Ile	Ser	Leu	Leu	Leu	Trp	Ile	Ser	Asp	Val	Tyr	Gly	Asp
1		5						10				15			
Ile	Val	Met	Thr	Gln	Ser	Pro	Asp	Ser	Leu	Ala	Val	Ser	Leu	Gly	Glu
	20							25				30			
Arg	Ala	Thr	Ile	Thr	Cys	Lys	Ser	Ser	Gln	Thr	Val	Leu	Tyr	Ser	Ser
	35							40				45			
Asn	Asn	Lys	Asn	Tyr	Leu	Val	Trp	Tyr	Gln	Gln	Lys	Ser	Gly	Gln	Pro
	50							55			60				
Pro	Lys	Leu	Leu	Ile	His	Trp	Ala	Ser	Ile	Arg	Glu	Ser	Gly	Val	Pro
	65							70			75				80
Asp	Arg	Phe	Ser	Gly	Ser	Gly	Ser	Gly	Thr	Asp	Phe	Thr	Leu	Thr	Ile
	85							90				95			
Ser	Ser	Leu	Gln	Ala	Glu	Asp	Val	Ala	Val	Tyr	Tyr	Cys	Gln	Gln	Tyr
	100							105				110			
Tyr	Ser	Ser	Pro	Trp	Thr	Phe	Gly	Gln	Gly	Thr	Lys	Val	Glu	Ile	Lys
	115							120				125			
Arg	Thr	Val	Ala	Ala	Pro	Ser	Val	Phe	Ile	Phe	Pro	Pro	Ser	Asp	Glu
	130							135				140			
Gln	Leu	Lys	Ser	Gly	Thr	Ala	Ser	Val	Val	Cys	Leu	Leu	Asn	Asn	Phe
	145							150			155				160
Tyr	Pro	Arg	Glu	Ala	Lys	Val	Gln	Trp	Lys	Val	Asp	Asn	Ala	Leu	Pro
	165							170			175				
Ile	Gly														

<210> SEQ ID NO 125

<211> LENGTH: 414

<212> TYPE: DNA

<213> ORGANISM: Homosapien

<400> SEQUENCE: 125

caggtgcagg	ctgagcagtc	gggtccagga	ctggtaagc	cctcgacagac	cctctcaactc	60
acctgtgcca	tctccgggaa	cagttctct	agtacatgt	ctgcttggaa	ctggatcagg	120

-continued

cagtccctt cgagaggct ttagtggctg ggaaggacat actacaggc	180
actacaggc caagtggat	
agtgatcatg cagtatctgt gagaagtgc	240
ataaccatct acccagacac atccaaga	
cagttctccc tgcagctgaa ctctgtgact cccgaggaca cggctgtgta	300
ttactgtgca	
agagatcggta ttagtggac ctatgtcggt atggacgtct ggggccaagg gaccacggc	360
accgtctccat cagcctccac caaggcccccc atcggtcttc cccctggccc cctc	414

<210> SEQ ID NO 126

<211> LENGTH: 138

<212> TYPE: PRT

<213> ORGANISM: Homosapien

<400> SEQUENCE: 126

Gln Val Gln Ala Glu Gln Ser Gly Pro Gly Leu Val Lys Pro Ser Gln	
1 5 10 15	

Thr Leu Ser Leu Thr Cys Ala Ile Ser Gly Asp Ser Val Ser Ser Tyr	
20 25 30	

Ser Ala Ala Trp Asn Trp Ile Arg Gln Ser Pro Ser Arg Gly Leu Glu	
35 40 45	

Trp Leu Gly Arg Thr Tyr Tyr Arg Ser Lys Trp Tyr Ser Asp His Ala	
50 55 60	

Val Ser Val Arg Ser Arg Ile Thr Ile Tyr Pro Asp Thr Ser Lys Asn	
65 70 75 80	

Gln Phe Ser Leu Gln Leu Asn Ser Val Thr Pro Glu Asp Thr Ala Val	
85 90 95	

Tyr Tyr Cys Ala Arg Asp Arg Ile Ser Gly Thr Tyr Val Gly Met Asp	
100 105 110	

Val Trp Gly Gln Gly Thr Thr Val Thr Val Ser Ser Ala Ser Thr Lys	
115 120 125	

Gly Pro Ile Gly Leu Pro Pro Gly Pro Leu	
130 135	

<210> SEQ ID NO 127

<211> LENGTH: 514

<212> TYPE: DNA

<213> ORGANISM: Homosapien

<400> SEQUENCE: 127

gtcttcattt ctctgttgc tggatctct ggtgcctacg gggacatcgat gatgacccag	60
tctccagact ccctggctgt gtctctgggc gagagggcca ccatcaactg caagtccagc	120
cagagtgttt tatacagttc caacaataag aactacatag tttggatcca gcagaaacca	180
gggcagcctc ctaagttgc catttactgg acatctaccc gggaatccgg ggtccctgac	240
cgattcagtgc cagcgggtc tggaaacagat ttcaactctca cttatcgtatg cctgcaggct	300
gaagatgtgg cagtttatta ctgtcagcaa tatttttagtt ctccgtggac gttcggccaa	360
gggaccaaag tggacatcaa acgaactgtg gctgcacccat ctgtcttcat cttcccgcca	420
tctgtatggc agttgaaatc tggaaactgcc tctgttgtgt gctgtgtcaa taacttctat	480
cccaagagagg ccaaagtaca gtggaaaggta gata	514

<210> SEQ ID NO 128

<211> LENGTH: 171

<212> TYPE: PRT

<213> ORGANISM: Homosapien

<400> SEQUENCE: 128

-continued

Val Phe Ile Ser Leu Leu Leu Trp Ile Ser Gly Ala Tyr Gly Asp Ile
 1 5 10 15

Val Met Thr Gln Ser Pro Asp Ser Leu Ala Val Ser Leu Gly Glu Arg
 20 25 30

Ala Thr Ile Asn Cys Lys Ser Ser Gln Ser Val Leu Tyr Ser Ser Asn
 35 40 45

Asn Lys Asn Tyr Ile Val Trp Tyr Gln Gln Lys Pro Gly Gln Pro Pro
 50 55 60

Lys Leu Leu Ile Tyr Trp Thr Ser Thr Arg Glu Ser Gly Val Pro Asp
 65 70 75 80

Arg Phe Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser
 85 90 95

Ser Leu Gln Ala Glu Asp Val Ala Val Tyr Tyr Cys Gln Gln Tyr Phe
 100 105 110

Ser Ser Pro Trp Thr Phe Gly Gln Gly Thr Lys Val Asp Ile Lys Arg
 115 120 125

Thr Val Ala Ala Pro Ser Val Phe Ile Phe Pro Pro Ser Asp Glu Gln
 130 135 140

Leu Lys Ser Gly Thr Ala Ser Val Val Cys Leu Leu Asn Asn Phe Tyr
 145 150 155 160

Pro Arg Glu Ala Lys Val Gln Trp Lys Val Asp
 165 170

<210> SEQ ID NO 129

<211> LENGTH: 444

<212> TYPE: DNA

<213> ORGANISM: Homosapien

<400> SEQUENCE: 129

cagtcgggtc caggactgtt gaagccctcg cagaccctct cactcacctg tgccatctcc 60
 ggggacagtg tctctagcaa cagtgtgtct tggactgga tcaggcagtc cccttcgaga 120
 ggcccttgagt ggctggaaag gacatactac aggtccaagt ggtatagtga tcatgcagta 180
 tctgtgagaa gtcgataaac catctaccca gacacatcca agaaccaggat ctcctgcag 240
 ctgaactctg tgactcccgaa ggacacggct gtgttattact gtgcaagaga tcggattagt 300
 gggacctatg tccgttatgga cgtctggggc caagggacca cggtcaccgt ctccctcagcc 360
 tccaccaagg gccccatcggt cttcccccctg gcgccccctgc tccaggagca cctccgagag 420
 cacagcggcc ctgggctgcc tggc 444

<210> SEQ ID NO 130

<211> LENGTH: 148

<212> TYPE: PRT

<213> ORGANISM: Homosapien

<400> SEQUENCE: 130

Gln Ser Gly Pro Gly Leu Val Lys Pro Ser Gln Thr Leu Ser Leu Thr
 1 5 10 15

Cys Ala Ile Ser Gly Asp Ser Val Ser Ser Asn Ser Ala Ala Trp Asn
 20 25 30

Trp Ile Arg Gln Ser Pro Ser Arg Gly Leu Glu Trp Leu Gly Arg Thr
 35 40 45

Tyr Tyr Arg Ser Lys Trp Tyr Ser Asp His Ala Val Ser Val Arg Ser
 50 55 60

Arg Ile Thr Ile Tyr Pro Asp Thr Ser Lys Asn Gln Phe Ser Leu Gln
 65 70 75 80

-continued

Leu Asn Ser Val Thr Pro Glu Asp Thr Ala Val Tyr Tyr Cys Ala Arg
 85 90 95

Asp Arg Ile Ser Gly Thr Tyr Val Gly Met Asp Val Trp Gly Gln Gly
 100 105 110

Thr Thr Val Thr Val Ser Ser Ala Ser Thr Lys Gly Pro Ser Val Phe
 115 120 125

Pro Leu Ala Pro Leu Leu Gln Glu His Leu Arg Glu His Ser Gly Pro
 130 135 140

Gly Leu Pro Gly
 145

<210> SEQ ID NO 131

<211> LENGTH: 505

<212> TYPE: DNA

<213> ORGANISM: Homosapien

<400> SEQUENCE: 131

gggctgctaa tgctctggat acctggatcc agtgcagata ttgggatgac ccagactcca 60
 ctctctctgt cgcgtacccccc tggacagcccg gcctccatct cctgttaatgc tagtcagagc 120
 ctccctgtata gtatggaaa gacctatgg tattgttacc tgcagaagcc aggcagcc 180
 ccacaaacacc tgcgttatga agtttcaac cggttctctg gagtgcaga taggttcagt 240
 ggccagcgggt ctgggacaga tttcacactg aaaatcagcc ggggtggaggc tgatgtatgtt 300
 ggggtttatt actgcacatca aactatacac cttccgctca ctttcggcg agggaccaag 360
 gtggagatcc aacgaaactgt ggctgcacca tctgtcttca tcttccgc atctgtatgt 420
 cagttgaaat ctggaaactgc ctctgttgc tgcctgctga ataacttcta tcccagagag 480
 gccaaagtac agtggaaaggt ggata 505

<210> SEQ ID NO 132

<211> LENGTH: 168

<212> TYPE: PRT

<213> ORGANISM: Homosapien

<400> SEQUENCE: 132

Gly Leu Leu Met Leu Trp Ile Pro Gly Ser Ser Ala Asp Ile Gly Met
 1 5 10 15

Thr Gln Thr Pro Leu Ser Leu Ser Val Thr Pro Gly Gln Pro Ala Ser
 20 25 30

Ile Ser Cys Lys Ser Ser Gln Ser Leu Leu Tyr Ser Asp Gly Lys Thr
 35 40 45

Tyr Leu Tyr Trp Tyr Leu Gln Lys Pro Gly Gln Pro Pro Gln His Leu
 50 55 60

Ile Tyr Glu Val Ser Asn Arg Phe Ser Gly Val Pro Asp Arg Phe Ser
 65 70 75 80

Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Lys Ile Ser Arg Val Glu
 85 90 95

Ala Asp Asp Val Gly Val Tyr Tyr Cys Met Gln Thr Ile His Leu Pro
 100 105 110

Leu Thr Phe Gly Gly Thr Lys Val Glu Ile Gln Arg Thr Val Ala
 115 120 125

Ala Pro Ser Val Phe Ile Phe Pro Pro Ser Asp Glu Gln Leu Lys Ser
 130 135 140

Gly Thr Ala Ser Val Val Cys Leu Leu Asn Asn Phe Tyr Pro Arg Glu
 145 150 155 160

-continued

Ala Lys Val Gln Trp Lys Val Asp
165

<210> SEQ ID NO 133
<211> LENGTH: 447
<212> TYPE: DNA
<213> ORGANISM: Homosapien

<400> SEQUENCE: 133

gagcagtcgg	gtccaggact	ggtgaagccc	tcgcagaccc	tctcactcac	ctgtgccatc	60
tccggggaca	gtgtctctag	caacagtgtct	gcttggaaact	ggatcaggca	gtcccccctcg	120
agaggcccttg	agtggctggg	aaggacatac	tacaggtcca	agtggataag	tgatcatgca	180
gtatctgtga	gaagtcgaat	aaccatctac	ccagacacat	ccaagaacca	gttctccctg	240
cagctgaact	ctgtgactcc	cgaggacacg	gctgtgtatt	actgtcaag	agatcggatt	300
agtgggacct	atgtcggtat	ggacgtctgg	ggccaaggga	ccacggcac	cgtctccctca	360
gcctccacca	agggcccatc	ggtcttcccc	ctggcgcccc	tgctccagga	gcacctccga	420
gagcacacg	gccctgggct	gcctggc				447

<210> SEQ ID NO 134

<211> LENGTH: 149
<212> TYPE: PRT
<213> ORGANISM: Homosapien

<400> SEQUENCE: 134

Glu	Gln	Ser	Gly	Pro	Gly	Leu	Val	Lys	Pro	Ser	Gln	Thr	Leu	Ser	Leu
1						10							15		

Thr	Cys	Ala	Ile	Ser	Gly	Asp	Ser	Val	Ser	Ser	Asn	Ser	Ala	Ala	Trp
		20						25					30		

Asn	Trp	Ile	Arg	Gln	Ser	Pro	Ser	Arg	Gly	Leu	Glu	Trp	Leu	Gly	Arg
		35						40				45			

Thr	Tyr	Tyr	Arg	Ser	Lys	Trp	Tyr	Ser	Asp	His	Ala	Val	Ser	Val	Arg
						50			55		60				

Ser	Arg	Ile	Thr	Ile	Tyr	Pro	Asp	Thr	Ser	Lys	Asn	Gln	Phe	Ser	Leu
		65				70			75				80		

Gln	Leu	Asn	Ser	Val	Thr	Pro	Glu	Asp	Thr	Ala	Val	Tyr	Tyr	Cys	Ala
						85			90			95			

Arg	Asp	Arg	Ile	Ser	Gly	Thr	Tyr	Val	Gly	Met	Asp	Val	Trp	Gly	Gln
		100						105				110			

Gly	Thr	Thr	Val	Thr	Val	Ser	Ser	Ala	Ser	Thr	Lys	Gly	Pro	Ser	Val
		115				120				125					

Phe	Pro	Leu	Ala	Pro	Leu	Leu	Gln	Glu	His	Leu	Arg	Glu	His	Ser	Gly
		130					135			140					

Pro	Gly	Leu	Pro	Gly
		145		

<210> SEQ ID NO 135

<211> LENGTH: 520
<212> TYPE: DNA
<213> ORGANISM: Homosapien

<400> SEQUENCE: 135

caggtcttca	tttctctgtt	gctctggatc	tctggtgcc	acggggacat	cgtgatgacc	60
cagtctccag	actccctggc	tgtgtctctg	ggcgagaggg	ccgccccatcaa	ctgcaagtcc	120
agccagactg	ttttatacag	ctccaaacaat	aagaactact	tggtttgta	ccagcagaaa	180

-continued

ccaggacagc	ctcccaagct	gctcattac	tggcatcta	cccggaaatc	cgggtccct	240
gaccgattca	gtggcagcg	gtctggaca	gatttcactc	tcaccatca	cagcctgcag	300
gctgaagatg	tggcagttt	ttactgtcaa	caatattata	aaagtccgtg	gacggttcggc	360
caagggacca	aggtgaaat	caaacgaact	gtggctgcac	catctgtctt	catttcccg	420
ccatctgatg	agcagttgaa	atctggaaact	gcctctgttg	tgtgcctgct	gaataacttc	480
tatcccagag	aggccaaagt	acagtggaaag	gtggataacg			520

<210> SEQ ID NO 136

<211> LENGTH: 173

<212> TYPE: PRT

<213> ORGANISM: Homosapien

<400> SEQUENCE: 136

Gln	Val	Phe	Ile	Ser	Leu	Leu	Leu	Trp	Ile	Ser	Gly	Ala	Tyr	Gly	Asp
1									10						15
Ile	Val	Met	Thr	Gln	Ser	Pro	Asp	Ser	Leu	Ala	Val	Ser	Leu	Gly	Glu
		20						25						30	
Arg	Ala	Ala	Ile	Asn	Cys	Lys	Ser	Ser	Gln	Thr	Val	Leu	Tyr	Ser	Ser
				35			40							45	
Asn	Asn	Lys	Asn	Tyr	Leu	Val	Trp	Tyr	Gln	Gln	Lys	Pro	Gly	Gln	Pro
					50			55				60			
Pro	Lys	Leu	Leu	Ile	Tyr	Trp	Ala	Ser	Thr	Arg	Glu	Ser	Gly	Val	Pro
					65			70		75				80	
Asp	Arg	Phe	Ser	Gly	Ser	Gly	Thr	Asp	Phe	Thr	Leu	Thr	Ile		
							85		90				95		
Ser	Ser	Leu	Gln	Ala	Glu	Asp	Val	Ala	Val	Tyr	Tyr	Cys	Gln	Gln	Tyr
					100			105						110	
Tyr	Lys	Ser	Pro	Trp	Thr	Phe	Gly	Gln	Gly	Thr	Lys	Val	Glu	Ile	Lys
							115		120					125	
Arg	Thr	Val	Ala	Ala	Pro	Ser	Val	Phe	Ile	Phe	Pro	Pro	Ser	Asp	Glu
							130		135		140				
Gln	Leu	Lys	Ser	Gly	Thr	Ala	Ser	Val	Val	Cys	Leu	Leu	Asn	Asn	Phe
							145		150		155				160
Tyr	Pro	Arg	Glu	Ala	Lys	Val	Gln	Trp	Lys	Val	Asp	Asn			
							165		170						

<210> SEQ ID NO 137

<211> LENGTH: 490

<212> TYPE: DNA

<213> ORGANISM: Homosapien

<400> SEQUENCE: 137

caggtccagc	tggtagtgc	tgggtctgag	gtgaagaagc	ctggggcctc	agtgaaggtc	60
tcctgcaagg	tttccggata	caccctca	gaattatcca	tgcactgggt	gcgacaggct	120
cctggaaaag	ggcttgagtg	gatgggaggt	tttgatcctg	aaaatggta	aacaatccac	180
gcacagaatg	tccagggcag	agtcatcatg	accgaggaca	catctacaga	cacagcctac	240
atggagctga	gcagcctgag	atctgaggac	acggccgtgt	attactgtgc	aacagatcag	300
ggtggatata	gtggctactt	tgactgctgg	ggccaggaa	ccctggtcac	cgtctccctca	360
gcttccacca	agggccccatc	cgtctccccc	ctggcgccct	gctccaggag	caccccgag	420
agcacagccg	ccctgggctg	cctggtcaag	gactacttcc	ccgaaccgg	gacgggtcg	480
tggaaactcag						490

-continued

<210> SEQ ID NO 138
<211> LENGTH: 163
<212> TYPE: PRT
<213> ORGANISM: Homosapien

<400> SEQUENCE: 138

Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ala
1 5 10 15

Ser Val Lys Val Ser Cys Lys Val Ser Gly Tyr Thr Leu Thr Glu Leu
20 25 30

Ser Met His Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Met
35 40 45

Gly Gly Phe Asp Pro Glu Asn Gly Glu Thr Ile His Ala Gln Lys Phe
50 55 60

Gln Gly Arg Val Ile Met Thr Glu Asp Thr Ser Thr Asp Thr Ala Tyr
65 70 75 80

Met Glu Leu Ser Ser Leu Arg Ser Glu Asp Thr Ala Val Tyr Tyr Cys
85 90 95

Ala Thr Asp Gln Gly Gly Tyr Ser Gly Tyr Phe Asp Cys Trp Gly Gln
100 105 110

Gly Thr Leu Val Thr Val Ser Ser Ala Ser Thr Lys Gly Pro Ser Val
115 120 125

Phe Pro Leu Ala Pro Cys Ser Arg Ser Thr Ser Glu Ser Thr Ala Ala
130 135 140

Leu Gly Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro Val Thr Val Ser
145 150 155 160

Trp Asn Ser

<210> SEQ ID NO 139
<211> LENGTH: 540
<212> TYPE: DNA
<213> ORGANISM: Homosapien

<400> SEQUENCE: 139

agacccaggt cttcatttct ctgttgctct ggatctctgg tgcctacggg gacatcgta 60
tgaccaggc tccagactcc ctggctgtgt ctctggcga gaggggcacc atcaactgca 120
agtccagcca gagtatttta tacagctcca ataataagaa ttattttagtt tggtaccagc 180
agaaaccagg acagcctctt aagttgctca tttactgggc atctaccgg gaatccgggg 240
tccctgaccg attcagtggc agcgggtctg ggacagattt cactctcacc atcagcagcc 300
tgcaaggctga agatgtggca gtttattact gtcagcaata ttatagtagt cctccgacgt 360
tcggccaagg gaccaagggtg gaaatcaaac gaaactgtggc tgcaccatct gtcttcatct 420
tcccgccatc tcatgagcag ttgaaatctg gaaactgcctc tgggtgtgc ctgctgaata 480
acttctatcc cagagaggcc aaagtacagt ggaaggtgga taacgcctc caatcggtta 540

<210> SEQ ID NO 140
<211> LENGTH: 179
<212> TYPE: PRT
<213> ORGANISM: Homosapien

<400> SEQUENCE: 140

Thr Gln Val Phe Ile Ser Leu Leu Leu Trp Ile Ser Gly Ala Tyr Gly
1 5 10 15

Asp Ile Val Met Thr Gln Ser Pro Asp Ser Leu Ala Val Ser Leu Gly

-continued

20	25	30	
Glu Arg Ala Thr Ile Asn Cys Lys Ser Ser Gln Ser Ile Leu Tyr Ser			
35	40	45	
Ser Asn Asn Lys Asn Tyr Leu Val Trp Tyr Gln Gln Lys Pro Gly Gln			
50	55	60	
Pro Pro Lys Leu Leu Ile Tyr Trp Ala Ser Thr Arg Glu Ser Gly Val			
65	70	75	80
Pro Asp Arg Phe Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr			
85	90	95	
Ile Ser Ser Leu Gln Ala Glu Asp Val Ala Val Tyr Tyr Cys Gln Gln			
100	105	110	
Tyr Tyr Ser Ser Pro Pro Thr Phe Gly Gln Gly Thr Lys Val Glu Ile			
115	120	125	
Lys Arg Thr Val Ala Ala Pro Ser Val Phe Ile Phe Pro Pro Ser Asp			
130	135	140	
Glu Gln Leu Lys Ser Gly Thr Ala Ser Val Val Cys Leu Leu Asn Asn			
145	150	155	160
Phe Tyr Pro Arg Glu Ala Lys Val Gln Trp Lys Val Asp Asn Ala Leu			
165	170	175	
Gln Ser Gly			

<210> SEQ ID NO 141

<211> LENGTH: 518

<212> TYPE: DNA

<213> ORGANISM: Homosapien

<400> SEQUENCE: 141

accatggagt ggacctggag ggtcctttc ttggggcag cagctacagg caccacgccc	60
cagggtccagc tggcacgtc tggggctgag gtgaagaagc ctggggcctc agtgaagggtc	120
tcctgcagg tttccggata caccctcaact gaattatcca tgcactgggt gcgcacaggct	180
cctggaaaag ggcttgagtg gatgggaggt tttgatcctg aagatggtga aacaatctac	240
gcacagaagt tccagggcag agtcaccatg accgaggaca catctacaga cacagcctac	300
atggagctga gtagcctgag aactgaggac acggccgtgt attactgtac aacggacgat	360
ttttggagt gttatatttga ctactggggc cagggaaacc tggtcaccgt ctccctcagcc	420
tccaccaagg gccccatcggt cttcccccgt gcgcctgtgt ccaggagcac ctccgagagc	480
acagggccct gggctgcctg gtcaaggact acttcccc	518

<210> SEQ ID NO 142

<211> LENGTH: 172

<212> TYPE: PRT

<213> ORGANISM: Homosapien

<400> SEQUENCE: 142

Thr Met Glu Trp Thr Trp Arg Val Leu Phe Leu Val Ala Ala Ala Thr			
1	5	10	15
Gly Thr His Ala Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys			
20	25	30	
Lys Pro Gly Ala Ser Val Lys Val Ser Cys Lys Val Ser Gly Tyr Thr			
35	40	45	
Leu Thr Glu Leu Ser Met His Trp Val Arg Gln Ala Pro Gly Lys Gly			
50	55	60	
Leu Glu Trp Met Gly Gly Phe Asp Pro Glu Asp Gly Glu Thr Ile Tyr			
65	70	75	80

-continued

Ala Gln Lys Phe Gln Gly Arg Val Thr Met Thr Glu Asp Thr Ser Thr
 85 90 95

Asp Thr Ala Tyr Met Glu Leu Ser Ser Leu Arg Thr Glu Asp Thr Ala
 100 105 110

Val Tyr Tyr Cys Thr Thr Asp Asp Phe Trp Ser Gly Tyr Phe Asp Tyr
 115 120 125

Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser Ala Ser Thr Lys Gly
 130 135 140

Pro Ser Val Phe Pro Leu Ala Pro Cys Ser Arg Ser Thr Ser Glu Ser
 145 150 155 160

Thr Ala Ala Trp Ala Ala Trp Ser Arg Thr Thr Ser
 165 170

<210> SEQ ID NO 143

<211> LENGTH: 519

<212> TYPE: DNA

<213> ORGANISM: Homosapien

<400> SEQUENCE: 143

caggtcttca tttctctgtt gctctggatc tctgggtgcct acggggacat cgtgatgacc 60
 cagtctccag actccctggc tgggtctctg ggcgagaggg ccaccatcaa ctgcaagtcc 120
 agccagatc ttttatacag ctccaaaaat aagaactatt tagtttggta ccagcagaaaa 180
 ccaggacagc ctccaaagct gtcattaaac tggcatcta cccggaaatc cggggtccct 240
 gaccgattca gtggcagcgg gtctggaca gatccatctc tcaccatca cagcctgcag 300
 gctgaagatg tggcagttt tactgtcag caatattata gttctccgtg gacggtcggc 360
 caagggacca aggtggaaat caaacgaact gtggctgcac catctgtctt catcttcccg 420
 ccatctgtat agcagttgaa atctggaaact gcctctgtt tggcctgtc gaataacttc 480
 tatcccagag aggcaaaatgta cagtggaaagg tggataacgc 519

<210> SEQ ID NO 144

<211> LENGTH: 173

<212> TYPE: PRT

<213> ORGANISM: Homosapien

<400> SEQUENCE: 144

Gln Val Phe Ile Ser Leu Leu Leu Trp Ile Ser Gly Ala Tyr Gly Asp
 1 5 10 15

Ile Val Met Thr Gln Ser Pro Asp Ser Leu Ala Val Ser Leu Gly Glu
 20 25 30

Arg Ala Thr Ile Asn Cys Lys Ser Ser Gln Ser Leu Leu Tyr Ser Ser
 35 40 45

Lys Asn Lys Asn Tyr Leu Val Trp Tyr Gln Gln Lys Pro Gly Gln Pro
 50 55 60

Pro Lys Leu Leu Ile Asn Trp Ala Ser Thr Arg Glu Ser Gly Val Pro
 65 70 75 80

Asp Arg Phe Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile
 85 90 95

Ser Ser Leu Gln Ala Glu Asp Val Ala Val Tyr Tyr Cys Gln Gln Tyr
 100 105 110

Tyr Ser Ser Pro Trp Thr Phe Gly Gln Gly Thr Lys Val Glu Ile Lys
 115 120 125

Arg Thr Val Ala Ala Pro Ser Val Phe Ile Phe Pro Pro Ser Asp Glu
 130 135 140

-continued

Gln Leu Lys Ser Gly Thr Ala Ser Val Val Cys Leu Leu Asn Asn Phe
 145 150 155 160

Tyr Pro Arg Glu Ala Lys Tyr Ser Gly Arg Trp Ile Arg
 165 170

<210> SEQ ID NO 145

<211> LENGTH: 436

<212> TYPE: DNA

<213> ORGANISM: Homosapien

<400> SEQUENCE: 145

gagcagtcgg	ggggaggcggt	ggtccagcct	gggaggtccc	ttagactctc	ctgtgcagcg	60
tctggattca	ccttcagtag	ctatggcatg	cactgggtcc	gccaggctcc	aggcaagggg	120
ctggagtggg	tggcagttat	atggtatgtat	ggaataataa	aatactatgc	agactccgtg	180
aagggccat	tcaccatctc	cagagacact	tccaagaaca	cgctgtatct	gcaaatgaac	240
agcctgagag	ccgaggacac	ggctgtgtat	tactgtgcga	gagatagcag	ctcgtaactac	300
tactacggta	tggacgtctg	gggccaaggq	accacggta	ccgtctccctc	agcctccacc	360
aaggggccat	cggcttccc	cctggcgccc	tgctccagga	gcacctccga	gagcacagcg	420
gccctgggct	gcctgg					436

<210> SEQ ID NO 146

<211> LENGTH: 145

<212> TYPE: PRT

<213> ORGANISM: Homosapien

<400> SEQUENCE: 146

Glu Gln Ser Gly Gly Val Val Gln Pro Gly Arg Ser Leu Arg Leu
 1 5 10 15

Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Tyr Gly Met His Trp
 20 25 30

Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val Ala Val Ile Trp
 35 40 45

Tyr Asp Gly Asn Asn Lys Tyr Tyr Ala Asp Ser Val Lys Gly Arg Phe
 50 55 60

Thr Ile Ser Arg Asp Thr Ser Lys Asn Thr Leu Tyr Leu Gln Met Asn
 65 70 75 80

Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys Ala Arg Asp Ser
 85 90 95

Ser Ser Tyr Tyr Tyr Gly Met Asp Val Trp Gly Gln Gly Thr Thr
 100 105 110

Val Thr Val Ser Ser Ala Ser Thr Lys Gly Pro Ser Val Phe Pro Leu
 115 120 125

Ala Pro Cys Ser Arg Ser Thr Ser Glu Ser Thr Ala Ala Leu Gly Cys
 130 135 140

Leu
 145

<210> SEQ ID NO 147

<211> LENGTH: 428

<212> TYPE: DNA

<213> ORGANISM: Homosapien

<400> SEQUENCE: 147

gctccgctac ttctcaccct cctcgctcac tgcacaggtt cttggccaa ttttatgctg 60

199

200

-continued

actcagcccc	actctgtgtc	ggagttccg	ggaaagacgg	taaccatctc	ctgcacccgc	120
agcagtggca	gcattgcccag	caactatgtg	cagtggttcc	agcagcggcc	gggcagttcc	180
ccccaccactg	taatctatga	ggatgaccaa	agaccctctg	gggtccctga	tcggttctgt	240
ggctccatcg	acagctcctc	caactctgcc	tccctcacca	tctctggact	gaggactgag	300
gacgaggctg	actactactg	tcaagtttat	gatagcagca	atcatgttgt	attcggcgga	360
gggaccaagc	tgaccgtctt	aggtcagccc	aaggctgccc	cctcggtcac	tctgttcccg	420
ccctcctc						428

<210> SEQ ID NO 148

<211> LENGTH: 142

<212> TYPE: PBT

<212> TYPE: PRI

<400> SEQUENCE: 148

Ala Pro Leu Leu Leu Thr Leu Leu Ala His Cys Thr Gly Ser Trp Ala
1 5 10 15

Asn Phe Met Leu Thr Gln Pro His Ser Val Ser Glu Ser Pro Gly Lys
20 25 30

Thr	Val	Thr	Ile	Ser	Cys	Thr	Arg	Ser	Ser	Gly	Ser	Ile	Ala	Ser	Asn
35						40						45			

Tyr Val Gln Trp Phe Gln Gln Arg Pro Gly Ser Ser Pro Thr Thr Val
50 55 60

Ile Tyr Glu Asp Asp Gln Arg Pro Ser Gly Val Pro Asp Arg Phe Cys
65 70 75 80

Gly Ser Ile Asp Ser Ser Ser Asn Ser Ala Ser Leu Thr Ile Ser Gly
85 90 95

Ser Asn His Val Val Phe Gly Gly Gly Thr Lys Leu Thr Val Leu Gly
115 120 125

Gln	Pro	Lys	Ala	Ala	Pro	Ser	Val	Thr	Leu	Phe	Pro	Pro	Ser
130						135						140	

<210> SEQ ID NO 149

<211> LENGTH: 76

<212> TYPE: PRT

<213> ORGANTSM: Homosapien

<400> SEQUENCE: 149

Gln Pro Asp Ala Ile Asn Ala Pro Val Thr Cys Cys Tyr Asn Phe Thr
1 5 10 15

Asn Arg Lys Ile Ser Val Gln Arg Leu Ala Ser Tyr Arg Arg Ile Thr
20 25 30

Ser Ser Lys Cys Pro Lys Glu Ala Val Ile Phe Lys Thr Ile Val Ala
25 40 45

Lys Glu Ile Cys Ala Asp Pro Lys Gln Lys Trp Val Gln Asp Ser Met
50 55 60

Asp His Leu Asp Lys Gln Thr Gln Thr Pro Lys Thr
65 70 75

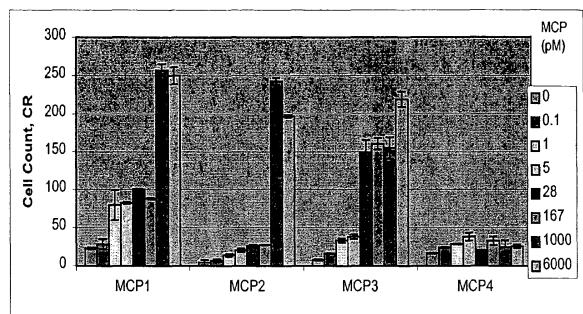
201

What is claimed is:

1. An isolated human monoclonal antibody that binds to MCP-1 and comprises a heavy chain polypeptide having the sequence of SEQ ID NO.: 62.
2. The antibody of claim 1, further comprising a light chain polypeptide having the sequence of SEQ ID NO.:64.
3. An isolated antibody immobilized on an insoluble matrix, wherein the antibody is the antibody of claim 1.
4. A method for assaying the level of monocyte chemoattractant protein (MCP-1) in a patient sample, comprising: contacting the anti-MCP-1 antibody of claim 1 with the patient sample; and detecting the level of MCP-1 in the patient sample.
5. A method according to claim 4, wherein the patient sample is blood.
6. A composition, comprising the antibody of claim 1, and a pharmaceutically acceptable carrier.
7. A method of treating a neoplastic disease, comprising: selecting an animal in need of treatment for a neoplastic disease; and administering to said animal a therapeutically effective dose of the antibody of claim 1.
8. The method of claim 7, wherein said neoplastic disease is selected from the group consisting of: breast cancer, ovarian cancer, bladder cancer, lung cancer, glioblastoma, stomach cancer, endometrial cancer, kidney cancer, colon cancer, pancreatic cancer, and prostate cancer.
9. An isolated human monoclonal antibody that binds to the sequence ISVQRLASYRRITSSK (SEQ ID NO.: 150).
10. A method of manufacturing the antibody of claim 1, comprising:
 - immunizing a mammal with a synthetic peptide of MCP-1;
 - recovering a lymphatic cell that expresses the antibody of claim 1 from the immunized mammal; and
 - fusing the lymphatic cell with a myeloid-type cell to prepare a hybridoma cell that produces the antibody of claim 1.
11. The antibody of claim 1, wherein said antibody is conjugated to a therapeutic agent.
12. The antibody of claim 11, wherein said therapeutic agent is a toxin.
13. The antibody of claim 12, wherein said toxin is an immunotoxin.
14. The antibody of claim 11, wherein said therapeutic agent is a chemotherapeutic agent.
15. The antibody of claim 14, wherein said chemotherapeutic agent is selected from the group consisting of taxol, doxorubicin, cis-platinum, and 5-fluorouracil.
16. The antibody of claim 11, wherein said therapeutic agent is a steroid.
17. The antibody of claim 11, wherein said therapeutic agent is a radioisotope.
18. The antibody of claim 17, wherein said radioisotope is selected from the group consisting of ^3H , ^{14}C , ^{15}N , ^{35}S , ^{90}Y , ^{99}Tc , ^{111}In , ^{125}In , and ^{131}I .

202

19. The antibody of claim 9, wherein said antibody is conjugated to a therapeutic agent.
20. The antibody of claim 19, wherein said therapeutic agent is a toxin.
21. The antibody of claim 20, wherein said toxin is an immunotoxin.
22. The antibody of claim 20, wherein said therapeutic agent is a chemotherapeutic agent.
23. The antibody of claim 22, wherein said chemotherapeutic agent is selected from the group consisting of taxol, doxorubicin, cis-platinum, and 5-fluorouracil.
24. The antibody of 22, wherein said therapeutic agent is a steroid.
25. The antibody of claim 22, wherein said therapeutic agent is a radioisotope.
26. The antibody of claim 25, wherein said radioisotope is selected from the group consisting of ^3H , ^{14}C , ^{15}N , ^{35}S , ^{90}Y , ^{99}Tc , ^{111}In , ^{125}In , and ^{131}I .
27. The antibody of claim 1, wherein said antibody neutralizes the activity of MCP-1.
28. The antibody of claim 3, wherein said antibody neutralizes the activity of MCP-1.
29. The antibody of claim 9, wherein said antibody neutralizes the activity of MCP-1.
30. The antibody of claim 1, wherein said antibody binds to MCP-1 with a dissociation constant (K_D) of approximately 3.0 pM.
31. The antibody of claim 30, wherein said dissociation constant is 3.3 pM.
32. The antibody of claim 3, wherein said antibody binds to MCP-1 with a dissociation constant (K_D) of approximately 3.0 pM.
33. The antibody of claim 32, wherein said dissociation constant is 3.3 pM.
34. The antibody of claim 9, wherein said antibody binds to MCP-1 with a dissociation constant (K_D) of approximately 3.0 pM.
35. The antibody of claim 34, wherein said dissociation constant is 3.3 pM.
36. An isolated human monoclonal antigen binding fragment that binds to MCP-1 and comprises a heavy chain polypeptide having the sequence of SEQ ID NO.: 62.
37. The antigen binding fragment of claim 36, further comprising a light chain polypeptide having the sequence of SEQ ID NO.: 64.
38. The antigen binding fragment of claim 36, wherein said binding fragment is selected from the group consisting of Fab, Fab', F(ab')₂, and F_v.
39. The antigen binding fragment of claim 36, wherein said fragment is conjugated to a therapeutic agent.


* * * * *

专利名称(译)	针对单核细胞化学引诱蛋白-1 (MCP-1) 的抗体及其用途		
公开(公告)号	US7202343	公开(公告)日	2007-04-10
申请号	US10/644277	申请日	2003-08-19
[标]申请(专利权)人(译)	GUDAS JEAN中号 哈克FRENDSCHO MARY FOORD ORIT 梁美娜大号 AHLUWALIA KIRAN 巴克塔SUNIL		
申请(专利权)人(译)	GUDAS JEAN M. 哈克 - FRENDSCHO MARY FOORD ORIT 梁美娜L. AHLUWALIA KIRAN 巴克塔SUNIL		
当前申请(专利权)人(译)	Abgenix公司 , INC.		
[标]发明人	GUDAS JEAN M HAAK FRENDSCHO MARY FOORD ORIT LIANG MEINA L AHLUWALIA KIRAN BHAKTA SUNIL		
发明人	GUDAS, JEAN M. HAAK-FRENDSCHO, MARY FOORD, ORIT LIANG, MEINA L. AHLUWALIA, KIRAN BHAKTA, SUNIL		
IPC分类号	C07K16/00 G01N33/53 A61K39/395 A61P9/10 A61P13/12 A61P17/06 A61P19/02 A61P25/00 A61P29/00 A61P35/00 A61P35/04 A61P37/00 A61P43/00 C07K16/24 C07K17/00 C12N15/09 C12P21/08		
CPC分类号	C07K16/24 A61K2039/505 C07K2317/34 C07K2317/56 C07K2317/565 C07K2317/21 A61P13/12 A61P17/06 A61P19/02 A61P25/00 A61P29/00		
优先权	60/404802 2002-08-19 US		
其他公开文献	US20050058639A1		
外部链接	Espacenet USPTO		

摘要(译)

本文描述的本发明的实施方案涉及针对抗原单核细胞化学引诱蛋白-1 (MCP-1) 的抗体和这些抗体的用途。特别地，根据一些实施方案，提供了针对抗原MCP-1的完全人单克隆抗体。编码的核苷酸序列和包含重链和轻链免疫球蛋白分子的氨基酸序列，特别是对应于跨越框架区和/或互补决定区 (CDR) 的连续重链和轻链序列的序列，特别是从FR1到FR4或CDR1到CDR3的序列。, 提供。还提供了表达此类免疫球蛋白分子和单克隆抗体的杂交瘤或其他细胞系。

Figure 1

