

US 20100112603A1

(19) United States

(12) Patent Application Publication Moecks et al.

(10) **Pub. No.: US 2010/0112603 A1** (43) **Pub. Date: May 6, 2010**

(54) METHOD FOR PREDICTING THE RESPONSE TO A TREATMENT

(76) Inventors: **Joachim Moecks**, Mannheim (DE); **Andreas Strauss**, Penzberg (DE); **Gerhard Zugmaier**, Stuttgart (DE)

Correspondence Address:

HOFFMANN-LA ROCHE INC. PATENT LAW DEPARTMENT 340 KINGSLAND STREET NUTLEY, NJ 07110

(21) Appl. No.: 12/624,443

(22) Filed: Nov. 24, 2009

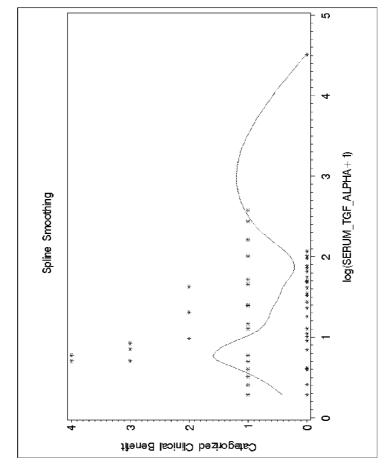
Related U.S. Application Data

(63) Continuation of application No. 11/438,033, filed on May 19, 2006.

(30) Foreign Application Priority Data

Aug. 12, 2005 (EP) 05017663.5

Publication Classification


(51) **Int. Cl. G01N 33/53**

(2006.01)

(57) ABSTRACT

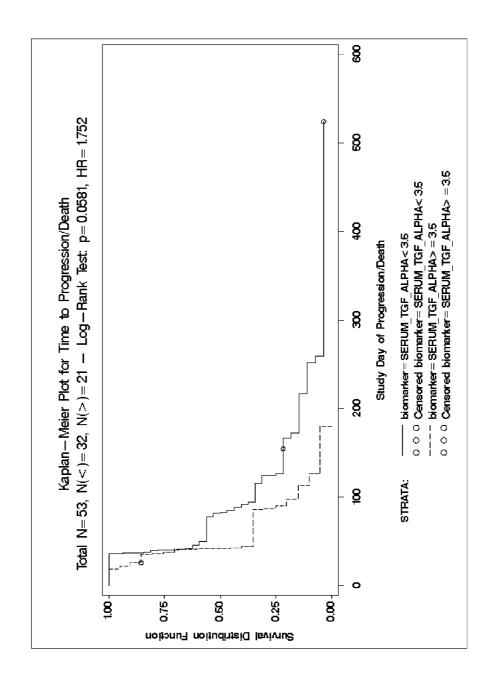
The invention is related to a method of predicting the response to a treatment with a HER inhibitor in a patient comprising the steps of assessing a biomarker or a combination of biomarkers selected from the group consisting of amphiregulin, an epidermal growth factor, a transforming growth factor alpha, and a HER2 biomarker in a biological sample from the patient and predicting the response to the treatment with the HER inhibitor in the patient by evaluating the results of the first step. Further uses and methods wherein these markers are used are disclosed.

Categorized clinical benefit:
4 - partial response
3 - stable disease >= 6 months
2 - stable disease 4 to 6 months
1 - stable disease < 4 months
0 - fast progressive disease

FIG. 2

Categorized clinical benefit:
4 - partial response
3 - stable disease >= 6 months
2 - stable disease 4 to 6 months
1 - stable disease < 4 months
0 - fast progressive disease

Patent Application Publication


Total	28 - fast progressive disease	17 - stable disease < 4 months	3 - stable disease 4 to 6 months	3 - stable disease >= 6 months	2 - partial response	53
SERUM_TG F_ALPHA> =3.5	14	 	+ 		- 0 - 0	32 21
SERUM_TG F_ALPHA< 3.5	0 14	1	! ! ! ! — -	 	4 2	32
Category SERUM_TG SERUM_TG F_ALPHA< F_ALPHA> 3.5	0		2	3	4	 Total

Total	28 - fast progressive disease	17 - stable disease < 4 months	3 - stable disease 4 to 6 months	3 - stable disease >= 6 months	2 - partial response	53
SERUM_AM PHIREGUL IN>=12	15	ĺ			0	l
gory SERUM_AM SERUM_AM PHIREGUL IN>=12	13	1 9	8		2	rotal 30
Category SERUM_AM SERUM_AM PHIREGUL IN>=12	0	— — — — — — — — — — — — — — — — — — —	2	3	4	Total

Тотај	28 - fast progressive disease	17 - stable disease < 4 months	3 - stable disease 4 to 6 months	3 - stable disease >= 6 months	2 - partial response	53
Category SERUM_EG SERUM_EG Total F<150 F>=150	18	- 6	+ 	2		32
SERUM_EG SERUM_E F<150 F>=150	10	∞	2	3 1 2	0	21
Category	0	 	1	3	4	Total

тотај	44 - fast progressive disease	24 - stable disease < 4 months	4 - stable disease 4 to 6 months	4 - stable disease >= 6 months	2 - partial response	78
HER2P_EC D>=18	17	4	+	+ 0	- 0	22
HER2P_EC D<18	 	1 20	2 3	i	2	otal 56 22
Category HER2P_EC HER2P_EC D<18 D>18	0		2	3	4	Total

ath (TTD)	P Log-rank TTD	0.0002	0.29	0.046	0.0003
Time to death (TTD)	Number of events for TTD / N total	18/53	18/53	18/53	30/78
Time to progression (TTP)	TTP P log-rank	0.058	0.030	0.85	0.014
Time to progr	Number of events for TTP / N total	50/53	50/53	50/53	74/78
	Exploratory marker cut off for group with greater benefit in TTP and/or TTD	< 3.5 pg/ml	< 12 pg/ml	>= 150 pg/ml	< 18 ng/ml
	Serum Marker	TGF-alpha	Amphiregulin	EGF	Her2-ECD

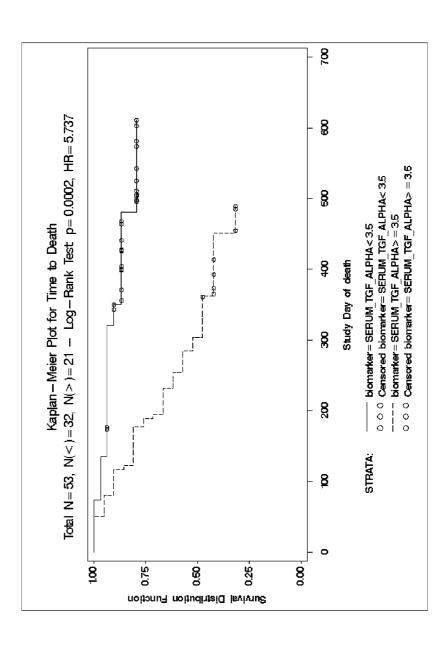


FIG. 9

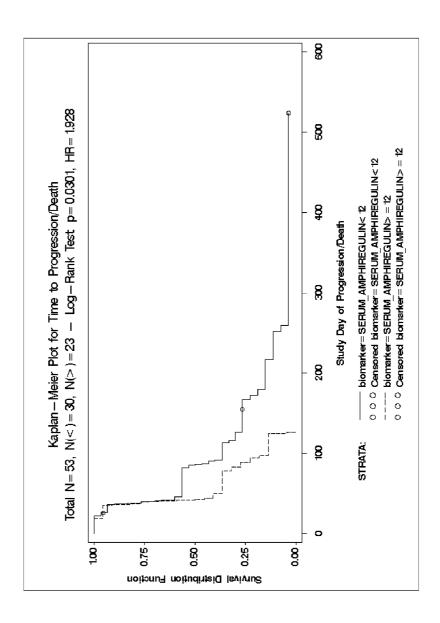


FIG. 10

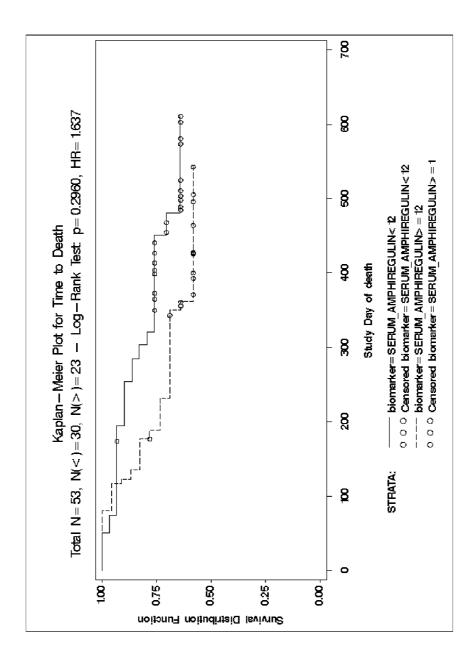


FIG. 11

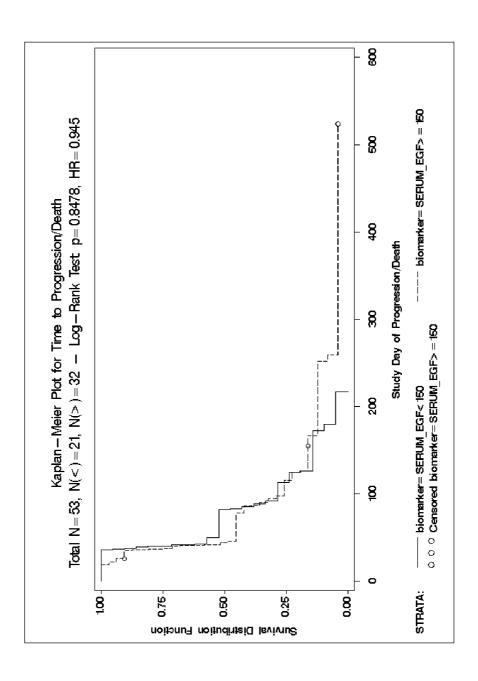


FIG. 12

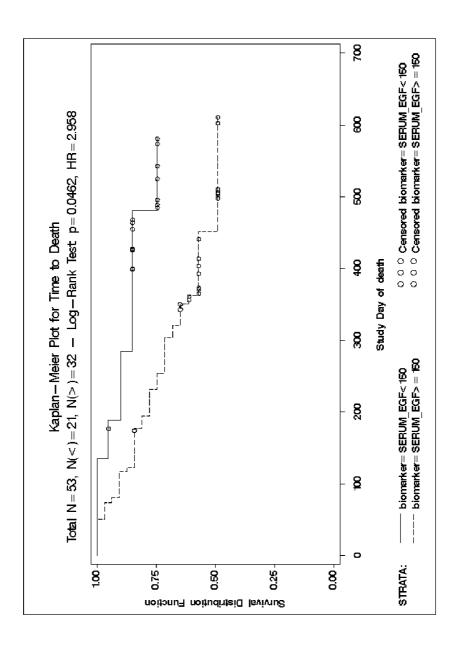
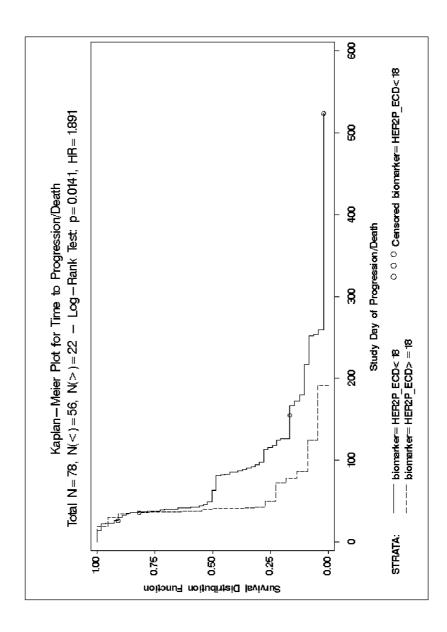
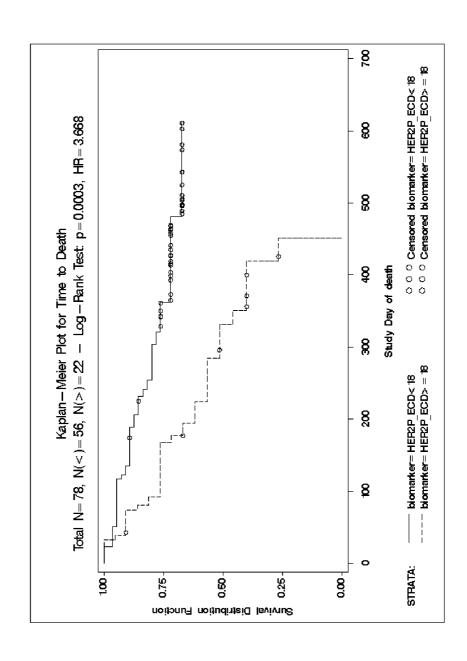




FIG. 13

Patent Application Publication

וטנמן	36 - fast progressive disease	18 - stable disease < 4 months	4 - stable disease 4 to 6 months	3 - stable disease >= 6 months	2 - partial response	63
nerzelo or TGFA	29	10	3 -	0	0	1
y HEKZSIO HEKZSELO and TGFA or TGFA <2.4 >=2.4		ı	2 1	3 3		+
	0		2	3	4	Total

		Time to prog	Time to progression (TTP)	Time to de	Time to death (TTD)
Serum Marker	Exploratory marker cut off for group with greater benefit in TTP and/or TTD	Number of events for TTP / N total	TTP P log-rank	Number of events for TTD / N total	P Log-rank TTD
Her2-ECD/ TGF-alpha Combo score	< 18ng/ml HER2 ECD and/or < 2.4 pg/ml TGF- alpha	69/09	0.0014	25/63	0.0014

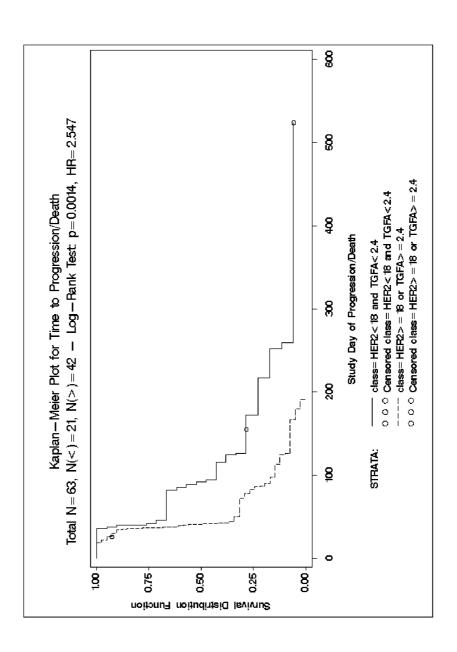


FIG. 18

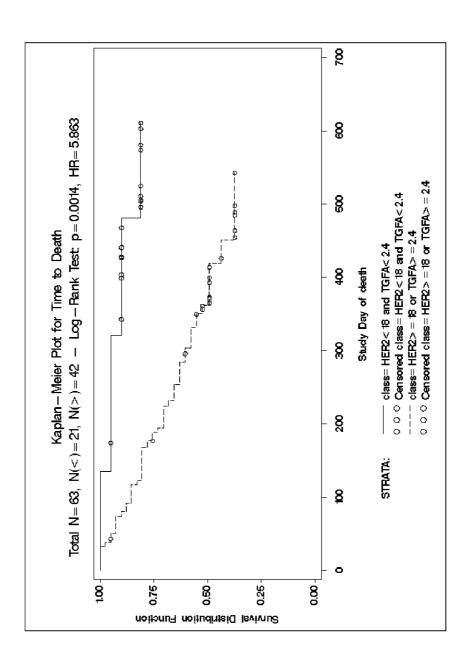


FIG. 19

METHOD FOR PREDICTING THE RESPONSE TO A TREATMENT

PRIORITY TO RELATED APPLICATIONS

[0001] This application is a continuation of U.S. application Ser. No. 11/438,033, filed May 19, 2006, now pending; which claims the benefit of European Application No. 05017663.5, filed Aug. 12, 2005. The entire contents of the above-identified applications are hereby incorporated by reference.

FIELD OF THE INVENTION

[0002] The invention is related to a method of predicting the response to a treatment with a HER inhibitor, preferably a HER dimerization inhibitor, in a patient comprising the steps of assessing a marker gene or a combination of marker genes selected from the group consisting of an epidermal growth factor, a transforming growth factor alpha and a HER2 marker gene or a combination of marker genes comprising an amphiregulin marker gene and a marker gene selected from an epidermal growth factor, a transforming growth factor alpha and a HER2 marker gene in a biological sample from the patient and predicting the response to the treatment with the HER inhibitor in the patient by evaluating the results of the first step. Further uses and methods wherein these markers are used are disclosed.

BACKGROUND OF THE INVENTION

[0003] The human epidermal growth factor receptor (ErbB or HER) family comprises four members (HER1-4) that, through the activation of a complex signal cascade, are important mediators of cell growth, survival and differentiation. At least 11 different gene products from the epidermal growth factor (EGF) superfamily bind to three of these receptors, EGFR (also called ErbB1 or HER1), HER3 (ErbB3) and HER4 (ErbB4). Although no ligand has been identified that binds and activates HER2 (ErbB2 or neu), the prevailing understanding is that HER2 is a co-receptor that acts in concert with other HER receptors to amplify and in some cases initiate receptor-ligand signaling. Dimerization with the same receptor type (homodimerization) or another member of the HER family (heterodimerization) is essential for their activity. HER2 is the preferred dimerization partner for other HER family members. The role of the HER family in many epithelial tumor types is well documented and has led to the rational development of novel cancer agents directed specifically to HER receptors. The recombinant humanized anti-HER2 monoclonal antibody (MAb) trastuzumab is a standard of care in patients with HER2-positive metastatic breast cancer (MBC). Overexpression/amplification of the HER2 protein/gene, which occurs in 20-30% of breast cancer cases, is a prerequisite for treatment with trastuzumab.

[0004] Pertuzumab (Omnitarg™; formerly 2C4) is the first of a new class of agents known as HER dimerization inhibitors (HDIs). Pertuzumab binds to HER2 at its dimerization domain, thereby inhibiting its ability to form active dimer receptor complexes and thus blocking the downstream signal cascade that ultimately results in cell growth and division. Pertuzumab is a fully humanized recombinant monoclonal antibody directed against the extracellular domain of HER2. Binding of Pertuzumab to the HER2 on human epithelial cells prevents HER2 from forming complexes with other members of the HER family (including EGFR, HER3, HER4) and

probably also HER2 homodimerization. By blocking complex formation, Pertuzumab prevents the growth-stimulatory effects and cell survival signals activated by ligands of HER1, HER3 and HER4 (e.g. EGF, TGF α , amphiregulin, and the heregulins). Other names for Pertuzumab are 2C4 or Pertuzumab. Pertuzumab is a fully humanized recombinant monoclonal antibody based on the human IgG1(κ) framework sequences. The structure of Pertuzumab consists of two heavy chains (449 residues) and two light chains (214 residues). Compared to Trastuzumab (Herceptin®), Pertuzumab has 12 amino acid differences in the light chain and 29 amino acid differences in the IgG1 heavy chain. WO 2004/092353 and WO 2004/091384 present investigations that the formation of heterodimers of HER2 with other receptors should be linked to the effectiveness or suitability of Pertuzumab.

[0005] Zabrecky, J. R. et al., J. Biol. Chem. 266 (1991) 1716-1720 disclose that the release of the extracellular domain of HER2 may have implications in oncogenesis and its detection could be useful as a cancer diagnostic. Colomer, R. et al., Clin. Cancer Res. 6 (2000) 2356-2362 disclose circulating HER2 extracellular domain and resistance to chemotherapy in advanced breast cancer. The prognostic and predictive values of the extracellular domain of HER2 is reviewed by Hait, W. N., Clin. Cancer Res. 7 (2001) 2601-2604.

SUMMARY OF THE INVENTION

[0006] There is still a need to provide further methods for determining the progression of disease in a cancer patient treated with a HER dimerization inhibitor.

[0007] Therefore, in an embodiment of the invention, a method of predicting the response to a treatment with a HER inhibitor, preferably a HER dimerization inhibitor, in a patient is provided comprising the steps of:

[0008] (a) determining the expression level or amount of one or more biomarker in a biological sample from a patient wherein the biomarker or biomarkers are selected from the group consisting of:

[0009] (1) transforming growth factor alpha;

[0010] (2) HER2;

[0011] (3) amphiregulin; and

[0012] (4) epidermal growth factor;

[0013] (b) determining whether the expression level or amount assessed in step (a) is above or below a certain quantity that is associated with an increased or decreased clinical benefit to a patient; and

[0014] (c) predicting the response to the treatment with the HER inhibitor in the patient by evaluating the results of step (b).

[0015] In another embodiment of the invention, a probe that hybridizes with the polynucleotides of the above biomarkers under stringent conditions or an antibody that binds to the proteins of the above biomarkers is used for predicting the response to treatment with a HER inhibitor in a patient or used for selecting a composition for inhibiting the progression of disease in a patient.

[0016] In still another embodiment of the invention, a kit is provided comprising a probe that anneals with a biomarker polynucleotide under stringent conditions or an antibody that binds to the biomarker protein.

[0017] In still another embodiment of the invention, a method of selecting a composition for inhibiting the progression of disease in a patient is provided, the method comprising:

[0018] (a) separately exposing aliquots of a biological sample from a cancer patient in the presence of a plurality of test compositions;

[0019] (b) comparing the level of expression of one or more biomarkers selected from the group consisting of amphiregulin, epidermal growth factor, transforming growth factor alpha and HER2 in the aliquots of the biological sample contacted with the test compositions and the level of expression of such biomarkers in an aliquot of the biological sample not contacted with the test compositions; and

[0020] (c) selecting one of the test compositions which alters the level of expression of a particular biomarker or biomarkers in the aliquot of the biological sample contacted with the test composition and the level of expression of the corresponding biomarker or biomarkers in the aliquot of the biological sample not contacted with the test composition is an indication for the selection of the test composition.

[0021] In yet another embodiment of the invention, a method of identifying a candidate agent is provided said method comprising:

[0022] (a) contacting an aliquot of a biological sample from a cancer patient with the candidate agent and determining the level of expression of one or more biomarkers selected from the group consisting of amphiregulin, epidermal growth factor, transforming growth factor alpha and HER2 in the aliquot;

[0023] (b) determining the level of expression of a corresponding biomarker or of a corresponding combination of biomarkers in an aliquot of the biological sample not contacted with the candidate agent;

[0024] (c) observing the effect of the candidate agent by comparing the level of expression of the biomarker or biomarkers in the aliquot of the biological sample contacted with the candidate agent and the level of expression of the corresponding biomarker or biomarkers in the aliquot of the biological sample not contacted with the candidate agent; and

[0025] (d) identifying said agent from said observed effect, wherein an at least 10% difference between the level of expression of the biomarker or biomarkers in the aliquot of the biological sample contacted with the candidate agent and the level of expression of the corresponding biomarker or biomarkers in the aliquot of the biological sample not contacted with the candidate agent is an indication of an effect of the candidate agent.

[0026] In yet another embodiment, a candidate agent identified by the method according to the invention or a pharmaceutical preparation comprising an agent according to the invention is provided.

[0027] In yet another embodiment of the invention, an agent according to the invention is provided for the preparation of a composition for the treatment of cancer.

[0028] In still another embodiment of the invention, a method of producing a drug is provided comprising:

[0029] (i) synthesizing the candidate agent identified as described above or an analog or derivative thereof in an amount sufficient to provide said drug in a therapeutically effective amount to a subject; and/or

[0030] (ii) combining the drug candidate or the candidate agent identified as described above or an analog or derivative thereof with a pharmaceutically acceptable carrier. [0031] In yet another embodiment of the invention, a biomarker protein or a biomarker polynucleotide selected from the group consisting of an amphiregulin biomarker, and epidermal growth factor biomarker, a transforming growth factor alpha biomarker and a HER2 biomarker protein or polynucleotide is used for deriving a candidate agent or for selecting a composition for inhibiting the progression of a disease in a patient.

[0032] In another embodiment of the invention, a HER inhibitor, preferably a HER dimerization inhibitor, is used for the manufacture of a medicament for treating a human cancer patient characterized in that said treating or treatment includes assessing in a biological sample from the patient: one or more biomarkers selected from the group consisting of amphiregulin biomarker, epidermal growth factor biomarker, transforming growth factor alpha biomarker, and HER2 biomarker. In a particular embodiment, one or more biomarkers are assessed wherein the biomarkers are selected from the group consisting of epidermal growth factor, transforming growth factor alpha, and HER2. In another particular embodiment, a transforming growth factor alpha biomarker is assessed in combination with one or more biomarkers selected from the group consisting of epidermal growth factor, amphiregulin, and HER2. In another particular embodiment, a HER2 biomarker is assessed in combination with one or more biomarkers selected from the group consisting of epidermal growth factor, transforming growth factor alpha, and amphiregulin.

[0033] In another particular embodiment, a epidermal growth factor biomarker is assessed in combination with one or more biomarkers selected from the group consisting of amphiregulin, transforming growth factor alpha, and HER2. [0034] In another particular embodiment, an amphiregulin biomarker is assessed in combination with one or more biomarkers selected from the group consisting of epidermal growth factor, transforming growth factor alpha, and HER2.

BRIEF DESCRIPTION OF THE FIGURES

[0035] FIG. 1: Scatterplot TGF-alpha logarithmic transformation versus categorized clinical benefit

[0036] FIG. 2: Scatterplot Amphiregulin logarithmic transformation versus categorized clinical benefit

[0037] FIG. 3: Ordinal clinical benefit TGF-alpha

[0038] FIG. 4: Ordinal clinical benefit Amphiregulin

[0039] FIG. 5: Ordinal clinical benefit EGF

[0040] FIG. 6: Ordinal clinical benefit HER2-ECD

[0041] FIG. 7: Overview exploratory cut-points and log-rank p-values for TTP and TTD for Amphiregulin, EGF, TGF-alpha, HER2-ECD

[0042] FIG. 8: TGF-alpha Kaplan Meier plot for time to progression/death based on exploratory single marker cutpoint

[0043] FIG. 9: TGF-alpha Kaplan Meier plot for time to death based on exploratory single marker cut-point

[0044] FIG. 10: Amphiregulin Kaplan Meier plot for time to progression/death based on exploratory single marker cutpoint

[0045] FIG. 11: Amphiregulin Kaplan Meier plot for time to death based on exploratory single marker cut-point

[0046] FIG. 12: EGF Kaplan Meier plot for time to progression/death based on exploratory single marker cut-point [0047] FIG. 13: EGF Kaplan Meier plot for time to death based on exploratory single marker cut-point

[0048] FIG. 14: HER2-ECD Kaplan Meier plot for time to progression/death based on exploratory single marker cutpoint

[0049] FIG. 15: HER2-ECD Kaplan Meier plot for time to death based on exploratory single marker cut-point

[0050] FIG. 16: As example for a combination score, further improving the separation between the greater clinical benefit/lesser clinical benefit groups in TTP: Ordinal clinical benefit HER2-ECD TGF alpha combination

[0051] FIG. 17: Overview exploratory cut-points and log-rank p-values for TTP and TTD for a combination of TGF-alpha and HER2-ECD

[0052] FIG. 18: HER2-ECD/TGF-alpha Kaplan Meier plot for time to progression/death based on exploratory combination marker cut-point

[0053] FIG. 19: HER2-ECD/TGF-alpha Kaplan Meier plot for time to death based on exploratory combination marker cut-point

DETAILED DESCRIPTION OF THE INVENTION

[0054] The articles "a" and "an" are used herein to refer to one or to more than one (i.e. to at least one) of the grammatical object of the article. By way of example, "an element" means one element or more than one element.

The term "biological sample" shall generally mean any biological sample obtained from an individual, body fluid, cell line, tissue culture, or other source. Body fluids are e.g. lymph, sera, plasma, urine, semen, synovial fluid and spinal fluid. Methods for obtaining tissue biopsies and body fluids from mammals are well known in the art. If the term "sample" is used alone, it shall still mean that the "sample" is a "biological sample", i.e. the terms are used interchangeably. [0056] The term "response of a patient to treatment with a HER inhibitor" or "response of a patient to treatment with a HER dimerization inhibitor" refers to the clinical benefit imparted to a patient suffering from a disease or condition (such as cancer) from or as a result of the treatment with the HER inhibitor (e.g., a HER dimerization inhibitor). A clinical benefit includes a complete remission, a partial remission, a stable disease (without progression), progression-free survival, disease free survival, improvement in the time-to-progression (of the disease), improvement in the time-to-death, or improvement in the overall survival time of the patient from or as a result of the treatment with the HER dimerization inhibitor. There are criteria for determining a response to therapy and those criteria allow comparisons of the efficacy to alternative treatments (Slapak and Kufe, Principles of Cancer Therapy, in Harrisons's Principles of Internal Medicine, 13th edition, eds. Isselbacher et al., McGraw-Hill, Inc., 1994). For example, a complete response or complete remission of cancer is the disappearance of all detectable malignant disease. A partial response or partial remission of cancer may be, for example, an approximately 50 percent decrease in the product of the greatest perpendicular diameters of one or more lesions or where there is not an increase in the size of any lesion or the appearance of new lesions.

[0057] As used herein, the term "progression of cancer" includes and may refer to metastasis; a recurrence of cancer, or an at least approximately 25 percent increase in the product of the greatest perpendicular diameter of one lesion or the appearance of new lesions. The progression of cancer, preferably breast cancer, is "inhibited" if recurrence or metastasis of the cancer is reduced, slowed, delayed, or prevented.

[0058] As used herein, the term "Time To Progression/death" (also referred to as "TPP") or Progression-Free Survival (also referred to as "PFS") refers to a clinical endpoint frequently used in oncology trials (that includes but is not limited to clinical trials with reference to the present invention). The measurement for each patient equals the time elapsed from onset of the treatment of a patient in a trial (as defined in the protocol [i.e, see the examples infra]) until the detection of a malignancy progression (as defined in the protocol) or the occurrence of any fatality (whatever is first). If the observation of the patient was stopped (e.g. at study end) after a period and no event was observed, then this observation time t is called "censored."

[0059] As used herein, the term "Time To Death" (also referred to as "TTD") or "Overall Survival" (also referred to as "OS") refers to a clinical endpoint frequently used in oncology trials (that includes but is not limited to clinical trials with reference to the present invention). The measurement for each patient equals the time elapsed from onset of the treatment of a patient in a trial (as defined in the protocol [i.e., see the examples infra]) until the occurrence of any fatality. If the observation of the patient is stopped (e.g. at study end) after a period t and the patient survived to this time, then this observation time t is called "censored."

[0060] As used herein, the term "covariate" refers to certain variables or information relating to a patient. The clinical endpoints are frequently considered in regression models, where the endpoint represent the dependent variable and the biomarkers represent the main or target independent variables (regressors). If additional variables from the clinical data pool are considered these are denoted as (clinical) covariates. The term "clinical covariate" here is used to describe all clinical information about the patient, which are in general available at baseline. These clinical covariates comprise demographic information like sex, age etc., other anamnestic information, concomitant diseases, concomitant therapies, result of physical examinations, common laboratory parameters obtained, known properties of the target tumor, information quantifying the extent of malignant disease, clinical performance scores like ECOG or Karnofsky index, clinical disease staging, timing and result of pretreatments and disease history as well as all similar information, which may be associated with the clinical prognosis.

[0061] As used herein, the term "raw analysis" or "unadjusted analysis" refers to regression analyses, where over the considered biomarkers no additional clinical covariates were used in the regression model, neither as independent factors nor as stratifying covariate.

[0062] As used herein, the term "adjusted by covariates" refers to regression analyses, where over the considered biomarkers additional clinical covariates were used in the regression model, either as independent factors or as stratifying covariate.

[0063] As used herein, the term "univariate" refers to regression models or graphical approaches where as independent variable only one of the target biomarkers is part of the model. These univariate models can be considered with and without additional clinical covariates.

[0064] As used herein, the term "multivariate" refers to regression models or graphical approaches where as independent variables more than one of the target biomarkers are part of the model.

[0065] These multivariate models can be considered with and without additional clinical covariates.

[0066] "Nucleotides" are "nucleosides" that further include a phosphate group covalently linked to the sugar portion of the nucleoside. For those "nucleosides" that include a pentofuranosyl sugar, the phosphate group can be linked to either the 2', 3' or 5' hydroxyl moiety of the sugar. A "nucleotide" is the "monomeric unit" of an "oligonucleotide", more generally denoted herein as an "oligomeric compound", or a "polynucleotide", more generally denoted as a "polymeric compound". Another general expression therefor is desoxyribonucleic acid (DNA) and ribonucleic acid (RNA). As used herein the term "polynucleotide" is synonymous with "nucleic acid."

[0067] As used herein, the term "probe" refers to synthetically or biologically produced nucleic acids (DNA or RNA) which, by design or selection, contain specific nucleotide sequences that allow them to hybridize under defined predetermined stringencies specifically (i.e., preferentially) to "nucleic acids". A "probe" can be identified as a "capture probe" meaning that it "captures" the nucleic acid so that it can be separated from undesirable materials which might obscure its detection. Once separation is accomplished, detection of the captured "target nucleic acid" can be achieved using a suitable procedure. "Capture probes" are often already attached to a solid phase. According to the present invention, the term hybridization under "stringent conditions" is given the same meaning as in Sambrook et al. (Molecular Cloning, A Laboratory Manual, Cold Spring Harbor Laboratory Press (1989), paragraph 1.101-1.104). Preferably, a "stringent hybridization" is the case when a hybridization signal is still detectable after washing for 1 h with 1×SSC and 0.1% SDS at 50° C., preferably at 55° C., more preferably at 62° C., and most preferably at 68° C., and more preferably for 1 hour with 0.2×SSC and 0.1% SDS at 50°., preferably at 55° C., more preferably at 62°, and most preferably at 68° C. The composition of the SSC buffer is described in Sambrook et al. (Molecular Cloning, A Laboratory Manual, Cold Spring Harbor Laboratory Press (1989)). [0068] As used herein, a "transcribed polynucleotide" is a polynucleotide (e.g an RNA, a cDNA, or an analog of one of an RNA or cDNA) which is complementary to or homologous with all or a portion of a mature RNA made by transcription of a gene, such as the marker gene of the invention, and normal post-transcriptional processing (e.g. splicing), if any, of the transcript. The term "cDNA" is an abbreviation for complementary DNA, the single-stranded or double-stranded DNA copy of a mRNA. The term "mRNA" is an abbreviation for messenger RNA- the RNA that serves as a template for protein synthesis.

[0069] As used herein, the term "marker gene" or "biomarker gene" is meant to include a gene which is useful according to this invention for determining the progression of cancer in a patient, particularly in a breast cancer patient.

[0070] As used herein, the term "marker polynucleotide" or "biomarker polynucleotide" is meant to include a nucleotide transcript (hnRNA or mRNA) encoded by a marker gene according to the invention, or cDNA derived from the nucleotide transcript, or a segment of said transcript or cDNA.

[0071] As used herein, the term "marker protein," "marker polypeptide," "biomarker protein," or "biomarker polypeptide" is meant to include a protein or polypeptide encoded by a marker gene according to the invention or to a fragment thereof.

[0072] As used herein, the term "marker" and "biomarker" are used interchangeably and refer to a marker gene, marker polynucleotide, or marker protein as defined above.

[0073] As used herein, the term "gene product" refers to a marker polynucleotide or marker protein encoded by a marker gene.

[0074] The expression of a marker gene "significantly" differs from the level of expression of the marker gene in a reference sample if the level of expression of the marker gene in a sample from the patient differs from the level in a sample from the reference subject by an amount greater than the standard error of the assay employed to assess expression, and preferably at least 10%, and more preferably 25%, 50%, 75%, 100%, 125%, 150%, 175%, 200%, 300%, 400%, 500% or 1,000% of that amount. Alternatively, expression of the marker gene in the patient can be considered "significantly" lower than the level of expression in a control subject if the level of expression in a sample from the patient is lower than the level in a sample from the control subject by an amount greater than the standard error of the assay employed to assess expression, and preferably at least 10%, and more preferably 25%, 50%, 75%, 100%, 125%, 150%, 175%, 200%, 300%, 400%, 500% or 1,000% that amount.

[0075] A marker polynucleotide or a marker protein "corresponds to" another marker polynucleotide or marker protein if it is related thereto, and in preferred embodiments is identical thereto.

[0076] The terms "level of expression" or "expression level" are used interchangeably and generally refer to the amount of a polynucleotide or an amino acid product or protein in a biological sample. "Expression" generally refers to the process by which gene encoded information is converted into the structures present and operating in the cell. Therefore, according to the invention "expression" of a gene may refer to transcription into a polynucleotide, translation into a protein or even posttranslational modification of the protein. Fragments of the transcribed polynucleotide, the translated protein or the postranslationally modified protein shall also be regarded as expressed whether they originate from a transcript generated by alternative splicing, a degraded transcript or from a posttranslational processing of the protein, e.g. by proteolysis. "Expressed genes" include those that are transcribed into a polynucleotide as mRNA and then translated into a protein; and also include expressed genes that are transcribed into RNA but not translated into a protein (for example, transfer and ribosomal RNAs).

[0077] The term "overexpression" or "increased expression" refers to an upward deviation in levels of expression as compared to the baseline expression level in a sample used as a control.

[0078] The term "underexpression" or "decreased expression" refers to a downward deviation in levels of expression as compared to the baseline expression level in a sample used as a control.

[0079] The term "amphiregulin" relates to a gene that encodes a protein and to the protein itself that is a member of the epidermal growth factor family. It is an autocrine growth factor as well as a mitogen for astrocytes, Schwann cells, and fibroblasts. It is related to epidermal growth factor (EGF) and transforming growth factor alpha (TGF-alpha). This protein interacts with the EGF/TGF-alpha receptor to promote the growth of normal epithelial cells and inhibits the growth of certain aggressive carcinoma cell lines. According to the invention, the amino acid sequence of amphiregulin is the

amino acid sequence according to SEQ ID NO: 1. According to the invention, the nucleic acid sequence of the "amphiregulin" cDNA is the nucleic acid sequence according to SEQ ID NO: 5 which is accessible at GenBank with the accession number NM_001657.

[0080] The term "transforming growth factor alpha" relates to a gene that encodes a protein and to the protein itself that is a member of the family of transforming growth factors (TGFs). These are biologically active polypeptides that reversibly confer the transformed phenotype on cultured cells. "Transforming growth factor-alpha" shows about 40% sequence homology with epidermal growth factor and competes with EGF for binding to the EGF receptor, stimulating its phosphorylation and producing a mitogenic response. According to the invention, the amino acid sequence of "Transforming growth factor-alpha" is the amino acid sequence according to SEQ ID NO: 3. According to the invention, the nucleic acid sequence of the "transforming growth factor-alpha" cDNA is the nucleic acid sequence according to SEQ ID NO: 7 which is accessible at GenBank with the accession number NM_003236.

[0081] The term "epidermal growth factor" relates to a gene that encodes a protein and to the protein itself that is a member of the family of growth factors. "Epidermal growth factor (EGF)" has a profound effect on the differentiation of specific cells in vivo and is a potent mitogenic factor for a variety of cultured cells of both ectodermal and mesodermal origin. The EGF precursor is believed to exist as a membrane-bound molecule which is proteolytically cleaved to generate the 53-amino acid peptide hormone that stimulates cells to divide. According to the invention, the amino acid sequence of "Epidermal growth factor" is the amino acid sequence according to SEQ ID NO: 2. According to the invention, the nucleic acid sequence of the "Epidermal growth factor (EGF)" cDNA is the nucleic acid sequence according to SEQ ID NO: 6 which is accessible at GenBank with the accession number NM_001963. The "Epidermal Growth Factor Receptor" abbreviated as EGFR, a 170-kD glycoprotein, is composed of an N-terminus extracellular domain, a hydrophobic transmembrane domain, and a C-terminus intracellular region containing the kinase domain. The mRNA has different variants translated into different receptor proteins. According to the invention, the amino acid sequence of the "Epidermal growth factor receptor" is the amino acid sequence according to SEQ ID NO: 11 (transcript variant 1; GenBank accession number NM_005228), SEQ ID NO: 12 (transcript variant 2; GenBank accession number NM_201282), SEQ ID NO: 13 (transcript variant 3; Gen-Bank accession number NM_201283), or SEQ ID NO: 14 (transcript variant 4; GenBank accession number NM_201284). EGFR, encoded by the erbB1 gene, has been causally implicated in human malignancy. In particular, increased expression of EGFR has been observed in breast, bladder, lung, head, neck and stomach cancer as well as glioblastomas. EGFR ligandinduced dimerization activates the intrinsic RTK domain (an Src homology domain 1, SH1), resulting in autophosphorylation on six specific EGFR tyrosine residues in the noncatalytic tail of the cytoplasmic domain. The cellular effects of EGFR activation in a cancer cell include increased proliferation, promotion of cell motility, adhesion, invasion, angiogenesis, and enhanced cell survival by inhibition of apoptosis. Activated EGFR induces tumor cell proliferation through stimulation of the mitogenactivated protein kinase (MAPK) cascade.

[0082] The terms "human neu", "c-erbB-2", "erbB2", "erbB-2", "HER-2/neu", "HER-2" and "HER2" are used interchangeably herein. These terms relate to a gene that encodes a protein and to the protein itself that is a member of the family of the epidermal growth factor (EGF) receptor family of receptor tyrosine kinases. This protein has no ligand binding domain of its own and therefore cannot bind growth factors. However, it does bind tightly to other ligand-bound EGF receptor family members to form a heterodimer, stabilizing ligand binding and enhancing kinase-mediated activation of downstream signalling pathways, such as those involving mitogen-activated protein kinase and phosphatidylinositol-3 kinase. Allelic variations at amino acid positions 654 and 655 of isoform a (positions 624 and 625 of isoform b) have been reported, with the most common allele, Ile654/Ile655 being preferred according to the invention. Amplification and/or overexpression of this gene has been reported in numerous cancers, including breast and ovarian tumors. Alternative splicing results in several additional transcript variants, some encoding different isoforms and others that have not been fully characterized. According to the invention, the amino acid sequence of HER2 is the amino acid sequence according to SEQ ID NO: 4. According to the invention, the nucleic acid sequence of the "HER2" cDNA is the nucleic acid sequence according to SEQ ID NO: 8 which is accessible at GenBank with the accession number NM_004448.2.

[0083] The "extracellular domain of HER2" or "shed extracellular domain of HER2" or "HER2-ECD" is a glycoprotein of between 97 and 115 kDa which corresponds substantially to the extracellular domain of the human HER2 gene product. It can be referred to as p105 (Zabrecky, J. R. et al., J. Biol. Chem. 266 (1991) 1716-1720; U.S. Pat. No. 5,401,638; U.S. Pat. No. 5,604,107). The quantitation and detection of the extracellular domain of HER2 is described in U.S. Pat. No. 5,401,638 and U.S. Pat. No. 5,604,107.

[0084] The term "HER3" stands for another member of the epidermal growth factor receptor (EGFR) family of receptor tyrosine kinases. This membrane-bound protein has not an active kinase domain. The protein can bind ligands but not transmit a signal into the cell. It forms heterodimers with other EGF receptor family members which do have kinase activity which leads to cell proliferation or differentiation. Amplification of this gene and/or overexpression of its protein is found in numerous cancers. According to the invention, the amino acid sequence of the "HER3" cDNA is the amino acid sequence according to SEQ ID NO: 9 which is accessible at GenBank from the translation of the nucleic acid sequence of HER3 with the accession number NM_001005915. According to the invention, the nucleic acid sequence of the "HER3" cDNA is the nucleic acid sequence according to SEQ ID NO: 10 which is accessible at GenBank with the accession number NM_001005915.

[0085] The term "antibody" herein is used in the broadest sense and specifically covers intact monoclonal antibodies, polyclonal antibodies, and multispecific antibodies (e.g., bispecific antibodies) formed from at least two intact antibodies, and antibody fragments, so long as they exhibit the desired biological activity of an antibody.

[0086] The term "monoclonal antibody" as used herein refers to an antibody obtained from a population of substantially homogeneous antibodies, i.e., the individual antibodies comprising the population are identical except for possible naturally occurring mutations that may be present in minor

amounts. Monoclonal antibodies are highly specific, being directed against a single antigenic site. Furthermore, in contrast to polyclonal antibody preparations which include different antibodies directed against different determinants (epitopes), each monoclonal antibody is directed against a single determinant on the antigen. In addition to their specificity, the monoclonal antibodies are advantageous in that they may be synthesized uncontaminated by other antibodies. The modifier "monoclonal" indicates the character of the antibody as being obtained from a substantially homogeneous population of antibodies, and is not to be construed as requiring production of the antibody by any particular method. For example, the monoclonal antibodies to be used in accordance with the present invention may be made by the hybridoma method first described by Kohler, G. et al., Nature 256 (1975) 495-497, or may be made by recombinant DNA methods (see, e.g., U.S. Pat. No. 4,816,567). "Antibody fragments" comprise a portion of an intact antibody.

[0087] An antibody "which binds" an antigen of interest according to the invention is one capable of binding that antigen with sufficient affinity such that the antibody is useful in detecting the presence of the antigen. One antibody according to the invention binds human HER2 and does not (significantly) cross-react with other proteins. In such embodiments, the extent of binding of the antibody to other proteins will be less than 10% as determined by fluorescence activated cell sorting (FACS) analysis or radioimmunoprecipitation (RIA).

[0088] Dimerization—the pairing of receptors—is essential to the signaling activity of all HER receptors. According to the invention, the term "HER dimerization inhibitor" or preferably "HER2 heterodimerization inhibitor" refers to a therapeutic agent that binds to HER2 and inhibits HER2 heterodimerization. These are preferably antibodies, preferably monoclonal antibodies, more preferably humanized antibodies that bind to HER2 and inhibit HER2 heterodimerization. Examples of antibodies that bind HER2 include 4D5, 7C2, 7F3 or 2C4 as well as humanized variants thereof, including huMAb4D5-1, huMAb4D5-2, huMAb4D5-3, huMAb4D5-4, huMAb4D5-5, huMAb4D5-6, huMAb4D5-7 and huMAb4D5-8 as described in Table 3 of U.S. Pat. No. 5,821,337; and humanized 2C4 mutant numbers 560, 561, 562, 568, 569, 570, 571, 574, or 56869 as described in WO 01/00245. 7C2 and 7F3 and humanized variants thereof are described in WO 98/17797. The term "HER dimerization inhibitor" or "HER2 heterodimerization inhibitor" shall not apply to Trastuzumab monoclonal antibodies commercially available as "Herceptin®" as the mechanism of action is different and as Trastuzumab does not inhibit HER dimeriza-

[0089] Preferred throughout the application is the "antibody 2C4", in particular the humanized variant thereof (WO 01/00245; produced by the hybridoma cell line deposited with the American Type Culture Collection, Manassass, Va., USA under ATCC HB-12697), which binds to a region in the extracellular domain of HER2 (e.g., any one or more residues in the region from about residue 22 to about residue 584 of HER2, inclusive). The "epitope 2C4" is the region in the extracellular domain of ErbB2 to which the antibody 2C4 binds. The expression "monoclonal antibody 2C4" refers to an antibody that has antigen binding residues of, or derived from, the murine 2C4 antibody of the Examples in WO 01/00245. For example, the monoclonal antibody 2C4 may be murine monoclonal antibody 2C4 or a variant thereof, such as humanized antibody 2C4, possessing antigen binding amino

acid residues of murine monoclonal antibody 2C4. Examples of humanized 2C4 antibodies are provided in Example 3 of WO 01/00245. Unless indicated otherwise, the expression "rhuMAb 2C4" when used herein refers to an antibody comprising the variable light (VL) and variable heavy (VH) sequences of SEQ ID Nos. 3 and 4 of WO 01/00245, respectively, fused to human light and heavy IgG1 (non-A allotype) constant region sequences optionally expressed by a Chinese Hamster Ovary (CHO) cell. Preferred embodiments of WO 01/00245 are preferred herein as well. The humanized antibody 2C4 is also called Pertuzumab.

[0090] A "kit" is any manufacture (e.g a package or container) comprising at least one reagent, e.g a probe, for specifically detecting a marker gene or protein of the invention. The manufacture is preferably promoted, distributed, or sold as a unit for performing the methods of the present invention. [0091] The verbs "determine" and "assess" shall have the same meaning and are used interchangeably throughout the application.

[0092] Conventional techniques of molecular biology and nucleic acid chemistry, which are within the skill of the art, are explained in the literature. See, for example, Sambrook, J. et al., Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., 1989; Gait, M. J. (ed.), Oligonucleotide synthesis—a practical approach, IRL Press Limited, 1984; Hames, B. D. and Higgins, S. J. (eds.), Nucleic acid hybridisation—a practical approach, IRL Press Limited, 1985; and a series, Methods in Enzymology, Academic Press, Inc., all of which are incorporated herein by reference. All patents, patent applications, and publications mentioned herein, both supra and infra, are hereby incorporated by reference in their entirety.

[0093] As used herein, the general form of a prediction rule consists in the specification of a function of one or multiple biomarkers potentially including clinical covariates to predict response or non-response, or more generally, predict benefit or lack of benefit in terms of suitably defined clinical endpoints.

[0094] The simplest form of a prediction rule consists of an univariate model without covariates, where the prediction is determined by means of a cutoff or threshold. This can be phrased in terms of the Heaviside function for a specific cutoff c and a biomarker measurement x, where the binary prediction A or B is to be made, then

If H(x-c)=0 then predict A.

If H(x-c)=1 then predict B.

[0095] This is the simplest way of using univariate biomarker measurements in prediction rules. If such a simple rule is sufficient, it allows for a simple identification of the direction of the effect, i.e. whether high or low expression levels are beneficial for the patient.

[0096] The situation can be more complicated if clinical covariates need to be considered and/or if multiple biomarkers are used in multivariate prediction rules. In order to illustrate the issues here are two hypothetical examples:

Covariate Adjustment (Hypothetical Example):

[0097] For a biomarker X it is found in a clinical trial population that high expression levels are associated with a worse prognosis (univariate analysis). A closer analysis shows that there are two tumor types in the population, one of which possess a worse prognosis than the other one and at the

same time the biomarker expression for this tumor group is generally higher. An adjusted covariate analysis reveals that for each of the tumor types the relation of clinical benefit and prognosis is reversed, i.e. within the tumor types, lower expression levels are associated with better prognosis. The overall opposite effect was masked by the covariate tumor type—and the covariate adjusted analysis as part of the prediction rule reversed the direction.

Multivariate Prediction (Hypothetical Example):

[0098] For a biomarker X it is found in a clinical trial population that high expression levels are slightly associated with a worse prognosis (univariate analysis). For a second biomarker Y a similar observation was made by univariate analysis. The combination of X and Y revealed that a good prognosis is seen if both biomarkers are low. This makes the rule to predict benefit if both biomarkers are below some cutoffs (AND- connection of a Heaviside prediction function). For the combination rule there is no longer a simple rule phraseable in an univariate sense. E.g. having low expression levels in X will not automatically predict a better prognosis. [0099] These simple examples show that prediction rules with and without covariates cannot be judged on the univariate level of each biomarker. The combination of multiple biomarkers plus a potential adjustment by covariates does not allow to assign simple relationships towards single biomark-

[0100] In one embodiment of the invention, a method of predicting the response to a treatment with a HER inhibitor, preferably a HER dimerization inhibitor, in a patient comprises the steps of:

[0101] (a) determining the expression level or amount of one or more biomarkers in a biological sample from a patient wherein the biomarker or biomarkers are selected from the group consisting of:

[0102] (1) transforming growth factor alpha;

[0103] (2) HER2;

[0104] (3) amphiregulin; and

[0105] (4) epidermal growth factor;

[0106] (b) determining whether the expression level or amount assessed in step (a) is above or below a certain quantity that is associated with an increased or decreased clinical benefit to a patient; and

[0107] (c) predicting the response to the treatment with the HER inhibitor in the patient by evaluating the results of step (b).

[0108] In a more particular embodiment of the above method, the expression level of the transforming growth factor alpha biomarker is determined in combination with one or more biomarkers selected from the group consisting of epidermal growth factor, amphiregulin, and HER2. In another more particular embodiment of the above method, the expression level of the HER2 biomarker is determined in combination with one or more biomarkers selected from the group consisting of epidermal growth factor, transforming growth factor alpha, and amphiregulin. In another more particular embodiment of the above method, the expression level of the epidermal growth factor biomarker is determined in combination with one or more biomarkers selected from the group consisting of amphiregulin, transforming growth factor alpha, and HER2. In another more particular embodiment of the above method, an amphiregulin biomarker is assessed in combination with one or more biomarkers selected from the group consisting of epidermal growth factor, transforming growth factor alpha, and HER2.

[0109] The "quantity that is associated with an increased or decreased clinical benefit to a patient" of the above method is preferably a value expressed in mass/volume for blood serum or blood plasma or mass/mass for tumor tissue. It can be measured by methods known to the expert skilled in the art and also disclosed by this invention. If the expression level or amount determined in step (a) is above or below a certain quantity or value, the response to the treatment can be determined.

[0110] With respect to the quantity in blood serum for the transforming growth factor alpha marker protein, a range between 2.0-10.0 pg/ml, preferably a range between 2.0-5.0 pg/ml, and more preferably about 3.5 pg/ml may be favorable for progression free survival and overall survival when treatment with a HER inhibitor is considered. See FIG. 7. Thus, in a preferred embodiment, the quantity of transforming growth factor alpha marker protein in the blood serum of a patient is within one of the foregoing ranges for predicting a good response to treatment with a HER inhibitor in the patient.

[0111] With respect to the quantity in blood serum for the HER2 marker protein (preferably the soluble HER2 extracellular domain (HER2-ECD)), a range between 12-22 ng/ml, preferably about 18 ng/ml, may be favorable for progression free survival and overall survival when treatment with a HER inhibitor is considered. See FIG. 7. Thus, in a preferred embodiment, the quantity of HER2 marker protein in the blood serum of a patient is within the foregoing range for predicting a good response to treatment with a HER inhibitor in the patient.

[0112] With respect to the quantity in blood serum for the epidermal growth factor marker protein, a range between 100-250 pg/ml, preferably about 150 pg/ml, may be favorable for progression free survival and overall survival when treatment with a HER inhibitor is considered. See FIG. 7. Thus, in a preferred embodiment, the quantity of epidermal growth factor marker protein in the blood serum of a patient is within the foregoing range for predicting a good response to treatment with a HER inhibitor in the patient.

[0113] With respect to the quantity in blood serum for the amphiregulin marker protein, a range between 6-15 pg/ml, preferably about 12 pg/ml, may be favorable for progression free survival and overall survival when treatment with a HER inhibitor is considered. See FIG. 7. Thus, in a preferred embodiment, the quantity of amphiregulin marker protein in the blood serum of a patient is within the foregoing range for predicting a good response to treatment with a HER inhibitor in the patient.

[0114] Since the marker genes, in particular in serum, may be used in multiple-marker prediction models potentially including other clinical covariates, the direction of a beneficial effect of a single marker gene within such models cannot be determined in a simple way, and may contradict the direction found in univariate analyses, i.e. the situation as described for the single marker gene.

[0115] More preferably, in the method according to the invention, the quantity or value (below or above which is associated with an increased or decreased clinical benefit) is determined by:

[0116] (1) determining the expression level or amount of a biomarker or combination of biomarkers in a plurality of biological samples from patients before treatment with the HER inhibitor. [0117] (2) treating the patients with the HER inhibitor, [0118] (3) determining the clinical benefit of each

patient; and

[0119] (4) correlating the clinical benefit of the patients treated with the HER inhibitor to the expression level or amount of the biomarker or combination of biomarkers.

[0120] The "quantity" is preferably a value expressed in mass/volume for blood serum or blood plasma or mass/mass for tumor tissue.

[0121] The present invention also considers mutants or variants of the marker genes according to the present invention and used in the methods according to the invention. In those mutants or variants the native sequence of the marker gene is changed by substitutions, deletions or insertions. "Native sequence" refers to an amino acid or nucleic acid sequence which is identical to a wild-type or native form of a marker gene or protein.

[0122] The present invention also considers mutants or variants of the proteins according to the present invention and used in the methods according to the invention. "Mutant amino acid sequence," "mutant protein" or "mutant polypeptide" refers to a polypeptide having an amino acid sequence which varies from a native sequence or is encoded by a nucleotide sequence intentionally made variant from a native sequence. "Mutant protein," "variant protein" or "mutein" means a protein comprising a mutant amino acid sequence and includes polypeptides which differ from the amino acid sequence of the native protein according to the invention due to amino acid deletions, substitutions, or both.

[0123] The present invention also considers a method of predicting the response to a treatment with a combination of a HER inhibitor and another substance or agent as a chemotherapeutic agent or a therapeutic antibody used for treating cancer. The chemotherapeutic agent may be e.g. gemcitabine (Gemzar®; chemical name: 2',2'-difluorodeoxycytidine (dFdC)), carboplatin (diammine-(cyclobutane-1,1-dicarboxylato (2-)-O,O')-platinum), or paclitaxel (Taxol®, chemical name: β -(benzoylamino)- α -hydroxy-,6,12b-bis(acetyloxy)-12-(benzoyloxy)-2a,3,4,4a,5,6,9,10,11,12,12a,12b-dodecahydro-4,11-dihydroxy-4a,8,13,13-tetramethyl-5-oxo-7,11-methano-1H-cyclodeca(3,4)benz(1,2-b)oxet-9-yl ester,(2aR-(2a- α ,4- β ,4a- β ,6- β , 9- α (α -R*, β -S*),11- α ,12- α , 12a- α , 2b- α))-benzenepropanoic acid); or transtuzumab; or erlotinib.

[0124] In a preferred embodiment of the invention, the biological sample is blood serum, blood plasma or tumor tissue. Tumor tissue may be formalin-fixed paraffin embedded tumor tissue or fresh frozen tumor tissue.

[0125] In another preferred embodiment of the invention, the HER dimerization inhibitor inhibits heterodimerization of HER2 with EGFR or HER3, or HER4. Preferably, the HER dimerization inhibitor is an antibody, preferably the antibody 2C4. Preferred throughout the application is the "antibody 2C4", in particular the humanized variant thereof (WO 01/00245; produced by the hybridoma cell line deposited with the American Type Culture Collection, Manassass, Va., USA under ATCC HB-12697), which binds to a region in the extracellular domain of HER2 (e.g., any one or more residues in the region from about residue 22 to about residue 584 of HER2, inclusive). Examples of humanized 2C4 antibodies are provided in Example 3 of WO 01/00245. The humanized antibody 2C4 is also called Pertuzumab.

[0126] In still another preferred embodiment of the invention, the patient is a cancer patient, preferably a breast cancer,

ovarian cancer, lung cancer or prostate cancer patient. The breast cancer patient is preferably a metastatic breast cancer patient or a HER2 low expressing breast or metastatic breast cancer patient, or a HER2 high expressing breast or metastatic breast cancer patient. The ovarian cancer patient is preferably a metastatic ovarian cancer patient. The lung cancer patient is preferably a non-small cell lung cancer (NSCLC) patient.

[0127] It is preferred that two, three or all four marker genes, marker polynucleotides or marker proteins are used in combination, i.e. used in all disclosed embodiments of the invention or methods, uses or kits according to the invention. The following are preferred combinations of biomarkers in which the level of expression or amounts are determined in accordance with the invention:

[0128] In one particular embodiment, a transforming growth factor alpha biomarker is assessed in combination with one or more biomarkers selected from the group consisting of epidermal growth factor, amphiregulin, and HER2. In another particular embodiment, a HER2 biomarker is assessed in combination with one or more biomarkers selected from the group consisting of epidermal growth factor, transforming growth factor alpha, and amphiregulin.

[0129] In another particular embodiment, a epidermal growth factor biomarker is assessed in combination with one or more biomarkers selected from the group consisting of amphiregulin, transforming growth factor alpha, and HER2. In another particular embodiment, an amphiregulin biomarker is assessed in combination with one or more biomarkers selected from the group consisting of epidermal growth factor, transforming growth factor alpha, and HER2.

[0130] In a particularly preferred embodiment of the invention, the combination of biomarkers consists of:

[0131] the transforming growth factor alpha and the HER2 biomarkers, or

[0132] the transforming growth factor alpha and the EGF biomarkers, or

[0133] the amphiregulin, the epidermal growth factor, the transforming growth factor alpha and the HER2 biomarkers.

[0134] In a preferred embodiment of the invention, the level of expression of the marker gene or the combination of marker genes in the sample is assessed by detecting the level of expression of a marker protein or a fragment thereof or a combination of marker proteins or fragments thereof encoded by the marker gene or the combination of marker genes. Preferably, the level of expression of the marker proteins or the fragment thereof or the combination of marker proteins or the fragments thereof is detected using a reagent which specifically binds with the marker protein or the fragment thereof or the combination of marker proteins or the fragments thereof. Preferably, the reagent is selected from the group consisting of an antibody, a fragment of an antibody, and an antibody derivative.

[0135] There are many different types of immunoassays which may be used in the method of the present invention, e.g. enzyme linked immunoabsorbent assay (ELISA), fluorescent immunosorbent assay (FIA), chemical linked immunosorbent assay (CLIA), radioimmuno assay (RIA), and immunoblotting. For a review of the different immunoassays which may be used, see: Lottspeich and Zorbas (eds.), Bioanalytik, 1st edition 1998, Spektrum Akademischer Verlag, Heidelberg, Berlin, Germany. Therefore, in yet another preferred embodiment of the invention, the level of expression is deter-

mined using a method selected from the group consisting of proteomics, flow cytometry, immunocytochemistry, immunohistochemistry, enzyme-linked immunosorbent assay, multi-channel enzyme-linked immunosorbent assay, and variations of these methods. Therefore more preferably, the level of expression is determined using a method selected from the group consisting of proteomics, flow cytometry, immunocytochemistry, immunohistochemistry, enzyme-linked immunosorbent assay, multi-channel enzyme-linked immunosorbent assay, and variations of these methods.

[0136] In another preferred embodiment of the invention, the fragment of the marker protein is the extracellular domain of the HER2 marker protein (HER2-ECD). Preferably, the extracellular domain of the HER2 marker protein has a molecular mass of approximately 105,000 Dalton. "Dalton" stands for a mass unit that is equal to the weight of a hydrogen atom, or 1.657×10^{-24} grams.

[0137] In another preferred embodiment of the invention [0138] the amino acid sequence of the amphiregulin marker protein is the amino acid sequence SEQ ID NO:

[0139] the amino acid sequence of the epidermal growth factor marker protein is the amino acid sequence SEQ ID NO: 2.

[0140] the amino acid sequence of the transforming growth factor alpha marker protein is the amino acid sequence SEQ ID NO: 3, or

[0141] the amino acid sequence of the HER2 marker protein is the amino acid sequence SEQ ID NO: 4.

[0142] In another preferred embodiment of the invention, the quantity in blood serum for

[0143] the transforming growth factor alpha marker protein is between 2.0 to 10.0 pg/ml, preferably about 3.5 pg/ml,

[0144] the epidermal growth factor marker protein is between 100 to 250 pg/ml, preferably about 150 pg/ml, or pg/ml.

[0145] the amphiregulin marker protein is between 6 to 15 pg/ml, preferably about 12 the HER2 marker protein is between 12 to 22 ng/ml, preferably about 18 ng/ml.

[0146] In still another preferred embodiment of the invention, the "quantity" in blood serum for the extracellular domain of the HER2 marker protein is between 12 to 22 ng/ml, preferably about 18 ng/ml.

[0147] In yet another preferred embodiment of the invention, the level of expression of the marker gene or the combination of marker genes in the biological sample is assessed by detecting the level of expression of a transcribed marker polynucleotide encoded by the marker gene or a fragment of the transcribed marker polynucleotide or of transcribed marker polynucleotides encoded by the combination of marker genes or fragments of the transcribed marker polynucleotide. Preferably, the transcribed marker polynucleotide is a cDNA, mRNA or hnRNA or wherein the transcribed marker polynucleotides are cDNA, mRNA or hnRNA.

[0148] Preferably, the step of detecting further comprises amplifying the transcribed polynucleotide. The amplification is performed preferably with the polymerase chain reaction which specifically amplifies nucleic acids to detectable amounts. Other possible amplification reactions are the Ligase Chain Reaction (LCR; Wu D. Y. and Wallace R. B., Genomics 4 (1989) 560-569; and Barany F., Proc. Natl. Acad. Sci. USA 88 (1991)189-193); Polymerase Ligase Chain Reaction (Barany F., PCR Methods and Applic. 1 (1991)

5-16); Gap-LCR (WO 90/01069); Repair Chain Reaction (EP 0439182 A2), 3SR (Kwoh, D. Y. et al., Proc. Natl. Acad. Sci. USA 86 (1989) 1173-1177; Guatelli, J. C. et al., Proc. Natl. Acad. Sci. USA 87 (1990) 1874-1878; WO 92/08808), and NASBA (U.S. Pat. No. 5,130,238). Further, there are strand displacement amplification (SDA), transcription mediated amplification (TMA), and Q(3-amplification (for a review see e.g. Whelen, A. C. and Persing, D. H., Annu. Rev. Microbiol. 50 (1996) 349-373; Abramson, R. D. and Myers T. W., Curr. Opin. Biotechnol. 4 (1993) 41-47). More preferably, the step of detecting is using the method of quantitative reverse transcriptase polymerase chain reaction.

[0149] Other suitable polynucleotide detection methods are known to the expert in the field and are described in standard textbooks as Sambrook J. et al., Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., 1989; and Ausubel, F. et al., Current Protocols in Molecular Biology, 1987, J. Wiley and Sons, NY. There may be also further purification steps before the polynucleotide detection step is carried out as e.g. a precipitation step. The detection methods may include but are not limited to the binding or intercalating of specific dyes as ethidiumbromide which intercalates into the double-stranded polynucleotides and changes their fluorescence thereafter. The purified polynucleotide may also be separated by electrophoretic methods optionally after a restriction digest and visualized thereafter. There are also probe-based assays which exploit the oligonucleotide hybridisation to specific sequences and subsequent detection of the hybrid. It is also possible to sequence the DNA after further steps known to the expert in the field. The preferred template-dependent DNA polymerase is Taq polymerase.

[0150] In yet another preferred embodiment of the invention, the level of expression of the marker gene is assessed by detecting the presence of the transcribed marker polynucleotide or the fragment thereof in a sample with a probe which anneals with the transcribed marker polynucleotide or the fragment thereof under stringent hybridization conditions or the level of expression of the combination of the marker genes in the samples is assessed by detecting the presence of transcribed marker polynucleotides or the fragments thereof in a sample with probes which anneal with the transcribed marker polynucleotides or the fragments thereof under stringent hybridization conditions. This method may be performed in a homogeneous assay system. An example for a "homogeneous" assay system is the TagMan® system that has been detailed in U.S. Pat. No. 5,210,015, U.S. Pat. No. 5,804,375 and U.S. Pat. No. 5,487,972. Briefly, the method is based on a double-labelled probe and the 5'-3' exonuclease activity of Tag DNA polymerase. The probe is complementary to the target sequence to be amplified by the PCR process and is located between the two PCR primers during each polymerisation cycle step. The probe has two fluorescent labels attached to it. One is a reporter dye, such as 6-carboxyfluorescein (FAM), which has its emission spectra quenched by energy transfer due to the spatial proximity of a second fluorescent dye, 6-carboxy-tetramethyl-rhodamine (TAMRA). In the course of each amplification cycle, the Taq DNA polymerase in the process of elongating a primed DNA strand displaces and degrades the annealed probe, the latter due to the intrinsic 5'-3' exonuclease activity of the polymerase. The mechanism also frees the reporter dye from the quenching activity of TAMRA. As a consequence, the fluorescent activity increases with an increase in cleavage of the probe, which is proportional to the amount of PCR product formed. Accordingly, an amplified target sequence is measured by detecting the intensity of released fluorescence label. Another example for "homogeneous" assay systems are provided by the formats used in the LightCycler® instrument (see e.g. U.S. Pat. No. 6,174,670), some of them sometimes called "kissing probe" formats. Again, the principle is based on two interacting dyes which, however, are characterized in that the emission wavelength of a donor-dye excites an acceptor-dye by fluorescence resonance energy transfer. The COBAS® AmpliPrep instrument (Roche Diagnostics GmbH, D-68305 Mannheim, Germany) was recently introduced to expand automation by isolating target sequences using biotinylated sequence-specific capture probes along with streptavidincoated magnetic particles (Jungkind, D., J. Clin. Virol. 20 (2001) 1-6; Stelzl, E. et al., J. Clin. Microbiol. 40 (2002) 1447-1450). It has lately been joined by an additional versatile tool, the Total Nucleic Acid Isolation (TNAI) Kit (Roche Diagnostics). This laboratory-use reagent allows the generic. not sequence-specific isolation of all nucleic acids from plasma and serum on the COBAS® AmpliPrep instrument based essentially on the method developed by Boom, R. et al., J. Clin. Microbiol. 28 (1990) 495-503.

[0151] In another preferred embodiment of the invention, the nucleic acid sequence of the amphiregulin marker polynucleotide is the nucleic acid sequence SEQ ID NO: 5, the nucleic acid sequence of the epidermal growth factor marker polynucleotide is the nucleic acid sequence SEQ ID NO: 6, the nucleic acid sequence of the transforming growth factor alpha marker polynucleotide is the nucleic acid sequence SEQ ID NO: 7, or the nucleic acid sequence of the HER2 marker polynucleotide is the nucleic acid sequence SEQ ID NO: 8.

[0152] In another embodiment of the invention, a probe that hybridizes with the epidermal growth factor, transforming growth factor alpha or HER2 marker polynucleotide under stringent conditions or an antibody that binds to the epidermal growth factor, transforming growth factor alpha or HER2 marker protein is used for predicting the response to treatment with a HER inhibitor in a patient or a probe that hybridizes with the amphiregulin, epidermal growth factor, transforming growth factor alpha or HER2 marker polynucleotide under stringent conditions or an antibody that binds to the amphiregulin, epidermal growth factor, transforming growth factor alpha or HER2 marker protein is used for selecting a composition for inhibiting the progression of disease in a patient. The disease is preferably cancer and the patient is preferably a cancer patient as disclosed above.

[0153] In another embodiment of the invention, a kit comprising a probe that anneals with the amphiregulin, epidermal growth factor, transforming growth factor alpha or HER2 marker polynucleotide under stringent conditions or an antibody that binds to the amphiregulin, epidermal growth factor, transforming growth factor alpha or HER2 marker protein is provided. Such kits known in the art further comprise plastics ware which can be used during the amplification procedure as e.g. microtitre plates in the 96 or 384 well format or just ordinary reaction tubes manufactured e.g. by Eppendorf, Hamburg, Germany and all other reagents for carrying out the method according to the invention, preferably an immunoassay, e.g. enzyme linked immunoabsorbent assay (ELISA), fluorescent immunosorbent assay (FIA), chemical linked immunosorbent assay (CLIA), radioimmuno assay (RIA), and immunoblotting. For a review of the different immunoassays and reagents which may be used, see: Lottspeich and Zorbas (eds.), Bioanalytik, 1st edition, 1998, Spektrum Akademischer Verlag, Heidelberg, Berlin, Germany. Preferably combinations of the probes or antibodies to the various marker polynucleotides or marker proteins are provided in the form of kit as the preferred combinations of the marker polynucleotides or marker proteins as disclosed above.

[0154] In another embodiment of the invention, a method of selecting a composition for inhibiting the progression of disease in a patient is provided, the method comprising:

- [0155] (a) separately exposing aliquots of a biological sample from a cancer patient in the presence of a plurality of test compositions;
- [0156] (b) comparing the level of expression of one or more biomarkers selected from the group consisting of amphiregulin, epidermal growth factor, transforming growth factor alpha and HER2 in the aliquots of the biological sample contacted with the test compositions and the level of expression of such biomarkers in an aliquot of the biological sample not contacted with the test compositions; and
- [0157] (c) selecting one of the test compositions which alters the level of expression of the biomarker or biomarkers in the aliquot containing that test composition relative to the aliquot not contacted with the test composition wherein an at least 10% difference between the level of expression of the biomarker or biomarkers in the aliquot of the biological sample contacted with the test composition and the level of expression of the corresponding biomarker or biomarkers in the aliquot of the biological sample not contacted with the test composition is an indication for the selection of the test composition. The disease is preferably cancer and the patient is preferably a cancer patient as disclosed above.

[0158] In another embodiment of the invention, a method of selecting a composition for inhibiting the progression of disease in a patient is provided, the method comprising:

- [0159] (a) separately exposing aliquots of a biological sample from a cancer patient in the presence of a plurality of test compositions;
- [0160] (b) comparing the level of expression of one or more biomarkers selected from the group consisting of the amphiregulin, epidermal growth factor, transforming growth factor alpha and HER2 in the aliquots of the biological sample contacted with the test compositions and the level of expression of such biomarkers in an aliquot of the biological sample not contacted with the test compositions; and
- [0161] (c) selecting one of the test compositions which alters the level of expression of the biomarker or biomarkers in the aliquot containing that test composition relative to the aliquot not contacted with the test composition wherein an at least 10% difference between the level of expression of the biomarker or biomarkers in the aliquot of the biological sample contacted with the test composition and the level of expression of the corresponding biomarker or biomarkers in the aliquot of the biological sample not contacted with the test composition is an indication for the selection of the test composition. The disease is preferably cancer and the patient is preferably a cancer patient as disclosed above.

[0162] The expression of a marker gene "significantly" differs from the level of expression of the marker gene in a reference sample if the level of expression of the marker gene

in a sample from the patient differs from the level in a sample from the reference subject by an amount greater than the standard error of the assay employed to assess expression, and preferably at least 10%, and more preferably 25%, 50%, 75%, 100%, 125%, 150%, 175%, 200%, 300%, 400%, 500% or 1,000% of that amount. Alternatively, expression of the marker gene in the patient can be considered "significantly" lower than the level of expression in a reference subject if the level of expression in a sample from the patient is lower than the level in a sample from the reference subject by an amount greater than the standard error of the assay employed to assess expression, and preferably at least 10%, and more preferably 25%, 50%, 75%, 100%, 125%, 150%, 175%, 200%, 300%, 400%, 500% or 1,000% that amount. The difference of the level of expression be up to 10,000 or 50,000%. The difference of the level of expression is preferably between 10% to 10,000%, more preferably 25% to 10,000%, 50% to 10,000%, 100% to 10,000%, even more preferably 25% to 5,000%, 50% to 5,000%, 100% to 5,000%.

[0163] In another embodiment of the invention, a method of identifying a candidate agent is provided said method comprising:

- [0164] (a) contacting an aliquot of a biological sample from a cancer patient with the candidate agent and determining the level of expression of one or more biomarkers selected from the group consisting of amphiregulin, epidermal growth factor, transforming growth factor alpha and HER2 in the aliquot;
- [0165] (b) determining the level of expression of a corresponding biomarker or biomarkers in an aliquot of the biological sample not contacted with the candidate agent:
- [0166] (c) observing the effect of the candidate agent by comparing the level of expression of the biomarker or biomarkers in the aliquot of the biological sample contacted with the candidate agent and the level of expression of the corresponding biomarker or biomarkers in the aliquot of the biological sample not contacted with the candidate agent; and
- [0167] (d) identifying said agent from said observed effect, wherein an at least 10% difference between the level of expression of the biomarker gene or combination of biomarker genes in the aliquot of the biological sample contacted with the candidate agent and the level of expression of the corresponding biomarker gene or combination of biomarker genes in the aliquot of the biological sample not contacted with the candidate agent is an indication of an effect of the candidate agent.

[0168] In still another embodiment of the invention, a method of identifying a candidate agent is provided said method comprising:

- [0169] (a) contacting an aliquot of a biological sample from a cancer patient with the candidate agent and determining the level of expression in the aliquot of:
 - [0170] (1) a biomarker or a combination of biomarkers selected from the group consisting of epidermal growth factor, transforming growth factor alpha and HER2 or;
 - [0171] (2) a combination of biomarkers comprising amphiregulin and one or more biomarkers selected from the group consisting of an epidermal growth factor, a transforming growth factor alpha, and HER2,

- [0172] (b) determining the level of expression of a corresponding biomarker or biomarkers in an aliquot of the biological sample not contacted with the candidate agent.
- [0173] (c) observing the effect of the candidate agent by comparing the level of expression of the biomarker or biomarkers in the aliquot of the biological sample contacted with the candidate agent and the level of expression of the corresponding biomarker or biomarkers in the aliquot of the biological sample not contacted with the candidate agent,
- [0174] (d) identifying said agent from said observed effect, wherein an at least 10% difference between the level of expression of the biomarker or biomarkers in the aliquot of the biological sample contacted with the candidate agent and the level of expression of the corresponding biomarker or biomarkers in the aliquot of the biological sample not contacted with the candidate agent is an indication of an effect of the candidate agent.
- [0175] Preferably, the candidate agent is a candidate inhibitory agent. Preferably, said candidate agent is a candidate enhancing agent.
- [0176] In another embodiment of the invention, a candidate agent derived by the method according to the invention is provided.
- [0177] In another embodiment of the invention, a pharmaceutical preparation comprising an agent according to the invention is provided.
- [0178] In yet another embodiment of the invention, an agent according to the invention is used for the preparation of a composition for the treatment of cancer. Preferred forms of cancer are disclosed above.
- [0179] In another preferred embodiment of the invention, a method of producing a drug comprising the steps of the method according to the invention and
 - [0180] (i) synthesizing the candidate agent identified in step (c) above or an analog or derivative thereof in an amount sufficient to provide said drug in a therapeutically effective amount to a subject; and/or
 - [0181] (ii) combining the drug candidate the candidate agent identified in step (c) above or an analog or derivative thereof with a pharmaceutically acceptable carrier.
- [0182] In another embodiment of the invention, a marker protein or a marker polynucleotide selected from the group consisting of a amphiregulin, epidermal growth factor, transforming growth factor alpha and HER2 marker protein or marker polynucleotide is used for identifying a candidate agent or for selecting a composition for inhibiting the progression of a disease in a patient. The disease is preferably cancer and the patient is preferably a cancer patient as disclosed above.
- [0183] In another embodiment of the invention, a HER inhibitor is used for the manufacture of a pharmaceutical composition for treating a human cancer patient characterized in that said treating or treatment includes assessing in a biological sample from the patient
 - [0184] (a) a marker gene or a combination of marker genes selected from the group consisting of an epidermal growth factor, a transforming growth factor alpha and a HER2 marker gene or;
 - [0185] (b) a combination of marker genes comprising an amphiregulin marker gene and a marker gene selected

from the group consisting of an epidermal growth factor, a transforming growth factor alpha and a HER2 marker gene.

[0186] The manufacture of a pharmaceutical composition for treating a human cancer patient and particularly the formulation is described in WO 01/00245, incorporated herein by reference, particularly for the antibody 2C4.

[0187] In an preferred embodiment of the invention, in the use of the HER dimerization inhibitor for the manufacture of a pharmaceutical composition for treating a human cancer patient, the treatment includes assessing the marker gene or the combination of marker genes at least one time or repeatedly during treatment. Preferably, the level of expression of the marker gene or the level of expression of the combination of marker genes is assessed. Preferably, the HER inhibitor is an antibody, preferably the antibody 2C4. Preferably, the patient is a breast cancer, ovarian cancer, lung cancer or prostate cancer patient.

[0188] In all embodiments of the invention, combinations of the marker genes, marker polynucleotides or marker proteins are used as disclosed above. In all embodiments of the invention, preferred values for the difference of the level of expression determined in the respective steps are also as disclosed above.

[0189] The following examples, sequence listing and figures are provided to aid the understanding of the present invention, the true scope of which is set forth in the appended claims. It is understood that modifications can be made in the procedures set forth without departing from the spirit of the invention.

EXAMPLES

Statistical Methods

[0190] The statistical tasks comprise the following steps:

- 1. Pre-selection of candidate biomarkers
- 2. Pre-selection of relevant clinical prognostic covariates
- 3. Selection of biomarker prediction functions at an univariate level
- 4. Selection of biomarker prediction functions including clinical covariates at an univariate level
- 5. Selection of biomarker prediction functions at a multivariate level
- 6. Selection of biomarker prediction functions including clinical covariates at a multivariate level

The following text details the different steps:

[0191] Ad1: Pre-selection of candidate biomarkers: The statistical pre-selection of candidate biomarkers is oriented towards the strength of association with measures of clinical benefit. For this purpose the different clinical endpoints may be transformed in derived surrogate scores, as e.g. an ordinal assignment of the degree of clinical benefit or morbidity scores regarding TTP or TTD which avoid censored observations. These surrogate transformed measures can be easily used for simple correlation analysis, e.g. by the non-parametric Spearman rank correlation approach. An alternative here is to use the biomarker measurements as metric covariates in Time-to-event regression models, as e.g. Cox proportional hazard regression. Depending on the statistical distribution of the biomarker values this step may require some pre-processing, as e.g. variance stabilizing transformations and the use of suitable scales or, alternatively, a standardization step like e.g. using percentiles instead of raw measurements. A further approach is inspection of bivariate scatter plots, e.g. by displaying the scatter of (x-axis=biomarker value, y-axis=measure of clinical benefit) on a single patient basis. Here also some non-parametric regression line as e.g. achieved by smoothing splines can be useful to visualize the association of biomarker and clinical benefit.

[0192] The goal of these different approaches is the preselection of biomarker candidates, which show some association with clinical benefit in at least one of the benefit measures employed, while results for other measures are not contradictory. When there are available control groups, then differences in association of biomarkers with clinical benefit in the different arms could be a sign of differential prediction which makes the biomarker eligible for further consideration.

[0193] Ad2: Pre-selection of relevant clinical prognostic covariates: The term "clinical covariate" here is used to describe all other information about the patient, which are in general available at baseline. These clinical covariates comprise demographic information like sex, age etc., other anamnestic information, concomitant diseases, concomitant therapies, result of physical examinations, common laboratory parameters obtained, known properties of the target tumor, information quantifying the extent of malignant disease, clinical performance scores like ECOG or Karnofsky index, clinical disease staging, timing and result of pretreatments and disease history as well as all similar information, which may be associated with the clinical prognosis. The statistical pre-selection of clinical covariates parallels the approaches for pre-selecting biomarkers and is as well oriented towards the strength of association with measures of clinical benefit. So in principle the same methods apply as considered under 1. In addition to statistical criteria, also criteria from clinical experience and theoretical knowledge may apply to pre-select relevant clinical covariates.

[0194] The prognosis by clinical covariates could interact with the prognosis of the biomarkers. They will be considered for refined prediction rules if necessary.

[0195] Ad3: Selection of biomarker prediction functions at an univariate level: The term "prediction function" will be used in a general sense to mean a numerical function of a biomarker measurement which results in a number which is scaled to imply the target prediction.

[0196] A simple example is the choice of the Heaviside function for a specific cutoff c and a biomarker measurement x, where the binary prediction A or B is to be made, then

If H(x-c)=0 then predict A.

If H(x-c)=1 then predict B.

[0197] This is probably the most common way of using univariate biomarker measurements in prediction rules. The definition of a prediction function usually recurs to an existing training data set which can be used to explore the prediction possibilities. In order to achieve a suitable cutoff c from the training set different routes can be taken. First the scatterplot with smoothing spline mentioned under 1 can be used to define the cutoff. Alternatively some percentile of the distribution could be chosen, e.g. the median or a quartile. Cutoffs can also be systematically extracted by investigating all possible cutoffs according to their prediction potential with regard to the measures of clinical benefit. Then these results can be plotted to allow for an either manual selection or to employ some search algorithm for optimality. This was realized based on the endpoints TTP and TTD using a Cox model, where at each test cutoff the biomarker was used as a binary covariate. Prediction criteria were the resulting Hazard ratios. Then the results for TTP and TTD can be considered together in order to chose a cutoff which shows prediction in line with both endpoints

[0198] Another uncommon approach for choosing a prediction function can be based on a fixed parameter Cox regression model obtained from the training set with biomarker values (possibly transformed) as covariate. Then the prediction could simply depend on whether the computed Hazard ratio is smaller or greater than 1.

[0199] A further possibility is to base the decision on some likelihood ratio (or monotonic transform of it), where the target probability densities were pre-determined in the training set for separation of the prediction states. Then the biomarker would be plugged into some function of the density ratios

Ad4: Selection of biomarker prediction functions including clinical covariates at an univariate level: Univariate here refers to using only one biomarker—with regard to clinical covariates this can be a multivariate model. This approach parallels the search without clinical covariates, only that the methods should allow for incorporating the relevant covariate information. The scatterplot method of choosing a cutoff allows only a limited use of covariates, e.g. a binary covariate could be color coded within the plot. If the analysis relies on some regression approach then the use of covariates (also many of them at a time) is usually facilitated. The cutoff search based on the Cox model described under 3, allows for an easy incorporation of covariates and thereby leads to a covariate adjusted univariate cutoff search. The adjustment by covariates may be done as covariates in the model or via the inclusion in a stratified analysis.

[0201] Also the other choices of prediction functions allow for the incorporation of covariates.

[0202] This is straightforward for the Cox model choice as prediction function. There is the option to estimate the influence of covariates on an interaction level, which means that e.g. for different age groups different Hazard ratios apply.

[0203] For the likelihood ratio type of prediction functions, the prediction densities must be estimated including covariates. Here the methodology of multivariate pattern recognition can be used or the biomarker values can be adjusted by multiple regression on the covariates (prior to density estimation).

[0204] The CART technology (Classification And Regression Trees; Breiman L., Friedman J. H., Olshen R. A., Stone C. J., Chapman & Hall (Wadsworth, Inc.), New York, 1984) can be used for a biomarker (raw measurement level) plus clinical covariates employing a clinical benefit measure as response. This way cutoffs are searched and a decision tree type of functions will be found involving the covariates for prediction. The cutoffs and algorithms chosen by CART are frequently close to optimal and may be combined and unified by considering different clinical benefit measures.

[0205] Ad5: Selection of biomarker prediction functions at a multivariate level: When there are several biomarker candidates which maintain their prediction potential within the different univariate prediction function choices, then a further improvement may be achieved by combinations of biomarkers, i.e. considering multivariate prediction functions.

[0206] Based on the simple Heaviside function model combinations of biomarkers may be evaluated, e.g. by considering bivariate scatterplots of biomarker values where optimal cutoffs are indicated. Then a combination of biomarkers can be achieved by combining different Heaviside function by the logical AND and OR operators in order to achieve an improved prediction.

[0207] The CART technology (Classification And Regression Trees) can be used for multiple biomarkers (raw measurement level) and a clinical benefit measure as response, in order to achieve cutoffs for biomarkers and decision tree type of functions for prediction. The cutoffs and algorithms chosen by CART are frequently close to optimal and may be combined and unified by considering different clinical benefit measures

[0208] The Cox-regression can be employed on different levels. A first way is to incorporate the multiple biomarkers in a binary way (i.e. based on Heaviside functions with some cutoffs). The other option is to employ biomarkers in a metric way (after suitable transformations), or a mixture of the binary and metric approach. The evolving multivariate prediction function is of the Cox type as described under 3.

[0209] The multivariate likelihood ratio approach is difficult to realize but presents as well as an option for multivariate prediction functions.

[0210] Ad6: Selection of biomarker prediction functions including clinical covariates at a multivariate level: When there are relevant clinical covariates then a further improvement may be achieved by combining multiple biomarkers with multiple clinical covariates. The different prediction function choices will be evaluated with respect to the possibilities to include clinical covariates.

[0211] Based on the simple logical combinations of Heaviside functions for the biomarkers, further covariates may be included to the prediction function based on logistic regression model obtained in the training set.

[0212] The CART technology and the evolving decision trees can be easily used with additional covariates, which would include these in the prediction algorithm.

[0213] All prediction functions based on the Cox-regression can use further clinical covariates. There is the option to estimate the influence of covariates on an interaction level, which means that e.g. for different age groups different Hazard ratios apply.

[0214] The multivariate likelihood ratio approach is not directly extendible to the use of additional covariates.

Example 1

Baseline Blood Sera from HER2 Low Expressing Metastatic Breast Cancer Patients Treated with Pertuzumab were Assessed for Levels of HER Ligands and Shedded HER2 (HER2 ECD), as Described Below

[0215] Kits used for assessment of the serum biomarkers:

Marker	Assay	Distribution
HER2-ECD	Bayer HER-2/neu ELISA, Cat. #: EL501	DakoCytomation N.V./S.A., Interleuvenlaan 12B, B-3001 Heverlee

-continued

Marker	Assay	Distribution
Amphiregulin	DuoSet ELISA Development	R&D Systems Ltd., 19 Barton
	System Human Amphiregulin,	Lane, Abingdon OX14 3NB, UK
	Cat. #: DY262	
EGF	Quantikine human EGF	R&D Systems Ltd., 19 Barton
	ELISA kit, Cat. #: DEG00	Lane, Abingdon OX14 3NB, UK
TGF-alpha	Quantikine ® Human TGF-alpha	R&D Systems Ltd., 19 Barton
1	Immunoassay, Cat. #: DTGA00	Lane, Abingdon OX14 3NB, UK

Protocols:

HER2-ECD:

[0216] HER2-ECD ELISA was performed according to the recommendations of the manufacturer.

[0217] Amphiregulin:

[0218] Prepare all reagents (provided with the kit), standard dilutions (provided with the kit) and samples

[0219] Provide EvenCoat Goat Anti-mouse IgG microplate strips (R&D, Cat. # CP002; not provided with the kit) in the frame. The frame is now termed ELISA plate.

[0220] Determine of the required number of wells (number of standard dilutions+number of samples).

[0221] Determine the plate layout.

[0222] Add $100\,\mu$ l diluted capture antibody (provided with the kit; 1:180 in PBS) to each well.

[0223] Incubate at r.t. for 1 hour.

[0224] Aspirate each well and wash, repeating the process three times for a total of four washes. Wash by filling each well with 400 μ l Wash buffer (not provided with the kit; 0.05% Tween-20 in PBS was used), using a manifold dispenser, and subsequent aspiration. After the last wash, remove any remaining Wash buffer by aspirating. Invert the plate and blot it against clean paper towels.

[0225] Add $100 \mu l$ standard dilution or diluted sample (see below) per well. Change tip after every pipetting step.

[0226] Cover plate with the adhesive strip (provided with the kit).

[0227] Incubate for 2 hours at r.t. on a rocking platform.

[0228] Repeat the aspiration/wash as described previously.

[0229] Aspirated samples and wash solutions are treated with laboratory disinfectant.

[0230] Add 100 µl Detection Antibody (provided with the kit) diluted 1:180 in Reagent diluent (not provided with the kit; 1% BSA (Roth; Albumin Fraction V, Cat. # T844.2) in PBS was used) per well

[0231] Incubate for 2 hours at r.t.

[0232] Repeat the aspiration/wash as described previously.

[0233] Add 100 µl working dilution of the Streptavidin-HRP to each well (provided with the kit; 1:200 dilution in Reagent diluent). Cover with a new adhesive strip.

[0234] Incubate for 20 min at r.t.

[0235] Repeat the aspiration/wash as described previously.

[0236] Add 100 μ l Substrate Solution (R&D, Cat. # DY999; not provided with the kit) to each well.

[0237] Incubate for 20 min at r.t. Protect from light. Add 50 μ l Stop Solution (1.5 M H2504 (Schwefelsäure reinst, Merck, Cat. # 713); not provided with the kit) to each well. Mix carefully.

[0238] Determine the optical density of each well immediately, using a microplate reader set to 450 nm.

Amphiregulin Standard Curve:

[0239] A 40 ng/ml amphiregulin stock solution was prepared in 1% BSA in PBS, aliquotted and stored at -80° C. Amphiregulin solutions in 20% BSA in PBS were not stable beyond 2 weeks and were therefore not used. From the aliquotted amphiregulin stock solution, the amphiregulin standard curve was prepared freshly in 20% BSA in PBS prior to each experiment. The highest concentration was 1000 pg/ml (1:40 dilution of the amphiregulin stock solution). The standards provided with the ELISA kit produced a linear standard curve. Excel-based analysis of the curves allowed the determination of curve equations for every ELISA.

Amphiregulin Samples:

[0240] When samples were diluted 1:1 in Reagent Diluent, all samples were within the linear range of the ELISA. Each sample was measured in duplicates. Dependent on the quality of the data, and on sufficient amounts of serum, determinations were repeated in subsequent experiments if necessary.

[**0241**] EGF:

[0242] Prepare all reagents (provided with the kit), standard dilutions (provided with the kit) and samples

[0243] Remove excess antibody-coated microtiter plate strips (provided with the kit) from the frame. The frame is now termed ELISA plate.

[0244] Determine of the required number of wells: (Number of standard dilutions+number of samples) $\times 2$

[0245] Determine the plate layout.

[0246] Add 50 μ l Assay Diluent RD1 (provided with the kit) to each well

 $\mbox{\bf [0247]}~Add~200~\mu\mbox{ standard dilution or diluted sample (e.g. 1:20 in Calibrator Diluent RD6H) per well. Change tip after every pipetting step.$

[0248] Cover plate with the adhesive strip (provided with the kit).

[0249] Incubate for 2 hours at r.t. on a rocking platform.

[0250] Aspirate each well and wash, repeating the process three times for a total of four washes. Wash by filling each well with 400 μ l Wash Buffer (provided with the kit), using a manifold dispenser, and subsequent aspiration. After the last wash, remove any remaining Wash buffer by aspirating. Invert the plate and blot it against clean paper towels.

[0251] Aspirated samples and wash solutions are treated with laboratory disinfectant. Add 200 μ l of Conjugate (provided with the kit) to each well. Cover with a new adhesive strip.

[0252] Incubate for 2 hours at r.t.

[0253] Repeat the aspiration/wash as described previously.

[0254] Add 200 ul Substrate Solution (provided with the kit) to each well.

[0255] Incubate for 20 min at r.t. Protect from light.

[0256] Add 50 µl Stop Solution (provided with the kit) to each well. Mix carefully.

[0257] Determine the optical density of each well within 30 minutes, using a microplate reader set to 450 nm.

EGF Standard Curve:

[0258] The standards provided with the ELISA kit produced a linear standard curve. Also very small concentrations showed detectable results.

[**0259**] EGF samples:

[0260] A total of four assays with the samples was performed. Each sample was measured 2-5 times, the number of determinations being dependent on the quality of the results (mean+/–SD) and the availability of sufficient amounts of serum. When samples were diluted 1:20 in Calibrator Diluent RD6H, all samples were within the linear range of the ELISA.

TGF-Alpha:

[0261] Prepare all reagents (provided with the kit), standard dilutions (provided with the kit) and samples

[0262] Remove excess antibody-coated microtiter plate strips (provided with the kit) from the frame. The frame is now termed ELISA plate.

[0263] Determine of the required number of wells: (Number of standard dilutions+number of samples)×2

[0264] Determine the plate layout.

[0265] Add 100 µl Assay Diluent RD1W (provided with the kit) to each well

[0266] Add 50 μ l standard dilution or sample per well. Change tip after every pipetting step.

[0267] Cover plate with the adhesive strip (provided with the kit).

[0268] Incubate for 2 hours at r.t. on a rocking platform.

[0269] Aspirate each well and wash, repeating the process three times for a total of four washes. Wash by filling each well with 400 μ l Wash Buffer (provided with the kit), using a manifold dispenser, and subsequent aspiration. After the last wash, remove any remaining Wash buffer by aspirating. Invert the plate and blot it against clean paper towels.

[0270] Aspirated samples and wash solutions are treated with laboratory disinfectant.

[0271] Add 200 µl of TGF-alpha Cojugate (provided with the kit) to each well. Cover with a new adhesive strip.

[0272] Incubate for 2 hours at r.t.

[0273] Repeat the aspiration/wash as described previously. [0274] Add 200 µl Substrate Solution (provided with the kit) to each well.

[0275] Incubate for 30 min at r.t. Protect from light.

 $\mbox{[0276]}~~\mbox{Add}~50~\mbox{μl}~\mbox{Stop}~\mbox{Solution}~\mbox{(provided with the kit)}~\mbox{to}~\mbox{each well.}$ Mix carefully.

[0277] Determine the optical density of each well within 30 minutes, using a microplate reader set to 450 nm.

TGF-Alpha Standard Curve:

[0278] The standards provided with the ELISA kit produced a linear standard curve. Also very small concentrations showed detectable results.

TGF-Alpha Samples:

[0279] A total of four assays with the samples was performed. Samples were measured in 2-4 independent assays.

[0280] The serum data was analyzed to identify factors the baseline serum levels of which would be associated with response to the Pertuzumab treatment. For all factors a skewed pattern of the distribution (mean, standard deviation, median, minimum, maximum) was observed. A monotonic transform was used to reduce the skewness based on the logarithm: Log(x+1). In a univariate analysis, it was explored whether suitable cut-points for the factors could be defined which would relate to the probability of response (in this example defined as clinical benefit). Here, patients with clinical benefit were defined as those who achieved a partial response (PR) or maintained stable disease for at least 6 months. Scatterplots of the factors versus the response categories were investigated. FIG. 1 and FIG. 2 show a plotting of the clinical response categories versus the logarithmic transformation of the serum levels of TGF-alpha and amphiregulin, respectively, to exemplify the approach.

[0281] Based on the scatterplots, cut-points were selected for the factors to define groups of patients, who have experienced greater clinical benefit. FIG. 3 (TGF-alpha), FIG. 4 (Amphiregulin), FIG. 5 (EGF), and FIG. 6 (HER2-ECD) show the clinical benefit in relation to the different factor groupings based on the exploratory cut-points calculated to the original factor units. The cut-points separate out some of the patients without clinical benefit, and hence, elevate the response rate for the group with greater clinical benefit.

Example 2

[0282] In this example the exploratory cut-points from Example 1 were used to assess the univariate effect of the factor groupings on different measures of the clinical benefit of the Pertuzumab treatment, using time to progression/or death (TTP) and time to death (TTD) as alternative clinical endpoints. Significant effects were observed for TGF-alpha, Amphiregulin, EGF and HER2-ECD in Kaplan-Meier estimates and log-rank tests for TTP and/or TTD, as shown in an overview in FIG. 7.

[0283] The Kaplan-Meier plots displaying the hazard ratio are given for TTP and TTD (highest number of events observed) in FIG. 8 and FIG. 9 (TGF-alpha), 10 and 11 (Amphiregulin), 12 and 13 (EGF), and 14 and 15 (HER2-ECD), showing the pronounced effect of a grouping based on these factors on the clinical outcome of the patients treated with Pertuzumab.

Example 3

[0284] In this example multivariate approaches were used to identify combinations of factors that would further improve the identification of patients with greater benefit from the Pertuzumab treatment. Results, as derived from a CART approach (Classification And Regression Trees), are reflected. The CART classification approach made it necessary to specify as the benefit group all values in clinical benefit above of 0. As variables serum levels of HER2-ECD, TGF-alpha, Amphiregulin, and EGF were employed. A combination of serum HER2-ECD and serum TGF-alpha levels were selected to give best results. From the CART results optimized cut-points for a combination of serum HER2-ECD and serum TGF-alpha levels were derived, resulting in a rule for exploratory categorization of clinical benefit in the study population—a combination of low serum HER2-ECD values

<212> TYPE: PRT

and low serum TGF-alpha values capturing 2/2 PR and 2/3 SD>6 months in the study population and excluding a reasonable number of fast progressing patients. FIG. 16 shows the clinical benefit in relation to the TGF-alpha/HER2-ECD combination groupings based on the exploratory combination cut-point. FIG. 17 summarizes the effect of a combination of TGF-alpha and HER2-ECD on TTP and TTD. The Kaplan-Meier estimates and the hazard ratios given in FIG. 18 (TTP) and FIG. 19 (TTD) demonstrate the significant effect of the

grouping based on a combination of these factors for on the clinical outcome of the patients treated with Pertuzumab.

[0285] Unless stated to the contrary, all compounds in the examples were prepared and characterized as described. All ranges recited herein encompass all combinations and subcombinations included within that range limit. All patents and publications cited herein are hereby incorporated by reference in their entirety for any purpose.

SEQUENCE LISTING

```
<160> NUMBER OF SEQ ID NOS: 14
<210> SEQ ID NO 1
<211> LENGTH: 252
<212> TYPE: PRT
<213> ORGANISM: Homo sapiens
<400> SEQUENCE: 1
Met Arg Ala Pro Leu Leu Pro Pro Ala Pro Val Val Leu Ser Leu Leu 1 5 10 10 15
Ile Leu Gly Ser Gly His Tyr Ala Ala Gly Leu Asp Leu Asn Asp Thr 20 \\
Tyr Ser Gly Lys Arg Glu Pro Phe Ser Gly Asp His Ser Ala Asp Gly 35 \phantom{\bigg|}40\phantom{\bigg|}
Phe Glu Val Thr Ser Arg Ser Glu Met Ser Ser Gly Ser Glu Ile Ser 50 60
Pro Val Ser Glu Met Pro Ser Ser Glu Pro Ser Ser Gly Ala Asp 65 70 75 80
Tyr Asp Tyr Ser Glu Glu Tyr Asp Asn Glu Pro Gln Ile Pro Gly Tyr 85 90 95
Ile Val Asp Asp Ser Val Arg Val Glu Gln Val Val Lys Pro Pro Gln 100 105 110
Asn Lys Thr Glu Ser Glu Asn Thr Ser Asp Lys Pro Lys Arg Lys Lys 115 $120$
Pro Cys Asn Ala Glu Phe Gln Asn Phe Cys Ile His Gly Glu Cys Lys 145 \phantom{\bigg|} 150 \phantom{\bigg|} 155 \phantom{\bigg|} 160
Tyr Ile Glu His Leu Glu Ala Val Thr Cys Lys Cys Gln Gln Glu Tyr 165 170 175
Phe Gly Glu Arg Cys Gly Glu Lys Ser Met Lys Thr His Ser Met Ile
180 185 190
Asp Ser Ser Leu Ser Lys Ile Ala Leu Ala Ala Ile Ala Ala Phe Met 195 \phantom{\bigg|}200\phantom{\bigg|}205\phantom{\bigg|}
Ser Ala Val Ile Leu Thr Ala Val Ala Val Ile Thr Val Gln Leu Arg
                         215
Arg Gln Tyr Val Arg Lys Tyr Glu Gly Glu Ala Glu Glu Arg Lys Lys
Leu Arg Gln Glu Asn Gly Asn Val His Ala Ile Ala
                  245
<210> SEQ ID NO 2
<211> LENGTH: 1207
```

<213> ORGANISM:		Homo sapiens													
<400)> SE	EQUE	ICE :	2											
Met 1	Leu	Leu	Thr	Leu 5	Ile	Ile	Leu	Leu	Pro 10	Val	Val	Ser	Lys	Phe 15	Ser
Phe	Val	Ser	Leu 20	Ser	Ala	Pro	Gln	His 25	Trp	Ser	Cys	Pro	Glu 30	Gly	Thr
Leu	Ala	Gly 35	Asn	Gly	Asn	Ser	Thr 40	Cys	Val	Gly	Pro	Ala 45	Pro	Phe	Leu
Ile	Phe 50	Ser	His	Gly	Asn	Ser 55	Ile	Phe	Arg	Ile	Asp 60	Thr	Glu	Gly	Thr
Asn 65	Tyr	Glu	Gln	Leu	Val 70	Val	Asp	Ala	Gly	Val 75	Ser	Val	Ile	Met	Asp 80
Phe	His	Tyr	Asn	Glu 85	Lys	Arg	Ile	Tyr	Trp 90	Val	Asp	Leu	Glu	Arg 95	Gln
Leu	Leu	Gln	Arg 100	Val	Phe	Leu	Asn	Gly 105	Ser	Arg	Gln	Glu	Arg 110	Val	Cys
Asn	Ile	Glu 115	Lys	Asn	Val	Ser	Gly 120	Met	Ala	Ile	Asn	Trp 125	Ile	Asn	Glu
Glu	Val 130	Ile	Trp	Ser	Asn	Gln 135	Gln	Glu	Gly	Ile	Ile 140	Thr	Val	Thr	Asp
Met 145	Lys	Gly	Asn	Asn	Ser 150	His	Ile	Leu	Leu	Ser 155	Ala	Leu	Lys	Tyr	Pro 160
Ala	Asn	Val	Ala	Val 165	Asp	Pro	Val	Glu	Arg 170	Phe	Ile	Phe	Trp	Ser 175	Ser
Glu	Val	Ala	Gly 180	Ser	Leu	Tyr	Arg	Ala 185	Asp	Leu	Asp	Gly	Val 190	Gly	Val
Lys	Ala	Leu 195	Leu	Glu	Thr	Ser	Glu 200	Lys	Ile	Thr	Ala	Val 205	Ser	Leu	Asp
Val	Leu 210	Asp	Lys	Arg	Leu	Phe 215	Trp	Ile	Gln	Tyr	Asn 220	Arg	Glu	Gly	Ser
Asn 225	Ser	Leu	Ile	CÀa	Ser 230	CÀa	Asp	Tyr	Asp	Gly 235	Gly	Ser	Val	His	Ile 240
Ser	ГÀа	His	Pro	Thr 245	Gln	His	Asn	Leu	Phe 250	Ala	Met	Ser	Leu	Phe 255	Gly
Asp	Arg	Ile	Phe 260	Tyr	Ser	Thr	Trp	Lys 265	Met	ГЛа	Thr	Ile	Trp 270	Ile	Ala
Asn	Lys	His 275	Thr	Gly	Lys	Asp	Met 280	Val	Arg	Ile	Asn	Leu 285	His	Ser	Ser
Phe	Val 290	Pro	Leu	Gly	Glu	Leu 295	Lys	Val	Val	His	Pro 300	Leu	Ala	Gln	Pro
305 Lys	Ala	Glu	Asp	Asp	Thr 310	Trp	Glu	Pro	Glu	Gln 315	ГÀа	Leu	Cys	Lys	Leu 320
Arg	Lys	Gly	Asn	Сув 325	Ser	Ser	Thr	Val	330 Caa	Gly	Gln	Asp	Leu	Gln 335	Ser
His	Leu	Cys	Met 340	CAa	Ala	Glu	Gly	Tyr 345	Ala	Leu	Ser	Arg	350	Arg	Lys
Tyr	Cys	Glu 355	Asp	Val	Asn	Glu	Сув 360	Ala	Phe	Trp	Asn	His 365	Gly	Cys	Thr
Leu	Gly 370	CAa	ГЛа	Asn	Thr	Pro 375	Gly	Ser	Tyr	Tyr	380 CÀa	Thr	CÀa	Pro	Val

Gly 385	Phe	Val	Leu	Leu	Pro 390	Asp	Gly	Lys	Arg	Сув 395	His	Gln	Leu	Val	Ser 400
CAa	Pro	Arg	Asn	Val 405	Ser	Glu	Cys	Ser	His 410	Asp	CAa	Val	Leu	Thr 415	Ser
Glu	Gly	Pro	Leu 420	Cys	Phe	Cys	Pro	Glu 425	Gly	Ser	Val	Leu	Glu 430	Arg	Asp
Gly	Lys	Thr 435	Cys	Ser	Gly	Cys	Ser 440	Ser	Pro	Asp	Asn	Gly 445	Gly	Cys	Ser
Gln	Leu 450	Cys	Val	Pro	Leu	Ser 455	Pro	Val	Ser	Trp	Glu 460	CÀa	Asp	CÀa	Phe
Pro 465	Gly	Tyr	Asp	Leu	Gln 470	Leu	Asp	Glu	Lys	Ser 475	Cys	Ala	Ala	Ser	Gly 480
Pro	Gln	Pro	Phe	Leu 485	Leu	Phe	Ala	Asn	Ser 490	Gln	Asp	Ile	Arg	His 495	Met
His	Phe	Asp	Gly 500	Thr	Asp	Tyr	Gly	Thr 505	Leu	Leu	Ser	Gln	Gln 510	Met	Gly
Met	Val	Tyr 515	Ala	Leu	Asp	His	Asp 520	Pro	Val	Glu	Asn	Lys 525	Ile	Tyr	Phe
Ala	His 530	Thr	Ala	Leu	Lys	Trp 535	Ile	Glu	Arg	Ala	Asn 540	Met	Asp	Gly	Ser
Gln 545	Arg	Glu	Arg	Leu	Ile 550	Glu	Glu	Gly	Val	Asp 555	Val	Pro	Glu	Gly	Leu 560
Ala	Val	Asp	Trp	Ile 565	Gly	Arg	Arg	Phe	Tyr 570	Trp	Thr	Asp	Arg	Gly 575	Lys
Ser	Leu	Ile	Gly 580	Arg	Ser	Asp	Leu	Asn 585	Gly	Lys	Arg	Ser	Lys 590	Ile	Ile
Thr	ГÀв	Glu 595	Asn	Ile	Ser	Gln	Pro 600	Arg	Gly	Ile	Ala	Val 605	His	Pro	Met
Ala	Lys 610	Arg	Leu	Phe	Trp	Thr 615	Asp	Thr	Gly	Ile	Asn 620	Pro	Arg	Ile	Glu
Ser 625	Ser	Ser	Leu	Gln	Gly 630	Leu	Gly	Arg	Leu	Val 635	Ile	Ala	Ser	Ser	Asp 640
Leu	Ile	Trp	Pro	Ser 645	Gly	Ile	Thr	Ile	Asp 650	Phe	Leu	Thr	Asp	Lys 655	Leu
Tyr	Trp	Cys	Asp	Ala	ГÀа	Gln	Ser	Val 665	Ile	Glu	Met	Ala	Asn 670	Leu	Asp
Gly	Ser	Lys 675	Arg	Arg	Arg	Leu	Thr 680	Gln	Asn	Asp	Val	Gly 685	His	Pro	Phe
Ala	Val 690	Ala	Val	Phe	Glu	Asp 695	Tyr	Val	Trp	Phe	Ser 700	Asp	Trp	Ala	Met
Pro 705	Ser	Val	Ile	Arg	Val 710	Asn	ГÀа	Arg	Thr	Gly 715	Lys	Asp	Arg	Val	Arg 720
Leu	Gln	Gly	Ser	Met 725	Leu	Lys	Pro	Ser	Ser 730	Leu	Val	Val	Val	His 735	Pro
Leu	Ala	Lys	Pro 740	Gly	Ala	Asp	Pro	Сув 745	Leu	Tyr	Gln	Asn	Gly 750	Gly	Cya
Glu	His	Ile 755	Сув	Lys	Lys	Arg	Leu 760	Gly	Thr	Ala	Trp	Сув 765	Ser	Сув	Arg
Glu	Gly 770	Phe	Met	ГЛа	Ala	Ser 775	Asp	Gly	Lys	Thr	Cys 780	Leu	Ala	Leu	Asp
Gly	His	Gln	Leu	Leu	Ala	Gly	Gly	Glu	Val	Asp	Leu	Lys	Asn	Gln	Val

												COII	CIII	aca	
785					790					795					800
Thr	Pro	Leu	Asp	Ile 805	Leu	Ser	Lys	Thr	Arg 810	Val	Ser	Glu	Asp	Asn 815	Ile
Thr	Glu	Ser	Gln 820	His	Met	Leu		Ala 825	Glu	Ile	Met	Val	Ser 830	Asp	Gln
Asp	Asp	Cys 835	Ala	Pro	Val	Gly	Сув 840	Ser	Met	Tyr	Ala	Arg 845		Ile	Ser
Glu	Gly 850	Glu	Asp	Ala	Thr	Сув 855	Gln	Cys	Leu	Lys	Gly 860	Phe	Ala	Gly	Asp
Gly 865	Lys	Leu	Cys	Ser	Asp 870	Ile	Asp	Glu	Cys	Glu 875	Met	Gly	Val	Pro	Val 880
Cys	Pro	Pro	Ala	Ser 885	Ser	Lys	Cys	Ile	Asn 890	Thr	Glu	Gly	Gly	Tyr 895	
Cys	Arg	Cys	Ser 900	Glu	Gly	Tyr		Gly 905	Asp	Gly	Ile	His	Cys 910	Leu	Asp
Ile	Asp	Glu 915	Cys	Gln	Leu	Gly	Val 920	His	Ser	Cys	Gly	Glu 925		Ala	Ser
Сув	Thr 930	Asn	Thr	Glu	Gly	Gly 935	Tyr	Thr	Cya	Met	Сув 940	Ala	Gly	Arg	Leu
Ser 945	Glu	Pro	Gly	Leu	Ile 950	Cys	Pro	Asp	Ser	Thr 955	Pro	Pro	Pro	His	Leu 960
Arg	Glu	Asp	Asp	His 965	His	Tyr	Ser	Val	Arg 970	Asn	Ser	Asp	Ser	Glu 975	
Pro	Leu	Ser	His 980	Asp	Gly	Tyr		Leu 985	His	Asp	Gly	Val	990 Cys	Met	Tyr
Ile	Glu	Ala 995	Leu	Asp	Lys	Tyr	Ala 1000		s Asr	з Суя	s Vai	l Va 10		ly T	yr Ile
Gly	Glu 1010		g Cys	Glr	n Tyr	Arg 101		р Le	eu Ly	/s T:	_	rp 020	Glu :	Leu .	Arg
His	Ala 102		/ His	GlΣ	/ Gln	Glr 103		n Ly	ys Va	al I		al '	Val .	Ala	Val
Сув	Val 1040		l Val	l Leu	ı Val	Met 104		u Le	eu Le	eu L∈		er :	Leu '	Trp	Gly
Ala	His 105		туг	r Arg	J Thr	Glr 106		s Le	eu Le	eu S∈		ys . 065	Asn :	Pro	Lys
Asn	Pro 1070	_	Glu	ı Glu	ı Ser	Ser 107		g As	ap Va	al A:		er . 080	Arg .	Arg	Pro
Ala	Asp 1089		Glu	ı Asp	Gly	Met 109		r Se	er Cy	/s P:		ln : 095	Pro '	Trp	Phe
Val	Val 1100		e Lys	Glu	l His	Glr 110		p Le	eu Ly	/s A:		ly '	Gly	Gln	Pro
Val	Ala 1115		/ Glu	ı Asp	Gly	Glr 112		a Al	la As	sp G		er 1 125	Met	Gln	Pro
Thr	Ser 1130		Arg	g Glr	ı Glu	Pro 113		n Le	eu Cy	/s G:		et 140	Gly	Thr	Glu
Gln	-		Trp) Ile	Pro	Val		r Se	er As	ab Pi		ly 155	Ser	Cya	Pro
	1149	•													
Gln		Met	: Glu	ı Arç	g Ser	Phe		s Me	et Pi	ro Se		yr 170	Gly '	Thr	Gln

```
Asn Pro Leu Trp Gln Gln Arg Ala Leu Asp Pro Pro His Gln Met 1190 1195 1200
Glu Leu Thr Gln
1205
<210> SEQ ID NO 3 <211> LENGTH: 160
<212> TYPE: PRT
<213 > ORGANISM: Homo sapiens
<400> SEQUENCE: 3
Met Val Pro Ser Ala Gly Gln Leu Ala Leu Phe Ala Leu Gly Ile Val 1 5 5 10 15
Leu Ala Ala Cys Gln Ala Leu Glu As<br/>n Ser Thr Ser Pro Leu Ser Ala 20 25 30
Asp Ser His Thr Gln Phe Cys Phe His Gly Thr Cys Arg Phe Leu Val50 \hspace{0.5in} 60
Gln Glu Asp Lys Pro Ala Cys Val Cys His Ser Gly Tyr Val Gly Ala 65 \phantom{000}70\phantom{000} 70 \phantom{0000}75\phantom{0000} 80
Arg Cys Glu His Ala Asp Leu Leu Ala Val Val Ala Ala Ser Gln Lys
85 90 95
Lys Gln Ala Ile Thr Ala Leu Val Val Val Ser Ile Val Ala Leu Ala
Val Leu Ile Ile Thr Cys Val Leu Ile His Cys Cys Gln Val Arg Lys
His Cys Glu Trp Cys Arg Ala Leu Ile Cys Arg His Glu Lys Pro Ser
130 135 140
Ala Leu Leu Lys Gly Arg Thr Ala Cys Cys His Ser Glu Thr Val Val 145 150 150
<210> SEQ ID NO 4
<211> LENGTH: 1255
<212> TYPE: PRT
<213> ORGANISM: Homo sapiens
<400> SEQUENCE: 4
Met Glu Leu Ala Ala Leu Cys Arg Trp Gly Leu Leu Leu Ala Leu Leu 1 5 10 15
Pro Pro Gly Ala Ala Ser Thr Gln Val Cys Thr Gly Thr Asp Met Lys 20 \hspace{1.5cm} 25 \hspace{1.5cm} 30 \hspace{1.5cm}
Leu Arg Leu Pro Ala Ser Pro Glu Thr His Leu Asp Met Leu Arg His 35 45
Leu Tyr Gln Gly Cys Gln Val Val Gln Gly Asn Leu Glu Leu Thr Tyr 50 \, 55 \, 60 \,
Leu Pro Thr Asn Ala Ser Leu Ser Phe Leu Gln Asp Ile Gln Glu Val 65 70 75 80
Gln Gly Tyr Val Leu Ile Ala His Asn Gln Val Arg Gln Val Pro Leu
Gln Arg Leu Arg Ile Val Arg Gly Thr Gln Leu Phe Glu Asp Asn Tyr 100 $105$
Ala Leu Ala Val Leu Asp Asn Gly Asp Pro Leu Asn Asn Thr Thr Pro
115 120 125
```

Val	Thr 130	Gly	Ala	Ser	Pro	Gly 135	Gly	Leu	Arg	Glu	Leu 140	Gln	Leu	Arg	Ser
Leu 145	Thr	Glu	Ile	Leu	Lys 150	Gly	Gly	Val	Leu	Ile 155	Gln	Arg	Asn	Pro	Gln 160
Leu	Cys	Tyr	Gln	Asp 165	Thr	Ile	Leu	Trp	Lys 170	Asp	Ile	Phe	His	Lys 175	Asn
Asn	Gln	Leu	Ala 180	Leu	Thr	Leu	Ile	Asp 185	Thr	Asn	Arg	Ser	Arg 190	Ala	Сув
His	Pro	Сув 195	Ser	Pro	Met	СЛа	Lys 200	Gly	Ser	Arg	Сув	Trp 205	Gly	Glu	Ser
Ser	Glu 210	Asp	CAa	Gln	Ser	Leu 215	Thr	Arg	Thr	Val	Сув 220	Ala	Gly	Gly	Сув
Ala 225	Arg	Сув	ГЛа	Gly	Pro 230	Leu	Pro	Thr	Asp	Сув 235	CAa	His	Glu	Gln	Сув 240
Ala	Ala	Gly	CÀa	Thr 245	Gly	Pro	ГЛа	His	Ser 250	Asp	CÀa	Leu	Ala	Сув 255	Leu
His	Phe	Asn	His 260	Ser	Gly	Ile	CAa	Glu 265	Leu	His	CÀa	Pro	Ala 270	Leu	Val
Thr	Tyr	Asn 275	Thr	Asp	Thr	Phe	Glu 280	Ser	Met	Pro	Asn	Pro 285	Glu	Gly	Arg
Tyr	Thr 290	Phe	Gly	Ala	Ser	Сув 295	Val	Thr	Ala	CÀa	Pro 300	Tyr	Asn	Tyr	Leu
Ser 305	Thr	Asp	Val	Gly	Ser 310	Cys	Thr	Leu	Val	Сув 315	Pro	Leu	His	Asn	Gln 320
Glu	Val	Thr	Ala	Glu 325	Asp	Gly	Thr	Gln	Arg 330	Cys	Glu	Lys	Cys	Ser 335	Lys
Pro	Cys	Ala	Arg 340	Val	CAa	Tyr	Gly	Leu 345	Gly	Met	Glu	His	Leu 350	Arg	Glu
Val	Arg	Ala 355	Val	Thr	Ser	Ala	Asn 360	Ile	Gln	Glu	Phe	Ala 365	Gly	Cys	Lys
ГÀв	Ile 370	Phe	Gly	Ser	Leu	Ala 375	Phe	Leu	Pro	Glu	Ser 380	Phe	Asp	Gly	Asp
Pro 385	Ala	Ser	Asn	Thr	Ala 390	Pro	Leu	Gln	Pro	Glu 395	Gln	Leu	Gln	Val	Phe 400
Glu	Thr	Leu	Glu	Glu 405	Ile	Thr	Gly	Tyr	Leu 410	Tyr	Ile	Ser	Ala	Trp 415	Pro
Asp	Ser	Leu	Pro 420	Asp	Leu	Ser	Val	Phe 425	Gln	Asn	Leu	Gln	Val 430	Ile	Arg
Gly	Arg	Ile 435	Leu	His	Asn	Gly	Ala 440	Tyr	Ser	Leu	Thr	Leu 445	Gln	Gly	Leu
Gly	Ile 450	Ser	Trp	Leu	Gly	Leu 455	Arg	Ser	Leu	Arg	Glu 460	Leu	Gly	Ser	Gly
Leu 465	Ala	Leu	Ile	His	His 470	Asn	Thr	His	Leu	Cys 475	Phe	Val	His	Thr	Val 480
Pro	Trp	Asp	Gln	Leu 485	Phe	Arg	Asn	Pro	His 490	Gln	Ala	Leu	Leu	His 495	Thr
Ala	Asn	Arg	Pro 500	Glu	Asp	Glu	Сув	Val 505	Gly	Glu	Gly	Leu	Ala 510	Cys	His
Gln	Leu	Cys	Ala	Arg	Gly	His	Сув 520	Trp	Gly	Pro	Gly	Pro 525	Thr	Gln	Cys

Val	Asn 530	Cys	Ser	Gln	Phe	Leu 535	Arg	Gly	Gln	Glu	Cys 540	Val	Glu	Glu	Cys
Arg 545	Val	Leu	Gln	Gly	Leu 550	Pro	Arg	Glu	Tyr	Val 555	Asn	Ala	Arg	His	Сув 560
Leu	Pro	Cys	His	Pro 565	Glu	Cys	Gln	Pro	Gln 570	Asn	Gly	Ser	Val	Thr 575	Cys
Phe	Gly	Pro	Glu 580	Ala	Asp	Gln	CÀa	Val 585	Ala	Cys	Ala	His	Tyr 590	Lys	Asp
Pro	Pro	Phe 595	Cys	Val	Ala	Arg	Cys	Pro	Ser	Gly	Val	Lys 605	Pro	Asp	Leu
Ser	Tyr 610	Met	Pro	Ile	Trp	Lys 615	Phe	Pro	Asp	Glu	Glu 620	Gly	Ala	Cys	Gln
Pro 625	Cys	Pro	Ile	Asn	Cys	Thr	His	Ser	Сув	Val 635	Asp	Leu	Asp	Asp	Lys 640
Gly	Cys	Pro	Ala	Glu 645	Gln	Arg	Ala	Ser	Pro 650	Leu	Thr	Ser	Ile	Ile 655	Ser
Ala	Val	Val	Gly 660	Ile	Leu	Leu	Val	Val 665	Val	Leu	Gly	Val	Val 670	Phe	Gly
Ile	Leu	Ile 675	Lys	Arg	Arg	Gln	Gln 680	Lys	Ile	Arg	Lys	Tyr 685	Thr	Met	Arg
Arg	Leu 690	Leu	Gln	Glu	Thr	Glu 695	Leu	Val	Glu	Pro	Leu 700	Thr	Pro	Ser	Gly
Ala 705	Met	Pro	Asn	Gln	Ala 710	Gln	Met	Arg	Ile	Leu 715	Lys	Glu	Thr	Glu	Leu 720
Arg	ГЛа	Val	ГЛа	Val 725	Leu	Gly	Ser	Gly	Ala 730	Phe	Gly	Thr	Val	Tyr 735	Lys
Gly	Ile	Trp	Ile 740	Pro	Asp	Gly	Glu	Asn 745	Val	Lys	Ile	Pro	Val 750	Ala	Ile
Lys	Val	Leu 755	Arg	Glu	Asn	Thr	Ser 760	Pro	Lys	Ala	Asn	Lys 765	Glu	Ile	Leu
Asp	Glu 770	Ala	Tyr	Val	Met	Ala 775	Gly	Val	Gly	Ser	Pro 780	Tyr	Val	Ser	Arg
Leu 785	Leu	Gly	Ile	CAa	Leu 790	Thr	Ser	Thr	Val	Gln 795	Leu	Val	Thr	Gln	Leu 800
Met	Pro	Tyr	Gly	Cys 805	Leu	Leu	Asp	His	Val 810	Arg	Glu	Asn	Arg	Gly 815	Arg
Leu	Gly	Ser	Gln 820	Asp	Leu	Leu	Asn	Trp 825	Cys	Met	Gln	Ile	Ala 830	Lys	Gly
Met	Ser	Tyr 835	Leu	Glu	Asp	Val	Arg 840	Leu	Val	His	Arg	Asp 845	Leu	Ala	Ala
Arg	Asn 850	Val	Leu	Val	Lys	Ser 855	Pro	Asn	His	Val	Lys 860	Ile	Thr	Asp	Phe
Gly 865	Leu	Ala	Arg	Leu	Leu 870	Asp	Ile	Asp	Glu	Thr 875	Glu	Tyr	His	Ala	Asp 880
Gly	Gly	Lys	Val	Pro 885	Ile	Lys	Trp	Met	Ala 890	Leu	Glu	Ser	Ile	Leu 895	Arg
Arg	Arg	Phe	Thr 900	His	Gln	Ser	Asp	Val 905	Trp	Ser	Tyr	Gly	Val 910	Thr	Val
Trp	Glu	Leu 915	Met	Thr	Phe	Gly	Ala 920	Lys	Pro	Tyr	Asp	Gly 925	Ile	Pro	Ala
Arg	Glu	Ile	Pro	Asp	Leu	Leu	Glu	Lys	Gly	Glu	Arg	Leu	Pro	Gln	Pro

	930					935				9	40					
Pro 945	Ile	Сув	Thr	Ile	Asp 950	Val T	yr M	et I		et V 55	al Ly:	s Cys	Trp	Met 960		
Ile	Asp	Ser	Glu	Сув 965	Arg	Pro A	rg P		rg G 70	lu L	eu Val	l Sei	Glu 975			
Ser	Arg	Met	Ala 980	Arg	Asp	Pro G		rg Pl 85	he V	al V	al Ile	e Glr 990		Glu		
Asp	Leu	Gly 995	Pro	Ala	Ser		eu . 000	Asp :	Ser '	Thr		yr <i>1</i> 005	Arg S	er Leu		
Leu	Glu 1010) Asp) Asr) Met	Gly 1015		Leu	Val	Asp	Ala 1020	Glu	Glu	Tyr		
Leu	Val 1025		Glr	ı Glr	Gly	Phe 1030		Cys	Pro	Asp	Pro 1035	Ala	Pro	Gly		
Ala	Gly 1040		Met	. Val	. His	His 1045		His	Arg	Ser	Ser 1050	Ser	Thr	Arg		
Ser	Gly 1055		gly	/ Asp	Leu	Thr 1060		Gly	Leu	Glu	Pro 1065		Glu	Glu		
Glu	Ala 1070		Arg	g Ser	Pro	Leu 1075		Pro	Ser	Glu	Gly 1080	Ala	Gly	Ser		
Asp	Val 1085		e Asp	Gly	Asp	Leu 1090		Met	Gly	Ala	Ala 1095		Gly	Leu		
Gln	Ser 1100		ı Pro	> Thr	His	Asp 1105		Ser	Pro	Leu	Gln 1110	Arg	Tyr	Ser		
Glu	Asp 1115		Thi	. Val	. Pro	Leu 1120		Ser	Glu	Thr	Asp 1125	Gly	Tyr	Val		
Ala	Pro 1130		ı Thı	Cys	s Ser	Pro 1135		Pro	Glu	Tyr	Val 1140	Asn	Gln	Pro		
Asp	Val 1145		, Pro	Glr	n Pro	Pro 1150		Pro	Arg	Glu	Gly 1155	Pro	Leu	Pro		
Ala	Ala 1160		Pro	Ala	Gly	Ala 1165		Leu	Glu	Arg	Pro 1170	Lys	Thr	Leu		
Ser	Pro 1175		/ Lys	a Asr	gly	Val 1180		Lys	Asp	Val	Phe 1185	Ala	Phe	Gly		
Gly	Ala 1190		. Glu	ı Asr	n Pro	Glu 1195		Leu	Thr	Pro	Gln 1200	Gly	Gly	Ala		
Ala	Pro 1205		Pro	His	Pro	Pro 1210		Ala	Phe	Ser	Pro 1215	Ala	Phe	Aap		
Asn	Leu 1220		Туг	Trp	Asp	Gln 1225		Pro	Pro	Glu	Arg 1230	Gly	Ala	Pro		
Pro	Ser 1235		Phe	e Lys	: Gly	Thr 1240		Thr	Ala	Glu	Asn 1245	Pro	Glu	Tyr		
Leu	Gly 1250		ı Asp	Val	. Pro	Val 1255										
<21: <21: <21:		NGTH PE:	I: 12 DNA SM:	270 Homo	sap	iens										
< 40	0> SE	QUEN	ICE :	5												
_	_	_			_			_		_		_		5 5	60	
gcc	egeeg	lcc c	cgaç	getec	c ca	.agcct	tcg	agag	egge	gc a	cactco	ccgg	tctc	cactcg	120	

ctcttccaac	acccgctcgt	tttggcggca	gctcgtgtcc	cagagaccga	gttgccccag	180
agaccgagac	geegeegetg	cgaaggacca	atgagagccc	cgctgctacc	gccggcgccg	240
gtggtgctgt	cgctcttgat	actcggctca	ggccattatg	ctgctggatt	ggacctcaat	300
gacacctact	ctgggaagcg	tgaaccattt	tetggggace	acagtgctga	tggatttgag	360
gttacctcaa	gaagtgagat	gtcttcaggg	agtgagattt	cccctgtgag	tgaaatgcct	420
tctagtagtg	aaccgtcctc	gggagccgac	tatgactact	cagaagagta	tgataacgaa	480
ccacaaatac	ctggctatat	tgtcgatgat	tcagtcagag	ttgaacaggt	agttaagccc	540
ccccaaaaca	agacggaaag	tgaaaatact	tcagataaac	ccaaaagaaa	gaaaaaggga	600
ggcaaaaatg	gaaaaaatag	aagaaacaga	aagaagaaaa	atccatgtaa	tgcagaattt	660
caaaatttct	gcattcacgg	agaatgcaaa	tatatagagc	acctggaagc	agtaacatgc	720
aaatgtcagc	aagaatattt	cggtgaacgg	tgtggggaaa	agtccatgaa	aactcacagc	780
atgattgaca	gtagtttatc	aaaaattgca	ttagcagcca	tagctgcctt	tatgtctgct	840
gtgatcctca	cagctgttgc	tgttattaca	gtccagctta	gaagacaata	cgtcaggaaa	900
tatgaaggag	aagctgagga	acgaaagaaa	cttcgacaag	agaatggaaa	tgtacatgct	960
atagcataac	tgaagataaa	attacaggat	atcacattgg	agtcactgcc	aagtcatagc	1020
cataaatgat	gagtcggtcc	tetttecagt	ggatcataag	acaatggacc	ctttttgtta	1080
tgatggtttt	aaactttcaa	ttgtcacttt	ttatgctatt	tctgtatata	aaggtgcacg	1140
aaggtaaaaa	gtatttttc	aagttgtaaa	taatttattt	aatatttaat	ggaagtgtat	1200
ttattttaca	gctcattaaa	cttttttaac	caaacagaaa	aaaaaaaaa	aaaaaaaaa	1260
aaaaaaaaa						1270
<210> SEQ 1 <211> LENG <212> TYPE <213> ORGAN	ΓH: 4877	sapiens				
<400> SEQUI	ENCE: 6					
actgttggga	gaggaatcgt	atctccatat	ttcttcttc	agccccaatc	caagggttgt	60
agctggaact	ttccatcagt	tetteettte	tttttcctct	ctaagccttt	gccttgctct	120
gtcacagtga	agtcagccag	agcagggctg	ttaaactctg	tgaaatttgt	cataagggtg	180
tcaggtattt	cttactggct	tccaaagaaa	catagataaa	gaaatctttc	ctgtggcttc	240
ccttggcagg	ctgcattcag	aaggtctctc	agttgaagaa	agagettgga	ggacaacagc	300
acaacaggag	agtaaaagat	gccccagggc	tgaggcctcc	gctcaggcag	ccgcatctgg	360
ggtcaatcat	actcaccttg	cccgggccat	gctccagcaa	aatcaagctg	ttttcttttg	420
aaagttcaaa	ctcatcaaga	ttatgctgct	cactcttatc	attctgttgc	cagtagtttc	480
aaaatttagt	tttgttagtc	tctcagcacc	gcagcactgg	agctgtcctg	aaggtactct	540
cgcaggaaat	gggaattcta	cttgtgtggg	tcctgcaccc	ttcttaattt	tctcccatgg	600
aaatagtato	tttaggattg	acacagaagg	aaccaattat	gagcaattgg	tggtggatgc	660
aaacagcacc	55 5					
	gtgatcatgg		taatgagaaa	agaatctatt	gggtggattt	720
tggtgtctca		attttcatta				720 780

tatagagaaa aatgtttctg gaatggcaat aaattggata aatgaagaag ttatttggtc

840

aaatcaacag	gaaggaatca	ttacagtaac	agatatgaaa	ggaaataatt	cccacattct	900
tttaagtgct	ttaaaatatc	ctgcaaatgt	agcagttgat	ccagtagaaa	ggtttatatt	960
ttggtcttca	gaggtggctg	gaagccttta	tagagcagat	ctcgatggtg	tgggagtgaa	1020
ggctctgttg	gagacatcag	agaaaataac	agctgtgtca	ttggatgtgc	ttgataagcg	1080
gctgttttgg	attcagtaca	acagagaagg	aagcaattct	cttatttgct	cctgtgatta	1140
tgatggaggt	tctgtccaca	ttagtaaaca	tccaacacag	cataatttgt	ttgcaatgtc	1200
cctttttggt	gaccgtatct	tctattcaac	atggaaaatg	aagacaattt	ggatagccaa	1260
caaacacact	ggaaaggaca	tggttagaat	taacctccat	tcatcatttg	taccacttgg	1320
tgaactgaaa	gtagtgcatc	cacttgcaca	acccaaggca	gaagatgaca	cttgggagcc	1380
tgagcagaaa	ctttgcaaat	tgaggaaagg	aaactgcagc	agcactgtgt	gtgggcaaga	1440
cctccagtca	cacttgtgca	tgtgtgcaga	gggatacgcc	ctaagtcgag	accggaagta	1500
ctgtgaagat	gttaatgaat	gtgctttttg	gaatcatggc	tgtactcttg	ggtgtaaaaa	1560
cacccctgga	tcctattact	gcacgtgccc	tgtaggattt	gttctgcttc	ctgatgggaa	1620
acgatgtcat	caacttgttt	cctgtccacg	caatgtgtct	gaatgcagcc	atgactgtgt	1680
tctgacatca	gaaggtccct	tatgtttctg	tcctgaaggc	tcagtgcttg	agagagatgg	1740
gaaaacatgt	agcggttgtt	cctcacccga	taatggtgga	tgtagccagc	tctgcgttcc	1800
tcttagccca	gtatcctggg	aatgtgattg	ctttcctggg	tatgacctac	aactggatga	1860
aaaaagctgt	gcagcttcag	gaccacaacc	atttttgctg	tttgccaatt	ctcaagatat	1920
tcgacacatg	cattttgatg	gaacagacta	tggaactctg	ctcagccagc	agatgggaat	1980
ggtttatgcc	ctagatcatg	accctgtgga	aaataagata	tactttgccc	atacagccct	2040
gaagtggata	gagagagcta	atatggatgg	ttcccagcga	gaaaggctta	ttgaggaagg	2100
agtagatgtg	ccagaaggtc	ttgctgtgga	ctggattggc	cgtagattct	attggacaga	2160
cagagggaaa	tctctgattg	gaaggagtga	tttaaatggg	aaacgttcca	aaataatcac	2220
taaggagaac	atctctcaac	cacgaggaat	tgctgttcat	ccaatggcca	agagattatt	2280
ctggactgat	acagggatta	atccacgaat	tgaaagttct	tecetecaag	gccttggccg	2340
tctggttata	gccagctctg	atctaatctg	gcccagtgga	ataacgattg	acttcttaac	2400
tgacaagttg	tactggtgcg	atgccaagca	gtctgtgatt	gaaatggcca	atctggatgg	2460
ttcaaaacgc	cgaagactta	cccagaatga	tgtaggtcac	ccatttgctg	tagcagtgtt	2520
tgaggattat	gtgtggttct	cagattgggc	tatgccatca	gtaataagag	taaacaagag	2580
gactggcaaa	gatagagtac	gtctccaagg	cagcatgctg	aagccctcat	cactggttgt	2640
ggttcatcca	ttggcaaaac	caggagcaga	tecetgetta	tatcaaaacg	gaggctgtga	2700
acatatttgc	aaaaagaggc	ttggaactgc	ttggtgttcg	tgtcgtgaag	gttttatgaa	2760
agcctcagat	gggaaaacgt	gtctggctct	ggatggtcat	cagctgttgg	caggtggtga	2820
agttgatcta	aagaaccaag	taacaccatt	ggacatettg	tccaagacta	gagtgtcaga	2880
agataacatt	acagaatctc	aacacatgct	agtggctgaa	atcatggtgt	cagatcaaga	2940
tgactgtgct	cctgtgggat	gcagcatgta	tgctcggtgt	atttcagagg	gagaggatgc	3000
cacatgtcag	tgtttgaaag	gatttgctgg	ggatggaaaa	ctatgttctg	atatagatga	3060
atgtgagatg	ggtgtcccag	tgtgccccc	tgcctcctcc	aagtgcatca	acaccgaagg	3120

tggttatgtc	tgccggtgct	cagaaggcta	ccaaggagat	gggattcact	gtcttgatat	3180
tgatgagtgc	caactggggg	tgcacagctg	tggagagaat	gccagctgca	caaatacaga	3240
gggaggctat	acctgcatgt	gtgctggacg	cctgtctgaa	ccaggactga	tttgccctga	3300
ctctactcca	ccccctcacc	tcagggaaga	tgaccaccac	tattccgtaa	gaaatagtga	3360
ctctgaatgt	cccctgtccc	acgatgggta	ctgcctccat	gatggtgtgt	gcatgtatat	3420
tgaagcattg	gacaagtatg	catgcaactg	tgttgttggc	tacatcgggg	agcgatgtca	3480
gtaccgagac	ctgaagtggt	gggaactgcg	ccacgctggc	cacgggcagc	agcagaaggt	3540
catcgtggtg	getgtetgeg	tggtggtgct	tgtcatgctg	ctcctcctga	gcctgtgggg	3600
ggcccactac	tacaggactc	agaagctgct	atcgaaaaac	ccaaagaatc	cttatgagga	3660
gtcgagcaga	gatgtgagga	gtcgcaggcc	tgctgacact	gaggatggga	tgtcctcttg	3720
ccctcaacct	tggtttgtgg	ttataaaaga	acaccaagac	ctcaagaatg	ggggtcaacc	3780
agtggctggt	gaggatggcc	aggcagcaga	tgggtcaatg	caaccaactt	catggaggca	3840
ggagccccag	ttatgtggaa	tgggcacaga	gcaaggctgc	tggattccag	tatccagtga	3900
taagggctcc	tgtccccagg	taatggagcg	aagctttcat	atgecetect	atgggacaca	3960
gacccttgaa	gggggtgtcg	agaagcccca	ttctctccta	tcagctaacc	cattatggca	4020
acaaagggcc	ctggacccac	cacaccaaat	ggagctgact	cagtgaaaac	tggaattaaa	4080
aggaaagtca	agaagaatga	actatgtcga	tgcacagtat	cttttctttc	aaaagtagag	4140
caaaactata	ggttttggtt	ccacaatctc	tacgactaat	cacctactca	atgcctggag	4200
acagatacgt	agttgtgctt	ttgtttgctc	ttttaagcag	tctcactgca	gtcttatttc	4260
caagtaagag	tactgggaga	atcactaggt	aacttattag	aaacccaaat	tgggacaaca	4320
gtgctttgta	aattgtgttg	tcttcagcag	tcaatacaaa	tagatttttg	tttttgttgt	4380
tcctgcagcc	ccagaagaaa	ttaggggtta	aagcagacag	tcacactggt	ttggtcagtt	4440
acaaagtaat	ttctttgatc	tggacagaac	atttatatca	gtttcatgaa	atgattggaa	4500
tattacaata	ccgttaagat	acagtgtagg	catttaactc	ctcattggcg	tggtccatgc	4560
tgatgatttt	gccaaaatga	gttgtgatga	atcaatgaaa	aatgtaattt	agaaactgat	4620
ttcttcagaa	ttagatggcc	ttattttta	aaatatttga	atgaaaacat	tttatttta	4680
aaatattaca	caggaggcct	tcggagtttc	ttagtcatta	ctgtcctttt	cccctacaga	4740
attttccctc	ttggtgtgat	tgcacagaat	ttgtatgtat	tttcagttac	aagattgtaa	4800
gtaaattgcc	tgatttgttt	tcattataga	caacgatgaa	tttcttctaa	ttatttaaat	4860
aaaatcacca	aaaacat					4877
<210> SEQ : <211> LENG' <212> TYPE <213> ORGAL	ΓH: 4119	sapiens				
<400> SEQUI	ENCE: 7					
ctggagagcc	tgctgcccgc	ccgcccgtaa	aatggtcccc	teggetggae	agctcgccct	60
gttegetetg	ggtattgtgt	tggctgcgtg	ccaggccttg	gagaacagca	cgtccccgct	120
gagtgcagac	ccgcccgtgg	ctgcagcagt	ggtgtcccat	tttaatgact	gcccagattc	180

ccacactcag ttctgcttcc atggaacctg caggtttttg gtgcaggagg acaagccagc 240

300	tcctggccgt	catgcggacc	acgctgtgag	acgttggtgc	cattctgggt	atgtgtctgc
360	ccatcgtggc	gtggtggtct	caccgccttg	agcaggccat	agccagaaga	ggtggctgcc
420	gaaaacactg	tgccaggtcc	gatacactgc	catgtgtgct	cttatcatca	cctggctgtc
480	tgaagggaag	agegeeetee	cgagaagccc	tctgccggca	cgggccctca	tgagtggtgc
540	gtttggccag	cagaggagga	ctgaagagcc	aaacagtggt	tgccactcag	aaccgcttgc
600	agagatgcct	cagcactgcc	ttcttcagga	aaagaaaggc	gcagatcaat	gtggactgtg
660	ttgtgggcct	gtgcagcctt	gtaatcacct	tacttggcct	cagacettee	gggtgtgcca
720	agagaagaaa	agtgtgacct	ggggttattc	ccgtctgctt	gtcaagaact	tcaaaactct
780	gactcctgtt	caaagagacg	aaaagaactg	gacttgttaa	acgatttcaa	tcagcggacc
840	agttgtcttc	acatgtgtgc	gtctgagtcc	agcagttggt	aggtgtgtgc	cacctaggtg
900	ccacaacaga	ggccacctcc	ctttttaatg	ctatatattt	ggattccagg	tgccagccat
960	ctactgggga	tgtcatttgc	tattgttttc	tttctatagt	acacaggaga	attctgccca
1020	taagagaagc	accctagctt	tcacatgaag	ctgtttaata	ggaggggaaa	agaaagtgaa
1080	acatgacatt	ttccatggac	gcccaacatc	ctctcaacca	aaccacgaga	tgtatcctct
1140	agatggataa	cttatttatt	gagatgatgt	gccacccttg	ccaagctatc	gaagaccatc
1200	cagacttcta	aaaacccctt	taaaaagtat	taagtcaatg	tttaatctct	tggttttatt
1260	tctggcctct	attagaaatg	agctatactg	ctgactgaaa	gtatgtgttg	cattaatgat
1320	cagaggctgg	gagatggaac	ccagggtgcg	gaaaagtctt	taaggcttgg	tcaagacagc
1380	acaaagccgg	cattgaagcc	gaaatggtgc	taggggttca	ggaataaagg	gttactggta
1440	gatctgtccc	catcagcagg	ttagcaaatc	gggagaaaac	aatacgttct	taaatgcctc
1500	atacatattg	gataaaccca	gtctacacag	gagtgtgtgt	gagagaggaa	ctctgttggg
1560	atgtttagaa	ctcggtaagt	ctcgtgagcc	ggttcacttc	tgattaaatg	tactgctcag
1620	ggggaccagt	tccatgaaag	tcaggccaaa	cataggcatt	agccacgagc	atagaacatt
1680	aggagaagtt	tatttttaaa	tttgttgctt	gcttggttgg	ccattttgtt	catttatttt
1740	tttttcctca	cagtaatttt	aaaactattc	gagcactagg	atttatttc	taactttgct
1800	ccactatgtg	caagtcacct	aaaactctaa	tttattaaca	ggatgccggc	tttccattca
1860	gtccatctga	tgacatctgg	attgttcccc	agaaggagca	tcccctcaag	ggtcttcctt
1920	gatagctcat	atacatagtg	gtcccttcaa	gaaacagtgg	ctgcctgtga	cccatggggc
1980	tataaactcc	agaaataata	agagtaatga	atttggaaac	tttcattaaa	ccctaggaat
2040	ttaactctta	tttctatgta	aagtgaaaga	aatatctgaa	aaatgctact	ttatgtgagg
2100	ttggcttgaa	atatgttaaa	tacatttaaa	tcgtgaaagg	gcttattaca	agtgcaccta
2160	aacaatttct	ggtctggaag	cttcttcctt	tcccctaatt	aattttgtct	attttcagag
2220	gtgtcttcat	tctatgaccc	ttcagacaat	ttttttataa	tctttatttt	atgaattttc
2280	cagagetgae	tggatctgtt	ctgaagcact	aatgccacac	cttatttaac	ttttggcact
2340	agttcaagtt	tactaaaata	gtttttaaat	acagetecag	cgtagttgac	cccctagcaa
2400	cttagagacc	tagcatcctg	ggcttgactg	tgtgggttga	gggccagata	tacatccctt
2460	aagagacttt	gttagcatcc	tcaatcagta	tagacctcta	cactggtttt	aatcaatgga
2520	gcgaagactt	gaggttccct	ggcggaacga	ctggacagat	aggaatgagg	gcagaggcgt

420

gagatttagt	gtctgtgaat	gttctagttc	ctaggtccag	caagtcacac	ctgccagtgc	2580
cctcatcctt	atgcctgtaa	cacacatgca	gtgagaggcc	tcacatatac	gcctccctag	2640
aagtgccttc	caagtcagtc	ctttggaaac	cagcaggtct	gaaaaagagg	ctgcatcaat	2700
gcaagcctgg	ttggaccatt	gtccatgcct	caggatagaa	cagcctggct	tatttgggga	2760
ttttcttct	agaaatcaaa	tgactgataa	gcattggctc	cctctgccat	ttaatggcaa	2820
tggtagtctt	tggttagctg	caaaaatact	ccatttcaag	ttaaaaatgc	atcttctaat	2880
ccatctctgc	aagctccctg	tgtttccttg	ccctttagaa	aatgaattgt	tcactacaat	2940
tagagaatca	tttaacatcc	tgacctggta	agctgccaca	cacctggcag	tggggagcat	3000
cgctgtttcc	aatggctcag	gagacaatga	aaagccccca	tttaaaaaaa	taacaaacat	3060
tttttaaaag	gcctccaata	ctcttatgga	gcctggattt	ttcccactgc	tctacaggct	3120
gtgacttttt	ttaagcatcc	tgacaggaaa	tgttttcttc	tacatggaaa	gatagacagc	3180
agccaaccct	gatctggaag	acagggcccc	ggctggacac	acgtggaacc	aagccaggga	3240
tgggctggcc	attgtgtccc	cgcaggagag	atgggcagaa	tggccctaga	gttcttttcc	3300
ctgagaaagg	agaaaaagat	gggattgcca	ctcacccacc	cacactggta	agggaggaga	3360
atttgtgctt	ctggagcttc	tcaagggatt	gtgttttgca	ggtacagaaa	actgcctgtt	3420
atcttcaagc	caggttttcg	agggcacatg	ggtcaccagt	tgctttttca	gtcaatttgg	3480
ccgggatgga	ctaatgaggc	tctaacactg	ctcaggagac	ccctgccctc	tagttggttc	3540
tgggctttga	tctcttccaa	cctgcccagt	cacagaagga	ggaatgactc	aaatgcccaa	3600
aaccaagaac	acattgcaga	agtaagacaa	acatgtatat	ttttaaatgt	tctaacataa	3660
gacctgttct	ctctagccat	tgatttacca	ggetttetga	aagatctagt	ggttcacaca	3720
gagagagaga	gagtactgaa	aaagcaactc	ctcttcttag	tcttaataat	ttactaaaat	3780
ggtcaacttt	tcattatctt	tattataata	aacctgatgc	tttttttag	aactccttac	3840
tctgatgtct	gtatatgttg	cactgaaaag	gttaatattt	aatgttttaa	tttattttgt	3900
gtggtaagtt	aattttgatt	tctgtaatgt	gttaatgtga	ttagcagtta	ttttccttaa	3960
tatctgaatt	atacttaaag	agtagtgagc	aatataagac	gcaattgtgt	ttttcagtaa	4020
tgtgcattgt	tattgagttg	tactgtacct	tatttggaag	gatgaaggaa	tgaacctttt	4080
tttcctaaaa	aaaaaaaaa	aaaaaaaaa	aaaaaaaa			4119
<210 > SEQ : <211 > LENG' <212 > TYPE <213 > ORGAI <400 > SEQUI	TH: 4624 : DNA NISM: Homo :	sapiens				
		gctgcttgag	gaagtataag	aatgaagttg	tgaagctgag	60
		gagaaaccag				120
		geegegegee				180
		ccagccggag				240
		gctgggggct				300
		gcacagacat				360
J. 25 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	5-5-5-49	J	22-52533		J 9 a 9 a c	200

ccacctggac atgctccgcc acctctacca gggctgccag gtggtgcagg gaaacctgga

actcacctac	ctgcccacca	atgccagcct	gtccttcctg	caggatatcc	aggaggtgca	480
gggctacgtg	ctcatcgctc	acaaccaagt	gaggcaggtc	ccactgcaga	ggctgcggat	540
tgtgcgaggc	acccagetet	ttgaggacaa	ctatgccctg	gccgtgctag	acaatggaga	600
cccgctgaac	aataccaccc	ctgtcacagg	ggcctcccca	ggaggcctgc	gggagctgca	660
gcttcgaagc	ctcacagaga	tcttgaaagg	aggggtcttg	atccagcgga	acccccagct	720
ctgctaccag	gacacgattt	tgtggaagga	catcttccac	aagaacaacc	agctggctct	780
cacactgata	gacaccaacc	gctctcgggc	ctgccacccc	tgttctccga	tgtgtaaggg	840
ctcccgctgc	tggggagaga	gttctgagga	ttgtcagagc	ctgacgcgca	ctgtctgtgc	900
cggtggctgt	gcccgctgca	aggggccact	gcccactgac	tgctgccatg	agcagtgtgc	960
tgccggctgc	acgggcccca	agcactctga	ctgcctggcc	tgcctccact	tcaaccacag	1020
tggcatctgt	gagctgcact	gcccagccct	ggtcacctac	aacacagaca	cgtttgagtc	1080
catgcccaat	cccgagggcc	ggtatacatt	cggcgccagc	tgtgtgactg	cctgtcccta	1140
caactacctt	tctacggacg	tgggatcctg	caccctcgtc	tgccccctgc	acaaccaaga	1200
ggtgacagca	gaggatggaa	cacageggtg	tgagaagtgc	agcaagccct	gtgcccgagt	1260
gtgctatggt	ctgggcatgg	agcacttgcg	agaggtgagg	gcagttacca	gtgccaatat	1320
ccaggagttt	gctggctgca	agaagatctt	tgggagcctg	gcatttctgc	cggagagctt	1380
tgatggggac	ccagcctcca	acactgcccc	gctccagcca	gagcagctcc	aagtgtttga	1440
gactctggaa	gagatcacag	gttacctata	catctcagca	tggccggaca	gcctgcctga	1500
cctcagcgtc	ttccagaacc	tgcaagtaat	ccggggacga	attctgcaca	atggcgccta	1560
ctcgctgacc	ctgcaagggc	tgggcatcag	ctggctgggg	ctgcgctcac	tgagggaact	1620
gggcagtgga	ctggccctca	tccaccataa	cacccacctc	tgcttcgtgc	acacggtgcc	1680
ctgggaccag	ctctttcgga	acccgcacca	agctctgctc	cacactgcca	accggccaga	1740
ggacgagtgt	gtgggcgagg	geetggeetg	ccaccagetg	tgcgcccgag	ggcactgctg	1800
gggtccaggg	cccacccagt	gtgtcaactg	cagccagttc	cttcggggcc	aggagtgcgt	1860
ggaggaatgc	cgagtactgc	aggggeteee	cagggagtat	gtgaatgcca	ggcactgttt	1920
gccgtgccac	cctgagtgtc	agccccagaa	tggctcagtg	acctgttttg	gaccggaggc	1980
tgaccagtgt	gtggcctgtg	cccactataa	ggaccctccc	ttetgegtgg	cccgctgccc	2040
cageggtgtg	aaacctgacc	tctcctacat	gcccatctgg	aagtttccag	atgaggaggg	2100
cgcatgccag	ccttgcccca	tcaactgcac	ccactcctgt	gtggacctgg	atgacaaggg	2160
ctgccccgcc	gagcagagag	ccagccctct	gacgtccatc	atctctgcgg	tggttggcat	2220
tetgetggte	gtggtcttgg	gggtggtctt	tgggateete	atcaagcgac	ggcagcagaa	2280
gatccggaag	tacacgatgc	ggagactgct	gcaggaaacg	gagetggtgg	agccgctgac	2340
acctagcgga	gcgatgccca	accaggcgca	gatgeggate	ctgaaagaga	cggagctgag	2400
gaaggtgaag	gtgcttggat	ctggcgcttt	tggcacagtc	tacaagggca	tetggateee	2460
tgatggggag	aatgtgaaaa	ttccagtggc	catcaaagtg	ttgagggaaa	acacateece	2520
caaagccaac	aaagaaatct	tagacgaagc	atacgtgatg	gctggtgtgg	gctccccata	2580
tgtctcccgc	cttctgggca	tctgcctgac	atccacggtg	cagctggtga	cacagcttat	2640
gccctatggc	tgcctcttag	accatgtccg	ggaaaaccgc	ggacgcctgg	gctcccagga	2700

cctgctgaac tggtgtatgc agattgccaa ggggatgagc tacctggagg atgtgcggct 2760 cgtacacagg gacttggccg ctcggaacgt gctggtcaag agtcccaacc atgtcaaaat 2820 2880 tacagacttc qqqctqqctc qqctqctqqa cattqacqaq acaqaqtacc atqcaqatqq gggcaaggtg cccatcaagt ggatggcgct ggagtccatt ctccgccggc ggttcaccca 2940 3000 ccagagtgat gtgtggagtt atggtgtgac tgtgtgggag ctgatgactt ttggggccaa accttacgat gggatcccag cccgggagat ccctgacctg ctggaaaagg gggagcggct 3060 qccccaqccc cccatctqca ccattqatqt ctacatqatc atqqtcaaat qttqqatqat 3120 tgactctgaa tgtcggccaa gattccggga gttggtgtct gaattctccc gcatggccag qqacccccaq cqctttqtqq tcatccaqaa tqaqqacttq qqcccaqcca qtcccttqqa 3240 cagcaccttc taccgctcac tgctggagga cgatgacatg ggggacctgg tggatgctga 3300 qqaqtatctq qtaccccaqc aqqqcttctt ctqtccaqac cctqcccqq qcqctqqqqq 3360 catggtccac cacaggcacc gcagctcatc taccaggagt ggcggtgggg acctgacact 3480 agggetggag ceetetgaag aggaggeee caggteteea etggeaceet eegaagggge tggctccgat gtatttgatg gtgacctggg aatgggggca gccaaggggc tgcaaagcct coccacacat gaccccaqcc ctctacaqcq qtacaqtqaq gaccccacaq tacccctqcc 3600 ctctgagact gatggctacg ttgcccccct gacctgcagc ccccagcctg aatatgtgaa ccagccagat gttcggcccc agcccccttc gccccgagag ggccctctgc ctgctgcccg 3720 acctgctggt gccactctgg aaaggcccaa gactctctcc ccagggaaga atggggtcgt 3780 caaagacgtt tttgcctttg ggggtgccgt ggagaacccc gagtacttga caccccaggg 3840 aggagetgee ecteageece accetectee tgeetteage ceageetteg acaaceteta ttactgggac caggacccac cagagcgggg ggctccaccc agcaccttca aagggacacc 3960 tacggcagag aacccagagt acctgggtct ggacgtgcca gtgtgaacca gaaggccaag 4020 teegeagaag ceetgatgtg teeteaggga geagggaagg cetgaettet getggeatea 4080 agaggtggga gggccctccg accacttcca ggggaacctg ccatgccagg aacctgtcct 4140 aaggaacctt cetteetget tgagtteeca gatggetgga aggggteeag eetegttgga 4200 agaggaacag cactggggag tctttgtgga ttctgaggcc ctgcccaatg agactctagg 4260 gtccagtgga tgccacagcc cagcttggcc ctttccttcc agatcctggg tactgaaagc 4320 4380 cttaqqqaaq ctqqcctqaq aqqqqaaqcq qccctaaqqq aqtqtctaaq aacaaaaqcq acccattcag agactgtccc tgaaacctag tactgccccc catgaggaag gaacagcaat 4440 ggtgtcagta tccaggcttt gtacagagtg cttttctgtt tagtttttac tttttttgtt 4500 ttgtttttt aaagatgaaa taaagaccca gggggagaat gggtgttgta tggggaggca 4560 agtgtggggg gtccttctcc acacccactt tgtccatttg caaatatatt ttggaaaaca 4620 gcta 4624

Met Arg Ala Asn Asp Ala Leu Gln Val Leu Gly Leu Leu Phe Ser Leu

<210> SEQ ID NO 9

<211> LENGTH: 183

<212> TYPE: PRT

<213 > ORGANISM: Homo sapiens

<400> SEQUENCE: 9

1.0 Ala Arg Gly Ser Glu Val Gly Asn Ser Gln Ala Val Cys Pro Gly Thr Leu Asn Gly Leu Ser Val Thr Gly Asp Ala Glu Asn Gln Tyr Gln Thr 35 40 45Leu Tyr Lys Leu Tyr Glu Arg Cys Glu Val Val Met Gly Asn Leu Glu Ile Val Leu Thr Gly His Asn Ala Asp Leu Ser Phe Leu Gln Trp Ile Arg Glu Val Thr Gly Tyr Val Leu Val Ala Met Asn Glu Phe Ser Thr Leu Pro Leu Pro Asn Leu Arg Val Val Arg Gly Thr Gln Val Tyr Asp Gly Lys Phe Ala Ile Phe Val Met Leu Asn Tyr Asn Thr Asn Ser Ser 120 His Ala Leu Arg Gln Leu Arg Leu Thr Gln Leu Thr Gly Gln Phe Pro Met Val Pro Ser Gly Leu Thr Pro Gln Pro Ala Gln Asp Trp Tyr Leu Leu Asp Asp Pro Arg Leu Leu Thr Leu Ser Ala Ser Ser Lys Val Pro Val Thr Leu Ala Ala Val 180 <210> SEQ ID NO 10 <211> LENGTH: 1050 <212> TYPE: DNA <213 > ORGANISM: Homo sapiens <400> SEQUENCE: 10 acacacac accectecce tgccatecet ecceggaete eggeteegge teegattgca atttgcaacc teegetgeeg tegeegeage agecaccaat tegeeagegg tteaggtgge 120 tettgeeteg atgteetage etaggggeee eegggeegga ettggetggg etecetteae cetetgegga gteatgaggg egaacgaege tetgeaggtg etgggettge titteageet 240 ggcccggggc tccgaggtgg gcaactctca ggcagtgtgt cctgggactc tgaatggcct gagtgtgacc ggcgatgctg agaaccaata ccagacactg tacaagctct acgagaggtg 360 tqaqqtqqtq atqqqqaacc ttqaqattqt qctcacqqqa cacaatqccq acctctcctt cctgcagtgg attcgagaag tgacaggcta tgtcctcgtg gccatgaatg aattctctac 480 totaccattq cocaacctcc qcqtqqtqcq aqqqacccaq qtctacqatq qqaaqtttqc catcttcgtc atgttgaact ataacaccaa ctccagccac gctctgcgcc agctccgctt 600 qactcaqctc accqqtcaqt tcccqatqqt tccttctqqc ctcacccctc aqccaqccca agactggtac ctccttgatg atgacccaag actgctcact ctaagtgcct cttccaaggt 720 geetgteace ttggeegetg tetaaaggte cattgeteee taagcaatag agggeeceea 780

840

gtaggggag ctaggggcat ctgctccagg gaaaggaacc ctgtgtcctt gtggggctgg

agtcagagct ggatctgtta accgtttttc taatttcaaa gtacagtgta ccggaggcca ggcctgatgg cttacacctg taatcccagc attttgggag gccaaggagg gcagatcact tgagatcagg agtttgagac cagcctggcc aacatggcga aaccctgtct ctactaaaaa tacaaaaaaa taaaataaaa taaaaaatta

-continued

1050

taca	aaaa	aaa t	aaaa	ıtaaa	ia ta	ıaaaa	atta	ı							
<211 <212	L> LE 2> TY	EQ II ENGTH (PE: RGAN)	H: 12 PRT	210	sa <u>r</u>	oiens	3								
<400)> SI	EQUE1	ICE :	11											
Met 1	Arg	Pro	Ser	Gly 5	Thr	Ala	Gly	Ala	Ala 10	Leu	Leu	Ala	Leu	Leu 15	Ala
Ala	Leu	Cys	Pro 20	Ala	Ser	Arg	Ala	Leu 25	Glu	Glu	Lys	Lys	Val 30	Cys	Gln
Gly	Thr	Ser 35	Asn	Lys	Leu	Thr	Gln 40	Leu	Gly	Thr	Phe	Glu 45	Asp	His	Phe
Leu	Ser 50	Leu	Gln	Arg	Met	Phe 55	Asn	Asn	Cys	Glu	Val 60	Val	Leu	Gly	Asn
Leu 65	Glu	Ile	Thr	Tyr	Val 70	Gln	Arg	Asn	Tyr	Asp 75	Leu	Ser	Phe	Leu	80 Lys
Thr	Ile	Gln	Glu	Val 85	Ala	Gly	Tyr	Val	Leu 90	Ile	Ala	Leu	Asn	Thr 95	Val
Glu	Arg	Ile	Pro 100	Leu	Glu	Asn	Leu	Gln 105	Ile	Ile	Arg	Gly	Asn 110	Met	Tyr
Tyr	Glu	Asn 115	Ser	Tyr	Ala	Leu	Ala 120	Val	Leu	Ser	Asn	Tyr 125	Aap	Ala	Asn
Lys	Thr 130	Gly	Leu	Lys	Glu	Leu 135	Pro	Met	Arg	Asn	Leu 140	Gln	Glu	Ile	Leu
His 145	Gly	Ala	Val	Arg	Phe 150	Ser	Asn	Asn	Pro	Ala 155	Leu	Cys	Asn	Val	Glu 160
Ser	Ile	Gln	Trp	Arg 165	Asp	Ile	Val	Ser	Ser 170	Asp	Phe	Leu	Ser	Asn 175	Met
Ser	Met	Asp	Phe 180	Gln	Asn	His	Leu	Gly 185	Ser	Cys	Gln	Lys	Суs 190	Asp	Pro
Ser	Cys	Pro 195	Asn	Gly	Ser	Cys	Trp 200	Gly	Ala	Gly	Glu	Glu 205	Asn	Сув	Gln
Lys	Leu 210	Thr	Lys	Ile	Ile	Cys 215	Ala	Gln	Gln	Cys	Ser 220	Gly	Arg	Сув	Arg
Gly 225	Lys	Ser	Pro	Ser	Asp 230	Cys	Cys	His	Asn	Gln 235	Сув	Ala	Ala	Gly	Cys 240
Thr	Gly	Pro	Arg	Glu 245	Ser	Asp	Cys	Leu	Val 250	Cys	Arg	Lys	Phe	Arg 255	Asp
Glu	Ala	Thr	Cys 260	Lys	Asp	Thr	Cys	Pro 265	Pro	Leu	Met	Leu	Tyr 270	Asn	Pro
Thr	Thr	Tyr 275	Gln	Met	Asp	Val	Asn 280	Pro	Glu	Gly	Lys	Tyr 285	Ser	Phe	Gly
Ala	Thr 290	Cys	Val	Lys		Сув 295	Pro	Arg	Asn	_	Val 300	Val	Thr	Asp	His
Gly 305	Ser	Cys	Val	Arg	Ala 310	CAa	Gly	Ala	Asp	Ser 315	Tyr	Glu	Met	Glu	Glu 320
Asp	Gly	Val	Arg	Lys 325	CAa	Lys	Lys	Cys	Glu 330	Gly	Pro	Сув	Arg	Lys 335	Val
Cys	Asn	Gly	Ile 340	Gly	Ile	Gly	Glu	Phe 345	Lys	Asp	Ser	Leu	Ser 350	Ile	Asn

Ala	Thr	Asn 355	Ile	Lys	His	Phe	14a 160	Asn	Cya	Thr	Ser	Ile 365	Ser	Gly	Asp
Leu	His 370	Ile	Leu	Pro	Val	Ala 375	Phe	Arg	Gly	Asp	Ser 380	Phe	Thr	His	Thr
Pro 385	Pro	Leu	Asp	Pro	Gln 390	Glu	Leu	Asp	Ile	Leu 395	Lys	Thr	Val	Lys	Glu 400
Ile	Thr	Gly	Phe	Leu 405	Leu	Ile	Gln	Ala	Trp 410	Pro	Glu	Asn	Arg	Thr 415	Asp
Leu	His	Ala	Phe 420	Glu	Asn	Leu	Glu	Ile 425	Ile	Arg	Gly	Arg	Thr 430	Lys	Gln
His	Gly	Gln 435	Phe	Ser	Leu	Ala	Val 440	Val	Ser	Leu	Asn	Ile 445	Thr	Ser	Leu
Gly	Leu 450	Arg	Ser	Leu	Lys	Glu 455	Ile	Ser	Asp	Gly	Asp 460	Val	Ile	Ile	Ser
Gly 465	Asn	Lys	Asn	Leu	Суs 470	Tyr	Ala	Asn	Thr	Ile 475	Asn	Trp	ГЛа	Lys	Leu 480
Phe	Gly	Thr	Ser	Gly 485	Gln	ГЛа	Thr	Lys	Ile 490	Ile	Ser	Asn	Arg	Gly 495	Glu
Asn	Ser	Cys	Lys 500	Ala	Thr	Gly	Gln	Val 505	Cys	His	Ala	Leu	Сув 510	Ser	Pro
Glu	Gly	Сув 515	Trp	Gly	Pro	Glu	Pro 520	Arg	Asp	Cys	Val	Ser 525	Cys	Arg	Asn
Val	Ser 530	Arg	Gly	Arg	Glu	Cys	Val	Asp	Lys	CÀa	Asn 540	Leu	Leu	Glu	Gly
Glu 545	Pro	Arg	Glu	Phe	Val 550	Glu	Asn	Ser	Glu	Сув 555	Ile	Gln	CAa	His	Pro 560
Glu	CAa	Leu	Pro	Gln 565	Ala	Met	Asn	Ile	Thr 570	CÀa	Thr	Gly	Arg	Gly 575	Pro
Asp	Asn	Cys	Ile 580	Gln	CAa	Ala	His	Tyr 585	Ile	Asp	Gly	Pro	His 590	Cys	Val
ГÀа	Thr	Сув 595	Pro	Ala	Gly	Val	Met 600	Gly	Glu	Asn	Asn	Thr 605	Leu	Val	Trp
ГÀа	Tyr 610	Ala	Asp	Ala	Gly	His 615	Val	Cys	His	Leu	Cys 620	His	Pro	Asn	Cys
Thr 625	Tyr	Gly	Сув	Thr	Gly 630	Pro	Gly	Leu	Glu	Gly 635	CAa	Pro	Thr	Asn	Gly 640
Pro	Lys	Ile	Pro	Ser 645	Ile	Ala	Thr	Gly	Met 650	Val	Gly	Ala	Leu	Leu 655	Leu
Leu	Leu	Val	Val 660	Ala	Leu	Gly	Ile	Gly 665	Leu	Phe	Met	Arg	Arg 670	Arg	His
Ile	Val	Arg 675	Lys	Arg	Thr	Leu	Arg 680	Arg	Leu	Leu	Gln	Glu 685	Arg	Glu	Leu
Val	Glu 690	Pro	Leu	Thr	Pro	Ser 695	Gly	Glu	Ala	Pro	Asn 700	Gln	Ala	Leu	Leu
Arg 705	Ile	Leu	Lys	Glu	Thr 710	Glu	Phe	Lys	Lys	Ile 715	Lys	Val	Leu	Gly	Ser 720
Gly	Ala	Phe	Gly	Thr 725	Val	Tyr	Lys	Gly	Leu 730	Trp	Ile	Pro	Glu	Gly 735	Glu
ГÀа	Val	ГÀа	Ile 740	Pro	Val	Ala	Ile	Lys 745	Glu	Leu	Arg	Glu	Ala 750	Thr	Ser

Pro	Lys	Ala 755	Asn	Lys	Glu	Ile	Leu 760	Asp	Glu	ı Ala	туг	Val 765		Ala	a Ser
Val	Asp 770	Asn	Pro	His	Val	Cys 775	Arg	Leu	Leu	Gly	780	_	Leu	Thr	Ser
Thr 785	Val	Gln	Leu	Ile	Thr 790	Gln	Leu	Met	Pro	Phe 795		. Cha	Leu	Leu	ı Asp 800
Tyr	Val	Arg	Glu	His 805	Lys	Asp	Asn	Ile	Gly 810		Glr	Tyr	Leu	Leu 815	ı Asn
Trp	Cys	Val	Gln 820	Ile	Ala	ГЛа	Gly	Met 825	Asr	Tyr	Leu	Glu	. Asp		g Arg
Leu	Val	His 835	Arg	Asp	Leu	Ala	Ala 840	Arg	Asr	ı Val	. Leu	Val 845		Thr	Pro
Gln	His 850	Val	Lys	Ile	Thr	Asp 855	Phe	Gly	Leu	ı Ala	Lys 860		. Leu	Gly	/ Ala
Glu 865	Glu	Lys	Glu	Tyr	His 870	Ala	Glu	Gly	Gly	Lys 875		. Pro	Ile	Lys	880
Met	Ala	Leu	Glu	Ser 885	Ile	Leu	His	Arg	Il∈ 890		Thr	His	Gln	Ser 895	Asp
Val	Trp	Ser	Tyr 900	Gly	Val	Thr	Val	Trp 905		ı Lev	. Met	Thr	Phe 910	-	/ Ser
Lys	Pro	Tyr 915	Asp	Gly	Ile	Pro	Ala 920	Ser	Glu	ı Ile	Ser	Ser 925		Leu	ı Glu
Lys	Gly 930	Glu	Arg	Leu	Pro	Gln 935	Pro	Pro	Il€	Cys	940		Asp	Val	Tyr
Met 945	Ile	Met	Val	Lys	Cys 950	Trp	Met	Ile	Asp) Ala 955		Ser	Arg	Pro	Lys 960
Phe	Arg	Glu	Leu	Ile 965	Ile	Glu	Phe	Ser	Lys 970		Ala	Arg	Asp	Pro 975	Gln
Arg	Tyr	Leu	Val 980	Ile	Gln	Gly	Asp	Glu 985	Arç	Met	His	Leu	Pro		Pro
Thr	Asp	Ser 995	Asn	Phe	Tyr	Arg	Ala 100		u Me	et As	p Gl		u A	da,	Met Asp
Asp	Val 1010		L Asī) Ala	a Asp	Gl:		yr L	eu I	le F	ro G	ln 020	Gln	Gly	Phe
Phe	Ser 1025		r Pro	Sei	Thi	Ser 103		rg T	hr F	ro I	eu I	eu .035	Ser	Ser	Leu
Ser	Ala 1040		s Sei	r Asr	n Asr	104		nr V	al A	la C	ys I	le .050	Asp	Arg	Asn
Gly	Leu 1055		n Sei	r Cys	s Pro	10e		ys G	lu A	ap S		he .065	Leu	Gln	Arg
Tyr	Ser 1070		. Asī	Pro) Thi	Gly		la L	eu T	hr G		.080	Ser	Ile	Asp
Asp	Thr 1085		e Let	ı Pro	Va]	109		lu T	yr I	le A		ln .095	Ser	Val	Pro
Lys	Arg 1100		o Ala	a Gly	/ Sei	7 Val		ln A	sn F	ro V		'yr .110	His	Asn	Gln
Pro	Leu 1115		n Pro	Ala	a Pro	Ser 112		rg A	sp F	ro H		'yr .125	Gln	Asp	Pro
His	Ser 1130		r Ala	a Val	l Gl∑	/ Asi		ro G	lu T	'yr I		sn .140	Thr	Val	Gln
Pro	Thr	Cys	₹ Val	l Asr	n Sei	Thi	r Pl	ne A	ap S	er F	ro A	la	His	Trp	Ala

_															
	114	5				119	50				1	155			
Gl	n Lys 116		y Se:	r Hi:	s Glr	n Ile 116		er L	eu A	sp A		ro 170	Asp	Tyr	Gln
Gl	n Asp 117		∋ Ph∈	e Pro	o Lys	Gl:		la L	ys P:	ro A		ly 185	Ile	Phe	Lys
Gl	y Ser 119		r Ala	a Gl	ı Ası	n Ala		lu T	yr L	eu A		al . 200	Ala	Pro	Gln
Se	r Ser 120		ı Phe	∋ Ile	e Gly	7 Ala 12:									
< 2 < 2	10 > S: 11 > L: 12 > T 13 > O:	ENGTI YPE :	H: 62 PRT	28	o sal	pien	3								
< 4	00> S	EQUE	NCE:	12											
Me	t Arg	Pro	Ser	Gly 5	Thr	Ala	Gly	Ala	Ala 10	Leu	Leu	Ala	Leu	Leu 15	Ala
Al	a Leu	CÀa	Pro 20	Ala	Ser	Arg	Ala	Leu 25	Glu	Glu	Lys	ГÀа	Val 30	Cya	Gln
Gl	y Thr	Ser 35	Asn	Lys	Leu	Thr	Gln 40	Leu	Gly	Thr	Phe	Glu 45	Asp	His	Phe
Le	ı Ser 50	Leu	Gln	Arg	Met	Phe 55	Asn	Asn	CAa	Glu	Val 60	Val	Leu	. Gly	Asn
Le 65	ı Glu	Ile	Thr	Tyr	Val 70	Gln	Arg	Asn	Tyr	Asp 75	Leu	Ser	Phe	Leu	80 Lys
Th	r Ile	Gln	Glu	Val 85	Ala	Gly	Tyr	Val	Leu 90	Ile	Ala	Leu	Asn	Thr 95	Val
Gl	ı Arg	Ile	Pro 100	Leu	Glu	Asn	Leu	Gln 105	Ile	Ile	Arg	Gly	Asn 110		Tyr
Ту	r Glu	Asn 115	Ser	Tyr	Ala	Leu	Ala 120	Val	Leu	Ser	Asn	Tyr 125	Asp	Ala	Asn
Ly	Thr 130	Gly	Leu	Lys	Glu	Leu 135	Pro	Met	Arg	Asn	Leu 140	Gln	Glu	Ile	Leu
Hi 14	s Gly 5	Ala	Val	Arg	Phe 150	Ser	Asn	Asn	Pro	Ala 155	Leu	Cys	Asn	. Val	Glu 160
Se:	r Ile	Gln	Trp	Arg 165	Asp	Ile	Val	Ser	Ser 170	Asp	Phe	Leu	Ser	Asn 175	
Se:	r Met	Asp	Phe 180	Gln	Asn	His	Leu	Gly 185		CAa	Gln	Lys	Cys 190		Pro
Se:	r Cys	Pro 195	Asn	Gly	Ser	СЛа	Trp 200	Gly	Ala	Gly	Glu	Glu 205	Asn	. Сув	Gln
Ly	s Leu 210	Thr	Lys	Ile	Ile	Cys 215	Ala	Gln	Gln	CAa	Ser 220	Gly	Arg	Cys	Arg
G1 22	2 A TAs	Ser	Pro	Ser	Asp 230	CÀa	CAa	His	Asn	Gln 235	CÀa	Ala	Ala	Gly	Cys 240
Th	r Gly	Pro	Arg	Glu 245	Ser	Asp	CAa	Leu	Val 250	CAa	Arg	Lys	Phe	Arg 255	Asp
Gl	ı Ala	Thr	Cys 260	Lys	Asp	Thr	Cys	Pro 265	Pro	Leu	Met	Leu	Tyr 270		Pro
Th	r Thr	Tyr 275	Gln	Met	Asp	Val	Asn 280	Pro	Glu	Gly	Lys	Tyr 285	Ser	Phe	Gly

Ala	Thr 290	Cys	Val	Lys	Lys	Cys 295	Pro	Arg	Asn	Tyr	Val 300	Val	Thr	Asp	His
Gly 305	Ser	CÀa	Val	Arg	Ala 310	CÀa	Gly	Ala	Asp	Ser 315	Tyr	Glu	Met	Glu	Glu 320
Asp	Gly	Val	Arg	Lys 325	Cys	Lys	Lys	Cys	Glu 330	Gly	Pro	CAa	Arg	Lys 335	Val
Cys	Asn	Gly	Ile 340	Gly	Ile	Gly	Glu	Phe 345	Lys	Asp	Ser	Leu	Ser 350	Ile	Asn
Ala	Thr	Asn 355	Ile	Lys	His	Phe	Lys 360	Asn	Сув	Thr	Ser	Ile 365	Ser	Gly	Asp
Leu	His 370	Ile	Leu	Pro	Val	Ala 375	Phe	Arg	Gly	Asp	Ser 380	Phe	Thr	His	Thr
Pro 385	Pro	Leu	Asp	Pro	Gln 390	Glu	Leu	Asp	Ile	Leu 395	Lys	Thr	Val	Lys	Glu 400
Ile	Thr	Gly	Phe	Leu 405	Leu	Ile	Gln	Ala	Trp 410	Pro	Glu	Asn	Arg	Thr 415	Asp
Leu	His	Ala	Phe 420	Glu	Asn	Leu	Glu	Ile 425	Ile	Arg	Gly	Arg	Thr 430	Lys	Gln
His	Gly	Gln 435	Phe	Ser	Leu	Ala	Val 440	Val	Ser	Leu	Asn	Ile 445	Thr	Ser	Leu
Gly	Leu 450	Arg	Ser	Leu	Lys	Glu 455	Ile	Ser	Asp	Gly	Asp 460	Val	Ile	Ile	Ser
Gly 465	Asn	Lys	Asn	Leu	Cys 470	Tyr	Ala	Asn	Thr	Ile 475	Asn	Trp	Lys	Lys	Leu 480
Phe	Gly	Thr	Ser	Gly 485	Gln	Lys	Thr	Lys	Ile 490	Ile	Ser	Asn	Arg	Gly 495	Glu
Asn	Ser	Сув	Lys 500	Ala	Thr	Gly	Gln	Val 505	Сув	His	Ala	Leu	Сув 510	Ser	Pro
Glu	Gly	Сув 515	Trp	Gly	Pro	Glu	Pro 520	Arg	Asp	СЛа	Val	Ser 525	СЛа	Arg	Asn
Val	Ser 530	Arg	Gly	Arg	Glu	Cys	Val	Asp	Lys	CÀa	Asn 540	Leu	Leu	Glu	Gly
Glu 545	Pro	Arg	Glu	Phe	Val 550	Glu	Asn	Ser	Glu	Сув 555	Ile	Gln	Cya	His	Pro 560
Glu	Cys	Leu	Pro	Gln 565	Ala	Met	Asn	Ile	Thr 570	CÀa	Thr	Gly	Arg	Gly 575	Pro
Asp	Asn	Cys	Ile 580	Gln	CAa	Ala	His	Tyr 585	Ile	Asp	Gly	Pro	His 590	CÀa	Val
Lys	Thr	Сув 595	Pro	Ala	Gly	Val	Met 600	Gly	Glu	Asn	Asn	Thr 605	Leu	Val	Trp
Lys	Tyr 610	Ala	Asp	Ala	Gly	His 615	Val	Cys	His	Leu	Сув 620	His	Pro	Asn	Cys
Thr 625	Tyr	Gly	Ser												
<210)> SI	EQ II	ои о	13											
<212	L> LE 2> TY 3> OF	PE:	PRT		sap	piens	3								
<400)> SI	EQUEI	ICE :	13											
Met 1	Arg	Pro	Ser	Gly 5	Thr	Ala	Gly	Ala	Ala 10	Leu	Leu	Ala	Leu	Leu 15	Ala

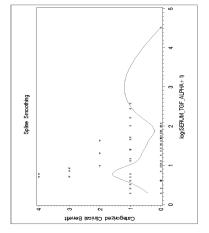
Ala Leu Cys Pro Ala Ser Arg Ala Leu Glu Glu Lys Lys Val Cys Glu $20 \hspace{1cm} 25 \hspace{1cm} 30 \hspace{1cm}$ Gly Thr Ser Asn Lys Leu Thr Gln Leu Gly Thr Phe Glu Asp His Phe 35 40 45Leu Ser Leu Gln Arg Met Phe Asn Asn Cys Glu Val Val Leu Gly Asn 50 60 Leu Glu Ile Thr Tyr Val Gln Arg Asn Tyr Asp Leu Ser Phe Leu Lys 65 70 75 80 Thr Ile Gln Glu Val Ala Gly Tyr Val Leu Ile Ala Leu Asn Thr Val 85 90 95 Glu Arg Ile Pro Leu Glu Asn Leu Gln Ile Ile Arg Gly Asn Met Tyr 105 Tyr Glu Asn Ser Tyr Ala Leu Ala Val Leu Ser Asn Tyr Asp Ala Asn 120 Lys Thr Gly Leu Lys Glu Leu Pro Met Arg Asn Leu Gln Glu Ile Leu Ser Ile Gln Trp Arg Asp Ile Val Ser Ser Asp Phe Leu Ser Asn Met 165 \$170\$Ser Met Asp Phe Gln Asn His Leu Gly Ser Cys Gln Lys Cys Asp Pro \$180\$ \$185\$Ser Cys Pro Asn Gly Ser Cys Trp Gly Ala Gly Glu Glu Asn Cys Gl
n 195 200 205 Lys Leu Thr Lys Ile Ile Cys Ala Gln Gln Cys Ser Gly Arg Cys Arg $210 \\ \hspace*{1.5cm} 215 \\ \hspace*{1.5cm} 220 \\ \hspace*{1.5cm}$ Gly Lys Ser Pro Ser Asp Cys Cys His Asn Gln Cys Ala Ala Gly Cys 225 235 240 Glu Ala Thr Cys Lys Asp Thr Cys Pro Pro Leu Met Leu Tyr Asn Pro 260 260 265 270 Thr Thr Tyr Gln Met Asp Val Asn Pro Glu Gly Lys Tyr Ser Phe Gly Gly Ser Cys Val Arg Ala Cys Gly Ala Asp Ser Tyr Glu Met Glu Glu 305 $$ 310 $$ 315 $$ 320 Asp Gly Val Arg Lys Cys Lys Lys Cys Glu Gly Pro Cys Arg Lys Val \$325\$Cys Asn Gly Ile Gly Ile Gly Glu Phe Lys Asp Ser Leu Ser Ile Asn 345 Ala Thr Asn Ile Lys His Phe Lys Asn Cys Thr Ser Ile Ser Gly Asp 360 Leu His Ile Leu Pro Val Ala Phe Arg Gly Asp Ser Phe Thr His Thr Pro Pro Leu Asp Pro Gln Glu Leu Asp Ile Leu Lys Thr Val Lys Glu 385 390 395 400 Ile Thr Gly Leu Ser

<212 <212	L> LE 2> TY	EQ II ENGTI YPE: RGANI	1: 70 PRT	05	o saj	piens	9								
< 400)> SI	EQUEI	ICE:	14											
Met 1	Arg	Pro	Ser	Gly 5	Thr	Ala	Gly	Ala	Ala 10	Leu	Leu	Ala	Leu	Leu 15	Ala
Ala	Leu	Сув	Pro 20	Ala	Ser	Arg	Ala	Leu 25	Glu	Glu	Lys	Lys	Val 30	Сув	Gln
Gly	Thr	Ser 35	Asn	Lys	Leu	Thr	Gln 40	Leu	Gly	Thr	Phe	Glu 45	Asp	His	Phe
Leu	Ser 50	Leu	Gln	Arg	Met	Phe 55	Asn	Asn	Сув	Glu	Val 60	Val	Leu	Gly	Asn
Leu 65	Glu	Ile	Thr	Tyr	Val 70	Gln	Arg	Asn	Tyr	Asp 75	Leu	Ser	Phe	Leu	80 Lys
Thr	Ile	Gln	Glu	Val 85	Ala	Gly	Tyr	Val	Leu 90	Ile	Ala	Leu	Asn	Thr 95	Val
Glu	Arg	Ile	Pro 100	Leu	Glu	Asn	Leu	Gln 105	Ile	Ile	Arg	Gly	Asn 110	Met	Tyr
Tyr	Glu	Asn 115	Ser	Tyr	Ala	Leu	Ala 120	Val	Leu	Ser	Asn	Tyr 125	Asp	Ala	Asn
Lys	Thr 130	Gly	Leu	Lys	Glu	Leu 135	Pro	Met	Arg	Asn	Leu 140	Gln	Glu	Ile	Leu
His 145	Gly	Ala	Val	Arg	Phe 150	Ser	Asn	Asn	Pro	Ala 155	Leu	Cys	Asn	Val	Glu 160
Ser	Ile	Gln	Trp	Arg 165	Asp	Ile	Val	Ser	Ser 170	Asp	Phe	Leu	Ser	Asn 175	Met
Ser	Met	Asp	Phe 180	Gln	Asn	His	Leu	Gly 185	Ser	Сув	Gln	Lys	Cys 190	Asp	Pro
Ser	Cys	Pro 195	Asn	Gly	Ser	САа	Trp 200	Gly	Ala	Gly	Glu	Glu 205	Asn	Сув	Gln
Lys	Leu 210	Thr	Lys	Ile	Ile	Суз 215	Ala	Gln	Gln	Сув	Ser 220	Gly	Arg	Сув	Arg
Gly 225	Lys	Ser	Pro	Ser	Asp 230	САа	Cha	His	Asn	Gln 235	CAa	Ala	Ala	Gly	Cys 240
Thr	Gly	Pro	Arg	Glu 245	Ser	Asp	Cys	Leu	Val 250	Cys	Arg	Lys	Phe	Arg 255	Asp
Glu	Ala	Thr	Cys 260	Lys	Asp	Thr	Cys	Pro 265	Pro	Leu	Met	Leu	Tyr 270	Asn	Pro
Thr	Thr	Tyr 275	Gln	Met	Asp	Val	Asn 280	Pro	Glu	Gly	ГÀа	Tyr 285	Ser	Phe	Gly
Ala	Thr 290	Cys	Val	Lys	Lys	Сув 295	Pro	Arg	Asn	Tyr	Val 300	Val	Thr	Asp	His
Gly 305	Ser	Cys	Val	Arg	Ala 310	Cys	Gly	Ala	Asp	Ser 315	Tyr	Glu	Met	Glu	Glu 320
Asp	Gly	Val	Arg	Lys 325	Сув	Lys	Lys	Cys	Glu 330	Gly	Pro	Сув	Arg	Lys 335	Val
Cys	Asn	Gly	Ile 340	Gly	Ile	Gly	Glu	Phe 345	Lys	Asp	Ser	Leu	Ser 350	Ile	Asn
Ala	Thr	Asn 355	Ile	Lys	His	Phe	360 1	Asn	Cys	Thr	Ser	Ile 365	Ser	Gly	Asp

Leu	His 370	Ile	Leu	Pro	Val	Ala 375	Phe	Arg	Gly	Asp	Ser 380	Phe	Thr	His	Thr
Pro 385	Pro	Leu	Asp	Pro	Gln 390	Glu	Leu	Asp	Ile	Leu 395	Lys	Thr	Val	Lys	Glu 400
Ile	Thr	Gly	Phe	Leu 405	Leu	Ile	Gln	Ala	Trp 410	Pro	Glu	Asn	Arg	Thr 415	Asp
Leu	His	Ala	Phe 420	Glu	Asn	Leu	Glu	Ile 425	Ile	Arg	Gly	Arg	Thr 430	Lys	Gln
His	Gly	Gln 435	Phe	Ser	Leu	Ala	Val 440	Val	Ser	Leu	Asn	Ile 445	Thr	Ser	Leu
Gly	Leu 450	Arg	Ser	Leu	Lys	Glu 455	Ile	Ser	Asp	Gly	Asp 460	Val	Ile	Ile	Ser
Gly 465	Asn	Lys	Asn	Leu	Cys 470	Tyr	Ala	Asn	Thr	Ile 475	Asn	Trp	Lys	Lys	Leu 480
Phe	Gly	Thr	Ser	Gly 485	Gln	ГÀа	Thr	Lys	Ile 490	Ile	Ser	Asn	Arg	Gly 495	Glu
Asn	Ser	Сув	Lув 500	Ala	Thr	Gly	Gln	Val 505	СЛв	His	Ala	Leu	Сув 510	Ser	Pro
Glu	. Gly	Сув 515	Trp	Gly	Pro	Glu	Pro 520	Arg	Asp	Сув	Val	Ser 525	Сув	Arg	Asn
Val	Ser 530	Arg	Gly	Arg	Glu	Сув 535	Val	Asp	Lys	Cys	Asn 540	Leu	Leu	Glu	Gly
Glu 545	. Pro	Arg	Glu	Phe	Val 550	Glu	Asn	Ser	Glu	Сув 555	Ile	Gln	Сув	His	Pro 560
Glu	. Сув	Leu	Pro	Gln 565	Ala	Met	Asn	Ile	Thr 570	Сув	Thr	Gly	Arg	Gly 575	Pro
Asp	Asn	Cys	Ile 580	Gln	Cys	Ala	His	Tyr 585	Ile	Asp	Gly	Pro	His 590	Cya	Val
Lys	Thr	Cys 595	Pro	Ala	Gly	Val	Met 600	Gly	Glu	Asn	Asn	Thr 605	Leu	Val	Trp
Lys	Tyr 610	Ala	Asp	Ala	Gly	His 615	Val	Cys	His	Leu	Cys 620	His	Pro	Asn	СЛа
Thr 625	Tyr	Gly	Pro	Gly	Asn 630	Glu	Ser	Leu	Lys	Ala 635	Met	Leu	Phe	CÀa	Leu 640
Phe	- Lys	Leu	Ser	Ser 645	Cys	Asn	Gln	Ser	Asn 650	Asp	Gly	Ser	Val	Ser 655	His
Gln	Ser	Gly	Ser 660		Ala	Ala	Gln	Glu 665	Ser	Сув	Leu	Gly	Trp 670	Ile	Pro
Ser	Leu	Leu 675	Pro	Ser	Glu	Phe	Gln 680	Leu	Gly	Trp	Gly	Gly 685	Cys	Ser	His
Leu	His 690	Ala	Trp	Pro	Ser	Ala 695	Ser	Val	Ile	Ile	Thr 700	Ala	Ser	Ser	Cha
His 705															

- 1. A method of predicting the response of a patient to treatment with a HER dimerization inhibitor comprising the steps of:
 - (a) determining the expression level one or more biomarker proteins with one such biomarker protein being transforming growth factor alpha;
 - (b) determining whether the expression level assessed in step (a) is above or below a certain quantity that is associated with an increased or decreased clinical benefit to a patient; and
 - (c) predicting the response to the treatment with the HER inhibitor in the patient by evaluating the results of step (b)
- 2. A method according to claim 1 wherein, in step (a), in addition to the expression level of transforming growth factor alpha, the level of expression of one or more biomarker proteins, selected from the group consisting of epidermal growth factor, amphiregulin, and HER2, is also determined.
- 3. A method according to claim 2 wherein, in step (a), the level of expression of transforming growth factor alpha is determined in combination with the level of expression of: epidermal growth factor; HER2; or both amphiregulin and HER2.
- **4.** A method according to claim **1** wherein the HER dimerization inhibitor inhibits heterodimerization of HER2 with EGFR or HER3.
- 5. A method according to claim 1 wherein the HER dimerization inhibitor is an antibody.
- 6. A method according to claim 1 wherein the HER dimerization inhibitor is the antibody 2C4.
- 7. A method according to claim 1 wherein the patient is a cancer patient.
- **8**. A method according to claim **1** wherein the patient is a breast cancer, ovarian cancer, lung cancer or prostate cancer patient
- **9**. A method according to claim **1** wherein the level of expression of said biomarker protein or proteins is assessed by detecting the level of expression of fragments thereof.
- 10. A method according to claim 1 wherein the level of expression said biomarker or biomarkers is determined using a reagent which specifically binds with the biomarker protein or the fragment thereof or the combination of biomarker proteins or the fragments thereof.

- 11. A method according to claim 10 wherein said reagent is selected from the group consisting of an antibody, a fragment of an antibody, and an antibody derivative.
- 12. A method according to claim 1 wherein a biomarker protein is the extracellular domain of HER2.
- 13. A method according to claim 12 wherein said extracellular domain extracellular domain of HER2 has a molecular mass of approximately 105,000 Daltons.
- 14. A method according to claim 1 wherein the amino acid sequence of the transforming growth factor alpha biomarker protein is SEQ ID NO: 3
- 15. A method according to claim 2 wherein the amino acid sequence of the amphiregulin biomarker protein is SEQ ID NO: 1, the amino acid sequence of the epidermal growth factor biomarker protein is SEQ ID NO: 2, the amino acid sequence of the transforming growth factor alpha biomarker protein is SEQ ID NO: 3, and the amino acid sequence of the HER2 biomarker protein is SEQ ID NO: 4.
- 16. A method according to claim 1 wherein the amount of transforming growth factor alpha is determined in a biological sample of blood serum and the quantity that is associated with an increased clinical benefit to a patient is within the range between 2.0 to 10.0 pg/ml of transforming growth factor alpha.
- 17. A method according to claim 2 wherein the amounts of transforming growth factor alpha, amphiregulin, epidermal growth factor, and HER2 marker proteins are determined in a biological sample of blood serum and the quantities that are associated with an increased clinical benefit to a patient are within the range of between 2.0 to 10.0 pg/ml of transforming growth factor alpha, between 6 to 15 pg/ml of amphiregulin, between 100 to 250 pg/ml of epidermal growth factor, and between 12 to 22 ng/ml of HER2 marker proteins.
- 18. A method according to claim 2 wherein the amounts of transforming growth factor alpha, amphiregulin, epidermal growth factor, and HER2 marker proteins are determined in a biological sample of blood serum and the quantities that are associated with an increased clinical benefit to a patient are about 3.5 pg/ml of transforming growth factor alpha, about 12 pg/ml of amphiregulin, about 150 pg/ml of epidermal growth factor, and about 18 ng/ml of HER2 marker proteins.


* * * * *

专利名称(译)	预测对治疗的反应的方法		
公开(公告)号	US20100112603A1	公开(公告)日	2010-05-06
申请号	US12/624443	申请日	2009-11-24
[标]申请(专利权)人(译)	MOECKS JOACHIM STRAUSS ANDREAS ZUGMAIER GERHARD		
申请(专利权)人(译)	MOECKS JOACHIM STRAUSS ANDREAS ZUGMAIER GERHARD		
当前申请(专利权)人(译)	MOECKS JOACHIM STRAUSS ANDREAS ZUGMAIER GERHARD		
[标]发明人	MOECKS JOACHIM STRAUSS ANDREAS ZUGMAIER GERHARD		
发明人	MOECKS, JOACHIM STRAUSS, ANDREAS ZUGMAIER, GERHARD		
IPC分类号	G01N33/53		
CPC分类号			l33/57415 G01N33/6872 G01N2333 61P13/08 A61P15/00 C12Q2600/118
优先权	2005017663 2005-08-12 EP		
外部链接	Espacenet USPTO		

摘要(译)

本发明涉及预测患者对HER抑制剂治疗的反应的方法,包括评估生物标志物或选自双调蛋白,表皮生长因子,转化生长因子的生物标志物组合的步骤。 α和来自患者的生物样品中的HER2生物标志物,并通过评估第一步的结果预测患者中HER抑制剂治疗的反应。公开了使用这些标记物的其他用途和方法。

Categorized clinical benefit:
4 - partial response
3 - stable disease >= 6 months
2 - stable disease 4 to 6 months
1 - stable disease < 4 months
0 - fast progressive disease