Europäisches Patentamt European Patent Office Office européen des brevets

(11) **EP 1 717 323 A2**

(12)

EUROPEAN PATENT APPLICATION

(43) Date of publication:

02.11.2006 Bulletin 2006/44

(51) Int Cl.: C12Q 1/68 (2006.01)

(21) Application number: 06076492.5

(22) Date of filing: 29.03.2004

(84) Designated Contracting States:

CH DE FR GB LI

(30) Priority: 02.04.2003 JP 2003099452
02.04.2003 JP 2003099453
02.04.2003 JP 2003099454
02.04.2003 JP 2003099455
02.04.2003 JP 2003099456
02.04.2003 JP 2003099457
02.04.2003 JP 2003099458
02.04.2003 JP 2003099459
02.04.2003 JP 2003099460
02.04.2003 JP 2003099461
02.04.2003 JP 2003099462
02.04.2003 JP 2003099463

(62) Document number(s) of the earlier application(s) in accordance with Art. 76 EPC: 04251980.1 / 1 464 710

17.03.2004 JP 2004077045

- (71) Applicant: CANON KABUSHIKI KAISHA Ohta-ku, Tokyo (JP)
- (72) Inventors:
 - Yamamoto, Nobuko, c/o Canon Kabushiki Kaisha Tokyo (JP)
 - Tsukuda, Mamoru, c/o Canon Kabushiki Kaishap Tokyo (JP)

- Ishii, Mie, c/o Canon Kabushiki Kaisha Tokyo (JP)
- Ogura, Masaya, c/o Canon Kabushiki Kaisha Tokyo (JP)
- Yoshii, Hiroto,
 c/o Canon Kabushiki Kaisha
 Tokyo (JP)
- Fukui, Toshifumi, c/o Canon Kabushiki Kaisha Tokyo (JP)
- Kawaguchi, Masahiro, c/o Canon Kabushiki Kaisha Tokyo (JP)
- Suzuki, Tomohiro, c/o Canon Kabushiki Kaisha Tokyo (JP)
- (74) Representative: Beresford, Keith Denis Lewis et al BERESFORD & Co.
 16 High Holborn London WC1V 6BX (GB)

Remarks:

This application was filed on 31 - 07 - 2006 as a divisional application to the application mentioned under INID code 62.

(54) Infectious etiologic agent detection probe and probe set, carrier, and genetic screening method

(57) An infectious etiologic agent detection probe set which detects an infectious etiologic agent gene, includes a plurality of kinds of probes including oligonucleotide having base sequences selected from each of a plurality of groups selected from a first group including base sequences of SEQ ID Nos. 1 to 14 and complementary sequences thereof, a second group including base sequences of SEQ ID Nos. 15 to 24 and complementary sequences thereof, a third group including base sequences of SEQ ID Nos. 25 to 36 and complementary sequences thereof, a fourth group including base sequences of SEQ ID Nos. 37 to 47 and complementary sequences thereof, a fifth group including base sequences thereof, a fifth group including base sequences

es of SEQ ID Nos. 48 to 57 and complementary sequences thereof, a sixth group including base sequences of SEQ ID Nos. 58 to 68 and complementary sequences thereof, a seventh group including base sequences of SEQ ID Nos. 69 to 77 and complementary sequences thereof, an eighth group including base sequences of SEQ ID Nos. 78 to 85 and complementary sequences thereof, a ninth group including base sequences of SEQ ID Nos. 86 to 97 and complementary sequences thereof, and a 10th group including base sequences of SEQ ID Nos. 98 to 106 and complementary sequences thereof.

Description

10

15

20

30

35

40

45

50

55

FIELD OF THE INVENTION

[0001] The present invention relates to detection and/or identification of an infectious etiologic agent as an etiologic agent of an infectious disease and, more particularly, to a probe and probe set originated in an infectious etiologic agent, a carrier, and a genetic screening method, which are useful for detection and identification of the etiologic agent of an infectious disease.

[0002] The present invention also relates to a PCR amplification process of an infectious etiologic agent, which is suitable for detection and/or identification of an infectious etiologic agent.

BACKGROUND OF THE INVENTION

[0003] In recent years, gene expression analysis using DNA chips (also referred to as DNA microarrays hereinafter) is done in various fields including drug development. Different specimen DNAs are made to react with a DNA microarray in which various kinds of gene sets (probes) are arranged. Gene dosages which exist in the respective specimens are compared. Genes which are present in high dosages (the expression amounts are large) or inactive genes (the expression amounts are small) at each stage are classified and analyzed in association with functions.

[0004] An example is an infectious etiologic agent test. In Japanese Patent Laid-Open No. 2001-299396, Ezaki et al have proposed a microorganism identification method using, as a DNA probe, a DNA chip on which chromosome DNAs are immobilized. According to this method, a plurality of chromosome DNAs originated in a plurality of known microorganisms with different GC contents are made to react with chromosome DNAs originated in an unknown microorganism in a specimen. When the resultant hybridization complex is detected, the unknown microorganism in the specimen can be detected.

[0005] As probes used for DNA chips for infectious etiologic agent tests, Ono et al have proposed a bacterial detection probe using restriction enzyme fragments in Japanese Patent Laid-Open No. 6-133798, a Pseudomonas aeruginosa detection probe in Japanese Patent Laid-Open No. 10-304896, and a detection probe using restriction enzyme fragments of Escherichia coli, klebsiella pneumoniae, and Enterobacter cloacae in Japanese Patent Laid-Open No. 10-304897.

[0006] As a microarray, for example, a microarray using stamping called a Stanford method is known. For example, DNA chips on which cDNA fragments of known genes of human origin, which are related to cancers, are applied by spotting or stamping and chips prepared by bonding cDNA fragments of 1,000 kinds of known genes of human origin to slide glasses are commercially available from TAKARA SHUZO.

[0007] On the other hand, a chip available from Affymetrix is prepared by designing an oligonucleotide probe set on the basis of the known gene cDNAs, and probes are laid out by synthesis on a substrate. Oligoprobes are laid out on one chip at a high density so that the expression levels of 10,000 or more genes can be analyzed at once.

[0008] However, the DNA chips of the prior arts described above use DNA probes such as chromosome DNAs or restriction enzyme fragments. DNAs directly extracted from microorganisms are used as materials. For this reason, the chips can hardly be mass-prepared at a time and are not suitable for clinical diagnosis. For application to clinical diagnosis, mass production of inexpensive and uniform DNA chips is necessary. For this purpose, mass preparation of uniform DNAs as probe solutions is essential. However, mass preparation of DNA probes is impossible. Even for DNA probes, when PCR amplification reaction is used, the number of DNAs can gradually be increased. However, mass preparation at a time using the PCR reaction is difficult, and the DNA chips are difficult to use for clinical diagnosis.

[0009] In addition, since the base length of a DNA probe is large, it is difficult to identify one species in similar species. Such a DNA probe is therefore not suitable for, e.g., infection detection. In treating an infection, the species must be specified, and antibiotic drugs corresponding to it must be selected and administered. For this purpose, an infection detection probe is required to have a function capable of detecting a species while discriminating similar species, although bacteria belonging to the same species need not accurately be discriminated (that is, bacteria in the same species can be detected all together). However, in, e.g., the DNA chip using restriction enzyme fragments of Escherichia coli, klebsiella pneumoniae, and Enterobacter cloacae, which is disclosed in Japanese Patent Laid-Open No. 10-304897, cross reaction occurs between the three species because of the large base length of the probe. Since similar species cannot individually be discriminated, the DNA chip can hardly be used for infection detection.

[0010] As an application purpose of microarrays, infectious etiologic agent tests have received a great deal of attention. Some probe sets aiming at testing infectious etiologic agents have also been proposed.

[0011] As an important point of bacterial tests using microarrays, detection must be possible even when the number of infectious etiologic agents is small. To do this, it is effective to amplify specific parts in the base sequences of the DNAs of infectious etiologic agents by, e.g., PCR reaction using primers. For example, a 16s rRNA gene arrangement contains a sequence unique to the species in the information of about 1,700 base pairs. When the sequence is used, classification can be done to some extent. In detecting/identifying bacteria, 16s rRNA parts in the DNA base sequences

of bacteria are preferably used. Hence, it is demanded to amplify the 16s rRNA parts.

[0012] For various kinds of bacteria, however, the gene arrangements are only partially clarified, and the 16s rRNAs are not totally known. For this reason, it is not easy to design primers for PCR amplification reaction.

5 SUMMARY OF THE INVENTION

20

30

35

40

45

50

55

[0013] The present invention has been made in consideration of the above situation, and has as its object to provide an infection detection probe which allows mass preparation at a time and identification of a species in similar species.

[0014] More specifically, it is an object of the present invention to provide an infection detection probe which can suitably be used to classify a plurality of kinds of etiologic agents of an infection on the basis of the species.

[0015] It is another object of the present invention to provide a probe set which also considers the stability of a hybrid body between an infection detection probe and a specimen so that the difference between similar species can accurately be evaluated on a DNA chip.

[0016] It is still another object of the present invention to provide a carrier on which the infection detection probe is immobilized to make the infection detection probe react with the specimen.

[0017] It is still another object of the present invention to provide a carrier on which the infection detection probes are chemically immobilized so that the infection detection probes are stably immobilized on the carrier, and a detection result with high reproducibility can be obtained in the process of reaction with a specimen solution.

[0018] It is still another object of the present invention to provide a PCR reaction primer which amplifies the 16s rRNAs of an etiologic agent in a specimen in order to detect and/or identify an infectious etiologic agent.

[0019] It is still another object of the present invention to provide a primer set which can commonly be used for a plurality of species and effectively amplify the 16s rRNAs of an etiologic agent even when the species is unknown.

[0020] It is still another object of the present invention to provide a primer set which can amplify the 16s rRNAs of a plurality of kinds of etiologic agents under the same PCR conditions.

[0021] The present invention provides a primer set characterized by amplifying all species without amplifying genes originated in human genomes by causing PCR reaction for a human blood specimen by using all the primer sets simultaneously. More specifically, a primer set having a sequence which is different from the base sequence of human genome genes by three or more bases is proposed.

[0022] Other features and advantages of the present invention will be apparent from the following description.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

[0023] A preferred embodiment of the present invention will now be described in.

[0024] In the following embodiment, an oligonucleotide probe used to identify the etiologic agent of an infection and, more specifically, a probe used to detect one or some of Staphylococcus aureus, Staphylococcus epidermidis, Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Serratia marcescens, Streptococcus pneumoniae, Haemophilus influenzae, Enterobacter cloacae, and Enterococcus faecalis will be described. That is, a nucleic acid probe or nucleic acid probe set, which is used to detect rRNA gene arrangements in the genes of the above 10 infectious etiologic agents in proper quantities, is disclosed.

[0025] According to this embodiment, the oligonucleotide probe to be reacted with a specimen solution containing the nucleic acid sequence of the genes of the infectious etiologic agents contains one base sequence which belongs to one of the first group (SEQ ID Nos. 1 to 14 in the attached sequence table) shown in Table 1, the second group (SEQ ID Nos. 15 to 24) shown in Table 2, the third group (SEQ ID Nos. 25 to 36) shown in Table 3, the fourth group (SEQ ID Nos. 37 to 47) shown in Table 4, the fifth group (SEQ ID Nos. 48 to 57) shown in Table 5, the sixth group (SEQ ID Nos. 58 to 68) shown in Table 6, the seventh group (SEQ ID Nos. 69 to 77) shown in Table 7, the eighth group (SEQ ID Nos. 78 to 85) shown in Table 8, the ninth group (SEQ ID Nos. 86 to 97) shown in Table 9, and the 10th group (SEQ ID Nos. 98 to 106) shown in Table 10 (to be described later). An oligonucleotide probe having a base sequence selected from the first group detects Staphylococcus aureus. An oligonucleotide probe having a base sequence selected from the second group detects Staphylococcus epidermidis. An oligonucleotide probe having a base sequence selected from the third group detects Escherichia coli. An oligonucleotide probe having a base sequence selected from the fourth group detects Klebsiella pneumoniae. An oligonucleotide probe having a base sequence selected from the fifth group detects Pseudomonas aeruginosa. An oligonucleotide probe having a base sequence selected from the sixth group detects Serratia marcescens. An oligonucleotide probe having a base sequence selected from the seventh group detects Streptococcus pneumoniae. An oligonucleotide probe having a base sequence selected from the eighth group detects Haemophilus influenzae. An oligonucleotide probe having a base sequence selected from the ninth group detects Enterobacter cloacae. An oligonucleotide probe having a base sequence selected from the 10th group detects Enterococcus

[0026] Complementary sequences of these probe sequences can also be used as effective probe sequences because

they have the same functions as those of the above probe sequences (the complementary sequences of the first group are indicated by SEQ ID Nos. 113 to 126 in the attached sequence table, the complementary sequences of the second group are indicated by SEQ ID Nos. 127 to 136, the complementary sequences of the third group are indicated by SEQ ID Nos. 137 to 148, the complementary sequences of the fourth group are indicated by SEQ ID Nos. 149 to 159, the complementary sequences of the fifth group are indicated by SEQ ID Nos. 160 to 169, the complementary sequences of the sixth group are indicated by SEQ ID Nos. 170 to 180, the complementary sequences of the seventh group are indicated by SEQ ID Nos. 181 to 189, the complementary sequences of the eighth group are indicated by SEQ ID Nos. 190 to 197, the complementary sequences of the ninth group are indicated by SEQ ID Nos. 198 to 209, and the complementary sequences of the 10th group are indicated by SEQ ID Nos. 210 to 218).

[0027] The probes for the respective bacteria were designed from the genome parts coding the 16s rRNAs such that they could have a very high specificity with respect to the corresponding bacteria, any variation between the probe base sequences could be prevented, and a sufficient hybridization sensitivity could be expected.

[0028] These oligonucleotide probes are designed such that a stable hybrid body is formed by hybridization reaction between a specimen and two or more kinds of probes bonded onto a carrier, and a satisfactory result can be obtained. [0029] As a characteristic feature, the carrier according to the present invention, on which the infection detection probe of the present invention is immobilized, is prepared by discharging oligonucleotide by using a BJ printer and chemically bonding it to the carrier. As compared to the prior arts, the probe hardly peels off. An additional effect for increasing the sensitivity is also obtained. When a DNA chip is produced by stamping called a Stanford method that is generally widely used (for example, TAKARA SHUZO produces DNA chips by applying cDNA fragments of known genes of human origin, which are related to cancers, by spotting or stamping), the applied DNA readily peels off. In addition, when a probe is laid out on a DNA chip by synthesis, as in the prior art (e.g., the DNA chip available from Affymetrix), accurate evaluation is impossible because the synthesis yield changes between probe sequences. The carrier according to the present invention is prepared also in consideration of these problems. As its characteristic features, the probe is stably immobilized and hardly peels off, as compared to the prior arts, and highly sensitive and accurate detection can be executed. The preferred embodiment of the present invention will be described below in detail.

20

30

35

40

45

50

55

[0030] The DNA chip of this embodiment can be applied to any specimen in which bacteria may be present, and for example, body fluids originated in animals such as human and livestock, including blood, spinal fluid, phlegm, stomach fluid, vaginal discharge, and intraoral mucus, and excretion such as urine and feces. All media which can be contaminated by bacteria can also be subjected to a test using the DNA chip, including food, drink water and hot spring water in the natural environment, which may cause food poisoning by contamination, filters from air and water cleaners, and so forth. Animals and plants which should be quarantined in import/export are also used as specimens.

[0031] The specimens used for the DNA chip of this embodiment include not only an extracted nucleic acid itself but also specimens prepared by various methods, such as an amplified specimen prepared by using an PCR reaction primer designed for 16s rRNA detection, a specimen prepared by causing PCR reaction on the basis of a PCR amplified product, a specimen prepared by an amplification method other than PCR, and a specimen labeled by various labeling methods for visualization.

[0032] The carrier used for the DNA chip of this embodiment includes all sorts of carriers including flat substrates such as a glass substrate, a plastic substrate, and a silicon wafer, a three-dimensional structure having a three-dimensional pattern, a spherical body such as a bead, and rod-, cord-, and thread-shaped structures. The carrier also includes a substrate whose surface is processed such that a probe DNA can be immobilized. Especially, a carrier prepared by introducing a functional group to its surface to make chemical reaction possible has a preferable form from the viewpoint of reproducibility because the probe is stably bonded in the process of hybridization reaction.

[0033] As an example of the immobilization method used in the present invention, a combination of a maleimide group and a thiol (-SH) group is used. More specifically, a thiol (-SH) group is bonded to the terminal of a nucleic acid probe, and a process is executed make the solid surface have a maleimide group. Accordingly, the thiol group of the nucleic acid probe supplied to the solid surface reacts with the maleimide group on the solid surface to immobilize the nucleic acid probe.

[0034] To introduce the maleimide group, first, an aminosilane coupling agent is caused to react on a glass substrate. Next, the maleimide group is introduced by reaction between the amino group and an EMCS reagent (N-(6-Maleimidocaproyloxy)succinimide: available from Dojin). Introduction of the SH group to a DNA can be done by using 5'-Thiol-ModifierC6 (available from Glen Research) when the DNA is synthesized by an automatic DNA synthesizer.

[0035] Instead of the above-described combination of a thiol group and a maleimide group, a combination of, e.g., an epoxy group (in the solid phase) and an amino group (nucleic acid probe terminal) can also be used as a combination of functional groups to be used for immobilization. Surface treatments using various kinds of silane coupling agents are also effective. Oligonucleotide in which a functional group which can react with a functional group introduced by a silane coupling agent is introduced is used. A method of applying a resin having a functional group can also be used.

[0036] The present invention will be described below in more detail on the basis of examples using the infectious etiologic agent detection probes to be used to detect the 10 etiologic agents described above.

[Example 1] Microorganism Detection Using 1-Step PCR

[1. Preparation of Probe DNAs]

5 [0037] Nucleic acid sequences shown in Tables 1 to 10 were designed as probes to be used for detection of the 10 etiologic agents. More specifically, the following probe base sequences were selected from the genome parts coding the 16s rRNAs of the respective bacteria. These probe base sequences were designed such that they could have a very high specificity with respect to the corresponding bacteria, any variation between the probe base sequences could be prevented, and a sufficient hybridization sensitivity could be expected (The probe base sequences need not always completely match those shown in Tables 1 to 10. Probe base sequences having base lengths of 20 to 30, including the probe base sequences, are also included in the probe base sequence shown in the tables. As described above, complementary sequences (complementary strands) of the base sequences shown in the tables may also be used).
100381 In the following tables: "Probe No." is assigned for convenience. SEQ ID Nos, coincide with those in the attached.

[0038] In the following tables, "Probe No." is assigned for convenience. SEQ ID Nos. coincide with those in the attached sequence tables. As described above, the complementary strand sequences of the base sequences with SEQ ID Nos. 1 to 106 have SEQ ID Nos. 113 to 218.

Table 1 · Drobes for	r dotocting Stank	ylococcus aureus strain
Table 1. Flobes id	n detecting Stapn	VIOCOCCUS aureus strain

Name of microorganism	Probe No.	SEQ ID No.	Sequence
	PA-1	1	5' GAACCGCATGGTTCAAAAGTGAAAGA 3'
	PA-2	2	5' CACTTATAGATGGATCCGCGCTGC 3'
	PA-3	3	5' TGCACATCTTGACGGTACCTAATCAG 3'
	PA-4	4	5' CCCCTTAGTGCTGCAGCTAACG 3'
	PA-5	5	5' AATACAAAGGGCAGCGAAACCGC 3'
	PA-6	6	5' CCGGTGGAGTAACCTTTTAGGAGCT 3'
Stanbulacacque aurous	PA-7	7	5' TAACCTTTTAGGAGCTAGCCGTCGA 3'
Staphylococcus aureus	PA-8	8	5' TTTAGGAGCTAGCCGTCGAAGGT 3'
	PA-9	9	5' TAGCCGTCGAAGGTGGGACAAAT 3'
	PA-10	10	5' ACGGACGAGAAGCTTGCTTCTCT 3'
	PA-11	11	5' TGTCACTTATAGATGGATCCGCGCT 3'
	PA-12	12	5' TGTAAGTAACTGTGCACATCTTGACG 3'
	PA-13	13	5' ACAACTCTAGAGATAGAGCCTTCCCC 3'
	PA-14	14	5' GTGGAGTAACCTTTTAGGAGCTAGCC 3'

Table 2: Probes for detecting Staphylococcus epidermidis strain

Name of microorganism	Probe No.	SEQ ID No.	Sequence
	PB-1	15	5' GAACAGACGAGGAGCTTGCTCC 3'
	PB-2	16	5' TAGTGAAAGACGGTTTTGCTGTCACT 3'
	PB-3	17	5' TAAGTAACTATGCACGTCTTGACGGT 3'
	PB-4	18	5' GACCCCTCTAGAGATAGAGTTTTCCC 3'
Otanko la accessa anida maidia	PB-5	19	5' AGTAACCATTTGGAGCTAGCCGTC 3'
Staphylococcus epidermidis	PB-6	20	5' GAGCTTGCTCCTCTGACGTTAGC 3'
	PB-7	21	5' AGCCGGTGGAGTAACCATTTGG 3'
	PB-8	22	5' AGACGAGGAGCTTGCTCCTCTG 3'
	PB-9	23	5' AGAACAAATGTGTAAGTAACTATGCACGT 3'
	PB-10	24	5' ACCATTTGGAGCTAGCCGTCGA 3'

Table 3: Probes for detecting Escherichia coli strain

Name of microorganism Probe No. SEQ ID No. Sequence PC-1 5' CTCTTGCCATCGGATGTGCCCA 3' 25 PC-2 26 5' ATACCTTTGCTCATTGACGTTACCCG 3' PC-3 27 5' TTTGCTCATTGACGTTACCCGCAG 3' PC-4 28 5' ACTGGCAAGCTTGAGTCTCGTAGA 3' PC-5 29 5' ATACAAAGAGAAGCGACCTCGCG 3' PC-6 30 5' CGGACCTCATAAAGTGCGTCGTAGT 3' Escherichia coli PC-7 5' GCGGGAGGAAGGGAGTAAAGTTAAT 3' 31 PC-8 32 5' TAACAGGAAGAAGCTTGCTTCTTTGCTG 3' PC-9 33 5' TTGCCATCGGATGTGCCCAGAT 3' PC-10 34 5' GGAAGGGAGTAAAGTTAATACCTTTGCTC 3' PC-11 35 5' ATCTTTTGTTGCCAGCGGTCCG 3' PC-12 5' AAGGGAGTAAAGTTAATACCTTTGCTCATTG 3' 36

Table 4: Probes for detecting Klebsiella pneumoniae strain

rable 1.1 repector detecting recording productional extrain				
Name of microorganism	Probe No.	SEQ ID No.	Sequence	
	PD-1	37	5' TAGCACAGAGAGCTTGCTCTCGG 3'	
	PD-2	38	5' TCATGCCATCAGATGTGCCCAGA 3'	
	PD-3	39	5' CGGGGAGGAAGGCGATAAGGTTAAT 3'	
	PD-4	40	5' TTCGATTGACGTTACCCGCAGAAGA 3'	
	PD-5	41	5' GGTCTGTCAAGTCGGATGTGAAATCC 3'	
Klebsiella pneumoniae	PD-6	42	5' GCAGGCTAGAGTCTTGTAGAGGGG 3'	
	PD-7	43	5' TCATGCCATCAGATGTGCCCAGAT 3'	
	PD-8	44	5' CGGGGAGGAAGGCGATAAGGTTAA 3'	
	PD-9	45	5' TTATCGATTGACGTTACCCGCAGAAGA 3'	
	PD-10	46	5' CATTCGAAACTGGCAGGCTAGAGTC 3'	
	PD-11	47	5' CCTTTGTTGCCAGCGGTTAGGC 3'	

6

5

10

15

20

25

30

35

40

45

50

Table 5 : Probes for detecting Pseudomonas aeruginosa strain

Name of microorganism	Probe No.	SEQ ID No.	Sequence
Pseudomonas aeruginosa	PE-1	48	5' TGAGGGAGAAAGTGGGGGATCTTC 3'
	PE-2	49	5' TCAGATGAGCCTAGGTCGGATTAGC 3'
	PE-3	50	5' GAGCTAGAGTACGGTAGAGGGTGG 3'
	PE-4	51	5' GTACGGTAGAGGGTGGTGGAATTT 3'
	PE-5	52	5' GACCACCTGGACTGATACTGACAC 3'
	PE-6	53	5' TGGCCTTGACATGCTGAGAACTTTC 3'
	PE-7	54	5' TTAGTTACCAGCACCTCGGGTGG 3'
	PE-8	55	5' TAGTCTAACCGCAAGGGGGACG 3'
	PE-9	56	5' TGCATCCAAAACTACTGAGCTAGAGTAC 3'
	PE-10	57	5' GTCGACTAGCCGTTGGGATCCT 3'

Table 6: Probes for detecting Serratia marcescens strain

Name of microorganism	Probe No.	Probe No. SEQ ID No. Sequence	
	PF-1	58	5' TAGCACAGGGAGCTTGCTCCCT 3'
	PF-2	59	5' AGGTGGTGAGCTTAATACGCTCATC 3'
	PF-3	60	5' TCATCAATTGACGTTACTCGCAGAAG 3'
	PF-4	61	5' ACTGCATTTGAAACTGGCAAGCTAGA 3'
	PF-5	62	5' TTATCCTTTGTTGCAGCTTCGGCC 3'
Serratia marcescens	PF-6	63	5' ACTTTCAGCGAGGAGGAAGGTGG 3'
	PF-7	64	5' GGTAGCACAGGGGAGCTTGCTC 3'
	PF-8	65	5' CGAGGAGGAAGGTGGTGAGCTTAATA 3'
	PF-9	66	5' TACGCTCATCAATTGACGTTACTCGC 3'
	PF-10	67	5' GAAACTGGCAAGCTAGAGTCTCGTAGA 3'
	PF-11	68	5' TTATCCTTTGTTGCCAGCGGTTCG 3'

Table 7 : Probes for detecting Streptococcus pneumoniae strain

Name of microorganism	Probe No.	SEQ ID No.	Sequence
Streptococcus pneumoniae	PG-1	69	5' AGTAGAACGCTGAAGGAGGAGCTTG 3'
	PG-2	70	5' CTTGCATCACTACCAGATGGACCTG 3'
	PG-3	71	5' TGAGAGTGGAAAGTTCACACTGTGAC 3'
	PG-4	72	5' GCTGTGGCTTAACCATAGTAGGCTTT 3'
	PG-5	73	5' AAGCGGCTCTCTGGCTTGTAACT 3'
	PG-6	74	5' TAGACCCTTTCCGGGGTTTAGTGC 3'
	PG-7	75	5' GACGGCAAGCTAATCTCTTAAAGCCA 3'
	PG-8	76	5' GACATTTGCTTAAAAGGTGCACTTGCA 3'
	PG-9	77	5' GTTGTAAGAGAAGAACGAGTGTGAGAGTG 3'

Table 8: Probes for detecting Haemophilus influenzae strain

Name of microorganism	Probe No.	SEQ ID No.	Sequence
	PH-1	78	5' GCTTGGGAATCTGGCTTATGGAGG 3'
	PH-2	79	5' TGCCATAGGATGAGCCCAAGTGG 3'
	PH-3	80	5' CTTGGGAATGTACTGACGCTCATGTG 3'
Haemophilus influenzae	PH-4	81	5' GGATTGGGCTTAGAGCTTGGTGC 3'
naemopriilus imidenzae	PH-5	82	5' TACAGAGGGAAGCGAAGCTGCG 3'
	PH-6	83	5' GGCGTTTACCACGGTATGATTCATGA 3'
	PH-7	84	5' AATGCCTACCAAGCCTGCGATCT 3'
	PH-8	85	5' TATCGGAAGATGAAAGTGCGGGACT 3'

Table 9: Probes for detecting Enterobacter Cloacae strain

Name of microorganism	Probe No.	SEQ ID No.	Sequence
Enterobacter Cloacae	PI-1	86	5' CAGAGAGCTTGCTCTCGGGTGA 3'
	PI-2	87	5' GGGAGGAAGGTGTTGTGGTTAATAAC 3'
	PI-3	88	5' GGTGTTGTGGTTAATAACCACAGCAA 3'
	PI-4	89	5' GCGGTCTGTCAAGTCGGATGTG 3'
	PI-5	90	5' ATTCGAAACTGGCAGGCTAGAGTCT 3'
	PI-6	91	5' TAACCACAGCAATTGACGTTACCCG 3'
	PI-7	92	5' GCAATTGACGTTACCCGCAGAAGA 3'
	PI-8	93	5' GTAGCACAGAGAGCTTGCTCTCG 3'
	PI-9	94	5' CGGGGAGGAAGGTGTTGTGGTTA 3'
	PI-10	95	5' ACCACAGCAATTGACGTTACCCG 3'
	PI-11	96	5' GAAACTGGCAGGCTAGAGTCTTGTAG 3'
	PI-12	97	5' AGGCGGTCTGTCAAGTCGGATG 3'

Table 10 : Probes for detecting Enterococcus faecalis strain

Name of microorganism	Probe No.	SEQ ID No.	Sequence
	PJ-1	98	5' TTCTTTCCTCCCGAGTGCTTGCA 3'
	PJ-2	99	5' AACACGTGGGTAACCTACCCATCAG 3'
	PJ-3	100	5' ATGGCATAAGAGTGAAAGGCGCTT 3'
	PJ-4	101	5' GACCCGCGGTGCATTAGCTAGT 3'
Enterococcus faecalis	PJ-5	102	5' GGACGTTAGTAACTGAACGTCCCCT 3'
	PJ-6	103	5' CTCAACCGGGGAGGGTCATTGG 3'
	PJ-7	104	5' TTGGAGGGTTTCCGCCCTTCAG 3'
	PJ-8	105	5' ATAGAGCTTTCCCTTCGGGGACAAA 3'
	PJ-9	106	5' CGAGGTCATGCAAATCTCTTAAAGCTTCT 3'

[0039] For each probe shown in the tables, as a functional group to immobilize the probe to a DNA microarray, a thiol

group was introduced to the 5' terminal of the nucleic acid after synthesis in accordance with a conventional method. After introduction of the functional group, purification and freeze-drying were executed. The freeze-dried probes were stored in a freezer at -30°C.

5 [2. Preparation of Specimen Amplification PCR Primers]

15

20

25

30

35

40

45

50

55

[0040] As 16s rRNA gene (target gene) amplification PCR primers for etiologic agent detection, nucleic acid sequences shown in Table 11 were designed. More specifically, probe sets which specifically amplify the genome parts coding the 16s rRNAs, i.e., primers for which the specific melting points were made uniform as much as possible at the two end portions of the 16s rRNA coding region of a base length of 1,400 to 1,700 were designed. In order to simultaneously amplify variants or a plurality of 16s rRNA coding regions on genomes, a plurality of kinds of primers were designed. Note that a primer set is not limited to primer sets shown in the table 11. A primer set which is available in common to a plural kinds of etiologic agents and amplify almost entire length of 16s rRNA coding region of the etiologic agents can also be employed.

Table 11:

	Primer No.	SEQ ID No.	Sequence
	F-1	107	5' GCGGCGTGCCTAATACATGCAAG 3'
Forward Primer	F-2	108	5' GCGGCAGGCCTAACACATGCAAG 3'
	F-3	109	5' GCGGCAGGCTTAACACATGCAAG 3'
	R-1	110	5' ATCCAGCCGCACCTTCCGATAC 3'
Reverse Primer	R-2	111	5' ATCCAACCGCAGGTTCCCCTAC 3'
	R-3	112	5' ATCCAGCCGCAGGTTCCCCTAC 3'

[0041] The primers shown in Table 11 were purified by HPLC (High Performance Liquid Chromatography) after synthesis. Three forward primers and three reverse primers were mixed and dissolved in a TE buffer solution such that each primer concentration had an ultimate concentration of 10 pmol/ μ l.

[3. Extraction of Genome DNAs (Model Specimens) of Etiologic Agents]

[3-1] Microbial Culture & Preprocess for Genome DNA Extraction

[0042] First, microbial culture media were produced by culturing type strains of the etiologic agents (Staphylococcus aureus type strain (ATCC12600), Staphylococcus epidermidis type strain (ATCC14990), Escherichia coli type strain (ATCC11775), Klebsiella pneumoniae type strain (ATCC13883), Pseudomonas aeruginosa type strain (ATCC10145), Serratia marcescens strain, Streptococcus pneumoniae type strain, Haemophilus influenzae strain, Enterobacter Cloacae type strain (ATCC13047), and Enterococcus faecalis type strain (ATCC19433)) in accordance with a conventional method. Each of the microbial culture media was sampled 1.0 ml (0D $_{600}$ = 0.7) into a 1.5-ml microtube. The cells were collected by centrifuge (8,500 rpm, 5 min, 4°C). After the supernatant was removed, a 300- μ l enzyme buffer (50 mM Tris-HCl: p.H. 8.0, 25 mM EDTA) was added, and the broth was re-suspended by using a mixer. From the resuspended broth, the cells were collected again by centrifuge (8,500 rpm, 5 min, 4°C). After the supernatant was removed, the following enzyme solution was added to the collected cells, and the broth was re-suspended by using the mixer.

Lysozyme 50 μ l (20 mg/ml in Enzyme Buffer) N-Acetylmuramidase SG 50 μ l (0.2 mg/ml in Enzyme Buffer)

[0043] The broth added with the enzyme solution and re-suspended was left stand still in an incubator at 37°C for 30 min to melt cell walls.

[3-2] Genome Extraction

[0044] Microbial genome DNA extraction to be described below was done by using a nucleic acid purification kit (MagExtractor-Genome: available from TOYOBO).

[0045] More specifically, a 750-µl melting/absorption solution and a 40-µl magnetic beads were added to the preprocessed microbial suspension. The suspension was intensely stirred for 10 min by using a tube mixer (step 1).

[0046] Next, the microtube was set in a separation stand (Magical Trapper) and left stand still for 30 sec to gather magnetic particles to the wall surface of the tube. The supernatant was removed while the microtube was kept set in the stand (step 2).

[0047] Next, a 900- μ l cleaning solution was added. The solution was re-suspended by stirring it for about 5 sec by a mixer (step 3).

[0048] The microtube was set in the separation stand (Magical Trapper) and left stand still for 30 sec to gather magnetic particles to the wall surface of the tube. The supernatant was removed while the microtube was kept set in the stand (step 4).

[0049] Steps 3 and 4 were repeated to execute the second cleaning process (step 5). After that, 900-µl 70% ethanol was added. The solution was re-suspended by stirring it for about 5 sec by a mixer (step 6).

[0050] The microtube was set in the separation stand (Magical Trapper) and left stand still for 30 sec to gather magnetic particles to the wall surface of the tube. The supernatant was removed while the microtube was kept set in the stand (step 7).

[0051] Steps 6 and 7 were repeated to execute the second cleaning process by using 70% ethanol (step 8). After that, $100-\mu l$ pure water was added to the collected magnetic particles. The solution was stirred for 10 min by a tube mixer (step 9).

[0052] The microtube was set in the separation stand (Magical Trapper) and left stand still for 30 sec to gather magnetic particles to the wall surface of the tube. The supernatant was collected to a new tube while the microtube was kept set in the stand.

[3-3] Test of Collected Genome DNAs

20

30

35

40

45

50

55

[0053] The collected genome DNAs of microorganisms (etiologic agent strain) underwent agarose electrophoresis and 260/280-nm absorbance determination in accordance with the conventional method so that the quality (the admixture amount of low molecular nucleic acid and the degree of decomposition) and collection amount were tested. In this embodiment, about 9 to 10-µg genome DNAs were collected in each bacterium. No degradation of genome DNAs or admixture of rRNA was observed. The collected genome DNAs were dissolved in a TE buffer solution at an ultimate concentration of 50 ng/µl and used in the following examples.

[4. Preparation of DNA Microarray]

[0054] The DNA Microarray was prepared according to Japanese Patent Application Laid-Open No. 11-187900.[4-1] Cleaning of Glass Substrate

[0055] A glass substrate (size: $25 \text{ mm} \times 75 \text{ mm} \times 1 \text{ mm}$, available from liyama Tokushu Glass) made of synthetic silica was placed in a heat- and alkali-resisting rack and dipped in a cleaning solution for ultrasonic cleaning, which was prepared to a predetermined concentration. The glass substrate was kept dipped in the cleaning solution for a night and cleaned by ultrasonic cleaning for 20 min. The substrate was picked up, lightly rinsed by pure water, and cleaned by ultrasonic cleaning in ultrapure water for 20 min. The substrate was dipped in a 1N aqueous sodium hydroxide solution heated to 80°C for 10 min. Pure water cleaning and ultrapure water cleaning were executed again. A silica glass substrate for a DNA microchip was thus prepared.

[4-2] Surface Treatment

[0056] A silane coupling agent KBM-603 (available from Shinetsu Silicone) was dissolved in pure water at a concentration of 1% and stirred at room temperature for 2 hrs. The cleaned glass substrate was dipped in the aqueous solution of the silane coupling agent and left stand still at room temperature for 20 min. The glass substrate was picked up. The surface was lightly rinsed by pure water and dried by spraying nitrogen gas to both surfaces of the substrate. The dried substrate was baked in an oven at 120°C for 1 hr to complete the coupling agent treatment, thereby introducing an amino group to the substrate surface. Next, N-(6-Maleimidocaproyloxy)succinimido) (to be abbreviated as EMCS hereinafter) available from Dojindo Laboratories was dissolved in a 1 : 1 medium mixture of dimethyl sulfoxide and ethanol such that an ultimate concentration of 0.3 mg/ml was obtained, thereby preparing an EMCS solution.

[0057] The baked glass substrate was left stand and cooled and dipped in the prepared EMCS solution at room temperature for 2 hrs. With this process, the amino group introduced to the surface by the silane coupling agent reacted with the succinimide group in the EMCS to introduce the maleimide group to the surface of the glass substrate. The glass substrate picked up from the EMCS solution was cleaned by using the above-described medium mixture in which the EMCS was dissolved. The glass substrate was further cleaned by ethanol and dried in a nitrogen gas atmosphere.

[4-3] Probe DNA

5

10

20

25

30

35

40

50

55

[0058] The microorganism detection probe prepared in Example 1 was dissolved in pure water. The solution was dispensed such that the ultimate concentration (at ink dissolution) became 10 µM. Then, the solution was freeze-dried to remove water.

[4-4] DNA Discharge by BJ Printer and Bonding to Substrate

[0059] An aqueous solution containing 7.5-wt% glycerin, 7.5-wt% thioglycol, 7.5-wt% urea, and 1.0-wt% Acetylenol EH (available from Kawaken Fine Chemicals) was prepared. Each of the seven probes (Table 1) prepared in advance was dissolved in the medium mixture at a specific concentration. An ink tank for an inkjet printer (trade name: BJF-850, available from Canon) is filled with the resultant DNA solution and attached to the printhead.

[0060] The inkjet printer used here was modified in advance to allow printing on a flat plate. When the inkjet printer inputs a printing pattern in accordance with a predetermined file creation method, an about 5-picoliter DNA solution can be spotted at a pitch of about 120 µm.

[0061] The printing operation was executed for one glass substrate by using the modified inkjet printer, thereby preparing a DNA microarray. After confirming that printing was reliably executed, the glass substrate was left stand still in a humidified chamber for 30 min to make the maleimide group on the glass substrate surface react with the thiol group at the nucleic acid probe terminal.

[4-5] Cleaning

[0062] After reaction for 30 min, the DNA solution remaining on the surface was cleaned by using a 10-mM phosphate buffer (pH 7.0) containing 100-mM NaCl, thereby obtaining a gene chip (DNA microarray) in which single-stranded DNAs were immobilized on the glass substrate surface.

[5. Amplification and Labeling of Specimens (PCR Amplification & Fluorescent Labeling)]

[0063] Amplification of microbial genes as specimens and labeling reaction will be described below

Premix PCR reagent (TAKARA ExTaq) 25 µl Template Genome DNA 2 μΙ (100ng) Forward Primer mix 2 μΙ (20pmol/tube each) Reverse Primer mix 2 μΙ (20pmol/tube each) Cy-3 dUTP (1mM) 2 μl (2nmol/tube) 17 μΙ H_2O Total 50 µl

Amplification reaction of the reaction solution having the above composition was caused by using a commercially available thermal cycler in accordance with the following protocol.

95℃ 10 min. 45 92°C 45 sec. 35 Cycles 55°C 45 sec. 45 sec. 72°C 10 min.

[0065] After the end of reaction, the primers were removed (purified) by using a purification column (QIAquick PCR Purification Kit available from QIAGEN). Then, determination of the amplified products was executed to obtain labeled specimens.

[6. Hybridization]

[0066] Detection reaction was performed by using the gene chips prepared by [4. Preparation of DNA Microarray] and the labeled specimen prepared by [5. Amplification and Labeling of Specimen (PCR Amplification & Fluorescent Labeling)].

[6-1] Blocking of DNA Microarrays

[0067] BSA (fetal bovine serum albumin, Fraction V: available from Sigma) was dissolved in a 100-mM NaCl/10-mM phosphate buffer such that a 1 wt% solution was obtained. The gene chips prepared by [4. Preparation of DNA Microarray] were dipped in the solution at room temperature for 2 hrs to execute blocking. After the end of blocking, the chips were cleaned by using a 2xSSC solution (NaCl 300 mM, Sodium Citrate (trisodium citrate dihydrate, $C_6H_5Na_3 \cdot 2H_2O$) 30 mM, pH 7.0) containing 0.1-wt% SDS (Sodium Dodecyl Sulfate), rinsed by pure water, and hydro-extracted by a spin dryer.

15 [6-2] Hybridization

10

20

25

30

35

40

45

[0068] The hydro-extracted gene chips were set in a hybridization apparatus (Hybridization Station available from Genomic Solutions Inc). Hybridization reaction was caused in a hybridization solution under conditions to be described below.

[6-3] Hybridization Solution

[0069] 6xSSPE/10% Form amide/Target (all 2nd PCR Products)

[0070] 6xSSPE: NaCl 900 mM, NaH₂PO₄·H₂O 60 mM, EDTA 6 mM, pH, 7.4)

[6-4] Hybridization Conditions

[0071] 65°C 3 min \rightarrow 92°C 2 min \rightarrow 45°C 3 hrs \rightarrow Wash 2xSSC/0.1% SDS at 25°C \rightarrow Wash 2xSSC at 20°C \rightarrow (Rinse with H₂O: Manual) \rightarrow Spin dry (The hybridization reaction was caused at 65°C for 3 min, at 92°C for 2 min, and at 45°C for 3 hrs. The gene chips were cleaned by using 2xSSC/0.1% SDS at 25°C and 2xSSC at 20°C, rinsed by pure water, and spin-dried).

[7. Microorganism Detection (Fluorometry)]

[0072] The gene chips after the end of hybridization reaction were subjected to fluorometry by using a gene chip fluorescent detector (GenePix 4000B available from Axon). As a result, the respective bacteria could be detected with sufficient signals at a high reproducibility, as shown in Tables 12 to 21. No hybrid bodies for other bacteria were detected.

[0073] In this example, fluorometry was executed twice for each gene chip. The results are shown below.

Table 12: Staphylococcus aureus

		First		Second	
Probe No.	Sequence	Fluorescence luminance	S/N	Fluorescence luminance	S/N
PA-1	5' GAACCGCATGGTTCAAAAGTGAAAGA 3'	3000	42.9	2900	40.8
PA-2	5' CACTTATAGATGGATCCGCGCTGC 3'	7700	110.0	7700	108.5
PA-3	5' TGCACATCTTGACGGTACCTAATCAG 3'	6400	91.4	6400	90.1
PA-4	5' CCCCTTAGTGCTGCAGCTAACG 3'	2500	35.7	2500	35.2
PA-5	5' AATACAAAGGGCAGCGAAACCGC 3'	7800	111.4	7800	109.9

55

(continued)

First Second Probe No. Sequence Fluorescence Fluorescence S/N S/N **luminance** luminance 4800 4800 67.6 PA-6 68.6 CCGGTGGAGTAACCTTTTAGGAGCT 3' 5'TAACCTTTTAGGAGCTAGCCGTCGA 4500 64.3 4300 60.6 PA-7 PA-8 5' TTTAGGAGCTAGCCGTCGAAGGT 3' 4800 4800 67.6 68.6 75.7 PA-9 5' TAGCCGTCGAAGGTGGGACAAAT 3' 5300 5200 73.2

15

5

10

Table 13: Staphylococcus epidermidis

Sequence

First

S/N

Fluorescence

Second

S/N

Fluorescence

Probe No.

25	

30

35

40

		luminance	S/N	luminance	S/N
PB-1	5' GAACAGACGAGGAGCTTGCTCC 3'	1000	14.5	1100	15.7
PB-2	5' TAGTGAAAGACGGTTTTGCTGTCACT 3'	1800	26.1	1800	25.7
PB-3	5' TAAGTAACTATGCACGTCTTGACGGT 3'	1400	20.3	1400	20
PB-4	5' GACCCCTCTAGAGATAGAGTTTTCCC 3'	1000	14.5	1100	15.7
PB-5	5' AGTAACCATTTGGAGCTAGCCGTC 3'	1800	26.1	2000	28.6
PB-6	5' GAGCTTGCTCCTCTGACGTTAGC 3'	1200	17.4	1300	18.6
PB-7	5' AGCCGGTGGAGTAACCATTTGG 3'	1100	15.9	1100	15.7

Table 14 : Escherichia coli

45

50

		First		Second	
Probe No.	Sequence	Fluorescence luminance	S/N	Fluorescence luminance	S/N
PC-1	5' CTCTTGCCATCGGATGTGCCCA 3'	1200	17.6	1200	17.9
PC-2	5'ATACCTTTGCTCATTGACGTTACCCG 3'	1500	22.1	1600	23.9
PC-3	5' TTTGCTCATTGACGTTACCCGCAG 3'	1100	16.2	1200	17.9
PC-4	5' ACTGGCAAGCTTGAGTCTCGTAGA 3'	2000	29.4	2100	31.3
PC-5	5' ATACAAAGAGAAGCGACCTCGCG 3'	1500	22.1	1500	22.4
PC-6	5' CGGACCTCATAAAGTGCGTCGTAGT 3'	2400	35.3	2600	38.8

(continued)

Probe No.	Sequence	First		Second	
		Fluorescence luminance	S/N	Fluorescence luminance	S/N
PC-7	5' GCGGGAGGAAGGGAGTAAAGTTAAT 3'	1200	17.6	1200	17.9

Table 15 : Klebsiella pneumoniae

		First		Second	
Probe No.	Sequence	Fluorescence luminance	S/N	Fluorescence luminance	S/N
PD-1	5' TAGCACAGAGAGCTTGCTCTCGG 3'	500	7.6	600	9
PD-2	5' TCATGCCATCAGATGTGCCCAGA 3'	600	9.1	600	9
PD-3	5' CGGGGAGGAAGGCGATAAGGTTAAT 3'	700	10.6	700	10.4
PD-4	5'TTCGATTGACGTTACCCGCAGAAGA 3'	1000	15.2	1200	17.9
PD-5	5' GGTCTGTCAAGTCGGATGTGAAATCC 3'	2700	40.9	2700	40.3
PD-6	5' GCAGGCTAGAGTCTTGTAGAGGGG 3'	3400	51.5	3300	49.3

Table 16: Pseudomonas aeruginosa

			domonas acraginosa			
35			First		Second	
	Probe No. Sequence	Fluorescence luminance	S/N	Fluorescence luminance	S/N	
40	PE-1	5' TGAGGGAGAAAGTGGGGGATCTTC 3'	3500	50.0	3600	50
45	PE-2	5' TCAGATGAGCCTAGGTCGGATTAGC 3'	1600	22.9	1400	19.4
	PE-3	5' GAGCTAGAGTACGGTAGAGGGTGG 3'	3500	50.0	3400	47.2
50	PE-4	5' GTACGGTAGAGGGTGGTGGAATTT 3'	3100	44.3	3100	43.1
	PE-5	5'GACCACCTGGACTGATACTGACAC 3'	1600	22.9	1600	22.2
55	PE-6	5' TGGCCTTGACATGCTGAGAACTTTC 3'	1200	17.1	1200	16.7

(continued)

Probe No.	Sequence	First		Second	
		Fluorescence luminance	S/N	Fluorescence luminance	S/N
PE-7	5' TTAGTTACCAGCACCTCGGGTGG 3'	1000	14.3	1200	16.7
PE-8	5' TAGTCTAACCGCAAGGGGGACG 3'	1100	15.7	1100	15.3

Table 17: Serratia marcescens

		First		Second	
Probe No.	Sequence	Fluorescence luminance	S/N	Fluorescence luminance	S/N
PF-1	5' TAGCACAGGGAGCTTGCTCCCT 3'	600	8.8	600	8.7
PF-2	5' AGGTGGTGAGCTTAATACGCTCATC 3'	700	10.3	600	8.7
PF-3	5' TCATCAATTGACGTTACTCGCAGAAG 3'	2000	29.4	2200	31.9
PF-4	5' ACTGCATTTGAAACTGGCAAGCTAGA 3'	2800	41.2	2700	39.1
PF-5	5' TTATCCTTTGTTGCAGCTTCGGCC 3'	700	10.3	700	10.1
PF-6	5' ACTTTCAGCGAGGAGGAAGGTGG 3'	3400	50.0	3300	47.8

Table 18 : Streptococcus pneumoniae

		First		Second	
Probe No.	Sequence	Fluorescence luminance	S/N	Fluorescence luminance	S/N
PG-1	5' AGTAGAACGCTGAAGGAGGAGCTTG 3'	1000	14.9	1100	16.2
PG-2	5'CTTGCATCACTACCAGATGGACCTG 3'	1200	17.9	1300	19.1
PG-3	5' TGAGAGTGGAAAGTTCACACTGTGAC 3'	1000	14.9	1100	16.2
PG-4	5' GCTGTGGCTTAACCATAGTAGGCTTT 3'	1800	26.9	1900	27.9
PG-5	5' AAGCGGCTCTCTGGCTTGTAACT 3'	1300	19.4	1500	22.1
PG-6	5' TAGACCCTTTCCGGGGTTTAGTGC 3'	1300	19.4	1300	19.

(continued)

Probe No.	Sequence	First		Second	
		Fluorescence luminance	S/N	Fluorescence luminance	S/N
PG-7	5' GACGGCAAGCTAATCTCTTAAAGCCA 3'	2000	29.9	2100	30.9

Table 19: Haemophilus influenzae

		First		Second	
Probe No.	Sequence	Fluorescence luminance	S/N	Fluorescence luminance	S/N
PH-1	5' GCTTGGGAATCTGGCTTATGGAGG 3'	3500	50.0	3600	50
PH-2	5' TGCCATAGGATGAGCCCAAGTGG 3'	600	8.8	700	10.1
PH-3	5' CTTGGGAATGTACTGACGCTCATGTG 3'	600	8.8	600	8.7
PH-4	5' GGATTGGGCTTAGAGCTTGGTGC 3'	1100	16.2	1200	17.4
PH-5	5' TACAGAGGGAAGCTGCG 3'	700	10.3	600	8.7
PH-6	5' GGCGTTTACCACGGTATGATTCATGA 3'	1300	19.1	1300	18.8
PH-7	5' AATGCCTACCAAGCCTGCGATCT 3'	2100	30.9	2200	31.9
PH-8	5' TATCGGAAGATGAAAGTGCGGGACT 3'	700	10.3	600	8.7

Table 20 : Enterobacter cloacae

			First		Second	
40	Probe No.	Sequence	Fluorescence luminance	S/N	Fluorescence luminance	S/N
	PI-1	5' CAGAGAGCTTGCTCTCGGGTGA 3'	2100	29.2	2200	31
45	PI-2	5' GGGAGGAAGGTGTTGTGGTTAATAAC 3'	7900	109.7	7900	111.3
50	PI-3	5' GGTGTTGTGGTTAATAACCACAGCAA 3'	1000	13.9	1300	18.3
	PI-4	5' GCGGTCTGTCAAGTCGGATGTG 3'	6400	88.9	6400	90.1
	PI-5	5'ATTCGAAACTGGCAGGCTAGAGTCT 3'	9400	130.6	9200	129.6
55	PI-6	5' TAACCACAGCAATTGACGTTACCCG 3'	4700	65.3	4800	67.6

(continued)

		First		Second	
Probe No.	Sequence	Fluorescence luminance	S/N	Fluorescence luminance	S/N
PI-7	5' GCAATTGACGTTACCCGCAGAAGA 3'	4600	63.9	4500	63.4

10

5

Table 21: Enterococcus faecalis

			First		Second	
15	Probe No.	Sequence	Fluorescence luminance	S/N	Fluorescence luminance	S/N
	PJ-1	5'TTCTTTCCTCCCGAGTGCTTGCA 3'	1500	22.1	1500	20.8
	PJ-2	5'AACACGTGGGTAACCTACCCATCAG 3'	2400	35.3	2700	37.5
20	PJ-3	5'ATGGCATAAGAGTGAAAGGCGCTT 3'	5600	82.4	5600	77.8
	PJ-4	5'GACCCGCGGTGCATTAGCTAGT 3'	2300	33.8	2300	31.9
25	PJ-5	5'GGACGTTAGTAACTGAACGTCCCCT 3'	1000	14.7	1400	19.4
	PJ-6	5'CTCAACCGGGGAGGGTCATTGG 3'	4400	64.7	4400	61.1
	PJ-7	5'TTGGAGGGTTTCCGCCCTTCAG 3'	1700	25	1800	25

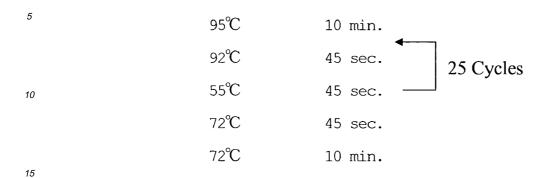
 30 **[0074]** The numerical values of florescent luminances(photomultiplier voltage: 400 V) in Tables 12 to 21 indicate average pixel luminances (resolution: 5 μ m). The S/N ratios indicate values obtained by dividing the fluorescent luminances by background average values measured by analysis software (GenePix Pro Ver.3.0 available from Axon) attached to the measuring device.

[0075] As is apparent from Tables 12 to 21, the respective etiologic agents can be detected with sufficient signals at a high reproducibility.

[Example 2] Microorganism Detection Using 2-Step PCR

- **[0076]** As in Example 1, probe DNAs, specimen amplification PCR primers, the genome DNAs of etiologic agents, and DNA microarrays were prepared, and the following experiments were conducted.
 - [1. Amplification and Labeling of Specimens (PCR Amplification & Fluorescent Labeling)]
- [0077] Amplification of microbial genes as specimens (1st PCR) and labeling (2nd PCR) reaction will be described below.
 - [2. Amplification Reaction Solution Composition: 1st PCR]

[0078]


50

55

35

Premix PCR reagent (TAKARA Ex Laq)	25 μΙ
Template Genome DNA	2 μl (10ng)
Forward Primer mix	2 μl (20pmol/tube each)
Reverse Primer mix	2 μl (20pmol/tube each)
H ₂ O	19 μΙ
Total	50 u.l

[0079] Amplification reaction of the reaction solution having the above composition was caused by using a commercially available thermal cycler in accordance with the following protocol.

[0080] After the end of reaction, purification was performed by using a purification column (QIAquick PCR Purification Kit available from QIAGEN). Then, determination of the amplified products was executed.

20 [3. Labeling Reaction Solution Composition: 2nd PCR]

Enzyme

[0081]

25

30

35

40

(QIAGEN Hotstar Taq Polymerase) Template DNA (1st PCR Product) dNTP mix (Low dTTP)*	0.5 µl (2.5u) 10 µl (30ng) 2 µl	
Cy-3 dUTP (1mM)	2 μl (2nmol/tube)	
Reverse Primer mix	5 μl (50pmol/tube each)	
10 x Buffer	5 μΙ	
H ₂ O	25.5 μΙ	
Total	50 μΙ	
*dNTP mix (Low dTTP) : dATP,dCTP,dGTP / 5mM(final : 10 nmol/tube) dTTP / 4mM (final : 8 nmol/tube)		

[0082] Amplification reaction of the reaction solution having the above composition was caused by using a commercially available thermal cycler in accordance with the following protocol.

	95℃	10 min.	
45	92℃	45 sec.	25 Cycles
	55℃	45 sec.	
50	72°C	45 sec.	
	72 ℃	10 min.	

[0083] After the end of reaction, purification was performed by using a purification column (QIAquick PCR Purification Kit available from QIAGEN) to obtain labeled specimens.

[4. Hybridization]

15

20

25

30

35

45

50

55

[0084] Hybridization was done in accordance with the same procedures as in Example 1.

[5. Microorganism Detection (Fluorometry)]

[0085] Fluorometry was executed for the DNA microarrays after the end of hybridization reaction by using a DNA microarray fluorescent detector (GenePix 4000B available from Axon). Tables 22 to 31 show the measurement results.

[0086] Even in this example, fluorometry was executed twice for each DNA microarray. The results are shown in Tables 22 to 31.

Table 22: Staphylococcus aureus

		First		Second	
Probe No.	Sequence	Fluorescence luminance	S/N	Fluorescence luminance	S/N
PA-1	5' GAACCGCATGGTTCAAAAGTGAAAGA 3'	14000	186.7	13000	173.3
PA-2	5' CACTTATAGATGGATCCGCGCTGC 3'	36000	480	35000	466.7
PA-3	5' TGCACATCTTGACGGTACCTAATCAG 3'	31000	413.3	29000	386.7
PA-4	5' CCCCTTAGTGCTGCAGCTAACG 3'	10000	133.3	10000	133.3
PA-5	5' AATACAAAGGGCAGCGAAACCGC 3'	39000	520	38500	513.3
PA-6	5' CCGGTGGAGTAACCTTTTAGGAGCT 3'	22000	293.3	22100	294.7
PA-7	5'TAACCTTTTAGGAGCTAGCCGTCGA 3'	22000	293.3	21800	290.7
PA-8	5' TTTAGGAGCTAGCCGTCGAAGGT 3'	25000	333.3	24000	320
PA-9	5' TAGCCGTCGAAGGTGGGACAAAT 3'	26000	346.7	25500	340

40 Table 23 : Staphylococcus epidermidis

		First		Second	
Probe No.	Sequence	Fluorescence luminance	S/N	Fluorescence luminance	S/N
PB-1	5' GAACAGACGAGGAGCTTGCTCC 3'	4500	62.5	4700	67.1
PB-2	5' TAGTGAAAGACGGTTTTGCTGTCACT 3'	9000	125	8900	127.1
PB-3	5' TAAGTAACTATGCACGTCTTGACGGT 3'	7100	98.6	7300	104.3
PB-4	5' GACCCCTCTAGAGATAGAGTTTTCCC 3'	4800	66.7	5200	74.3

(continued)

		First		Second	
Probe No.	Sequence	Fluorescence luminance	S/N	Fluorescence luminance	S/N
PB-5	5' AGTAACCATTTGGAGCTAGCCGTC 3'	9100	126.4	9300	132.9
PB-6	5' GAGCTTGCTCCTCTGACGTTAGC 3'	5800	80.6	6300	90
PB-7	5' AGCCGGTGGAGTAACCATTTGG 3'	5400	75	5500	78.6

Table 24 : Escherichia coli

Fluorescence

5600

7600

5600

9400

7200

11500

5600

luminance

Sequence

5' CTCTTGCCATCGGATGTGCCCA 3'

5'ATACCTTTGCTCATTGACGTTACCCG

5' TTTGCTCATTGACGTTACCCGCAG 3'

5' ACTGGCAAGCTTGAGTCTCGTAGA 3'

5' ATACAAAGAGAAGCGACCTCGCG 3'

5' CGGACCTCATAAAGTGCGTCGTAGT

GCGGGAGGAAGGGAGTAAAGTTAAT

Second

S/N

83.8

101.4

125.7

97.3 155.4

74.3

77

Fluorescence

6200

7500

5700

9300

7200

11500

5500

luminance

S/N

76.7

104.1

76.7

128.8

98.6

157.5

76.7

20	

Probe No.

PC-1

PC-2

PC-3

PC-4

PC-5

PC-6

PC-7

5'

3'

5

10

15

25

30

35

Table 25 : Klebsiella pneumoniae

40	

40	
45	
50	

Probe No.	Sequence	First		Second	
		Fluorescence luminance	S/N	Fluorescence luminance	S/N
PD-1	5' TAGCACAGAGAGCTTGCTCTCGG 3'	2000	28.6	2100	30
PD-2	5' TCATGCCATCAGATGTGCCCAGA 3'	2500	35.7	2600	37.1
PD-3	5' CGGGGAGGAAGGCGATAAGGTTAAT 3'	2900	41.4	2900	41.4
PD-4	5'TTCGATTGACGTTACCCGCAGAAGA 3'	4500	64.3	4700	67.1
PD-5	5' GGTCTGTCAAGTCGGATGTGAAATCC 3'	9900	141.4	10100	144.3
PD-6	5' GCAGGCTAGAGTCTTGTAGAGGGG 3'	13000	185.7	13400	191.4

Table 26: Pseudomonas aeruainosa

		First		Second		
Probe No.	Sequence	Fluorescence S/I		Fluorescence luminance	S/N	
PE-1	5' TGAGGGAGAAAGTGGGGGATCTTC 3'	17000	239.4	17300	240.3	
PE-2	5' TCAGATGAGCCTAGGTCGGATTAGC 3'	8300	116.9	8600	119.4	
PE-3	5' GAGCTAGAGTACGGTAGAGGGTGG 3'	17400	245.1	17000	236.1	
PE-4	5' GTACGGTAGAGGGTGGTGGAATTTC 3'	15000	211.3	16000	222.2	
PE-5	5' GACCACCTGGACTGATACTGACAC 3'	8000	112.7	8300	115.3	
PE-6	5' TGGCCTTGACATGCTGAGAACTTTC 3'	5400	76.1	5800	80.6	
PE-7	5' TTAGTTACCAGCACCTCGGGTGG 3'	5300	74.6	5100	70.8	
PE-8	5' TAGTCTAACCGCAAGGGGGACG 3'	5400	76.1	5000	69.4	

Table 27: Serratia marcescens

Probe No.	Sequence	First		Second		
		Fluorescence luminance	S/N	Fluorescence luminance	S/N	
PF-1	5' TAGCACAGGGAGCTTGCTCCCT 3'	3100	43.7	3300	45.2	
PF-2	5' AGGTGGTGAGCTTAATACGCTCATC 3'	3300	46.5	3200	43.8	
PF-3	5' TCATCAATTGACGTTACTCGCAGAAG 3'	10100	142.3	10000	137	
PF-4	5' ACTGCATTTGAAACTGGCAAGCTAGA 3'	12000	169	11800	161.6	
PF-5	5' TTATCCTTTGTTGCAGCTTCGGCC 3'	4100	57.7	4200	57.5	
PF-6	5' ACTTTCAGCGAGGAGGAAGGTGG 3'	14300	201.4	14300	195.9	

Table 28 : Streptococcus pneumoniae

			First		Second	
5	Probe No.	Sequence	Fluorescence luminance	S/N	Fluorescence luminance	S/N
	PG-1	5' AGTAGAACGCTGAAGGAGGAGCTTG 3'	4500	63.4	4300	60.6
10	PG-2	5'CTTGCATCACTACCAGATGGACCTG 3'	5800	81.7	5600	78.9
15	PG-3	5' TGAGAGTGGAAAGTTCACACTGTGAC 3'	5000	70.4	4900	69
10	PG-4	5' GCTGTGGCTTAACCATAGTAGGCTTT 3'	8700	122.5	8800	123.9
00	PG-5	5' AAGCGGCTCTCTGGCTTGTAACT 3'	7200	101.4	7300	102.8
20	PG-6	5' TAGACCCTTTCCGGGGTTTAGTGC 3'	6700	94.4	7000	98.6
25	PG-7	5' GACGGCAAGCTAATCTCTTAAAGCCA 3'	10200	143.7	9900	139.4

Table 29: Haemophilus influenzae

30	Probe No.	Sequence	First		Second	
			Fluorescence luminance	S/N	Fluorescence luminance	S/N
	PH-1	5'GCTTGGGAATCTGGCTTATGGAGG 3'	3100	44.3	3200	45.1
35	PH-2	5'TGCCATAGGATGAGCCCAAGTGG 3'	3200	45.7	3200	45.1
	PH-3	5'CTTGGGAATGTACTGACGCTCATGTG 3'	4900	70	5600	78.9
	PH-4	5'GGATTGGGCTTAGAGCTTGGTGC 3'	3900	55.7	3800	53.5
40	PH-5	5'TACAGAGGGAAGCGAAGCTGCG 3'	6700	95.7	6500	91.5
	PH-6	5'GGCGTTTACCACGGTATGATTCATGA 3'	10200	145.7	11000	154.9
45	PH-7	5'AATGCCTACCAAGCCTGCGATCT 3'	4200	60	4100	57.7
40	PH-8	5'TATCGGAAGATGAAAGTGCGGGACT 3'	3200	45.7	3500	49.3

Table 30 : Enterobacter cloacae

			First		Second	
	Probe No.	Sequence	Fluorescence luminance	S/N	Fluorescence luminance	S/N
55	PI-1	5' CAGAGAGCTTGCTCTCGGGTGA 3'	10000	133.3	9900	133.8

(continued)

		First		Second	
Probe No.	Sequence	Fluorescence luminance	S/N	Fluorescence luminance	S/N
PI-2	5'GGGAGGAAGGTGTTGTGGTTAATAAC 3'	38000	506.7	38000	513.5
PI-3	5'GGTGTTGTGGTTAATAACCACAGCAA 3'	4700	62.7	4700	63.5
PI-4	5'GCGGTCTGTCAAGTCGGATGTG 3'	31000	413.3	32000	432.4
PI-5	5'ATTCGAAACTGGCAGGCTAGAGTCT 3'	47500	633.3	45000	608.1
PI-6	5'TAACCACAGCAATTGACGTTACCCG 3'	23600	314.7	24000	324.3
PI-7	5'GCAATTGACGTTACCCGCAGAAGA 3'	21500	286.7	22700	306.8

Table 31: Enterococcus faecalis

		Table 31 : Enterococcus faecalis					
20			First Secon		Second		
	Probe No.	Sequence	Fluorescence luminance	S/N	Fluorescence luminance	S/N	
25	PJ-1	5'TTCTTTCCTCCCGAGTGCTTGCA 3'	7000	98.6	7300	101.4	
25	PJ-2	5'AACACGTGGGTAACCTACCCATCAG 3'	12300	173.2	12000	166.7	
	PJ-3	5'ATGGCATAAGAGTGAAAGGCGCTT 3'	25000	352.1	27400	380.6	
30	PJ-4	5'GACCCGCGGTGCATTAGCTAGT 3'	10000	140.8	11000	152.8	
	PJ-5	5'GGACGTTAGTAACTGAACGTCCCCT 3'	5600	78.9	5200	72.2	
35	PJ-6	5'CTCAACCGGGGAGGGTCATTGG 3'	22100	311.3	22200	308.3	
	PJ-7	5'TTGGAGGGTTTCCGCCCTTCAG 3'	8800	123.9	9000	125	

[0087] The numerical values of florescent luminances(photomultiplier voltage: 400 V) in Tables 22 to 31 indicate average pixel luminances (resolution: $5 \mu m$). The S/N ratios indicate values obtained by dividing the fluorescent luminances by background average values measured by analysis software (GenePix Pro Ver.3.0 available from Axon) attached to the measuring device.

[0088] As is apparent from Tables 22 to 31, the respective etiologic agents can be detected with sufficient signals at a high reproducibility.

⁴⁵ [Example 3] Microorganism Detection Using 2-Step PCR

[0089] As in Examples 1 and 2, probe DNAs, specimen amplification PCR primers, the genome DNAs of etiologic agents, and DNA microarrays were prepared, and the following experiments were conducted.

[1. Amplification and Labeling of Specimens

5

10

15

40

50

(Utilization of PCR Amplification with Fluorescent Labeling)]

[0090] Amplification of microbial genes as specimens (1st PCR) and labeling (2nd PCR) reaction will be described below.

[2. Amplification Reaction Solution Composition: 1st PCR]

[0091]

5	AmpliTaq Gold LD(5U/μL) Template DNA dNTP mis(2.5mM/each) x10 PCR buffer 25mM MgCl ₂		0.5μL variable 4.0μL 5.0μL 7.0μL
10	Forward Mix(10µM/each)	Primer	0.25μL
	Reverse	Primer	
	Mix(10μM/each)		0.25μL
15	H ₂ O		variable
	Total		50μL

[0092] Amplification reaction of the reaction solution having the above composition was caused by using a commercially available thermal cycler in accordance with the following protocol.

95°C 10 min.
92°C 45 sec.

$$67$$
°C 45 sec.
 72 °C 45 sec.
 72 °C 10 min.

[0093] After the end of reaction, purification was performed by using a purification column (QIAquick PCR Purification Kit available from QIAGEN). Then, determination of the amplified products was executed.

[3. Labeling Reaction Composition: 2nd PCR]

40 [0094]

45

Premix PCR reagent(TAKARA ExTaq)	25 µl
Template DNA (1st PCR Product)	Variable (30ng/tube)
Cy3 Labeled Reverse primer Mix	5 μl
H ₂ 0	Variable
Total	50 μl

[0095] Amplification reaction of the reaction solution having the above composition was caused by using a commercially available thermal cycler in accordance with the following protocol.

65℃ 45 sec.

 72° C 45 sec.

72°C 10 min.

[0096] After the end of reaction, purification was performed by using a purification column (QIAquick PCR Purification Kit available from QIAGEN) to obtain labeled specimens.

[4. Hybridization]

5

25

30

35

40

15 **[0097]** Hybridization was done in accordance with the same procedures as in Example 1.

[5. Microorganism Detection (Fluorometry)]

[0098] Fluorometry was executed for the DNA microarrays after the end of hybridization reaction by using a DNA microarray fluorescent detector (GenePix 4000B available from Axon). Tables 32 to 41 show the measurement results.

[0099] Note that, in this example, fluorometry was executed once twice for each DNA microarray. The results are shown in Tables 32 to 41.

Table 32: Staphylococcus aureus

First Second Probe No. Sequence Fluorescence Fluorescence S/N S/N luminance luminance 5' ACGGACGAGAAGCTTGCTTCTCT 3' PA-10 247 3.4 146 2.1 5' TGTCACTTATAGATGGATCCGCGCT 4177 57.9 43.4 PA-11 3083 3' PA-12 4686 64.9 3768 53.1 TGTAAGTAACTGTGCACATCTTGACG 3' PA-13 2612 36.2 2709 38.2 ACAACTCTAGAGATAGAGCCTTCCCC 3' 5' 26505 247.3 PA-14 367.2 17560 GTGGAGTAACCTTTTAGGAGCTAGCC 3'

Table 33: Staphylococcus epidermidis

	2.5 4.5	First		Second	
Probe No.		Fluorescence luminance	S/N	Fluorescence luminance	S/N
PB-2	5' TAGTGAAAGACGGTTTTGCTGTCACT 3'	7000	94.1	1800	25.7
PB-4	5' GACCCCTCTAGAGATAGAGTTTTCCC 3'	3274	44.0	1100	15.7
PB-8	5' AGACGAGGAGCTTGCTCCTCTG 3'	111	1.5	59	0.8
PB-9	5' AGAACAAATGTGTAAGTAACTATGCACGT 3'	6920	93.0	4910	70.1

(continued)

		First		Second	
Probe No.	Sequence	Fluorescence luminance	S/N	Fluorescence luminance	S/N
PB-10	5' ACCATTTGGAGCTAGCCGTCGA 3'	15244	205.0	18136	259.1

5

45

Table 34 : Escherichia coli

10	Table 34 : Escherichia coli					
			First		Second	
	Probe No.	Sequence	Fluorescence luminance	S/N	Fluorescence luminance	S/N
15	PC-4	5' ACTGGCAAGCTTGAGTCTCGTAGA 3'	5416	74.7	2100	31.3
	PC-8	5' TAACAGGAAGAAGCTTGCTTCTTTGCTG 3'	160	2.2	112	1.7
	PC-9	5' TTGCCATCGGATGTGCCCAGAT 3'	4133	57.0	4581	68.4
20	PC-10	5' GGAAGGGAGTAAAGTTAATACCTTTGCTC 3'	4194	57.8	5349	79.8
	PC-11	5' ATCTTTTGTTGCCAGCGGTCCG 3'	6719	92.7	2594	38.7
25	PC-12 3'	5' AAGGGAGTAAAGTTAATACCTTTGCTCATTG	2094	E0 6	4024	60.0
	PG-12 3		3984	58.6	4021	60.0

Table 35 : Klebsiella pneumoniae

30			First		Second	
	Probe No.	Sequence	Fluorescence luminance	S/N	Fluorescence luminance	S/N
	PD-7	5' TCATGCCATCAGATGTGCCCAGAT 3'	5414	40.0	4171	62.3
35	PD-8	5' CGGGGAGGAAGGCGATAAGGTTAA 3'	4096	30.2	6227	93.0
40	PD-9	5' TTATCGATTGACGTTACCCGCAGAAGA 3'	4122	30.4	3269	48.8
	PD-10	5' CATTCGAAACTGGCAGGCTAGAGTC 3'	9474	70.0	6486	96.9
	PD-11	5' CCTTTGTTGCCAGCGGTTAGGC 3'	10648	78.6	2754	41.1

Table 36: Pseudomonas aeruainosa

50	Probe No.	Sequence	First		Second	
			Fluorescence luminance	S/N	Fluorescence luminance	S/N
	PE-1	5' TGAGGGAGAAAGTGGGGGATCTTC 3'	6175	82.2	3600	50.0
55	PE-6	5' TGGCCTTGACATGCTGAGAACTTTC 3'	8159	108.6	1200	16.7
	PE-7	5' TTAGTTACCAGCACCTCGGGTGG 3'	3277	43.6	1200	16.7

(continued)

	Sequence	First		Second	
Probe No.		Fluorescence luminance	S/N	Fluorescence luminance	S/N
PE-9	5' TGCATCCAAAACTACTGAGCTAGAGTAC 3'	6626	88.2	7432	103.4
PE-10	5' GTCGACTAGCCGTTGGGATCCT 3'	5734	76.3	3365	46.8

Table 37 : Serratia marcescens

15 20 25

5

10

First Second Probe No. Sequence Fluorescence Fluorescence S/N S/N luminance **luminance** PF-7 5' GGTAGCACAGGGGAGCTTGCTC 3' 4482 1040 15.1 66.4 PF-8 5' 6362 94.2 3199 46.3 CGAGGAGGAAGGTGGTGAGCTTAATA 41.8 PF-9 5' TACGCTCATCAATTGACGTTACTCGC 4569 67.7 2884 5' PF-10 7905 117.1 6786 98.3 GAAACTGGCAAGCTAGAGTCTCGTAGA PF-11 5' TTATCCTTTGTTGCCAGCGGTTCG 3' 12787 189.4 3849 55.7

Table 38: Streptococcus pneumoniae

35

40

45

30

	Sequence	First		Second	
Probe No.		Fluorescence luminance	S/N	Fluorescence luminance	S/N
PG-1	5' AGTAGAACGCTGAAGGAGGAGCTTG 3'	10078	70.3	1100	16.2
PG-5	5' AAGCGGCTCTCTGGCTTGTAACT 3'	4331	30.2	1500	22.1
PG-6	5' TAGACCCTTTCCGGGGTTTAGTGC 3'	4730	33.0	1300	19.1
PG-8	5' GACATTTGCTTAAAAGGTGCACTTGCA 3'	7128	49.7	7720	113.6
PG-9	5' GTTGTAAGAGAAGAACGAGTGTGAGAGTG 3'	6665	46.5	3297	48.5

Table 39: Haemophilus influenzae

50

Probe No.	Sequence	First		Second	
		Fluorescence luminance	S/N	Fluorescence luminance	S/N
PH-1	5' GCTTGGGAATCTGGCTTATGGAGG 3'	11106	150.3	3600	50.0

(continued)

5

10

15

20

25

30

35

40

45

50

55

Probe No. Sequence First Second Fluorescence Fluorescence S/N S/N luminance **luminance** PH-2 7056 95.5 700 10.1 **TGCCATAGGATGAGCCCAAGTGG** 3' 100 PH-4 1.4 1200 17.4 GGATTGGGCTTAGAGCTTGGTGC PH-5 5' TACAGAGGGAAGCGAAGCTGCG 11237 152.1 600 8.7 PH-7 5' AATGCCTACCAAGCCTGCGATCT 5054 68.4 2200 31.9

Table 40: Enterobacter cloacae

First Second Probe No. Sequence Fluorescence Fluorescence S/N S/N **luminance** luminance PI-8 5' GTAGCACAGAGAGCTTGCTCTCG 3' 2221 30.1 582 8.2 PI-9 5484 74.2 2193 30.9 5' CGGGGAGGAAGGTGTTGTGGTTA 3' PI-10 5' ACCACAGCAATTGACGTTACCCG 3' 3325 45.0 646 9.1 PI-11 5' 7574 102.5 3039 42.8 GAAACTGGCAGGCTAGAGTCTTGTAG 3' PI-12 5' AGGCGGTCTGTCAAGTCGGATG 3' 5768 78.0 5701 80.3

Table 41: Enterococcus faecalis

	Sequence	First		Second	
Probe No.		Fluorescence luminance	S/N	Fluorescence luminance	S/N
PJ-1	5' TTCTTTCCTCCCGAGTGCTTGCA 3'	1012	14.9	1500	20.8
PJ-3	5' ATGGCATAAGAGTGAAAGGCGCTT 3'	4266	62.6	5600	77.8
PJ-5	5' GGACGTTAGTAACTGAACGTCCCCT 3'	652	9.6	1400	19.4
PJ-8	5' ATAGAGCTTTCCCTTCGGGGACAAA 3'	3232	47.5	810	11.2
PJ-9	5' CGAGGTCATGCAAATCTCTTAAAGCTTCT 3'	11411	167.6	18776	260.7

[0100] As is apparent from Tables 32 to 41, the respective etiologic agents can be detected with sufficient signals at a high reproducibility.

[0101] As described above, according to the examples, an infectious etiologic agent can be identified by using microarrays on which probe sets capable of detecting the 10 bacteria, i.e., Staphylococcus aureus, Staphylococcus epidermidis, Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Serratia marcescens, Streptococcus pneumoniae, Haemophilus influenzae, Enterobacter cloacae, and Enterococcus faecalis are separately immobilized or combined.

Hence, the problems of the DNA probe of microbial origin are solved. More specifically, because of the small number of bases, oligonucleotide probes can chemically be mass-produced, and purification and concentration control are possible. In addition, a probe set can be provided, which allows to detect bacteria in the same species all together and discriminatingly detect bacteria in other species for the purpose of classifying the bacteria depending on the species.

[0102] Furthermore, a probe set can be provided, which also considers the stability of a hybrid body between a probe and a specimen so that the difference between the species can accurately be evaluated on a DNA microarray. A carrier on which the probe DNAs are immobilized to make the probe DNAs react with specimens can also be provided. Also, a carrier can be provided, on which the probe DNAs are chemically immobilized so that the probe DNAs are stably immobilized on the carrier, and a detection result with high reproducibility can be obtained in the process of reaction between a specimen solution and the probes and probe sets.

[0103] According to the above examples, 16s rRNA gene arrangements in the genes of infectious etiologic agents can be detected in proper quantities. Hence, the presence of an infectious etiologic agent can efficiently and accurately be determined.

15 [Example 4] Primer Set

20

30

35

40

45

50

55

[0104] The primer sets (Table 11) used in the above examples to amplify the 16s rRNA gene arrangements of one or some of Staphylococcus aureus, Staphylococcus epidermidis, Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Serratia marcescens, Streptococcus pneumoniae, Haemophilus influenzae, Enterobacter cloacae, and Enterococcus faecalis will be described.

[0105] The primer sets of this example are designed to give a satisfactory amplification result in PCR reaction executed to identify an infectious etiologic agent. "Satisfactory" means not only that the target 16s rRNAs are sufficiently amplified but also that no products other than the 16s rRNAs are generated.

[0106] "Satisfactory" also means that only the 16s rRNAs of an infectious etiologic agent are amplified without amplifying human genome genes originated in a specimen, which are contained in the specimen.

[0107] Any specimen in which bacteria may be present, and for example, body fluids originated in animals such as human and livestock, including blood, spinal fluid, phlegm, stomach fluid, vaginal discharge, and intraoral mucus, and excretion such as urine and feces are used in this example. All media which can be contaminated by bacteria can also be used in this example, including food, drink water and hot spring water in the natural environment, which may cause food poisoning by contamination, filters from air and water cleaners, and so forth. Animals and plants which should be quarantined in import/export are also used as specimens.

[0108] The PCR reaction used in this example includes PCR reaction which uses an extracted nucleic acid itself as a template, asymmetrical PCR reaction which uses primers on one side of SEQ ID Nos. 107 to 109 (F1 to F3 in Table 11) or SEQ ID Nos. 110 to 112 (R1 to R3 in Table 11), and PCR which executes labeling for visualization.

[1. Preparation of Specimen Amplification PCR Primers]

[0109] As 16s rRNA gene (target gene) amplification PCR primers for etiologic agent detection, nucleic acid sequences shown in Table 11 were designed.

[0110] More specifically, probe sets which specifically amplify the genome parts coding the 16s rRNAs, i.e., primers for which the specific melting points were made uniform as much as possible at the two end portions of the 16s rRNA coding region of a base length of 1,500 were designed. In order to simultaneously amplify variants or a plurality of 16s rRNA coding regions on genomes, a plurality of kinds of primers were designed.

[0111] The primers shown in Table 11 were purified by HPLC (High Performance Liquid Chromatography) after synthesis. All of three forward primers and three reverse primers were mixed and dissolved in a TE buffer solution such that each primer concentration had an ultimate concentration of 10 pmol/µl. In this example, all the forward primers and reverse primers were used. Alternatively, one to three forward primers and one to three reverse primers may be used. [0112] By using a thus prepared solution of forward primers and reverse primers (forward primer mix and reverse primer mix), genome DNAs extracted by the method described in [3. Extraction of Genome DNAs (Model Specimens)

of Etiologic Agents] were amplified by the method described in [5. Amplification and Labeling of Specimens (PCR Amplification & Fluorescent Labeling)].

[0113] After the end of reaction, the primers were removed by using a purification column (QIAquick PCR Purification Kit available from QIAGEN). Then, the amplified products were examined by gel electrophoresis. One band was detected in 1,500 base pair regions, and it was confirmed that satisfactory PCR reaction was executed. No byproducts were generated.

[0114] When the primers shown in Table 11 were used, satisfactory PCR amplification results were obtained in, e.g., all of the above-described 10 infectious etiologic agents (Staphylococcus aureus, Staphylococcus epidermidis, Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Serratia marcescens, Streptococcus pneumoniae,

Haemophilus influenzae, Enterobacter cloacae, and Enterococcus faecalis).

20

30

35

40

45

50

55

[Example 5] Amplification of 16s rRNA Genes from Mixture of Blood and Broth

- [0115] Bacteremia model systems were prepared by adding 10³, 10⁴, and 10⁵ Enterobacter cloacae, which was cultured in accordance with the procedures described in Example 1, to 200-μl human blood (collected EDTA blood). An N-acetyl muramidase solution (0.2 mg/ml in Enzyme Buffer) was added to each solution. The solutions were heated to 37°C for 30 min. After that, DNAs were extracted by using Qiamp Blood mini Kit (available from QIAGEN) to prepare templates for PCR reaction.
- [0116] PCR reaction was caused for these DNAs by using the primers shown in Table 11, as in Example 4.
 - **[0117]** As a result, as in Example 4, one band was detected in 1,500 base pair regions, and it was confirmed that satisfactory PCR reaction was executed. No byproducts were generated. The amount of PCR amplified products obtained from the band was proportional to the added cell amount. This indicates that when the primer sets were used, only the 16s rRNAs of Enterobacter cloacae were amplified without generating any PCR byproduct of human genome.
- [0118] As described above, according to this example, the 16s rRNA parts in the genes of a plurality of kinds of infectious etiologic agents can efficiently be amplified at a high purity. In addition, even when human genome DNAs are present, only the 16s rRNAs of an infectious etiologic agent can efficiently be amplified.
 - **[0119]** As has been described above, according to the present invention, an infection detection probe which allows mass preparation at a time and identification of a species in similar species can be provided. More specifically, an infection detection probe which can suitably be used to classify a plurality of kinds of etiologic agents of an infection on the basis of the species can be provided.
 - **[0120]** Alternatively, an infection detection probe suitable for detection of, e.g., the above-described 10 bacteria as the etiologic agents of infections can be provided.
 - **[0121]** A probe set can also be provided, which also considers the stability of a hybrid body between an infection detection probe and a specimen so that the difference between similar species can accurately be evaluated on a DNA chip.
 - **[0122]** In addition, a carrier on which the infection detection probe is immobilized to make the infection detection probe react with the specimen can be provided.
 - **[0123]** Furthermore, a carrier can be provided, on which the infection detection probes are chemically immobilized so that the infection detection probes are stably immobilized on the carrier, and a detection result with high reproducibility can be obtained in the process of reaction with a specimen solution.
 - **[0124]** According to the present invention, there is also provided a PCR reaction primer which amplifies the 16s rRNAs of an etiologic agent in a specimen in order to detect and/or identify an infectious etiologic agent.
 - **[0125]** According to the present invention, there is also provided a primer set which can commonly be used for a plurality of species and effectively amplify the 16s rRNAs of an etiologic agent even when the species is unknown.
 - **[0126]** According to the present invention, there is also provided a primer set which can amplify the 16s rRNAs of a plurality of kinds of etiologic agents under the same PCR conditions.
 - [0127] The disclosure of the specification also includes the following clauses numbered 1 through 49.
 - 1. An infectious etiologic agent detection probe set which detects an infectious etiologic agent gene, comprising:
 - a plurality of kinds of probes including oligonucleotide having base sequences selected from each of a plurality of groups selected from a first group including base sequences of SEQ ID Nos. 1 to 14 and complementary sequences thereof, a second group including base sequences of SEQ ID Nos. 15 to 24 and complementary sequences thereof, a third group including base sequences of SEQ ID Nos. 25 to 36 and complementary sequences thereof, a fourth group including base sequences of SEQ ID Nos. 37 to 47 and complementary sequences thereof, a fifth group including base sequences of SEQ ID Nos. 48 to 57 and complementary sequences thereof, a sixth group including base sequences of SEQ ID Nos. 58 to 68 and complementary sequences thereof, an eighth group including base sequences of SEQ ID Nos. 69 to 77 and complementary sequences thereof, an inith group including base sequences of SEQ ID Nos. 78 to 85 and complementary sequences thereof, a ninth group including base sequences of SEQ ID Nos. 86 to 97 and complementary sequences thereof, and a 10th group including base sequences of SEQ ID Nos. 98 to 106 and complementary sequences thereof.
 - 2. A carrier on which a probe included in an infectious etiologic agent detection probe set of clause 1 is chemically immobilized.
 - 3. A genetic screening method of detecting an infectious etiologic agent gene by using a carrier of clause 2.
 - 4. An infection detection probe which can detect a gene originated in Staphylococcus aureus, which includes oligonucleotide having one of the base sequences of SEQ ID Nos. 1 to 14 and complementary sequences thereof.

- 5. A probe set which can detect a gene originated in Staphylococcus aureus and includes at least one of infection detection probes each comprising oligonucleotide having one of the base sequences of SEQ ID Nos. 1 to 14 and complementary sequences thereof.
- 6. A carrier on which an infection detection probe included in the probe set of clause 5 is chemically immobilized.

5

10

15

20

25

30

35

40

45

- 7. A genetic screening method of detecting a gene originated in Staphylococcus aureus by using a carrier of clause 6.
- 8. An infection detection probe which can detect a gene originated in Staphylococcus epidermidis, which includes oligonucleotide having one of the base sequences of SEQ ID Nos. 15 to 24 and complementary sequences thereof. 9. A probe set which can detect a gene originated in Staphylococcus epidermidis and includes at least one of infection
- 9. A probe set which can detect a gene originated in Staphylococcus epidermidis and includes at least one of infection detection probes each including oligonucleotide having one of the base sequences of SEQ ID Nos. 15 to 24 and complementary sequences thereof.
- 10. A carrier on which an infection detection probe included in the probe set of clause 9 is chemically immobilized.

 11. A genetic screening method of detecting a gene originated in Staphylococcus epidermidis by using a carrier of
- 12. An infection detection probe which can detect a gene originated in Escherichia coli, which includes oligonucleotide having one of the base sequences of SEQ ID Nos. 25 to 36 and complementary sequences thereof.
- 13. A probe set which can detect a gene originated in Escherichia coli and includes at least one of infection detection probes each including oligonucleotide having one of the base sequences of SEQ ID Nos. 25 to 36 and complementary sequences thereof.
- 14. A carrier on which at least one kind of infection detection probe of infection detection probes of clause 13 is chemically immobilized.
- 15. A genetic screening method of detecting a gene originated in Escherichia coli by using a carrier of clause 14.
- 16. An infection detection probe which can detect a gene originated in Klebsiella pneumoniae, which includes oligonucleotide having one of the base sequences of SEQ ID Nos. 37 to 47 and complementary sequences thereof.
- 17. A probe set which can detect a gene originated in Klebsiella pneumoniae and includes at least one of infection detection probes each including oligonucleotide having one of the base sequences of SEQ ID Nos. 37 to 47 and complementary sequences thereof.
- 18. A carrier on which at least one kind of infection detection probe of infection detection probes of clause 17 is chemically immobilized.
- 19. A genetic screening method of detecting a gene originated in Klebsiella pneumoniae by using a carrier of clause 18.
- 20. An infection detection probe which can detect a gene originated in Pseudomonas aeruginosa, which includes oligonucleotide having one of the base sequences of SEQ ID Nos. 48 to 57 and complementary sequences thereof. 21. A probe set which can detect a gene originated in Pseudomonas aeruginosa and includes at least one of infection detection probes each including oligonucleotide having one of the base sequences of SEQ ID Nos. 48 to 57 and complementary sequences thereof.
- 22. A carrier on which an infection detection probe included in the probe set of clause 21 is chemically immobilized.
 23. A genetic screening method of detecting a gene originated in Pseudomonas aeruginosa by using a carrier of clause 22.
- 24. An infection detection probe which can detect a gene originated in Serratia marcescens, which includes oligonucleotide having one of the base sequences of SEQ ID Nos. 58 to 68 and complementary sequences thereof.
- 25. A probe set which can detect a gene originated in Serratia marcescens and includes at least one of infection detection probes each including oligonucleotide having one of the base sequences of SEQ ID Nos. 58 to 68 and complementary sequences thereof.
- 26. A carrier on which an infection detection probe included in the probe set of clause 25 is chemically immobilized.
- 27. A genetic screening method of detecting a gene originated in Serratia marcescens by using a carrier of clause 26.
- 28. An infection detection probe which can detect a gene originated in Streptococcus pneumoniae, which includes oligonucleotide having one of the base sequences of SEQ ID Nos. 69 to 77 and complementary sequences thereof.
- 29. A probe set which can detect a gene originated in Streptococcus pneumoniae and includes at least one of infection detection probes each including oligonucleotide having one of the base sequences of SEQ ID Nos. 69 to 77 and complementary sequences thereof.
- 30. A carrier on which at least one kind of infection detection probe of infection detection probes of clause 29 is chemically immobilized.
- 31. A genetic screening method of detecting a gene originated in Streptococcus pneumoniae by using a carrier of clause 30.
- 32. An infection detection probe which can detect a gene originated in Haemophilus influenzae, which includes oligonucleotide having one of the base sequences of SEQ ID Nos. 78 to 85 and complementary sequences thereof.
 33. A probe set which can detect a gene originated in Haemophilus influenzae and includes at least one of infection detection probes each including oligonucleotide having one of the base sequences of SEQ ID Nos. 78 to 85 and

complementary sequences thereof.

5

10

15

20

25

30

45

- 34. A carrier on which at least one kind of infection detection probe of infection detection probes of clause 33 is chemically immobilized.
- 35. A genetic screening method of detecting a gene originated in Haemophilus influenzae by using a carrier of clause 34.
- 36. An infection detection probe which can detect a gene originated in Enterobacter cloacae, which includes oligonucleotide having one of the base sequences of SEQ ID Nos. 86 to 97 and complementary sequences thereof.
- 37. A probe set which can detect a gene originated in Enterobacter cloacae and includes at least one of infection detection probes each including oligonucleotide having one of the base sequences of SEQ ID Nos. 86 to 97 and complementary sequences thereof.
- 38. A carrier on which at least one kind of infection detection probe of infection detection probes of clause 37 is chemically immobilized.
- 39. A genetic screening method of detecting a gene originated in Enterobacter cloacae by using a carrier of clause 38.
- 40. An infection detection probe which can detect a gene originated in Enterococcus faecalis, which includes oligonucleotide having one of the base sequences of SEQ ID Nos. 98 to 106 and complementary sequences thereof.
- 41. A probe set which can detect a gene originated in Enterococcus faecalis and includes at least one of infection detection probes each including oligonucleotide having one of the base sequences of SEQ ID Nos. 98 to 106 and complementary sequences thereof.
- 42. A carrier on which at least one kind of infection detection probe of infection detection probes of clause 41 is chemically immobilized.
- $43.\,A\,genetic\,screening\,method\,of\,detecting\,a\,gene\,originated\,in\,Enterococcus\,faecalis\,by\,using\,a\,carrier\,of\,clause\,42.$
- 44. An infectious etiologic agent amplification reaction primer used to PCR-amplify a 16s rRNA gene arrangement of an infectious etiologic agent, comprising:
 - oligonucleotide having one of base sequences of SEQ ID Nos. 107 to 112.
- 45. The primer according to clause 44, wherein the sequence is different from a base sequence of a human genome DNA by not less than three bases.
- 46. An infectious etiologic agent amplification reaction primer set used to PCR-amplify a 16s rRNA gene arrangement of an infectious etiologic agent, comprising:
 - a plurality of primers each comprising oligonucleotide having a plurality of base sequences including at least one of base sequences of SEQ ID Nos. 107 to 109 and at least one of base sequences of SEQ ID Nos. 110 to 112.
- 47. The primer set according to clause 46, wherein PCR reaction is caused for a human blood specimen by using all the primer sets simultaneously.
 - 48. An infectious etiologic agent detection method of detecting an infectious etiologic agent by a DNA probe by executing a PCR amplification process using an infectious etiologic agent amplification reaction primer set of clause 46.
- 49. An infectious etiologic agent detection probe set which detects an infectious etiologic agent gene, comprising:
 - a plurality of kinds of probes including oligonucleotide having base sequences selected from each of a plurality of groups selected from a first group including base sequences of SEQ ID Nos. 1 to 9 and complementary sequences thereof, a second group including base sequences of SEQ ID Nos. 15 to 21 and complementary sequences thereof, a third group including base sequences of SEQ ID Nos. 25 to 31 and complementary sequences thereof, a fourth group including base sequences of SEQ ID Nos. 37 to 42 and complementary sequences thereof, a fifth group including base sequences of SEQ ID Nos. 48 to 55 and complementary sequences thereof, a sixth group including base sequences of SEQ ID Nos. 58 to 62 and complementary sequences thereof, an eighth group including base sequences of SEQ ID Nos. 69 to 75 and complementary sequences thereof, an inith group including base sequences of SEQ ID Nos. 78 to 84 and complementary sequences thereof, a ninth group including base sequences of SEQ ID Nos. 86 to 92 and complementary sequences thereof, and a 10th group including base sequences of SEQ ID Nos. 98 to 101 and complementary sequences thereof.
- 65 [0128] As many apparently widely different embodiments of the present invention can be made without departing from the spirit and scope thereof, it is to be understood that the invention is not limited to the specific embodiments thereof except as defined in the appended claims.

SEQUENCE LISTING

```
<110> CANON KABUSHIKI KAISHA
       <\!120\!> Infectious Etiologic Agent Detection Probe and Probe Set, Carrier, and Genetic Screening Method
5
       <130> 2909740
       <150> 2003-099452
       <151>
               2003-04-02
10
       <150>
               2003-099453
       <151>
               2003-04-02
        <150>
               2003-099454
       <151>
               2003-04-02
       <150>
               2003-099455
15
       <151>
               2003-04-02
               2003-099456
2003-04-02
        <150>
       <151>
               2003-099457
2003-04-02
       <150>
       <151>
20
       <150>
               2003-099458
               2003-04-02
       <151>
               2003-099459
        <150>
        <151>
               2003-04-02
25
               2003-099460
        <150>
               2003-04-02
        <151>
               2003-099461
2003-04-02
       <150>
       <151>
               2003-099462
2003-04-02
        <150>
30
       <151>
               2003-099463
        <150>
               2003-04-02
        <151>
        <150>
               2004-077045
        <151>
               2004-03-17
35
        <160>
        <170>
               PatentIn version 3.2
               1
26
        <210>
       <211><212>
40
               DNA
               Artificial
        <213>
        <220>
        <223>
              Synthesized DNA probe named PA-1
45
       gaaccgcatg gttcaaaagt gaaaga
                                                                                        26
        <210>
               2
24
        <211>
        <212>
              DNA
               Artificial
        <213>
50
        <220>
        <223>
              Synthesized DNA probe named PA-2
        <400> 2
        cacttataga tggatccgcg ctgc
                                                                                        24
55
        <210> 3
```

	<211> <212> <213>	26 DNA Artificial	
5	<220> <223>	Synthesized DNA probe named PA-3	
	<400> tgcaca	3 tctt gacggtacct aatcag	26
10	<210> <211> <212> <213>	4 22 DNA Artificial	
	<220> <223>	Synthesized DNA probe named PA-4	
15	<400> cccctt	4 agtg ctgcagctaa cg	22
20	<210> <211> <212> <213>	5 23 DNA Artificial	
	<220> <223>	Synthesized DNA probe named PA-5	
25	<400> aataca	5 aagg gcagcgaaac cgc	23
	<210> <211> <212> <213>	6 25 DNA Artificial	
30	<220> <223>	Synthesized DNA probe named PA-6	
	<400> ccggtg	6 gagt aaccttttag gagct	25
35	<210> <211> <212> <213>	7 25 DNA Artificial	
40	<220> <223>	Synthesized DNA probe named PA-7	
	<400> taacct	7 ttta ggagctagcc gtcga	25
45	<210> <211> <212> <213>	8 23 DNA Artificial	
	<220> <223>	Synthesized DNA probe named PA-8	
50	<400> tttagg	8 lagct agccgtcgaa ggt	23
<i>55</i>	<210> <211> <212> <213>	9 23 DNA Artificial	
00	<220>		

	<223>	Synthesized DNA probe named PA-9	
5	<400> tagccg	g tcga aggtgggaca aat	23
	<210> <211> <212> <213>	10 23 DNA Artificial	
10	<220> <223>	Synthesized DNA probe named PA-10	
	<400> acggac	10 gaga agcttgcttc tct	23
15	<210> <211> <212> <213>	11 25 DNA Artificial	
	<220> <223>	Synthesized DNA probe named PA-11	
20	<400> tgtcac	11 ttat agatggatcc gcgct	25
25	<210> <211> <212> <213>	12 26 DNA Artificial	
	<220> <223>	Synthesized DNA probe named PA-12	
30	<400> tgtaag	12 taac tgtgcacatc ttgacg	26
	<210> <211> <212> <213>	13 26 DNA Artificial	
35	<220> <223>	Synthesized DNA probe named PA-13	
	<400> acaact	13 ctag agatagagcc ttcccc	26
40	<210> <211> <212> <213>	14 26 DNA Artificial	
45	<220> <223>	Synthesized DNA probe named PA-14	
	<400> gtggag	14 taac cttttaggag ctagcc	26
50	<210> <211> <212> <213>	15 22 DNA Artificial	
	<220> <223>	Synthesized DNA probe named PB-1	
55	<400> gaacag	15 acga ggagcttgct cc	22

5	<210> <211> <212> <213>	16 26 DNA Artificial	
	<220> <223>	Synthesized DNA probe named PB-2	
	<400> tagtgaa	16 aaga cggttttgct gtcact	26
10	<210> <211> <212> <213>	17 26 DNA Artificial	
15	<220> <223>	Synthesized DNA probe named PB-3	
	<400> taagta	17 acta tgcacgtctt gacggt	26
20	<210> <211> <212> <213>	18 26 DNA Artificial	
	<220> <223>	Synthesized DNA probe named PB-4	
25	<400> gacccc	18 tcta gagatagagt tttccc	26
30		19 24 DNA Artificial	
	<220> <223>	Synthesized DNA probe named PB-5	
35	<400> agtaace	19 catt tggagctagc cgtc	24
	<210> <211> <212> <213>	20 23 DNA Artificial	
40	<220> <223>	Synthesized DNA probe named PB-6	
	<400> gagctt	20 gctc ctctgacgtt agc	23
45	<210> <211> <212> <213>	21 22 DNA Artificial	
	<220> <223>	Synthesized DNA probe named PB-7	
50	<400> agccgg	21 tgga gtaaccattt gg	22
<i>55</i>	<210> <211> <212> <213>	22 22 DNA Artificial	

	<220> <223>	Synthesized DNA probe named PB-8	
5	<400> agacgag	22 ggag cttgctcctc tg	22
10	<210> <211> <212> <213>	23 29 DNA Artificial	
	<220> <223>	Synthesized DNA probe named PB-9	
	<400> agaacaa	23 aatg tgtaagtaac tatgcacgt	29
15	<210> <211> <212> <213>	24 22 DNA Artificial	
20	<220> <223>	Synthesized DNA probe named PB-10	
	<400> accatti	24 tgga gctagccgtc ga	22
25	<210> <211> <212> <213>	25 22 DNA Artificial	
	<220> <223>	Synthesized DNA probe named PC-1	
30	<400> ctcttg	25 ccat cggatgtgcc ca	22
35	<210> <211> <212> <213>	26 26 DNA Artificial	
	<220> <223>	Synthesized DNA probe named PC-2	
40	<400> atacct	26 ttgc tcattgacgt tacccg	26
	<210> <211> <212> <213>	27 24 DNA Artificial	
45	<220> <223>	Synthesized DNA probe named PC-3	
	<400> tttgct	27 catt gacgttaccc gcag	24
50	<210> <211> <212> <213>	28 24 DNA Artificial	
	<220> <223>	Synthesized DNA probe named PC-4	
55	<400>	28	

	actggc	aagc ttgagtctcg taga	24
5	<210> <211> <212> <213>	29 23 DNA Artificial	
	<220> <223>	Synthesized DNA probe named PC-S	
10	<400> atacaa	29 agag aagcgacctc gcg	23
15	<210> <211> <212> <213>	30 25 DNA Artificial	
	<220> <223>	Synthesized DNA probe named PC-6	
20	<400> cggacc	30 tcat aaagtgcgtc gtagt	25
	<210> <211> <212> <213>	31 26 DNA Artificial	
25	<220> <223>	Synthesized DNA probe named PC-7	
	<400> gcgggg	31 agga agggagtaaa gttaat	26
30	<210> <211> <212> <213>	32 28 DNA Artificial	
	<220> <223>	Synthesized DNA probe named PC-8	
35	<400> taacag	32 gaag aagcttgctt ctttgctg	28
40	<210> <211> <212> <213>	33 22 DNA Artificial	
	<220> <223>	Synthesized DNA probe named PC-9	
45	<400> ttgcca	33 itcgg atgtgcccag at	22
	<210> <211> <212> <213>	34 29 DNA Artificial	
50	<220> <223>	Synthesized DNA probe named PC-10	
	<400> ggaagg	34 gagt aaagttaata cctttgctc	29
55	<210> <211>	35 22	

	<212> <213>	DNA Artificial	
5	<220> <223>	Synthesized DNA probe named PC-11	
	<400> atcttt	35 tgtt gccagcggtc cg	22
10	<210> <211> <212> <213>	36 31 DNA Artificial	
	<220> <223>	Synthesized DNA probe named PC-12	
15	<400> aaggga	36 gtaa agttaatacc tttgctcatt g	31
20	<210> <211> <212> <213>	37 23 DNA Artificial	
	<220> <223>	Synthesized DNA probe named PD-1	
25	<400> tagcac	37 agag agcttgctct cgg	23
	<210> <211> <212> <213>	38 23 DNA Artificial	
30	<220> <223>	Synthesized DNA probe named PD-2	
	<400> tcatgc	38 catc agatgtgccc aga	23
35	<210> <211> <212> <213>	39 25 DNA Artificial	
	<220> <223>	Synthesized DNA probe named PD-3	
40	<400> cgggga	39 ggaa ggcgataagg ttaat	25
45	<210> <211> <212> <213>	40 25 DNA Artificial	
	<220> <223>	Synthesized DNA probe named PD-4	
50	<400> ttcgat	40 tgac gttacccgca gaaga	25
	<210> <211> <212> <213>	41 26 DNA Artificial	
55	<220> <223>	Synthesized DNA probe named PD-5	

	<400> ggtctg	41 tcaa gtcggatgtg aaatcc	26
5	<210> <211> <212> <213>	42 24 DNA Artificial	
10	<220> <223>	Synthesized DNA probe named PD-6	
	<400> gcaggc	42 taga gtcttgtaga gggg	24
15	<210> <211> <212> <213>	43 24 DNA Artificial	
	<220> <223>	Synthesized DNA probe named PD-7	
20	<400> tcatgo	43 catc agatgtgccc agat	24
25	<210> <211> <212> <213>	44 24 DNA Artificial	
	<220> <223>	Synthesized DNA probe named PD-8	
	<400> cgggga	44 ggaa ggcgataagg ttaa	24
30	<210> <211> <212> <213>	45 27 DNA Artificial	
35	<220> <223>	Synthesized DNA probe named PD-9	
	<400> ttatcg	45 attg acgttacccg cagaaga	27
40	<210> <211> <212> <213>	46 25 DNA Artificial	
	<220> <223>	Synthesized DNA probe named PD-10	
45	<400> cattcg	46 aaac tggcaggcta gagtc	25
50	<210> <211> <212> <213>	47 22 DNA Artificial	
	<220> <223>	Synthesized DNA probe named PD-11	
55	<400> cctttg	47 ttgc cagcggttag gc	22

	<210> <211> <212> <213>	48 24 DNA Artificial	
5	<220> <223>	Synthesized DNA probe named PE-1	
	<400> tgaggg	48 lagaa agtgggggat cttc	24
10	<210> <211> <212> <213>	49 25 DNA Artificial	
15	<220> <223>	Synthesized DNA probe named PE-2	
	<400> tcagat	dgagc ctaggtcgga ttagc	25
20	<210> <211> <212> <213>	50 24 DNA Artificial	
	<220> <223>	Synthesized DNA probe named PE-3	
25	<400> gagcta	50 gagt acggtagagg gtgg	24
30	<210> <211> <212> <213>	51 25 DNA Artificial	
30	<220> <223>	Synthesized DNA probe named PE-4	
	<400> gtacgg	51 taga gggtggtgga atttc	25
35	<210> <211> <212> <213>	52 24 DNA Artificial	
40	<220> <223>	Synthesized DNA probe named PE-5	
	<400> gaccac	52 ctgg actgatactg acac	24
45	<210> <211> <212> <213>	53 25 DNA Artificial	
	<220> <223>	Synthesized DNA probe named PE-6	
50	<400> tggcct	53 tgac atgctgagaa ctttc	25
55	<210><211><211><212><213>	54 23 DNA Artificial	

	<220> <223>	Synthesized DNA probe named PE-7	
5	<400> ttagtt	54 acca gcacctcggg tgg	23
	<210> <211> <212> <213>	55 22 DNA Artificial	
10	<220> <223>	Synthesized DNA probe named PE-8	
	<400> tagtct	55 aacc gcaaggggga cg	22
15	<210> <211> <212> <213>	56 28 DNA Artificial	
20	<220> <223>	Synthesized DNA probe named PE-9	
	<400> tgcatc	56 caaa actactgagc tagagtac	28
25	<210> <211> <212> <213>	57 22 DNA Artificial	
	<220> <223>	Synthesized DNA probe named PE-10	
30	<400> gtcgac	57 tagc cgttgggatc ct	22
35	<210> <211> <212> <213>	58 22 DNA Artificial	
00	<220> <223>	Synthesized DNA probe named PF-1	
	<400> tagcac	58 aggg agcttgctcc ct	22
40	<210> <211> <212> <213>	59 25 DNA Artificial	
45	<220> <223>	Synthesized DNA probe named PF-2	
	<400> aggtgg	59 tgag cttaatacgc tcatc	25
50	<210> <211> <212> <213>	60 26 DNA Artificial	
	<220> <223>	Synthesized DNA probe named PF-3	
55	<400> tcatca	60 attg acgttactcg cagaag	26

5	<210> <211> <212> <213>	26 DNA Artificial	
	<220> <223>	Synthesized DNA probe named PF-4	
10	<400> actgca	61 tttg aaactggcaa gctaga	26
	<210> <211> <212> <213>	62 24 DNA Artificial	
15	<220> <223>	Synthesized DNA probe named PF-5	
	<400> ttatco	62 tttg ttgcagcttc ggcc	24
20	<210> <211> <212> <213>	63 23 DNA Artificial	
25	<220> <223>	Synthesized DNA probe named PF-6	
	<400> actttc	63 cagcg aggaggaagg tgg	23
30	<210> <211> <212> <213>	64 22 DNA Artificial	
	<220> <223>	Synthesized DNA probe named PF-7	
35	<400> ggtage	64 cacag gggagcttgc tc	22
40	<210> <211> <212> <213>	65 26 DNA Artificial	
70	<220> <223>	Synthesized DNA probe named PF-8	
	<400> cgagga	65 gggaa ggtggtgagc ttaata	26
45	<210> <211> <212> <213>	66 26 DNA Artificial	
50	<220> <223>	Synthesized DNA probe named PF-9	
	<400> tacgct	66 tcatc aattgacgtt actcgc	26
55	<210> <211> <212>	67 27 DNA	

	<213>	Artificial	
5	<220> <223>	Synthesized DNA probe named PF-10	
J	<400> gaaact	67 ggca agctagagtc tcgtaga	27
10	<210> <211> <212> <213>	68 24 DNA Artificial	
	<220> <223>	Synthesized DNA probe named PF-11	
15	<400> ttatcc	68 tttg ttgccagcgg ttcg	24
	<210> <211> <212> <213>	69 25 DNA Artificial	
20	<220> <223>	Synthesized DNA probe named PG-1	
	<400> agtaga	69 acgc tgaaggagga gcttg	25
25	<212>	70 25 DNA Artificial	
30	<220> <223>	Synthesized DNA probe named PG-2	
	<400> cttgca	70 tcac taccagatgg acctg	25
35	<210> <211> <212> <213>	71 26 DNA Artificial	
	<220> <223>	Synthesized DNA probe named PG-3	
40	<400> tgagag	71 tgga aagttcacac tgtgac	26
45	<210> <211> <212> <213>	72 26 DNA Artificial	
	<220> <223>	Synthesized DNA probe named PG-4	
	<400> gctgtg	72 gctt aaccatagta ggcttt	26
50	2310s	72	
	<210> <211> <212> <213>	73 23 DNA Artificial	
55	<220> <223>	Synthesized DNA probe named PG-5	

		73 ctct ctggcttgta act	23
5	<210> <211> <212> <213>	74 24 DNA Artificial	
	<220> <223>	Synthesized DNA probe named PG-6	
10	<400> tagacco	74 cttt ccggggttta gtgc	24
15	<210> <211> <212> <213>	75 26 DNA Artificial	
	<220> <223>	Synthesized DNA probe named PG-7	
20	<400> gacggc	75 aagc taatctctta aagcca	26
	<210> <211> <212> <213>	76 27 DNA Artificial	
25	<220> <223>	Synthesized DNA probe named PG-8	
	<400> gacatt	76 tgct taaaaggtgc acttgca	2 7
30	<210> <211> <212> <213>	77 29 DNA Artificial	
35	<220> <223>	Synthesized DNA probe named PG-9	
	<400> gttgta	77 agag aagaacgagt gtgagagtg	29
40	<210> <211> <212> <213>	78 24 DNA Artificial	
	<220> <223>	Synthesized DNA probe named PH-1	
45	<400> gcttgg	78 gaat ctggcttatg gagg	24
50	<210> <211> <212> <213>	79 23 DNA Artificial	
	<220> <223>	Synthesized DNA probe named PH-2	
	<400> tgccat	79 agga tgagcccaag tgg	23
55	<210>	80	

	<211> <212> <213>	26 DNA Artificial	
5	<220> <223>	Synthesized DNA probe named PH-3	
	<400> cttggg	80 aatg tactgacgct catgtg	26
10	<210> <211> <212> <213>	81 23 DNA Artificial	
45	<220> <223>	Synthesized DNA probe named PH-4	
15	<400> ggattg	81 ggct tagagcttgg tgc	23
20	<210> <211> <212> <213>	82 22 DNA Artificial	
	<220> <223>	Synthesized DNA probe named PH-5	
25	<400> tacaga	82 ggga agcgaagctg cg	22
	<210> <211> <212> <213>	83 26 DNA Artificial	
30	<220> <223>	Synthesized DNA probe named PH-6	
	<400> ggcgtt	83 tacc acggtatgat tcatga	26
35	<210> <211> <212> <213>	84 23 DNA Artificial	
40	<220> <223>	Synthesized DNA probe named PH-7	
	<400> aatgcc	84 tacc aagcctgcga tct	23
45	<210> <211> <212> <213>	85 25 DNA Artificial	
	<220> <223>	Synthesized DNA probe named PH-8	
50	<400> tatcgg	85 aaga tgaaagtgcg ggact	25
55	<210> <211> <212> <213>	86 22 DNA Artificial	
-	<220>		

	<223>	Synthesized DNA probe named PI-1	
5	<400> cagaga	86 gctt gctctcgggt ga	22
	<210> <211> <212> <213>	87 26 DNA Artificial	
10	<220> <223>	Synthesized DNA probe named PI-2	
	<400> gggagg	87 aagg tgttgtggtt aataac	26
15	<210> <211> <212> <213>	88 26 DNA Artificial	
20	<220> <223>	Synthesized DNA probe named PI-3	
	<400> ggtgtt	88 gtgg ttaataacca cagcaa	26
25	<210> <211> <212> <213>	89 22 DNA Artificial	
	<220> <223>	Synthesized DNA probe named PI-4	
30	<400> gcggtc	89 tgtc aagtcggatg tg	22
	<210> <211> <212> <213>	90 25 DNA Artificial	
35	<220> <223>	Synthesized DNA probe named PI-5	
	<400> attcga	90 aact ggcaggctag agtct	25
40	<210> <211> <212> <213>	91 25 DNA Artificial	
45	<220> <223>	Synthesized DNA probe named PI-6	
	<400> taacca	91 cagc aattgacgtt acccg	25
50	<210> <211> <212> <213>	92 24 DNA Artificial	
	<220> <223>	Synthesized DNA probe named PI-7	
55	<400> gcaatt	92 gacg ttacccgcag aaga	24

5	<210> <211> <212> <213>	93 · 23 DNA Artificial	
	<220> <223>	Synthesized DNA probe named PI-8	
10	<400> gtagca	93 caga gagcttgctc tcg	23
	<210> <211> <212> <213>	94 23 DNA Artificial	
15	<220> <223>	Synthesized DNA probe named PI-9	
	<400> cgggga	94 ggaa ggtgttgtgg tta	23
20	<210> <211> <212> <213>	95 23 DNA Artificial	
	<220> <223>	Synthesized DNA probe named PI-10	
25	<400> accaca	95 gcaa ttgacgttac ccg	23
30	<210> <211> <212> <213>	96 26 DNA Artificial	
	<220> <223>	Synthesized DNA probe named PI-11	
35	<400> gaaact	96 ggca ggctagagtc ttgtag	26
	<210> <211> <212> <213>	97 22 DNA Artificial	
40	<220> <223>	Synthesized DNA probe named PI-12	
	<400> aggcgg	97 tctg tcaagtcgga tg	22
45	<210> <211> <212> <213>	98 23 DNA Artificial	
50	<220> <223>	Synthesized DNA probe named PJ-1	
	<400> ttcttt	98 cctc ccgagtgctt gca	23
55	<210> <211> <212> <213>	99 25 DNA Artificial	

	<220> <223>	Synthesized DNA probe named PJ-2	
5	<400> aacacgt	99 tggg taacctaccc atcag	25
10	<210> <211> <212> <213>	100 24 DNA Artificial	
	<220> <223>	Synthesized DNA probe named PJ-3	
15	<400> atggcat	100 taag agtgaaaggc gctt	24
	<210> <211> <212> <213>	101 22 DNA Artificial	
20	<220> <223>	Synthesized DNA probe named PJ-4	
	<400> gacccg	101 cggt gcattagcta gt	22
25	<210> <211> <212> <213>	102 25 DNA Artificial	
	<220> <223>	Synthesized DNA probe named PJ-5	
30	<400> ggacgt	102 tagt aactgaacgt cccct	25
35	<210> <211> <212> <213>	103 22 DNA Artificial	
	<220> <223>	Synthesized DNA probe named PJ-6	
40	<400> ctcaac	103 cggg gagggtcatt gg	22
	<210> <211> <212> <213>	104 22 DNA Artificial	
45	<220> <223>	Synthesized DNA probe named PJ-7	
	<400> ttggag	104 ggtt tccgcccttc ag	22
50	<210> <211> <212> <213>	105 25 DNA Artificial	
<i>55</i>	<220> <223>	Synthesized DNA probe named PJ-8	
50	<400>	105	

	atagagettt ecettegggg acaaa	25
5	<210> 106 <211> 29 <212> DNA <213> Artificial	
	<220> <223> Synthesized DNA probe named PJ-9	
10	<400> 106 cgaggtcatg caaatctctt aaagcttct	29
15	<210> 107 <211> 23 <212> DNA <213> Artificial	
	<220> <223> Synthesized DNA for forward primer named F-1	
20	<400> 107 gcggcgtgcc taatacatgc aag	23
20	<210> 108 <211> 23 <212> DNA <213> Artificial	
25	<220> <223> Synthesized DNA for forward primer named F-2	
	<400> 108 gcggcaggcc taacacatgc aag	23
30	<210> 109 <211> 23 <212> DNA <213> Artificial	
	<220> <223> Synthesized DNA for forward primer named F-3	
35	<400> 109 gcggcaggct taacacatgc aag	23
40	<210> 110 <211> 22 <212> DNA <213> Artificial	
	<220> <223> Synthesized DNA for reverse primer named R-1	
45	<400> 110 atccagccgc accttccgat ac	22
	<210> 111 <211> 22 <212> DNA <213> Artificial	
50	<220> <223> Synthesized DNA for reverse primer named R-2	
	<400> 111 atccaaccgc aggttcccct ac	22
55	<210> 112 <211> 22	

	<212> <213>	DNA Artificial	
5	<220> <223>	Synthesized DNA for reverse primer named R-3	
	<400> atccag	112 ccgc aggttcccct ac	22
10	<210> <211> <212> <213>	113 26 DNA Artificial	
15	<220> <223>	Complementary DNA Sequence of Synthesized DNA probe PA-1	
	<400> tctttc	113 actt ttgaaccatg cggttc	26
20	<210> <211> <212> <213>	114 24 DNA Artificial	
	<220> <223>	Complementary DNA Sequence of Synthesized DNA probe PA-2	
25	<400> gcagcg	114 ocgga tccatctata agtg	24
	<210> <211> <212> <213>	115 26 DNA Artificial	
30	<220> <223>	Complementary DNA Sequence of Synthesized DNA probe PA-3	
	<400> ctgatt	115 aggt accgtcaaga tgtgca	26
35	<210> <211> <212> <213>	116 22 DNA Artificial	
40	<220> <223>	Complementary DNA Sequence of Synthesized DNA probe PA-4	
	< 40 0> cgttag	116 gctgc agcactaagg gg	22
45	<210> <211> <212> <213>	117 23 DNA Artificial	
	<220> <223>	Complementary DNA Sequence of Synthesized DNA probe PA-5	
50	<400> gcggtt	117 ctcgc tgccctttgt att	23
55	<210> <211> <212> <213>	118 25 DNA Artificial	
	<220>		

	<223>	Complementary DNA Sequence of Synthesized DNA probe PA-6	
5	<400> agctcc	118 taaa aggttactcc accgg	25
	<210> <211> <212> <213>	119 25 DNA Artificial	
10	<220> <223>	Complementary DNA Sequence of Synthesized DNA probe PA-7	
	<400> tcgacg	119 gcta gctcctaaaa ggtta	25
15	<210> <211> <212> <213>	120 23 DNA Artificial	
20	<220> <223>	Complementary DNA Sequence of Synthesized DNA probe PA-8	
20	<400> accttc	120 gacg gctagctcct aaa	23
25	<210> <211> <212> <213>	121 23 DNA Artificial	
	<220> <223>	Complementary DNA Sequence of Synthesized DNA probe PA-9	
30	<400> atttgt	121 ccca ccttcgacgg cta	23
	<210> <211> <212> <213>	122 23 DNA Artificial	
35	<220> <223>	Complementary DNA Sequence of Synthesized DNA probe PA-10	
	<400> agagaa	122 gcaa gcttctcgtc cgt	23
40	<210> <211> <212> <213>	123 25 DNA Artificial	
45	<220> <223>	Complementary DNA Sequence of Synthesized DNA probe PA-11	
	<400> agcgcg	123 gatc catctataag tgaca	25
50	<210> <211> <212> <213>	124 26 DNA Artificial	
	<220> <223>	Complementary DNA Sequence of Synthesized DNA probe PA-12	
55	<400> cgtcaa	124 Igatg tgcacagtta cttaca	26

5	<210> <211> <212> <213>	125 26 DNA Artificial	
	<220> <223>	Complementary DNA Sequence of Synthesized DNA probe PA-13	
10	<400> ggggaa	125 ggct ctatctctag agttgt	26
	<210> <211> <212> <213>	126 26 DNA Artificial	
15	<220> <223>	Complementary DNA Sequence of Synthesized DNA probe PA-14	
	<400> ggctag	126 gctcc taaaaggtta ctccac	26
20	<210> <211> <212> <213>	127 22 DNA Artificial	
05	<220> <223>	Complementary DNA Sequence of Synthesized DNA probe PB-1	
25	<400> ggagca	127 aagct cctcgtctgt tc	22
30	<210> <211> <212> <213>	128 26 DNA Artificial	
	<220> <223>	Complementary DNA Sequence of Synthesized DNA probe PB-2	
35	<400> agtgad	128 cagca aaaccgtctt tcacta	26
	<210> <211> <212> <213>	129 26 DNA Artificial	
40	<220> <223>	Complementary DNA Sequence of Synthesized DNA probe PB-3	
	<400> accgto	129 caaga cgtgcatagt tactta	26
45	<210> <211> <212> <213>	DNA	
50	<220> <223>	Complementary DNA Sequence of Synthesized DNA probe PB-4	
	<400> gggaaa	130 aactc tatctctaga ggggtc	26
55	<210> <211> <212> <213>		

	<220> <223>	Complementary DNA Sequence of Synthesized DNA probe PB-5	
5	<400> gacggc1	131 tagc tccaaatggt tact	24
10	<210> <211> <212> <213>	132 23 DNA Artificial	
	<220> <223>	Complementary DNA Sequence of Synthesized DNA probe PB-6	
15	<400> gctaacq	132 gtca gaggagcaag ctc	23
,,,	<210> <211> <212> <213>	133 22 DNA Artificial	
20	<220> <223>	Complementary DNA Sequence of Synthesized DNA probe PB-7	
	<400> ccaaat	133 ggtt actccaccgg ct	22
25	<210> <211> <212> <213>	134 22 DNA Artificial	
	<220> <223>	Complementary DNA Sequence of Synthesized DNA probe PB-8	
30	<400> cagagga	134 agca agctcctcgt ct	22
<i>35</i>	<210> <211> <212> <213>	135 29 DNA Artificial	
	<220> <223>	Complementary DNA Sequence of Synthesized DNA probe PB-9	
40	<400> acgtgc	135 atag ttacttacac atttgttct	29
	<210> <211> <212> <213>	136 22 DNA Artificial	
45	<220> <223>	Complementary DNA Sequence of Synthesized DNA probe PB-10	
	<400> tcgacg	136 gcta gctccaaatg gt	22
50	<210> <211> <212> <213>	137 22 DNA Artificial	
55	<220> <223>	Complementary DNA Sequence of Synthesized DNA probe PC-1	
00	<400>	137	

	tgggca	catc cgatggcaag ag	22
5	<210> <211> <212> <213>	138 26 DNA Artificial	
	<220> <223>	Complementary DNA Sequence of Synthesized DNA probe PC-2	
10	<400> cgggta	138 acgt caatgagcaa aggtat	26
15	<210> <211> <212> <213>	139 24 DNA Artificial	
	<220> <223>	Complementary DNA Sequence of Synthesized DNA probe PC-3	
20	<400> ctgcgg	139 gtaa cgtcaatgag caaa	24
	<210> <211> <212> <213>	140 24 DNA Artificial	
25	<220> <223>	Complementary DNA Sequence of Synthesized DNA probe PC-4	
	<400> tctacg	140 agac tcaagcttgc cagt	24
30	<210> <211> <212> <213>	141 23 DNA Artificial	
	<220> <223>	Complementary DNA Sequence of Synthesized DNA probe PC-5	
35	<400> cgcgag	141 gtcg cttctctttg tat	23
40	<210> <211> <212> <213>	142 25 DNA Artificial	
	<220> <223>	Complementary DNA Sequence of Synthesized DNA probe PC-6	
45	<400> actacg	142 Jacgc actttatgag gtccg	25
	<210> <211> <212> <213>	143 26 DNA Artificial	
50	<220> <223>	Complementary DNA Sequence of Synthesized DNA probe PC-7	
	<400> attaac	143 Ettta ctcccttcct ccccgc	26
55	<210> <211>	144 28	

	<212> <213>	DNA Artificial	
5	<220> <223>	Complementary DNA Sequence of Synthesized DNA probe PC-8	
	<400> cagcaa	144 agaa gcaagcttct tcctgtta	28
10	<210> <211> <212> <213>	145 22 DNA Artificial	
	<220> <223>	Complementary DNA Sequence of Synthesized DNA probe PC-9	
15	<400> atctgg	145 Igcac atccgatggc aa	22
20	<210> <211> <212> <213>	146 29 DNA Artificial	
	<220> <223>	Complementary DNA Sequence of Synthesized DNA probe PC-10	
25	<400> gagcaa	146 laggt attaacttta ctcccttcc	29
	<210> <211> <212> <213>	147 22 DNA Artificial	
30	<220> <223>	Complementary DNA Sequence of Synthesized DNA probe PC-11	
	<400> cggacc	147 gctg gcaacaaag at	22
35	<210> <211> <212> <213>	148 31 DNA Artificial	
	<220> <223>	Complementary DNA Sequence of Synthesized DNA probe PC-12	
40	<400> caatga	148 Igcaa aggtattaac tttactccct t	31
45	<210> <211> <212> <213>	149 23 DNA Artificial	
	<220> <223>	Complementary DNA Sequence of Synthesized DNA probe PD-1	
50	<400> ccgaga	149 Igcaa gctctctgtg cta	23
	<210> <211> <212> <213>		
55	<220> <223>	Complementary DNA Sequence of Synthesized DNA probe PD-2	

	<400> 150 tctgggcaca tctgatggca tga	23
5	<210> 151 <211> 25 <212> DNA <213> Artificial	
10	<220> <223> Complementary DNA Sequence of Synthesized DNA probe PD-3	
	<400> 151 attaacctta tcgccttcct ccccg	25
15	<210> 152 <211> 25 <212> DNA <213> Artificial	
	<220> <223> Complementary DNA Sequence of Synthesized DNA probe PD-4	
20	<400> 152 tcttctgcgg gtaacgtcaa tcgaa	25
25	<210> 153 <211> 26 <212> DNA <213> Artificial	
	<220> <223> Complementary DNA Sequence of Synthesized DNA probe PD-5	
30	<400> 153 ggatttcaca tccgacttga cagacc	26
30	<210> 154 <211> 24 <212> DNA <213> Artificial	
35	<220> <223> Complementary DNA Sequence of Synthesized DNA probe PD-6	
	<400> 154 cccctctaca agactctagc ctgc	24
40	<210> 155 <211> 24 <212> DNA <213> Artificial	
	<220> <223> Complementary DNA Sequence of Synthesized DNA probe PD-7	
45	<400> 155 atctgggcac atctgatggc atga	24
50	<210> 156 <211> 24 <212> DNA <213> Artificial	
	<220> <223> Complementary DNA Sequence of Synthesized DNA probe PD-8	
<i>55</i>	<400> 156 ttaaccttat cgccttcctc cccg	24

	<210> <211> <212> <213>	157 27 DNA Artificial	
5	<220> <223>	Complementary DNA Sequence of Synthesized DNA probe PD-9	
	<400> tcttctg	157 gegg gtaaegteaa tegataa	27
10	<210> <211> <212> <213>	158 25 DNA Artificial	
15	<220> <223>	Complementary DNA Sequence of Synthesized DNA probe PD-10	
	<400> gactcta	158 agcc tgccagtttc gaatg	25
20	<210> <211> <212> <213>	159 22 DNA Artificial	
	<220> <223>	Complementary DNA Sequence of Synthesized DNA probe PD-11	
25	<400> gcctaa	159 ccgc tggcaacaaa gg	22
30	<210> <211> <212> <213>	160 24 DNA Artificial	
	<220> <223>	Complementary DNA Sequence of Synthesized DNA probe PE-1	
35	<400> gaagate	160 cccc cactttctcc ctca	24
	<210> <211> <212> <213>	161 25 DNA Artificial	
40	<220> <223>	Complementary DNA Sequence of Synthesized DNA probe PE-2	
	<400> gctaate	161 ccga cctaggctca tctga	25
45	<210> <211> <212> <213>	162 24 DNA Artificial	
	<220> <223>	Complementary DNA Sequence of Synthesized DNA probe PE-3	
50	<400> ccaccc	162 tcta ccgtactcta gctc	24
55	<210> <211> <212> <213>	163 25 DNA Artificial	

	<220> <223>	Complementary DNA Sequence of Synthesized DNA probe PE-4	
5	<400> gaaatto	163 ccac caccctctac cgtac	25
10	<210> <211> <212> <213>	164 24 DNA Artificial	
10	<220> <223>	Complementary DNA Sequence of Synthesized DNA probe PE-5	
	<400> gtgtca	164 gtat cagtccaggt ggtc	24
15	<210> <211> <212> <213>	165 25 DNA Artificial	
20	<220> <223>	Complementary DNA Sequence of Synthesized DNA probe PE-6	
	<400> gaaagt	165 tctc agcatgtcaa ggcca	25
25	<210> <211> <212> <213>	166 23 DNA Artificial	
	<220> <223>	Complementary DNA Sequence of Synthesized DNA probe PE-7	
30	<400> ccaccc	166 gagg tgctggtaac taa	23
35	<210> <211> <212> <213>	167 22 DNA Artificial	
	<220> <223>	Complementary DNA Sequence of Synthesized DNA probe PE-8	
	<400> cgtccc	167 cctt gcggttagac ta	22
40	<210> <211> <212> <213>	168 28 DNA Artificial	
45	<220> <223>	Complementary DNA Sequence of Synthesized DNA probe PE-9	
	<400> gtactc	168 tagc tcagtagttt tggatgca	28
50	<210> <211> <212> <213>	169 22 DNA Artificial	
	<220> <223>	Complementary DNA Sequence of Synthesized DNA probe PE-10	
55	<400> aggato	169 ccaa cggctagtcg ac	22

5	<210> <211> <212> <213>	170 22 DNA Artificial	
	<220> <223>	Complementary DNA Sequence of Synthesized DNA probe PF-1	
10	<400> agggage	170 caag ctccctgtgc ta	22
45	<210> <211> <212> <213>	171 25 DNA Artificial	
15	<220> <223>	Complementary DNA Sequence of Synthesized DNA probe PF-2	
	<400> gatgage	171 cgta ttaagctcac cacct	25
20	<210> <211> <212> <213>	172 26 DNA Artificial	
25	<220> <223>	Complementary DNA Sequence of Synthesized DNA probe PF-3	
	<400> cttctg	172 cgag taacgtcaat tgatga	26
30	<210> <211> <212> <213>	173 26 DNA Artificial	
	<220> <223>	Complementary DNA Sequence of Synthesized DNA probe PF-4	
35	<400> tctagc	173 ttgc cagtttcaaa tgcagt	26
40	<210> <211> <212> <213>	174 24 DNA Artificial	
	<220> <223>	Complementary DNA Sequence of Synthesized DNA probe PF-5	
45	<400> ggccga	174 agct gcaacaaagg ataa	24
45	<210> <211> <212> <213>	175 23 DNA Artificial	
50	<220> <223>	Complementary DNA Sequence of Synthesized DNA probe PF-6	
	<400> ccacct	175 tcct cctcgctgaa agt	23
55	<210> <211> <212>	176 22 DNA	

	<213>	Artificial	
	<220> <223>	Complementary DNA Sequence of Synthesized DNA probe PF-7	
5	<400> gagcaag	176 gctc ccctgtgcta cc	22
	<210> <211>	177 26	
10	<212> <213>	DNA Artificial	
	<220> <223>	Complementary DNA Sequence of Synthesized DNA probe PF-8	
15	<400> tattaa	177 gctc accaccttcc tcctcg	26
	<210> <211>	178 26	
	<211> <212> <213>	DNA Artificial	
20	<220> <223>	Complementary DNA Sequence of Synthesized DNA probe PF-9	
	<400> gcgagt	178 aacg tcaattgatg agcgta	26
25	<210>	179	
	<211> <212>	27 DNA	
	<213>	Artificial	
30	<220> <223>	Complementary DNA Sequence of Synthesized DNA probe PF-10	
	<400> tctacg	179 agac tctagcttgc cagtttc	27
	<210>	180	
35	<211> <212>	24 DNA	
	<213> <220>	Artificial	
	<223>	Complementary DNA Sequence of Synthesized DNA probe PF-11	
40	<400> cgaacc	180 gctg gcaacaaagg ataa	24
	<210>	181	
	<211> <212>	25 DNA	
45	<213>	Artificial	
	<220> <223>	Complementary DNA Sequence of Synthesized DNA probe PG-1	
	<400> caagct	181 cctc cttcagcgtt ctact	25
50	210	103	
	<210> <211>	182 25	
	<212> <213>	DNA Artificial	
55	<220> <223>	Complementary DNA Sequence of Synthesized DNA probe PG-2	

	<400> 182 caggtccatc tggtagtgat gcaag	25
5	<210> 183 <211> 26 <212> DNA <213> Artificial	
	<220> <223> Complementary DNA Sequence of Synthesized DNA probe PG-3	
10	<400> 183 gtcacagtgt gaactttcca ctctca	26
15	<210> 184 <211> 26 <212> DNA <213> Artificial	
	<220> <223> Complementary DNA Sequence of Synthesized DNA probe PG-4	
20	<400> 184 aaagcctact atggttaagc cacagc	26
	<210> 185 <211> 23 <212> DNA <213> Artificial	
25	<220> <223> Complementary DNA Sequence of Synthesized DNA probe PG-5	
	<400> 185 agttacaagc cagagagccg ctt	23
30	<210> 186 <211> 24 <212> DNA <213> Artificial	
35	<220> <223> Complementary DNA Sequence of Synthesized DNA probe PG-6	
33	<400> 186 gcactaaacc ccggaaaggg tcta	24
40	<210> 187 <211> 26 <212> DNA <213> Artificial	
	<220> <223> Complementary DNA Sequence of Synthesized DNA probe PG-7	
45	<400> 187 tggctttaag agattagctt gccgtc	26
50	<210> 188 <211> 27 <212> DNA <213> Artificial	
JU	<220> <223> Complementary DNA Sequence of Synthesized DNA probe PG-8	
	<400> 188 tgcaagtgca ccttttaagc aaatgtc	27
55	<210> 189	

	<211> <212> <213>	29 DNA Artificial	
5	<220> <223>	Complementary DNA Sequence of Synthesized DNA probe PG-9	
	<400> cactct	189 caca ctcgttcttc tcttacaac	29
10	<210> <211> <212> <213>	190 24 DNA Artificial	
15	<220> <223> <400>	Complementary DNA Sequence of Synthesized DNA probe PH-1	
		taag ccagattccc aagc	24
20		191 23 DNA Artificial	
	<220> <223>	Complementary DNA Sequence of Synthesized DNA probe PH-2	
25	<400> ccactt	191 gggc tcatcctatg gca	23
		192 26 DNA Artificial	
30	<220> <223>	Complementary DNA Sequence of Synthesized DNA probe PH-3	
	<400> cacatg	192 agcg tcagtacatt cccaag	26
35	<210><211><211><212><213>	193 23 DNA Artificial	
40	<220> <223>	Complementary DNA Sequence of Synthesized DNA probe PH-4	
	<400> gcacca	193 agct ctaagcccaa tcc	23
45	<210> <211> <212> <213>	194 22 DNA Artificial	
	<220> <223>	Complementary DNA Sequence of Synthesized DNA probe PH-5	
50	<400> cgcagc	194 ttcg cttccctctg ta	22
55	<210> <211> <212> <213>	195 26 DNA Artificial	
55	<220>		

	<223>	Complementary DNA Sequence of Synthesized DNA probe PH-6	
5	<400> tcatgaa	195 atca taccgtggta aacgcc	26
	<210> <211> <212> <213>	196 23 DNA Artificial	
10	<220> <223>	Complementary DNA Sequence of Synthesized DNA probe PH-7	
	<400> agatcg	196 cagg cttggtaggc att	23
15	<210> <211> <212> <213>	197 25 DNA Artificial	
	<220> <223>	Complementary DNA Sequence of Synthesized DNA probe PH-8	
20	<400> agtccc	197 gcac tttcatcttc cgata	25
25	<210> <211> <212> <213>	198 23 DNA Artificial	
	<220> <223>	Complementary DNA Sequence of Synthesized DNA probe PI-1	
30	<400> tgcaage	198 cact cgggaggaaa gaa	23
	<210> <211> <212> <213>	199 25 DNA Artificial	
35	<220> <223>	Complementary DNA Sequence of Synthesized DNA probe PI-2	
	<400> ctgatg	199 ggta ggttacccac gtgtt	25
40	<210> <211> <212> <213>	200 24 DNA Artificial	
45	<220> <223>	Complementary DNA Sequence of Synthesized DNA probe PI-3	
40	<400> aagcgc	200 cttt cactcttatg ccat	24
50	<210> <211> <212> <213>	201 22 DNA Artificial	
	<220> <223>	Complementary DNA Sequence of Synthesized DNA probe PI-4	
55	<400>	201 taat gcaccocogo to	22

5	<210> <211> <212> <213>	202 25 DNA Artificial	
	<220> <223>	Complementary DNA Sequence of Synthesized DNA probe PI-5	
10	<400> agggga	202 cgtt cagttactaa cgtcc	25
	<210> <211> <212> <213>	203 22 DNA Artificial	
15	<220> <223>	Complementary DNA Sequence of Synthesized DNA probe PI-6	
	<400> ccaatg	203 accc tccccggttg ag	22
20	<210> <211> <212> <213>	204 22 DNA Artificial	
	<220> <223>	Complementary DNA Sequence of Synthesized DNA probe PI-7	
25	<400> ctgaag	204 ggcg gaaaccctcc aa	22
30	<210> <211> <212> <213>	205 23 DNA Artificial	
	<220> <223>	Complementary DNA Sequence of Synthesized DNA probe PI-8	
35	<400> cgagag	205 caag ctctctgtgc tac	23
	<210> <211> <212> <213>	206 23 DNA Artificial	
40	<220> <223>	Complementary DNA Sequence of Synthesized DNA probe PI-9	
	<400> taacca	206 caac accttcctcc ccg	23
45	<210> <211> <212> <213>	207 23 DNA Artificial	
50	<220> <223> <400> cgggta	Complementary DNA Sequence of Synthesized DNA probe PI-10 207 acgt caattgctgt ggt	23
<i>55</i>	<210> <211> <212> <213>	208 26 DNA Artificial	

	<220> <223>	Complementary DNA Sequence of Synthesized DNA probe PI-11	
5	<400> ctacaag	208 gact ctagcctgcc agtttc	26
10	<210> <211> <212> <213>	209 22 DNA Artificial	
	<220> <223>	Complementary DNA Sequence of Synthesized DNA probe PI-12	
15	<400> catccga	209 actt gacagaccgc ct	22
	<210> <211> <212> <213>	210 22 DNA Artificial	
20	<220> <223>	Complementary DNA Sequence of Synthesized DNA probe PJ-1	
	<400> tcaccco	210 gaga gcaagctctc tg	22
25	<210> <211> <212> <213>	211 26 DNA Artificial	
	<220> <223>	Complementary DNA Sequence of Synthesized DNA probe PJ-2	
30	<400> gttatta	211 aacc acaacacctt cctccc	26
35	<210> <211> <212> <213>	212 26 DNA Artificial	
	<220> <223>	Complementary DNA Sequence of Synthesized DNA probe PJ-3	
40	<400> ttgctgt	212 tggt tattaaccac aacacc	26
	<210> <211> <212> <213>	213 22 DNA Artificial	
45	<220> <223>	Complementary DNA Sequence of Synthesized DNA probe PJ-4	
	<400> cacatco	213 cgac ttgacagacc gc	22
50	<210> <211> <212> <213>	214 25 DNA Artificial	
<i>55</i>	<220> <223>	Complementary DNA Sequence of Synthesized DNA probe PJ-5	
55	<400>	214	

	agactc	tagc ctgccagttt cgaat	25
5	<210> <211> <212> <213>	215 25 DNA Artificial	
	<220> <223>	Complementary DNA Sequence of Synthesized DNA probe PJ-6	
10	<400> cgggta	215 acgt caattgctgt ggtta	25
15	<210> <211> <212> <213>	216 24 DNA Artificial	
	<220> <223>	Complementary DNA Sequence of Synthesized DNA probe PJ-7	
20	<400> tcttct	216 gcgg gtaacgtcaa ttgc	24
	<212>	217 25 DNA Artificial	
25	<220> <223>	Complementary DNA Sequence of Synthesized DNA probe PJ-8	
	<400> tttgtc	217 cccg aagggaaagc tctat	25
30	<210> <211> <212> <213>	218 29 DNA Artificial	
	<220> <223>	Complementary DNA Sequence of Synthesized DNA probe PJ-9	
35	<400> agaagc	218 ttta agagatttgc atgacctcg	29
40			
45			
50			

Claims

- 1. An infection detection probe which can detect a gene originated in Staphylococcus aureus, which includes oligonucleotide having one of the base sequences of SEQ ID Nos. 1 to 14 and complementary sequences thereof.
- 2. A probe set which can detect a gene originated in Staphylococcus aureus and includes at least one of infection detection probes each comprising oligonucleotide having one of the base sequences of SEQ ID Nos. 1 to 14 and complementary sequences thereof.
- 10 **3.** A carrier on which an infection detection probe included in the probe set of claim 2 is chemically immobilized.
 - 4. A genetic screening method of detecting a gene originated in Staphylococcus aureus by using a carrier of claim 3.
 - **5.** An infection detection probe which can detect a gene originated in Staphylococcus epidermidis, which includes oligonucleotide having one of the base sequences of SEQ ID Nos. 15 to 24 and complementary sequences thereof.
 - **6.** A probe set which can detect a gene originated in Staphylococcus epidermidis and includes at least one of infection detection probes each including oligonucleotide having one of the base sequences of SEQ ID Nos. 15 to 24 and complementary sequences thereof.
 - 7. A carrier on which an infection detection probe included in the probe set of claim 6 is chemically immobilized.
 - 8. A genetic screening method of detecting a gene originated in Staphylococcus epidermidis by using a carrier of claim 7.
- **9.** An infection detection probe which can detect a gene originated in Escherichia coli, which includes oligonucleotide having one of the base sequences of SEQ ID Nos. 25 to 36 and complementary sequences thereof.
 - **10.** A probe set which can detect a gene originated in Escherichia coli and includes at least one of infection detection probes each including oligonucleotide having one of the base sequences of SEQ ID Nos. 25 to 36 and complementary sequences thereof.
 - 11. A carrier on which at least one kind of infection detection probe of infection detection probes of claim 10 is chemically immobilized.
- 12. A genetic screening method of detecting a gene originated in Escherichia coli by using a carrier of claim 11.
 - **13.** An infection detection probe which can detect a gene originated in Klebsiella pneumoniae, which includes oligonucleotide having one of the base sequences of SEQ ID Nos. 37 to 47 and complementary sequences thereof.
- 40 14. A probe set which can detect a gene originated in Klebsiella pneumoniae and includes at least one of infection detection probes each including oligonucleotide having one of the base sequences of SEQ ID Nos. 37 to 47 and complementary sequences thereof.
- **15.** A carrier on which at least one kind of infection detection probe of infection detection probes of claim 14 is chemically immobilized.
 - **16.** A genetic screening method of detecting a gene originated in Klebsiella pneumoniae by using a carrier of claim 15.
 - **17.** An infection detection probe which can detect a gene originated in Pseudomonas aeruginosa, which includes oligonucleotide having one of the base sequences of SEQ ID Nos. 48 to 57 and complementary sequences thereof.
 - **18.** A probe set which can detect a gene originated in Pseudomonas aeruginosa and includes at least one of infection detection probes each including oligonucleotide having one of the base sequences of SEQ ID Nos. 48 to 57 and complementary sequences thereof.
 - 19. A carrier on which an infection detection probe included in the probe set of claim 18 is chemically immobilized.
 - 20. A genetic screening method of detecting a gene originated in Pseudomonas aeruginosa by using a carrier of claim 19.

20

15

5

30

55

50

- **21.** An infection detection probe which can detect a gene originated in Serratia marcescens, which includes oligonucleotide having one of the base sequences of SEQ ID Nos. 58 to 68 and complementary sequences thereof.
- **22.** A probe set which can detect a gene originated in Serratia marcescens and includes at least one of infection detection probes each including oligonucleotide having one of the base sequences of SEQ ID Nos. 58 to 68 and complementary sequences thereof.
 - 23. A carrier on which an infection detection probe included in the probe set of claim 22 is chemically immobilized.
- 24. A genetic screening method of detecting a gene originated in Serratia marcescens by using a carrier of claim 23.
 - **25.** An infection detection probe which can detect a gene originated in Streptococcus pneumoniae, which includes oligonucleotide having one of the base sequences of SEQ ID Nos. 69 to 77 and complementary sequences thereof.
- 26. A probe set which can detect a gene originated in Streptococcus pneumoniae and includes at least one of infection detection probes each including oligonucleotide having one of the base sequences of SEQ ID Nos. 69 to 77 and complementary sequences thereof.
- **27.** A carrier on which at least one kind of infection detection probe of infection detection probes of claim 26 is chemically immobilized.
 - 28. A genetic screening method of detecting a gene originated in Streptococcus pneumoniae by using a carrier of claim 27.
 - **29.** An infection detection probe which can detect a gene originated in Haemophilus influenzae, which includes oligonucleotide having one of the base sequences of SEQ ID Nos. 78 to 85 and complementary sequences thereof.

25

30

35

45

50

- **30.** A probe set which can detect a gene originated in Haemophilus influenzae and includes at least one of infection detection probes each including oligonucleotide having one of the base sequences of SEQ ID Nos. 78 to 85 and complementary sequences thereof.
- **31.** A carrier on which at least one kind of infection detection probe of infection detection probes of claim 30 is chemically immobilized.
- 32. A genetic screening method of detecting a gene originated in Haemophilus influenzae by using a carrier of claim 31.
- **33.** An infection detection probe which can detect a gene originated in Enterobacter cloacae, which includes oligonucleotide having one of the base sequences of SEQ ID Nos. 86 to 97 and complementary sequences thereof.
- 34. A probe set which can detect a gene originated in Enterobacter cloacae and includes at least one of infection detection probes each including oligonucleotide having one of the base sequences of SEQ ID Nos. 86 to 97 and complementary sequences thereof.
 - **35.** A carrier on which at least one kind of infection detection probe of infection detection probes of claim 34 is chemically immobilized.
 - 36. A genetic screening method of detecting a gene originated in Enterobacter cloacae by using a carrier of claim 35.
 - **37.** An infection detection probe which can detect a gene originated in Enterococcus faecalis, which includes oligonucleotide having one of the base sequences of SEQ ID Nos. 98 to 106 and complementary sequences thereof.
 - **38.** A probe set which can detect a gene originated in Enterococcus faecalis and includes at least one of infection detection probes each including oligonucleotide having one of the base sequences of SEQ ID Nos. 98 to 106 and complementary sequences thereof.
- **39.** A carrier on which at least one kind of infection detection probe of infection detection probes of claim 38 is chemically immobilized.
 - 40. A genetic screening method of detecting a gene originated in Enterococcus faecalis by using a carrier of claim 39.

	41.	An infectious etiologic agent amplification reaction primer used to PCR-amplify a 16s rRNA gene arrangement of an infectious etiologic agent, comprising:
5		oligonucleotide having one of base sequences of SEQ ID Nos. 107 to 112.
3	42.	The primer according to claim 41, wherein the sequence is different from a base sequence of a human genome DNA by not less than three bases.
10	43.	An infectious etiologic agent amplification reaction primer set used to PCR-amplify a 16s rRNA gene arrangement of an infectious etiologic agent, comprising:
		a plurality of primers each comprising oligonucleotide having a plurality of base sequences including at least one of base sequences of SEQ ID Nos. 107 to 109 and at least one of base sequences of SEQ ID Nos. 110 to 112.
15	44.	The primer set according to claim 43, wherein PCR reaction is caused for a human blood specimen by using all the primer sets simultaneously.
20	45.	An infectious etiologic agent detection method of detecting an infectious etiologic agent by a DNA probe by executing a PCR amplification process using an infectious etiologic agent amplification reaction primer set of claim 43.
25		
30		
35		
40		
45		
50		
55		

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- JP 2001299396 A **[0004]**
- JP 6133798 A [0005]


- JP 10304896 A [0005]
- JP 10304897 A [0005] [0009]

专利名称(译) 传染性病原体检测探针和探针组,载体和遗传筛选方法					
公开(公告)号	EP1717323A2	公开(公告)日	2006-11-02		
申请号 EP2006076492 申请日 2004-03-29					
[标]申请(专利权)人(译)	佳能株式会社				
申请(专利权)人(译)	佳能株式会社				
当前申请(专利权)人(译)	佳能株式会社				
[标]发明人	YAMAMOTO NOBUKO C O CANON KABUSHIKI KAISHA TSUKUDA MAMORU C O CANON KABUSHIKI KAISHAP ISHII MIE C O CANON KABUSHIKI KAISHA YOSHII HIROTO C O CANON KABUSHIKI KAISHA KAWAGUCHI MASAHIRO C O CANON KABUSHIKI KAISHA SUZUKI TOMOHIRO C O CANON KABUSHIKI KAISHA				
发明人	YAMAMOTO, NOBUKO, C/O CANON KABUSHIKI KAISHA TSUKUDA, MAMORU, C/O CANON KABUSHIKI KAISHAP ISHII, MIE, C/O CANON KABUSHIKI KAISHA OGURA, MASAYA, C/O CANON KABUSHIKI KAISHA YOSHII, HIROTO, C/O CANON KABUSHIKI KAISHA FUKUI, TOSHIFUMI, C/O CANON KABUSHIKI KAISHA KAWAGUCHI, MASAHIRO, C/O CANON KABUSHIKI KAISHA SUZUKI, TOMOHIRO, C/O CANON KABUSHIKI KAISHA				
IPC分类号	C12Q1/68 G01N33/53 C07H21/04 C12M1/00 C12M1/34 C12N15/09 C12Q1/02 C12Q1/70 G01N33 /569 G01N37/00				
CPC分类号 C12Q1/689 C12Q1/6837 Y02A50/451					
代理机构(译)	贝雷斯福德KEITH DENIS LEWIS				
优先权	2003099458 2003-04-02 JP 2003099457 2003-04-02 JP 2003099456 2003-04-02 JP 2003099455 2003-04-02 JP 2003099454 2003-04-02 JP 2003099453 2003-04-02 JP 2003099452 2003-04-02 JP 2003099463 2003-04-02 JP 2003099461 2003-04-02 JP 2003099461 2003-04-02 JP 2003099460 2003-04-02 JP 2003099469 2003-04-02 JP 2003099469 2003-04-02 JP 2003099459 2003-04-02 JP				
其他公开文献	EP1717323A3 EP1717323B1				
外部链接 <u>Espacenet</u>					

摘要(译)

检测感染性病原体基因的感染性病原体检测探针组包括多种探针,所述探针包括具有选自包括SEQ ID No.1至SEQ ID NO.1的碱基序列的第一组的多个基团中的每一个的碱基序列的寡核苷酸。图14及其互补序列,第二组包括SEQ ID Nos.15至24的碱基序列及其互补序列,第三组包括SEQ ID Nos.25至36的碱基序列及其互补序列,第四组包括碱基序列SEQ ID Nos.37-47及其互补序列,第五组包括SEQ ID Nos.48-57的碱基序列及其互补序列,第六组包括SEQ ID Nos.58-68的碱基序列及其互补序列第七组包括SEQ ID Nos.69-77的碱基序列及其互补序列,第八组包括SEQ ID.NO:18的碱基序列及其互补序列,第九组包括SEQ ID Nos.86-97的碱基序列及其互补序列,第九组包括SEQ ID Nos.86-97的碱基序列及其互补序列,第10组包括SEQ ID Nos.98-106的碱基序列及其互补序列。

