

(11)

EP 2 325 648 A1

(12)

EUROPEAN PATENT APPLICATION

published in accordance with Art. 153(4) EPC

(43) Date of publication:
25.05.2011 Bulletin 2011/21

(51) Int Cl.:
G01N 33/574 (2006.01) **C12N 15/09 (2006.01)**
C12Q 1/68 (2006.01) **G01N 33/53 (2006.01)**

(21) Application number: 09805010.7

(86) International application number:
PCT/JP2009/063883

(22) Date of filing: 05.08.2009

(87) International publication number:
WO 2010/016527 (11.02.2010 Gazette 2010/06)

(84) Designated Contracting States:

**AT BE BG CH CY CZ DE DK EE ES FI FR GB GR
HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL
PT RO SE SI SK SM TR**

Designated Extension States:

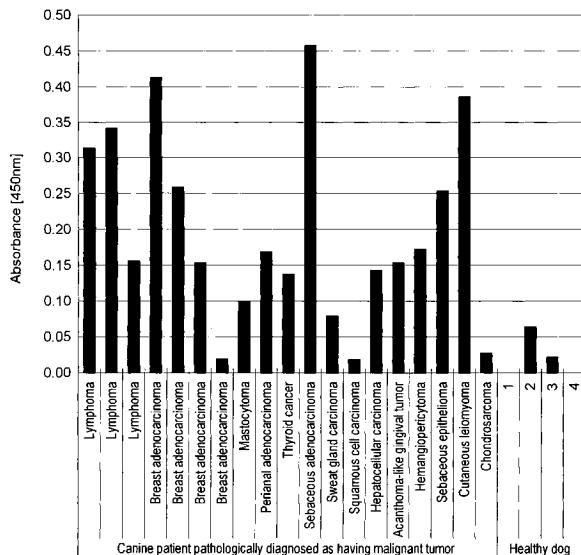
AL BA RS

(30) Priority: 05.08.2008 JP 2008202320

(71) Applicant: **Toray Industries, Inc.**
Tokyo 103-8666 (JP)

(72) Inventors:

- **OKANO, Fumiyo**shi
Kamakura-shi
Kanagawa 248-8555 (JP)
- **SUZUKI, Kana**
Kamakura-shi
Kanagawa 248-8555 (JP)


(74) Representative: **Denison, Christopher Marcus et al**
Mewburn Ellis LLP
33 Gutter Lane
London
EC2V 8AS (GB)

(54) CANCER DETECTION METHOD

(57) The present invention relates to a method for detecting cancer, comprising measuring the expression of a polypeptide having a reactivity of binding to an antibody against a CAPRIN-1 protein having an amino acid sequence shown in any one of the even-numbered SEQ ID NOS: 2-30 in the Sequence Listing via an antigen-

antibody reaction in a sample separated from a living organism, and, a reagent for detecting a cancer comprising the CAPRIN-1 protein or a fragment thereof, an antibody against the CAPRIN-1 protein or a fragment thereof, or a polynucleotide encoding the CAPRIN-1 protein or a fragment thereof.

Fig. 3

Description**TECHNICAL FIELD**

5 [0001] The present invention relates to a method for detecting cancer using CAPRIN-1 as a tumor marker.

BACKGROUND ART

10 [0002] Cancer is the leading cause of death. Treatment currently performed for cancer is mainly symptomatic therapy that mostly consists of surgical therapy with a combination of radiation therapy and chemotherapy. Owing to advancements in medical technology, cancer is now almost a curable disease if it can be detected early. Hence, a method for detecting cancer, by which detection can be conveniently performed using serum, urine, or the like without imposing physical or economic burdens on cancer patients, is now required.

15 [0003] As a cancer diagnostic method using blood or urine, a method for measuring a tumor product such as a tumor marker has recently become popular. The term "tumor product" refers to a tumor-associated antigen, an enzyme, a specific protein, a metabolite, a tumor gene, a tumor gene product, a tumor suppressor gene, and the like. Carcinoembryonic antigen CEA, glycoprotein CA19-9, CA125, prostate-specific antigen PSA, calcitonin, which are peptide hormones produced in the thyroid and the like are used as tumor markers for diagnosis of some cancer types. However, tumor markers useful for cancer diagnosis are absent for many cancer types. Also, most currently known tumor markers are present in only trace amounts (on roughly a pg/mL order) in body fluids. Therefore, highly sensitive measurement methods or special techniques are required for detecting such tumor markers. Under the current circumstances, it is expected that provision of a new cancer testing means capable of detecting various types of cancer with high sensitivity involving a convenient procedure creates diagnostic applications for various types of cancer.

20 [0004] Also, such cancer testing means is very useful if it is capable of not only detecting cancer but also diagnosing cancer having developed in a location invisible to the naked eye, the extent of cancer, the malignancy or postoperative course of cancer, recurrence, metastasis, and the like.

25 [0005] Specifically, if diagnosis of cancer that has developed in a location invisible to the naked eye becomes possible, such cancer testing means would be useful for early detection of cancer within a location such as an intraperitoneal part that is difficult to recognize. Also, a tumor that does not have a grossly visible size such as cancer that is undetectable even by ultrasonography, CT (computer tomography), or MRI (nuclear magnetic resonance imaging) can be detected.

30 [0006] Additionally, the extent of cancer is classified based on the degree to which a tumor spreads at the primary site and the presence or the absence of metastasis to regional lymph nodes or distant organs. In general, there are 5 disease stages (each referred to as "stage"), and higher stage numbers indicate more advanced stages of the disease. Strictly, the definition of stage differs depends on organs. However, for example, cancer at stage 0 is cancer that remains 35 intraepithelial and cancer at stage IV is cancer that has metastasized to a distant location. If such extent of cancer is found, decisions about appropriate treatment courses as well as diagnosis of the therapeutic effects of an anticancer agent become possible. As specific examples of decisions about treatment courses, in the case of prostate cancer and the like, there is a type requiring no treatment because it has very low malignancy and will almost never progress. In contrast, there is a type requiring treatment because it is progressive and metastasizes to bone or the like and causes 40 patients to die painfully. Therapies such as hormone therapy and extirpative surgery are each associated with an adverse reaction. Thus, therapies should be appropriately determined and decided upon. Also, if evaluation concerning the selection of an anticancer agent can be appropriately made or if timing or the like for the termination of administration of an anticancer agent can be appropriately determined, physical and economical burdens on patients can also be reduced. Therefore, it is important to be able to diagnose the extent of cancer.

45 [0007] One of the characteristics of cancer cells is that they undergo blastogenesis; that is, dedifferentiation. Except for some cancer types, poorly differentiated or undifferentiated cancer cells with a low degree of differentiation rapidly grow after metastasis and result in poor prognosis after therapy. Such cancer is said to have high malignancy. Conversely, highly differentiated cancer cells with a high degree of differentiation retain the structural and functional characteristics of affected organs. Such cancer can be said to have relatively low malignancy. If the malignancy of cancer can be 50 determined, the following measures can be taken. Even if the tumor is small, a wide surgical margin can be secured upon tumor removal, when the malignancy is high. Moreover, follow-up is possible while paying attention to a wide range of peripheral tissue.

55 [0008] If diagnosis of postoperative courses including recurrence and metastasis is possible, diagnosis of whether or not a tumor can be completely removed by surgery becomes possible. Incomplete tumor removal likely results in recurrence. Hence, such diagnosis can provide criteria for determining to more carefully perform follow-up at short intervals or to perform early reoperation if necessary. Also, if recurrence takes place, there is a high possibility of early detection. Detection is often delayed when distant metastasis takes place. However, if diagnosis of metastasis becomes possible, it becomes possible to provide criteria by which the range of testing can be broadened to include areas other than the

site of removal and the periphery thereof.

[0009] It is known that dogs grow old 7 times faster than humans. Recently, companion animals are being raised as family members and often have lifestyle habits similar to those of their owners. Therefore, it is predictable that an owner's risk of developing cancer would be high when his or her companion animal develops cancer. If convenient and precise cancer diagnosis becomes possible for companion animals, it would be expected to provide clues for preventing cancer of owners.

[0010] Currently, the number of domestic dogs in Japan is said to be about 6,700,000, and the same figure for the U.S. is said to be about 17,640,000. Quintuple, septuple, and octuple combined vaccines and the like have become prevalent, in addition to rabies shots, and thereby highly lethal infectious diseases have decreased, such as canine parvovirus infection, canine distemper virus infection, canine parainfluenza (kennel cough), canine adenovirus-2 infection (kennel cough), infectious canine hepatitis, canine coronavirus infection, and leptospirosis. Therefore, the average life span of dogs has increased. Elderly dogs, which are seven years old or older, account for 35.5% of all domestic dogs. Causes of death of domestic dogs are also similar to those of humans, such as cancer, hypertension, and cardiac disease, which are on the rise. In the U.S., about 4,000,000 dogs are diagnosed with cancer annually. Also in Japan, it is said that about 1,600,000 dogs are potentially affected with tumors.

[0011] However, convenient cancer diagnostic agents for animals have been absent. Furthermore, in animal medical care, testing methods that involve photographing or filming using X-rays, CT scans, MRI scans, or the like have not been prevalent. After palpation, a simple blood test, and testing using X-ray photography are performed, diagnosis currently depends significantly on the experience of veterinarians. Testing methods using serum have been partially begun, but the methods use human tumor markers since no canine tumor marker has been discovered.

[0012] Precise cancer diagnosis requires abdominal surgery that imposes significant physical burdens on dogs and cost burdens on owners. If cancer diagnosis can be conveniently made for companion animals such as dogs and cats, it would lead to early detection or precise diagnosis of cancer and would be expected to be useful for cancer therapy for companion animals. Also, if such convenient cancer diagnosis using serum becomes possible, it would be expected not only to enable cancer diagnosis but also to significantly contribute to periodic health examinations, preoperative diagnosis, and decisions about therapeutic strategy.

[0013] Health examination for companion animals, unlike the case of humans, is not prevalent. Hence, detection of cancer often occurs too late, such that an owner finds out the disease and then comes to a hospital only after the tumor has become large in many cases. If such tumor that has increased in size is malignant, it often results in treatment that is too late, even when surgical therapy such as surgery or medication using an anticancer agent or the like is performed. Hence, when a veterinarian determines that the tumor is malignant, anticancer agent treatment is generally performed without surgery. If surgery is performed, measures during surgery, such as determination of the size of margin to be secured, determination of the amount of blood required during surgery, and measures against cell scattering should also be strictly taken. It is desired that anticancer agent treatment is initiated immediately after surgery and that follow-up is performed at short intervals. Incorporation of the above cancer diagnosis into dog health checkups that are recently increasingly prevalent and are referred to as complete medical checkups for dogs is expected to lead to early cancer detection.

[0014] On the other hand, in the case of a benign tumor, surgery can be advised even if a tumor is large. After surgery, only resected areas need care without requiring any expensive anticancer agent treatment and without any need for apprehensions concerning follow-ups.

[0015] Under the current situation, provision of a convenient means for detecting cancer with high sensitivity, which is applicable to cancer diagnosis for animals, enables precise and efficient treatment and results in a number of advantages for both owners and veterinarians.

[0016] Cytoplasmic-and proliferation-associated protein 1 (CAPRIN-1) is an intracellular protein that is expressed when normal cells in resting phase are activated or undergo cell division. CAPRIN-1 is also known to be involved in mRNA transport through intracellular formation of intracellular stress grains with RNA and translation control, for example. Meanwhile, CAPRIN-1 has many different names. Examples of such names include GPI-anchored membrane protein 1 and membrane component surface marker 1 protein (M11S1), as if the protein has been known to be a membrane protein. These different names are derived from a report (J Biol Chem. 270: 20717-20723 (1995)) that the gene sequence of CAPRIN-1 originally has a GPI-binding region and CAPRIN-1 is a membrane protein expressed in large bowel-derived cell lines. It has been later reported that: the CAPRIN-1 gene sequence in this report is an error; frame shift takes place by deletion of 1 nucleotide from the CAPRIN-1 gene sequence currently registered with GenBank or the like, so that 80 amino acids are deleted from the C terminus and the resulting artifact (74 amino acids) corresponds to the GPI binding portion of the previous report; and an error is also present on the 5' side of the gene sequence and deletion of 53 amino acids from the N terminus has been proven (J Immunol. 172: 2389-2400 (2004)). Also, it has been reported that a protein encoded by the CAPRIN-1 gene sequence currently registered with GenBank or the like is not a cell membrane protein (J Immunol. 172: 2389-2400 (2004)).

[0017] In addition, based on the report of J Biol Chem. 270: 20717-20723 (1995) that CAPRIN-1 is a cell membrane

protein, US2008/0075722 and WO2005/100998 disclose that CAPRIN-1 under the name of M11S1 can be a target for cancer therapy as a cell membrane protein (not mentioned in the Examples). However, as reported in J Immunol. 172: 2389-2400 (2004), it has been accepted from the time of filing of US2008/0075722 and WO2005/100998 up to now that CAPRIN-1 is not expressed on cell surfaces. It is obvious that the content of US2008/0075722 and WO2005/100998 based only on misinformation to the effect that CAPRIN-1 is a cell membrane protein should not be understood as technical commonsense of persons skilled in the art. Moreover, it has never been reported that CAPRIN-1 is expressed at higher levels in breast cancer cells or the like than in normal cells.

5
10
SUMMARY OF THE INVENTION

PROBLEM TO BE RESOLVED BY THE INVENTION

[0018] An object of the present invention is to provide a means for detecting cancer that is useful for cancer diagnosis.

15
MEANS FOR RESOLVING THE PROBLEM

[0019] As a result of intensive studies, the present inventors have obtained cDNA encoding a protein that binds to an antibody existing in cancer-bearing living organism-derived serum by a SEREX method using a canine testis-derived cDNA library and the serum of a cancer-bearing dog, and thus they have prepared canine CAPRIN-1 proteins having the amino acid sequences shown in SEQ ID NOS: 6, 8, 10, 12, and 14 based on the cDNA. Also, the present inventors have prepared human CAPRIN-1 proteins having the amino acid sequences shown in SEQ ID NOS: 2 and 4 based on human genes homologous to the obtained genes. The present inventors have further discovered that: genes encoding these proteins are specifically expressed in canine and human testes and malignant cancer cells (see Example 1 described later); recombinant polypeptides prepared based on the amino acid sequences of these proteins specifically react only with sera from cancer-bearing living organisms; and CAPRIN-1 can be specifically detected from a cancer-bearing living organism using antibodies prepared using the recombinant polypeptides. Thus, the present inventors have completed that present invention.

[0020] Specifically, the present invention provides a method for detecting cancer comprising measuring CAPRIN-1 expression, which is performed for samples separated from living organisms. Also, the present invention provides a reagent for detecting cancer comprising an antibody that is induced *in vivo* against CAPRIN-1 and a polypeptide that undergoes an antigen-antibody reaction. Furthermore, the present invention provides a reagent for detecting cancer comprising an antibody that undergoes an antigen-antibody reaction with CAPRIN-1 or an antigen-binding fragment thereof. Furthermore, the present invention provides a reagent for detecting cancer comprising a polynucleotide that specifically hybridizes to a partial sequence of 15 or more nucleotides, preferably 20 to 25 or more nucleotides, and more preferably 30 or more nucleotides in the nucleotide sequence shown in SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, or the like in the Sequence Listing.

[0021] Specifically, the present invention has the following characteristics.

(1) A method for detecting a cancer, comprising measuring the expression of a polypeptide having a reactivity of binding via an antigen-antibody reaction to an antibody against a CAPRIN-1 protein having any one of the amino acid sequences shown in the even-numbered SEQ ID NOS: 2-30 in the Sequence Listing, in a sample separated from a living organism.

(2) The method according to (1) above, wherein the polypeptide to be measured is a CAPRIN-1 protein having any one of the amino acid sequences shown in the even-numbered SEQ ID NOS: 2-30 (i.e., SEQ ID NOS: 2, 4, 6, 8,... 30) or a polypeptide having 85% or more sequence identity with the CAPRIN-1 protein.

(3) The method according to (1) or (2) above, wherein the living organism is a human, a dog, or a cat.

(4) The method according to (3) above, wherein the living organism is a dog and the polypeptide to be measured has an amino acid sequence shown in any one of the even-numbered SEQ ID NOS: 2-30.

(5) The method according to (4) above, wherein the living organism is a dog and the polypeptide to be measured has the amino acid sequence shown in SEQ ID NO: 6, 8, 10, 12, or 14.

(6) The method according to (3) above, wherein the living organism is a human and the polypeptide to be measured has the amino acid sequence shown in SEQ ID NO: 2 or 4.

(7) The method according to any one of (1) to (6) above, wherein the expression of the polypeptide is measured by immunoassay of an antibody that can be contained in the sample and is induced *in vivo* against the polypeptide to be measured.

(8) The method according to any one of (1) to (7) above, wherein the samples is serum, blood plasma, ascite, or pleural effusion.

(9) The method according to any one of (1) to (6) above, wherein the expression of the polypeptide is measured by

measuring mRNA encoding the polypeptide, which is contained in the sample.

(10) The method according to (9) above, comprising examining the existing amount of the mRNA in the sample using a polynucleotide that specifically hybridizes to a partial sequence of 15 or more nucleotides, preferably 20 to 25 or more nucleotides, and more preferably 30 or more nucleotides in the nucleotide sequence of the above mRNA.

5 (11) The method according to (10) above, wherein the above living organism is a dog and the above polynucleotide is a polynucleotide specifically hybridizing to a partial sequence of 15 or more nucleotides, preferably 20 to 25 or more nucleotides, and more preferably 30 or more nucleotides in the nucleotide sequence shown in SEQ ID NO: 5, 7, 9, 11, or 13.

10 (12) The method according to (10) above, wherein the above living organism is a human and the above polynucleotide is a polynucleotide specifically hybridizing to a partial sequence of 15 or more nucleotides, preferably 20 to 25 or more nucleotides, and more preferably 30 or more nucleotides in the nucleotide sequence shown in SEQ ID NO: 1 or 3.

(13) The method according to any one of (9) to (12) above, wherein the above sample is a tissue or a cell.

15 (14) The method according to any one of (1) to (13) above, wherein the cancer is at least one type of cancer selected from the group consisting of brain tumor, squamous cell carcinoma of the head, neck, lung, uterus, or esophagus, melanoma, adenocarcinoma of the lung or uterus, renal cancer, malignant mixed tumor, hepatocellular carcinoma, basal cell carcinoma, acanthoma-like gingival tumor, tumor of the oral cavity, perianal adenocarcinoma, anal sac tumor, anal sac apocrine adenocarcinoma, sertoli cell carcinoma, cancer of vaginal vestibule, sebaceous adenocarcinoma, sebaceous epithelioma, sebaceous adenoma, sweat gland carcinoma, intranasal adenocarcinoma, nasal adenocarcinoma, thyroid cancer, large-bowel cancer, bronchial adenocarcinoma, adenocarcinoma, ductal carcinoma, breast adenocarcinoma, composite type breast adenocarcinoma, malignant mammary mixed tumor, intraductal papillary adenocarcinoma, fibrosarcoma, hemangiopericytoma, osteosarcoma, chondrosarcoma, soft tissue sarcoma, histiocytic sarcoma, myxosarcoma, undifferentiated sarcoma, lung cancer, mastocytoma, cutaneous leiomyoma, intraperitoneal leiomyoma, leiomyoma, chronic lymphocytic leukemia, lymphoma, gastrointestinal lymphoma, digestive lymphoma, small-cell-to-medium-cell lymphoma, adrenomedullary tumor, granulosa cell tumor, and pheochromocytoma.

20 (15) The method according to any one of (1) to (14) above, comprising further detecting the malignancy of cancer based on the fact that the malignancy of a cancer is high when the expression level of the above polypeptide is higher than that of a control.

25 (16) The method according to any one of (1) to (15) above, comprising further detecting the progression of cancer on the basis of the indicator that the extent of cancer is advanced when the expression level of the above polypeptide is higher than that of a control.

(17) A reagent for detecting a cancer, comprising a polypeptide that has a reactivity of binding via an antigen-antibody reaction to an antibody that is induced *in vivo* against a CAPRIN-1 protein having any one of the amino acid sequences shown in the even-numbered SEQ ID NOS: 2-30 in the Sequence Listing.

30 (18) A reagent for detecting a cancer, comprising an antibody or an antigen-binding fragment thereof that undergoes an antigen-antibody reaction with a polypeptide, wherein the polypeptide has a reactivity of binding via an antigen-antibody reaction to an antibody against a CAPRIN-1 protein having any one of the amino acid sequences shown in the even-numbered SEQ ID NOS: 2-30 in the Sequence Listing and is produced *in vivo* (or in a living body).

35 (19) The reagent for detecting cancer according to (18), wherein the antibody or antigen-binding fragment thereof that undergoes an antigen-antibody reaction with the polypeptide is an antibody or antigen-binding fragment thereof that binds to the surface of a cancer cell.

40 (20) The reagent for detecting cancer according to (18) or (19), wherein the antibody or antigen-binding fragment thereof that undergoes an antigen-antibody reaction with the polypeptide has an immunological reactivity with:

45 a polypeptide comprising an amino acid sequence of 7 or more continuous amino acid residues within the region of amino acid residue Nos. 50-98 or amino acid residue Nos. 233-305 in any one of the amino acid sequences shown in the even-numbered SEQ ID NOS: 2-30 excluding SEQ ID NO: 6 and SEQ ID NO: 18 or a polypeptide comprising the polypeptide as a partial sequence.

50 (21) The reagent for detecting a cancer according to any one of (18) to (20), wherein the antibody or antigen-binding fragment thereof that undergoes an antigen-antibody reaction with the polypeptide is an antibody or antigen-binding fragment thereof which binds to SEQ ID NO: 43, a monoclonal antibody or antigen-binding fragment thereof having the amino acid sequences of SEQ ID NOS: 44 and 45, a monoclonal antibody or antigen-binding fragment thereof having the amino acid sequences of SEQ ID NOS: 44 and 46, a monoclonal antibody or antigen-binding fragment thereof having the amino acid sequences of SEQ ID NOS: 44 and 47, a monoclonal antibody or antigen-binding fragment thereof having the amino acid sequences of SEQ ID NOS: 44 and 48, a monoclonal antibody an antigen-binding fragment thereof having the amino acid sequences of SEQ ID NOS: 49 and 50, a monoclonal antibody or antigen-binding fragment thereof having the amino acid sequences of SEQ ID NOS: 51 and 52, a monoclonal

antibody or antigen-binding fragment thereof having the amino acid sequences of SEQ ID NOS: 53 and 54, a monoclonal antibody or antigen-binding fragment thereof having the amino acid sequences of SEQ ID NOS: 55 and 56, a monoclonal antibody or antigen-binding fragment thereof having the amino acid sequences of SEQ ID NOS: 57 and 58, or a monoclonal antibody or antigen-binding fragment thereof having the amino acid sequences of SEQ ID NOS: 59 and 60.

(22) A reagent for detecting a cancer, comprising a polynucleotide that specifically hybridizes to a partial sequence of 15 or more nucleotides, preferably 20 to 25 or more nucleotides, and more preferably 30 or more nucleotides in any one of the nucleotide sequences shown in the odd-numbered SEQ ID NOS: 1-29 (i.e., SEQ ID NOS: 1, 3, 5, 7,..29) in the Sequence Listing.

ADVANTAGE OF THE INVENTION

[0022] According to the present invention, a new method for detecting a cancer is provided. As specifically described in Examples given later, a recombinant polypeptide prepared based on the amino acid sequence of CAPRIN-1 (or also referred to as Caprin-1) reacts with an antibody that specifically exists in the serum of a patient with cancer. Therefore, the cancer existing in a living body can be detected by measuring the antibody in a sample by the method of the present invention. Also, the cancer existing in a living body can be detected by measuring CAPRIN-1 itself. According to the method of the present invention, small-size cancer invisible to the naked eye or cancer in a deep part *in vivo* can be detected. Hence, the method of the present invention is useful for early detection of cancer at the time of health examination or the like. Furthermore, recurrent cancer can be detected early by the use of the method of the present invention for the follow-up of a patient after cancer treatment. Moreover, according to the method of the present invention, the extent of cancer can also be diagnosed, such as tumor increase, infiltration to the peripheral tissue, and cancer metastasis to a lymph node and a distant organ. Also, the serum antibody level is higher in a patient with highly malignant cancer than in a patient with low-malignant cancer. According to the method of the present invention, the malignancy of cancer can also be diagnosed. Also, as described in Examples below, mRNA encoding CAPRIN-1 is specifically expressed at high levels in testes and cancer cells. Therefore, cancers can also be detected by measuring the mRNA.

BRIEF DESCRIPTION OF THE DRAWINGS

[0023]

Fig. 1 shows the expression patterns of the gene encoding a CAPRIN-1 protein in normal tissues and tumor cell lines. Reference No. 1 indicates the expression patterns of the gene encoding the CAPRIN-1 protein. Reference No. 2 indicates the expression patterns of the GAPDH gene.

Fig. 2 shows the results of detecting by Coomassie staining the canine CAPRIN-1-derived polypeptide that is an example of polypeptides to be used in the present invention, which were produced and purified using *Escherichia coli* in the Examples. Reference No. 3 indicates the band of a canine CAPRIN-1-derived polypeptide.

Fig. 3 shows some of the results of cancer diagnosis for cancer-bearing dogs using the canine CAPRIN-1-derived polypeptides prepared in the Examples.

Fig. 4 shows some of the results of detailed cancer diagnosis for cancer-bearing dogs using the canine CAPRIN-1-derived polypeptides prepared in the Examples.

BEST MODE OF CARRYING OUT THE INVENTION

[0024] According to the method of the present invention, CAPRIN-1 expression is measured using a sample separated from a living organism. Examples of a method for measuring CAPRIN-1 expression include a method (1st method) that involves immunoassay for an antibody against CAPRIN-1 contained in a sample, a method (2nd method) that involves immunoassay for CAPRIN-1 itself contained in a sample, and a method (3rd method) that involves measurement of mRNA encoding CAPRIN-1 contained in a sample. In the method of the present invention, CAPRIN-1 expression may be measured by any of these methods. In the present invention, the term "measurement" refers to any of detection, qualitative determination, quantitative determination, and semi-quantitative determination.

[0025] The amino acid sequence shown in SEQ ID NO: 6, 8, 10, 12, or 14 is the amino acid sequence of canine CAPRIN-1. Canine CAPRIN-1 having the amino acid sequence was identified as a polypeptide binding to an antibody specifically existing in the cancer-bearing dog-derived serum by the SEREX method using a canine testis-derived cDNA library and the serum of a cancer-bearing dog (see Example 1). Specifically, an antibody against CAPRIN-1 having the amino acid sequence shown in SEQ ID NO: 6, 8, 10, 12, or 14 is specifically induced *in vivo* in a cancer-bearing dog. Therefore, canine cancer can be detected by measuring the above antibody against CAPRIN-1 having the amino acid sequence shown in SEQ ID NO: 6, 8, 10, 12, or 14 using the above 1st method (see Examples 3 and 4). Canine cancer

can also be detected by measuring CAPRIN-1 itself as an antigen shown in SEQ ID NO: 6, 8, 10, 12, or 14 using the above 2nd method (see Examples 5 and 6). Also, canine cancer can be detected, as described in the following Examples, by measuring mRNA encoding CAPRIN-1 since the mRNA is expressed at significantly high levels in testes and cancer cells (see Example 1).

5 [0026] The term "having an amino acid sequence" as used herein refers to amino acid residues being aligned in the relevant order. Therefore, for example, the expression "polypeptide having the amino acid sequence shown in SEQ ID NO: 2" refers to a polypeptide having 709 amino acid residues, which consists of the amino acid sequence of Met Pro Ser Ala · · · (abbreviated · · · Gln Gln Val Asn shown in SEQ ID NO: 2. Also, for example, the expression "polypeptide having the amino acid sequence shown in SEQ ID NO: 2" may also be abbreviated as "the polypeptide of SEQ ID NO: 2." The same applies to the expression "having a/the nucleotide sequence." In this case, the term "having" may be substituted with the expressions "consisting of."

10 [0027] Also, the term "polypeptide" as used herein refers to a molecule that is formed via peptide bonding of a plurality of amino acids. Examples of such molecule include not only polypeptide molecules with a large number of constituent amino acids, but also low-molecular-weight molecules (oligopeptides) with small number of amino acids and full-length proteins. The present invention further encompasses full-length CAPRIN-1 proteins each having an amino acid sequence shown in an even-numbered sequence ID from among SEQ ID NOS: 2-30.

15 [0028] In the method of the present invention, not only canine CAPRIN-1 of SEQ ID NO: 6, 8, 10, 12, or 14, but also CAPRIN-1 of other mammals (hereinafter, may also be referred to as "homolog" for canine CAPRIN-1. When simply referred to as "CAPRIN-1," CAPRIN-1 from not only a dog but also from another mammal is also encompassed herein) are also subjected to measurement. As specifically described in the following Examples, mRNA encoding human CAPRIN-1 is significantly expressed at a high level in human testis and cancer cells, as in the case of canine CAPRIN-1 of SEQ ID NO: 6, 8, 10, 12 or 14. However, no antibody against the human CAPRIN-1 is detected in a healthy human body. Also, an antibody against feline CAPRIN-1 is not detected in a healthy cat body, but is detected in a cancer-bearing cat alone. Therefore, cancer of a mammal other than a dog can be detected by measuring CAPRIN-1 expression in the mammal. Examples of CAPRIN-1 of mammals other than dogs, which are measurement subjects in the method of the present invention, include, but are not limited to, human CAPRIN-1 and feline CAPRIN-1. A nucleotide sequence encoding human CAPRIN-1 and the amino acid sequence thereof are as separately shown in SEQ ID NO: 1 and 3, and 2 and 4, respectively, in the Sequence Listing. Sequence identity with canine CAPRIN-1 is 94% in terms of nucleotide sequence and is 98% in terms of amino acid sequence. Even dogs and humans which are genetically distant mammals share as very high as 98% sequence identity in terms of the amino acid sequence of CAPRIN-1. Therefore, it is thought that a dog and a mammal other than a human; that is, canine CAPRIN-1 and homolog thereof share sequence identity as high as about 85% or more. Therefore, CAPRIN-1, the expression of which is measured in the method of the present invention, has preferably 85% or more and more preferably 95% or more sequence identity with the amino acid sequence of canine CAPRIN-1 shown in SEQ ID NO: 6, 8, 10, 12, or 14. However, such examples are not particularly limited thereto.

20 [0029] In the 1st method above, the above antibody that can be present in a sample can be easily measured by immunoassay using an antigenic substance that undergoes an antigen-antibody reaction with the antibody. Immunoassay itself is a known conventional method as specifically described below. As an antigenic substance for immunoassay, the canine CAPRIN-1 of SEQ ID NO: 6, 8, 10, 12, or 14 that causes the induction of the antibody within a cancer-bearing dog body can be used. Furthermore, an antibody has cross-reactivity. Thus, even a molecule other than an antigenic 25 substance actually having served as an immunogen can bind to an antibody induced against the immunogen via an antigen-antibody reaction, as long as a structure analogous to the epitope of the immunogen is present on the molecule. In particular, a protein from a mammal and homolog thereof from another mammal share high amino acid sequence identity and often have epitope structures analogous to each other. As specifically described in the following Examples, the canine CAPRIN-1 of SEQ ID NO: 6, 8, 10, 12, or 14 undergoes an antigen-antibody reaction not only with an antibody 30 induced against the canine CAPRIN-1 within a cancer-bearing dog body, but also with an antibody induced against feline CAPRIN-1 within a cancer-bearing cat body. Moreover, human CAPRIN-1 undergoes an antigen-antibody reaction with the above antibody induced within cancer-bearing dog or cancer-bearing cat bodies. Accordingly, in the 1st method of the present invention, CAPRIN-1 from any mammal can be used as an antigen for immunoassay.

35 [0030] In general, when an antigenic substance is a protein or the like having a complicated structure and high molecular weight, a plurality of sites having different structures are present on the molecule. Therefore, a plurality of types of antibody capable of recognizing and binding to different sites of such antigenic substances are produced *in vivo*. Specifically, an antibody that is produced *in vivo* against an antigenic substance such as protein is a polyclonal antibody that is a mixture of a plurality of types of antibody. An antibody discovered by the present inventors is also a polyclonal antibody. It is specifically present in cancer-bearing living organism-derived serum and specifically binds to a recombinant 40 CAPRIN-1 protein via an antigen-antibody reaction. The term "polyclonal antibody" used in the present invention refers to an antibody that exists in serum from a living organism containing an antigenic substance therein and is induced *in vivo* against the antigenic substance.

45 [0031] In Examples described later, polypeptides of SEQ ID NO: 6 and SEQ ID NO: 8 (canine CAPRIN-1) and the

polypeptide of SEQ ID NO: 2 (human CAPRIN-1) were prepared as antigens for immunoassay of specific antibodies in the cancer-bearing living animals. Then reactivity between these polypeptides and the above antibody in serum from a cancer-bearing living organism was confirmed. However, the above antibody is a polyclonal antibody, so that it naturally binds to a polypeptide consisting of the homolog of SEQ ID NO: 6, 8, or 2. Even in the case of a fragment of said polypeptides, it can bind to the above antibody contained in serum from a cancer-bearing living organism, since the polyclonal antibody can contain an antibody capable of recognizing the structure of the relevant fragment. That is, either a polypeptide (that is, full-length CAPRIN-1 protein) or the homolog of SEQ ID NO: 6, 8, or 2 or a fragment thereof can be similarly used for measurement of the above polyclonal antibody contained specifically in serum of a cancer-bearing living organism and is useful for cancer detection. Therefore, examples of a polypeptide to be used as an antigen for immunoassay in the 1st method of the present invention include, not only a polypeptide that consists of the full-length region of CAPRIN-1 (e.g., SEQ ID NO: 6, 8, or 2), but also a polypeptide fragment that consists of continuous 7 or more, preferably continuous 8 or more, 9 or more, or 10 or more amino acids in the amino acid sequence of CAPRIN-1 and undergoes an antigen-antibody reaction with a polyclonal antibody against CAPRIN-1 (hereinafter, may be conveniently referred to as "a specifically reactive partial polypeptide"). It is known in the art that a polypeptide of about 7 or more amino acid residues exerts antigenicity. However, if the number of amino acid residues constituting a polypeptide is too low, such polypeptide highly likely cross-reacts with antibodies, which exist in the sample, against proteins other than CAPRIN-1. Accordingly, in view of increasing the accuracy of immunoassay, the desirable number of amino acid residues of a polypeptide fragment may be preferably 30 or more or 50 or more, further preferably 100 or more or 150 or more, further preferably 300 or more, even more preferably 600 or more, and further preferably 1000 or more and 1500 or more.

20 [0032] Specific preferable examples of the polypeptides to be used as antigens are the polypeptides of the even-numbered SEQ ID NOS: 2-30 or fragments thereof.

[0033] Nucleotide sequences of polynucleotides encoding proteins consisting of the amino acid sequences of the even-numbered SEQ ID NOS: 2-30 (that is, SEQ ID NOS: 2, 4, 6 ··· 28, 30) are shown in the odd-numbered SEQ ID NOS: 1-29 (that is, SEQ ID NOS: 1, 3, 5 ··· 27, 29).

25 [0034] In general, it is broadly known by persons skilled in the art concerning protein antigens such that even when few amino acid residues have been substituted, deleted, added, or inserted in the amino acid sequence of the protein, the resultant may retain antigenicity almost equivalent to that of the original protein. Therefore, a polypeptide: having a sequence that has a substitution, a deletion, and/or an insertion of a few (preferably one or several) amino acid residues with respect to the amino acid sequence of CAPRIN-1 and has 80% or more, 85% or more, preferably 90% or more, more preferably 95% or more, and further preferably 98% or more sequence identity with the original sequence; and specifically binding to a polyclonal antibody against CAPRIN-1 via an antigen-antibody reaction (hereinafter, may be conveniently referred to as "specifically reactive modified polypeptide") can be used for cancer detection in a manner similar to that for the above polypeptides. Preferably, the specifically reactive modified polypeptide has an amino acid sequence that has a substitution, a deletion, an addition, and/or an insertion of one or several amino acid residues with respect to the amino acid sequence of CAPRIN-1. The term "several" as used herein refers to an integer of 2-10, preferably an integer of 2-6, and further preferably an integer of 2-4.

30 [0035] The term "sequence identity (of amino acid sequences)" as used herein is obtained by aligning two amino acid sequences to be compared so that amino acid residues match as many as possible, subtracting the number of amino acid residues that have matched from the total number of amino acid residues, and then expressing the result in percentage form. Upon the above alignment, if necessary, gaps are appropriately inserted into one of or both sequences to be compared. Such sequence alignment can be performed using a known program such as BLAST, FASTA, or CLUSTAL W (Karlin and Altschul, Proc. Natl. Acad. Sci. U.S.A., 87: 2264-2268, 1993; Altschul et al., Nucleic Acids Res., 25: 3389-3402, 1997).

35 [0036] Twenty types of amino acid constituting natural proteins can be grouped into neutral amino acids having side chains with low polarity (Gly, Ile, Val, Leu, Ala, Met, and Pro), neutral amino acids having hydrophilic side chains (Asn, Gln, Thr, Ser, Tyr, and Cys), acidic amino acids (Asp and Glu), basic amino acids (Arg, Lys, and His), and aromatic amino acids (Phe, Tyr, Trp, and His) in which the members of each group have properties analogous to each other. It is known that substitution among these amino acids (that is, conservative substitution) rarely alters the properties of the resulting polypeptide. Therefore, when amino acid residues of CAPRIN-1 are substituted, substitution is performed between members of the same group so that a possibility of maintaining binding with the corresponding antibody becomes higher. However, in the present invention, the above variant may involve non-conservative substitution, as long as immune-inducing activity equivalent to or almost equivalent to that of a non-variant is imparted.

40 [0037] A polypeptide (hereinafter, may conveniently be referred to as "specifically reactive addition polypeptide") that contains as a partial sequence the above polypeptide to be used in the present invention (that is, prepared by addition of another (poly)peptide to one end or both ends of a polypeptide to be used in the present invention) and specifically binds to a polyclonal antibody against CAPRIN-1 via an antigen-antibody reaction can also be used for cancer detection in a manner similar to that for the above polypeptides.

45 [0038] The above polypeptides to be used in the present invention can be synthesized according to a chemical

synthesis method such as an Fmoc method (fluorenylmethyloxycarbonyl method) and a tBoc method (t-butyloxycarbonyl method) (Ed., The Japanese Biochemical Society, Seikagaku Jikken Koza (Biochemical Experimental Lecture Series) 1, Protein Chemistry IV, Chemical Modification and Peptide Synthesis, TOKYO KAGAKU DOZIN CO., LTD (Japan), 1981). Also, the polypeptides can also be synthesized by a conventional method using various commercially available peptide synthesizers. Alternatively, the polypeptides can be easily prepared using known genetic engineering techniques (Sambrook et al., Molecular Cloning, 2nd Edition, Current Protocols in Molecular Biology (1989), Cold Spring Harbor Laboratory Press, Ausubel et al., Short Protocols in Molecular Biology, 3rd Edition, A Compendium of Methods from Current Protocols in Molecular Biology (1995), John Wiley & Sons, and the like). For example, from RNA extracted from a tissue expressing a gene encoding the human CAPRIN-1 of SEQ ID NO: 2 or a homolog thereof, cDNA of the gene is prepared by RT-PCR. The full-length sequence or a desired partial sequence of the cDNA is incorporated into an expression vector and then the vector is introduced into host cells, so that a polypeptide of interest can be obtained. The nucleotide sequences of cDNAs encoding canine CAPRIN-1 of SEQ ID NOS: 6, 8, 10, 12, and 14 are shown in SEQ ID NOS: 5, 7, 9, 11, and 13, respectively. The human factors homolog thereof; that is, the nucleotide sequences of cDNAs encoding human CAPRIN-1 of SEQ ID NOS: 2 and 4 are shown in SEQ ID NOS: 1 and 3, respectively. Hence, primers to be used for RT-PCR can be easily designed in reference to these nucleotide sequences. Also, as described later, a gene encoding CAPRIN-1 of a non-human mammal can be amplified using primers designed in reference to the nucleotide sequences of the odd-numbered SEQ ID NOS: 1-29. For example, cDNA encoding feline CAPRIN-1 can be easily prepared by techniques similar to the above techniques. RNA extraction, RT-PCR, cDNA incorporation into a vector, and introduction of a vector into host cells can be performed by known methods as described below, for example. Also, vectors and host cells to be used herein are also known and various vectors and host cells are commercially available.

[0039] The above host cells may be any cells, as long as they can express the above polypeptides. Examples of prokaryotic host cells include *Escherichia coli* and the like. Examples of eukaryotic host cells include mammalian cultured cells such as monkey kidney cells (COS1), Chinese hamster ovary cells (CHO), the human embryonic kidney cell line (HEK293), and the mouse embryonic skin cell line (NIH3T3), budding yeast, fission yeast, silkworm cells, and Xenopus oocytes.

[0040] When prokaryotic cells are used as host cells, an expression vector having a replication origin in prokaryotic cells, a promoter, a ribosome-binding site, a multi-cloning site, a terminator, a drug-resistance gene, an auxotrophic complementary gene, and the like are used. As expression vectors for *Escherichia coli*, pUC vectors, pBluescriptII, pET expression systems, pGEX expression systems, and the like can be exemplified. A DNA encoding the above polypeptide is incorporated into such an expression vector, prokaryotic host cells are transformed with the vector, and then the thus obtained transformant is cultured, so that the polypeptide encoded by the DNA can be expressed in the prokaryotic host cells. At this time, the polypeptide can also be expressed as a fusion protein with another protein. A DNA encoding the above polypeptide can be obtained by preparing a cDNA by RT-PCR as described above, for example. Moreover, such DNA encoding the above polypeptide can be also synthesized by a conventional method using a commercially available nucleic acid synthesizer as described below. The nucleotide sequences of cDNAs of the genes encoding CAPRIN-1 of SEQ ID NOS: 2 and 4 are shown in SEQ ID NOS: 1 and 3, respectively, in the Sequence Listing.

[0041] When eukaryotic cells are used as host cells, expression vectors for eukaryotic cells having a promoter, a splicing region, a poly(A) additional site, and the like are used. Examples of such expression vectors include pKA1, pCDM8, pSVK3, pMSG, pSVL, pBK-CMV, pBK-RSV, EBV vector, pRS, pcDNA3, and pYES2. Similarly to the above, a DNA encoding a polypeptide to be used in the present invention is incorporated into such an expression vector, eukaryotic host cells are transformed with the vector, and then the thus obtained transformant is cultured, so that the polypeptide encoded by the above DNA can be expressed in eukaryotic host cells. When pIND/V5-His, pFLAG-CMV-2, pEGFP-N1, pEGFP-C1, or the like is used as an expression vector, the above polypeptide can be expressed as a fusion protein with various tags, such as a His tag (e.g., (His)₆ to (His)₁₀), a FLAG tag, a myc tag, a HA tag, and GFP.

[0042] For introduction of an expression vector into a host cell, known methods can be employed such as electroporation, a calcium phosphate method, a liposome method, a DEAE dextran method, microinjection, viral infection, lipofection, and binding with a cell-membrane-permeable peptide.

[0043] Isolation and purification of a polypeptide of interest from host cells can be performed using known isolation techniques in combination. Examples of such known techniques include treatment using a denaturing agent such as urea or a surfactant, ultrasonication, enzymatic digestion, salting-out, solvent fractionation and precipitation, dialysis, centrifugation, ultrafiltration, gel filtration, SDS-PAGE, isoelectric focusing, ion exchange chromatography, hydrophobic chromatography, affinity chromatography, and reverse phase chromatography.

[0044] Polypeptides obtained by the above methods include polypeptides in the form of fusion proteins with any other proteins. An example of such a fusion protein include a fusion protein with glutathione-S-transferase (GST), a His tag, or the like. Polypeptides in the form of such fusion proteins are also examples of the above-described specifically reactive addition polypeptides and can be used for the 1st detection method of the present invention. Furthermore, a polypeptide expressed in transformed cells may be subjected to various types of modification within cells after translation. Such polypeptide that is modified after translation can be used in the 1st detection method of the present invention, as long

as it is capable of binding to a polyclonal antibody against CAPRIN-1. Examples of such post-translation modification include the removal of N-terminal methionine, N-terminal acetylation, glycosylation, limited proteolysis by intracellular protease, myristylation, isoprenylation, and phosphorylation.

[0045] An antibody in a sample can be easily measured by immunoassay using the above polypeptide as an antigen. Immunoassay itself is known in the art. Immunoassay is classified into a sandwich method, a competition method, an agglutination method, Western blot method, and the like based on types of reaction. Also, immunoassay is classified based on labels into radioimmunoassay, fluorescence immunoassay, enzyme immunoassay, and biotin immunoassay, for example. Immunoassay of the above antibody can be performed using any of these methods. Sandwich ELISA or the agglutination method are preferably applicable as an immunoassay technique for the above antibody in the method of the present invention, since the procedures of these methods are convenient and require no extensive apparatus and the like. But the techniques are not limited to them. When an enzyme is used as a label for an antibody, such enzyme is not particularly limited, as long as it satisfies conditions such that: the turn over number is high; it remains stable even if it is bound to an antibody, it specifically causes the color development of the substrate, and the like. Examples of enzymes that can be used for general enzyme immunoassay include peroxidase, β -galactosidase, alkaline phosphatase, glucose oxidase, acetylcholine esterase, glucose-6-phosphorylation dehydrogenase, and malic acid dehydrogenase. Also, enzyme-inhibiting substances, coenzymes, and the like can be used. Binding of these enzymes with antibodies can be performed by known methods using a cross-linking agent such as a maleimide compound. As a substrate, a known substance can be used depending on the type of an enzyme to be used. For example, when peroxidase is used as an enzyme, 3,3',5,5'-tetramethylbenzidine can be used. Also when alkaline phosphatase is used as an enzyme, para-nitrophenol or the like can be used. As a radio isotope, a radio isotope that is generally used for radioimmunoassay, such as ^{125}I and ^3H can be used. As a fluorescent dye, a fluorescent dye that is used for general fluorescent antibody techniques, such as fluorescence isothiocyanate (FITC) and tetramethylrhodamine isothiocyanate (TRITC) can be used.

[0046] There is no need to explain the above immunoassay techniques in the Description, since they are well-known. However, when these immunoassay techniques are briefly described, the sandwich method involves immobilizing the above polypeptide to be used as an antigen to a solid phase, reacting it with a sample such as serum, washing, reacting with an appropriate secondary antibody, washing, and then measuring the secondary antibody bound to the solid phase, for example. An unbound secondary antibody can be easily removed by immobilization of an antigen polypeptide to a solid phase. Hence, this is preferable as an embodiment of the method for detecting cancer of the present invention. As a secondary antibody, an anti-canine IgG antibody can be used if a sample is derived from a dog. A secondary antibody is labeled in advance with a labeling substance exemplified above, so that the secondary antibody binding to a solid phase can be measured. The thus measured amount of the secondary antibody corresponds to the amount of the above antibody in the serum sample. When an enzyme is used as a labeling substance, the amount of the antibody can be measured by adding a substrate that is digested to develop color by enzymatic action and then optically measuring the amount of the substrate degraded. When a radio isotope is used as a labeling substance, the amount of radiation from the radio isotope can be measured using a scintillation counter or the like.

[0047] In the 2nd method of the present invention, CAPRIN-1 that can be contained in a sample from a living organism is measured. As described above, among cancer patients, the amount of an antibody that undergoes an antigen-antibody reaction with CAPRIN-1 of a dog, a human, or the like is significantly high. This indicates that the amount of CAPRIN-1 accumulated as an antigen is significantly high in cancer cells. Cancer can also be detected by directly measuring CAPRIN-1, as specifically described in Examples below. Therefore, cancer can be *detected in vivo* by measuring CAPRIN-1 itself similarly to the 1st method above.

[0048] A polypeptide in a sample can be easily measured by well-known immunoassay techniques. Specifically, for example, an antibody or an antigen-binding fragment thereof, which undergoes an antigen-antibody reaction with CAPRIN-1, is prepared, immunoassay is performed using the antibody or its antigen-binding fragment thereof, and then CAPRIN-1 that may be present in the sample can be measured. As described above, an antibody has cross-reactivity. Hence, for example, through the use of an antibody or the antigen-binding fragment thereof, which undergoes an antigen-antibody reaction with the canine CAPRIN-1 of SEQ ID NO: 6, not only the canine CAPRIN-1 of SEQ ID NO: 6, but also its homolog in other mammals (e.g., the human CAPRIN-1 of SEQ ID NO: 2 or 4 and feline CAPRIN-1) can be measured. An immunoassay technique itself is a known conventional technique as described above.

[0049] This examination revealed that CAPRIN-1 is a cell membrane protein that is expressed on the surfaces of cancer cells. A living organism with cancer contains many kinds of proteases. Specifically, in a living organism with cancer, an extracellularly expressed portion of the CAPRIN-1 sequence is separated from the cancer cells by degradation, so that such portion exists at a level higher than an intracellularly expressed portion of the CAPRIN-1 sequence. Therefore, when an antibody against CAPRIN-1 or an antigen-binding fragment thereof to be used in this measurement, which binds to the surface of the cancer cell, is used, CAPRIN-1 can be detected at higher levels and cancer can be diagnosed with higher sensitivity. Therefore, in the present invention, antibodies binding to a portion of the CAPRIN-1 protein existing on the surfaces of cancer cells, are preferably used. An example of a partial peptide of the CAPRIN-1 protein existing on the surfaces of cancer cells, is a polypeptide comprising a sequence of continuous 7 or more amino acid residues

within the region of amino acid residue Nos. (aa) 50-98 or amino acid residue Nos. (aa) 233-305 in the amino acid sequences shown in the even-numbered SEQ ID NOS: 2-30 in the Sequence Listing excluding SEQ ID NO: 6 and SEQ ID NO: 18. A specific example thereof is the amino acid sequence shown in SEQ ID NO: 43 or SEQ ID NO: 61 (in the amino acid sequence shown in SEQ ID NO: 61, a region of the amino acid sequence shown in SEQ ID NO: 62 or SEQ ID NO: 63 is preferred) or an amino acid sequence having 80% or more, preferably 85% or more, more preferably 90% or more, further preferably 95% or more sequence identity with the relevant amino acid sequence. Examples of an antibody to be used in the present invention include all antibodies binding to these peptides. Specific examples of the antibody include an antibody or antigen-binding fragment thereof which binds to SEQ ID NO: 43, a monoclonal antibody or antigen-binding fragment thereof having the amino acid sequences of SEQ ID NOS: 44 and 45, a monoclonal antibody or antigen-binding fragment thereof having the amino acid sequences of SEQ ID NOS: 44 and 46, a monoclonal antibody or antigen-binding fragment thereof having the amino acid sequences of SEQ ID NOS: 44 and 47, a monoclonal antibody or antigen-binding fragment thereof having the amino acid sequences of SEQ ID NOS: 44 and 48, a monoclonal antibody or antigen-binding fragment thereof having the amino acid sequences of SEQ ID NOS: 49 and 50, a monoclonal antibody or antigen-binding fragment thereof having the amino acid sequences of SEQ ID NOS: 51 and 52, a monoclonal antibody or antigen-binding fragment thereof having the amino acid sequences of SEQ ID NOS: 53 and 54, a monoclonal antibody or antigen-binding fragment thereof having the amino acid sequences of SEQ ID NOS: 55 and 56, a monoclonal antibody or antigen-binding fragment thereof having the amino acid sequences of SEQ ID NOS: 57 and 58, or a monoclonal antibody or antigen-binding fragment thereof having the amino acid sequences of SEQ ID NOS: 59 and 60.

[0050] The term "antigen-binding fragment" as used herein refers to an antibody fragment capable of binding to an antigen such as a Fab fragment and a F(ab')₂ fragment contained in an antibody molecule. An antibody to be used herein may be a polyclonal antibody or a monoclonal antibody. For immunoassay and the like, a monoclonal antibody with high reproducibility is preferable. A method for preparing a polyclonal antibody and a monoclonal antibody using a polypeptide as an immunogen is known and can be easily performed by a conventional method. For example, CAPRIN-1 is bound to a carrier protein such as keyhole limpet hemocyanin (KLH), casein, or serum albumin and then an animal is immunized with the resultant as an immunogen together with an adjuvant, and thereby an antibody against CAPRIN-1 can be induced. Antibody-producing cells such as splenocytes or lymphocytes collected from the immunized animal are fused to myeloma cells to prepare hybridomas, and then hybridomas producing an antibody that binds to CAPRIN-1 are selected and then grown, so that a monoclonal antibody, whose the corresponding antigen is CAPRIN-1, can be obtained from the cultured supernatant. The above method is a known conventional method.

[0051] In the 3rd method of the present invention, mRNA encoding CAPRIN-1 that can be contained in a sample obtained from a living organism is measured. As specifically described in Examples below, mRNA encoding the canine CAPRIN-1 of SEQ ID NO: 6, 8, 10, 12, or 14 or human CAPRIN-1 of SEQ ID NO: 2 or 4 is expressed at a significantly high level in cancer cells. Therefore, cancer can be detected *in vivo* by measuring such mRNA in a sample.

[0052] mRNA in a sample can be quantitatively determined by a conventional method such as real-time detection RT-PCR using the mRNA as a template, for example. Such mRNA can generally be quantitatively determined based on staining intensity or the like in Northern blot that is a conventional method. The cDNA sequences encoding CAPRIN-1 polypeptides of the even-numbered SEQ ID NOS: 2-30 are shown in the odd-numbered SEQ ID NOS: 1-29, respectively. Hence, based on these sequences, a polynucleotide specifically hybridizing to a partial region in the nucleotide sequence shown in any of the odd-numbered SEQ ID NOS: 1-29 (hereinafter, referred to as "polynucleotide for cancer detection") is prepared and then the amount of the mRNA in a sample can be measured using the polynucleotide as a probe or a primer for a nucleic acid amplification method. As described later, if it is a polynucleotide specifically hybridizing to a partial region in the nucleotide sequence shown in any of the odd-numbered SEQ ID NOS: 1-29, mRNA encoding CAPRIN-1 in mammals other than dogs and humans can also be determined. In addition, in the present invention, a polynucleotide may be RNA or DNA.

[0053] The term "specifically hybridizing to" as used herein refers to that under general hybridization conditions, a subject hybridizes to only a target partial region, but does not substantially hybridize to the other regions.

[0054] The term "(under) general hybridization conditions" as used herein refers to conditions employed for annealing in general PCR or detection using a probe. For example, in the case of PCR using Taq polymerase, the term refers to conditions under which a reaction is performed at an appropriate annealing temperature ranging from about 54°C to 60°C using a general buffer such as 50 mM KCl, 10 mM Tris-HCl (pH8.3-9.0), and 1.5 mM MgCl₂. Also, in the case of Northern hybridization, for example, the term refers to conditions under which a reaction is performed using a general hybridization solution such as 5 × SSPE, 50% formamide, 5 × Denhardt's solution, and 0.1%SDS-0.5%SDS, or 0.1-5 × SSC and 0.1-0.5% SDS at an appropriate hybridization temperature ranging from about 42°C to 65°C. Furthermore, after hybridization, washing is performed with 0.1-0.2 × SSC and 0.1% SDS, for example. However, appropriate annealing temperatures or hybridization temperatures are not limited to the above examples, and are determined based on T_m value for a polynucleotide for cancer detection, which is used as a primer or a probe, and the empirical rule of experimenters. Persons skilled in the art can easily determine such temperature range.

[0055] The expression "does not substantially hybridize to" as used herein refers to that a subject does not really

hybridize to a target partial region or a subject hybridizes to a target partial region in a significantly low amount; that is, in a relatively negligibly-small amount, even when it hybridizes to the target partial region. An example of a polynucleotide specifically hybridizing under such conditions is a polynucleotide having sequence identity at a level or more with the nucleotide sequence of a target partial region. A specific example of such polynucleotide has 70% or more, preferably 80% or more, 85% or more, more preferably 90% or more, further preferably 93% or more, further preferably 95% or more, and further more preferably 98% or more sequence identity. Most preferably, the polynucleotide has a nucleotide sequence identical to the nucleotide sequence of a target partial region. Sequence identity is defined in the same manner as that for the sequence identity of the above amino acid sequence. Even if a terminus of a polynucleotide for cancer detection contains a region not hybridizing to a subject, in the case of a probe, it can be used for detection as long as a hybridizing region occupies as much as about a half or more of the entire probe. Also, in the case of a primer, it can be used for detection as long as a hybridizing region occupies as much as about a half or more of the entire primer and is located on the 3' terminal side, since normal annealing and extension reaction can take place. As described above, when a terminus of a polynucleotide for cancer detection contains a non-hybridizing region, sequence identity with a target nucleotide sequence is calculated focusing on only a hybridizing region without taking non-hybridizing region into consideration.

[0056] The term "partial sequence" in the present invention refers to a partial sequence in the nucleotide sequences shown in the odd-numbered SEQ ID NOS: 1-29, specifically the partial sequence having a sequence of continuous 15 or more nucleotides, preferably continuous 18 or more nucleotides, more preferably continuous 20 or more nucleotides or 25 or more nucleotides, and further preferably continuous 30, 40, or 50 or more nucleotides. The expression "the nucleotide sequence shown in SEQ ID NO: 5" as used herein refers to, in addition to the nucleotide sequence actually shown in SEQ ID NO: 5, a sequence complementary to the sequence. Therefore, for example, the expression "a polynucleotide having the nucleotide sequence shown in SEQ ID NO: 5" refers to a single-stranded polynucleotide having the nucleotide sequence actually shown in SEQ ID NO: 5, a single-stranded polynucleotide having a nucleotide sequence complementary to that shown in SEQ ID NO: 5, and a double-stranded polynucleotide comprising them. When a polynucleotide to be used in the present invention is prepared or a polynucleotide encoding a polypeptide to be used in the present invention is prepared, any one nucleotide sequence is appropriately selected and this selection can be easily performed by persons skilled in the art.

[0057] The number of nucleotides in a polynucleotide for cancer detection is preferably 18 or more nucleotides in view of ensuring specificity. When used as a probe, the size of the polynucleotide is preferably 18 or more nucleotides, is further preferably 20 or more nucleotides and the full-length or less of the coding region. When used as a primer, the size of the polynucleotide is preferably 18 or more nucleotides and 50 or less nucleotides. A preferred example of the polynucleotide for cancer detection is a polynucleotide comprising continuous 18 or more nucleotides in a nucleotide sequence shown in any of the odd-numbered SEQ ID NOS: 1-29.

[0058] It is obvious for persons skilled in the art who refer this Description that: a polynucleotide specifically hybridizing to a partial region in SEQ ID NO: 5, 7, 9, 11, or 13 is used for measurement of the amount of mRNA encoding the canine CAPRIN-1 of SEQ ID NO: 6, 8, 10, 12, or 14, respectively; and a polynucleotide specifically hybridizing to a partial region in SEQ ID NO: 1 or 3 is used for measurement of the amount of mRNA encoding the human CAPRIN-1 of SEQ ID NO: 2 or 4, respectively. However, a protein from a mammal and a homolog thereof from another mammal generally share high sequence identity even at the nucleotide sequence level. Thus, the sequence identity among the sequences of the odd-numbered SEQ ID NOS: 1-13 also is as very high as 94% to 100%. Accordingly, a polynucleotide specifically hybridizing to a partial region of the sequence of SEQ ID NO: 5 can also specifically hybridize to a partial region corresponding to the relevant partial region of any of the odd-numbered SEQ ID NOS: 1-29.

[0059] Actually as described in Examples below, a pair of primers having the nucleotide sequences shown in SEQ ID NO: 33 and 34, respectively, specifically hybridizes to both a partial region of any of the sequences of the odd-numbered SEQ ID NOS: 1-29 and a partial region of the sequence of SEQ ID NO: 5, so that both mRNA encoding the canine CAPRIN-1 of SEQ ID NO: 6 and mRNA encoding a homolog thereof can be measured, for example. Accordingly, for example, with the use of a polynucleotide specifically hybridizing to a partial region of the sequence of SEQ ID NO: 5, not only mRNA encoding the canine CAPRIN-1 of SEQ ID NO: 6, but also mRNA encoding the human CAPRIN-1 of SEQ ID NO: 2 or 4 can be measured. Similarly, a mRNA encoding CAPRIN-1 of another mammal such as a cat can also be measured. When a polynucleotide for cancer detection is designed, it is desirable to select partial regions having a specifically high sequence identity between the SEQ ID numbers (odd-numbered SEQ ID NOS: 1-29) (preferably, the nucleotide sequences are the same). If a partial region having particularly high sequence identity between a dog and a human is present, a region having very high sequence identity with the region is expected to be present in a homologous gene of another animal species. Through selection of such partial regions, accuracy for measuring mRNA encoding CAPRIN-1 of an animal species other than dogs and humans can be increased.

[0060] A method itself for measuring a test nucleic acid using a polynucleotide specifically hybridizing to a partial region of the test nucleic acid as a primer or a probe for a nucleic acid amplification method such as PCR is well-known. Examples of such method include, in addition to RT-PCR that is specifically described in Examples below, Northern blot

and *In situ* hybridization. When the amount of mRNA is measured in the present invention, all of these known measuring methods can be employed.

[0061] A nucleic acid amplification method itself such as PCR is well-known in the art and thus reagent kits and apparatuses therefor are commercially available, so that the method can be easily performed. Specifically, for example, denaturation, annealing, and extension steps are each performed using a test nucleic acid (e.g., the cDNA of a gene encoding a protein having an amino acid sequence shown in any of the even-numbered SEQ ID NOS: 2-30) as a template and a pair of polynucleotides (primers) for cancer detection in a known buffer in the presence of thermostable DNA polymerase such as Taq polymerase or Pfu polymerase and dNTP (here, N = A, T, C, or G) by varying the temperature of the reaction solution. In general, the denaturation step is performed at 90°C-95°C, the annealing step is performed at or near the T_m of the template and the primers (preferably within $\pm 4^{\circ}\text{C}$), and the extension step is performed at 72°C which is an optimum temperature for thermostable DNA polymerase such as Taq polymerase or Pfu polymerase or a temperature near the optimum temperature. Each step is performed for about 30 seconds to 2 minutes, as appropriately selected. This heating cycle is repeated about 25 to 40 times, for example, so that the template nucleic acid region flanked by a primer pair is amplified. A nucleic acid amplification method is not limited to PCR and any other nucleic acid amplification methods known in the art can be employed herein. As described above, when a nucleic acid amplification method is performed using a pair of polynucleotides for cancer detection as primers and a test nucleic acid as a template, the test nucleic acid is amplified. However, if no test nucleic acid is contained in a sample, amplification does not take place. Hence, through detection of amplification products, the presence or the absence of the test nucleic acid in a sample can be confirmed. An amplification product can be detected by a method that involves subjecting a reaction solution after amplification to electrophoresis, and then staining the band with ethidium bromide or the like or a method that involves immobilizing an amplification product after said electrophoresis onto a solid phase such as a nylon membrane, performing hybridization with a labeling probe that specifically hybridizes to a test nucleic acid, washing, and then detecting the label. Also, namely real-time detection PCR is performed using a quencher fluorescent dye and a reporter fluorescent dye, and thereby the amount of a test nucleic acid in a specimen can be quantitatively determined. Since kits for real-time detection PCR are commercially available, real-time detection PCR can be easily performed. Furthermore, semi-quantitative determination of a test nucleic acid is also possible based on electrophoresis band intensity. A test nucleic acid may be either mRNA or cDNA resulting from mRNA via reverse transcription. When mRNA is amplified as a test nucleic acid, a NASBA method (3SR method or TMA method) using the above primer pair can also be employed. The NASBA method itself is well-known and kits for the method are also commercially available, so that the method can be easily performed using the above primer pair.

[0062] As a probe, a labeled probe that is prepared by labeling a polynucleotide for cancer detection with a fluorescent label, a radiolabel, a biotin label, or the like can be used. A method for labeling a polynucleotide itself is well-known. The presence or the absence of a test nucleic acid in a sample can be examined by immobilizing a test nucleic acid or an amplification product thereof, performing hybridization with a labeled probe, washing, and then measuring the label bound to the solid phase. Alternatively, a polynucleotide for cancer detection is immobilized, a test nucleic acid is hybridized thereto, and then the test nucleic acid bound to the solid phase can be detected using the labeled probe or the like. In such a case, a polynucleotide for cancer detection bound to a solid phase is also referred to as a probe. A method for measuring a test nucleic acid using a polynucleotide probe is also known in the art. The method can be performed by causing, in a buffer, a polynucleotide probe to come into contact with a test nucleic acid at T_m or near T_m (preferably, within $\pm 4^{\circ}\text{C}$) for hybridization, washing, and then measuring the labeled probe that has hybridized or the template nucleic acid bound to the solid-phase probe. Examples of such method include well-known methods such as Northern blot, *In situ* hybridization, and Southern blot methods. In the present invention, any well-known method is applicable.

[0063] It is determined by the detection method of the present invention whether or not a subject animal has cancer based on the expression level of CAPRIN-1 measured as described above. Cancer can be detected only by measuring CAPRIN-1 expression in a subject animal. However, it is preferable in view of enhancing detection accuracy to examine the expression levels (antibody level, polypeptide level, or mRNA level) of CAPRIN-1 in one or a plurality of samples of healthy subjects so as to obtain a standard value of healthy subjects and then to compare the measured value of a subject animal with the standard value obtained from healthy subjects. To further enhance detection accuracy, CAPRIN-1 expression levels are examined for samples obtained from many patients found to have cancer so as to obtain a standard value of cancer patients and then the measured value of a subject animal may be compared with both the standard value of healthy subjects and the standard value of cancer patients. The above standard values can be determined by quantifying the CAPRIN-1 expression level in each sample and then calculating the mean value thereof, for example. A standard value of healthy subjects and the same of cancer patients can be determined in advance by examining CAPRIN-1 expression levels in many healthy subjects and cancer patients. Therefore, when comparison with a standard value is performed in the method of the present invention, a standard value determined in advance may be used.

[0064] In the detection method of the present invention, diagnosis based on other cancer antigens or cancer markers

may be used in combination. Accordingly, cancer detection accuracy can be further increased. For example, when an antibody specifically existing in cancer patients is measured by the method of the present invention, another polypeptide that is often expressed in a cancer tissue can be used in combination as an antigen in a manner similar to that for polypeptides above. Also, the method of the present invention and diagnosis using a previously known cancer marker 5 may be performed in combination.

[0065] Cancer can be detected *in vivo* according to the detection method of the present invention. Particularly, as described in Examples below, even a small-size tumor, which is invisible to the naked eye, or a tumor in a deep part *in vivo* can be detected according to the method of the present invention. Thus, the method of the present invention is 10 useful for early cancer detection. Also, through application of the detection method of the present invention for a patient during follow-up after treatment of cancer, cancer can be detected early if a cancer recurrence has taken place.

[0066] Also, in a cancer-bearing living organism, as the number of cancer cells expressing CAPRIN-1 measured in 15 the present invention increases, the amounts of the protein and its mRNA accumulated in the living organism increase and the production amount of the antibody against CAPRIN-1 in serum increases. Meanwhile, as the number of cancer cells decreases, the amounts of the protein and its mRNA accumulated *in vivo* decrease and the amount of the antibody 20 against CAPRIN-1 in serum decreases. Therefore, when the expression level of CAPRIN-1 is higher than that of a control, it can be determined that a tumor increase or a cancer metastasis is occurring; that is, the extent of cancer is advanced. Actually, as specifically described in the Examples below, an increase in the above serum antibody level in a cancer-bearing living organism was observed in association with cancer progression (malignant) such as tumor increase 25 and metastasis. As described above, the extent of cancer can also be detected by the method of the present invention.

[0067] Also, as described in Examples below, among tumors of the same type, the above antibody levels in malignant 30 type tumors were significantly higher than those in benign type tumors. Accordingly, when the expression level of CAPRIN-1 is high, it can be determined that cancer malignancy is higher. Specifically, cancer malignancy can also be detected by the method of the present invention.

[0068] Cancer to be subjected to the method for detecting cancer of the present invention is cancer expressing 35 CAPRIN-1. Examples of such cancer include, but are not limited to, brain tumor, squamous cell carcinoma of the head, neck, lung, uterus or esophagus, melanoma, adenocarcinoma of the lung or uterus, renal cancer, malignant mixed tumor, hepatocellular carcinoma, basal cell carcinoma, acanthoma-like gingival tumor, tumor of the oral cavity, perianal adenocarcinoma, anal sac tumor, anal sac apocrine adenocarcinoma, sertoli cell carcinoma, cancer of the vaginal vestibule, 40 sebaceous adenocarcinoma, sebaceous epithelioma, sebaceous adenoma, sweat gland carcinoma, intranasal adenocarcinoma, nasal adenocarcinoma, thyroid cancer, large-bowel cancer, bronchial adenocarcinoma, adenocarcinoma, ductal carcinoma, breast adenocarcinoma, composite type breast adenocarcinoma, malignant mammary mixed tumor, intraductal papillary adenocarcinoma, fibrosarcoma, hemangiopericytoma, osteosarcoma, chondrosarcoma, soft tissue sarcoma, histiocytic sarcoma, myxosarcoma, undifferentiated sarcoma, lung cancer, mastocytoma, cutaneous leiomyoma, 45 intraperitoneal leiomyoma, leiomyoma, chronic lymphocytic leukemia, lymphoma, gastrointestinal lymphoma, digestive lymphoma, small-cell-to-medium-cell lymphoma, adrenomedullary tumor, granulosa cell tumor, and pheochromocytoma. Also, a living organism to be subjected to the method of the present invention is a mammal and is preferably a human, a dog, or a cat.

[0069] Examples of a sample to be subjected to the method of the present invention include body fluids such as blood, 50 serum, blood plasma, ascites, and pleural effusion, tissues, and cells. In particular, in the 1st method and the 2nd method above, serum, blood plasma, ascites, and pleural effusion can be preferably used and in the 3rd method above for measurement of mRNA, tissue samples and cell samples are preferable.

[0070] The above polypeptides to be used as antigens for immunoassay in the 1st method (that is, the canine CAPRIN-1 of SEQ ID NO: 2 and a homolog thereof, a specifically reactive partial polypeptide, a specifically reactive modified polypeptide, and a specifically reactive addition polypeptide) can be provided as reagents for cancer detection. The 45 reagent may consist of only the above polypeptide or may contain various additives or the like, for example, useful for stabilization of the polypeptide. Also, the reagent can be provided in a form immobilized onto a solid phase such a plate or a membrane. Preferable examples of the polypeptide are as described above.

[0071] An antibody that undergoes an antigen-antibody reaction with CAPRIN-1 or an antigen-binding fragment thereof, 50 which is used for immunoassay of CAPRIN-1 itself in the 2nd method, can also be provided as a reagent for cancer detection. The reagent for cancer detection in this case may also consist of only the above antibody or an antigen-binding fragment thereof or may contain various additives or the like useful for stabilization and the like of the antibody or an antigen-binding fragment thereof. Also, the antibody or an antigen-binding fragment thereof may be in a form binding to a metal such as manganese or iron. When such metal-bound antibody or antigen-binding fragment thereof is administered to the body of a living organism, the metal-bound antibody or antigen-binding fragment thereof is accumulated at an increased level at a site where the antigen protein is present at a higher level. Therefore, the metal is measured by MRI 55 or the like, and thereby the presence of cancer cells producing the antigen protein can be detected.

[0072] Furthermore, the above polynucleotide for cancer detection to be used for mRNA measurement in the 3rd method can also be provided as a reagent for cancer detection. The reagent for cancer detection in this case may also

consist of only the polynucleotide or may contain various additives and the like useful for stabilization and the like of the polynucleotide. The polynucleotide for cancer detection contained in the reagent is preferably a primer or a probe. Conditions and preferable examples of the polynucleotide for cancer detection are as described above.

5 EXAMPLES

[0073] The present invention will be described in more detail with reference to the examples set forth below; however, the technical scope of the present invention is not limited to the examples.

10 Example 1: Obtainment of new cancer antigen protein by SEREX method

(1) Construction of cDNA library

[0074] Total RNA was extracted from a testis tissue of a healthy dog by an Acid guanidium-Phenol-Chloroform method and then a polyA RNA was purified using Oligotex-dT30 mRNA purification Kit (Takara Shuzo Co., Ltd.) according to protocols included with the kit.

[0075] A canine testis cDNA phage library was synthesized using the thus obtained mRNA (5 µg). The cDNA phage library was constructed using a cDNA Synthesis Kit, a ZAP-cDNA Synthesis Kit, and a ZAP-cDNA GigapackIII Gold Cloning Kit (STRATAGENE) according to protocols included with the kits. The size of the thus constructed cDNA phage library was 7.73×10^5 pfu/ml.

(2) Screening of cDNA library using serum

[0076] Immunoscreening was performed using the above constructed canine testis cDNA phage library. Specifically, host *Escherichia coli* (XL1-Blue MRF') was infected with the phage on an NZY agarose plate ($\Phi 90 \times 15$ mm) so as to obtain 2210 clones. *E. coli* cells were cultured at 42°C for 3 to 4 hours to form plaques. The plate was covered with a nitrocellulose membrane (Hybond C Extra: GE Healthcare Bio-Science) impregnated with IPTG (isopropyl-β-D-thiogalactoside) at 37°C for 4 hours, so that the protein was induced, expressed, and then transferred to the membrane. Subsequently, the membrane was collected and then immersed in TBS (10 mM Tris-HCl, 150 mM NaCl, and pH 7.5) containing 0.5% powdered skim milk, followed by overnight shaking at 4°C, thereby suppressing nonspecific reaction. The filter was reacted with a 500-fold diluted serum of a canine patient at room temperature for 2 to 3 hours.

[0077] As the above serum of a canine patient, a serum collected from a canine patient with breast cancer was used. These sera were stored at -80°C and then subjected to pre-treatment immediately before use. A method for pretreatment of serum is as follows. Specifically, host *Escherichia coli* (XL1-Blue MRF') was infected with a λ ZAP Express phage in which no foreign gene had been inserted and then cultured overnight on a NZY plate medium at 37°C. Subsequently, buffer (0.2 M NAHCO₃ and pH 8.3) containing 0.5 M NaCl was added to the plate, the plate was left to stand at 4°C for 15 hours, and then a supernatant was collected as an *Escherichia coli*/phage extract. Next, the thus collected *Escherichia coli*/phage extract was applied to an NHS-column (GE Healthcare Bio-Science), so that an *Escherichia coli*/phage-derived protein was immobilized. The serum of a canine patient was applied to the protein-immobilized column for reaction and then *Escherichia coli* and an antibody adsorbed to the phage were removed from the serum. The serum fraction that had passed through the column was diluted 500-fold with TBS containing 0.5% powdered skim milk. The resultant was used as an immunoscreening material.

[0078] A membrane onto which the treated serum and the above fusion protein had been blotted was washed 4 times with TBS-T (0.05% Tween20/TBS) and then caused to react with goat anti-canine IgG (Goat anti-Dog IgG-h+I HRP conjugated (BETHYL Laboratories)) diluted 5000-fold with TBS containing 0.5% powdered skim milk as a secondary antibody for 1 hour at room temperature. Detection was performed via an enzyme coloring reaction using an NBT/BCIP reaction solution (Roche). Colonies that matched sites positive for a coloring reaction were collected from the NZY agarose plate ($\Phi 90 \times 15$ mm) and then suspended in 500 µl of an SM buffer (100 mM NaCl, 10 mM MgCISO₄, 50 mM Tris-HCl, 0.01% gelatin, and pH 7.5). Until colonies positive for coloring reaction were unified, secondary screening and tertiary screening were repeated by a method similar to the above, so that 30,940 phage clones reacting with serum IgG were screened. Thus, 5 positive clones were isolated.

(3) Homology search for isolated antigen gene

[0079] For nucleotide sequence analysis of the 5 positive clones isolated by the above method, a procedure for conversion from phage vectors to plasmid vectors was performed. Specifically, 200 µl of a solution was prepared to contain host *Escherichia coli* (XL1-Blue MRF') so that absorbance OD₆₀₀ was 1.0. The solution was mixed with 250 µl of a purified phage solution and then with 1 µl of an ExAssist helper phage (STRATAGENE), followed by 15 minutes of

reaction at 37°C. Three milliliters of LB medium was added and then culture was performed at 37°C for 2.5 to 3 hours. Immediately after culture, the temperature of the solution was kept at 70°C by water bath for 20 minutes, centrifugation was performed at 4°C and 1000 × g for 15 minutes, and then the supernatant was collected as a phagemid solution. Subsequently, 200 µl of a solution was prepared to contain phagemid host *Escherichia coli* (SOLR) so that absorbance 5 OD₆₀₀ was 1.0. The solution was mixed with 10 µl of a purified phage solution, followed by 15 minutes of reaction at 37°C. The solution (50 µl) was seeded on LB agar medium containing ampicillin (to a final concentration of 50 µg/ml) and then cultured overnight at 37°C. Transformed SOLR single colonies were collected and then cultured in LB medium containing ampicillin (final concentration: 50 µg/ml) at 37°C. A plasmid DNA containing an insert of interest was purified using a QIAGEN plasmid Miniprep Kit (QIAGEN).

10 [0080] The purified plasmid was subjected to analysis of the full-length sequence by a primer walking method using the T3 primer according to SEQ ID NO: 31 and the T7 primer according to SEQ ID NO: 32. As a result of sequence analysis, the gene sequences according to SEQ ID NOS: 5, 7, 9, 11, and 13 were obtained. A homology search program, BLAST search (<http://www.ncbi.nlm.nih.gov/BLAST/>), was performed using the nucleotide sequences of the genes and amino acid sequences (SEQ ID NOS: 6, 8, 10, 12, and 14) of the proteins encoded by the genes. As a result of 15 this homology search with known genes, it was revealed that all of the 5 obtained genes encoded CAPRIN-1. Regarding regions to be translated to proteins, the sequence identity among the 5 genes was 100% in terms of nucleotide sequence and 99% in terms of amino acid sequence. Also, regarding regions to be translated to proteins, the sequence identity between the genes and genes encoding human homolog thereof was 94% in terms of nucleotide sequence and 98% in terms of amino acid sequence. The nucleotide sequences of the human homolog are shown in SEQ ID NOS: 1 and 20 3 and the amino acid sequences of the same are shown in SEQ ID NOS: 2 and 4. Also, regarding regions to be translated to proteins, the sequence identity between the obtained canine genes and a gene encoding a cattle homolog was 94% in terms of nucleotide sequence and 97% in terms of amino acid sequence. The nucleotide sequence of the cattle homolog is shown in SEQ ID NO: 15 and the amino acid sequence of the same is shown in SEQ ID NO: 16. Regarding 25 regions to be translated to proteins, the sequence identity between the genes encoding the human homolog and the gene encoding the cattle homolog was 94% in terms of nucleotide sequences and ranged from 93% to 97% in terms of amino acid sequence. Also, regarding regions to be translated to proteins, the sequence identity between the obtained canine genes and a gene encoding an equine homolog was 93% in terms of nucleotide sequence and 97% in terms of amino acid sequence. The nucleotide sequence of the equine homolog is shown in SEQ ID NO: 17 and the amino acid 30 sequence of the same is shown in SEQ ID NO: 18. Regarding regions to be translated to proteins, the sequence identity between the genes encoding the human homolog and the gene encoding the equine homolog was 93% in terms of nucleotide sequence and 96% in terms of amino acid sequence. Also, regarding regions to be translated to proteins, the sequence identity between the obtained canine genes and genes encoding mouse homolog ranged from 87% to 35 89% in terms of nucleotide sequence and ranged from 95% to 97% in terms of amino acid sequence. The nucleotide sequences of the mouse homolog are shown in SEQ ID NOS: 19, 21, 23, 25, and 27 and the amino acid sequences of the same are shown in SEQ ID NOS: 20, 22, 24, 26, and 28. Regarding regions to be translated to proteins, the sequence identity between the genes encoding the human homolog and the genes encoding the mouse homolog ranged from 89% to 91% in terms of nucleotide sequence and ranged from 95% to 96% in terms of amino acid sequence. Also, regarding regions to be translated to proteins, the sequence identity between the obtained canine genes and a gene encoding a chicken homolog was 82% in terms of nucleotide sequence and 87% in terms of amino acid sequence. The 40 nucleotide sequence of the chicken homolog is shown in SEQ ID NO: 29 and the amino acid sequence of the same is shown in SEQ ID NO: 30. Regarding regions to be translated to proteins, the sequence identity between the genes encoding the human homolog and the gene encoding the chicken homolog ranged from 81% to 82% in terms of nucleotide sequence and was 86% in terms of amino acid sequence.

45 (4) Gene expression analysis in each tissue

50 [0081] Expression of the genes obtained by the above method in canine and human normal tissues and various cell lines was examined by an RT-PCR (Reverse Transcription-PCR) method. A reverse transcription reaction was performed as follows. Specifically, total RNA was extracted from each tissue (50 mg to 100 mg) and each cell line (5 to 10 × 10⁶ cells) using a TRIZOL reagent (Invitrogen Corporation) according to protocols included therewith. cDNA was synthesized using the total RNA and Superscript First-Strand Synthesis System for RT-PCR (Invitrogen Corporation) according to 55 protocols included therewith. PCR was performed as follows using primers specific to the obtained genes (according to SEQ ID NOS: 33 and 34). Specifically, PCR was performed by preparing a reaction solution adjusted to a total amount of 25 µl through addition of each reagent and an included buffer (0.25 µl of a sample prepared by reverse transcription reaction, the above primers (2 µM each), dNTP (0.2 mM each), and 0.65 U of ExTaq polymerase (Takara-baio Co., Ltd.)) and then by reacting the solution through repeating 30 times a cycle of 94°C/30 seconds, 60°C/30 seconds, and 72°C/30 seconds using a Thermal Cycler (BIO RAD). The gene-specific primers mentioned above were used to amplify the region between nucleotide 206 and nucleotide 632 in the nucleotide sequence of SEQ ID NO: 5 (canine CAPRIN-

1 gene) and the region between nucleotide 698 and nucleotide 1124 in the nucleotide sequence of SEQ ID NO: 1 (human CAPRIN-1 gene). For control, GAPDH-specific primers (according to SEQ ID NOS: 35 and 36) were used at the same time. As a result, as shown in Fig. 1, strong expression was observed in testis in the case of healthy canine tissues, while expression was observed in canine breast cancer and adenocarcinoma tissues. Furthermore, expression of the 5 human homolog of the obtained genes was also confirmed. As a result, similarly to the case of canine CAPRIN-1 genes, expression could be confirmed only in the testis in the case of normal tissues. However, in the case of cancer cells, expression was detected in many types of cancer cell line, such as cell lines of breast cancer, brain tumor, leukemia, lung cancer, and esophageal cancer. Expression was confirmed in a particularly large number of breast cancer cell lines. Based on the results, it was confirmed that CAPRIN-1 expression was not observed in normal tissues other than 10 those of the testis, while CAPRIN-1 was expressed in many cancer cells and particularly in breast cancer cell lines.

[0082] In addition, in Fig. 1, Reference No. 1 along the longitudinal axis indicates the expression pattern of each of the above-identified genes and Reference No. 2 along the same indicates the expression pattern of the GAPDH gene for control.

15 (5) Immunohistochemical staining

(5)-1 CAPRIN-1 expression in normal mouse and canine tissues

[0083] Mice (Balb/c, female) and dogs (beagle dogs, female) were exsanguinated under ether anesthesia and ketamine/isoflurane anesthesia. After laparotomy, organs (stomach, liver, eyeball, thymus gland, muscle, bone marrow, 20 uterus, small intestine, esophagus, heart, kidney, salivary gland, large intestine, mammary gland, brain, lung, skin, adrenal gland, ovary, pancreas, spleen, and bladder) were each transferred to a 10cm dish containing PBS. Each organ was cut open in PBS and then fixed by perfusion overnight with 0.1 M phosphate buffer (pH 7.4) containing 4% paraformaldehyde (PFA). The perfusate was discarded, the tissue surface of each organ was rinsed with PBS, and then a 25 PBS solution containing 10% sucrose was added to a 50ml centrifugal tube. Each tissue was then placed in each tube and then shaken using a rotor at 4°C for 2 hours. Each solution was substituted with a PBS solution containing 20% sucrose and then left to stand at 4°C until tissues precipitated. Each solution was substituted with a PBS solution containing 30% sucrose and then left to stand at 4°C until tissues precipitated. Each tissue was removed and a necessary portion was excised with a surgical scalpel. Next, an OCT compound (Tissue Tek) was applied and spread over each 30 tissue surface, and then the tissues were placed on Cryomold. Cryomold was placed on dry ice for rapid freezing. Tissues were sliced into pieces 10 to 20 µm long using a cryostat (LEICA) and then the sliced tissue pieces were air-dried on glass slides for 30 minutes using a hair dryer, so that glass slides onto which sliced tissue pieces had been applied were prepared. Next, each glass slide was placed in a staining bottle filled with PBS-T (saline containing 0.05% Tween20), so that a procedure involving exchange with PBS-T every 5 minutes was performed 3 instances. Excess water around 35 each specimen was removed using Kimwipes and then each section was encircled using DAKOPEN (DAKO). As blocking solutions, a MOM mouse Ig blocking reagent (VECTASTAIN) was applied onto mouse tissue and PBS-T solution containing a 10% fetal calf serum was applied onto canine tissue. The resultants were left to stand in a moist chamber at room temperature for 1 hour. Next, a solution prepared with the blocking solution to a 10 µg/ml anti-CAPRIN-1 monoclonal antibody (monoclonal antibody #8) having the heavy chain variable region of SEQ ID NO: 55 and the light chain variable 40 region of SEQ ID NO: 56, which reacts with the cancer cell surfaces prepared in Example 3, was applied onto each slide glass and then left to stand within a moist chamber at 4°C overnight. After 3 instances of 10 minutes of washing with PBS-T, a MOM biotin-labeled anti-IgG antibody (VECTASTAIN) diluted 250-fold with the blocking solution was applied onto each glass slide and then left to stand within a moist chamber at room temperature for 1 hour. After 3 instances of 10 minutes of washing with PBS-T, an avidin-biotin ABC reagent (VECTASTAIN) was applied and then left to stand 45 within a moist chamber at room temperature for 5 minutes. After 3 instances of 10 minutes of washing with PBS-T, a DAB staining solution (DAB 10 mg + 30% H₂O₂ 10 µl/0.05 M Tris-HCl (pH 7.6) 50 ml) was applied and then the glass slides were left to stand within a moist chamber at room temperature for 30 minutes. Glass slides were rinsed with distilled water and then a hematoxylin reagent (DAKO) was applied. After being left to stand at room temperature for 1 50 minute, the glass slides were rinsed with distilled water. The glass slides were immersed in 70%, 80%, 90%, 95%, and 100% ethanol solutions in such order for 1 minute each and then left to stand in xylene overnight. The glass slides were removed, coverslipped with Glycergel Mounting Medium (DAKO), and then observed. As a result, CAPRIN-1 expression was observed to a slight degree within cells in all salivary gland, kidney, colon, and stomach tissues, but CAPRIN-1 expression was never observed on cell surfaces. Also, absolutely no CAPRIN-1 expression was observed in tissues from other organs.

55 (5)-2 CAPRIN-1 expression in canine breast cancer tissue

[0084] With the use of 108 frozen canine breast cancer tissue specimens from dogs diagnosed by pathological diag-

nosis as having malignant breast cancer, frozen section slides were prepared by a method similar to the above and immunohistochemical staining was performed using the monoclonal antibody #8 prepared in Example 3. As a result, CAPRIN-1 expression was confirmed in 100 out of the 108 specimens (92.5%). CAPRIN-1 was particularly strongly expressed on the surfaces of highly atypical cancer cells.

5

(5)-3 CAPRIN-1 expression in human breast cancer tissue

[0085] Immunohistochemical staining was performed using 188 breast cancer tissue specimens of a paraffin-embedded human breast cancer tissue array (BIOMAX). After 3 hours of treatment at 60°C, the human breast cancer tissue array was immersed into a staining bottle filled with xylene and then xylene replacement every 5 minutes was performed 3 instances. Next, a similar procedure was performed using ethanol and PBS-T instead of xylene. The human breast cancer tissue array was immersed into a staining bottle filled with 10 mM citrate buffer (pH6.0) containing 0.05% Tween20, treated for 5 minutes at 125°C, and then left to stand at room temperature for 40 minutes or more. Excess water around each specimen was removed from the array using Kimwipes, each section was encircled using DAKOPEN (DAKO), and then an appropriate amount of Peroxidase Block (DAKO) was added dropwise onto the array. The array was left to stand at room temperature for 5 minutes and then immersed into a staining bottle filled with PBS-T. PBS-T replacement every 5 minutes was performed 3 instances. As a blocking solution, a PBS-T solution containing 10% FBS was applied onto the array and then the array was left to stand within a moist chamber at room temperature for 1 hour. Next, the monoclonal antibody #8 prepared in Example 3 adjusted to 10 µg/ml using a PBS-T solution containing 5% FBS was applied and then the array was left to stand overnight within a moist chamber at 4°C. After 3 instances of 10 minutes of washing with PBS-T, an appropriate amount of Peroxidase Labeled Polymer Conjugated (DAKO) was added dropwise onto the array, and then the array was left to stand at room temperature for 30 minutes within a moist chamber. After 3 instances of 10 minutes of washing with PBS-T, a DAB staining solution (DAKO) was applied onto the array and then the array was left to stand at room temperature for 10 minutes. The DAB staining solution was discarded from the array and then 10 minutes of washing was performed with PBS-T for 3 instances. The array was rinsed with distilled water and then immersed in 70%, 80%, 90%, 95%, and 100% ethanol solutions in order for 1 minute each and then left to stand in xylene overnight. The array was removed, coverslipped with Glycergel Mounting Medium (DAKO), and then observed. As a result, strong CAPRIN-1 expression was observed for 138 (73%) out of the total 188 breast cancer tissue specimens. (5)-4 CAPRIN-1 expression in human malignant brain tumor

[0086] With the use of 247 malignant brain tumor tissue specimens of paraffin-embedded human malignant brain tumor tissue arrays (BIOMAX), immunohistochemical staining was performed by a method similar to that in (5)-3 above using the monoclonal antibody #8 prepared in Example 3. As a result, strong CAPRIN-1 expression was observed in 227 (92%) out of the total 247 malignant brain tumor tissue specimens.

35

(5)-5 CAPRIN-1 expression in human breast cancer metastatic lymph node

[0087] With the use of 150 tissue specimens of human breast cancer metastatic lymph nodes of paraffin-embedded human breast cancer metastatic lymph node tissue arrays (BIOMAX), immunohistochemical staining was performed by a method similar to that in (5)-3 above using the monoclonal antibody #8 prepared in Example 3. As a result, strong CAPRIN-1 expression was observed in 136 (90%) out of the total 150 tissue specimens of human breast cancer metastatic lymph nodes. Specifically, it was revealed that CAPRIN-1 is also strongly expressed in a cancer tissue that has metastasized from breast cancer.

Example 2: Preparation of new canine and human cancer antigen proteins

45

(1) Preparation of recombinant protein

[0088] A recombinant protein was prepared by the following method based on the gene of SEQ ID NO: 5 obtained in Example 1. PCR was performed by preparing a reaction solution adjusted to a total amount of 50 µl through addition of each reagent and an included buffer (1 µl of a vector prepared from the phagemid solution obtained in Example 1 and then subjected to sequence analysis, 2 types of primer (0.4 µM each; according to SEQ ID NOS: 37 and 38) containing *Nde* I and *Kpn* I restriction enzyme cleavage sequences, 0.2 mM dNTP, 1.25 U PrimeSTAR HS polymerase (Takara-bio Co., Ltd.) and then by reacting the solution through repeating 30 times a cycle of 98°C/10 seconds and 68°C/1.5 minutes using a Thermal Cycler (BIO RAD). The above 2 types of primer were used to amplify the region encoding the full-length amino acid sequence of SEQ ID NO: 6 (P47). After PCR, the thus amplified DNA was subjected to 1% agarose gel electrophoresis and then a DNA fragment of about 1.4 kbp was purified from the gel using a QIAquick Gel Extraction Kit (QIAGEN).

[0089] The purified DNA fragment was ligated to a pCR-Blunt cloning vector (Invitrogen Corporation). The vector was

transformed into *Escherichia coli* and then the plasmid was collected. It was confirmed based on the sequence that the amplified gene fragment matched the target sequence. The plasmid that matched the sequence of interest was treated with *Nde* I and *Kpn* I restriction enzymes and then the resultant was purified using a QIAquick Gel Extraction Kit. Then the gene sequence of interest was inserted into a pET30b expression vector (Novagen) for *Escherichia coli* treated with *Nde* I and *Kpn* I restriction enzymes. A His tag-fused recombinant protein can be produced using the vector. The plasmid was transformed into *Escherichia coli* BL21 (DE3) for expression and then expression induction was performed using 1 mM IPTG, so that the target protein was expressed within *Escherichia coli*.

[0090] Also, the recombinant protein of a canine homologous gene was prepared by the following method based on the gene of SEQ ID NO: 7. PCR was performed by preparing a reaction solution adjusted to a total amount of 50 μ l through addition of each reagent and an included buffer (1 μ l of cDNA from among cDNAs of various tissues and/or cells constructed in Example 1, for which the expression could be confirmed by an RT-PCR method, 2 types of primer (0.4 μ M each; according to SEQ ID NOS: 39 and 40) containing *Nde* I and *Kpn* I restriction enzyme cleavage sequences, 0.2 mM dNTP, 1.25 U PrimeSTAR HS polymerase (Takara-baio Co., Ltd.)) and then by reacting the solution through repeating 30 times a cycle of 98°C/10 seconds and 68°C/2.5 minutes using a Thermal Cycler (BIO RAD). The above 2 types of primer were used to amplify the region encoding the full-length amino acid sequence of SEQ ID NO: 8. After PCR, the thus amplified DNA was fractionated with 1% agarose gel electrophoresis and then a DNA fragment of about 2.2 kbp was purified using a QIAquick Gel Extraction Kit (QIAGEN).

[0091] The purified DNA fragment was ligated to pCR-Blunt cloning vector (Invitrogen Corporation). The vector was transformed into *Escherichia coli*, and then the plasmid was collected. It was then confirmed based on the sequence that the amplified gene fragment matched the sequence of interest. The plasmid that matched the sequence of interest was treated with *Nde* I and *Kpn* I restriction enzymes and then the resultant was purified using a QIAquick Gel Extraction Kit. Then the gene sequence of interest was inserted into a pET30b expression vector (Novagen) for *Escherichia coli* treated with *Nde* I and *Kpn* I restriction enzymes. A His tag-fused recombinant protein can be produced using the vector. The plasmid was transformed into *Escherichia coli* BL21 (DE3) for expression and then expression induction was performed using 1 mM IPTG, so that the protein of interest was expressed within *Escherichia coli*.

[0092] Also, the recombinant protein of a human homologous gene was prepared by the following method based on the gene of SEQ ID NO: 1. PCR was performed by preparing a reaction solution adjusted to a total amount of 50 μ l through addition of each reagent and an included buffer (cDNA (1 μ l) from among cDNAs of various tissues and/or cells constructed in Example 1, for which the expression could be confirmed by an RT-PCR method, 2 types of primer (0.4 μ M each; according to SEQ ID NOS: 41 and 42) containing *Sac* I and *Xho* I restriction enzyme cleavage sequences, 0.2 mM dNTP, 1.25 U PrimeSTAR HS polymerase (Takara-baio Co., Ltd.)) and then by reacting the solution through repeating 30 times a cycle of 98°C/10 seconds and 68°C/2.5 minutes using a Thermal Cycler (BIO RAD). The above 2 types of primer were used to amplify the region encoding the full-length amino acid sequence of SEQ ID NO: 2. After PCR, the thus amplified DNA was subjected to 1% agarose gel electrophoresis and then a DNA fragment of about 2.1 kbp was purified using a QIAquick Gel Extraction Kit (QIAGEN).

[0093] The purified DNA fragment was ligated to a cloning vector pCR-Blunt (Invitrogen Corporation). The vector was transformed into *Escherichia coli*, and then the plasmid was collected. It was then confirmed based on the sequence that the amplified gene fragment matched the sequence of interest. The plasmid that matched the sequence of interest was treated with *Sac* I and *Xho* I restriction enzymes and then the resultant was purified using a QIAquick Gel Extraction Kit. Then the gene sequence of interest was inserted into a pET30a expression vector (Novagen) for *Escherichia coli* treated with *Sac* I and *Xho* I restriction enzymes. A His tag-fused recombinant protein can be produced using the vector. The plasmid was transformed into *Escherichia coli* BL21 (DE3) for expression and then expression induction was performed using 1 mM IPTG, so that the protein of interest was expressed within *Escherichia coli*.

45 (2) Purification of recombinant protein

[0094] The above-obtained recombinant *Escherichia coli* expressing SEQ ID NO: 1, 5, or 7 was cultured at 37°C in LB medium containing 30 μ g/ml kanamycin until the absorbance at 600 nm reached around 0.7. Then isopropyl- β -D-1-thiogalactopyranoside was added to a final concentration of 1 mM, followed by 4 hours of culture at 37°C. Subsequently, cells were collected by 10 minutes of centrifugation at 4800 rpm. The cell pellet was suspended in phosphate buffered saline and then centrifuged at 4800 rpm for 10 minutes for washing cells.

[0095] The cells were suspended in phosphate buffered saline and then subjected to ultrasonication on ice. The thus ultrasonicated *Escherichia coli* solution was centrifuged at 6000 rpm for 20 minutes. The thus obtained supernatant was used as a soluble fraction and the thus obtained precipitate was used as an insoluble fraction.

[0096] The soluble fraction was added to a nickel chelate column (carrier: Chelating Sepharose (TradeMark) Fast Flow (GE Healthcare), column capacity: 5 mL, 50 mM hydrochloric acid buffer (pH 8.0) as equilibrated buffer) prepared according to a conventional method. The unbound fraction was washed with 50 mM hydrochloric acid buffer (pH 8.0) in an amount 10 times the capacity of the column and 20 mM phosphate buffer (pH 8.0) containing 20 mM imidazole.

Immediately after washing, 6 beds were eluted with 20 mM phosphate buffer (pH8.0) containing 100 mM imidazole. After the elution of the protein of interest had been confirmed by Coomassie staining, an elution fraction of 20 mM phosphate buffer (pH8.0) containing 100 mM imidazole was added to a strong anion exchange column (carrier: Q Sepharose (TradeMark) Fast Flow (GE Healthcare), column capacity: 5 mL, and 20 mM phosphate buffer (pH8.0) as equilibrated buffer). The unbound fraction was washed with 20 mM phosphate buffer (pH7.0) in an amount 10 times the column capacity and 20 mM phosphate buffer (pH7.0) containing 200 mM sodium chloride. Immediately after washing, 5 beds were eluted using 20 mM phosphate buffer (pH7.0) containing 400 mM sodium chloride. Thus, purified fractions of proteins each having the amino acid sequence shown in SEQ ID NO: 2, 6, or 8 were obtained. These purified fractions were then used as materials for an administration test. Fig. 2 shows the result of the protein of SEQ ID NO: 2 fractionated by electrophoresis and detected by Coomassie staining.

[0097] 200 μ l of each purified preparation obtained by the above method was dispensed into 1 ml of reaction buffer (20 mM Tris-HCl, 50 mM NaCl, 2 mM CaCl₂ pH7.4) and then 2 μ l of enterokinase (Novagen) was added. The preparation was left to stand at room temperature overnight for reaction, His tag was cleaved, and then purification was performed according to included protocols using an Enterokinase Cleavage Capture Kit (Novagen). Next, 1.2 ml of each purified preparation obtained by the above method was substituted with physiological phosphate buffer (Nissui Pharmaceutical Co., Ltd.) using ultrafiltration NANOSEP 10K OMEGA (PALL). Sterilized filtration was performed using 0.22 μ m HT Tuffry Acrodisc (PALL) and then the resultants were used for the following experiments.

Example 3: Preparation of antibody against CAPRIN-1

(1) Preparation of polyclonal antibody against CAPRIN-1-derived peptide

[0098] To obtain an antibody binding to CAPRIN-1, CAPRIN-1-derived peptide (Arg-Asn-Leu-Glu-Lys-Lys-Gly-Lys-Leu-Asp-Asp-Tyr-Gln (SEQ ID NO: 43)) was synthesized. One milligram of the peptide as an antigen was mixed with an incomplete Freund's adjuvant (IFA) solution in an amount equivalent to the peptide. The mixture was subcutaneously administered to a rabbit 4 times every 2 weeks. Subsequently, blood was collected, so that an antiserum containing a polyclonal antibody was obtained. Furthermore, the antiserum was purified using a protein G carrier (GE Healthcare Bio-Sciences) and then a polyclonal antibody against the CAPRIN-1-derived peptide was obtained. Next, the reactivity of the obtained polyclonal antibody to the breast cancer cell surface was examined. Specifically, 10⁶ cells of the MDA-MB-231 V human breast cancer cell line were subjected to centrifugation in a 1.5 ml microcentrifugal tube. A PBS solution supplemented with 0.1% fetal calf serum (FBS) containing the polyclonal antibody was added to the tube. The solution was left to stand on ice for 1 hour. After washing with PBS, an FITC-labeled goat anti-mouse IgG antibody (Invitrogen Corporation) diluted 500-fold with PBS containing 0.1% FBS was added to the solution, and then the solution was left to stand on ice for 1 hour. After washing with PBS, fluorescence intensity was measured using a FACS Calibur (Becton, Dickinson and Company). Meanwhile, a procedure similar to the above was performed so that a control was prepared by adding PBS containing 0.1% FBS instead of the polyclonal antibody. As a result, it was revealed that fluorescence intensity was found to be stronger in cells treated with the polyclonal antibody than that in control cells. Therefore, it was demonstrated that the obtained polyclonal antibody binds to the breast cancer cell surface.

(2) Preparation of monoclonal antibody against CAPRIN-1 protein

[0099] The antigen protein (human CAPRIN-1) (100 μ g) shown in SEQ ID NO: 2 prepared in Example 2 was mixed with a MPL+TDM adjuvant (Sigma) in an amount equivalent to that of the antigen protein. The mixture was used as an antigen solution per mouse. The antigen solution was administered intraperitoneally to a 6-week-old Balb/c mouse (Japan SLC Inc.) and then further administered 3 instances every week. Spleen was removed on day 3 after the final immunization and then ground in between two sterilized glass slides. The resultant was washed with PBS (-) (Nissui) and then centrifuged at 1500 rpm for 10 minutes, so that a procedure to remove supernatants was repeated 3 instances. Thus, spleen cells were obtained. The thus obtained spleen cells were mixed with mouse myeloma cells SP2/0 (purchased from ATCC) at a ratio of 10 : 1. The PEG solution prepared by mixing 200 μ l of RPMI1640 medium containing 10% FBS heated at 37°C and 800 μ l of PEG1500 (Boehringer) was added to the cells. The solution was left to stand for 5 minutes for cell fusion. Centrifugation was performed at 1700 rpm for 5 minutes to remove supernatants. Cells were suspended in 150 ml of RPMI1640 medium (HAT selective medium) containing 15% FBS, to which 2% equivalent of HAT solution (Gibco) had been added and then seeded onto fifteen 96-well plates (Nunc) at 100 μ l per well. Cells were cultured for 7 days under conditions of 37°C and 5% CO₂, so that hybridomas resulting from fusion of spleen cells to myeloma cells were obtained.

[0100] Hybridomas were selected using as an index the binding affinity of the antibody produced by the thus prepared hybridomas for the CAPRIN-1 protein. The CAPRIN-1 protein solution (1 μ g/ml) prepared in Example 2 was added at 100 μ l per well of 96-well plates and then left to stand at 4°C for 18 hours. Each well was washed 3 instances with PBS-

T, and then 0.5% Bovine Serum Albumin (BSA) solution (Sigma) was added at 400 μ l per well, and then the plates were left to stand at room temperature for 3 hours. The solution was removed and then each well was washed 3 instances with 400 μ l of PBS-T. Each culture supernatant of the hybridomas obtained above was added at 100 μ l per well and then left to stand at room temperature for 2 hours. Each well was washed 3 instances with PBS-T, an HRP-labeled anti-mouse IgG (H+L) antibody (Invitrogen Corporation) diluted 5000-fold with PBS was added at 100 μ l per well and then left to stand at room temperature for 1 hour. Each well was washed 3 instances with PBS-T A TMB substrate solution (Thermo) was added at 100 μ l per well and then left to stand for 15-30 minutes, so that a color reaction was performed. After color development, 1N sulfuric acid was added at 100 μ l per well to stop the reaction. Absorbance was measured at 450 nm and 595 nm using an absorption spectrometer. As a result, a plurality of hybridomas producing antibodies with high absorbances were selected.

[0101] The thus selected hybridomas were added at 0.5 hybridomas per well of 96-well plates and then cultured. After 1 week, hybridomas forming single colonies in wells were observed. Cells in these wells were further cultured. Hybridomas were selected using as an index the binding affinity of the antibody produced by cloned hybridomas for the CAPRIN-1 protein. The CAPRIN-1 protein solution (1 μ g/ml) prepared in Example 2 was added at 100 μ l per well of 96-well plates and then left to stand at 4°C for 18 hours. Each well was washed 3 instances with PBS-T. A 0.5% BSA solution was added at 400 μ l per well, and then left to stand at room temperature for 3 hours. The solution was removed and then each well was washed 3 instances with 400 μ l of PBS-T. Each culture supernatant of the hybridomas obtained above was added at 100 μ l per well and then left to stand at room temperature for 2 hours. Each well was washed 3 instances with PBS-T. An HRP-labeled anti-mouse IgG (H+L) antibody (Invitrogen Corporation) diluted 5000-fold with PBS was added at 100 μ l per well and then left to stand at room temperature for 1 hour. Each well was washed 3 instances with PBS-T, a TMB substrate solution (Thermo) was added at 100 μ l per well and then left to stand for 15-30 minutes, so that a color reaction was performed. After color development, 1N sulfuric acid was added at 100 μ l per well to stop the reaction. Absorbance was measured at 450 nm and 595 nm using an absorption spectrometer. As a result, a plurality of hybridoma cell lines producing monoclonal antibodies exerting reactivity to the CAPRIN-1 protein were obtained. Culture supernatants of hybridomas were purified using a protein G carrier, so that 150 monoclonal antibodies binding to the CAPRIN-1 protein were obtained.

[0102] Next, from among these monoclonal antibodies, monoclonal antibodies exerting reactivity to the surfaces of breast cancer cells expressing CAPRIN-1 were selected. Specifically, 10⁶ cells of the MDA-MB-231 V human breast cancer cell line were subjected to centrifugation with a 1.5 ml microcentrifugal tube. The supernatant (100 μ l) of each hybridoma above was added and then left to stand on ice for 1 hour. After washing with PBS, an FITC-labeled goat anti-mouse IgG antibody (Invitrogen Corporation) diluted 500-fold with PBS containing 0.1% fetal calf serum was added and then left to stand on ice for 1 hour. After washing with PBS, fluorescence intensity was measured using FACS Calibur (Becton, Dickinson and Company). Meanwhile, a procedure similar to the above was performed so that a control supplemented with a medium instead of the antibody was prepared. As a result, 10 monoclonal antibodies (#1-#10) having fluorescence intensity stronger than that of the control; that is, reacting with the surfaces of breast cancer cells were selected. The heavy chain variable regions and the light chain variable regions of these monoclonal antibodies were shown in SEQ ID NOS: 44-60. The above monoclonal antibody #1 comprises the heavy chain variable region of SEQ ID NO: 44 and the light chain variable region of SEQ ID NO: 45, the monoclonal antibody #2 comprises the heavy chain variable region of SEQ ID NO: 44 and the light chain variable region of SEQ ID NO: 46, the monoclonal antibody #3 comprises the heavy chain variable region of SEQ ID NO: 44 and the light chain variable region of SEQ ID NO: 47, the monoclonal antibody #4 comprises the heavy chain variable region of SEQ ID NO: 44 and the light chain variable region of SEQ ID NO: 48, the monoclonal antibody #5 comprises the heavy chain variable region of SEQ ID NO: 49 and the light chain variable region of SEQ ID NO: 50, the monoclonal antibody #6 comprises the heavy chain variable region of SEQ ID NO: 51 and the light chain variable region of SEQ ID NO: 52, the monoclonal antibody #7 comprises the heavy chain variable region of SEQ ID NO: 53 and the light chain variable region of SEQ ID NO: 54, the monoclonal antibody #8 comprises the heavy chain variable region of SEQ ID NO: 55 and the light chain variable region of SEQ ID NO: 56, the monoclonal antibody #9 comprises the heavy chain variable region of SEQ ID NO: 57 and the light chain variable region of SEQ ID NO: 58, and the monoclonal antibody #10 comprises the heavy chain variable region of SEQ ID NO: 59 and the light chain variable region of SEQ ID NO: 60.

(3) Identification of a peptide in CAPRIN-1 protein, to which an antibody against CAPRIN-1 reacting to cancer cell surface binds

[0103] With the use of monoclonal antibodies #1-#10 against CAPRIN-1, reacting with the surfaces of cancer cells obtained above, partial sequences in the CAPRIN-1 protein to be recognized by these monoclonal antibodies were identified.

[0104] First, DTT (Fluka) was added to 100 μ l of a recombinant CAPRIN-1 protein solution adjusted to contain the protein at a concentration of 1 μ g/ μ l with PBS to a final concentration of 10 mM, followed by 5 minutes of reaction at

95°C, so that reduction of disulfide bonds within the CAPRIN-1 protein was performed. Next, iodoacetamide (Wako Pure Chemical Industries, Ltd.) with a final concentration of 20 mM was added and then an alkylation reaction was performed for thiol groups at 37°C for 30 minutes under shading conditions. Fifty microgram each of monoclonal antibodies #1-#10 against CAPRIN-1 was added to 40 µg of the thus obtained reduced-alkylated CAPRIN-1 protein. The volume of the mixture was adjusted to 1 mL of 20 mM phosphate buffer (pH7.0), and then the mixture was left to react overnight at 4°C while stirring and mixing each mixture.

[0105] Next, trypsin (Promega) was added to a final concentration of 0.2 µg. After 1 hour, 2 hours, 4 hours, and then 12 hours of reaction at 37°C, the resultants were mixed with protein A-glass beads (GE) subjected in advance to blocking with PBS containing 1% BSA (Sigma) and washing with PBS in 1 mM calcium carbonate and NP-40 buffer (20 mM phosphate buffer (pH7.4), 5 mM EDTA, 150 mM NaCl, and 1% NP-40), followed by 30 minutes of reaction.

[0106] The reaction solutions were each washed with 25 mM ammonium carbonate buffer (pH8.0) and then antigen-antibody complexes were eluted using 100 µl of 0.1% formic acid. LC-MS analysis was conducted for eluates using Q-TOF Premier (Waters-MicroMass) according to protocols included with the instrument.

[0107] As a result, the polypeptide of SEQ ID NO: 61 was identified as a partial sequence of CAPRIN-1, which was recognized by all of the monoclonal antibodies #1-#10 against CAPRIN-1. Furthermore, the peptide of SEQ ID NO: 62 was identified as a partial sequence in the polypeptide of SEQ ID NO: 61 above, which was recognized by the monoclonal antibodies #1-#4, #5-#7, and #9. It was further revealed that the monoclonal antibodies #1-#4 recognized the peptide of SEQ ID NO: 63 that was a partial sequence peptide thereof.

20 Example 4: Cancer diagnosis using CAPRIN-1 polypeptide

(1) Canine cancer diagnosis

[0108] Blood was collected from 342 canine patients confirmed to have malignant or benign tumors and 6 healthy dogs, and serum was separated. With the use of the canine CAPRIN-1 polypeptide (SEQ ID NO: 8) and the anti-canine IgG antibody prepared in Example 2, the titer of the serum IgG antibody specifically reacting with the polypeptide was measured by an ELISA method.

[0109] Immobilization of the thus prepared polypeptide was performed by adding a recombinant protein solution diluted to 5 µg/mL with phosphate buffered saline to 96-well immobilizer amino plates (Nunc) at 100 µl/well and then leaving the plates to stand at 4°C overnight. Blocking was performed by adding a 50 mM sodium bicarbonate buffer solution (pH 8.4) (hereinafter, blocking solution) containing 0.5% BSA (bovine serum albumin) (Sigma Aldrich Japan) at 100 µl/well and then shaking the solution at room temperature for 1 hour. Serum diluted 1000-fold with the blocking solution was added at 100 µl/well and then the mixture was shaken at room temperature for 3 hours for reaction. The reaction solutions were washed 3 instances with phosphate buffered saline (hereinafter, PBS-T) containing 0.05% Tween20 (Wako Pure Chemical Industries, Ltd.). An HRP modified canine IgG antibody (Goat anti-Dog IgG-h+I HRP conjugated: BETHYL Laboratories) diluted 3000-fold with the blocking solution was added at 100 µl/well, followed by 1 hour of reaction at room temperature while shaking the solution. After 3 instances of washing with PBS-T, HRP substrate TMB (1-Step Turbo TMB (tetramethylbenzidine), PIERCE) was added at 100 µl/well and then an enzyme-substrate reaction was conducted at room temperature for 30 minutes. Subsequently, a 0.5 M sulfuric acid solution (Sigma Aldrich Japan) was added at 100 µl/well to stop the reaction. Absorbance at 450 nm was measured using a microplate reader. As controls, a specimen in connection with which no recombinant protein prepared had been immobilized and a specimen in connection with which a reaction with the serum of a cancer-bearing dog had not been conducted were similarly subjected to the above treatment and comparison.

[0110] As a result of pathologic diagnosis using excised tumor tissue, definitive diagnosis was made indicating that 215 out of the total 342 specimens used for the cancer diagnosis were malignant.

[0111] Specifically, specimens were diagnosed as having cancer such as malignant melanoma, malignant mixed tumor, hepatocellular carcinoma, basal cell carcinoma, acanthoma-like gingival tumor, tumor of oral cavity, perianal adenocarcinoma, anal sac tumor, anal sac apocrine adenocarcinoma, Sertoli cell carcinoma, cancer of vaginal vestibule, sebaceous adenocarcinoma, sebaceous epithelioma, sebaceous adenoma, sweat gland carcinoma, intranasal adenocarcinoma, nasal adenocarcinoma, thyroid cancer, large-bowel cancer, bronchial adenocarcinoma, adenocarcinoma, ductal carcinoma, breast adenocarcinoma, composite type breast adenocarcinoma, malignant mammary mixed tumor, intraductal papillary adenocarcinoma, fibrosarcoma, hemangiopericytoma, osteosarcoma, chondrosarcoma, soft tissue sarcoma, histiocytic sarcoma, myxosarcoma, undifferentiated sarcoma, lung cancer, mastocytoma, cutaneous leiomyoma, intraperitoneal leiomyoma, leiomyoma, squamous cell carcinoma, chronic lymphocytic leukemia, lymphoma, gastrointestinal lymphoma, digestive lymphoma, small-cell-to-medium-cell lymphoma, adrenomedullary tumor, granulosa cell tumor, and pheochromocytoma.

[0112] The sera from the living bodies of these cancer-bearing dogs were found to have significantly high antibody titers against the recombinant protein as shown in Fig. 3. When the reference value as malignant cancer regarding the

diagnostic method was determined to be twice or more the average value for healthy dogs, it was demonstrated that malignancy could be diagnosed for 108 specimens, which accounted for accounting for 50.2% of all the specimens. The cancer types of these 108 specimens are as follows. Although development of a plurality of types of cancer had indicated for some specimens, the following numerical values are cumulative total values for each cancer type:

5 6 cases of malignant melanoma, 11 cases of lymphoma, 1 case of suppurative inflammation, 1 case of granulosa cell tumor, 4 cases of hepatocellular carcinoma, 3 cases of malignant testicular tumor, 3 cases of tumor of oral cavity, 7 cases of perianal adenocarcinoma, 12 cases of sarcoma, 35 cases of breast adenocarcinoma, 1 case of lung cancer, 6 cases of ductal carcinoma, 2 cases of sebaceous adenocarcinoma, 5 cases of mastocytoma, 1 case of smooth muscle sarcoma, 3 cases of squamous cell carcinoma, 2 cases of malignant mixed tumor, 1 case of hemangiopericytoma, 1 case of transitional epithelial cancer, 1 case of hemangiopericytoma, 1 case of hemangiopericytoma, and 1 case of sebaceous epithelioma.

10 [0113] As a result of similar diagnosis using pleural effusions and ascites collected from canine patients with terminal cancer, values similar to the results obtained by the diagnostic method using serum could be detected and cancer diagnosis could be made.

15 [0114] Also, it was demonstrated that the use of the diagnostic method enables diagnosis of cancer in a location invisible to the naked eye, the extent of cancer, malignancy or postoperative course of cancer, recurrence, metastasis, and the like. Several specific examples of detailed diagnosis shown in Fig. 4 are as described below.

20 (2)-1 Cancer diagnosis for tumor invisible to the naked eye

25 [0115] On June 7, 2007, no tumor mass was confirmed for canine patient 1 (flat coated retriever). However, about 20 days later, on June 24, 2007, a peduncular tumor mass with a diameter of 2 mm was found in the gum at the root of the maxillary left cuspid tooth of canine patient 1. On the day when the mass was found, the peduncular portion was ligated and excised. Absorbance at 450 nm was found to be 0.06 before the tumor mass could be visually confirmed, and this figure was almost the same as 0.04, which was determined when the tumor was found. It was also demonstrated by the result that diagnosis of cancer in a location invisible to the naked eye, such as intraperitoneal cancer, is possible with the use of this technique.

30 [0116] In addition, it can be said that a warning sign of tumor development was successfully detected, since a rise in the aforementioned level could be confirmed before the tumor could be confirmed with the naked eye. Hence, it was confirmed that the technique is also useful for health examinations such as routine health checkups.

35 (2)-2 Diagnosis of the extent of cancer

35 [0117] The extent of cancer is determined based on tumor size, tumor depth, how the tumor affects the peripheral tissue, and the presence or the absence of metastasis. It was revealed that a higher value was detected when metastasis had occurred or cancer had progressed.

40 (2)-3 Diagnosis of cancer malignancy

45 [0118] Basal cell tumors include malignant basal cell tumors and benign basal cell tumors. In recent year, malignant basal cell tumors have tended to be classified as examples of basal cell carcinoma and benign basal cell tumors tend to be classified as examples of trichoblastoma according to the new WHO.

45 [0119] Canine patient 2 (Beagle) diagnosed as having basal cell carcinoma (malignant) was subjected to serodiagnosis upon surgery, so that the absorbance at 450 nm was found to be 0.04. Meanwhile, canine patient 3 (mongrel) diagnosed as having trichoblastoma (benign) was subjected to serodiagnosis upon surgery, so that the absorbance at 450 nm was found to be 0, indicating no detection. Therefore, it was demonstrated that different types of basal cell tumor, i.e., malignant basal cell carcinoma and benign trichoblastoma, can be diagnosed, even if they are classified as basal cell tumors.

50 [0120] Next, examples of mammary gland tumors are as follows. Mammary gland tumors are classified as malignant tumors such as breast adenocarcinoma and malignant mammary mixed tumor and benign mammary gland tumors exhibiting no malignant findings.

55 [0121] Canine patient 4 (Shetland Sheepdog) underwent extirpative surgery on July 17, 2007, for breast adenocarcinoma. Canine patient 4 had 3 tumors. Pathologic diagnosis using isolated tissue resulted in the same diagnosis. Strongly atypical and invasive mammary gland tissue experienced somewhat widespread papillary-adenoid growth, and vascular invasion was also confirmed for the specimens. Thus, canine patient 4 was diagnosed as having highly malignant breast cancer. As a result of serodiagnosis using blood collected upon surgery, absorbance at 450 nm was found to be 0.41.

[0122] Meanwhile, canine patient 5 (toy poodle) had extirpative surgery on October 9, 2007, for a mammary gland tumor. Pathologic diagnosis using isolated tissues at this time revealed that: whereas tumors were formed in which mammary gland epithelial cells and myoepithelial cells grew, myoepithelial cell components were uniform spindle cells and no malignancy was detected; and the mammary gland epithelial cell component exhibited a slight difference in size and dyskaryosis as observed. Hence, canine patient 5 was diagnosed as having a benign mammary gland tumor for which no malignancy was detected. As a result of blood collection and serodiagnosis upon surgery thereof, absorbance at 450 nm was found to be 0.0.

[0123] The above results for the 2 specimens revealed that the malignancy of a highly malignant tumor is greater than that of a benign low-malignant tumor.

[0124] Also, distribution of the diagnoses for 54 malignant tumor (breast cancer) specimens, such as breast adenocarcinoma or malignant mammary mixed tumor specimens and 21 benign mammary gland tumor specimens exhibiting no malignancy, were examined. Whereas benign mammary gland tumor specimens showed a distribution similar to that in the case of healthy dogs, breast cancer specimens showed a distribution of high values.

15 (2)-4 Diagnosis of postoperative course

[0125] Canine patient 6 (mongrel) visited the hospital because of mastocytoma and had extirpative surgery on May 23, 2005. As a result of serodiagnosis made at this time, absorbance at 450 nm was found to be 0.10. Mastocytoma is a tumor that repeatedly undergoes recurrence or metastasis when resected incompletely. Hence, whether or not complete tumor resection can be achieved by surgery is important. At the follow-up on December 19, 2006, absorbance at 450 nm was found to be 0.05, so that a decreased antibody titer was confirmed. At this time, no recurrence was confirmed. Hence, in the case of canine patient 6, it can be said that since the tumor could be completely resected, the serodiagnosis results were lower than those upon surgery.

[0126] Canine patient 7 (Beagle) had extirpative surgery on February 14, 2008, for mastocytoma. As a result of serodiagnosis performed at this time, absorbance at 450 nm was found to be 0.17. As a result of histopathological diagnosis using excised tissues, invasive hyperplasia was observed and Canine patient 7 was diagnosed as having mastocytoma corresponding to the moderately differentiated type (Patnaik II type). Canine patient 7 visited again for follow-up on March 10, 2008 and was subjected to serodiagnosis again. As a result, absorbance at 450 nm was found to be 0.07. At this time, neither metastasis nor recurrence was confirmed. Thus, in the case of canine patient 7, it can be said that the serodiagnosis results were lower than those upon surgery since the tumor could be completely resected.

(2)-5 Recurrence diagnosis

[0127] Canine patient 8 (Husky) had extirpative surgery on May 8, 2007, for breast adenocarcinoma. As a result of serodiagnosis performed at this time, absorbance at 450 nm was found to be 0.05. As a result of pathologic diagnosis using excised tissue, strongly atypical epithelial cells grew mainly forming a tubular structure. Thus, canine patient 8 was diagnosed as having adenocarcinoma from the primary mammary gland. At this time, the presence of many cancer cells in lymph ducts had already been confirmed, indicating a high risk of metastasis to or recurrence at the lymph nodes or distant sites. On June 28, 2007, (about 1 and a half months after surgery), recurrence was confirmed at the same site. The result of serodiagnosis at this time was 0.09, and thus an increased value was confirmed. In the case of canine patient 8, it was revealed that because of incomplete tumor resection or recurrence thereof, the diagnostic results were higher in late June than in early May.

(2)-6 Diagnosis of metastasis

[0128] Canine patient 9 (Scottish terrier) experienced multiple metastases and recurrences, including a mammary gland tumor in February 2003, intraoral malignant melanoma in August 2003, labial malignant melanoma in January 2005, and intraoral melanoma on April 13, 2005. All of these tumors had been resected by surgery. Canine patient 9 revisited the hospital on December 17, 2006, for follow-up after the recurrence of intraoral melanoma on April 2005 and was subjected to serodiagnosis. As a result, absorbance at 450 nm was found to be 0.09. Half a year later, canine patient 9 revisited the hospital on June 20, 2007 because of cervical lymphoid and popliteal lymphoid hyperplasia. In the case of lymphoma, the lymph nodes swell up systemically. Canine patient 9 had swelling lymph nodes at only two sites. Hence, canine patient 9 was clinically diagnosed as likely to have lymphoma due to metastasis. Diagnosis made by this technique also revealed that absorbance at 450 nm was increased to 0.10, indicating that the lymphoma was caused by metastasis from the previous tumor.

[0129] Canine patient 10 (Shiba inu) underwent tumorectomy on March 11, 2006, because of intraoral malignant melanoma of the right lip. Canine patient 10 had a history of treatment with an anticancer agent (cyclophosphamide) from June 10, 2006, to September 26, 2006, and had been under medication with BIREMO S having organic germanium

as a major ingredient since May 23, 2006. Serodiagnosis was made on March 20, 2007, upon the removal of a tumor thought to have resulted from metastasis of the previous tumor, so that the absorbance at 450 nm was found to be almost 0.03, indicating almost no detection. Pathologic diagnosis was made for the tissue excised at this time so that the disease was diagnosed as metastatic malignant melanoma. However, metastasis occurred again on June 27, 2007, 5 3 months after surgery for metastatic melanoma. A tumor developed at the right portion of the cervix on March 20, 2007, and further tumor development occurred on the side opposite to such portion on June 27, 2007. The tumors formed black masses analogous to those of the previous findings. Tumor size was 3.1 x 3.2 x 0.8 cm, and the tumors were clinically diagnosed as metastatic tumors. As a result of serodiagnosis at this time, absorbance at 450 nm was confirmed 10 to have increased to 0.23, suggesting that the tumors resulted from metastasis of previous tumors.

10 (2)-7 Cancer diagnosis using human CAPRIN-1-derived polypeptide

[0130] With the use of the polypeptide (SEQ ID NO: 2) of human CAPRIN-1 prepared in Example 2, the titer of canine serum IgG antibody reacting with the polypeptide was measured in a manner similar to that used above. As a result of 15 examination using serum of a healthy dog, almost no absorbance was detected at 450 nm, similarly to the case above.

[0131] Meanwhile, canine patient 11 (Shih tzu) had extirpative surgery for breast adenocarcinoma on June 21, 2007. As a result of pathologic diagnosis using excised tissues, canine patient 11 was diagnosed as having breast adenocarcinoma of moderate malignancy, wherein strongly atypical and invasive mammary gland tissues underwent adenoid-tubular-papillary growth so as to form large and small masses, in addition to the presence of somewhat diffuse hyperplasia 20 of fibrillar connective tissues. The absorbance at 450 nm for canine patient 11 was found to be 0.26.

(3) Feline cancer diagnosis

[0132] Next, cancer-bearing cats and healthy cats were diagnosed. With the use of the polypeptide of canine CAPRIN-1 (used above) and an anti-feline IgG antibody, the titer of feline serum IgG antibody specifically reacting with the 25 polypeptide was measured, in a manner similar to the above. As a secondary antibody, an HRP modified anti-feline IgG antibody (PEROXIDASE-CONJUGATED GOAT IgG FRACTION TO CAT IgG (WHOLE MOLECULE): CAPPEL RESEARCH REAGENTS) was diluted 8000-fold with a blocking solution and then used.

[0133] Feline patient 1 (mongrel) had tumor extirpative surgery for breast adenocarcinoma on May 8, 2007. The absorbance at 450 nm for feline patient 1 was found to be 0.21. Also, in the case of feline patient 2 (Himalayans) that 30 had extirpative surgery for ductal carcinoma on October 17, 2006, the absorbance at 450 nm was found to be 0.18. On the other hand, no absorbance was detected in the case of healthy cats.

[0134] Also, with the use of the polypeptide (SEQ ID NO: 2) of human CAPRIN-1 prepared in Example 2, the titer of feline serum IgG antibody reacting with the polypeptide was measured in a manner similar to the above. As a result, in 35 the case of healthy cats, almost no absorbance was detected at 450 nm when the polypeptide had been immobilized. Meanwhile, feline patient 3 (American Shorthair) had extirpative surgery for breast adenocarcinoma on April 15, 2008. As a result of pathologic diagnosis using excised tissues, feline patient 3 was diagnosed as having highly malignant 40 breast adenocarcinoma associated with large and small dead tissues, wherein strongly atypical and invasive mammary gland tissues underwent sheet-like growth into large and small masses. Also in the case of feline patient 3, the absorbance at 450 nm was found to be 0.12.

[0135] Therefore, it was demonstrated that cancer diagnosis is also possible for cats by this technique, similarly to 45 dogs, since values were detected for specimens from cats with cancer, but none was detected for specimens from healthy cats.

(4) Human cancer diagnosis

[0136] With the use of the polypeptide (SEQ ID NO: 2) of human CAPRIN-1 prepared in Example 2 and an anti-human IgG antibody, the titer of a healthy human serum IgG antibody specifically reacting with the polypeptide was measured. 50 Immobilization of the prepared polypeptide was performed by adding a recombinant protein solution diluted to 100 µg/mL with phosphate buffered saline to 96-well immobilizer amino plates (Nunc) at 100 µl/well and then leaving the plates to stand overnight at 4°C. Blocking was performed as follows. Four gram of Block Ace powder (DS PHARMA BIOMEDICAL Co., Ltd.) was dissolved in 100 ml of purified water and then the solution was diluted 4-fold with purified water. Then the solution (hereinafter, blocking solution) was added at 100 µl/well and then shaken at room temperature for 1 hour. Serum 55 diluted 1000-fold with the blocking solution was added at 100 µl/well and then shaken at room temperature for 3 hours for reaction. After washing 3 instances with phosphate buffered saline (hereinafter, PBS-T) containing 0.05% Tween20 (Wako Pure Chemical Industries, Ltd.), an HRP-modified anti-human IgG antibody (HRP-Goat Anti-Human IgG (H+L) Conjugate: Zymed Laboratories) diluted 10000-fold with the blocking solution was added at 100 µl/well and then shaken at room temperature for 1 hour for reaction. After 3 instances of washing with PBS-T, HRP substrate TMB (1-Step Turbo

TMB (tetramethylbenzidine), PIERCE) was added at 100 μ l/well and then an enzyme-substrate reaction was performed at room temperature for 30 minutes. Subsequently, a 0.5 M sulfuric acid solution (Sigma Aldrich Japan) was added at 100 μ l/well to stop the reaction and then absorbance at 450 nm was measured using a microplate reader. An ovalbumin antigen adjusted to 50 μ g/ml with phosphate buffered saline was immobilized and then used as a positive control. As a result, absorbance at 450 nm was found to be as high as 0.45 on average as the results for 7 healthy subjects in the case of the ovalbumin antigen, but no absorbance (0) was detected in the case of the above polypeptide.

[0137] In a manner similar to the above, 17 serum specimens (purchased from ProMedDx) from patients with malignant breast cancer were further subjected to measurement of the titer of serum IgG antibody specifically reacting with the human-derived cancer antigen protein (the amino acid sequence of SEQ ID NO: 3). As a result, absorbance at 450 nm was found to be as high as 0.48 in the case of the above polypeptide, on average as the results for 17 breast cancer patients.

[0138] Also, with the use of the polypeptide (SEQ ID NO: 8) of canine CAPRIN-1 prepared in Example 2 and an anti-human IgG antibody, the titer of human serum IgG antibody specifically reacting with the polypeptide was measured in a manner similar to that above. As a result, whereas the average of the results for 7 healthy subjects was 0.04, the average of the results for 17 breast cancer patients was as high as 0.55.

[0139] Based on the above results, it was demonstrated that cancer in humans can also be detected by this technique.

Example 5: Cancer diagnosis through measurement of antigen polypeptide

[0140] With the use of the polyclonal antibody against CAPRIN-1-derived peptide (SEQ ID NO: 43) obtained in Example 3 (1) and each monoclonal antibody against the CAPRIN-1 protein obtained in Example 3 (2) in combination, the antigen polypeptide itself contained in specimens (cancer-bearing living organism-derived serum) reacted positive upon cancer diagnosis using the polypeptide of CAPRIN-1 in Example 4 (1)-(3) was detected by Sandwich ELISA. The polyclonal antibody was used as a primary antibody and each monoclonal antibody was used as a secondary antibody. The serum protein level of the protein specifically reacting with each of the above antibodies was measured.

[0141] The primary antibody was immobilized by adding the polyclonal antibody diluted to a concentration of 5 μ g/ml with phosphate buffered saline to 96-well immobilizer amino plates (Nunc) at 100 μ l/well and then shaking the plates at room temperature for 2 hours. Blocking was performed by adding a 50 mM sodium bicarbonate buffer solution (pH 8.4) (hereinafter, blocking solution) containing 0.5% BSA (bovine serum albumin, Sigma Aldrich Japan) at 100 μ l/well and then shaking at room temperature for 1 hour. Subsequently, a cancer-bearing living organism-derived serum diluted using the blocking solution was added at 100 μ l/well and then the resultants were shaken at room temperature for 3 hours for reaction. The dilution rate at this time was adjusted with 10-fold (10-1000-fold) dilution series. After 3 instances of washing with phosphate buffered saline (hereinafter, PBS-T) containing 0.05% Tween20 (Wako Pure Chemical Industries, Ltd.), each monoclonal antibody as a secondary antibody diluted to a concentration of 1 μ g/ml with the blocking solution was added at 100 μ l/well and then the resultants were shaken at room temperature for 1 hour for reaction. After 3 instances of washing with PBS-T, an HRP-labeled anti-mouse IgG (H+L) antibody (Invitrogen Corporation) as a tertiary antibody diluted 5000-fold with the blocking solution was added at 100 μ l per well and then left to stand at room temperature for 1 hour. After 3 instances of washing of wells with PBS-T, a TMB substrate solution (Thermo) was added at 100 μ l per well and then left to stand for 15-30 minutes for color reaction. After color development, 1 N sulfuric acid was added at 100 μ l per well to stop the reaction and then absorbance at 450 nm was measured using an absorption spectrometer.

[0142] As a result, when the #1-#10 monoclonal antibodies reacting with the surfaces of cancer cells were used as secondary antibodies, absorbance values (polypeptide levels) of 0.3 or higher were detected for all specimens from cancer-bearing dogs and cancer-bearing cats with breast cancer, malignant melanoma, and the like, but no absorbance was detected for healthy dogs and healthy cats. On the other hand, when monoclonal antibodies reacting with the CAPRIN-1 protein itself but not reacting with the surfaces of cancer cells were used as secondary antibodies, polypeptide levels were detected for all specimens, but absorbance values were all 0.05 or less, which were lower than the results for combinations of antibodies reacting with the surfaces of cancer cells.

[0143] Therefore, cancer can also be diagnosed by this technique that involves detection of antigen polypeptides using antibodies against CAPRIN-1.

50

INDUSTRIAL APPLICABILITY

[0144] The present invention is industrially useful for diagnosis or detection of cancer.

[0145] This description includes part or all of the contents as disclosed in the description and/or drawings of Japanese Patent Application No. 2008-202320, which is a priority document of the present application. Also, all publications, patents, and patent applications cited herein are incorporated herein by reference in their entirety.

SEQUENCE LISTING FREE TEXT

[0146] SEQ ID NOS: 31-42: primers

5

10

15

20

25

30

35

40

45

50

55

SEQUENCE LISTING

5 <110> TORAY INDUSTRIES, INC.

10 <120> Polypeptides and Methods for Diagnosis of Cancers

15 <130> PH-4052-PCT

20 <140> PCT/JP2009/063883

25 <141> 2009-08-05

30 <150> JP 2008-202320

35 <151> 2008-08-05

40 <160> 63

45 <170> PatentIn version 3.1

50 <210> 1

55 <211> 5562

60 <212> DNA

65 <213> Homo sapiens

70 <220>

75 <221> CDS

80 <222> (190)..(2319)

85 <223>

90 <400> 1

95 cagaggcgtc ctggctggct aagtccctcc cgctccggc tctgcctca ctaggagcgg 60

100 ctctcggtgc agcgggacag ggcgaagcgg cctgcgccca cggagcgcgc gacactgccc 120

105 ggaagggacc gccacccttg cccccctcagc tgcccactcg tgatttccag cggcctccgc 180

110 gcgcgcacg atg ccc tcg gcc acc agc cac agc ggg agc ggc agc aag tcg 231

115 Met Pro Ser Ala Thr Ser His Ser Gly Ser Gly Ser Lys Ser

120 1 5 10

125 tcc gga ccg cca ccg ccg tcg ggt tcc tcc ggg agt gag gcg gcc gcg 279

130 Ser Gly Pro Pro Pro Ser Gly Ser Ser Gly Ser Glu Ala Ala Ala

135 15 20 25 30

5	gga gcc ggg gcc gcc gcg ccg gct tct cag cac ccc gca acc ggc acc Gly Ala Gly Ala Ala Ala Pro Ala Ser Gln His Pro Ala Thr Gly Thr 35	40	45	327	
10	ggc gct gtc cag acc gag gcc atg aag cag att ctc ggg gtg atc gac Gly Ala Val Gln Thr Glu Ala Met Lys Gln Ile Leu Gly Val Ile Asp 50	55	60	375	
15	aag aaa ctt cgg aac ctg gag aag aaa aag ggt aag ctt gat gat tac Lys Lys Leu Arg Asn Leu Glu Lys Lys Lys Gly Lys Leu Asp Asp Tyr 65	70	75	423	
20	cag gaa cga atg aac aaa ggg gaa agg ctt aat caa gat cag ctg gat Gln Glu Arg Met Asn Lys Gly Glu Arg Leu Asn Gln Asp Gln Leu Asp 80	85	90	471	
25	gcc gtt tct aag tac cag gaa gtc aca aat aat ttg gag ttt gca aaa Ala Val Ser Lys Tyr Gln Glu Val Thr Asn Asn Leu Glu Phe Ala Lys 95	100	105	110	519
30	gaa tta cag agg agt ttc atg gca cta agt caa gat att cag aaa aca Glu Leu Gln Arg Ser Phe Met Ala Leu Ser Gln Asp Ile Gln Lys Thr 115	120	125	567	
35	ata aag aag aca gca cgt cgg gag cag ctt atg aga gaa gaa gct gaa Ile Lys Lys Thr Ala Arg Arg Glu Gln Leu Met Arg Glu Glu Ala Glu 130	135	140	615	
40	cag aaa cgt tta aaa act gta ctt gag cta cag tat gtt ttg gac aaa Gln Lys Arg Leu Lys Thr Val Leu Glu Leu Gln Tyr Val Leu Asp Lys 145	150	155	663	
45	ttg gga gat gat gaa gtg cgg act gac ctg aaa caa ggt ttg aat gga Leu Gly Asp Asp Glu Val Arg Thr Asp Leu Lys Gln Gly Leu Asn Gly 160	165	170	711	
50	gtg cca ata ttg tcc gaa gag gag ttg tca ttg ttg gat gaa ttc tat Val Pro Ile Leu Ser Glu Glu Glu Leu Ser Leu Leu Asp Glu Phe Tyr 175	180	185	190	759
55	aag cta gta gac cct gaa cgg gac atg agc ttg agg ttg aat gaa cag			807	

EP 2 325 648 A1

5	Lys Leu Val Asp Pro Glu Arg Asp Met Ser Leu Arg Leu Asn Glu Gln	195	200	205	
	tat gaa cat gcc tcc att cac ctg tgg gac ctg ctg gaa ggg aag gaa				855
	Tyr Glu His Ala Ser Ile His Leu Trp Asp Leu Leu Glu Gly Lys Glu				
	210	215	220		
10	aaa cct gta tgt gga acc acc tat aaa gtt cta aag gaa att gtt gag				903
	Lys Pro Val Cys Gly Thr Thr Tyr Lys Val Leu Lys Glu Ile Val Glu				
	225	230	235		
15	cgt gtt ttt cag tca aac tac ttt gac agc acc cac aac cac cag aat				951
	Arg Val Phe Gln Ser Asn Tyr Phe Asp Ser Thr His Asn His Gln Asn				
	240	245	250		
20	ggg ctg tgt gag gaa gaa gag gca gcc tca gca cct gca gtt gaa gac				999
	Gly Leu Cys Glu Glu Glu Ala Ala Ser Ala Pro Ala Val Glu Asp				
	255	260	265	270	
25	cag gta cct gaa gct gaa cct gag cca gca gaa gag tac act gag caa				1047
	Gln Val Pro Glu Ala Glu Pro Glu Pro Ala Glu Glu Tyr Thr Glu Gln				
	275	280	285		
30	agt gaa gtt gaa tca aca gag tat gta aat aga cag ttc atg gca gaa				1095
	Ser Glu Val Glu Ser Thr Glu Tyr Val Asn Arg Gln Phe Met Ala Glu				
	290	295	300		
35	aca cag ttc acc agt ggt gaa aag gag cag gta gat gag tgg aca gtt				1143
	Thr Gln Phe Thr Ser Gly Glu Lys Glu Gln Val Asp Glu Trp Thr Val				
	305	310	315		
40	gaa acg gtt gag gtg gta aat tca ctc cag cag caa cct cag gct gca				1191
	Glu Thr Val Glu Val Val Asn Ser Leu Gln Gln Pro Gln Ala Ala				
	320	325	330		
45	tcc cct tca gta cca gag ccc cac tct ttg act cca gtg gct cag gca				1239
	Ser Pro Ser Val Pro Glu Pro His Ser Leu Thr Pro Val Ala Gln Ala				
	335	340	345	350	
50	gat ccc ctt gtg aga aga cag cga gta caa gac ctt atg gca caa atg				1287
	Asp Pro Leu Val Arg Arg Gln Arg Val Gln Asp Leu Met Ala Gln Met				
	355	360	365		
55					

5	cag ggt ccc tat aat ttc ata cag gat tca atg ctg gat ttt gaa aat Gln Gly Pro Tyr Asn Phe Ile Gln Asp Ser Met Leu Asp Phe Glu Asn 370	375	380	1335	
10	cag aca ctt gat cct gcc att gta tct gca cag cct atg aat cca aca Gln Thr Leu Asp Pro Ala Ile Val Ser Ala Gln Pro Met Asn Pro Thr 385	390	395	1383	
15	caa aac atg gac atg ccc cag ctg gtt tgc cct cca gtt cat tct gaa Gln Asn Met Asp Met Pro Gln Leu Val Cys Pro Pro Val His Ser Glu 400	405	410	1431	
20	tct aga ctt gct cag cct aat caa gtt cct gta caa cca gaa gcg aca Ser Arg Leu Ala Gln Pro Asn Gln Val Pro Val Gln Pro Glu Ala Thr 415	420	425	430	1479
25	cag gtt cct ttg gta tca tcc aca agt gag ggg tac aca gca tct caa Gln Val Pro Leu Val Ser Ser Thr Ser Glu Gly Tyr Thr Ala Ser Gln 435	440	445	1527	
30	ccc ttg tac cag cct tct cat gct aca gag caa cga cca cag aag gaa Pro Leu Tyr Gln Pro Ser His Ala Thr Glu Gln Arg Pro Gln Lys Glu 450	455	460	1575	
35	cca att gat cag att cag gca aca atc tct tta aat aca gac cag act Pro Ile Asp Gln Ile Gln Ala Thr Ile Ser Leu Asn Thr Asp Gln Thr 465	470	475	1623	
40	aca gca tca tca tcc ctt cct gct gcg tct cag cct caa gta ttt cag Thr Ala Ser Ser Ser Leu Pro Ala Ala Ser Gln Pro Gln Val Phe Gln 480	485	490	1671	
45	gct ggg aca agc aaa cct tta cat agc agt gga atc aat gta aat gca Ala Gly Thr Ser Lys Pro Leu His Ser Ser Gly Ile Asn Val Asn Ala 495	500	505	510	1719
50	gct cca ttc caa tcc atg caa acg gtg ttc aat atg aat gcc cca gtt Ala Pro Phe Gln Ser Met Gln Thr Val Phe Asn Met Asn Ala Pro Val 515	520	525	1767	
55	cct cct gtt aat gaa cca gaa act tta aaa cag caa aat cag tac cag			1815	

EP 2 325 648 A1

5	Pro Pro Val Asn Glu Pro Glu Thr Leu Lys Gln Gln Asn Gln Tyr Gln	530	535	540
10	gcc agt tat aac cag cag ttt tct agt cag cct cac caa gta gaa caa Ala Ser Tyr Asn Gln Ser Phe Ser Ser Gln Pro His Gln Val Glu Gln	545	550	555
15	aca gag ctt cag caa gaa cag ctt caa aca gtg gtt ggc act tac cat Thr Glu Leu Gln Gln Glu Gln Leu Gln Thr Val Val Gly Thr Tyr His	560	565	570
20	ggt tcc cca gac cag tcc cat caa gtg act ggt aac cac cag cag cct Gly Ser Pro Asp Gln Ser His Gln Val Thr Gly Asn His Gln Gln Pro	575	580	585
25	cct cag cag aac act gga ttt cca cgt agc aat cag ccc tat tac aat Pro Gln Gln Asn Thr Gly Phe Pro Arg Ser Asn Gln Pro Tyr Tyr Asn	595	600	605
30	agt cgt ggt gtg tct cgt gga ggc tcc cgt ggt gct aga ggc ttg atg Ser Arg Gly Val Ser Arg Gly Ser Arg Gly Ala Arg Gly Leu Met	610	615	620
35	aat gga tac cgg ggc cct gcc aat gga ttc aga gga gga tat gat ggt Asn Gly Tyr Arg Gly Pro Ala Asn Gly Phe Arg Gly Gly Tyr Asp Gly	625	630	635
40	tac cgc cct tca ttc tct aac act cca aac agt ggt tat aca cag tct Tyr Arg Pro Ser Phe Ser Asn Thr Pro Asn Ser Gly Tyr Thr Gln Ser	640	645	650
45	cag ttc agt gct ccc cgg gat tac tct ggc tat caa cgg gat gga tat Gln Phe Ser Ala Pro Arg Asp Tyr Ser Gly Tyr Gln Arg Asp Gly Tyr	655	660	665
50	cag cag aat ttc aag cga ggc tct ggg cag agt gga cca cgg gga gcc Gln Gln Asn Phe Lys Arg Gly Ser Gly Gln Ser Gly Pro Arg Gly Ala	675	680	685
55	cca cga ggt cgt gga ggg ccc cca aga ccc aac aga ggg atg ccg caa Pro Arg Gly Arg Gly Gly Pro Pro Arg Pro Asn Arg Gly Met Pro Gln	690	695	700

5	atg aac act cag caa gtg aat taa tctgattcac aggattatgt ttaatcgcca	2349
	Met Asn Thr Gln Gln Val Asn	
	705	
10	aaaacacact ggccagtgtta ccataatatg ttaccagaag agttattatc tatttgtct	2409
	cccttcagg aaacttattg taaaggact gtttcatcc cataaagaca ggactacaat	2469
15	tgtcagctt ctattacctg gatatggaag gaaactatcc ttactctgca tggtctgtcc	2529
	taagcgtcat cttgagcctt gcacatgata ctcagattcc tcacccttgc ttaggagtaa	2589
20	aacaatatac tttacagggt gataataatc tccatagttt tttgaagtgg cttgaaaaag	2649
	gcaagattga cttttatgac attggataaa atctacaat cagccctcga gttattcaat	2709
25	gataactgac aaactaaatt atttccctag aaaggaagat gaaaggagtg gagtgtggtt	2769
	tggcagaaca actgcatttc acagctttc cagttaaatt ggagcactga acgttcagat	2829
30	gcataccaaa ttatgcatgg gtcctaattca cacatataag gctggctacc agcttgaca	2889
	cagcactgtt catctggcca aacaactgtg gttaaaaaca catgtaaaat gcttttaac	2949
35	agctgatact gtataagaca aagccaagat gcaaaattag gctttgatttgcacttttg	3009
	aaaaatatgc aacaaatatg ggatgtaaatc cggatggccg cttctgtact taatgtgaaa	3069
40	tat tagata ccttttgaa cacttaacag tttcttgag acaatgactt ttgttaaggat	3129
	tggtactatac tattttttttt tatgacatgt acattgtctg tcactaatcc ttggattttgc	3189
45	ctgtattgtc acctaaatttgc gtacaggtac tgatgaaaat ctctgttgc taatcataac	3249
	actctcggtc acatgtttt ctttcagctt gaaagctttt tttaaaagg aaaagataacc	3309
50	aaatgcctgc tgctaccacc ctttcaattt gctatctttt gaaaggcacc agtatgttgc	3369
	ttagattgtt ttccctgtttt cagggaaatc acggacagta gtttcagttc tgatggata	3429
55	agcaaaacaa ataaaacgtt tataaaagtt gtatcttgc acactgggt tcaacagctt	3489

5	gcagcttatg tgattcaccc catgccacgt tagtgtcaca aattttatgg tttatctcca	3549
10	gcaacatttc tctagtactt gcacttatta tctttgtct aatttaacct taactgaatt	3609
15	ctccgttct cctggaggca tttatattca gtgataattc cttcccttag atgcataggg	3669
20	agagtctcta aatttgatgg aatggacac ttgagtagtg acttagcctt atgtactctg	3729
25	ttggaatttgc tgcttagcgt ttgagcaacta gttctgtgtg cctaggaatgt taatgctgct	3789
30	tattgtctca ttctgacttc atggagaatt aatcccacct ttaagcaaag gctactaagt	3849
35	taatggtatt ttctgtgcag aaattaaatt ttatttcag catttagccc aggaattctt	3909
40	ccagtaggttgc ctcagctatt taaaaacaaa actattctca aacattcatc attagacaac	3969
45	tggagttttt gctggttttt taacctacca aatggatag gctgttgaac attccacatt	4029
50	caaaagttttt gtaggggtggt gggaaatggg ggatcttcaa tgtttattttt aaaataaaaat	4089
55	aaaataagtt cttgactttt ctcattgtgtg gttgtggtagt atcatattgg aagggttaac	4149
	ctgttactttt ggcaaatgag tatttttttgc ctagcacctc cccttgcgtg cttaaatgaa	4209
	catctgcctg ggatgtacca caaccatatg ttacctgtat ctttagggaa tggataaaaat	4269
	atttgtggtt tactggtaa tcccttagatg atgtatgctt gcagtcctat ataaaactaa	4329
	atttgctatc tggtagaaaa ataatttcat gacatttaca atcaggactg aagtaagttc	4389
	ttcacacagt gacctctgaa tcagtttcag agaaggatg ggggagaaaa tgccttctag	4449
	gttttgaact tctatgcatt agtgcagatg ttgtgaatgt gtaaagggtgt tcatagttttgc	4509
	actgtttcta tgtatgtttt ttcaaagaat tgttcctttt tttgaactat aattttctt	4569
	tttttggtaa ttttaccatc acagttaaa tgtatatctt ttatgtctct actcagacca	4629
	tatTTTaaa ggggtgcctc attatggggc agagaacttt tcaataagtc tcattaagat	4689
	ctgaatcttgc tttcttgcataa tatgtgatttgc cttgtccttag ctgcagaagg	4749

5	cctttgttt ggtcaaatgc atattttagc agagttcaa ggaaatgatt gtcacacatg	4809
10	tcactgttagc ctcttgggt agcaagctca catacaaaat actttgtat atgcataata	4869
15	taaatcatct catgtggata taaaacttct tttttaaaac ttaaaaaggt agaatgttat	4929
20	tgattacattt gattaggca gttttatttc cagatcctaa taattcctaa aaaatatgga	4989
25	aaagtttttt ttcaatcatt gtaccttgat attaaaacaa atatcctta agtatttcta	5049
30	atcagtttagc ttctacagtt cttttgtctc cttttatatg cagctttac gtgggagact	5109
35	tttccactta aaggagacat agaatgtgt cttattctca gaaggttcat taactgaggt	5169
40	gatgagttaa caactagttg agcagtcagc ttcctaagtg ttttaggaca tttgttcatt	5229
45	atattttccg tcatataact agaggaagtg gaatgcagat aagtgcgaa ttcaaaccct	5289
50	tcattttatg ttaagctcc tgaatctgca ttccacttgg gttgtttta agcattctaa	5349
55	attttagttg attataagtt agatttcaca gaatcagtat tgcccttgat cttgtccccc	5409
60	ttatggagtt aacggggagg aagacccctc aggaaaacga aagtaaattt ttaaggctca	5469
65	tcttcataacc tttttccatt ttgaatccta caaaaactact gcaaaagact agtgaatgtt	5529
70	taaaaattaca ctagattaaa taatatgaaa gtc	5562

40	<210> 2
	<211> 709
	<212> PRT
45	<213> Homo sapiens
	<400> 2

50	Met Pro Ser Ala Thr Ser His Ser Gly Ser Gly Ser Lys Ser Ser Gly
	1 5 10 15

55	Pro Pro Pro Pro Ser Gly Ser Ser Gly Ser Glu Ala Ala Ala Gly Ala
----	---

EP 2 325 648 A1

20 25 30

5

Gly Ala Ala Ala Pro Ala Ser Gln His Pro Ala Thr Gly Thr Gly Ala
35 40 45

10

Val Gln Thr Glu Ala Met Lys Gln Ile Leu Gly Val Ile Asp Lys Lys
50 55 60

15

Leu Arg Asn Leu Glu Lys Lys Lys Gly Lys Leu Asp Asp Tyr Gln Glu
65 70 75 80

20

Arg Met Asn Lys Gly Glu Arg Leu Asn Gln Asp Gln Leu Asp Ala Val
85 90 95

25

Ser Lys Tyr Gln Glu Val Thr Asn Asn Leu Glu Phe Ala Lys Glu Leu
100 105 110

30

Gln Arg Ser Phe Met Ala Leu Ser Gln Asp Ile Gln Lys Thr Ile Lys
115 120 125

35

Lys Thr Ala Arg Arg Glu Gln Leu Met Arg Glu Glu Ala Glu Gln Lys
130 135 140

40

Arg Leu Lys Thr Val Leu Glu Leu Gln Tyr Val Leu Asp Lys Leu Gly
145 150 155 160

45

Asp Asp Glu Val Arg Thr Asp Leu Lys Gln Gly Leu Asn Gly Val Pro
165 170 175

50

Ile Leu Ser Glu Glu Glu Leu Ser Leu Leu Asp Glu Phe Tyr Lys Leu
180 185 190

55

5 Val Asp Pro Glu Arg Asp Met Ser Leu Arg Leu Asn Glu Gln Tyr Glu
195 200 205

10 His Ala Ser Ile His Leu Trp Asp Leu Leu Glu Gly Lys Glu Lys Pro
210 215 220

15 Val Cys Gly Thr Thr Tyr Lys Val Leu Lys Glu Ile Val Glu Arg Val
225 230 235 240

20 Phe Gln Ser Asn Tyr Phe Asp Ser Thr His Asn His Gln Asn Gly Leu
245 250 255

25 Cys Glu Glu Glu Ala Ala Ser Ala Pro Ala Val Glu Asp Gln Val
260 265 270

30 Pro Glu Ala Glu Pro Glu Pro Ala Glu Glu Tyr Thr Glu Gln Ser Glu
275 280 285

35 Val Glu Ser Thr Glu Tyr Val Asn Arg Gln Phe Met Ala Glu Thr Gln
290 295 300

40 Phe Thr Ser Gly Glu Lys Glu Gln Val Asp Glu Trp Thr Val Glu Thr
305 310 315 320

45 Val Glu Val Val Asn Ser Leu Gln Gln Pro Gln Ala Ala Ser Pro
325 330 335

50 Ser Val Pro Glu Pro His Ser Leu Thr Pro Val Ala Gln Ala Asp Pro
340 345 350

55 Leu Val Arg Arg Gln Arg Val Gln Asp Leu Met Ala Gln Met Gln Gly

EP 2 325 648 A1

355 360 365

5

Pro Tyr Asn Phe Ile Gln Asp Ser Met Leu Asp Phe Glu Asn Gln Thr
370 375 380

10

Leu Asp Pro Ala Ile Val Ser Ala Gln Pro Met Asn Pro Thr Gln Asn
385 390 395 400

15

Met Asp Met Pro Gln Leu Val Cys Pro Pro Val His Ser Glu Ser Arg
405 410 415

20

Leu Ala Gln Pro Asn Gln Val Pro Val Gln Pro Glu Ala Thr Gln Val
420 425 430

25

Pro Leu Val Ser Ser Thr Ser Glu Gly Tyr Thr Ala Ser Gln Pro Leu
435 440 445

30

Tyr Gln Pro Ser His Ala Thr Glu Gln Arg Pro Gln Lys Glu Pro Ile
450 455 460

35

Asp Gln Ile Gln Ala Thr Ile Ser Leu Asn Thr Asp Gln Thr Thr Ala
465 470 475 480

40

Ser Ser Ser Leu Pro Ala Ala Ser Gln Pro Gln Val Phe Gln Ala Gly
485 490 495

45

Thr Ser Lys Pro Leu His Ser Ser Gly Ile Asn Val Asn Ala Ala Pro
500 505 510

50

Phe Gln Ser Met Gln Thr Val Phe Asn Met Asn Ala Pro Val Pro Pro
515 520 525

55

Val Asn Glu Pro Glu Thr Leu Lys Gln Gln Asn Gln Tyr Gln Ala Ser
5 530 535 540

Tyr Asn Gln Ser Phe Ser Ser Gln Pro His Gln Val Glu Gln Thr Glu
10 545 550 555 560

Leu Gln Gln Glu Gln Leu Gln Thr Val Val Gly Thr Tyr His Gly Ser
15 565 570 575

Pro Asp Gln Ser His Gln Val Thr Gly Asn His Gln Gln Pro Pro Gln
20 580 585 590

Gln Asn Thr Gly Phe Pro Arg Ser Asn Gln Pro Tyr Tyr Asn Ser Arg
25 595 600 605

Gly Val Ser Arg Gly Gly Ser Arg Gly Ala Arg Gly Leu Met Asn Gly
30 610 615 620

Tyr Arg Gly Pro Ala Asn Gly Phe Arg Gly Gly Tyr Asp Gly Tyr Arg
35 625 630 635 640

Pro Ser Phe Ser Asn Thr Pro Asn Ser Gly Tyr Thr Gln Ser Gln Phe
40 645 650 655

Ser Ala Pro Arg Asp Tyr Ser Gly Tyr Gln Arg Asp Gly Tyr Gln Gln
45 660 665 670

Asn Phe Lys Arg Gly Ser Gly Gln Ser Gly Pro Arg Gly Ala Pro Arg
50 675 680 685

Gly Arg Gly Gly Pro Pro Arg Pro Asn Arg Gly Met Pro Gln Met Asn
55

690 695 700

5

Thr Gln Gln Val Asn

705

10

<210> 3

<211> 3553

<212> DNA

15

<213> Homo sapiens

<220>

<221> CDS

20

<222> (190)..(2274)

<223>

<400> 3

25 cagagggctg ctggctggct aagtccctcc cgctcccgcc tctgcctca ctaggagcgg 60

ctctcggtgc agcgggacag ggcgaagcgg cctgcgccca cggagcgcgc gacactgccc 120

30 ggaagggacc gccacccttg ccccctcagc tgcccactcg tgatttccag cggcctccgc 180

gcgcgacg atg ccc tcg gcc acc agc cac agc ggg agc ggc agc aag tcg 231
Met Pro Ser Ala Thr Ser His Ser Gly Ser Gly Ser Lys Ser

35 1 5 10

tcc gga ccg cca ccg ccg tcg ggt tcc tcc ggg agt gag gcg gcc gcg 279
Ser Gly Pro Pro Pro Ser Gly Ser Ser Gly Ser Glu Ala Ala Ala

40 15 20 25 30

gga gcc ggg gcc gcc gcg ccg gct tct cag cac ccc gca acc ggc acc 327
Gly Ala Gly Ala Ala Ala Pro Ala Ser Gln His Pro Ala Thr Gly Thr
45 35 40 45ggc gct gtc cag acc gag gcc atg aag cag att ctc ggg gtg atc gac 375
Gly Ala Val Gln Thr Glu Ala Met Lys Gln Ile Leu Gly Val Ile Asp
50 50 55 60aag aaa ctt cgg aac ctg gag aag aaa aag ggt aag ctt gat gat tac 423
Lys Lys Leu Arg Asn Leu Glu Lys Lys Gly Lys Leu Asp Asp Tyr
55

	65	70	75	
5	cag gaa cga atg aac aaa ggg gaa agg ctt aat caa gat cag ctg gat			471
	Gln Glu Arg Met Asn Lys Gly Glu Arg Leu Asn Gln Asp Gln Leu Asp			
	80	85	90	
10	gcc gtt tct aag tac cag gaa gtc aca aat aat ttg gag ttt gca aaa			519
	Ala Val Ser Lys Tyr Gln Glu Val Thr Asn Asn Leu Glu Phe Ala Lys			
	95	100	105	110
15	gaa tta cag agg agt ttc atg gca cta agt caa gat att cag aaa aca			567
	Glu Leu Gln Arg Ser Phe Met Ala Leu Ser Gln Asp Ile Gln Lys Thr			
	115	120	125	
20	ata aag aag aca gca cgt cgg gag cag ctt atg aga gaa gaa gct gaa			615
	Ile Lys Lys Thr Ala Arg Arg Glu Gln Leu Met Arg Glu Glu Ala Glu			
	130	135	140	
25	cag aaa cgt tta aaa act gta ctt gag cta cag tat gtt ttg gac aaa			663
	Gln Lys Arg Leu Lys Thr Val Leu Glu Leu Gln Tyr Val Leu Asp Lys			
	145	150	155	
30	ttg gga gat gat gaa gtt cgg act gac ctg aaa caa ggt ttg aat gga			711
	Leu Gly Asp Asp Glu Val Arg Thr Asp Leu Lys Gln Gly Leu Asn Gly			
	160	165	170	
35	gtg cca ata ttg tcc gaa gag gag ttg tca ttg ttg gat gaa ttc tat			759
	Val Pro Ile Leu Ser Glu Glu Leu Ser Leu Leu Asp Glu Phe Tyr			
	175	180	185	190
40	aag cta gta gac cct gaa cgg gac atg agc ttg agg ttg aat gaa cag			807
	Lys Leu Val Asp Pro Glu Arg Asp Met Ser Leu Arg Leu Asn Glu Gln			
	195	200	205	
45	tat gaa cat gcc tcc att cac ctg tgg gac ctg ctg gaa ggg aag gaa			855
	Tyr Glu His Ala Ser Ile His Leu Trp Asp Leu Leu Glu Gly Lys Glu			
	210	215	220	
50	aaa cct gta tgt gga acc acc tat aaa gtt cta aag gaa att gtt gag			903
	Lys Pro Val Cys Gly Thr Thr Tyr Lys Val Leu Lys Glu Ile Val Glu			
	225	230	235	
55				

EP 2 325 648 A1

5	cgt gtt ttt cag tca aac tac ttt gac agc acc cac aac cac cag aat Arg Val Phe Gln Ser Asn Tyr Phe Asp Ser Thr His Asn His Gln Asn 240	245	250	951
10	ggg ctg tgt gag gaa gag gca gcc tca gca cct gca gtt gaa gac Gly Leu Cys Glu Glu Glu Ala Ala Ser Ala Pro Ala Val Glu Asp 255	260	265	270
15	cag gta cct gaa gct gaa cct gag cca gca gaa gag tac act gag caa Gln Val Pro Glu Ala Glu Pro Glu Pro Ala Glu Glu Tyr Thr Glu Gln 275	280	285	1047
20	agt gaa gtt gaa tca aca gag tat gta aat aga cag ttc atg gca gaa Ser Glu Val Glu Ser Thr Glu Tyr Val Asn Arg Gln Phe Met Ala Glu 290	295	300	1095
25	aca cag ttc acc agt ggt gaa aag gag cag gta gat gag tgg aca gtt Thr Gln Phe Thr Ser Gly Glu Lys Glu Gln Val Asp Glu Trp Thr Val 305	310	315	1143
30	gaa acg gtt gag gtg gta aat tca ctc cag cag caa cct cag gct gca Glu Thr Val Glu Val Val Asn Ser Leu Gln Gln Pro Gln Ala Ala 320	325	330	1191
35	tcc cct tca gta cca gag ccc cac tct ttg act cca gtg gct cag gca Ser Pro Ser Val Pro Glu Pro His Ser Leu Thr Pro Val Ala Gln Ala 335	340	345	350
40	gat ccc ctt gtg aga aga cag cga gta caa gac ctt atg gca caa atg Asp Pro Leu Val Arg Arg Gln Arg Val Gln Asp Leu Met Ala Gln Met 355	360	365	1287
45	cag ggt ccc tat aat ttc ata cag gat tca atg ctg gat ttt gaa aat Gln Gly Pro Tyr Asn Phe Ile Gln Asp Ser Met Leu Asp Phe Glu Asn 370	375	380	1335
50	cag aca ctt gat cct gcc att gta tct gca cag cct atg aat cca aca Gln Thr Leu Asp Pro Ala Ile Val Ser Ala Gln Pro Met Asn Pro Thr 385	390	395	1383
55	caa aac atg gac atg ccc cag ctg gtt tgc cct cca gtt cat tct gaa Gln Asn Met Asp Met Pro Gln Leu Val Cys Pro Pro Val His Ser Glu			1431

EP 2 325 648 A1

	400	405	410	
5	tct aga ctt gct cag cct aat caa gtt cct gta caa cca gaa gcg aca			1479
	Ser Arg Leu Ala Gln Pro Asn Gln Val Pro Val Gln Pro Glu Ala Thr			
415	420	425	430	
10	cag gtt cct ttg gta tca tcc aca agt gag ggg tac aca gca tct caa			1527
	Gln Val Pro Leu Val Ser Ser Thr Ser Glu Gly Tyr Thr Ala Ser Gln			
	435	440	445	
15	ccc ttg tac cag cct tct cat gct aca gag caa cga cca cag aag gaa			1575
	Pro Leu Tyr Gln Pro Ser His Ala Thr Glu Gln Arg Pro Gln Lys Glu			
	450	455	460	
20	cca att gat cag att cag gca aca atc tct tta aat aca gac cag act			1623
	Pro Ile Asp Gln Ile Gln Ala Thr Ile Ser Leu Asn Thr Asp Gln Thr			
	465	470	475	
25	aca gca tca tca tcc ctt cct gct gcg tct cag cct caa gta ttt cag			1671
	Thr Ala Ser Ser Ser Leu Pro Ala Ala Ser Gln Pro Gln Val Phe Gln			
	480	485	490	
30	gct ggg aca agc aaa cct tta cat agc agt gga atc aat gta aat gca			1719
	Ala Gly Thr Ser Lys Pro Leu His Ser Ser Gly Ile Asn Val Asn Ala			
	495	500	505	510
35	gct cca ttc caa tcc atg caa acg gtg ttc aat atg aat gcc cca gtt			1767
	Ala Pro Phe Gln Ser Met Gln Thr Val Phe Asn Met Asn Ala Pro Val			
	515	520	525	
40	cct cct gtt aat gaa cca gaa act tta aaa cag caa aat cag tac cag			1815
	Pro Pro Val Asn Glu Pro Glu Thr Leu Lys Gln Gln Asn Gln Tyr Gln			
	530	535	540	
45	gcc agt tat aac cag agc ttt tct agt cag cct cac caa gta gaa caa			1863
	Ala Ser Tyr Asn Gln Ser Phe Ser Ser Gln Pro His Gln Val Glu Gln			
	545	550	555	
50	aca gag ctt cag caa gaa cag ctt caa aca gtg gtt ggc act tac cat			1911
	Thr Glu Leu Gln Gln Glu Gln Leu Gln Thr Val Val Gly Thr Tyr His			
	560	565	570	
55				

EP 2 325 648 A1

5	ggt tcc cca gac cag tcc cat caa gtg act ggt aac cac cag cag cct Gly Ser Pro Asp Gln Ser His Gln Val Thr Gly Asn His Gln Gln Pro 575	580	585	590	1959
10	cct cag cag aac act gga ttt cca cgt agc aat cag ccc tat tac aat Pro Gln Gln Asn Thr Gly Phe Pro Arg Ser Asn Gln Pro Tyr Tyr Asn 595	600		605	2007
15	agt cgt ggt gtg tct cgt gga ggc tcc cgt ggt gct aga ggc ttg atg Ser Arg Gly Val Ser Arg Gly Gly Ser Arg Gly Ala Arg Gly Leu Met 610	615		620	2055
20	aat gga tac cgg ggc cct gcc aat gga ttc aga gga gga tat gat ggt Asn Gly Tyr Arg Gly Pro Ala Asn Gly Phe Arg Gly Gly Tyr Asp Gly 625	630		635	2103
25	tac cgc cct tca ttc tct aac act cca aac agt ggt tat aca cag tct Tyr Arg Pro Ser Phe Ser Asn Thr Pro Asn Ser Gly Tyr Thr Gln Ser 640	645	650		2151
30	cag ttc agt gct ccc cgg gat tac tct ggc tat caa cgg gat gga tat Gln Phe Ser Ala Pro Arg Asp Tyr Ser Gly Tyr Gln Arg Asp Gly Tyr 655	660	665	670	2199
35	cag cag aat ttc aag cga ggc tct ggg cag agt gga cca cgg gga gcc Gln Gln Asn Phe Lys Arg Gly Ser Gly Gln Ser Gly Pro Arg Gly Ala 675	680		685	2247
40	cca cga ggt aat att ttg tgg tgg tga tcctagctcc taagtggagc Pro Arg Gly Asn Ile Leu Trp Trp 690				2294
45	ttctgttctg gccttggaaag agctgttaat agtctgcatg ttaggaatac atttattcctt tccagacttg ttgcttaggaa ttaaatgaaa tgctctgttt ctaaaaactta atcttggacc caaattttaa ttttgaatg atttaatttt ccctgttact atataaaactg tcttgaaaac tagaacatata tctcttctca gaaaaagtgt ttttccaact gaaaattatt tttcaggtcc taaaaacctgc taaatgttt taggaagtac ttactgaaac attttgtaa gacattttg				2354
50					2414
55					2474
					2534
					2594

EP 2 325 648 A1

gaatgagatt gaacatttat ataaatttat tattccttct tcattttttt gaaacatgcc 2654
5 tattatattt tagggccaga cacccttaa tggccggata agccatagtt aacatttaga 2714
gaaccattta gaagtgatag aactaatgga atttgcatttgc cctttggac ctctattttt 2774
10 gatataaata tcaagtttatt tctgactttt aaacaaaact cccaaattcc taacttattt 2834
agctataactt aaaaaaaattt acaggtagttag agagttttt gttttcttt tactgttgaa 2894
15 aaactacttc ccattttggc aggaagttaa cctatttaac aatttagagct agcatttcat 2954
gtagtcgaa attctaaatg gttctctgat ttgagggagg ttaaacatca aacaggttcc 3014
20 ctctattggc cataacatgt ataaaatgtg tggtaaggag gaattacaac gtactttgat 3074
ttgaatacta gtagaaactg gccaggaaaa aggtacattt ttctaaaaat taatggatca 3134
25 cttggaaattt actgacttga ctagaagtat caaaggatgt ttgcattgtga atgtgggtta 3194
tggtttcc caccctgttag catattcgat gaaagtttagt ttaactgata gctaaaaatc 3254
30 tggttttaaca gcatgtaaaa agttatttt tctgttaaaa gtcattatac agttttgaat 3314
gttatgttagt ttcttttaa cagtttaggt aataaggtct gtttcatttgc tggtgtttt 3374
35 attaattttt atagttatgt gttacttact actgaaatgt aagcttagagt gtacactaga 3434
atgttaagtc catgagagca ggtacccgtt ctgtcttc tgctgtatct attcccaacg 3494
40 cttgtatgtt gtcctggca catagtaggc actcaataaa tattttgttga atgaatgaa 3553

45 <210> 4
<211> 694
<212> PRT
<213> Homo sapiens

50 <400> 4

Met Pro Ser Ala Thr Ser His Ser Gly Ser Gly Ser Lys Ser Ser Gly
1 5 10 15

55

5 Pro Pro Pro Pro Ser Gly Ser Ser Gly Ser Glu Ala Ala Ala Ala Gly Ala
20 25 30

10 Gly Ala Ala Ala Pro Ala Ser Gln His Pro Ala Thr Gly Thr Gly Ala
35 40 45

15 Val Gln Thr Glu Ala Met Lys Gln Ile Leu Gly Val Ile Asp Lys Lys
50 55 60

20 Leu Arg Asn Leu Glu Lys Lys Gly Lys Leu Asp Asp Tyr Gln Glu
65 70 75 80

25 Arg Met Asn Lys Gly Glu Arg Leu Asn Gln Asp Gln Leu Asp Ala Val
85 90 95

30 Ser Lys Tyr Gln Glu Val Thr Asn Asn Leu Glu Phe Ala Lys Glu Leu
100 105 110

35 Gln Arg Ser Phe Met Ala Leu Ser Gln Asp Ile Gln Lys Thr Ile Lys
115 120 125

40 Lys Thr Ala Arg Arg Glu Gln Leu Met Arg Glu Glu Ala Glu Gln Lys
130 135 140

45 Arg Leu Lys Thr Val Leu Glu Leu Gln Tyr Val Leu Asp Lys Leu Gly
145 150 155 160

50 Asp Asp Glu Val Arg Thr Asp Leu Lys Gln Gly Leu Asn Gly Val Pro
165 170 175

EP 2 325 648 A1

Ile Leu Ser Glu Glu Glu Leu Ser Leu Leu Asp Glu Phe Tyr Lys Leu
180 185 190

5

Val Asp Pro Glu Arg Asp Met Ser Leu Arg Leu Asn Glu Gln Tyr Glu
195 200 205

10

His Ala Ser Ile His Leu Trp Asp Leu Leu Glu Gly Lys Glu Lys Pro
210 215 220

15

Val Cys Gly Thr Thr Tyr Lys Val Leu Lys Glu Ile Val Glu Arg Val
225 230 235 240

20

Phe Gln Ser Asn Tyr Phe Asp Ser Thr His Asn His Gln Asn Gly Leu
245 250 255

25

Cys Glu Glu Glu Glu Ala Ala Ser Ala Pro Ala Val Glu Asp Gln Val
260 265 270

30

Pro Glu Ala Glu Pro Glu Pro Ala Glu Glu Tyr Thr Glu Gln Ser Glu
275 280 285

35

Val Glu Ser Thr Glu Tyr Val Asn Arg Gln Phe Met Ala Glu Thr Gln
290 295 300

40

Phe Thr Ser Gly Glu Lys Glu Gln Val Asp Glu Trp Thr Val Glu Thr
305 310 315 320

45

Val Glu Val Val Asn Ser Leu Gln Gln Gln Pro Gln Ala Ala Ser Pro
325 330 335

50

Ser Val Pro Glu Pro His Ser Leu Thr Pro Val Ala Gln Ala Asp Pro
340 345 350

55

5 Leu Val Arg Arg Gln Arg Val Gln Asp Leu Met Ala Gln Met Gln Gly
 355 360 365

10 Pro Tyr Asn Phe Ile Gln Asp Ser Met Leu Asp Phe Glu Asn Gln Thr
 370 375 380

15 Leu Asp Pro Ala Ile Val Ser Ala Gln Pro Met Asn Pro Thr Gln Asn
 385 390 395 400

20 Met Asp Met Pro Gln Leu Val Cys Pro Pro Val His Ser Glu Ser Arg
 405 410 415

25 Leu Ala Gln Pro Asn Gln Val Pro Val Gln Pro Glu Ala Thr Gln Val
 420 425 430

30 Pro Leu Val Ser Ser Thr Ser Glu Gly Tyr Thr Ala Ser Gln Pro Leu
 435 440 445

35 Tyr Gln Pro Ser His Ala Thr Glu Gln Arg Pro Gln Lys Glu Pro Ile
 450 455 460

40 Asp Gln Ile Gln Ala Thr Ile Ser Leu Asn Thr Asp Gln Thr Thr Ala
 465 470 475 480

45 Ser Ser Ser Leu Pro Ala Ala Ser Gln Pro Gln Val Phe Gln Ala Gly
 485 490 495

50 Thr Ser Lys Pro Leu His Ser Ser Gly Ile Asn Val Asn Ala Ala Pro
 500 505 510

EP 2 325 648 A1

Phe Gln Ser Met Gln Thr Val Phe Asn Met Asn Ala Pro Val Pro Pro
515 520 525

5

Val Asn Glu Pro Glu Thr Leu Lys Gln Gln Asn Gln Tyr Gln Ala Ser
530 535 540

10

Tyr Asn Gln Ser Phe Ser Ser Gln Pro His Gln Val Glu Gln Thr Glu
545 550 555 560

15

Leu Gln Gln Glu Gln Leu Gln Thr Val Val Gly Thr Tyr His Gly Ser
565 570 575

20

Pro Asp Gln Ser His Gln Val Thr Gly Asn His Gln Gln Pro Pro Gln
580 585 590

25

Gln Asn Thr Gly Phe Pro Arg Ser Asn Gln Pro Tyr Tyr Asn Ser Arg
595 600 605

30

Gly Val Ser Arg Gly Gly Ser Arg Gly Ala Arg Gly Leu Met Asn Gly
610 615 620

35

Tyr Arg Gly Pro Ala Asn Gly Phe Arg Gly Gly Tyr Asp Gly Tyr Arg
625 630 635 640

40

Pro Ser Phe Ser Asn Thr Pro Asn Ser Gly Tyr Thr Gln Ser Gln Phe
645 650 655

45

Ser Ala Pro Arg Asp Tyr Ser Gly Tyr Gln Arg Asp Gly Tyr Gln Gln
660 665 670

50

Asn Phe Lys Arg Gly Ser Gly Gln Ser Gly Pro Arg Gly Ala Pro Arg
675 680 685

55

5 Gly Asn Ile Leu Trp Trp
690

10 <210> 5
<211> 1605
<212> DNA
<213> Canis familiaris

15 <220>
<221> CDS
<222> (46)..(1392)

20 <223>

<400> 5
gtcacaaaata acttggagtt tgcaaaagaa ttacagagga gtttc atg gca tta agt 57
25 Met Ala Leu Ser
1

30 caa gat att cag aaa aca ata aag aag act gca cgt cgg gag cag ctt 105
Gln Asp Ile Gln Lys Thr Ile Lys Lys Thr Ala Arg Arg Glu Gln Leu
5 10 15 20

35 atg aga gag gaa gcg gaa caa aaa cgt tta aaa act gta ctt gag ctc 153
Met Arg Glu Glu Ala Glu Gln Lys Arg Leu Lys Thr Val Leu Glu Leu
25 30 35

40 cag tat gtt ttg gac aaa ttg gga gat gat gaa gtg aga act gac ctg 201
Gln Tyr Val Leu Asp Lys Leu Gly Asp Asp Glu Val Arg Thr Asp Leu
40 45 50

45 aag caa ggt ttg aat gga gtg cca ata ttg tct gaa gaa gaa ttg tcg 249
Lys Gln Gly Leu Asn Gly Val Pro Ile Leu Ser Glu Glu Leu Ser
55 60 65

50 ttg ttg gat gaa ttc tac aaa tta gca gac cct gaa cgg gac atg agc 297
Leu Leu Asp Glu Phe Tyr Lys Leu Ala Asp Pro Glu Arg Asp Met Ser
70 75 80

55 ttg agg ttg aat gag cag tat gaa cat gct tcc att cac ctg tgg gac 345

EP 2 325 648 A1

Leu Arg Leu Asn Glu Gln Tyr Glu His Ala Ser Ile His Leu Trp Asp			
85	90	95	100
5			
ttg ctg gaa gga aag gaa aag tct gta tgt gga aca acc tat aaa gca			393
Leu Leu Glu Gly Lys Glu Lys Ser Val Cys Gly Thr Thr Tyr Lys Ala			
105	110	115	
10			
cta aag gaa att gtt gag cgt gtt ttc cag tca aat tac ttt gac agc			441
Leu Lys Glu Ile Val Glu Arg Val Phe Gln Ser Asn Tyr Phe Asp Ser			
120	125	130	
15			
act cac aac cac cag aat ggg cta tgt gag gaa gaa gag gca gcc tca			489
Thr His Asn His Gln Asn Gly Leu Cys Glu Glu Glu Ala Ala Ser			
135	140	145	
20			
gca cct aca gtt gaa gac cag gta gct gaa gct gag cct gag cca gca			537
Ala Pro Thr Val Glu Asp Gln Val Ala Glu Ala Pro Glu Pro Ala			
150	155	160	
25			
gaa gaa tac act gaa caa agt gaa gtt gaa tca aca gag tat gta aat			585
Glu Glu Tyr Thr Glu Gln Ser Glu Val Glu Ser Thr Glu Tyr Val Asn			
165	170	175	180
30			
aga caa ttt atg gca gaa aca cag ttc agc agt ggt gaa aag gag cag			633
Arg Gln Phe Met Ala Glu Thr Gln Phe Ser Ser Gly Glu Lys Glu Gln			
185	190	195	
35			
gta gat gag tgg acg gtc gaa aca gtg gag gtg gtg aat tca ctc cag			681
Val Asp Glu Trp Thr Val Glu Thr Val Glu Val Val Asn Ser Leu Gln			
200	205	210	
40			
cag caa cct cag gct gcg tct cct tca gta cca gag ccc cac tct ttg			729
Gln Gln Pro Gln Ala Ala Ser Pro Ser Val Pro Glu Pro His Ser Leu			
215	220	225	
45			
act ccg gtg gct cag gca gat ccc ctt gtg aga aga cag cga gtc cag			777
Thr Pro Val Ala Gln Ala Asp Pro Leu Val Arg Arg Gln Arg Val Gln			
230	235	240	
50			
gac ctt atg gcg cag atg cag ggg ccc tat aat ttc ata cag gat tca			825
Asp Leu Met Ala Gln Met Gln Gly Pro Tyr Asn Phe Ile Gln Asp Ser			
245	250	255	260

5	atg ctg gat ttt gaa aac cag aca ctc gat cct gcc att gta tct gca Met Leu Asp Phe Glu Asn Gln Thr Leu Asp Pro Ala Ile Val Ser Ala 265	270	275	873	
10	cag cct atg aat ccg aca caa aac atg gac atg ccc cag ctg gtt tgc Gln Pro Met Asn Pro Thr Gln Asn Met Asp Met Pro Gln Leu Val Cys 280	285	290	921	
15	cct cca gtt cat tct gaa tct aga ctt gct caa cct aat caa gtt cct Pro Pro Val His Ser Glu Ser Arg Leu Ala Gln Pro Asn Gln Val Pro 295	300	305	969	
20	gta caa cca gaa gct aca cag gtt cct ttg gtt tca tcc aca agt gag Val Gln Pro Glu Ala Thr Gln Val Pro Leu Val Ser Ser Thr Ser Glu 310	315	320	1017	
25	ggg tat aca gca tct caa ccc ttg tac cag cct tct cat gct aca gag Gly Tyr Thr Ala Ser Gln Pro Leu Tyr Gln Pro Ser His Ala Thr Glu 325	330	335	340	1065
30	caa cga cca caa aag gaa cca att gac cag att cag gca aca atc tct Gln Arg Pro Gln Lys Glu Pro Ile Asp Gln Ile Gln Ala Thr Ile Ser 345	350	355	1113	
35	tta aat aca gac cag act aca gcg tca tca tcc ctt ccg gct gct tct Leu Asn Thr Asp Gln Thr Ala Ser Ser Ser Leu Pro Ala Ala Ser 360	365	370	1161	
40	cag cct cag gta ttc cag gct ggg aca agc aaa cca tta cat agc agt Gln Pro Gln Val Phe Gln Ala Gly Thr Ser Lys Pro Leu His Ser Ser 375	380	385	1209	
45	gga atc aat gta aat gca gct cca ttc caa tcc atg caa acg gtg ttc Gly Ile Asn Val Asn Ala Ala Pro Phe Gln Ser Met Gln Thr Val Phe 390	395	400	1257	
50	aat atg aat gcc cca gtt cct cct gtt aat gaa cca gaa act ttg aaa Asn Met Asn Ala Pro Val Pro Val Asn Glu Pro Glu Thr Leu Lys 405	410	415	420	1305
55	caa caa aat cag tac cag gcc agt tat aac cag agc ttt tct agt cag			1353	

EP 2 325 648 A1

Gln Gln Asn Gln Tyr Gln Ala Ser Tyr Asn Gln Ser Phe Ser Ser Gln
425 430 435

5 cct cac caa gta gaa caa aca gag gga tgc cgc aaa tga acactcagca 1402
Pro His Gln Val Glu Gln Thr Glu Gly Cys Arg Lys
440 445

10 agtgaattaa tctgattcac aggattatgt ttaaacgcca aaaacacact ggccagtgt 1462
ccataatatg ttaccagaag agttattatc tatttgccttcccttcagg aaacttattg 1522
15 taaaggact gtttcatcc cataaaagaca ggactacaat tgtcagctt atattacctg 1582
gaaaaaaaaaaa aaaaaaaaaaaa aaa 1605
20

25 <210> 6
<211> 448
<212> PRT
<213> Canis familiaris

30 <400> 6

35 Met Ala Leu Ser Gln Asp Ile Gln Lys Thr Ile Lys Lys Thr Ala Arg
1 5 10 15

40 Arg Glu Gln Leu Met Arg Glu Glu Ala Glu Gln Lys Arg Leu Lys Thr
20 25 30

45 Val Leu Glu Leu Gln Tyr Val Leu Asp Lys Leu Gly Asp Asp Glu Val
35 40 45

50 Arg Thr Asp Leu Lys Gln Gly Leu Asn Gly Val Pro Ile Leu Ser Glu
50 55 60

55 Glu Glu Leu Ser Leu Leu Asp Glu Phe Tyr Lys Leu Ala Asp Pro Glu
65 70 75 80

Arg Asp Met Ser Leu Arg Leu Asn Glu Gln Tyr Glu His Ala Ser Ile
5 85 90 95

His Leu Trp Asp Leu Leu Glu Gly Lys Glu Lys Ser Val Cys Gly Thr
10 100 105 110

Thr Tyr Lys Ala Leu Lys Glu Ile Val Glu Arg Val Phe Gln Ser Asn
15 115 120 125

Tyr Phe Asp Ser Thr His Asn His Gln Asn Gly Leu Cys Glu Glu Glu
20 130 135 140

Glu Ala Ala Ser Ala Pro Thr Val Glu Asp Gln Val Ala Glu Ala Glu
25 145 150 155 160

Pro Glu Pro Ala Glu Glu Tyr Thr Glu Gln Ser Glu Val Glu Ser Thr
30 165 170 175

Glu Tyr Val Asn Arg Gln Phe Met Ala Glu Thr Gln Phe Ser Ser Gly
35 180 185 190

Glu Lys Glu Gln Val Asp Glu Trp Thr Val Glu Thr Val Glu Val Val
40 195 200 205

Asn Ser Leu Gln Gln Gln Pro Gln Ala Ala Ser Pro Ser Val Pro Glu
45 210 215 220

Pro His Ser Leu Thr Pro Val Ala Gln Ala Asp Pro Leu Val Arg Arg
50 225 230 235 240

Gln Arg Val Gln Asp Leu Met Ala Gln Met Gln Gly Pro Tyr Asn Phe
55

EP 2 325 648 A1

	245	250	255
5	Ile Gln Asp Ser Met Leu Asp Phe Glu Asn Gln Thr Leu Asp Pro Ala		
	260	265	270
10	Ile Val Ser Ala Gln Pro Met Asn Pro Thr Gln Asn Met Asp Met Pro		
	275	280	285
15	Gln Leu Val Cys Pro Pro Val His Ser Glu Ser Arg Leu Ala Gln Pro		
	290	295	300
20	Asn Gln Val Pro Val Gln Pro Glu Ala Thr Gln Val Pro Leu Val Ser		
	305	310	315
25	Ser Thr Ser Glu Gly Tyr Thr Ala Ser Gln Pro Leu Tyr Gln Pro Ser		
	325	330	335
30	His Ala Thr Glu Gln Arg Pro Gln Lys Glu Pro Ile Asp Gln Ile Gln		
	340	345	350
35	Ala Thr Ile Ser Leu Asn Thr Asp Gln Thr Thr Ala Ser Ser Ser Leu		
	355	360	365
40	Pro Ala Ala Ser Gln Pro Gln Val Phe Gln Ala Gly Thr Ser Lys Pro		
	370	375	380
45	Leu His Ser Ser Gly Ile Asn Val Asn Ala Ala Pro Phe Gln Ser Met		
	385	390	395
50	Gln Thr Val Phe Asn Met Asn Ala Pro Val Pro Pro Val Asn Glu Pro		
	405	410	415

5	Glu Thr Leu Lys Gln Gln Asn Gln Tyr Gln Ala Ser Tyr Asn Gln Ser		
	420	425	430
10	Phe Ser Ser Gln Pro His Gln Val Glu Gln Thr Glu Gly Cys Arg Lys		
	435	440	445
15	<210> 7		
	<211> 4154		
	<212> DNA		
	<213> Canis familiaris		
20	<220>		
	<221> CDS		
	<222> (1)..(2154)		
	<223>		
25	<400> 7		
	atg ccg tcg gcc acc agc ctc agc gga agc ggc agc aag tcg tcg ggc		48
	Met Pro Ser Ala Thr Ser Leu Ser Gly Ser Gly Ser Lys Ser Ser Gly		
30	1 5 10 15		
	ccg ccg ccc ccg tcg ggt tcc tcc ggg agc gag gcg gcg gcg gcg		96
	Pro Pro Pro Pro Ser Gly Ser Ser Gly Ser Glu Ala Ala Ala Ala Ala		
35	20 25 30		
	ggg gcg gcg ggg gcg ggg gcc ggg gcg gct gcg ccc gcc tcc cag		144
	Gly Ala Ala Gly Ala Ala Gly Ala Gly Ala Ala Ala Pro Ala Ser Gln		
40	35 40 45		
	cac ccc gcg acc ggc acc ggc gct gtc cag acc gag gcc atg aag cag		192
	His Pro Ala Thr Gly Thr Gly Ala Val Gln Thr Glu Ala Met Lys Gln		
45	50 55 60		
	atc ctc ggg gtg atc gac aag aaa ctc cgg aac ctg gag aag aaa aag		240
	Ile Leu Gly Val Ile Asp Lys Lys Leu Arg Asn Leu Glu Lys Lys Lys		
50	65 70 75 80		
	ggc aag ctt gat gat tac cag gaa cga atg aac aaa ggg gaa agg ctt		288
	Gly Lys Leu Asp Asp Tyr Gln Glu Arg Met Asn Lys Gly Glu Arg Leu		
55			

EP 2 325 648 A1

	85	90	95	
5	aat caa gat cag ctg gat gcc gta tct aag tac cag gaa gtc aca aat			336
	Asn Gln Asp Gln Leu Asp Ala Val Ser Lys Tyr Gln Glu Val Thr Asn			
	100	105	110	
10	aac ttg gag ttt gca aaa gaa tta cag agg agt ttc atg gca tta agt			384
	Asn Leu Glu Phe Ala Lys Glu Leu Gln Arg Ser Phe Met Ala Leu Ser			
	115	120	125	
15	caa gat att cag aaa aca ata aag aag act gca cgt cgg gag cag ctt			432
	Gln Asp Ile Gln Lys Thr Ile Lys Lys Thr Ala Arg Arg Glu Gln Leu			
	130	135	140	
20	atg aga gag gaa gcg gaa caa aaa cgt tta aaa act gta ctt gag ctc			480
	Met Arg Glu Glu Ala Glu Gln Lys Arg Leu Lys Thr Val Leu Glu Leu			
	145	150	155	160
25	cag tat gtt ttg gac aaa ttg gga gat gat gaa gtg aga act gac ctg			528
	Gln Tyr Val Leu Asp Lys Leu Gly Asp Asp Glu Val Arg Thr Asp Leu			
	165	170	175	
30	aag caa ggt ttg aat gga gtg cca ata ttg tct gaa gaa gaa ttg tcg			576
	Lys Gln Gly Leu Asn Gly Val Pro Ile Leu Ser Glu Glu Glu Leu Ser			
	180	185	190	
35	ttg ttg gat gaa ttc tac aaa tta gca gac cct gaa cgg gac atg agc			624
	Leu Leu Asp Glu Phe Tyr Lys Leu Ala Asp Pro Glu Arg Asp Met Ser			
	195	200	205	
40	ttg agg ttg aat gag cag tat gaa cat gct tcc att cac ctg tgg gac			672
	Leu Arg Leu Asn Glu Gln Tyr Glu His Ala Ser Ile His Leu Trp Asp			
	210	215	220	
45	ttg ctg gaa gga aag gaa aag tct gta tgt gga aca acc tat aaa gca			720
	Leu Leu Glu Gly Lys Glu Lys Ser Val Cys Gly Thr Thr Tyr Lys Ala			
	225	230	235	240
50	cta aag gaa att gtt gag cgt gtt ttc cag tca aat tac ttt gac agc			768
	Leu Lys Glu Ile Val Glu Arg Val Phe Gln Ser Asn Tyr Phe Asp Ser			
	245	250	255	
55				

EP 2 325 648 A1

	act cac aac cac cag aat ggg cta tgt gag gaa gaa gag gca gcc tca		816
	Thr His Asn His Gln Asn Gly Leu Cys Glu Glu Glu Ala Ala Ser		
5	260	265	270
	gca cct aca gtt gaa gac cag gta gct gaa gag cct gag cca gca		864
	Ala Pro Thr Val Glu Asp Gln Val Ala Glu Ala Glu Pro Glu Pro Ala		
10	275	280	285
	gaa gaa tac act gaa caa agt gaa gtt gaa tca aca gag tat gta aat		912
	Glu Glu Tyr Thr Glu Gln Ser Glu Val Glu Ser Thr Glu Tyr Val Asn		
15	290	295	300
	aga caa ttt atg gca gaa aca cag ttc agc agt ggt gaa aag gag cag		960
	Arg Gln Phe Met Ala Glu Thr Gln Phe Ser Ser Gly Glu Lys Glu Gln		
20	305	310	315
	320		
	gta gat gag tgg acg gtc gaa aca gtg gag gtg gtg aat tca ctc cag		1008
	Val Asp Glu Trp Thr Val Glu Thr Val Glu Val Val Asn Ser Leu Gln		
25	325	330	335
	cag caa cct cag gct gcg tct cct tca gta cca gag ccc cac tct ttg		1056
	Gln Gln Pro Gln Ala Ala Ser Pro Ser Val Pro Glu Pro His Ser Leu		
30	340	345	350
	act ccg gtg gct cag gca gat ccc ctt gtg aga aga cag cga gtc cag		1104
	Thr Pro Val Ala Gln Ala Asp Pro Leu Val Arg Arg Gln Arg Val Gln		
35	355	360	365
	gac ctt atg gcg cag atg cag ggg ccc tat aat ttc ata cag gat tca		1152
	Asp Leu Met Ala Gln Met Gln Gly Pro Tyr Asn Phe Ile Gln Asp Ser		
40	370	375	380
	atg ctg gat ttt gaa aac cag aca ctc gat cct gcc att gta tct gca		1200
	Met Leu Asp Phe Glu Asn Gln Thr Leu Asp Pro Ala Ile Val Ser Ala		
45	385	390	395
	400		
	cag cct atg aat ccg aca caa aac atg gac atg ccc cag ctg gtt tgc		1248
	Gln Pro Met Asn Pro Thr Gln Asn Met Asp Met Pro Gln Leu Val Cys		
50	405	410	415
	cct cca gtt cat tct gaa tct aga ctt gct caa cct aat caa gtt cct		1296
	Pro Pro Val His Ser Glu Ser Arg Leu Ala Gln Pro Asn Gln Val Pro		
55			

EP 2 325 648 A1

	420	425	430	
5	gta caa cca gaa gct aca cag gtt cct ttg gtt tca tcc aca agt gag Val Gln Pro Glu Ala Thr Gln Val Pro Leu Val Ser Ser Thr Ser Glu			1344
	435	440	445	
10	ggg tat aca gca tct caa ccc ttg tac cag cct tct cat gct aca gag Gly Tyr Thr Ala Ser Gln Pro Leu Tyr Gln Pro Ser His Ala Thr Glu			1392
	450	455	460	
15	caa cga cca caa aag gaa cca att gac cag att cag gca aca atc tct Gln Arg Pro Gln Lys Glu Pro Ile Asp Gln Ile Gln Ala Thr Ile Ser			1440
	465	470	475	480
20	tta aat aca gac cag act aca gcg tca tca tcc ctt ccg gct gct tct Leu Asn Thr Asp Gln Thr Ala Ser Ser Ser Leu Pro Ala Ala Ser			1488
	485	490	495	
25	cag cct cag gta ttc cag gct ggg aca agc aaa cca tta cat agc agt Gln Pro Gln Val Phe Gln Ala Gly Thr Ser Lys Pro Leu His Ser Ser			1536
	500	505	510	
30	gga atc aat gta aat gca gct cca ttc caa tcc atg caa acg gtg ttc Gly Ile Asn Val Asn Ala Ala Pro Phe Gln Ser Met Gln Thr Val Phe			1584
	515	520	525	
35	aat atg aat gcc cca gtt cct cct gtt aat gaa cca gaa act ttg aaa Asn Met Asn Ala Pro Val Pro Pro Val Asn Glu Pro Glu Thr Leu Lys			1632
	530	535	540	
40	caa caa aat cag tac cag gcc agt tat aac cag agc ttt tct agt cag Gln Gln Asn Gln Tyr Gln Ala Ser Tyr Asn Gln Ser Phe Ser Ser Gln			1680
	545	550	555	560
45	cct cac caa gta gaa caa aca gac ctt cag caa gaa cag ctt caa aca Pro His Gln Val Glu Gln Thr Asp Leu Gln Gln Glu Gln Leu Gln Thr			1728
	565	570	575	
50	gtg gtt ggc act tac cat ggt tcc cag gac cag ccc cac caa gtg act Val Val Gly Thr Tyr His Gly Ser Gln Asp Gln Pro His Gln Val Thr			1776
	580	585	590	
55				

EP 2 325 648 A1

5	ggt aac cat cag cag cct ccc cag cag aac act gga ttt cca cgt agc Gly Asn His Gln Gln Pro Pro Gln Gln Asn Thr Gly Phe Pro Arg Ser 595 600 605	1824
10	agt cag ccc tat tac aat agt cgt ggt gtg tct cgt ggt tcc cgt Ser Gln Pro Tyr Tyr Asn Ser Arg Gly Val Ser Arg Gly Gly Ser Arg 610 615 620	1872
15	ggt gct aga ggc tta atg aat gga tac agg ggc cct gcc aat gga ttc Gly Ala Arg Gly Leu Met Asn Gly Tyr Arg Gly Pro Ala Asn Gly Phe 625 630 635 640	1920
20	aga gga gga tat gat ggt tac cgc cct tca ttc tct aac act cca aac Arg Gly Gly Tyr Asp Gly Tyr Arg Pro Ser Phe Ser Asn Thr Pro Asn 645 650 655	1968
25	agt ggt tat aca cag tct cag ttc agt gct ccc cgg gac tac tct ggc Ser Gly Tyr Thr Gln Ser Gln Phe Ser Ala Pro Arg Asp Tyr Ser Gly 660 665 670	2016
30	tat cag cgg gat gga tat cag cag aat ttc aag cga ggc tct ggg cag Tyr Gln Arg Asp Gly Tyr Gln Gln Asn Phe Lys Arg Gly Ser Gly Gln 675 680 685	2064
35	agt gga cca cgg gga gcc cca cga ggt cgt gga ggg ccc cca aga ccc Ser Gly Pro Arg Gly Ala Pro Arg Gly Arg Gly Pro Pro Arg Pro 690 695 700	2112
40	aac aga ggg atg ccg caa atg aac act cag caa gtg aat taa Asn Arg Gly Met Pro Gln Met Asn Thr Gln Gln Val Asn 705 710 715	2154
45	tctgattcac aggattatgt ttaaacgcca aaaacacact ggccagtgtta ccataatatg ttaccagaag agttattatc tatttggctt ccctttcagg aaacttattg taaaggact	2214 2274
50	gttttcatcc cataaagaca ggactacaat tgtcagctt atattacctg gatatggaag gaaaactatcc ttattctgca tggtttccct aagcgtcattt ttgagcctt cacatgatac	2334 2394
55	tcagattccct cacccttgct taggagtaaa acataataca ctttacaggg tgatatctcc	2454

	atagttattt gaagtggctt ggaaaaagca agattaacctt ctgacattgg ataaaaatca	2514
5	acaaatcagc cctagagttt ttcaaattgtt aattgacaaa aactaaaata tttcccttcg	2574
	agaaggagtg gaatgtggtt tggcagaaca actgcatttc acagctttc cggttaaatt	2634
10	ggagcactaa acgtttagat gcataccaaa ttatgcatgg gcccttaata taaaaggctg	2694
	gctaccagct ttgacacagc actattcatc ctctggccaa acaactgtgg ttaaacaaca	2754
15	catgtaaatt gcttttaac agctgatact ataataagac aaagccaaaa tgcaaaaatt	2814
	gggcttgat tggcactttt tgaaaaatata gcaacaataa tggatgtaa tctggatggc	2874
20	cgcttcgtta cttaatgtga agtatttata taccttttg aacacttaac agtttcttct	2934
	gacaatgact tttgttaagga ttggactat ctatcattcc ttataatgtta cattgtctgt	2994
25	cactaatcct cagatcttgc tgtattgtca cctaaattgg tacaggtact gatgaaaata	3054
	tctaatggat aatcataaca ctcttggtca catgttttc ctgcagcctg aaggtttta	3114
30	aaagaaaaag atatcaaattt cctgctgcta ccaccctttt aaattgctat cttttgaaaa	3174
	gcaccagttt gtgttttata ttgatttccc tatttttaggg aaatgacaga cagtagttc	3234
35	agttctgatg gtataagcaa aacaaataaa acatgtttat aaaagttgtta tcttgaaca	3294
	ctgggttca acagcttagca gcttatgtgg ttcaccccat gcattgttag tgtttcagat	3354
40	tttatggtta tctccagcag ctgtttctgt agtacttgca ttatctttt gtctaaccct	3414
	aatattctca cggaggcatt tatattcaaa gtgggtatcc ctcaacttag acgcataggg	3474
45	agagtcacaa gtttgatgaa gaggacagt tagtaatttata tattgttttgc gatattgtgc	3534
	tagcagttt agcacttagtt ctgtgtgcct atgaacttaa tgctgcttgc catattccac	3594
50	tttgacttca tggagaatttta atcccatctca ctcagcaaag gctataactaa tactaaggta	3654
	atggtattttt ctgtgcagaa attgaattttt gttttattttt cattagcttta aggaattttt	3714

	ccagtaggtg ctcagctact aaagaaaaac aaaaacaaga cacaaaacta ttctcaaaca	3774
5	ttcattgtta gacaactgga gttttgctg gttttgtAAC ctactaaaat ggataggctg	3834
	ttgaacattc cacattcaa agtttttgt agggtggtgg ggaagggggg gtgtcttcaa	3894
10	tgtttatTTT aaaataaaat aagttcttga ctTTTctcat gtgtggTTgt ggtacatcat	3954
	attggaaagg ttatctgttt actTTTgcaa atgagtattt ctcttgctag cacTcccgt	4014
15	tgtgcgcTTT aaatgacatc tgcctggat gtaccacaac cataatgttag ctgtatTTta	4074
	tgggaaatag ataaaatatt cgtggTTTat tggtaatcc ctagatgtgt atgcttacaa	4134
20	tcctatataat aaaactaaat	4154

	<210> 8
25	<211> 717
	<212> PRT
	<213> Canis familiaris
30	<400> 8

	Met Pro Ser Ala Thr Ser Leu Ser Gly Ser Gly Ser Lys Ser Ser Gly	
35	1 5 10 15	
	Pro Pro Pro Pro Ser Gly Ser Ser Gly Ser Glu Ala Ala Ala Ala Ala	
40	20 25 30	
	Gly Ala Ala Gly Ala Ala Gly Ala Gly Ala Ala Ala Pro Ala Ser Gln	
45	35 40 45	
	His Pro Ala Thr Gly Thr Gly Ala Val Gln Thr Glu Ala Met Lys Gln	
50	50 55 60	
	Ile Leu Gly Val Ile Asp Lys Lys Leu Arg Asn Leu Glu Lys Lys Lys	
55	65 70 75 80	

5 Gly Lys Leu Asp Asp Tyr Gln Glu Arg Met Asn Lys Gly Glu Arg Leu
85 90 95

10 Asn Gln Asp Gln Leu Asp Ala Val Ser Lys Tyr Gln Glu Val Thr Asn
100 105 110

15 Asn Leu Glu Phe Ala Lys Glu Leu Gln Arg Ser Phe Met Ala Leu Ser
115 120 125

20 Gln Asp Ile Gln Lys Thr Ile Lys Lys Thr Ala Arg Arg Glu Gln Leu
130 135 140

25 Met Arg Glu Glu Ala Glu Gln Lys Arg Leu Lys Thr Val Leu Glu Leu
145 150 155 160

30 Gln Tyr Val Leu Asp Lys Leu Gly Asp Asp Glu Val Arg Thr Asp Leu
165 170 175

35 Lys Gln Gly Leu Asn Gly Val Pro Ile Leu Ser Glu Glu Leu Ser
180 185 190

40 Leu Leu Asp Glu Phe Tyr Lys Leu Ala Asp Pro Glu Arg Asp Met Ser
195 200 205

45 Leu Arg Leu Asn Glu Gln Tyr Glu His Ala Ser Ile His Leu Trp Asp
210 215 220

50 Leu Leu Glu Gly Lys Glu Lys Ser Val Cys Gly Thr Thr Tyr Lys Ala
225 230 235 240

EP 2 325 648 A1

Leu Lys Glu Ile Val Glu Arg Val Phe Gln Ser Asn Tyr Phe Asp Ser
245 250 255

5

Thr His Asn His Gln Asn Gly Leu Cys Glu Glu Glu Ala Ala Ser
260 265 270

10

Ala Pro Thr Val Glu Asp Gln Val Ala Glu Ala Glu Pro Glu Pro Ala
275 280 285

15

Glu Glu Tyr Thr Glu Gln Ser Glu Val Glu Ser Thr Glu Tyr Val Asn
290 295 300

20

Arg Gln Phe Met Ala Glu Thr Gln Phe Ser Ser Gly Glu Lys Glu Gln
305 310 315 320

25

Val Asp Glu Trp Thr Val Glu Thr Val Glu Val Val Asn Ser Leu Gln
325 330 335

30

Gln Gln Pro Gln Ala Ala Ser Pro Ser Val Pro Glu Pro His Ser Leu
340 345 350

35

Thr Pro Val Ala Gln Ala Asp Pro Leu Val Arg Arg Gln Arg Val Gln
355 360 365

40

Asp Leu Met Ala Gln Met Gln Gly Pro Tyr Asn Phe Ile Gln Asp Ser
370 375 380

45

Met Leu Asp Phe Glu Asn Gln Thr Leu Asp Pro Ala Ile Val Ser Ala
385 390 395 400

50

Gln Pro Met Asn Pro Thr Gln Asn Met Asp Met Pro Gln Leu Val Cys
405 410 415

55

5 Pro Pro Val His Ser Glu Ser Arg Leu Ala Gln Pro Asn Gln Val Pro
420 425 430

10 Val Gln Pro Glu Ala Thr Gln Val Pro Leu Val Ser Ser Thr Ser Glu
435 440 445

15 Gly Tyr Thr Ala Ser Gln Pro Leu Tyr Gln Pro Ser His Ala Thr Glu
450 455 460

20 Gln Arg Pro Gln Lys Glu Pro Ile Asp Gln Ile Gln Ala Thr Ile Ser
465 470 475 480

25 Leu Asn Thr Asp Gln Thr Thr Ala Ser Ser Ser Leu Pro Ala Ala Ser
485 490 495

30 Gln Pro Gln Val Phe Gln Ala Gly Thr Ser Lys Pro Leu His Ser Ser
500 505 510

35 Gly Ile Asn Val Asn Ala Ala Pro Phe Gln Ser Met Gln Thr Val Phe
515 520 525

40 Asn Met Asn Ala Pro Val Pro Pro Val Asn Glu Pro Glu Thr Leu Lys
530 535 540

45 Gln Gln Asn Gln Tyr Gln Ala Ser Tyr Asn Gln Ser Phe Ser Ser Gln
545 550 555 560

50 Pro His Gln Val Glu Gln Thr Asp Leu Gln Gln Glu Gln Leu Gln Thr
565 570 575

Val Val Gly Thr Tyr His Gly Ser Gln Asp Gln Pro His Gln Val Thr
580 585 590

5

Gly Asn His Gln Gln Pro Pro Gln Gln Asn Thr Gly Phe Pro Arg Ser
595 600 605

10

Ser Gln Pro Tyr Tyr Asn Ser Arg Gly Val Ser Arg Gly Gly Ser Arg
610 615 620

15

Gly Ala Arg Gly Leu Met Asn Gly Tyr Arg Gly Pro Ala Asn Gly Phe
625 630 635 640

20

Arg Gly Gly Tyr Asp Gly Tyr Arg Pro Ser Phe Ser Asn Thr Pro Asn
645 650 655

25

Ser Gly Tyr Thr Gln Ser Gln Phe Ser Ala Pro Arg Asp Tyr Ser Gly
660 665 670

30

Tyr Gln Arg Asp Gly Tyr Gln Gln Asn Phe Lys Arg Gly Ser Gly Gln
675 680 685

35

Ser Gly Pro Arg Gly Ala Pro Arg Gly Arg Gly Pro Pro Arg Pro
690 695 700

40

Asn Arg Gly Met Pro Gln Met Asn Thr Gln Gln Val Asn
705 710 715

45

<210> 9
<211> 4939
<212> DNA
<213> Canis familiaris

55

<220>

5	<221> CDS					
	<222> (1).. (2109)					
	<223>					
	<400> 9					
10	atg	ccg	tcg	gcc acc agc ctc agc gga agc ggc agc aag tcg tcg ggc	48	
	Met	Pro	Ser	Ala Thr Ser Leu Ser Gly Ser Gly Ser Lys Ser Ser Gly		
	1	5		10	15	
15	ccg	ccg	ccc	ccg tcg ggt tcc tcc ggg agc gag gcg gcg gcg gcg gcg	96	
	Pro	Pro	Pro	Pro Ser Gly Ser Ser Gly Ser Glu Ala Ala Ala Ala Ala		
		20		25	30	
20	ggg	gcf	gcf	ggg gcf ggg gcf ggg gcf ggt ccc gcc tcc cag	144	
	Gly	Ala	Ala	Gly Ala Ala Gly Ala Gly Ala Ala Ala Pro Ala Ser Gln		
		35		40	45	
25	cac	ccc	gcf	acc ggc acc ggc gct gtc cag acc gag gcc atg aag cag	192	
	His	Pro	Ala	Thr Gly Thr Gly Ala Val Gln Thr Glu Ala Met Lys Gln		
		50		55	60	
30	atc	ctc	ggg	gtg atc gac aag aaa ctc cgg aac ctg gag aag aaa aag	240	
	Ile	Leu	Gly	Val Ile Asp Lys Lys Leu Arg Asn Leu Glu Lys Lys Lys		
		65		70	75	80
35	ggc	aag	ctt	gat gat tac cag gaa cga atg aac aaa ggg gaa agg ctt	288	
	Gly	Lys	Leu	Asp Asp Tyr Gln Glu Arg Met Asn Lys Gly Glu Arg Leu		
		85		90	95	
40	aat	caa	gat	cag ctg gat gcc gta tct aag tac cag gaa gtc aca aat	336	
	Asn	Gln	Asp	Gln Leu Asp Ala Val Ser Lys Tyr Gln Glu Val Thr Asn		
		100		105	110	
45	aac	ttg	gag	ttt gca aaa gaa tta cag agg agt ttc atg gca tta agt	384	
	Asn	Leu	Glu	Phe Ala Lys Glu Leu Gln Arg Ser Phe Met Ala Leu Ser		
		115		120	125	
50	caa	gat	att	cag aaa aca ata aag aag act gca cgt cgg gag cag ctt	432	
	Gln	Asp	Ile	Gln Lys Thr Ile Lys Lys Thr Ala Arg Arg Glu Gln Leu		
		130		135	140	
	atg	aga	gag	gaa gcg gaa caa aaa cgt tta aaa act gta ctt gag ctc		

Met Arg Glu Glu Ala Glu Gln Lys Arg Leu Lys Thr Val Leu Glu Leu			
145	150	155	160
5			
cag tat gtt ttg gac aaa ttg gga gat gat gaa gta aga act gac ctg			528
Gln Tyr Val Leu Asp Lys Leu Gly Asp Asp Glu Val Arg Thr Asp Leu			
165	170	175	
10			
aag caa ggt ttg aat gga gta cca ata ttg tct gaa gaa gaa ttg tcg			576
Lys Gln Gly Leu Asn Gly Val Pro Ile Leu Ser Glu Glu Leu Ser			
180	185	190	
15			
ttg ttg gat gaa ttc tac aaa tta gca gac cct gaa cgg gac atg agc			624
Leu Leu Asp Glu Phe Tyr Lys Leu Ala Asp Pro Glu Arg Asp Met Ser			
195	200	205	
20			
ttg agg ttg aat gag cag tat gaa cat gct tcc att cac ctg tgg gac			672
Leu Arg Leu Asn Glu Gln Tyr Glu His Ala Ser Ile His Leu Trp Asp			
210	215	220	
25			
ttg ctg gaa gga aag gaa aag tct gta tgt gga aca acc tat aaa gca			720
Leu Leu Glu Gly Lys Glu Lys Ser Val Cys Gly Thr Thr Tyr Lys Ala			
225	230	235	240
30			
cta aag gaa att gtt gag cgt gtt ttc cag tca aat tac ttt gac agc			768
Leu Lys Glu Ile Val Glu Arg Val Phe Gln Ser Asn Tyr Phe Asp Ser			
245	250	255	
35			
act cac aac cac cag aat ggg cta tgt gag gaa gaa gag gca gcc tca			816
Thr His Asn His Gln Asn Gly Leu Cys Glu Glu Glu Ala Ala Ser			
260	265	270	
40			
gca cct aca gtt gaa gac cag gta gct gaa gct gag cct gag cca gca			864
Ala Pro Thr Val Glu Asp Gln Val Ala Glu Ala Glu Pro Glu Pro Ala			
275	280	285	
45			
gaa gaa tac act gaa caa agt gaa gtt gaa tca aca gag tat gta aat			912
Glu Glu Tyr Thr Glu Gln Ser Glu Val Glu Ser Thr Glu Tyr Val Asn			
290	295	300	
50			
aga caa ttt atg gca gaa aca cag ttc agc agt ggt gaa aag gag cag			960
Arg Gln Phe Met Ala Glu Thr Gln Phe Ser Ser Gly Glu Lys Glu Gln			
305	310	315	320
55			

5	gta gat gag tgg acg gtc gaa aca gtg gag gtg gtg aat tca ctc cag Val Asp Glu Trp Thr Val Glu Thr Val Glu Val Val Asn Ser Leu Gln 325	330	335	1008	
10	cag caa cct cag gct gcg tct cct tca gta cca gag ccc cac tct ttg Gln Gln Pro Gln Ala Ala Ser Pro Ser Val Pro Glu Pro His Ser Leu 340	345	350	1056	
15	act ccg gtg gct cag gca gat ccc ctt gtg aga aga cag cga gtc cag Thr Pro Val Ala Gln Ala Asp Pro Leu Val Arg Arg Gln Arg Val Gln 355	360	365	1104	
20	gac ctt atg gcg cag atg cag ggg ccc tat aat ttc ata cag gat tca Asp Leu Met Ala Gln Met Gln Gly Pro Tyr Asn Phe Ile Gln Asp Ser 370	375	380	1152	
25	atg ctg gat ttt gaa aac cag aca ctc gat cct gcc att gta tct gca Met Leu Asp Phe Glu Asn Gln Thr Leu Asp Pro Ala Ile Val Ser Ala 385	390	395	400	1200
30	cag cct atg aat ccg aca caa aac atg gac atg ccc cag ctg gtt tgc Gln Pro Met Asn Pro Thr Gln Asn Met Asp Met Pro Gln Leu Val Cys 405	410	415	1248	
35	cct cca gtt cat tct gaa tct aga ctt gct caa cct aat caa gtt cct Pro Pro Val His Ser Glu Ser Arg Leu Ala Gln Pro Asn Gln Val Pro 420	425	430	1296	
40	gta caa cca gaa gct aca cag gtt cct ttg gtt tca tcc aca agt gag Val Gln Pro Glu Ala Thr Gln Val Pro Leu Val Ser Ser Thr Ser Glu 435	440	445	1344	
45	ggg tat aca gca tct caa ccc ttg tac cag cct tct cat gct aca gag Gly Tyr Thr Ala Ser Gln Pro Leu Tyr Gln Pro Ser His Ala Thr Glu 450	455	460	1392	
50	caa cga cca caa aag gaa cca att gac cag att cag gca aca atc tct Gln Arg Pro Gln Lys Glu Pro Ile Asp Gln Ile Gln Ala Thr Ile Ser 465	470	475	480	1440
55	tta aat aca gac cag act aca gcg tca tca tcc ctt ccg gct gct tct			1488	

EP 2 325 648 A1

Leu Asn Thr Asp Gln Thr Thr Ala Ser Ser Ser Ser Leu Pro Ala Ala Ser			
485	490	495	
5			
cag cct cag gta ttc cag gct ggg aca agc aaa cca tta cat agc agt			1536
Gln Pro Gln Val Phe Gln Ala Gly Thr Ser Lys Pro Leu His Ser Ser			
500	505	510	
10			
gga atc aat gta aat gca gct cca ttc caa tcc atg caa acg gtg ttc			1584
Gly Ile Asn Val Asn Ala Ala Pro Phe Gln Ser Met Gln Thr Val Phe			
515	520	525	
15			
aat atg aat gcc cca gtt cct cct gtt aat gaa cca gaa act ttg aaa			1632
Asn Met Asn Ala Pro Val Pro Pro Val Asn Glu Pro Glu Thr Leu Lys			
530	535	540	
20			
caa caa aat cag tac cag gcc agt tat aac cag agc ttt tct agt cag			1680
Gln Gln Asn Gln Tyr Gln Ala Ser Tyr Asn Gln Ser Phe Ser Ser Gln			
545	550	555	560
25			
cct cac caa gta gaa caa aca gac ctt cag caa gaa cag ctt caa aca			1728
Pro His Gln Val Glu Gln Thr Asp Leu Gln Gln Glu Gln Leu Gln Thr			
565	570	575	
30			
gtg gtt ggc act tac cat ggt tcc cag gac ccc cac caa gtg act			1776
Val Val Gly Thr Tyr His Gly Ser Gln Asp Gln Pro His Gln Val Thr			
580	585	590	
35			
ggt aac cat cag cag cct ccc cag cag aac act gga ttt cca cgt agc			1824
Gly Asn His Gln Gln Pro Pro Gln Gln Asn Thr Gly Phe Pro Arg Ser			
595	600	605	
40			
agt cag ccc tat tac aat agt cgt ggt gtg tct cgt ggt tcc cgt			1872
Ser Gln Pro Tyr Tyr Asn Ser Arg Gly Val Ser Arg Gly Gly Ser Arg			
610	615	620	
45			
ggt gct aga ggc tta atg aat gga tac agg ggc cct gcc aat gga ttc			1920
Gly Ala Arg Gly Leu Met Asn Gly Tyr Arg Gly Pro Ala Asn Gly Phe			
625	630	635	640
50			
aga gga gga tat gat ggt tac cgc cct tca ttc tct aac act cca aac			1968
Arg Gly Gly Tyr Asp Gly Tyr Arg Pro Ser Phe Ser Asn Thr Pro Asn			
645	650	655	
55			

5	agt ggt tat aca cag tct cag ttc agt gct ccc cgg gac tac tct ggc Ser Gly Tyr Thr Gln Ser Gln Phe Ser Ala Pro Arg Asp Tyr Ser Gly 660 665 670	2016
10	tat cag cgg gat gga tat cag cag aat ttc aag cga ggc tct ggg cag Tyr Gln Arg Asp Gly Tyr Gln Gln Asn Phe Lys Arg Gly Ser Gly Gln 675 680 685	2064
15	agt gga cca cgg gga gcc cca cga ggt aat att ttg tgg tgg tga Ser Gly Pro Arg Gly Ala Pro Arg Gly Asn Ile Leu Trp Trp 690 695 700	2109
20	tcctagctcc taagtggagc ttctgttctg gccttggaaag agctgttcca tagtctgcat	2169
25	gttagttaca tggtaggaat acatttatca ttaccagact tggtagg gattaaatga	2229
30	aatgctctgt ttctaaaact tctcttgaac ccaaatttaa tttttgaat gactttccct ccaaactgcaa attattttc aggtcctaaa acctgctaaa tggtagg aagtgtttt	2289 2349
35	tgaaacattt ttgtaagaca ttttggaa gagattgaac atttatataa atttattatt attcctcttt cattttgaa catgcatatt atatttagg gtcagaaatc cttaatggc	2409 2469
40	caaataagcc atagttacat ttagagaacc atttagaagt gatagaacta actgaaattt caatgcctt ggatcattaa tagcgatata aattcaat tggtagg tttaaataa	2529 2589
45	aacatccaaa atcctaacta acttcctgaa ctatatttaa aaattacagg tttagggagt ttctggttt tttctctta ccataggaaa actgttcct gttggccag gaagtcaacc	2649 2709
50	tgtgtataaa tttagaagttag catttcataat gatctgaatg tctaaatggt tctctgattt aagggaagtt aaattgaata ggttcctct agttattggc cataacatgt ataaaatgta	2769 2829
55	tattaaggag gaatacaaag tacttgatt tcaatgctag tagaaaactgg ccagcaaaaa ggtgcatttt attttaaat taatggatca cttggaaatt actgacttga agtatcaaag	2889 2949

5	gatatttgc a tgtgaatgtg ggttatgttc tttctcacct tgttagcatat tctatgaaag	3069
10	ttgagttgac tggtagctaa aaatctgttt taacagcatg taaaaagtttta ttttatctgt	3129
15	tacaaggcat tatacaattt tgaatgttat gtagtttctt tttaacagtt taggttaacaa	3189
20	ggtctgtttt tcattctggt gcttttatta atttttagatg tatgtatgttta cttactactg	3249
25	aaatgtaaac tagagtgtac actagaatgt aagctccatg agagcaggta ccttgcgt	3309
30	cttcactgct gtatctattt ccaacgcctg atgacagtgc ctgacacata gtaggcactc	3369
35	aataaaatact tggtaatga atgaatgaat gagtactggt ggaataactcc attagctcta	3429
40	ctttttttt agctagagaa catgagcaaa tttgcgcatg acaacttcca ggacaggtga	3489
45	acactgaaga attgacactt taaacctaattt aatgtggtga caagctgcc acatgcttct	3549
50	tgacttcaga tggaaatctg cttgaaggca aagcaaaataa tatttggaaag aaaaaccaaa	3609
55	tgccattttt gtcttctagg tcgtggaggg ccccaagac ccaacagagg gatgccgcaa	3669
	atgaacactc agcaagtgaa ttaatctgat tcacaggattt atgtttaaac gccaaaaaca	3729
	cactggccag tggataataa tatgttacca gaagaggattt tatctatttgc ttctccctt	3789
	cagggaaactt attgtaaagg gactgttttccatccataaa gacaggacta caattgtcag	3849
	ctttatatta cctggatatg gaaggaaactt attttatttgc tgcatttttgc tcctaagcgt	3909
	catcttgagc cttgcacatg atactcagat tcctcacccct tgcttaggat taaaacataa	3969
	tacactttac agggtgatat ctccatagttt atttgaatgt gcttggaaaa agcaagat	4029
	acttctgaca ttggataaaa atcaacaaat cagccctaga gttattcaaa tggtaattga	4089
	caaaaactaa aatatttccc ttgcgagaagg agtggatgtt ggtttggcag aacaactgca	4149
	tttcacagct ttccggtaaattggagca ctaaacgtttt agatgcatac caaattatgc	4209
	atggggccctt aatataaaag gctggctacc agcttgaca cagcactattt catcctctgg	4269

5	ccaaacaact gtggtaaac aacacatgta aattgcttt taacagctga tactataata	4329
10	agacaaagcc aaaatgaaa aattgggott tgattggcac ttttgaaaa atatgcaaca	4389
15	aatatggat gtaatctgga tggccgcttc tgtacttaat gtgaagtatt tagatacctt	4449
20	tttgaacact taacagtttc ttctgacaat gactttgta aggattgta ctatctatca	4509
25	ttccttataa tgtacattgt ctgtcactaa tcctcagatc ttgctgtatt gtcaccta	4569
30	ttggtacagg tactgatgaa aatatctaattt ggataatcat aacactctt gtcacatgtt	4629
35	tttcctgcag cctgaaggaa tttaaaagaa aaagatatca aatgcctgct gctaccaccc	4689
40	ttttaaattt ctatctttt aaaagcacca gtatgtttt tagattgatt tccctat	4749
45	aggaaatga cagacagtag tttcagttct gatggtataa gcaaaacaaa taaaacatgt	4809
50	ttataaaagt tgtatcttga aacactggtg ttcaacagct agcagctt gtggttcacc	4869
55	ccatgcattt ttagtgtttc agatttatg gttatctcca gcagctgtt ctgtact	4929
	tgcat	4939

35	<210> 10
	<211> 702
	<212> PRT
40	<213> Canis familiaris
	<400> 10

45	Met Pro Ser Ala Thr Ser Leu Ser Gly Ser Gly Ser Lys Ser Ser Gly
	1 5 10 15

50	Pro Pro Pro Pro Ser Gly Ser Ser Gly Ser Glu Ala Ala Ala Ala Ala
	20 25 30

55	Gly Ala Ala Gly Ala Ala Gly Ala Ala Ala Ala Pro Ala Ser Gln
----	---

EP 2 325 648 A1

35 40 45

5

His Pro Ala Thr Gly Thr Gly Ala Val Gln Thr Glu Ala Met Lys Gln
50 55 60

10

Ile Leu Gly Val Ile Asp Lys Lys Leu Arg Asn Leu Glu Lys Lys Lys
65 70 75 80

15

Gly Lys Leu Asp Asp Tyr Gln Glu Arg Met Asn Lys Gly Glu Arg Leu
85 90 95

20

Asn Gln Asp Gln Leu Asp Ala Val Ser Lys Tyr Gln Glu Val Thr Asn
100 105 110

25

Asn Leu Glu Phe Ala Lys Glu Leu Gln Arg Ser Phe Met Ala Leu Ser
115 120 125

30

Gln Asp Ile Gln Lys Thr Ile Lys Lys Thr Ala Arg Arg Glu Gln Leu
130 135 140

35

Met Arg Glu Glu Ala Glu Gln Lys Arg Leu Lys Thr Val Leu Glu Leu
145 150 155 160

40

Gln Tyr Val Leu Asp Lys Leu Gly Asp Asp Glu Val Arg Thr Asp Leu
165 170 175

45

Lys Gln Gly Leu Asn Gly Val Pro Ile Leu Ser Glu Glu Leu Ser
180 185 190

50

Leu Leu Asp Glu Phe Tyr Lys Leu Ala Asp Pro Glu Arg Asp Met Ser
195 200 205

55

EP 2 325 648 A1

Leu Arg Leu Asn Glu Gln Tyr Glu His Ala Ser Ile His Leu Trp Asp
5 210 215 220

Leu Leu Glu Gly Lys Glu Lys Ser Val Cys Gly Thr Thr Tyr Lys Ala
10 225 230 235 240

Leu Lys Glu Ile Val Glu Arg Val Phe Gln Ser Asn Tyr Phe Asp Ser
15 245 250 255

Thr His Asn His Gln Asn Gly Leu Cys Glu Glu Glu Ala Ala Ser
20 260 265 270

Ala Pro Thr Val Glu Asp Gln Val Ala Glu Ala Glu Pro Glu Pro Ala
25 275 280 285

Glu Glu Tyr Thr Glu Gln Ser Glu Val Glu Ser Thr Glu Tyr Val Asn
30 290 295 300

Arg Gln Phe Met Ala Glu Thr Gln Phe Ser Ser Gly Glu Lys Glu Gln
35 305 310 315 320

Val Asp Glu Trp Thr Val Glu Thr Val Glu Val Val Asn Ser Leu Gln
40 325 330 335

Gln Gln Pro Gln Ala Ala Ser Pro Ser Val Pro Glu Pro His Ser Leu
45 340 345 350

Thr Pro Val Ala Gln Ala Asp Pro Leu Val Arg Arg Gln Arg Val Gln
50 355 360 365

Asp Leu Met Ala Gln Met Gln Gly Pro Tyr Asn Phe Ile Gln Asp Ser
55

EP 2 325 648 A1

370 375 380

5

Met Leu Asp Phe Glu Asn Gln Thr Leu Asp Pro Ala Ile Val Ser Ala
385 390 395 400

10

Gln Pro Met Asn Pro Thr Gln Asn Met Asp Met Pro Gln Leu Val Cys
405 410 415

15

Pro Pro Val His Ser Glu Ser Arg Leu Ala Gln Pro Asn Gln Val Pro
420 425 430

20

Val Gln Pro Glu Ala Thr Gln Val Pro Leu Val Ser Ser Thr Ser Glu
435 440 445

25

Gly Tyr Thr Ala Ser Gln Pro Leu Tyr Gln Pro Ser His Ala Thr Glu
450 455 460

30

Gln Arg Pro Gln Lys Glu Pro Ile Asp Gln Ile Gln Ala Thr Ile Ser
465 470 475 480

35

Leu Asn Thr Asp Gln Thr Thr Ala Ser Ser Ser Leu Pro Ala Ala Ser
485 490 495

40

Gln Pro Gln Val Phe Gln Ala Gly Thr Ser Lys Pro Leu His Ser Ser
500 505 510

45

Gly Ile Asn Val Asn Ala Ala Pro Phe Gln Ser Met Gln Thr Val Phe
515 520 525

50

Asn Met Asn Ala Pro Val Pro Pro Val Asn Glu Pro Glu Thr Leu Lys
530 535 540

55

5 Gln Gln Asn Gln Tyr Gln Ala Ser Tyr Asn Gln Ser Phe Ser Ser Gln
545 550 555 560

10 Pro His Gln Val Glu Gln Thr Asp Leu Gln Gln Glu Gln Leu Gln Thr
10 565 570 575

15 Val Val Gly Thr Tyr His Gly Ser Gln Asp Gln Pro His Gln Val Thr
15 580 585 590

20 Gly Asn His Gln Gln Pro Pro Gln Gln Asn Thr Gly Phe Pro Arg Ser
20 595 600 605

25 Ser Gln Pro Tyr Tyr Asn Ser Arg Gly Val Ser Arg Gly Gly Ser Arg
25 610 615 620

30 Gly Ala Arg Gly Leu Met Asn Gly Tyr Arg Gly Pro Ala Asn Gly Phe
30 625 630 635 640

35 Arg Gly Gly Tyr Asp Gly Tyr Arg Pro Ser Phe Ser Asn Thr Pro Asn
35 645 650 655

40 Ser Gly Tyr Thr Gln Ser Gln Phe Ser Ala Pro Arg Asp Tyr Ser Gly
40 660 665 670

45 Tyr Gln Arg Asp Gly Tyr Gln Gln Asn Phe Lys Arg Gly Ser Gly Gln
45 675 680 685

50 Ser Gly Pro Arg Gly Ala Pro Arg Gly Asn Ile Leu Trp Trp
50 690 695 700

55 <210> 11

5	<213> Canis familiaris		
	<220>		
10	<221> CDS		
	<222> (1).. (2040)		
	<223>		
	<400> 11		
15	atg ccg tcg gcc acc agc ctc agc gga agc ggc agc aag tcg tcg ggc Met Pro Ser Ala Thr Ser Leu Ser Gly Ser Gly Ser Lys Ser Ser Gly		48
	1 5 10 15		
20	ccg ccg ccc ccg tcg ggt tcc tcc ggg agc gag gcg gcg gcg gcg Pro Pro Pro Pro Ser Gly Ser Ser Gly Ser Glu Ala Ala Ala Ala		96
	20 25 30		
25	ggg gcg gcg ggg gcg ggg gcc ggg gcg gct gcg ccc gcc tcc cag Gly Ala Ala Gly Ala Ala Gly Ala Ala Ala Pro Ala Ser Gln		144
	35 40 45		
30	cac ccc gcg acc ggc acc ggc gct gtc cag acc gag gcc atg aag cag His Pro Ala Thr Gly Thr Gly Ala Val Gln Thr Glu Ala Met Lys Gln		192
	50 55 60		
35	atc ctc ggg gtg atc gac aag aaa ctc cgg aac ctg gag aag aaa aag Ile Leu Gly Val Ile Asp Lys Lys Leu Arg Asn Leu Glu Lys Lys Lys		240
	65 70 75 80		
40	ggc aag ctt gat gat tac cag gaa cga atg aac aaa ggg gaa agg ctt Gly Lys Leu Asp Asp Tyr Gln Glu Arg Met Asn Lys Gly Glu Arg Leu		288
	85 90 95		
45	aat caa gat cag ctg gat gcc gta tct aag tac cag gaa gtc aca aat Asn Gln Asp Gln Leu Asp Ala Val Ser Lys Tyr Gln Glu Val Thr Asn		336
	100 105 110		
50	aac ttg gag ttt gca aaa gaa tta cag agg agt ttc atg gca tta agt Asn Leu Glu Phe Ala Lys Glu Leu Gln Arg Ser Phe Met Ala Leu Ser		384
	115 120 125		
55			

EP 2 325 648 A1

5	caa gat att cag aaa aca ata aag aag act gca cgt cgg gag cag ctt Gln Asp Ile Gln Lys Thr Ile Lys Lys Thr Ala Arg Arg Glu Gln Leu 130 135 140	432
10	atg aga gag gaa gcg gaa caa aaa cgt tta aaa act gta ctt gag ctc Met Arg Glu Glu Ala Glu Gln Lys Arg Leu Lys Thr Val Leu Glu Leu 145 150 155 160	480
15	cag tat gtt ttg gac aaa ttg gga gat gat gaa gtg aga act gac ctg Gln Tyr Val Leu Asp Lys Leu Gly Asp Asp Glu Val Arg Thr Asp Leu 165 170 175	528
20	aag caa ggt ttg aat gga gtg cca ata ttg tct gaa gaa ttg tcg Lys Gln Gly Leu Asn Gly Val Pro Ile Leu Ser Glu Glu Glu Leu Ser 180 185 190	576
25	ttg ttg gat gaa ttc tac aaa tta gca gac cct gaa cgg gac atg agc Leu Leu Asp Glu Phe Tyr Lys Leu Ala Asp Pro Glu Arg Asp Met Ser 195 200 205	624
30	ttg agg ttg aat gag cag tat gaa cat gct tcc att cac ctg tgg gac Leu Arg Leu Asn Glu Gln Tyr Glu His Ala Ser Ile His Leu Trp Asp 210 215 220	672
35	ttg ctg gaa gga aag gaa aag tct gta tgt gga aca acc tat aaa gca Leu Leu Glu Gly Lys Glu Lys Ser Val Cys Gly Thr Thr Tyr Lys Ala 225 230 235 240	720
40	cta aag gaa att gtt gag cgt gtt ttc cag tca aat tac ttt gac agc Leu Lys Glu Ile Val Glu Arg Val Phe Gln Ser Asn Tyr Phe Asp Ser 245 250 255	768
45	act cac aac cac cag aat ggg cta tgt gag gaa gaa gag gca gcc tca Thr His Asn His Gln Asn Gly Leu Cys Glu Glu Glu Ala Ala Ser 260 265 270	816
50	gca cct aca gtt gaa gac cag gta gct gaa gct gag cct gag cca gca Ala Pro Thr Val Glu Asp Gln Val Ala Glu Ala Glu Pro Glu Pro Ala 275 280 285	864
55	gaa gaa tac act gaa caa agt gaa gtt gaa tca aca gag tat gta aat Glu Glu Tyr Thr Glu Gln Ser Glu Val Glu Ser Thr Glu Tyr Val Asn	912

EP 2 325 648 A1

	290	295	300	
5	aga caa ttt atg gca gaa aca cag ttc agc agt ggt gaa aag gag cag			960
	Arg Gln Phe Met Ala Glu Thr Gln Phe Ser Ser Gly Glu Lys Glu Gln			
	305	310	315	320
10	gta gat gag tgg acg gtc gaa aca gtg gag gtg gtg aat tca ctc cag			1008
	Val Asp Glu Trp Thr Val Glu Thr Val Glu Val Val Asn Ser Leu Gln			
	325	330	335	
15	cag caa cct cag gct gcg tct cct tca gta cca gag ccc cac tct ttg			1056
	Gln Gln Pro Gln Ala Ala Ser Pro Ser Val Pro Glu Pro His Ser Leu			
	340	345	350	
20	act ccg gtg gct cag gca gat ccc ctt gtg aga aga cag cga gtc cag			1104
	Thr Pro Val Ala Gln Ala Asp Pro Leu Val Arg Arg Gln Arg Val Gln			
	355	360	365	
25	gac ctt atg gcg cag atg cag ggg ccc tat aat ttc ata cag gat tca			1152
	Asp Leu Met Ala Gln Met Gln Gly Pro Tyr Asn Phe Ile Gln Asp Ser			
	370	375	380	
30	atg ctg gat ttt gaa aac cag aca ctc gat cct gcc att gta tct gca			1200
	Met Leu Asp Phe Glu Asn Gln Thr Leu Asp Pro Ala Ile Val Ser Ala			
	385	390	395	400
35	cag cct atg aat ccg aca caa aac atg gac atg ccc cag ctg gtt tgc			1248
	Gln Pro Met Asn Pro Thr Gln Asn Met Asp Met Pro Gln Leu Val Cys			
	405	410	415	
40	cct cca gtt cat tct gaa tct aga ctt gct caa cct aat caa gtt cct			1296
	Pro Pro Val His Ser Glu Ser Arg Leu Ala Gln Pro Asn Gln Val Pro			
	420	425	430	
45	gta caa cca gaa gct aca cag gtt cct ttg gtt tca tcc aca agt gag			1344
	Val Gln Pro Glu Ala Thr Gln Val Pro Leu Val Ser Ser Thr Ser Glu			
	435	440	445	
50	ggg tat aca gca tct caa ccc ttg tac cag cct tct cat gct aca gag			1392
	Gly Tyr Thr Ala Ser Gln Pro Leu Tyr Gln Pro Ser His Ala Thr Glu			
	450	455	460	
55				

EP 2 325 648 A1

	caa cga cca caa aag gaa cca att gac cag att cag gca aca atc tct		1440
5	Gln Arg Pro Gln Lys Glu Pro Ile Asp Gln Ile Gln Ala Thr Ile Ser		
	465	470	475
			480
	tta aat aca gac cag act aca gcg tca tca tcc ctt ccg gct gct tct		1488
	Leu Asn Thr Asp Gln Thr Thr Ala Ser Ser Ser Leu Pro Ala Ala Ser		
10		485	490
			495
	cag cct cag gta ttc cag gct ggg aca agc aaa cca tta cat agc agt		1536
	Gln Pro Gln Val Phe Gln Ala Gly Thr Ser Lys Pro Leu His Ser Ser		
15		500	505
			510
	gga atc aat gta aat gca gct cca ttc caa tcc atg caa acg gtg ttc		1584
	Gly Ile Asn Val Asn Ala Ala Pro Phe Gln Ser Met Gln Thr Val Phe		
20		515	520
			525
	aat atg aat gcc cca gtt cct cct gtt aat gaa cca gaa act ttg aaa		1632
	Asn Met Asn Ala Pro Val Pro Pro Val Asn Glu Pro Glu Thr Leu Lys		
25		530	535
			540
	caa caa aat cag tac cag gcc agt tat aac cag agc ttt tct agt cag		1680
	Gln Gln Asn Gln Tyr Gln Ala Ser Tyr Asn Gln Ser Phe Ser Ser Gln		
30		545	550
			555
	560		
	cct cac caa gta gaa caa aca gac ctt cag caa gaa cag ctt caa aca		1728
	Pro His Gln Val Glu Gln Thr Asp Leu Gln Gln Glu Gln Leu Gln Thr		
35		565	570
			575
	gtg gtt ggc act tac cat ggt tcc cag gac ccc cac caa gtg act		1776
	Val Val Gly Thr Tyr His Gly Ser Gln Asp Gln Pro His Gln Val Thr		
40		580	585
			590
	ggt aac cat cag cag cct ccc cag cag aac act gga ttt cca cgt agc		1824
	Gly Asn His Gln Gln Pro Pro Gln Gln Asn Thr Gly Phe Pro Arg Ser		
45		595	600
			605
	agt cag ccc tat tac aat agt cgt ggt gtg tct cgt ggt ggt tcc cgt		1872
	Ser Gln Pro Tyr Tyr Asn Ser Arg Gly Val Ser Arg Gly Gly Ser Arg		
50		610	615
			620
	ggt gct aga ggc tta atg aat gga tac agg ggc cct gcc aat gga ttc		1920
	Gly Ala Arg Gly Leu Met Asn Gly Tyr Arg Gly Pro Ala Asn Gly Phe		
55			

EP 2 325 648 A1

625	630	635	640	
5	aga gga gga tat gat ggt tac cgc cct tca ttc tct aac act cca aac Arg Gly Gly Tyr Asp Gly Tyr Arg Pro Ser Phe Ser Asn Thr Pro Asn			1968
	645	650	655	
10	agt ggt tat aca cag tct cag ttc agt gct ccc cgg gac tac tct ggc Ser Gly Tyr Thr Gln Ser Gln Phe Ser Ala Pro Arg Asp Tyr Ser Gly			2016
	660	665	670	
15	tat cag cgg gga tgc cgc aaa tga acactcagca agtgaattaa tctgattcac Tyr Gln Arg Gly Cys Arg Lys			2070
	675			
20	aggattatgt ttaaacgcca aaaacacact ggccagtgt a ccataatatg ttaccagaag			2130
	agtttattatc tattttttct cccttcagg aaacttattt taaagggact gttttcatcc			2190
25	cataaagaca ggactacaat tgtcagctt atattacctg gatatggaag gaaactattt ttattctgca tgttttccct aagcgtcattc ttgagcctt cacatgatac tcagattcct			2250
				2310
30	cacccttgct taggagtaaa acataataca ctttacaggg tgatatctcc atagtttattt gaagtggctt ggaaaaagca agattaactt ctgacattgg ataaaaatca acaaattcagc			2370
				2430
35	cctagagttt ttcaaatggt aattgacaaa aactaaaata tttcccttcg agaaggagtg gaatgtggtt tggcagaaca actgcatttc acagttttc cggttaaattt ggagcactaa			2490
				2550
40	acgttttagat gcataccaaa ttatgcattt gcccattata taataggctg gctaccagct ttgacacagc actattcatc ctctggccaa acaactgtgg taaaacaaca catgtaaattt			2610
				2670
45	gcttttaac agctgatact ataataagac aaagccaaaa tgcaaaaattt gggctttgat tggcactttt tgaaaaatata gcaacaaata tggatgtaa tctggatggc cgcttctgtt			2730
				2790
50	cttaatgtga agtattttaga taccttttg aacacttaac agtttcttctt gacaatgact tttgtaagga ttggactat ctatcattcc ttataatgtt cattgtctgt cactaatcct			2850
				2910

55

EP 2 325 648 A1

cagatcttc tgtattgtca cctaaattgg tacaggtact gatgaaaata tctaattggat 2970
5 aatcataaca ctcttggtca catgttttc ctgcagcctg aaggtttta aaagaaaaag 3030
atatcaaatg cctgctgcta ccacccttt aaattgctat ctttgaaaa gcaccagtt 3090
10 gtgtttaga ttgattccc tatttttaggg aaatgacaga cagtagttc agttctgtatg 3150
gtataagcaa aacaaataaaa acatgtttat aaaagttgta tcttgaaca ctggtgttca 3210
15 acagctagca gcttatgtgg ttcacccat gcattgttag tgttcagat tttatggta 3270
tctccagcag ctgttctgt agtacttgca tttatc 3306
20
<210> 12
<211> 679
<212> PRT
25 <213> Canis familiaris

<400> 12

30 Met Pro Ser Ala Thr Ser Leu Ser Gly Ser Gly Ser Lys Ser Ser Gly
1 5 10 15

35 Pro Pro Pro Pro Ser Gly Ser Ser Gly Ser Glu Ala Ala Ala Ala Ala
20 25 30

40 Gly Ala Ala Gly Ala Ala Gly Ala Ala Ala Ala Pro Ala Ser Gln
35 40 45

45 His Pro Ala Thr Gly Thr Gly Ala Val Gln Thr Glu Ala Met Lys Gln
50 55 60

50 Ile Leu Gly Val Ile Asp Lys Lys Leu Arg Asn Leu Glu Lys Lys Lys
65 70 75 80

55

EP 2 325 648 A1

Gly Lys Leu Asp Asp Tyr Gln Glu Arg Met Asn Lys Gly Glu Arg Leu
85 90 95

5

Asn Gln Asp Gln Leu Asp Ala Val Ser Lys Tyr Gln Glu Val Thr Asn
100 105 110

10

Asn Leu Glu Phe Ala Lys Glu Leu Gln Arg Ser Phe Met Ala Leu Ser
115 120 125

15

Gln Asp Ile Gln Lys Thr Ile Lys Lys Thr Ala Arg Arg Glu Gln Leu
130 135 140

20

Met Arg Glu Glu Ala Glu Gln Lys Arg Leu Lys Thr Val Leu Glu Leu
145 150 155 160

25

Gln Tyr Val Leu Asp Lys Leu Gly Asp Asp Glu Val Arg Thr Asp Leu
165 170 175

30

Lys Gln Gly Leu Asn Gly Val Pro Ile Leu Ser Glu Glu Glu Leu Ser
180 185 190

35

Leu Leu Asp Glu Phe Tyr Lys Leu Ala Asp Pro Glu Arg Asp Met Ser
195 200 205

40

Leu Arg Leu Asn Glu Gln Tyr Glu His Ala Ser Ile His Leu Trp Asp
210 215 220

45

Leu Leu Glu Gly Lys Glu Lys Ser Val Cys Gly Thr Thr Tyr Lys Ala
225 230 235 240

50

Leu Lys Glu Ile Val Glu Arg Val Phe Gln Ser Asn Tyr Phe Asp Ser
245 250 255

55

5 Thr His Asn His Gln Asn Gly Leu Cys Glu Glu Glu Ala Ala Ser
260 265 270

10 Ala Pro Thr Val Glu Asp Gln Val Ala Glu Ala Glu Pro Glu Pro Ala
275 280 285

15 Glu Glu Tyr Thr Glu Gln Ser Glu Val Glu Ser Thr Glu Tyr Val Asn
290 295 300

20 Arg Gln Phe Met Ala Glu Thr Gln Phe Ser Ser Gly Glu Lys Glu Gln
305 310 315 320

25 Val Asp Glu Trp Thr Val Glu Thr Val Glu Val Val Asn Ser Leu Gln
325 330 335

30 Gln Gln Pro Gln Ala Ala Ser Pro Ser Val Pro Glu Pro His Ser Leu
340 345 350

35 Thr Pro Val Ala Gln Ala Asp Pro Leu Val Arg Arg Gln Arg Val Gln
355 360 365

40 Asp Leu Met Ala Gln Met Gln Gly Pro Tyr Asn Phe Ile Gln Asp Ser
370 375 380

45 Met Leu Asp Phe Glu Asn Gln Thr Leu Asp Pro Ala Ile Val Ser Ala
385 390 395 400

50 Gln Pro Met Asn Pro Thr Gln Asn Met Asp Met Pro Gln Leu Val Cys
405 410 415

EP 2 325 648 A1

Pro Pro Val His Ser Glu Ser Arg Leu Ala Gln Pro Asn Gln Val Pro
420 425 430

5

Val Gln Pro Glu Ala Thr Gln Val Pro Leu Val Ser Ser Thr Ser Glu
435 440 445

10

Gly Tyr Thr Ala Ser Gln Pro Leu Tyr Gln Pro Ser His Ala Thr Glu
450 455 460

15

Gln Arg Pro Gln Lys Glu Pro Ile Asp Gln Ile Gln Ala Thr Ile Ser
465 470 475 480

20

Leu Asn Thr Asp Gln Thr Ala Ser Ser Ser Leu Pro Ala Ala Ser
485 490 495

25

Gln Pro Gln Val Phe Gln Ala Gly Thr Ser Lys Pro Leu His Ser Ser
500 505 510

30

Gly Ile Asn Val Asn Ala Ala Pro Phe Gln Ser Met Gln Thr Val Phe
515 520 525

35

Asn Met Asn Ala Pro Val Pro Pro Val Asn Glu Pro Glu Thr Leu Lys
530 535 540

40

Gln Gln Asn Gln Tyr Gln Ala Ser Tyr Asn Gln Ser Phe Ser Ser Gln
545 550 555 560

45

Pro His Gln Val Glu Gln Thr Asp Leu Gln Gln Glu Gln Leu Gln Thr
565 570 575

50

Val Val Gly Thr Tyr His Gly Ser Gln Asp Gln Pro His Gln Val Thr
580 585 590

55

EP 2 325 648 A1

5	Pro Pro Pro Pro Ser Gly Ser Ser Gly Ser Glu Ala Ala Ala Ala Ala	20	25	30	
	ggg gcg gcg ggg gcg ggg gcc ggg gcg gct gcg ccc gcc tcc cag				144
	Gly Ala Ala Gly Ala Ala Gly Ala Gly Ala Ala Ala Pro Ala Ser Gln				
	35	40	45		
10	cac ccc gcg acc ggc acc ggc gct gtc cag acc gag gcc atg aag cag				192
	His Pro Ala Thr Gly Thr Gly Ala Val Gln Thr Glu Ala Met Lys Gln				
	50	55	60		
15	atc ctc ggg gtg atc gac aag aaa ctc cgg aac ctg gag aag aaa aag				240
	Ile Leu Gly Val Ile Asp Lys Lys Leu Arg Asn Leu Glu Lys Lys Lys				
	65	70	75	80	
20	ggc aag ctt gat gat tac cag gaa cga atg aac aaa ggg gaa agg ctt				288
	Gly Lys Leu Asp Asp Tyr Gln Glu Arg Met Asn Lys Gly Glu Arg Leu				
	85	90	95		
25	aat caa gat cag ctg gat gcc gta tct aag tac cag gaa gtc aca aat				336
	Asn Gln Asp Gln Leu Asp Ala Val Ser Lys Tyr Gln Glu Val Thr Asn				
	100	105	110		
30	aac ttg gag ttt gca aaa gaa tta cag agg agt ttc atg gca tta agt				384
	Asn Leu Glu Phe Ala Lys Glu Leu Gln Arg Ser Phe Met Ala Leu Ser				
	115	120	125		
35	caa gat att cag aaa aca ata aag aag act gca cgt cgg gag cag ctt				432
	Gln Asp Ile Gln Lys Thr Ile Lys Lys Thr Ala Arg Arg Glu Gln Leu				
	130	135	140		
40	atg aga gag gaa gcg gaa caa aaa cgt tta aaa act gta ctt gag ctc				480
	Met Arg Glu Glu Ala Glu Gln Lys Arg Leu Lys Thr Val Leu Glu Leu				
	145	150	155	160	
45	cag tat gtt ttg gac aaa ttg gga gat gat gaa gtg aga act gac ctg				528
	Gln Tyr Val Leu Asp Lys Leu Gly Asp Asp Glu Val Arg Thr Asp Leu				
	165	170	175		
50	aag caa ggt ttg aat gga gtg cca ata ttg tct gaa gaa gaa ttg tcg				576
	Lys Gln Gly Leu Asn Gly Val Pro Ile Leu Ser Glu Glu Glu Leu Ser				
	180	185	190		
55					

5	ttg ttg gat gaa ttc tac aaa tta gca gac cct gaa cg ^g gac atg agc Leu Leu Asp Glu Phe Tyr Lys Leu Ala Asp Pro Glu Arg Asp Met Ser 195 200 205	624
10	ttg agg ttg aat gag cag tat gaa cat gct tcc att cac ctg tgg gac Leu Arg Leu Asn Glu Gln Tyr Glu His Ala Ser Ile His Leu Trp Asp 210 215 220	672
15	ttg ctg gaa gga aag gaa aag tct gta tgt gga aca acc tat aaa gca Leu Leu Glu Gly Lys Glu Lys Ser Val Cys Gly Thr Thr Tyr Lys Ala 225 230 235 240	720
20	cta aag gaa att gtt gag cgt gtt ttc cag tca aat tac ttt gac agc Leu Lys Glu Ile Val Glu Arg Val Phe Gln Ser Asn Tyr Phe Asp Ser 245 250 255	768
25	act cac aac cac cag aat ggg cta tgt gag gaa gaa gag gca gcc tca Thr His Asn His Gln Asn Gly Leu Cys Glu Glu Glu Ala Ala Ser 260 265 270	816
30	gca cct aca gtt gaa gac cag gta gct gaa gct gag cca gca Ala Pro Thr Val Glu Asp Gln Val Ala Glu Ala Glu Pro Glu Pro Ala 275 280 285	864
35	gaa gaa tac act gaa caa agt gaa gtt gaa tca aca gag tat gta aat Glu Glu Tyr Thr Glu Gln Ser Glu Val Glu Ser Thr Glu Tyr Val Asn 290 295 300	912
40	aga caa ttt atg gca gaa aca cag ttc agc agt ggt gaa aag gag cag Arg Gln Phe Met Ala Glu Thr Gln Phe Ser Ser Gly Glu Lys Glu Gln 305 310 315 320	960
45	gta gat gag tgg acg gtc gaa aca gtg gag gtg gtg aat tca ctc cag Val Asp Glu Trp Thr Val Glu Thr Val Glu Val Val Asn Ser Leu Gln 325 330 335	1008
50	cag caa cct cag gct gcg tct cct tca gta cca gag ccc cac tct ttg Gln Gln Pro Gln Ala Ala Ser Pro Ser Val Pro Glu Pro His Ser Leu 340 345 350	1056
55	act ccg gtg gct cag gca gat ccc ctt gtg aga aga cag cga gtc cag	1104

EP 2 325 648 A1

5	Thr Pro Val Ala Gln Ala Asp Pro Leu Val Arg Arg Gln Arg Val Gln			
	355	360	365	
10	gac ctt atg gcg cag atg cag ggg ccc tat aat ttc ata cag gat tca			1152
	Asp Leu Met Ala Gln Met Gln Gly Pro Tyr Asn Phe Ile Gln Asp Ser			
	370	375	380	
15	atg ctg gat ttt gaa aac cag aca ctc gat cct gcc att gta tct gca			1200
	Met Leu Asp Phe Glu Asn Gln Thr Leu Asp Pro Ala Ile Val Ser Ala			
	385	390	395	400
20	cag cct atg aat ccg aca caa aac atg gac atg ccc cag ctg gtt tgc			1248
	Gln Pro Met Asn Pro Thr Gln Asn Met Asp Met Pro Gln Leu Val Cys			
	405	410	415	
25	cct cca gtt cat tct gaa tct aga ctt gct caa cct aat caa gtt cct			1296
	Pro Pro Val His Ser Glu Ser Arg Leu Ala Gln Pro Asn Gln Val Pro			
	420	425	430	
30	gta caa cca gaa gct aca cag gtt cct ttg gtt tca tcc aca agt gag			1344
	Val Gln Pro Glu Ala Thr Gln Val Pro Leu Val Ser Ser Thr Ser Glu			
	435	440	445	
35	ggg tat aca gca tct caa ccc ttg tac cag cct tct cat gct aca gag			1392
	Gly Tyr Thr Ala Ser Gln Pro Leu Tyr Gln Pro Ser His Ala Thr Glu			
	450	455	460	
40	caa cga cca caa aag gaa cca att gac cag att cag gca aca atc tct			1440
	Gln Arg Pro Gln Lys Glu Pro Ile Asp Gln Ile Gln Ala Thr Ile Ser			
	465	470	475	480
45	tta aat aca gac cag act aca gcg tca tca tcc ctt ccg gct gct tct			1488
	Leu Asn Thr Asp Gln Thr Ala Ser Ser Ser Leu Pro Ala Ala Ser			
	485	490	495	
50	cag cct cag gta ttc cag gct ggg aca agc aaa cca tta cat agc agt			1536
	Gln Pro Gln Val Phe Gln Ala Gly Thr Ser Lys Pro Leu His Ser Ser			
	500	505	510	
55	gga atc aat gta aat gca gct cca ttc caa tcc atg caa acg gtg ttc			1584
	Gly Ile Asn Val Asn Ala Ala Pro Phe Gln Ser Met Gln Thr Val Phe			
	515	520	525	

5	aat atg aat gcc cca gtt cct cct gtt aat gaa cca gaa act ttg aaa Asn Met Asn Ala Pro Val Pro Pro Val Asn Glu Pro Glu Thr Leu Lys 530 535 540	1632
10	caa caa aat cag tac cag gcc agt tat aac cag agc ttt tct agt cag Gln Gln Asn Gln Tyr Gln Ala Ser Tyr Asn Gln Ser Phe Ser Ser Gln 545 550 555 560	1680
15	cct cac caa gta gaa caa aca gac ctt cag caa gaa cag ctt caa aca Pro His Gln Val Glu Gln Thr Asp Leu Gln Gln Glu Gln Leu Gln Thr 565 570 575	1728
20	gtg gtt ggc act tac cat ggt tcc cag gac cag ccc cac caa gtg act Val Val Gly Thr Tyr His Gly Ser Gln Asp Gln Pro His Gln Val Thr 580 585 590	1776
25	ggt aac cat cag cag cct ccc cag cag aac act gga ttt cca cgt agc Gly Asn His Gln Gln Pro Pro Gln Gln Asn Thr Gly Phe Pro Arg Ser 595 600 605	1824
30	agt cag ccc tat tac aat agt cgt ggt gtg tct cgt ggt tcc cgt Ser Gln Pro Tyr Tyr Asn Ser Arg Gly Val Ser Arg Gly Gly Ser Arg 610 615 620	1872
35	ggt gct aga ggc tta atg aat gga tac agg ggc cct gcc aat gga ttc Gly Ala Arg Gly Leu Met Asn Gly Tyr Arg Gly Pro Ala Asn Gly Phe 625 630 635 640	1920
40	aga gga gga tat gat ggt tac cgc cct tca ttc tct aac act cca aac Arg Gly Gly Tyr Asp Gly Tyr Arg Pro Ser Phe Ser Asn Thr Pro Asn 645 650 655	1968
45	agt ggt tat aca cag tct cag ttc agt gct ccc cgg gac tac tct ggc Ser Gly Tyr Thr Gln Ser Gln Phe Ser Ala Pro Arg Asp Tyr Ser Gly 660 665 670	2016
50	tat cag cgg gat gga tat cag cag aat ttc aag cga ggc tct ggg cag Tyr Gln Arg Asp Gly Tyr Gln Gln Asn Phe Lys Arg Gly Ser Gly Gln 675 680 685	2064
55	agt gga cca cgg gga gcc cca cga ggt cgt gga ggg ccc cca aga ccc	2112

Ser Gly Pro Arg Gly Ala Pro Arg Gly Arg Gly Gly Pro Pro Arg Pro
 690 695 700
 5
 aac aga ggg atg ccg caa atg aac act cag caa gtg aat taa 2154
 Asn Arg Gly Met Pro Gln Met Asn Thr Gln Gln Val Asn
 705 710 715
 10
 tctgattcac aggattatgt ttaaacgcca aaaacacact ggccagtgta ccataatatg 2214
 ttaccagaag agttattatc tatttgact gtttcatcc cataaagaca ggactacaat 2274
 15
 tgtcagc 2281
 20
 <210> 14
 <211> 717
 <212> PRT
 <213> Canis familiaris
 25
 <400> 14
 30
 Met Pro Ser Ala Thr Ser Leu Ser Gly Ser Gly Ser Lys Ser Ser Gly
 1 5 10 15
 35
 Pro Pro Pro Pro Ser Gly Ser Ser Gly Ser Glu Ala Ala Ala Ala Ala
 20 25 30
 40
 Gly Ala Ala Gly Ala Ala Gly Ala Gly Ala Ala Ala Pro Ala Ser Gln
 35 40 45
 45
 His Pro Ala Thr Gly Thr Gly Ala Val Gln Thr Glu Ala Met Lys Gln
 50 55 60
 50
 Ile Leu Gly Val Ile Asp Lys Lys Leu Arg Asn Leu Glu Lys Lys Lys
 65 70 75 80
 55
 Gly Lys Leu Asp Asp Tyr Gln Glu Arg Met Asn Lys Gly Glu Arg Leu

EP 2 325 648 A1

85 90 95

5 Asn Gln Asp Gln Leu Asp Ala Val Ser Lys Tyr Gln Glu Val Thr Asn
100 105 110

10 Asn Leu Glu Phe Ala Lys Glu Leu Gln Arg Ser Phe Met Ala Leu Ser
115 120 125

15 Gln Asp Ile Gln Lys Thr Ile Lys Lys Thr Ala Arg Arg Glu Gln Leu
130 135 140

20 Met Arg Glu Glu Ala Glu Gln Lys Arg Leu Lys Thr Val Leu Glu Leu
145 150 155 160

25 Gln Tyr Val Leu Asp Lys Leu Gly Asp Asp Glu Val Arg Thr Asp Leu
165 170 175

30 Lys Gln Gly Leu Asn Gly Val Pro Ile Leu Ser Glu Glu Glu Leu Ser
180 185 190

35 Leu Leu Asp Glu Phe Tyr Lys Leu Ala Asp Pro Glu Arg Asp Met Ser
195 200 205

40 Leu Arg Leu Asn Glu Gln Tyr Glu His Ala Ser Ile His Leu Trp Asp
210 215 220

45 Leu Leu Glu Gly Lys Glu Lys Ser Val Cys Gly Thr Thr Tyr Lys Ala
225 230 235 240

50 Leu Lys Glu Ile Val Glu Arg Val Phe Gln Ser Asn Tyr Phe Asp Ser
245 250 255

55

5 Thr His Asn His Gln Asn Gly Leu Cys Glu Glu Glu Ala Ala Ser
 260 265 270

10 Ala Pro Thr Val Glu Asp Gln Val Ala Glu Ala Glu Pro Glu Pro Ala
 275 280 285

15 Glu Glu Tyr Thr Glu Gln Ser Glu Val Glu Ser Thr Glu Tyr Val Asn
 290 295 300

20 Arg Gln Phe Met Ala Glu Thr Gln Phe Ser Ser Gly Glu Lys Glu Gln
 305 310 315 320

25 Val Asp Glu Trp Thr Val Glu Thr Val Glu Val Val Asn Ser Leu Gln
 325 330 335

30 Gln Gln Pro Gln Ala Ala Ser Pro Ser Val Pro Glu Pro His Ser Leu
 340 345 350

35 Thr Pro Val Ala Gln Ala Asp Pro Leu Val Arg Arg Gln Arg Val Gln
 355 360 365

40 Asp Leu Met Ala Gln Met Gln Gly Pro Tyr Asn Phe Ile Gln Asp Ser
 370 375 380

45 Met Leu Asp Phe Glu Asn Gln Thr Leu Asp Pro Ala Ile Val Ser Ala
 385 390 395 400

50 Gln Pro Met Asn Pro Thr Gln Asn Met Asp Met Pro Gln Leu Val Cys
 405 410 415

55 Pro Pro Val His Ser Glu Ser Arg Leu Ala Gln Pro Asn Gln Val Pro

EP 2 325 648 A1

420 425 430

5 Val Gln Pro Glu Ala Thr Gln Val Pro Leu Val Ser Ser Thr Ser Glu
435 440 445

10 Gly Tyr Thr Ala Ser Gln Pro Leu Tyr Gln Pro Ser His Ala Thr Glu
450 455 460

15 Gln Arg Pro Gln Lys Glu Pro Ile Asp Gln Ile Gln Ala Thr Ile Ser
465 470 475 480

20 Leu Asn Thr Asp Gln Thr Thr Ala Ser Ser Ser Leu Pro Ala Ala Ser
485 490 495

25 Gln Pro Gln Val Phe Gln Ala Gly Thr Ser Lys Pro Leu His Ser Ser
500 505 510

30 Gly Ile Asn Val Asn Ala Ala Pro Phe Gln Ser Met Gln Thr Val Phe
515 520 525

35 Asn Met Asn Ala Pro Val Pro Pro Val Asn Glu Pro Glu Thr Leu Lys
530 535 540

40 Gln Gln Asn Gln Tyr Gln Ala Ser Tyr Asn Gln Ser Phe Ser Ser Gln
545 550 555 560

45 Pro His Gln Val Glu Gln Thr Asp Leu Gln Gln Glu Gln Leu Gln Thr
565 570 575

50 Val Val Gly Thr Tyr His Gly Ser Gln Asp Gln Pro His Gln Val Thr
580 585 590

55

5 Gly Asn His Gln Gln Pro Pro Gln Gln Asn Thr Gly Phe Pro Arg Ser
595 600 605

10 Ser Gln Pro Tyr Tyr Asn Ser Arg Gly Val Ser Arg Gly Gly Ser Arg
610 615 620

15 Gly Ala Arg Gly Leu Met Asn Gly Tyr Arg Gly Pro Ala Asn Gly Phe
625 630 635 640

20 Arg Gly Gly Tyr Asp Gly Tyr Arg Pro Ser Phe Ser Asn Thr Pro Asn
645 650 655

25 Ser Gly Tyr Thr Gln Ser Gln Phe Ser Ala Pro Arg Asp Tyr Ser Gly
660 665 670

30 Tyr Gln Arg Asp Gly Tyr Gln Gln Asn Phe Lys Arg Gly Ser Gly Gln
675 680 685

35 Ser Gly Pro Arg Gly Ala Pro Arg Gly Arg Gly Pro Pro Arg Pro
690 695 700

40 Asn Arg Gly Met Pro Gln Met Asn Thr Gln Gln Val Asn
705 710 715

45 <210> 15
<211> 3386
<212> DNA
<213> Bos taurus

50 <220>
<221> CDS
<222> (82)..(2208)
<223>

55

5	<400> 15			
	cgcgctctcgcccccgtccacc	gattgactcgccgctttgt	ccttcctcccgctttctt	60
10	ctctccctt acggttcaa g atg cct tcg gcc acc agc cac agc gga agc Met Pro Ser Ala Thr Ser His Ser Gly Ser 1 5 10			111
15	ggc agc aag tcg tcc gga ccg cca ccg ccg tcg ggt tcc tcc ggg aat Gly Ser Lys Ser Ser Gly Pro Pro Pro Ser Ser Gly Asn 15 20 25			159
20	gag gcg ggg gcc ggg gcc gcc gcg gct tcc caa cac ccc atg acc Glu Ala Gly Ala Gly Ala Ala Pro Ala Ser Gln His Pro Met Thr 30 35 40			207
25	ggc acc ggg gct gtc cag acc gag gcc atg aag cag att ctc ggg gtg Gly Thr Gly Ala Val Gln Thr Glu Ala Met Lys Gln Ile Leu Gly Val 45 50 55			255
30	atc gac aag aaa ctt cgg aac ctg gag aag aaa aag ggc aag ctt gat Ile Asp Lys Lys Leu Arg Asn Leu Glu Lys Lys Gly Lys Leu Asp 60 65 70			303
35	gat tat cag gaa cga atg aac aaa ggg gaa agg ctt aat caa gat cag Asp Tyr Gln Glu Arg Met Asn Lys Gly Glu Arg Leu Asn Gln Asp Gln 75 80 85 90			351
40	ctg gat gcc gtg tct aag tac cag gaa gtc aca aat aac ttg gag ttt Leu Asp Ala Val Ser Lys Tyr Gln Glu Val Thr Asn Asn Leu Glu Phe 95 100 105			399
45	gca aaa gaa tta cag agg agt ttc atg gca tta agc caa gat att cag Ala Lys Glu Leu Gln Arg Ser Phe Met Ala Leu Ser Gln Asp Ile Gln 110 115 120			447
50	aaa aca ata aag aag aca gca cgt cgg gag cag ctt atg aga gag gaa Lys Thr Ile Lys Lys Thr Ala Arg Arg Glu Gln Leu Met Arg Glu Glu 125 130 135			495
55	gct gaa cag aaa cgt tta aaa aca gta ctt gag ctg cag tat gtt ttg Ala Glu Gln Lys Arg Leu Lys Thr Val Leu Glu Leu Gln Tyr Val Leu			543

EP 2 325 648 A1

	140	145	150	
5	gac aaa cta gga gat gat gaa gtg aga act gac ctg aag caa ggt ttg Asp Lys Leu Gly Asp Asp Glu Val Arg Thr Asp Leu Lys Gln Gly Leu			591
	155	160	165	170
10	aat gga gtg cca ata ttg tct gaa gag gag ttg tcg ttg tta gat gag Asn Gly Val Pro Ile Leu Ser Glu Glu Leu Ser Leu Leu Asp Glu			639
	175	180	185	
15	ttc tac aaa tta gca gac cct gaa cga gac atg agc ttg agg ttg aat Phe Tyr Lys Leu Ala Asp Pro Glu Arg Asp Met Ser Leu Arg Leu Asn			687
	190	195	200	
20	gag cag tat gaa cat gcc tcc att cac ctg tgg gac ttg ctg gaa gga Glu Gln Tyr Glu His Ala Ser Ile His Leu Trp Asp Leu Leu Glu Gly			735
	205	210	215	
25	aag gaa aaa cct gta tgt gga aca act tat aaa gct cta aag gaa att Lys Glu Lys Pro Val Cys Gly Thr Thr Tyr Lys Ala Leu Lys Glu Ile			783
	220	225	230	
30	gtt gag cgt gtt ttc cag tca aac tac ttt gac agc acc cac aac cac Val Glu Arg Val Phe Gln Ser Asn Tyr Phe Asp Ser Thr His Asn His			831
	235	240	245	250
35	cag aat ggt ctg tgt gag gaa gag gag gca gcc tca gca cct aca gtt Gln Asn Gly Leu Cys Glu Glu Glu Ala Ala Ser Ala Pro Thr Val			879
	255	260	265	
40	gaa gac cag gca gct gaa gct gaa cct gag cca gtg gaa gaa tat act Glu Asp Gln Ala Ala Glu Ala Pro Glu Pro Val Glu Glu Tyr Thr			927
	270	275	280	
45	gaa caa aat gag gtt gaa tca aca gag tat gta aat aga caa ttt atg Glu Gln Asn Glu Val Glu Ser Thr Glu Tyr Val Asn Arg Gln Phe Met			975
	285	290	295	
50	gca gaa aca cag ttc agc agt ggt gaa aag gag cag gta gat gat tgg Ala Glu Thr Gln Phe Ser Ser Gly Glu Lys Glu Gln Val Asp Asp Trp			1023
	300	305	310	
55				

EP 2 325 648 A1

	aca gtt gaa aca gtt gag gtg gta aat tca ctc cag cag caa cct cag		1071
	Thr Val Glu Thr Val Glu Val Val Asn Ser Leu Gln Gln Gln Pro Gln		
5	315	320	325
			330
	gct gca tct cct tca gta cca gaa ccc cac tct ttg acc cca gtg gct		1119
	Ala Ala Ser Pro Ser Val Pro Glu Pro His Ser Leu Thr Pro Val Ala		
10	335	340	345
	caa gcc gat ccc ctc gtg aga aga cag cga gta cag gac ctt atg gca		1167
	Gln Ala Asp Pro Leu Val Arg Arg Gln Arg Val Gln Asp Leu Met Ala		
15	350	355	360
	caa atg cag ggg ccc tat aat ttc ata cag gat tca atg ttg gat ttt		1215
	Gln Met Gln Gly Pro Tyr Asn Phe Ile Gln Asp Ser Met Leu Asp Phe		
20	365	370	375
	gaa aac cag aca ctt gat cct gcc att gta tct gca cag ccg atg aat		1263
	Glu Asn Gln Thr Leu Asp Pro Ala Ile Val Ser Ala Gln Pro Met Asn		
25	380	385	390
	cca gca cag aac atg gac ata ccc cag ctg gtt tgc cct cca gtt cat		1311
	Pro Ala Gln Asn Met Asp Ile Pro Gln Leu Val Cys Pro Pro Val His		
30	395	400	405
			410
	tct gaa tct aga ctt gctcaa cct aat caa gtt tct gta cag cca gaa		1359
	Ser Glu Ser Arg Leu Ala Gln Pro Asn Gln Val Ser Val Gln Pro Glu		
35	415	420	425
	gct aca cag gtt cct ttg gtt tca tcc aca agt gag gga tat aca gca		1407
	Ala Thr Gln Val Pro Leu Val Ser Ser Thr Ser Glu Gly Tyr Thr Ala		
40	430	435	440
	tct caa ccc ttg tac caa cct tct cat gct act gac caa cga cca caa		1455
	Ser Gln Pro Leu Tyr Gln Pro Ser His Ala Thr Asp Gln Arg Pro Gln		
45	445	450	455
	aag gaa ccg att gat cag att cag gcg acg atc tct tta aat aca gac		1503
	Lys Glu Pro Ile Asp Gln Ile Gln Ala Thr Ile Ser Leu Asn Thr Asp		
50	460	465	470
	cag act aca gca tca tca tcc ctt cct gct gct tct cag cct caa gtg		1551
	Gln Thr Thr Ala Ser Ser Leu Pro Ala Ala Ser Gln Pro Gln Val		
55			

EP 2 325 648 A1

475	480	485	490	
5	ttc cag gct ggg aca agc aaa cct tta cat agc agt gga atc aat gta Phe Gln Ala Gly Thr Ser Lys Pro Leu His Ser Ser Gly Ile Asn Val	495	500	505
10	aat gca gct cca ttc caa tcc atg caa acg gta ttc aat atg aat gcc Asn Ala Ala Pro Phe Gln Ser Met Gln Thr Val Phe Asn Met Asn Ala	510	515	520
15	cca gtt cct cct gtt aat gaa cca gaa act tta aaa cag caa aat cag Pro Val Pro Pro Val Asn Glu Pro Glu Thr Leu Lys Gln Gln Asn Gln	525	530	535
20	tac cag gcc agt tac aac cag agc ttt tcc agt cag cct cac caa gta Tyr Gln Ala Ser Tyr Asn Gln Ser Phe Ser Ser Gln Pro His Gln Val	540	545	550
25	gaa caa aca gag ctt cag caa gaa cag ctt caa aca gtg gtt ggc act Glu Gln Thr Glu Leu Gln Glu Gln Leu Gln Thr Val Val Gly Thr	555	560	565
30	tat cat ggt tct cag gac cag ccc cat caa gtg act ggt aac cac cag Tyr His Gly Ser Gln Asp Gln Pro His Gln Val Thr Gly Asn His Gln	575	580	585
35	cag cct cct cag cag aac act gga ttt cca cgt agc aat cag ccc tat Gln Pro Pro Gln Gln Asn Thr Gly Phe Pro Arg Ser Asn Gln Pro Tyr	590	595	600
40	tac aac agt cgt ggt gtg tct cgt gga ggt tcc cgt ggt gct aga ggc Tyr Asn Ser Arg Gly Val Ser Arg Gly Gly Ser Arg Gly Ala Arg Gly	605	610	615
45	ttg atg aat gga tac aga gga cct gct aat gga ttc aga gga gga tat Leu Met Asn Gly Tyr Arg Gly Pro Ala Asn Gly Phe Arg Gly Gly Tyr	620	625	630
50	gat ggt tac cgc cct tca ttc tct act aac act cca aac agt ggt tat Asp Gly Tyr Arg Pro Ser Phe Ser Thr Asn Thr Pro Asn Ser Gly Tyr	635	640	645
55				650

EP 2 325 648 A1

aca caa tct caa ttc agt gct ccc cg^g gac tac tct ggc tat cag cg^g 2079
Thr Gln Ser Gln Phe Ser Ala Pro Arg Asp Tyr Ser Gly Tyr Gln Arg
5 655 660 665

gat gga tat cag cag aat ttc aag cga ggc tct ggg cag agt gga cca 2127
Asp Gly Tyr Gln Gln Asn Phe Lys Arg Gly Ser Gly Gln Ser Gly Pro
10 670 675 680

cg^g gga gcc cca cga ggt cgt gga ggg ccc cca aga ccc aac aga ggg 2175
Arg Gly Ala Pro Arg Gly Arg Gly Pro Pro Arg Pro Asn Arg Gly
15 685 690 695

atg ccg caa atg aac act cag caa gtg aat taa tctgattcac aggattatgt 2228
Met Pro Gln Met Asn Thr Gln Gln Val Asn
20 700 705

ttaatcgcca aaaacacact ggccagtgta ccataatatg ttaccagaag agttattatc 2288
25 tatttgttct cccttcagg aaacttattg taaaggact gtttcatcc cataaagaca 2348
ggactacaat tgtcagctt atattacctg gatatggaag gaaactattt ttactctgca 2408
30 tggctgtcc taagcgtcat cttgagcctt gcacatgata ctcagattcc tcacccttgc 2468
ttaggagtaa aacataatat acttaatgg ggtgatatct ccatagttat ttgaagtggc 2528
35 ttggataaag caagactgac ttctgacatt ggataaaatc tacaatcag ccctagagtc 2588
attcagtggt aactgacaaa actaaaatat ttcccttcaa aggaagatgg aaggagtgga 2648
40 gtgtggtttgc acagaacaac tgcatttcac agctttcca cttaaattgg agcactgaac 2708
attttagatgc ataccgaatt atgcatggc cctaattcaca cagacaaggc tggtgccagc 2768
45 cttaggcttgc acacggcagt gttcacccctc tggccagacg actgtggttc aagacacatg 2828
taaattgctt ttaacagct gatactgtat aagacaaagc caaaatgcaa aattaggctt 2888
50 tgattggcac tttcgaaaa atatgcaaca attaaggat ataatctgga tggccgcttc 2948
tgtacttaat gtgaaatatt tagataccctt tcaaacactt aacagttct ttgacaatga 3008
55

5	gttttctaag gattggtagt aaatatcatt ccttatgacg tacattgtct gtcactaattc	3068		
10	cttggatctt gctgtattgt cacctaaattt ggtacaggta ctgatgaaaaa tctaattggat	3128		
15	aatcataaca ctcttggta catgttttc ctgcagccgt aaagttttta taagaaaaaaag	3188		
20	acatcaaatg cctgctgctg ccaccctttt aaattgctat ctttgaaaaa gcaccagtagt	3248		
25	gtgttttaga ttgatttccc tatttttaggg aaatgacagt cagtagttc acttctgatg	3308		
30	gtataagcaa acaaataaaaa catgtttata aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa	3368		
	aaaaaaaaaa aaaaaaaaaa	3386		
35	<210> 16			
	<211> 708			
	<212> PRT			
	<213> Bos taurus			
40	<400> 16			
45	Met Pro Ser Ala Thr Ser His Ser Gly Ser Gly Ser Lys Ser Ser Gly			
	1	5	10	15
50	Pro Pro Pro Pro Ser Gly Ser Ser Gly Asn Glu Ala Gly Ala Gly Ala			
	20	25	30	
55	Ala Ala Pro Ala Ser Gln His Pro Met Thr Gly Thr Gly Ala Val Gln			
	35	40	45	
60	Thr Glu Ala Met Lys Gln Ile Leu Gly Val Ile Asp Lys Lys Leu Arg			
	50	55	60	
65	Asn Leu Glu Lys Lys Gly Lys Leu Asp Asp Tyr Gln Glu Arg Met			
	65	70	75	80

EP 2 325 648 A1

Asn Lys Gly Glu Arg Leu Asn Gln Asp Gln Leu Asp Ala Val Ser Lys
85 90 95

5

Tyr Gln Glu Val Thr Asn Asn Leu Glu Phe Ala Lys Glu Leu Gln Arg
100 105 110

10

Ser Phe Met Ala Leu Ser Gln Asp Ile Gln Lys Thr Ile Lys Lys Thr
115 120 125

15

Ala Arg Arg Glu Gln Leu Met Arg Glu Glu Ala Glu Gln Lys Arg Leu
130 135 140

20

Lys Thr Val Leu Glu Leu Gln Tyr Val Leu Asp Lys Leu Gly Asp Asp
145 150 155 160

25

Glu Val Arg Thr Asp Leu Lys Gln Gly Leu Asn Gly Val Pro Ile Leu
165 170 175

30

Ser Glu Glu Glu Leu Ser Leu Leu Asp Glu Phe Tyr Lys Leu Ala Asp
180 185 190

35

Pro Glu Arg Asp Met Ser Leu Arg Leu Asn Glu Gln Tyr Glu His Ala
195 200 205

40

Ser Ile His Leu Trp Asp Leu Leu Glu Gly Lys Glu Lys Pro Val Cys
210 215 220

45

Gly Thr Thr Tyr Lys Ala Leu Lys Glu Ile Val Glu Arg Val Phe Gln
225 230 235 240

50

Ser Asn Tyr Phe Asp Ser Thr His Asn His Gln Asn Gly Leu Cys Glu
245 250 255

55

5 Glu Glu Glu Ala Ala Ser Ala Pro Thr Val Glu Asp Gln Ala Ala Glu
260 265 270

10 Ala Glu Pro Glu Pro Val Glu Glu Tyr Thr Glu Gln Asn Glu Val Glu
275 280 285

15 Ser Thr Glu Tyr Val Asn Arg Gln Phe Met Ala Glu Thr Gln Phe Ser
290 295 300

20 Ser Gly Glu Lys Glu Gln Val Asp Asp Trp Thr Val Glu Thr Val Glu
305 310 315 320

25 Val Val Asn Ser Leu Gln Gln Gln Pro Gln Ala Ala Ser Pro Ser Val
325 330 335

30 Pro Glu Pro His Ser Leu Thr Pro Val Ala Gln Ala Asp Pro Leu Val
340 345 350

35 Arg Arg Gln Arg Val Gln Asp Leu Met Ala Gln Met Gln Gly Pro Tyr
355 360 365

40 Asn Phe Ile Gln Asp Ser Met Leu Asp Phe Glu Asn Gln Thr Leu Asp
370 375 380

45 Pro Ala Ile Val Ser Ala Gln Pro Met Asn Pro Ala Gln Asn Met Asp
385 390 395 400

50 Ile Pro Gln Leu Val Cys Pro Pro Val His Ser Glu Ser Arg Leu Ala
405 410 415

EP 2 325 648 A1

Gln Pro Asn Gln Val Ser Val Gln Pro Glu Ala Thr Gln Val Pro Leu
420 425 430

5

Val Ser Ser Thr Ser Glu Gly Tyr Thr Ala Ser Gln Pro Leu Tyr Gln
435 440 445

10

Pro Ser His Ala Thr Asp Gln Arg Pro Gln Lys Glu Pro Ile Asp Gln
450 455 460

15

Ile Gln Ala Thr Ile Ser Leu Asn Thr Asp Gln Thr Thr Ala Ser Ser
465 470 475 480

20

Ser Leu Pro Ala Ala Ser Gln Pro Gln Val Phe Gln Ala Gly Thr Ser
485 490 495

25

Lys Pro Leu His Ser Ser Gly Ile Asn Val Asn Ala Ala Pro Phe Gln
500 505 510

30

Ser Met Gln Thr Val Phe Asn Met Asn Ala Pro Val Pro Pro Val Asn
515 520 525

35

Glu Pro Glu Thr Leu Lys Gln Gln Asn Gln Tyr Gln Ala Ser Tyr Asn
530 535 540

40

Gln Ser Phe Ser Ser Gln Pro His Gln Val Glu Gln Thr Glu Leu Gln
545 550 555 560

45

Gln Glu Gln Leu Gln Thr Val Val Gly Thr Tyr His Gly Ser Gln Asp
565 570 575

50

Gln Pro His Gln Val Thr Gly Asn His Gln Gln Pro Pro Gln Gln Asn
580 585 590

55

5 Thr Gly Phe Pro Arg Ser Asn Gln Pro Tyr Tyr Asn Ser Arg Gly Val
 595 600 605

10 Ser Arg Gly Gly Ser Arg Gly Ala Arg Gly Leu Met Asn Gly Tyr Arg
 610 615 620

15 Gly Pro Ala Asn Gly Phe Arg Gly Gly Tyr Asp Gly Tyr Arg Pro Ser
 625 630 635 640

20 Phe Ser Thr Asn Thr Pro Asn Ser Gly Tyr Thr Gln Ser Gln Phe Ser
 645 650 655

25 Ala Pro Arg Asp Tyr Ser Gly Tyr Gln Arg Asp Gly Tyr Gln Gln Asn
 660 665 670

30 Phe Lys Arg Gly Ser Gly Gln Ser Gly Pro Arg Gly Ala Pro Arg Gly
 675 680 685

35 Arg Gly Gly Pro Pro Arg Pro Asn Arg Gly Met Pro Gln Met Asn Thr
 690 695 700

40 Gln Gln Val Asn
 705

45 <210> 17
 <211> 3150
 <212> DNA
 <213> Equus caballus

50 <220>
 <221> CDS
 <222> (1)..(1917)

55

<223>

5	<400> 17			
	atg gag ggc aag ctc gat gat tac caa gag cga atg aac aaa gga gaa			48
	Met Glu Gly Lys Leu Asp Asp Tyr Gln Glu Arg Met Asn Lys Gly Glu			
	1 5 10 15			
10	agg ctt aat cag gat cag ctg gat gct gtg tct aag tac cag gaa gtc			96
	Arg Leu Asn Gln Asp Gln Leu Asp Ala Val Ser Lys Tyr Gln Glu Val			
	20 25 30			
15	aca aat aac ttg gag ttt gcg aaa gaa ttg cag agg agt ttc atg gcg			144
	Thr Asn Asn Leu Glu Phe Ala Lys Glu Leu Gln Arg Ser Phe Met Ala			
	35 40 45			
20	ttg agt cag gat att cag aaa aca ata aag aag acg gca cgt cgg gag			192
	Leu Ser Gln Asp Ile Gln Lys Thr Ile Lys Lys Thr Ala Arg Arg Glu			
	50 55 60			
25	cag ctt atg aga gaa gaa gct gaa cag aaa cgt tta aaa act gta ctt			240
	Gln Leu Met Arg Glu Glu Ala Glu Gln Lys Arg Leu Lys Thr Val Leu			
	65 70 75 80			
30	gag ctg cag tat gtt ttg gac aaa ttg gga gat gaa gaa gtg cga act			288
	Glu Leu Gln Tyr Val Leu Asp Lys Leu Gly Asp Glu Glu Val Arg Thr			
	85 90 95			
35	gac ctg aaa caa ggt ttg aat gga gtg cca ata ctc tct gaa gaa gag			336
	Asp Leu Lys Gln Gly Leu Asn Gly Val Pro Ile Leu Ser Glu Glu			
	100 105 110			
40	ttg tcg ctg ttg gat gag ttc tac aag tta gca gac cct gta cgg gac			384
	Leu Ser Leu Leu Asp Glu Phe Tyr Lys Leu Ala Asp Pro Val Arg Asp			
	115 120 125			
45	atg agc ttg agg ttg aat gag cag tat gag cat gcc tcc att cac ctg			432
	Met Ser Leu Arg Leu Asn Glu Gln Tyr Glu His Ala Ser Ile His Leu			
	130 135 140			
50	tgg gac ttg ctg gaa ggg aag gaa aaa tct gtc tgt gga aca acc tat			480
	Trp Asp Leu Leu Glu Gly Lys Glu Lys Ser Val Cys Gly Thr Thr Tyr			
	145 150 155 160			

5	aaa gct ctg agg gaa att gtt gag cgt gtt ttc cag tcc aac tac ttt Lys Ala Leu Arg Glu Ile Val Glu Arg Val Phe Gln Ser Asn Tyr Phe 165	170	175	528	
10	gac agc acc cac aac cac cag aat ggg ctc tgt gag gag gaa gag gct Asp Ser Thr His Asn His Gln Asn Gly Leu Cys Glu Glu Glu Ala 180	185	190	576	
15	acc tca gct cca aca gct gaa gac cag gga gct gaa gct gaa cct gag Thr Ser Ala Pro Thr Ala Glu Asp Gln Gly Ala Glu Ala Glu Pro Glu 195	200	205	624	
20	cca gca gaa gaa tac act gaa caa agt gaa gtt gaa tca aca gag tat Pro Ala Glu Glu Tyr Thr Glu Gln Ser Glu Val Glu Ser Thr Glu Tyr 210	215	220	672	
25	gta aat aga cag ttt atg gca gaa gcg cag ttc agt ggt gag aag gag Val Asn Arg Gln Phe Met Ala Glu Ala Gln Phe Ser Gly Glu Lys Glu 225	230	235	240	720
30	cag gtg gat gag tgg aca gtc gag acg gtc gag gtg gta aat tca ctc Gln Val Asp Glu Trp Thr Val Glu Thr Val Glu Val Val Asn Ser Leu 245	250	255	768	
35	cag cag caa cct cag gct gca tct cct tca gta ccg gag ccc cac tct Gln Gln Gln Pro Gln Ala Ala Ser Pro Ser Val Pro Glu Pro His Ser 260	265	270	816	
40	ttg act cca gtg gct cag gca gat ccc ctt gtg aga aga cag cga gta Leu Thr Pro Val Ala Gln Ala Asp Pro Leu Val Arg Arg Gln Arg Val 275	280	285	864	
45	cag gac ctt atg gcg caa atg cag ggg ccc tat aat ttc ata cag gat Gln Asp Leu Met Ala Gln Met Gln Gly Pro Tyr Asn Phe Ile Gln Asp 290	295	300	912	
50	tca atg ctg gat ttt gaa aac cag aca ctt gat cct gcc att gta tct Ser Met Leu Asp Phe Glu Asn Gln Thr Leu Asp Pro Ala Ile Val Ser 305	310	315	320	960
55	gca cag cct atg aat cca gca cag aat atg gac atg ccc cag ctg gtt			1008	

EP 2 325 648 A1

Ala Gln Pro Met Asn Pro Ala Gln Asn Met Asp Met Pro Gln Leu Val			
325	330	335	
5			
tgc cct cca gtt cat gct gaa tct aga ctt gct caa cct aat caa gtt			1056
Cys Pro Pro Val His Ala Glu Ser Arg Leu Ala Gln Pro Asn Gln Val			
340	345	350	
10			
cct gta caa cca gaa gct aca cag gtt cct ttg gtt tca tcc aca agt			1104
Pro Val Gln Pro Glu Ala Thr Gln Val Pro Leu Val Ser Ser Thr Ser			
355	360	365	
15			
gag ggg tat aca gca tct cag ccc ttg tac cag cct tct cat gct aca			1152
Glu Gly Tyr Thr Ala Ser Gln Pro Leu Tyr Gln Pro Ser His Ala Thr			
370	375	380	
20			
gag caa cga ccg caa aag gaa ccg act gac cag atc cag gca aca atc			1200
Glu Gln Arg Pro Gln Lys Glu Pro Thr Asp Gln Ile Gln Ala Thr Ile			
385	390	395	400
25			
tct tta aat aca gac cag act aca gca tca tca tcc ctt cct gct gct			1248
Ser Leu Asn Thr Asp Gln Thr Ala Ser Ser Ser Leu Pro Ala Ala			
405	410	415	
30			
tct cag cct cag gtg ttc cag gct ggg aca agc aaa cct tta cac agc			1296
Ser Gln Pro Gln Val Phe Gln Ala Gly Thr Ser Lys Pro Leu His Ser			
420	425	430	
35			
agt ggg atc aat gta aat gca gcg cca ttc cag tcc atg caa acg gtg			1344
Ser Gly Ile Asn Val Asn Ala Ala Pro Phe Gln Ser Met Gln Thr Val			
435	440	445	
40			
ttc aac atg aat gcc ccg gtt cct cct gtt aat gaa cca gaa act tta			1392
Phe Asn Met Asn Ala Pro Val Pro Val Asn Glu Pro Glu Thr Leu			
450	455	460	
45			
aaa cag caa aat cag tac cag gcc agc tat aac cag agc ttt tcc agt			1440
Lys Gln Gln Asn Gln Tyr Gln Ala Ser Tyr Asn Gln Ser Phe Ser Ser			
465	470	475	480
50			
ccg cct cac caa gta gag cag aca gag ctt ccg caa gag cag ctt cag			1488
Pro Pro His Gln Val Glu Gln Thr Glu Leu Pro Gln Glu Gln Leu Gln			
485	490	495	
55			

5	acg gtg gtt ggt act tac cat gct tcc caa gac cag ccc cat caa gtg Thr Val Val Gly Thr Tyr His Ala Ser Gln Asp Gln Pro His Gln Val	500	505	510	1536	
10	acc ggt aac cac cag cag cct ccc cag cag aac act ggg ttt cca cgt Thr Gly Asn His Gln Gln Pro Pro Gln Gln Asn Thr Gly Phe Pro Arg	515	520	525	1584	
15	agc agt cag ccc tat tac aac agt cgt ggt gtg tct cgt gga ggc tcc Ser Ser Gln Pro Tyr Tyr Asn Ser Arg Gly Val Ser Arg Gly Gly Ser	530	535	540	1632	
20	cgt ggt gct aga ggc ttg atg aat gga tac agg ggc cct gcc aat gga Arg Gly Ala Arg Gly Leu Met Asn Gly Tyr Arg Gly Pro Ala Asn Gly	545	550	555	560	1680
25	ttc aga gga gga tat gat ggt tac cgc cct tcg ttc tct aac act cca Phe Arg Gly Gly Tyr Asp Gly Tyr Arg Pro Ser Phe Ser Asn Thr Pro	565	570	575	1728	
30	aac agc ggt tac aca cag tct cag ttc agt gct ccc cgg gac tac tct Asn Ser Gly Tyr Thr Gln Ser Gln Phe Ser Ala Pro Arg Asp Tyr Ser	580	585	590	1776	
35	ggc tat cag cgg gat gga tat cag cag aat ttc aag cga ggc tct ggg Gly Tyr Gln Arg Asp Gly Tyr Gln Gln Asn Phe Lys Arg Gly Ser Gly	595	600	605	1824	
40	cag agt gga ccc cgg gga gcc cca cga ggt cgt gga ggg ccc cca aga Gln Ser Gly Pro Arg Gly Ala Pro Arg Gly Arg Gly Pro Pro Arg	610	615	620	1872	
45	ccc aac aga ggg atg ccg caa atg aac act cag caa gtg aat taa Pro Asn Arg Gly Met Pro Gln Met Asn Thr Gln Gln Val Asn	625	630	635	1917	
50	tctgattcac aggattatct ttaatcgcca aaacacactg gccagtgtac cataatatgt				1977	
	taccagaaga gttattatct atttgttctc ccttcagga aacttattgt aaagggactg				2037	
55	ttttcatccc ataaagacag gactacagtt gtcagctta tattacctgg atatggaagg				2097	

5	aaactatTTT tactctgcat gttctgtcct aagcgtcata ttgagcctt cacatgatac	2157
10	tcagattcct ttcccttgct taggagtaaa acataatata ctttatgggg tgataatatc tccatagtta tttgaagtgg ctggaaaaa gcaagattga ctttgacat tggataaaat	2217
15	ctacaaatca gccctagagt ttcatggta ttcacaaaac taaaatattt ccctgaaag gaagatggaa ggactggagt gtggggcgc agaacaactg cattcacag ctttcctat	2277
20	taaattggag cactgaatgt taaatgcata ccaaattatg catggccct taatcacaca tacatggcta ccagcttga cacagcacta ttcatcctt gccaacacga ctgtggtaa	2337
25	aaacacgtgt aaattgcTTT ttaacagctg atactgtaaa agacaaagct aaaatgcaaa attaggctt cattggcact ttgcggaaaaa tatgcaacaa atttggatg taatctggat	2397
30	ggccacttct gtacttaatg tgaagtattt agatacctt ttgaacactt aacagttct tcgacaatga ctttgtaag gattggtagt atatatcatt ctttatgaca tacattgtct	2457
35	gttgctaattt cttggatctt gctgtattgt cacctaaatt ggtacaggta ctgtggaaaaa tctctcatgg ataaaacctaa cactttcgat cacatgtttt tcctgcagcc tgaaggtttt	2517
40	taaaaggaaaa agatataaaa tgcctgctgc taccaccctt ttaaattgct atctttgaa aagcaccagt atgtgtttt agattgattt ccctattttt gggaaatgac agtcagtagt	2577
45	ttcagttctg atggtataag caaagcaaat aaaacgtgtt tataaaagtt gtatcttgc acactgggtgt tcaacagcta gcagcttctg tggttcaccc cctgccttgt tagtggtaacc	2637
50	catttatggt tatctccagc agcaatttct cta	3117
55	<210> 18 <211> 638 <212> PRT <213> Equus caballus	3150

<400> 18

5

Met Glu Gly Lys Leu Asp Asp Tyr Gln Glu Arg Met Asn Lys Gly Glu
1 5 10 15

10

Arg Leu Asn Gln Asp Gln Leu Asp Ala Val Ser Lys Tyr Gln Glu Val
20 25 30

15

Thr Asn Asn Leu Glu Phe Ala Lys Glu Leu Gln Arg Ser Phe Met Ala
35 40 45

20

Leu Ser Gln Asp Ile Gln Lys Thr Ile Lys Lys Thr Ala Arg Arg Glu
50 55 60

25

Gln Leu Met Arg Glu Glu Ala Glu Gln Lys Arg Leu Lys Thr Val Leu
65 70 75 80

30

Glu Leu Gln Tyr Val Leu Asp Lys Leu Gly Asp Glu Glu Val Arg Thr
85 90 95

35

Asp Leu Lys Gln Gly Leu Asn Gly Val Pro Ile Leu Ser Glu Glu Glu
100 105 110

40

Leu Ser Leu Leu Asp Glu Phe Tyr Lys Leu Ala Asp Pro Val Arg Asp
115 120 125

45

Met Ser Leu Arg Leu Asn Glu Gln Tyr Glu His Ala Ser Ile His Leu
130 135 140

50

Trp Asp Leu Leu Glu Gly Lys Glu Lys Ser Val Cys Gly Thr Thr Tyr
145 150 155 160

55

5 Lys Ala Leu Arg Glu Ile Val Glu Arg Val Phe Gln Ser Asn Tyr Phe
165 170 175

10 Asp Ser Thr His Asn His Gln Asn Gly Leu Cys Glu Glu Glu Ala
180 185 190

15 Thr Ser Ala Pro Thr Ala Glu Asp Gln Gly Ala Glu Ala Glu Pro Glu
195 200 205

20 Pro Ala Glu Glu Tyr Thr Glu Gln Ser Glu Val Glu Ser Thr Glu Tyr
210 215 220

25 Val Asn Arg Gln Phe Met Ala Glu Ala Gln Phe Ser Gly Glu Lys Glu
225 230 235 240

30 Gln Val Asp Glu Trp Thr Val Glu Thr Val Glu Val Val Asn Ser Leu
245 250 255

35 Gln Gln Gln Pro Gln Ala Ala Ser Pro Ser Val Pro Glu Pro His Ser
260 265 270

40 Leu Thr Pro Val Ala Gln Ala Asp Pro Leu Val Arg Arg Gln Arg Val
275 280 285

45 Gln Asp Leu Met Ala Gln Met Gln Gly Pro Tyr Asn Phe Ile Gln Asp
290 295 300

50 Ser Met Leu Asp Phe Glu Asn Gln Thr Leu Asp Pro Ala Ile Val Ser
305 310 315 320

55 Ala Gln Pro Met Asn Pro Ala Gln Asn Met Asp Met Pro Gln Leu Val

325

330

335

5

Cys Pro Pro Val His Ala Glu Ser Arg Leu Ala Gln Pro Asn Gln Val
340 345 350

10

Pro Val Gln Pro Glu Ala Thr Gln Val Pro Leu Val Ser Ser Thr Ser
355 360 365

15

Glu Gly Tyr Thr Ala Ser Gln Pro Leu Tyr Gln Pro Ser His Ala Thr
370 375 380

20

Glu Gln Arg Pro Gln Lys Glu Pro Thr Asp Gln Ile Gln Ala Thr Ile
385 390 395 400

25

Ser Leu Asn Thr Asp Gln Thr Thr Ala Ser Ser Ser Leu Pro Ala Ala
405 410 415

30

Ser Gln Pro Gln Val Phe Gln Ala Gly Thr Ser Lys Pro Leu His Ser
420 425 430

35

Ser Gly Ile Asn Val Asn Ala Ala Pro Phe Gln Ser Met Gln Thr Val
435 440 445

40

Phe Asn Met Asn Ala Pro Val Pro Pro Val Asn Glu Pro Glu Thr Leu
450 455 460

45

Lys Gln Gln Asn Gln Tyr Gln Ala Ser Tyr Asn Gln Ser Phe Ser Ser
465 470 475 480

50

Pro Pro His Gln Val Glu Gln Thr Glu Leu Pro Gln Glu Gln Leu Gln
485 490 495

55

5	Thr Val Val Gly Thr His Ala Ser Gln Asp Gln Pro His Gln Val	500	505	510
10	Thr Gly Asn His Gln Gln Pro Pro Gln Gln Asn Thr Gly Phe Pro Arg	515	520	525
15	Ser Ser Gln Pro Tyr Tyr Asn Ser Arg Gly Val Ser Arg Gly Gly Ser	530	535	540
20	Arg Gly Ala Arg Gly Leu Met Asn Gly Tyr Arg Gly Pro Ala Asn Gly	545	550	555
25	Phe Arg Gly Gly Tyr Asp Gly Tyr Arg Pro Ser Phe Ser Asn Thr Pro	565	570	575
30	Asn Ser Gly Tyr Thr Gln Ser Gln Phe Ser Ala Pro Arg Asp Tyr Ser	580	585	590
35	Gly Tyr Gln Arg Asp Gly Tyr Gln Gln Asn Phe Lys Arg Gly Ser Gly	595	600	605
40	Gln Ser Gly Pro Arg Gly Ala Pro Arg Gly Arg Gly Pro Pro Arg	610	615	620
45	Pro Asn Arg Gly Met Pro Gln Met Asn Thr Gln Gln Val Asn	625	630	635
50	<210> 19 <211> 6181 <212> DNA <213> Mus musculus			

<220>
 <221> CDS
 5 <222> (179).. (2302)
 <223>

 <400> 19
 10 gctggctggc taagtccctc ccgcgcggc tcttgtccca ctaggaggcag ctcagagccg 60

 cggggacagg gcgaagcggc ctgcgcccac ggagcgcacg tctctgttct caacgcagca 120

 15 ccacccttgc cccctcggc tgcccactcc agacgtccag cggctccgca cgccacg 178

 atg ccc tcg gcc acc agc cac agc gga agc ggc agc aaa tcg tcg gga 226
 Met Pro Ser Ala Thr Ser His Ser Gly Ser Lys Ser Ser Gly
 20 1 5 10 15

 ccg ccg ccg tcc ggt tcc tcc ggg agt gag ggc ggc gcc ggg gca 274
 Pro Pro Pro Ser Gly Ser Ser Gly Ser Glu Ala Ala Ala Gly Ala
 25 20 25 30

 gct gcg ccg gct tct cag cat ccg gca acc ggc acc ggc gcc gtc cag 322
 Ala Ala Pro Ala Ser Gln His Pro Ala Thr Gly Thr Gly Ala Val Gln
 30 35 40 45

 acc gag gcc atg aag cag att ctc ggc gta atc gac aag aaa ctt cgg 370
 Thr Glu Ala Met Lys Gln Ile Leu Gly Val Ile Asp Lys Lys Leu Arg
 35 50 55 60

 aac ctg gag aag aaa aag ggt aaa ctt gat gat tac cag gaa cga atg 418
 Asn Leu Glu Lys Lys Gly Lys Leu Asp Asp Tyr Gln Glu Arg Met
 40 65 70 75 80

 aat aaa ggg gaa agg ctc aat caa gac cag ctg gat gcc gta tct aag 466
 Asn Lys Gly Glu Arg Leu Asn Gln Asp Gln Leu Asp Ala Val Ser Lys
 45 85 90 95

 tac cag gaa gtc aca aat aat ttg gag ttt gca aag gaa tta cag agg 514
 Tyr Gln Glu Val Thr Asn Asn Leu Glu Phe Ala Lys Glu Leu Gln Arg
 50 100 105 110

 agt ttc atg gca tta agt caa gat att cag aaa aca ata aag aag aca 562
 Ser Phe Met Ala Leu Ser Gln Asp Ile Gln Lys Thr Ile Lys Lys Thr
 55

EP 2 325 648 A1

	115	120	125	
5	gca cgt cgg gaa cag ctt atg aga gaa gaa gca gaa cag aag cgc tta Ala Arg Arg Glu Gln Leu Met Arg Glu Glu Ala Glu Gln Lys Arg Leu			610
	130	135	140	
10	aaa act gta ctt gag tta cag tat gta ttg gat aag ctg gga gat gat Lys Thr Val Leu Glu Leu Gln Tyr Val Leu Asp Lys Leu Gly Asp Asp			658
	145	150	155	160
15	gat gtg aga aca gat ctg aaa caa ggt ttg agt gga gtg cca ata ttg Asp Val Arg Thr Asp Leu Lys Gln Gly Leu Ser Gly Val Pro Ile Leu			706
	165	170	175	
20	tct gag gag gag ttg tca ttg ctg gat gag ttc tac aag ctc gta gat Ser Glu Glu Glu Leu Ser Leu Leu Asp Glu Phe Tyr Lys Leu Val Asp			754
	180	185	190	
25	cct gag cgt gac atg agt tta agg tta aat gag cag tat gaa cat gcc Pro Glu Arg Asp Met Ser Leu Arg Leu Asn Glu Gln Tyr Glu His Ala			802
	195	200	205	
30	tca att cac ttg tgg gat ttg ctg gaa ggg aaa gaa aag cct gtg tgt Ser Ile His Leu Trp Asp Leu Leu Glu Gly Lys Glu Lys Pro Val Cys			850
	210	215	220	
35	gga aca acc tat aaa gct cta aag gaa att gtt gag cgt gtt ttc cag Gly Thr Thr Tyr Lys Ala Leu Lys Glu Ile Val Glu Arg Val Phe Gln			898
	225	230	235	240
40	tca aac tac ttt gat agc act cac aat cat caa aat ggg ttg tgt gag Ser Asn Tyr Phe Asp Ser Thr His Asn His Gln Asn Gly Leu Cys Glu			946
	245	250	255	
45	260	265	270	
	gag gaa gag gcg gct tca gcg ccc aca gtg gag gac cag gta gct gaa Glu Glu Glu Ala Ala Ser Ala Pro Thr Val Glu Asp Gln Val Ala Glu			994
	275	280	285	
50	gct gaa cct gag cca gcg gaa gaa tac aca gag caa agt gag gtt gaa Ala Glu Pro Glu Pro Ala Glu Glu Tyr Thr Glu Gln Ser Glu Val Glu			1042
	275	280	285	
55				

EP 2 325 648 A1

5	tca aca gag tat gtc aat agg cag ttc atg gca gaa aca cag ttc agc Ser Thr Glu Tyr Val Asn Arg Gln Phe Met Ala Glu Thr Gln Phe Ser 290	295	300	1090
10	agt ggt gag aag gag caa gtg gat gag tgg aca gtt gaa aca gtt gag Ser Gly Glu Lys Glu Gln Val Asp Glu Trp Thr Val Glu Thr Val Glu 305	310	315	320
15	gtt gta aac tca ctc cag cag caa cct cag gct gcg tcc cct tca gtc Val Val Asn Ser Leu Gln Gln Gln Pro Gln Ala Ala Ser Pro Ser Val 325	330	335	1186
20	cca gag ccc cac tct ttg act cca gtg gct cag tca gat cca ctt gtg Pro Glu Pro His Ser Leu Thr Pro Val Ala Gln Ser Asp Pro Leu Val 340	345	350	1234
25	aga agg cag cgt gta caa gat ctt atg gca caa atg caa ggg ccc tat Arg Arg Gln Arg Val Gln Asp Leu Met Ala Gln Met Gln Gly Pro Tyr 355	360	365	1282
30	aat ttc ata cag gat tca atg ttg gat ttt gaa aat cag acg ctt gat Asn Phe Ile Gln Asp Ser Met Leu Asp Phe Glu Asn Gln Thr Leu Asp 370	375	380	1330
35	cct gcc att gta tcc gca cag cct atg aac cct acc cag aac atg gat Pro Ala Ile Val Ser Ala Gln Pro Met Asn Pro Thr Gln Asn Met Asp 385	390	395	400
40	atg cct cag ctg gtt tgc cct cag gtt cat tct gaa tct aga ctt gcc Met Pro Gln Leu Val Cys Pro Gln Val His Ser Glu Ser Arg Leu Ala 405	410	415	1426
45	caa tct aat caa gtt cct gta caa cca gaa gcc aca cag gtt cct ttg Gln Ser Asn Gln Val Pro Val Gln Pro Glu Ala Thr Gln Val Pro Leu 420	425	430	1474
50	gtt tca tcc aca agt gag ggg tat aca gca tct cag ccc ttg tac cag Val Ser Ser Thr Ser Glu Gly Tyr Thr Ala Ser Gln Pro Leu Tyr Gln 435	440	445	1522
55	cca tct cat gct acg gag cag cgg ccg cag aaa gag cca atg gat cag Pro Ser His Ala Thr Glu Gln Arg Pro Gln Lys Glu Pro Met Asp Gln			1570

EP 2 325 648 A1

	450	455	460	
5	att cag gca aca ata tct ttg aat aca gac cag act aca gca tcc tca Ile Gln Ala Thr Ile Ser Leu Asn Thr Asp Gln Thr Thr Ala Ser Ser			1618
	465	470	475	480
10	tcc ctt cct gct gct tct cag cct caa gtg ttc cag gct ggg aca agt Ser Leu Pro Ala Ala Ser Gln Pro Gln Val Phe Gln Ala Gly Thr Ser			1666
	485	490	495	
15	aaa cct ttg cac agc agt gga atc aat gta aat gca gct cca ttc cag Lys Pro Leu His Ser Ser Gly Ile Asn Val Asn Ala Ala Pro Phe Gln			1714
	500	505	510	
20	tcc atg caa acg gtg ttc aat atg aat gct cca gtc cct cct gct aat Ser Met Gln Thr Val Phe Asn Met Asn Ala Pro Val Pro Pro Ala Asn			1762
	515	520	525	
25	gaa cca gaa acg tta aaa caa cag agt cag tac cag gag gcc act tat aac Glu Pro Glu Thr Leu Lys Gln Gln Ser Gln Tyr Gln Ala Thr Tyr Asn			1810
	530	535	540	
30	cag agt ttt tcc agt cag cct cac caa gtg gaa caa aca gag ctt caa Gln Ser Phe Ser Ser Gln Pro His Gln Val Glu Gln Thr Glu Leu Gln			1858
	545	550	555	560
35	caa gac caa ctg caa acg gtg gtt ggc act tac cat gga tcc cag gac Gln Asp Gln Leu Gln Thr Val Val Gly Thr Tyr His Gly Ser Gln Asp			1906
	565	570	575	
40	cag cct cat caa gtg cct ggt aac cac cag caa ccc cca cag cag aac Gln Pro His Gln Val Pro Gly Asn His Gln Gln Pro Pro Gln Gln Asn			1954
	580	585	590	
45	act ggc ttt cca cgt agc agt cag cct tat tac aac agt cgt ggg gta Thr Gly Phe Pro Arg Ser Ser Gln Pro Tyr Tyr Asn Ser Arg Gly Val			2002
	595	600	605	
50	tct cga gga ggg tct cgt ggt gcc aga ggc ttg atg aat gga tac agg Ser Arg Gly Gly Ser Arg Gly Ala Arg Gly Leu Met Asn Gly Tyr Arg			2050
	610	615	620	
55				

EP 2 325 648 A1

5	ggc cct gcc aat gga ttt aga gga gga tat gat ggt tac cgc cct tca Gly Pro Ala Asn Gly Phe Arg Gly Gly Tyr Asp Gly Tyr Arg Pro Ser 625 630 635 640	2098
10	ttc tcg aac act cca aac agt ggt tat tca cag tct cag ttc act gct Phe Ser Asn Thr Pro Asn Ser Gly Tyr Ser Gln Ser Gln Phe Thr Ala 645 650 655	2146
15	ccc cgg gac tac tct ggt tac cag cgg gat gga tat cag cag aat ttc Pro Arg Asp Tyr Ser Gly Tyr Gln Arg Asp Gly Tyr Gln Gln Asn Phe 660 665 670	2194
20	aag cga ggc tct ggg cag agt gga cca cgg gga gcc cca cga ggt cgt Lys Arg Gly Ser Gly Gln Ser Gly Pro Arg Gly Ala Pro Arg Gly Arg 675 680 685	2242
25	gga ggg ccc cca aga ccc aac aga ggg atg ccg caa atg aac act cag Gly Gly Pro Pro Arg Pro Asn Arg Gly Met Pro Gln Met Asn Thr Gln 690 695 700	2290
30	caa gtg aat taa tgtgatacac aggattatgt ttaatcgcca aaaacacact Gln Val Asn 705	2342
35	ggccagtgtta ccataatatg ttaccagaag agttattatc tatttgtct cccttcagg	2402
40	aaacttattg taaaggact gtttcatcc cataaaagaca ggactgcaat tgtcagctt acattacctg gatatggaag gaaactattt ttatctgca tttctgtcc taagcgtcat cttggcctt gcacacaata caatactcag attcctcacc cttgcttagg agtaaaacat	2462 2522 2582
45	tatatactta tgggtgata atatctccat agttagttga agtggcttg aaaaaaaatg caagattgaa ttttgacct tggataaaat ctacaatcag ccctagaact attcagtgg aattgacaaa gttaaagcat tttcttgaa aggaagatgg aaggagtgga gtgtggttta	2642 2702 2762
50	gcaaaaactgc atttcatagc tttccattt aattggagca ccgacagatt aaaagcatac caaattatgc atgggtcctt actcacacaa gtgaggctgg ctaccagcct tgacatagca	2822 2882
55		

EP 2 325 648 A1

ctcactagtc ttctggccaa acgactgtga ttaaaacaca tgtaaattgc tcttagtag 2942
5 tggatactgt gtaagacaaa gccaaattgc aaatcaggct ttgattggct cttctggaaa 3002
atatgcatca aatatggggg ataatctgga tggctgctg ctgtgctcaa tgtgaactat 3062
10 ttagatacct ttggaacact taacagttc tctgaacaat gacttacatg gggattggtc 3122
ctgtttgtca ttccctcacca taattgcatt gtcacacta atccttggat cttgctgtat 3182
15 tgttactcaa attggtaata ggtactgatg gaaatcgcta atggatggat aatcataaca 3242
cttttggtca catgtttct cctgcagcct gaaagttctt aaagaaaaag atatcaaatg 3302
20 cctgctgcta ccaccctttt aaattgctat cttagaaaaa gcaccggat gtgttttaga 3362
ttcatttccc tgtttaggg aatgacagg cagtagttc agttctgatg gcaaaacaaa 3422
25 taaaaacatg tttctaaaag ttgtatctt aaacactggt gttcaacagc tagcagctaa 3482
agtaattcaa cccatgcatt gctagtgtca cagccttgg ttatgtctag tagctgttc 3542
30 tgaagtattt tcatttatct ttgtcaaat ttaaccctgt ttgaattctc tccttcctc 3602
aaggagacac ttatgtcaa agtggattt cttgcctt ggtcataga gagtagacag 3662
35 tttggagatg gaaaggtag cagtgactt gccatatgtt ctgtgttggaa atttgtgcta 3722
gcagtttag cactagctc gcgtgcctat gaactgaatg ctgcttgc cattccattt 3782
40 tatgtcatgg agaaataatt ccacttggta acacaaaggc taagttaatg ttatttctg 3842
tacagaaatt aaattttact tttagcctt tgtaaacttt tttttttt ttccaagccg 3902
45 gtatcagcta ctcaaaacaa ttctcagata ttcatcatta gacaactggta gttttgtcg 3962
gtttttagc ctactaaaac tgctgaggct gttgaacatt ccacattcaa aagttttgtat 4022
50 gggtgggtgga taatggggaa gcttcaatgt ttatttaaa ataaataaaa taagttctt 4082
actttctca tggtagtggta tggtagtggta tattggaaagg gttatctgtt tactttgcc 4142
55

	aagactattt tgccagcacc tacacttgc tgcttaaaa gacaactacc tggatgtac	4202
5	cacaaccata tgttaattgt attttattgg gatggataaa atgttgcgg tttattggat	4262
	aatccctaga tggtgtgtta cgtgtgtaga atataattt atgatagtaa gaaagcaaaa	4322
10	ttgaagaaaa taagtttagt attgaatttg agttctgaag tgaattcagg gaatgtctca	4382
	cgtttcgggc ttctacccaa agttagggc agaagggtgtaa aagttgttt gtagttgac	4442
15	ttgtttattt tttaagttgc ttattcctt caacagcaac atatcattag ctgtcattct	4502
	accattgcag ttcttagtgag ttttaacgtc tgcattcaag actgtttaa aagcaacctc	4562
20	actggacaga gaactgctaa agtctttcc ttaagatctg agtctttttt actcagtatc	4622
	ttctataata tgcaaattgct tgtcttagagg cagaagaccc tttgtttggt caagtgtgtaa	4682
25	ttttaccaga gtacaggaa ctgatggtcc tacatgtctc ttagtgttagt aagactataa	4742
	aatctttgt acatgcacaa ttcacagtat gtttagatac cacgtgtata atgccccccc	4802
30	ctccccccagg tagcatgcca ttgatgactt tttgcttagg gccattttat taccagggcc	4862
	ttaatattcc taaaaagatg attttttttc atccttctc ctctttgat cattgtatct	4922
35	tgatattaaa aacatgaccc tccaaatgatt gtagtaaattt aacttctata gttctttgt	4982
	ctctatatgt attcatatat atgctattgt atagagactt caaggagaca tggagatgca	5042
40	tgcttattct caggttcatt cactaagggtt cttggcagac aaccagtttca taagtgcaga	5102
	atgttagttaa gcagcttcat atatgtgcca ggcaatttgc tttgttaaat tttcatctac	5162
45	ttaagggaaat aggttattgt agcttaggct gatcatacc ttcatttcaa ccttaagctc	5222
	tcaacctgca tccatccgac ttgagctatt aagtacttta gttttatcga gtataagtta	5282
50	acagaaaaaaag taaattaagc tttgccttta ctatggaa tttatataca ttctggaaaa	5342
	acttagaaac tgggttatat ttcatttagat taaattatata gaaaatgtga ttgtttatag	5402

EP 2 325 648 A1

caaaggctgt gagttgcata caccctaagg aaaactcctt aagtgcctt tgaagagaga 5462
5 agaaaacaatt ctgggtctgg tcttttaag aacaaagcta gactactgta tgtagcact 5522
gtacattaat agtctgttgt gaagctttag cagttcctg catagcctt atccttcacc 5582
10 gttggcattt gaaatagcag tatccctgat gtacttaaaa cttaaagtca gttttggta 5642
tatttatgg taagtcttaa tttcctctaa atactatatc tcttagcga gacaacctga 5702
15 aatttattag cacatttggg tatctcttgc ttggcattat ggccagtgtt aactattcag 5762
tggtgaaaaa attaccctc aagacactgg agtgacccca gatgtgtgt aagtggca 5822
20 tggttcaact gtgtggtaa tgataaatat atgacttagt cggtatgatc tgaaagact 5882
tgattgaaag ataattcagc tgacataagg atgagtgagg agtggcaaac tggataaaag 5942
25 agtcaagaga cctgtattcc agtgactcct gtttttttta agcattagca agatctgtct 6002
ggggaaactg gatagggcag ttttctcca tgtagttt ttgtctcaac atttggaagc 6062
30 tattgaaggt tttaaaatgg tttgtattgt tttttttgg ggggggggtg gccagaatag 6122
tgggtcatct aataaaactg ccatttaaaa gatcaaaaaa aaaaaaaaaa aaaaaaaaaa 6181
35
<210> 20
<211> 707
<212> PRT
40 <213> Mus musculus

<400> 20

45 Met Pro Ser Ala Thr Ser His Ser Gly Ser Gly Ser Lys Ser Ser Gly
1 5 10 15

50 Pro Pro Pro Pro Ser Gly Ser Ser Gly Ser Glu Ala Ala Ala Gly Ala
20 25 30

55

EP 2 325 648 A1

Ala Ala Pro Ala Ser Gln His Pro Ala Thr Gly Thr Gly Ala Val Gln
35 40 45

5

Thr Glu Ala Met Lys Gln Ile Leu Gly Val Ile Asp Lys Lys Leu Arg
50 55 60

10

Asn Leu Glu Lys Lys Gly Lys Leu Asp Asp Tyr Gln Glu Arg Met
65 70 75 80

15

Asn Lys Gly Glu Arg Leu Asn Gln Asp Gln Leu Asp Ala Val Ser Lys
85 90 95

20

Tyr Gln Glu Val Thr Asn Asn Leu Glu Phe Ala Lys Glu Leu Gln Arg
100 105 110

25

Ser Phe Met Ala Leu Ser Gln Asp Ile Gln Lys Thr Ile Lys Lys Thr
115 120 125

30

Ala Arg Arg Glu Gln Leu Met Arg Glu Glu Ala Glu Gln Lys Arg Leu
130 135 140

35

Lys Thr Val Leu Glu Leu Gln Tyr Val Leu Asp Lys Leu Gly Asp Asp
145 150 155 160

40

Asp Val Arg Thr Asp Leu Lys Gln Gly Leu Ser Gly Val Pro Ile Leu
165 170 175

45

Ser Glu Glu Glu Leu Ser Leu Leu Asp Glu Phe Tyr Lys Leu Val Asp
180 185 190

50

Pro Glu Arg Asp Met Ser Leu Arg Leu Asn Glu Gln Tyr Glu His Ala
195 200 205

55

5 Ser Ile His Leu Trp Asp Leu Leu Glu Gly Lys Glu Lys Pro Val Cys
210 215 220

10 Gly Thr Thr Tyr Lys Ala Leu Lys Glu Ile Val Glu Arg Val Phe Gln
225 230 235 240

15 Ser Asn Tyr Phe Asp Ser Thr His Asn His Gln Asn Gly Leu Cys Glu
245 250 255

20 Glu Glu Glu Ala Ala Ser Ala Pro Thr Val Glu Asp Gln Val Ala Glu
260 265 270

25 Ala Glu Pro Glu Pro Ala Glu Glu Tyr Thr Glu Gln Ser Glu Val Glu
275 280 285

30 Ser Thr Glu Tyr Val Asn Arg Gln Phe Met Ala Glu Thr Gln Phe Ser
290 295 300

35 Ser Gly Glu Lys Glu Gln Val Asp Glu Trp Thr Val Glu Thr Val Glu
305 310 315 320

40 Val Val Asn Ser Leu Gln Gln Pro Gln Ala Ala Ser Pro Ser Val
325 330 335

45 Pro Glu Pro His Ser Leu Thr Pro Val Ala Gln Ser Asp Pro Leu Val
340 345 350

50 Arg Arg Gln Arg Val Gln Asp Leu Met Ala Gln Met Gln Gly Pro Tyr
355 360 365

EP 2 325 648 A1

Asn Phe Ile Gln Asp Ser Met Leu Asp Phe Glu Asn Gln Thr Leu Asp
370 375 380

5

Pro Ala Ile Val Ser Ala Gln Pro Met Asn Pro Thr Gln Asn Met Asp
385 390 395 400

10

Met Pro Gln Leu Val Cys Pro Gln Val His Ser Glu Ser Arg Leu Ala
405 410 415

15

Gln Ser Asn Gln Val Pro Val Gln Pro Glu Ala Thr Gln Val Pro Leu
420 425 430

20

Val Ser Ser Thr Ser Glu Gly Tyr Thr Ala Ser Gln Pro Leu Tyr Gln
435 440 445

25

Pro Ser His Ala Thr Glu Gln Arg Pro Gln Lys Glu Pro Met Asp Gln
450 455 460

30

Ile Gln Ala Thr Ile Ser Leu Asn Thr Asp Gln Thr Thr Ala Ser Ser
465 470 475 480

35

Ser Leu Pro Ala Ala Ser Gln Pro Gln Val Phe Gln Ala Gly Thr Ser
485 490 495

40

Lys Pro Leu His Ser Ser Gly Ile Asn Val Asn Ala Ala Pro Phe Gln
500 505 510

45

Ser Met Gln Thr Val Phe Asn Met Asn Ala Pro Val Pro Pro Ala Asn
515 520 525

50

Glu Pro Glu Thr Leu Lys Gln Gln Ser Gln Tyr Gln Ala Thr Tyr Asn
530 535 540

55

5 Gln Ser Phe Ser Ser Gln Pro His Gln Val Glu Gln Thr Glu Leu Gln
545 550 555 560

10 Gln Asp Gln Leu Gln Thr Val Val Gly Thr Tyr His Gly Ser Gln Asp
565 570 575

15 Gln Pro His Gln Val Pro Gly Asn His Gln Gln Pro Pro Gln Gln Asn
580 585 590

20 Thr Gly Phe Pro Arg Ser Ser Gln Pro Tyr Tyr Asn Ser Arg Gly Val
595 600 605

25 Ser Arg Gly Gly Ser Arg Gly Ala Arg Gly Leu Met Asn Gly Tyr Arg
610 615 620

30 Gly Pro Ala Asn Gly Phe Arg Gly Gly Tyr Asp Gly Tyr Arg Pro Ser
625 630 635 640

35 Phe Ser Asn Thr Pro Asn Ser Gly Tyr Ser Gln Ser Gln Phe Thr Ala
645 650 655

40 Pro Arg Asp Tyr Ser Gly Tyr Gln Arg Asp Gly Tyr Gln Gln Asn Phe
660 665 670

45 Lys Arg Gly Ser Gly Gln Ser Gly Pro Arg Gly Ala Pro Arg Gly Arg
675 680 685

50 Gly Gly Pro Pro Arg Pro Asn Arg Gly Met Pro Gln Met Asn Thr Gln
690 695 700

Gln Val Asn

705

5

<210> 21

<211> 6141

10

<212> DNA

<213> Mus musculus

<220>

15

<221> CDS

<222> (139)..(2262)

<223>

20

<400> 21

cccacccgcgc ggcgcgttag ccgcctgccc gcccgcgc tgcgctttt gtcccgctc 60

25

tctcccccgtc cgtctcctga cttgctggtc ttgtccttcc ctcccgcttt tttcctctcc 120

25

tctcttctcg gtctaaag atg ccc tcg gcc acc agc cac agc gga agc ggc 171

Met Pro Ser Ala Thr Ser His Ser Gly Ser Gly

1 5 10

30

agc aaa tcg tcg gga ccg ccg ccg tcc ggt tcc tcc ggg agt gag 219

Ser Lys Ser Ser Gly Pro Pro Pro Pro Ser Ser Gly Ser Glu

15 20 25

35

gcg gcg gcc ggg gca gct gcg ccg gct tct cag cat ccg gca acc ggc 267

Ala Ala Ala Gly Ala Ala Ala Pro Ala Ser Gln His Pro Ala Thr Gly

30 35 40

40

acc ggc gcc gtc cag acc gag gcc atg aag cag att ctc ggc gta atc 315

Thr Gly Ala Val Gln Thr Glu Ala Met Lys Gln Ile Leu Gly Val Ile

45 50 55

45

gac aag aaa ctt cgg aac ctg gag aag aaa aag ggt aaa ctt gat gat 363

Asp Lys Lys Leu Arg Asn Leu Glu Lys Lys Lys Gly Lys Leu Asp Asp

60 65 70 75

50

tac cag gaa cga atg aat aaa ggg gaa agg ctc aat caa gac cag ctg 411

Tyr Gln Glu Arg Met Asn Lys Gly Glu Arg Leu Asn Gln Asp Gln Leu

80 85 90

55

5	gat gcc gta tct aag tac cag gaa gtc aca aat aat ttg gag ttt gca Asp Ala Val Ser Lys Tyr Gln Glu Val Thr Asn Asn Leu Glu Phe Ala 95	100	105	459	
10	aag gaa tta cag agg agt ttc atg gca tta agt caa gat att cag aaa Lys Glu Leu Gln Arg Ser Phe Met Ala Leu Ser Gln Asp Ile Gln Lys 110	115	120	507	
15	aca ata aag aag aca gca cgt cgg gaa cag ctt atg aga gaa gaa gca Thr Ile Lys Lys Thr Ala Arg Arg Glu Gln Leu Met Arg Glu Glu Ala 125	130	135	555	
20	gaa cag aag cgc tta aaa act gta ctt gag tta cag tat gta ttg gat Glu Gln Lys Arg Leu Lys Thr Val Leu Glu Leu Gln Tyr Val Leu Asp 140	145	150	155	603
25	aag ctg gga gat gat gat gtg aga aca gat ctg aaa caa ggt ttg agt Lys Leu Gly Asp Asp Asp Val Arg Thr Asp Leu Lys Gln Gly Leu Ser 160	165	170	651	
30	gga gtg cca ata ttg tct gag gag gag ttg tca ttg ctg gat gag ttc Gly Val Pro Ile Leu Ser Glu Glu Leu Ser Leu Leu Asp Glu Phe 175	180	185	699	
35	tac aag ctc gta gat cct gag cgt gac atg agt tta agg tta aat gag Tyr Lys Leu Val Asp Pro Glu Arg Asp Met Ser Leu Arg Leu Asn Glu 190	195	200	747	
40	cag tat gaa cat gcc tca att cac ttg tgg gat ttg ctg gaa ggg aaa Gln Tyr Glu His Ala Ser Ile His Leu Trp Asp Leu Leu Glu Gly Lys 205	210	215	795	
45	gaa aag cct gtg tgt gga aca acc tat aaa gct cta aag gaa att gtt Glu Lys Pro Val Cys Gly Thr Thr Tyr Lys Ala Leu Lys Glu Ile Val 220	225	230	235	843
50	gag cgt gtt ttc cag tca aac tac ttt gat agc act cac aat cat caa Glu Arg Val Phe Gln Ser Asn Tyr Phe Asp Ser Thr His Asn His Gln 240	245	250	891	
55	aat ggg ttg tgt gag gag gaa gag gcg gct tca gcg ccc aca gtg gag			939	

EP 2 325 648 A1

Asn	Gly	Leu	Cys	Glu	Glu	Glu	Ala	Ala	Ser	Ala	Pro	Thr	Val	Glu		
255				260							265					
5																
gac	cag	gta	gct	gaa	gct	gaa	cct	gag	cca	gca	gaa	gaa	tac	aca	gag	987
Asp	Gln	Val	Ala	Glu	Ala	Glu	Pro	Glu	Pro	Ala	Glu	Glu	Tyr	Thr	Glu	
270				275							280					
10																
caa	agt	gag	gtt	gaa	tca	aca	gag	tat	gtc	aat	agg	cag	ttc	atg	gca	1035
Gln	Ser	Glu	Val	Glu	Ser	Thr	Glu	Tyr	Val	Asn	Arg	Gln	Phe	Met	Ala	
285				290						295						
15																
gaa	aca	cag	ttc	agc	agt	ggt	gag	aag	gag	caa	gtg	gat	gag	tgg	aca	1083
Glu	Thr	Gln	Phe	Ser	Ser	Gly	Glu	Lys	Glu	Gln	Val	Asp	Glu	Trp	Thr	
300			305						310			315				
20																
gtt	gaa	aca	gtt	gag	gtt	gta	aac	tca	ctc	cag	cag	caa	cct	cag	gct	1131
Val	Glu	Thr	Val	Glu	Val	Val	Asn	Ser	Leu	Gln	Gln	Gln	Pro	Gln	Ala	
320			325							330						
25																
gcg	tcc	cct	tca	gtc	cca	gag	ccc	cac	tct	ttg	act	cca	gtg	gct	cag	1179
Ala	Ser	Pro	Ser	Val	Pro	Glu	Pro	His	Ser	Leu	Thr	Pro	Val	Ala	Gln	
335			340						345							
30																
tca	gat	cca	ctt	gtg	aga	agg	cag	cgt	gta	caa	gat	ctt	atg	gca	caa	1227
Ser	Asp	Pro	Leu	Val	Arg	Arg	Gln	Arg	Val	Gln	Asp	Leu	Met	Ala	Gln	
350			355						360							
35																
atg	caa	ggg	ccc	tat	aat	ttc	ata	cag	gat	tca	atg	ttg	gat	ttt	gaa	1275
Met	Gln	Gly	Pro	Tyr	Asn	Phe	Ile	Gln	Asp	Ser	Met	Leu	Asp	Phe	Glu	
365			370						375							
40																
aat	cag	acg	ctt	gat	cct	gcc	att	gta	tcc	gca	cag	cct	atg	aac	cct	1323
Asn	Gln	Thr	Leu	Asp	Pro	Ala	Ile	Val	Ser	Ala	Gln	Pro	Met	Asn	Pro	
380			385						390			395				
45																
acc	cag	aac	atg	gat	atg	cct	cag	ctg	gtt	tgc	cct	cag	gtt	cat	tct	1371
Thr	Gln	Asn	Met	Asp	Met	Pro	Gln	Leu	Val	Cys	Pro	Gln	Val	His	Ser	
400			405									410				
50																
gaa	tct	aga	ctt	gcc	caa	tct	aat	caa	gtt	cct	gta	caa	cca	gaa	gcc	1419
Glu	Ser	Arg	Leu	Ala	Gln	Ser	Asn	Gln	Val	Pro	Val	Gln	Pro	Glu	Ala	
415			420							425						
55																

5	aca cag gtt cct ttg gtt tca tcc aca agt gag ggg tat aca gca tct Thr Gln Val Pro Leu Val Ser Ser Thr Ser Glu Gly Tyr Thr Ala Ser 430	435	440	1467	
10	cag ccc ttg tac cag cca tct cat gct acg gag cag cgg ccg cag aaa Gln Pro Leu Tyr Gln Pro Ser His Ala Thr Glu Gln Arg Pro Gln Lys 445	450	455	1515	
15	gag cca atg gat cag att cag gca aca ata tct ttg aat aca gac cag Glu Pro Met Asp Gln Ile Gln Ala Thr Ile Ser Leu Asn Thr Asp Gln 460	465	470	475	1563
20	act aca gca tcc tca tcc ctt cct gct gct tct cag cct caa gtg ttc Thr Thr Ala Ser Ser Ser Leu Pro Ala Ala Ser Gln Pro Gln Val Phe 480	485	490	1611	
25	cag gct ggg aca agt aaa cct ttg cac agc agt gga atc aat gta aat Gln Ala Gly Thr Ser Lys Pro Leu His Ser Ser Gly Ile Asn Val Asn 495	500	505	1659	
30	gca gct cca ttc cag tcc atg caa acg gtg ttc aat atg aat gct cca Ala Ala Pro Phe Gln Ser Met Gln Thr Val Phe Asn Met Asn Ala Pro 510	515	520	1707	
35	gtc cct cct gct aat gaa cca gaa acg tta aaa caa cag agt cag tac Val Pro Pro Ala Asn Glu Pro Glu Thr Leu Lys Gln Gln Ser Gln Tyr 525	530	535	1755	
40	cag gcc act tat aac cag agt ttt tcc agt cag cct cac caa gtg gaa Gln Ala Thr Tyr Asn Gln Ser Phe Ser Ser Gln Pro His Gln Val Glu 540	545	550	555	1803
45	caa aca gag ctt caa caa gac caa ctg caa acg gtg gtt ggc act tac Gln Thr Glu Leu Gln Gln Asp Gln Leu Gln Thr Val Val Gly Thr Tyr 560	565	570	1851	
50	cat gga tcc cag gac cag cct cat caa gtg cct ggt aac cac cac caa His Gly Ser Gln Asp Gln Pro His Gln Val Pro Gly Asn His Gln Gln 575	580	585	1899	
55	ccc cca cag cag aac act ggc ttt cca cgt agc agt cag cct tat tac			1947	

5	Pro Pro Gln Gln Asn Thr Gly Phe Pro Arg Ser Ser Gln Pro Tyr Tyr	590	595	600	
	aac agt cgt ggg gta tct cga gga ggg tct cgt ggt gcc aga ggc ttg				1995
	Asn Ser Arg Gly Val Ser Arg Gly Gly Ser Arg Gly Ala Arg Gly Leu				
	605	610	615		
10	atg aat gga tac agg ggc cct gcc aat gga ttt aga gga gga tat gat				2043
	Met Asn Gly Tyr Arg Gly Pro Ala Asn Gly Phe Arg Gly Gly Tyr Asp				
	620	625	630	635	
15	ggt tac cgc cct tca ttc tcg aac act cca aac agt ggt tat tca cag				2091
	Gly Tyr Arg Pro Ser Phe Ser Asn Thr Pro Asn Ser Gly Tyr Ser Gln				
	640	645	650		
20	tct cag ttc act gct ccc cgg gac tac tct ggt tac cag cgg gat gga				2139
	Ser Gln Phe Thr Ala Pro Arg Asp Tyr Ser Gly Gln Arg Asp Gly				
	655	660	665		
25	tat cag cag aat ttc aag cga ggc tct ggg cag agt gga cca cgg gga				2187
	Tyr Gln Gln Asn Phe Lys Arg Gly Ser Gly Gln Ser Gly Pro Arg Gly				
	670	675	680		
30	gcc cca cga ggt cgt gga ggg ccc cca aga ccc aac aga ggg atg ccg				2235
	Ala Pro Arg Gly Arg Gly Pro Pro Arg Pro Asn Arg Gly Met Pro				
	685	690	695		
35	caa atg aac act cag caa gtg aat taa tgtgatacac aggattatgt				2282
	Gln Met Asn Thr Gln Gln Val Asn				
	700	705			
40	ttaatcgcca aaaacacact ggccagtgtta ccataatatg ttaccagaag agttattatc				2342
45	tatttgttct cccttcagg aaacttattt gaaaggact gtttcatcc cataaagaca				2402
	ggactgcaat tgtcagctt acattacctg gatatggaag gaaactatcc ttattctgca				2462
50	tgttctgtcc taagcgtcat cttgagcctt gcacacaata caatactcag attcctcacc				2522
	cttgcttagg agtaaaacat tatatactta tgggtgata atatctccat agtttagttga				2582
55	agtggcttgg aaaaaaaatg caagattgaa ttttgacct tggataaaat ctacaatcag				2642

5	ccctagaact attcagtggc aattgacaaa gttaaagcat tttcttgaa aggaagatgg	2702
10	aaggagtggc gtgtggttt gcaaaactgc atttcatacg tttccattt aattggagca	2762
15	ccgacagatt aaaagcatac caaattatgc atgggcctt actcacacaa gtgaggctgg	2822
20	ctaccagcct tgacatagca ctcactagtc ttctggccaa acgactgtga ttaaaacaca	2882
25	tgtaaattgc tcttagtag tggatactgt gtaagacaaa gccaaattgc aaatcaggct	2942
30	ttgattggct cttctggaaa atatgcata aatatggggg ataatctggc tggcgtctg	3002
35	ctgtgctcaa tgtgaactat ttagataccct ttggAACACT taacagttc tctgaacaat	3062
40	gacttacatg gggattggc ctgtttgtca ttcctcacca taattgcatt gtcatcacta	3122
45	atccttggat cttgctgtat tgttactcaa attggtaata ggtactgatg gaaatcgcta	3182
50	atggatggat aatcataaca cttttggtca catgtttct cctgcagcct gaaagttctt	3242
55	aaagaaaaag atatcaaattg cctgctgcta ccacccttt aaattgctat ctttagaaaa	3302
	gcaccggat gtgttttaga ttcatttccc tgtttaggg aatgacagg cagtagttc	3362
	agttctgatg gcaaaacaaa taaaaacatg tttctaaaag ttgtatctt aaacactgg	3422
	gttcaacagc tagcagctaa agtaattcaa cccatgcatt gctagtgtca cagccttgg	3482
	ttatgtctag tagctgtttc tgaagtattt tcatttatct ttgtcaat ttaaccctgt	3542
	ttgaattctc tccttcctc aaggagacac ttatgtcaa agtggattt cttgcctta	3602
	ggtgcataga gagtagacag ttggagatg gaaaggtag cagtgactta gccatatgtt	3662
	ctgtgttggc atttgtgcta gcagtttag cactagctt gcgtgcctat gaactgaatg	3722
	ctgcttgtcc cattccattt tatgtcatgg agaaataatt ccacttgta acacaaaggc	3782
	taagttaatg ttatttctg tacagaaatt aaatttact tttagcctt tgtaaacttt	3842
	ttttttttt ttccaagccg gtatcagctt ctcaaaacaa ttctcagata ttcatcatta	3902

5	gacaactgga gttttgctg gtttttagc ctactaaaac tgctgaggct gttgaacatt	3962
10	ccacattcaa aagtttgta ggggtggta taatgggaa gcttcaatgt ttatttaaa	4022
15	ataaaataaaa taagttcttg acttttctca tgtgtggta tggtacatca tattggaagg	4082
20	gttatctgtt tactttgcc aagactattt tgccagcacc tacacttgc tgctttaaa	4142
25	gacaactacc tgggatgtac cacaaccata tgtaattgt attttattgg gatggataaa	4202
30	atgtttgtgg tttattggat aatccctaga tgggtgtta cgtgtgtaga atataatttt	4262
35	atgatagtaa gaaagcaaaa ttgaagaaaa taagtttagt attgaatttgc agttctgaag	4322
40	tgaattcagg gaatgtctca cgttcgggc ttctacccaa agttagggc agaagggtgt	4382
45	aaagttgttt gtagtttgac ttgttttattt tttaagttgc ttattccctt caacagcaac	4442
50	atatcattag ctgtcattct accattgcag ttctagtgag ttttaacgtc tgcattcaag	4502
55	actgttttaa aagcaacctc actggacaga gaactgctaa agtctttcc ttaagatctg	4562
	agtctttgtt actcagtatc ttctataata tgcataatgct tgtctagagg cagaagac	4622
	tttgggggtt caagtgtgtt ttttaccaga gtacaggaa ctgatggtcc tacatgtctc	4682
	ttagtgttagt aagactataa aatctttgtt acatgcacaa ttcacagtat gtttagatac	4742
	cacgtgtata atgccccccc ctcccccagg tagcatgccat ttgatgactt ttgcttagg	4802
	gccattttat taccaggccc ttaatattcc taaaaagatg attttttttc atccttctc	4862
	ctctttgtat cattgtatct tgatattaaa aacatgaccc tccaaatgattt gtagtaaattt	4922
	aacttctata gttctttgtt ctctatatgtt attcatatat atgctattgtt atagagactt	4982
	caaggagaca tggagatgca tgcttattctt caggttcattt cactaagggtt cttggcagac	5042
	aaccaggtttca taagtgcaga atgttagttaa gcagcttcat atatgtgccat ggcaattttgt	5102
	tttggtaat tttcatctac ttaaggaaat agggtattgtt agcttaggctt gatcatacc	5162

5	ttcatttcaa ccttaagctc tcaacctgca tccatccgac ttgagctatt aagtacttta	5222
10	gttttatcga gtataagtta acagaaaaaag taaattaagc tttgccttta ctatttgaa	5282
15	tttatataca ttctggaaaa acttagaaac tgggttat ttcatttagat taaattatat	5342
20	gaaaatgtga ttgttatag caaagcctgt gagttgcata caccctaagg aaaactcctt	5402
25	aagtgcctt tgaagagaga agaaacaatt ctgggtctgg tcttttaag aacaaagcta	5462
30	gactactgtta tggtagact gtacattaat agtctgttg gaagcttgag cagttcctg	5522
35	catagcctt atccctcacc gttggcattt gaaatagcag tatccctgat gtacttaaaa	5582
40	cttaaagtca ggtttggta tatttatttgc taagtcttaa tttcctctaa atactatatc	5642
45	tcttagcga gacaacctga aatttatttgc cacatttggg tatctcttgc ttggcatttt	5702
50	ggccagtggtt aactattcag tggtaaaaaa attaccctc aagacactgg agtgaccctt	5762
55	gatgtgtgtt gtaagtggca tggttcaact gtgtggttaa tgataaatat atgacttagt	5822
	cggtagtgc tggaaagact tgattgaaag ataattcagc tgacataagg atgagtgg	5882
	agtggcaaaac tggataaaaag agtcaagaga cctgtattcc agtgactcct gtttgg	5942
	agcatttagca agatctgtct ggggaaactg gatagggcag tttcttcca tgtttagtt	6002
	ttgtctcaac atttggaaagc tattgaaggt tttaaaatgg tttgtattgt tttttttgg	6062
	gggggggggtg gccagaatag tgggtcatct aataaaactg ccatttaaaa gatcaaaaaa	6122
	aaaaaaaaaaaa aaaaaaaaaa	6141
	<210> 22	
	<211> 707	
	<212> PRT	
	<213> Mus musculus	
	<400> 22	

Met Pro Ser Ala Thr Ser His Ser Gly Ser Gly Ser Lys Ser Ser Gly
5 1 5 10 15

Pro Pro Pro Pro Ser Gly Ser Ser Gly Ser Glu Ala Ala Ala Gly Ala
10 20 25 30

Ala Ala Pro Ala Ser Gln His Pro Ala Thr Gly Thr Gly Ala Val Gln
15 35 40 45

Thr Glu Ala Met Lys Gln Ile Leu Gly Val Ile Asp Lys Lys Leu Arg
20 50 55 60

Asn Leu Glu Lys Lys Gly Lys Leu Asp Asp Tyr Gln Glu Arg Met
25 65 70 75 80

Asn Lys Gly Glu Arg Leu Asn Gln Asp Gln Leu Asp Ala Val Ser Lys
30 85 90 95

Tyr Gln Glu Val Thr Asn Asn Leu Glu Phe Ala Lys Glu Leu Gln Arg
35 100 105 110

Ser Phe Met Ala Leu Ser Gln Asp Ile Gln Lys Thr Ile Lys Lys Thr
40 115 120 125

Ala Arg Arg Glu Gln Leu Met Arg Glu Glu Ala Glu Gln Lys Arg Leu
45 130 135 140

Lys Thr Val Leu Glu Leu Gln Tyr Val Leu Asp Lys Leu Gly Asp Asp
50 145 150 155 160

Asp Val Arg Thr Asp Leu Lys Gln Gly Leu Ser Gly Val Pro Ile Leu
55

EP 2 325 648 A1

	165	170	175
5	Ser Glu Glu Glu Leu Ser Leu Leu Asp Glu Phe Tyr Lys Leu Val Asp		
	180	185	190
10	Pro Glu Arg Asp Met Ser Leu Arg Leu Asn Glu Gln Tyr Glu His Ala		
	195	200	205
15	Ser Ile His Leu Trp Asp Leu Leu Glu Gly Lys Glu Lys Pro Val Cys		
	210	215	220
20	Gly Thr Thr Tyr Lys Ala Leu Lys Glu Ile Val Glu Arg Val Phe Gln		
	225	230	235
	240		
25	Ser Asn Tyr Phe Asp Ser Thr His Asn His Gln Asn Gly Leu Cys Glu		
	245	250	255
30	Glu Glu Glu Ala Ala Ser Ala Pro Thr Val Glu Asp Gln Val Ala Glu		
	260	265	270
35	Ala Glu Pro Glu Pro Ala Glu Glu Tyr Thr Glu Gln Ser Glu Val Glu		
	275	280	285
40	Ser Thr Glu Tyr Val Asn Arg Gln Phe Met Ala Glu Thr Gln Phe Ser		
	290	295	300
45	Ser Gly Glu Lys Glu Gln Val Asp Glu Trp Thr Val Glu Thr Val Glu		
	305	310	315
	320		
50	Val Val Asn Ser Leu Gln Gln Gln Pro Gln Ala Ala Ser Pro Ser Val		
	325	330	335

Pro Glu Pro His Ser Leu Thr Pro Val Ala Gln Ser Asp Pro Leu Val
5 340 345 350

Arg Arg Gln Arg Val Gln Asp Leu Met Ala Gln Met Gln Gly Pro Tyr
10 355 360 365

Asn Phe Ile Gln Asp Ser Met Leu Asp Phe Glu Asn Gln Thr Leu Asp
15 370 375 380

Pro Ala Ile Val Ser Ala Gln Pro Met Asn Pro Thr Gln Asn Met Asp
20 385 390 395 400

Met Pro Gln Leu Val Cys Pro Gln Val His Ser Glu Ser Arg Leu Ala
25 405 410 415

Gln Ser Asn Gln Val Pro Val Gln Pro Glu Ala Thr Gln Val Pro Leu
30 420 425 430

Val Ser Ser Thr Ser Glu Gly Tyr Thr Ala Ser Gln Pro Leu Tyr Gln
35 435 440 445

Pro Ser His Ala Thr Glu Gln Arg Pro Gln Lys Glu Pro Met Asp Gln
40 450 455 460

Ile Gln Ala Thr Ile Ser Leu Asn Thr Asp Gln Thr Thr Ala Ser Ser
45 465 470 475 480

Ser Leu Pro Ala Ala Ser Gln Pro Gln Val Phe Gln Ala Gly Thr Ser
50 485 490 495

Lys Pro Leu His Ser Ser Gly Ile Asn Val Asn Ala Ala Pro Phe Gln
55

EP 2 325 648 A1

	500	505	510
5	Ser Met Gln Thr Val Phe Asn Met Asn Ala Pro Val Pro Pro Ala Asn		
	515	520	525
10	Glu Pro Glu Thr Leu Lys Gln Gln Ser Gln Tyr Gln Ala Thr Tyr Asn		
	530	535	540
15	Gln Ser Phe Ser Ser Gln Pro His Gln Val Glu Gln Thr Glu Leu Gln		
	545	550	555
	560		
20	Gln Asp Gln Leu Gln Thr Val Val Gly Thr Tyr His Gly Ser Gln Asp		
	565	570	575
25	Gln Pro His Gln Val Pro Gly Asn His Gln Gln Pro Pro Gln Gln Asn		
	580	585	590
30	Thr Gly Phe Pro Arg Ser Ser Gln Pro Tyr Tyr Asn Ser Arg Gly Val		
	595	600	605
35	Ser Arg Gly Gly Ser Arg Gly Ala Arg Gly Leu Met Asn Gly Tyr Arg		
	610	615	620
40	Gly Pro Ala Asn Gly Phe Arg Gly Gly Tyr Asp Gly Tyr Arg Pro Ser		
	625	630	635
	640		
45	Phe Ser Asn Thr Pro Asn Ser Gly Tyr Ser Gln Ser Gln Phe Thr Ala		
	645	650	655
50	Pro Arg Asp Tyr Ser Gly Tyr Gln Arg Asp Gly Tyr Gln Gln Asn Phe		
	660	665	670

55

Lys Arg Gly Ser Gly Gln Ser Gly Pro Arg Gly Ala Pro Arg Gly Arg
 5 675 680 685

Gly Gly Pro Pro Arg Pro Asn Arg Gly Met Pro Gln Met Asn Thr Gln
 10 690 695 700

Gln Val Asn
 15 705

<210> 23
 20 <211> 6114
 <212> DNA
 <213> *Mus musculus*

25 <220>
 <221> CDS
 <222> (139)..(2235)
 <223>

30 <400> 23
 cccaccgcgc ggcgcgttag ccgcctgccc gccccccgc tgcgctttt gtcccgctc 60

35 tctcccccgtc cgttcctga cttgctggtc ttgtccttcc ctcccgctttt tttcctctcc 120

tctttctcg gtctaaag atg ccc tcg gcc acc agc cac agc gga agc ggc 171
 40 Met Pro Ser Ala Thr Ser His Ser Gly Ser Gly
 1 5 10

agc aaa tcg tcg gga ccg ccg ccg tcc ggt tcc tcc ggg agt gag 219
 Ser Lys Ser Ser Gly Pro Pro Pro Ser Gly Ser Ser Gly Ser Glu
 45 15 20 25

gcg gcg gcc ggg gca gct gcg ccg gct tct cag cat ccg gca acc ggc 267
 Ala Ala Ala Gly Ala Ala Ala Pro Ala Ser Gln His Pro Ala Thr Gly
 50 30 35 40

acc ggc gcc gtc cag acc gag gcc atg aag cag att ctc ggc gta atc 315
 Thr Gly Ala Val Gln Thr Glu Ala Met Lys Gln Ile Leu Gly Val Ile
 55

EP 2 325 648 A1

	45	50	55	
5	gac aag aaa ctt cgg aac ctg gag aag aaa aag ggt aaa ctt gat gat			363
	Asp Lys Lys Leu Arg Asn Leu Glu Lys Lys Lys Gly Lys Leu Asp Asp			
60	65	70	75	
10	tac cag gaa cga atg aat aaa ggg gaa agg ctc aat caa gac cag ctg			411
	Tyr Gln Glu Arg Met Asn Lys Gly Glu Arg Leu Asn Gln Asp Gln Leu			
	80	85	90	
15	gat gcc gta tct aag tac cag gaa gtc aca aat aat ttg gag ttt gca			459
	Asp Ala Val Ser Lys Tyr Gln Glu Val Thr Asn Asn Leu Glu Phe Ala			
	95	100	105	
20	aag gaa tta cag agg agt ttc atg gca tta agt caa gat att cag aaa			507
	Lys Glu Leu Gln Arg Ser Phe Met Ala Leu Ser Gln Asp Ile Gln Lys			
	110	115	120	
25	aca ata aag aag aca gca cgt cgg gaa cag ctt atg aga gaa gaa gca			555
	Thr Ile Lys Lys Thr Ala Arg Arg Glu Gln Leu Met Arg Glu Glu Ala			
	125	130	135	
30	gaa cag aag cgc tta aaa act gta ctt gag tta cag tat gta ttg gat			603
	Glu Gln Lys Arg Leu Lys Thr Val Leu Glu Leu Gln Tyr Val Leu Asp			
	140	145	150	155
35	aag ctg gga gat gat gtg aga aca gat ctg aaa caa ggt ttg agt			651
	Lys Leu Gly Asp Asp Asp Val Arg Thr Asp Leu Lys Gln Gly Leu Ser			
	160	165	170	
40	gga gtg cca ata ttg tct gag gag ttg tca ttg ctg gat gag ttc			699
	Gly Val Pro Ile Leu Ser Glu Glu Leu Ser Leu Leu Asp Glu Phe			
	175	180	185	
45	tac aag ctc gta gat cct gag cgt gac atg agt tta agg tta aat gag			747
	Tyr Lys Leu Val Asp Pro Glu Arg Asp Met Ser Leu Arg Leu Asn Glu			
	190	195	200	
50	cag tat gaa cat gcc tca att cac ttg tgg gat ttg ctg gaa ggg aaa			795
	Gln Tyr Glu His Ala Ser Ile His Leu Trp Asp Leu Leu Glu Gly Lys			
	205	210	215	
55				

EP 2 325 648 A1

5	gaa aag cct gtg tgt gga aca acc tat aaa gct cta aag gaa att gtt Glu Lys Pro Val Cys Gly Thr Thr Tyr Lys Ala Leu Lys Glu Ile Val 220 225 230 235	843
10	gag cgt gtt ttc cag tca aac tac ttt gat agc act cac aat cat caa Glu Arg Val Phe Gln Ser Asn Tyr Phe Asp Ser Thr His Asn His Gln 240 245 250	891
15	aat ggg ttg tgt gag gag gaa gag gcg gct tca gcg ccc aca gtg gag Asn Gly Leu Cys Glu Glu Glu Ala Ala Ser Ala Pro Thr Val Glu 255 260 265	939
20	gac cag gta gct gaa gct gaa cct gag cca gcg gaa gaa tac aca gag Asp Gln Val Ala Glu Ala Glu Pro Glu Pro Ala Glu Glu Tyr Thr Glu 270 275 280	987
25	caa agt gag gtt gaa tca aca gag tat gtc aat agg cag ttc atg gca Gln Ser Glu Val Glu Ser Thr Glu Tyr Val Asn Arg Gln Phe Met Ala 285 290 295	1035
30	gaa aca cag ttc agc agt ggt gag aag gag caa gtg gat gag tgg aca Glu Thr Gln Phe Ser Ser Gly Glu Lys Glu Gln Val Asp Glu Trp Thr 300 305 310 315	1083
35	gtt gaa aca gtt gag gtt gta aac tca ctc cag cag caa cct cag gct Val Glu Thr Val Glu Val Val Asn Ser Leu Gln Gln Pro Gln Ala 320 325 330	1131
40	gcg tcc cct tca gtc cca gag ccc cac tct ttg act cca gtg gct cag Ala Ser Pro Ser Val Pro Glu Pro His Ser Leu Thr Pro Val Ala Gln 335 340 345	1179
45	tca gat cca ctt gtg aga agg cag cgt gta caa gat ctt atg gca caa Ser Asp Pro Leu Val Arg Arg Gln Arg Val Gln Asp Leu Met Ala Gln 350 355 360	1227
50	atg caa ggg ccc tat aat ttc ata cag acg ctt gat cct gcc att gta Met Gln Gly Pro Tyr Asn Phe Ile Gln Thr Leu Asp Pro Ala Ile Val 365 370 375	1275
55	tcc gca cag cct atg aac cct acc cag aac atg gat atg cct cag ctg Ser Ala Gln Pro Met Asn Pro Thr Gln Asn Met Asp Met Pro Gln Leu	1323

EP 2 325 648 A1

	380	385	390	395		
5	gtt tgc cct cag gtt cat tct gaa tct aga ctt gcc caa tct aat caa Val Cys Pro Gln Val His Ser Glu Ser Arg Leu Ala Gln Ser Asn Gln	400	405	410	1371	
10	gtt cct gta caa cca gaa gcc aca cag gtt cct ttg gtt tca tcc aca Val Pro Val Gln Pro Glu Ala Thr Gln Val Pro Leu Val Ser Ser Thr	415	420	425	1419	
15	agt gag ggg tat aca gca tct cag ccc ttg tac cag cca tct cat gct Ser Glu Gly Tyr Thr Ala Ser Gln Pro Leu Tyr Gln Pro Ser His Ala	430	435	440	1467	
20	acg gag cag cgg ccg cag aaa gag cca atg gat cag att cag gca aca Thr Glu Gln Arg Pro Gln Lys Glu Pro Met Asp Gln Ile Gln Ala Thr	445	450	455	1515	
25	ata tct ttg aat aca gac cag act aca gca tcc tca tcc ctt cct gct Ile Ser Leu Asn Thr Asp Gln Thr Ala Ser Ser Ser Leu Pro Ala	460	465	470	475	1563
30	gct tct cag cct caa gtg ttc cag gct ggg aca agt aaa cct ttg cac Ala Ser Gln Pro Gln Val Phe Gln Ala Gly Thr Ser Lys Pro Leu His	480	485	490	1611	
35	agc agt gga atc aat gta aat gca gct cca ttc cag tcc atg caa acg Ser Ser Gly Ile Asn Val Asn Ala Ala Pro Phe Gln Ser Met Gln Thr	495	500	505	1659	
40	gtg ttc aat atg aat gct cca gtc cct cct gct aat gaa cca gaa acg Val Phe Asn Met Asn Ala Pro Val Pro Pro Ala Asn Glu Pro Glu Thr	510	515	520	1707	
45	tta aaa caa cag agt cag tac cag gcc act tat aac cag agt ttt tcc Leu Lys Gln Gln Ser Gln Tyr Gln Ala Thr Tyr Asn Gln Ser Phe Ser	525	530	535	1755	
50	agt cag cct cac caa gtg gaa caa aca gag ctt caa caa gac caa ctg Ser Gln Pro His Gln Val Glu Gln Thr Glu Leu Gln Gln Asp Gln Leu	540	545	550	555	1803
55						

EP 2 325 648 A1

5	caa acg gtg gtt ggc act tac cat gga tcc cag gac cag cct cat caa Gln Thr Val Val Gly Thr Tyr His Gly Ser Gln Asp Gln Pro His Gln	560	565	570	1851	
10	gtg cct ggt aac cac cag caa ccc cca cag cag aac act ggc ttt cca Val Pro Gly Asn His Gln Gln Pro Pro Gln Gln Asn Thr Gly Phe Pro	575	580	585	1899	
15	cgt agc agt cag cct tat tac aac agt cgt ggg gta tct cga gga ggg Arg Ser Ser Gln Pro Tyr Tyr Asn Ser Arg Gly Val Ser Arg Gly Gly	590	595	600	1947	
20	tct cgt ggt gcc aga ggc ttg atg aat gga tac agg ggc cct gcc aat Ser Arg Gly Ala Arg Gly Leu Met Asn Gly Tyr Arg Gly Pro Ala Asn	605	610	615	1995	
25	gga ttt aga gga gga tat gat ggt tac cgc cct tca ttc tcg aac act Gly Phe Arg Gly Gly Tyr Asp Gly Tyr Arg Pro Ser Phe Ser Asn Thr	620	625	630	635	2043
30	cca aac agt ggt tat tca cag tct cag ttc act gct ccc cgg gac tac Pro Asn Ser Gly Tyr Ser Gln Ser Gln Phe Thr Ala Pro Arg Asp Tyr	640	645	650	2091	
35	tct ggt tac cag cgg gat gga tat cag cag aat ttc aag cga ggc tct Ser Gly Tyr Gln Arg Asp Gly Tyr Gln Gln Asn Phe Lys Arg Gly Ser	655	660	665	2139	
40	ggg cag agt gga cca cgg gga gcc cca cga ggt cgt gga ggg ccc cca Gly Gln Ser Gly Pro Arg Gly Ala Pro Arg Gly Arg Gly Pro Pro	670	675	680	2187	
45	aga ccc aac aga ggg atg ccg caa atg aac act cag caa gtg aat taa Arg Pro Asn Arg Gly Met Pro Gln Met Asn Thr Gln Gln Val Asn	685	690	695	2235	
50	tgtgatacac aggattatgt ttaatcgcca aaaacacact ggccagtgtta ccataatatg				2295	
	ttaccagaag agttattatc tatttgttct cccttcagg aaacttattg taaagggact				2355	
55	gttttcatcc cataaagaca ggactgcaat tgtcagctt acattacctg gatatggaag				2415	

EP 2 325 648 A1

gaaaactattt ttattctgca tttctgtcc taagcgtcat cttgagcctt gcacacaata 2475
5 caatactcg attcctcacc cttgcttagg agtaaaaacat tataactta tgggtgata 2535
atatctccat agttagttga agtggcttgg aaaaaaaatg caagattgaa ttttgacct 2595
10 tggataaaat ctacaatcg ccctagaact attcagtggt aattgacaaa gttaaagcat 2655
tttcttgaa aggaagatgg aaggagtgg a gtgtggttt gcaaaactgc atttcatagc 2715
15 ttcccatta aattggagca ccgacagatt aaaagcatac caaattatgc atgggtcctt 2775
actcacacaa gtgaggctgg ctaccagcct tgacatagca ctcactagtc ttctggccaa 2835
20 acgactgtga taaaacaca tggtaattgc tcttagtag tggatactgt gtaagacaaa 2895
gccaattgc aaatcaggct ttgattggct cttctggaaa atatgcata aatatgggg 2955
25 ataatctgga tgggctgctg ctgtgctcaa tgtgaactat ttagatacct ttggaacact 3015
taacagttc tctgaacaat gacttacatg gggattggc ctgttgtca ttcctcacca 3075
30 taattgcatt gtcataacta atccttggat cttgctgtat tgtaactcaa attggtata 3135
ggtaactgatg gaaatcgcta atggatggat aatcataaca ctttggtca catgtttct 3195
35 cctgcagcct gaaagttctt aaagaaaaag atatcaaatg cctgctgcta ccacccttt 3255
aaattgctat ctttagaaaa gcaccggat gtgttttaga ttcatttccc tggttttaggg 3315
40 aaatgacagg cagtagttc agttctgatg gcaaaacaaa taaaacatg tttctaaaag 3375
ttgtatcttgg aaacactggt gttcaacagc tagcagctaa agtaattcaa cccatgcatt 3435
45 gctagtgta cagccttgg ttatgtctag tagctgttc tgaagtattt tcatttatct 3495
tttgtcaat ttaaccctgt ttgaattctc tccttcctc aaggagacac ttatgttcaa 3555
50 agtgttgatt cttgcctta ggtgcataga gagtagacag ttggagatg gaaaggtag 3615
cagtgactta gccatatgtt ctgtgttggaa atttgctgta gcagtttag cactagctct 3675
55

EP 2 325 648 A1

1 gcgtgcctat gaactgaatg ctgcttgtcc cattccattt tatgtcatgg agaaataatt 3735
5 ccacttggtt acacaaaggc taagttaatg ttatttctg tacagaaatt aaatttact 3795
10 ttttagccttt tgtaaaacttt tttttttttt ttccaagccg gtatcagcta ctcaaaacaa 3855
15 ttctcagata ttcatcatta gacaactgga gtttttgcgt gttttgttagc ctactaaaac 3915
tgctgaggct gttgaacatt ccacattcaa aagtttgtt ggggtggtaatgggaa 3975
20 gcttcaatgt ttatttaaa ataaataaaaa taagttcttgc actttctca tgtgtggta 4035
tggtacatca tatttggagg gttatctgtt tactttgcc aagactattt tgccagcacc 4095
25 tacacttgcgt tgctttaaa gacaactacc tggatgtac cacaaccata tgtaattgt 4155
attttattgg gatggataaa atgtttgtgg tttattggat aatccctaga tgggtgttta 4215
30 cgtgtgtaga atataatttt atgatagtaa gaaagcaaaa ttgaagaaaa taagtttagt 4275
attgaatttgc agttctgaag tgaattcagg gaatgtctca cgtttggc ttctacccaa 4335
35 agtgttagggc agaagggtgtt aaagttgtt gtagtttgac ttgttttattt tttaagttgc 4395
ttattccctt caacagcaac atatcattag ctgtcattct accattgcag ttctagtgag 4455
40 tttaaacgtc tgcattcaag actgttttaa aagcaacctc actggacaga gaactgctaa 4515
agtctttcc ttaagatctg agtctttgtt actcagtatc ttctataata tgcaaattgct 4575
45 tgtcttagagg cagaagacct tttgtttggt caagtgtgtt ttttaccaga gtacagggaa 4635
ctgatggtcc tacatgtctc ttagtgttagt aagactataa aatctttgt acatgcacaa 4695
50 ttcacagtat gtttagatac cacgtgtata atgccccccc ctcccccagg tagcatgcct 4755
ttgatgactt tttgcttagg gccattttat taccaggggcc ttaatattcc taaaaagatg 4815
55 attttttttc atcctttctc ctctttgat cattgtatct tggatattaa aacatgaccc 4875
tccaaatgatt gtagtaaatt aacttctata gttctttgt ctctatatgt attcatatat 4935

EP 2 325 648 A1

	atgctattgt atagagactt caaggagaca tggagatgca tgcttattct caggttcatt	4995
5	cactaagggtg cttggcagac aaccagttc taagtgcaga atgttagttaa gcagcttcat	5055
	atatgtgcca ggcaatttgc tttgttaaat tttcatctac ttaaggaaat agggtattgt	5115
10	agcttaggct gatcataccc ttcatttcaa ccttaagctc tcaacctgca tccatccgac	5175
	ttgagctatt aagtacttta gtttatcga gtataagtttta acagaaaaag taaattaagc	5235
15	tttgcctta ctatttgaa tttatataca ttctggaaaa acttagaaac tgggtatata	5295
	ttcatttagat taaattatataaaat gaaaatgtga ttgttatag caaagcctgt gagttgcata	5355
20	caccctaagg aaaactcctt aagtgcctt tgaagagaga agaaacaatt ctgggtctgg	5415
	tcttttaag aacaaagcta gactactgta tgtagcact gtacattaat agtctgtgt	5475
25	gaagcttgag cagttcctg catagcctt atccttcacc gttggcattt gaaatagcag	5535
	tatccctgat gtacttaaaa cttaaagtca gttttggta tatttatttgc taagtcttaa	5595
30	tttcctctaa atactatac tcttttagcga gacaacctga aatttatttgc cacattttgg	5655
	tatctcttgc ttggcattat ggccagtgaaacttgc tggtaaaaaa attaccctc	5715
35	aagacactgg agtgacccca gatgtgtgtt gtaagtggca tggtaact gtgtggtaa	5775
	tgataaaat atgacttagt cggtatgatc tggaaagact tgattgaaag ataattcagc	5835
40	tgacataagg atgagtgagg agtggcaaac tggataaaag agtcaagaga cctgtattcc	5895
	agtgactctt gttttgttta agcattagca agatctgtct ggggaaactg gatagggcag	5955
45	ttttcttcca tggtagttt ttgtctcaac atttggaaagc tattgaaggt tttaaaatgg	6015
	tgtgtattgt ttttttttgg ggggggggtg gccagaatag tgggtcatct aataaaactg	6075
50	ccatttaaaa gatcaaaaaaa aaaaaaaaaa aaaaaaaaaa	6114

5 <211> 698
 <212> PRT
 5 <213> *Mus musculus*

10 <400> 24

15 Met Pro Ser Ala Thr Ser His Ser Gly Ser Gly Ser Lys Ser Ser Gly
 1 5 10 15

20 Pro Pro Pro Pro Ser Gly Ser Ser Gly Ser Glu Ala Ala Ala Gly Ala
 20 25 30

25 Ala Ala Pro Ala Ser Gln His Pro Ala Thr Gly Thr Gly Ala Val Gln
 35 40 45

30 Thr Glu Ala Met Lys Gln Ile Leu Gly Val Ile Asp Lys Lys Leu Arg
 50 55 60

35 Asn Leu Glu Lys Lys Gly Lys Leu Asp Asp Tyr Gln Glu Arg Met
 65 70 75 80

40 Asn Lys Gly Glu Arg Leu Asn Gln Asp Gln Leu Asp Ala Val Ser Lys
 85 90 95

45 Tyr Gln Glu Val Thr Asn Asn Leu Glu Phe Ala Lys Glu Leu Gln Arg
 100 105 110

50 Ser Phe Met Ala Leu Ser Gln Asp Ile Gln Lys Thr Ile Lys Lys Thr
 115 120 125

55 Ala Arg Arg Glu Gln Leu Met Arg Glu Glu Ala Glu Gln Lys Arg Leu
 130 135 140

EP 2 325 648 A1

Lys Thr Val Leu Glu Leu Gln Tyr Val Leu Asp Lys Leu Gly Asp Asp
145 150 155 160

5

Asp Val Arg Thr Asp Leu Lys Gln Gly Leu Ser Gly Val Pro Ile Leu
165 170 175

10

Ser Glu Glu Glu Leu Ser Leu Leu Asp Glu Phe Tyr Lys Leu Val Asp
180 185 190

15

Pro Glu Arg Asp Met Ser Leu Arg Leu Asn Glu Gln Tyr Glu His Ala
195 200 205

20

Ser Ile His Leu Trp Asp Leu Leu Glu Gly Lys Glu Lys Pro Val Cys
210 215 220

25

Gly Thr Thr Tyr Lys Ala Leu Lys Glu Ile Val Glu Arg Val Phe Gln
225 230 235 240

30

Ser Asn Tyr Phe Asp Ser Thr His Asn His Gln Asn Gly Leu Cys Glu
245 250 255

35

Glu Glu Glu Ala Ala Ser Ala Pro Thr Val Glu Asp Gln Val Ala Glu
260 265 270

40

Ala Glu Pro Glu Pro Ala Glu Glu Tyr Thr Glu Gln Ser Glu Val Glu
275 280 285

45

Ser Thr Glu Tyr Val Asn Arg Gln Phe Met Ala Glu Thr Gln Phe Ser
290 295 300

50

Ser Gly Glu Lys Glu Gln Val Asp Glu Trp Thr Val Glu Thr Val Glu
305 310 315 320

55

5 Val Val Asn Ser Leu Gln Gln Pro Gln Ala Ala Ser Pro Ser Val
325 330 335

10 Pro Glu Pro His Ser Leu Thr Pro Val Ala Gln Ser Asp Pro Leu Val
340 345 350

15 Arg Arg Gln Arg Val Gln Asp Leu Met Ala Gln Met Gln Gly Pro Tyr
355 360 365

20 Asn Phe Ile Gln Thr Leu Asp Pro Ala Ile Val Ser Ala Gln Pro Met
370 375 380

25 Asn Pro Thr Gln Asn Met Asp Met Pro Gln Leu Val Cys Pro Gln Val
385 390 395 400

30 His Ser Glu Ser Arg Leu Ala Gln Ser Asn Gln Val Pro Val Gln Pro
405 410 415

35 Glu Ala Thr Gln Val Pro Leu Val Ser Ser Thr Ser Glu Gly Tyr Thr
420 425 430

40 Ala Ser Gln Pro Leu Tyr Gln Pro Ser His Ala Thr Glu Gln Arg Pro
435 440 445

45 Gln Lys Glu Pro Met Asp Gln Ile Gln Ala Thr Ile Ser Leu Asn Thr
450 455 460

50 Asp Gln Thr Thr Ala Ser Ser Ser Leu Pro Ala Ala Ser Gln Pro Gln
465 470 475 480

EP 2 325 648 A1

Val Phe Gln Ala Gly Thr Ser Lys Pro Leu His Ser Ser Gly Ile Asn
485 490 495

5

Val Asn Ala Ala Pro Phe Gln Ser Met Gln Thr Val Phe Asn Met Asn
500 505 510

10

Ala Pro Val Pro Pro Ala Asn Glu Pro Glu Thr Leu Lys Gln Gln Ser
515 520 525

15

Gln Tyr Gln Ala Thr Tyr Asn Gln Ser Phe Ser Ser Gln Pro His Gln
530 535 540

20

Val Glu Gln Thr Glu Leu Gln Gln Asp Gln Leu Gln Thr Val Val Gly
545 550 555 560

25

Thr Tyr His Gly Ser Gln Asp Gln Pro His Gln Val Pro Gly Asn His
565 570 575

30

Gln Gln Pro Pro Gln Gln Asn Thr Gly Phe Pro Arg Ser Ser Gln Pro
580 585 590

35

Tyr Tyr Asn Ser Arg Gly Val Ser Arg Gly Ser Arg Gly Ala Arg
595 600 605

40

Gly Leu Met Asn Gly Tyr Arg Gly Pro Ala Asn Gly Phe Arg Gly Gly
610 615 620

45

Tyr Asp Gly Tyr Arg Pro Ser Phe Ser Asn Thr Pro Asn Ser Gly Tyr
625 630 635 640

50

Ser Gln Ser Gln Phe Thr Ala Pro Arg Asp Tyr Ser Gly Tyr Gln Arg
645 650 655

55

5 Asp Gly Tyr Gln Gln Asn Phe Lys Arg Gly Ser Gly Gln Ser Gly Pro
660 665 670

10 Arg Gly Ala Pro Arg Gly Arg Gly Gly Pro Pro Arg Pro Asn Arg Gly
675 680 685

15 Met Pro Gln Met Asn Thr Gln Gln Val Asn
690 695

20 <210> 25
<211> 3548
<212> DNA
25 <213> *Mus musculus*

30 <220>
<221> CDS
<222> (179)..(2257)
<223>

35 <400> 25
gctggctggc taagtccctc ccgcgcggc tcttgcggc ctaggaggcag ctcagagccg 60
cggggacagg gcgaagcgcc ctgcgcacggc ggagcgcacg tctctgttct caacgcagca 120

40 ccacccttgc cccctcgcc tgcccactcc agacgtccag cggctccgcg cgccgcacg 178
atg ccc tcg gcc acc agc cac agc gga agc ggc agc aaa tcg tcg gga 226
Met Pro Ser Ala Thr Ser His Ser Gly Ser Gly Ser Lys Ser Ser Gly
45 1 5 10 15

45 ccg ccg ccg tcc ggt tcc tcc ggg agt gag ggc ggc gca 274
Pro Pro Pro Ser Gly Ser Ser Gly Ser Glu Ala Ala Ala Gly Ala
50 20 25 30

55 gct gcg ccg gct tct cag cat ccg gca acc ggc acc ggc gcc gtc cag 322
Ala Ala Pro Ala Ser Gln His Pro Ala Thr Gly Thr Gly Ala Val Gln
55 35 40 45

5	acc gag gcc atg aag cag att ctc ggc gta atc gac aag aaa ctt cg	370
	Thr Glu Ala Met Lys Gln Ile Leu Gly Val Ile Asp Lys Lys Leu Arg	
	50 55 60	
10	aac ctg gag aag aaa aag ggt aaa ctt gat gat tac cag gaa cga atg	418
	Asn Leu Glu Lys Lys Lys Gly Lys Leu Asp Asp Tyr Gln Glu Arg Met	
	65 70 75 80	
15	aat aaa ggg gaa agg ctc aat caa gac cag ctg gat gcc gta tct aag	466
	Asn Lys Gly Glu Arg Leu Asn Gln Asp Gln Leu Asp Ala Val Ser Lys	
	85 90 95	
20	tac cag gaa gtc aca aat aat ttg gag ttt gca aag gaa tta cag agg	514
	Tyr Gln Glu Val Thr Asn Asn Leu Glu Phe Ala Lys Glu Leu Gln Arg	
	100 105 110	
25	agt ttc atg gca tta agt caa gat att cag aaa aca ata aag aag aca	562
	Ser Phe Met Ala Leu Ser Gln Asp Ile Gln Lys Thr Ile Lys Lys Thr	
	115 120 125	
30	gca cgt cgg gaa cag ctt atg aga gaa gca gaa cag aag cgc tta	610
	Ala Arg Arg Glu Gln Leu Met Arg Glu Glu Ala Glu Gln Lys Arg Leu	
	130 135 140	
35	aaa act gta ctt gag tta cag tat gta ttg gat aag ctg gga gat gat	658
	Lys Thr Val Leu Glu Leu Gln Tyr Val Leu Asp Lys Leu Gly Asp Asp	
	145 150 155 160	
40	gat gtg aga aca gat ctg aaa caa ggt ttg agt gga gtg cca ata ttg	706
	Asp Val Arg Thr Asp Leu Lys Gln Gly Leu Ser Gly Val Pro Ile Leu	
	165 170 175	
45	tct gag gag ttg tca ttg ctg gat gag ttc tac aag ctc gta gat	754
	Ser Glu Glu Leu Ser Leu Leu Asp Glu Phe Tyr Lys Leu Val Asp	
	180 185 190	
50	cct gag cgt gac atg agt tta agg tta aat gag cag tat gaa cat gcc	802
	Pro Glu Arg Asp Met Ser Leu Arg Leu Asn Glu Gln Tyr Glu His Ala	
	195 200 205	
55	tca att cac ttg tgg gat ttg ctg gaa ggg aaa gaa aag cct gtg tgt	850

5	Ser Ile His Leu Trp Asp Leu Leu Glu Gly Lys Glu Lys Pro Val Cys 210 215 220	
10	gga aca acc tat aaa gct cta aag gaa att gtt gag cgt gtt ttc cag Gly Thr Thr Tyr Lys Ala Leu Lys Glu Ile Val Glu Arg Val Phe Gln 225 230 235 240	898
15	tca aac tac ttt gat agc act cac aat cat caa aat ggg ttg tgt gag Ser Asn Tyr Phe Asp Ser Thr His Asn His Gln Asn Gly Leu Cys Glu 245 250 255	946
20	gag gaa gag gcg gct tca gcg ccc aca gtg gag gac cag gta gct gaa Glu Glu Glu Ala Ala Ser Ala Pro Thr Val Glu Asp Gln Val Ala Glu 260 265 270	994
25	gct gaa cct gag cca gcg gaa gaa tac aca gag caa agt gag gtt gaa Ala Glu Pro Glu Pro Ala Glu Glu Tyr Thr Glu Gln Ser Glu Val Glu 275 280 285	1042
30	tca aca gag tat gtc aat agg cag ttc atg gca gaa aca cag ttc agc Ser Thr Glu Tyr Val Asn Arg Gln Phe Met Ala Glu Thr Gln Phe Ser 290 295 300	1090
35	agt ggt gag aag gag caa gtg gat gag tgg aca gtt gaa aca gtt gag Ser Gly Glu Lys Glu Gln Val Asp Glu Trp Thr Val Glu Thr Val Glu 305 310 315 320	1138
40	gtt gta aac tca ctc cag cag caa cct cag gct gcg tcc cct tca gtc Val Val Asn Ser Leu Gln Gln Pro Gln Ala Ala Ser Pro Ser Val 325 330 335	1186
45	cca gag ccc cac tct ttg act cca gtg gct cag tca gat cca ctt gtg Pro Glu Pro His Ser Leu Thr Pro Val Ala Gln Ser Asp Pro Leu Val 340 345 350	1234
50	aga agg cag cgt gta caa gat ctt atg gca caa atg caa ggg ccc tat Arg Arg Gln Arg Val Gln Asp Leu Met Ala Gln Met Gln Gly Pro Tyr 355 360 365	1282
55	aat ttc ata cag gat tca atg ttg gat ttt gaa aat cag acg ctt gat Asn Phe Ile Gln Asp Ser Met Leu Asp Phe Glu Asn Gln Thr Leu Asp 370 375 380	1330

5	cct gcc att gta tcc gca cag cct atg aac cct acc cag aac atg gat Pro Ala Ile Val Ser Ala Gln Pro Met Asn Pro Thr Gln Asn Met Asp 385	390	395	400	1378
10	atg cct cag ctg gtt tgc cct cag gtt cat tct gaa tct aga ctt gcc Met Pro Gln Leu Val Cys Pro Gln Val His Ser Glu Ser Arg Leu Ala 405	410		415	1426
15	caa tct aatcaa gtt cct gta caa cca gaa gcc aca cag gtt cct ttg Gln Ser Asn Gln Val Pro Val Gln Pro Glu Ala Thr Gln Val Pro Leu 420	425		430	1474
20	gtt tca tcc aca agt gag ggg tat aca gca tct cag ccc ttg tac cag Val Ser Ser Thr Ser Glu Gly Tyr Thr Ala Ser Gln Pro Leu Tyr Gln 435	440		445	1522
25	cca tct cat gct acg gag cag cgg ccg cag aaa gag cca atg gat cag Pro Ser His Ala Thr Glu Gln Arg Pro Gln Lys Glu Pro Met Asp Gln 450	455		460	1570
30	att cag gca aca ata tct ttg aat aca gac cag act aca gca tcc tca Ile Gln Ala Thr Ile Ser Leu Asn Thr Asp Gln Thr Ala Ser Ser 465	470	475	480	1618
35	tcc ctt cct gct tct cag cct caa gtg ttc cag gct ggg aca agt Ser Leu Pro Ala Ala Ser Gln Pro Gln Val Phe Gln Ala Gly Thr Ser 485	490		495	1666
40	aaa cct ttg cac agc agt gga atc aat gta aat gca gct cca ttc cag Lys Pro Leu His Ser Ser Gly Ile Asn Val Asn Ala Ala Pro Phe Gln 500	505		510	1714
45	tcc atg caa acg gtg ttc aat atg aat gct cca gtc cct cct gct aat Ser Met Gln Thr Val Phe Asn Met Asn Ala Pro Val Pro Ala Asn 515	520		525	1762
50	gaa cca gaa acg tta aaa caa cag agt cag tac cag gcc act tat aac Glu Pro Glu Thr Leu Lys Gln Gln Ser Gln Tyr Gln Ala Thr Tyr Asn 530	535		540	1810
55	cag agt ttt tcc agt cag cct cac caa gtg gaa caa aca gag ctt caa				1858

EP 2 325 648 A1

5	Gln Ser Phe Ser Ser Gln Pro His Gln Val Glu Gln Thr Glu Leu Gln 545 550 555 560	
10	caa gac caa ctg caa acg gtc gtt ggc act tac cat gga tcc cag gac Gln Asp Gln Leu Gln Thr Val Val Gly Thr Tyr His Gly Ser Gln Asp 565 570 575	1906
15	cag cct cat caa gtc cct ggt aac cac cag caa ccc cca cag cag aac Gln Pro His Gln Val Pro Gly Asn His Gln Gln Pro Pro Gln Gln Asn 580 585 590	1954
20	act ggc ttt cca cgt agc agt cag cct tat tac aac agt cgt ggg gta Thr Gly Phe Pro Arg Ser Ser Gln Pro Tyr Tyr Asn Ser Arg Gly Val 595 600 605	2002
25	tct cga gga ggg tct cgt ggt gcc aga ggc ttg atg aat gga tac agg Ser Arg Gly Gly Ser Arg Gly Ala Arg Gly Leu Met Asn Gly Tyr Arg 610 615 620	2050
30	ggc cct gcc aat gga ttt aga gga gga tat gat ggt tac cgc cct tca Gly Pro Ala Asn Gly Phe Arg Gly Gly Tyr Asp Gly Tyr Arg Pro Ser 625 630 635 640	2098
35	ttc tcg aac act cca aac agt ggt tat tca cag tct cag ttc act gct Phe Ser Asn Thr Pro Asn Ser Gly Tyr Ser Gln Ser Gln Phe Thr Ala 645 650 655	2146
40	ccc cgg gac tac tct ggt tac cag cgg gat gga tat cag cag aat ttc Pro Arg Asp Tyr Ser Gly Tyr Gln Arg Asp Gly Tyr Gln Gln Asn Phe 660 665 670	2194
45	aag cga ggc tct ggg cag agt gga cca cgg gga gcc cca cga ggt aat Lys Arg Gly Ser Gly Gln Ser Gly Pro Arg Gly Ala Pro Arg Gly Asn 675 680 685	2242
50	ata ttg tgg tgg tga tcctagctcc tatgtggagc ttctgttctg gccttggaaag Ile Leu Trp Trp 690	2297
55	aactgttcat agtccgcattt taggttacat gtttagaata catttatctt ttccagactt gttgctaaag attaaatgaa atgctctgtt tctaaaattt catctgaat ccaaatttt 2357 2417	

5	atttttgaat gactttccct gctgttgtct tcaaaatcag aacattttct ctgcctcaga	2477
10	aaagcgaaaa tccaactgga aatttatttt tcaggtctta aaacctgcta aatgtttta	2537
15	ggaagtacctt actgaaacctt tttgtaagac attttgaa cgagcttgcgaa catttatata	2597
20	aatttattttc cctctttgat tttgaaaca tgcattttt atttaggctg agaagccctt	2657
25	caaattggcca gataagccac agtttagct agagaaccat tttagattga cataactaat	2717
30	ctaaacttga acacttttag gaccaatgtt agtgttctaa ataccaacat atttctgtat	2777
35	tttaaacaga tctccaaat tcttaggacc ttgatgtcat taaaatttag aatgacaagc	2837
40	ttaagaggct ttagttcat ttgttttca agtaatgaaa aataatttct tacatggca	2897
45	gatagttat ttgttgaaca attacaggta gcatttcattt taatctgtat ttctaaatgg	2957
50	ttctcttattt gaaggagggtt aaagaattttt gtttcttaca gttttggct ggccatgaca	3017
55	tgtataaaat gtatattaag gaggaattttt aaagtactttt aatttgaatg ctatggca	3077
	ttgatcatta agaaagtact ttaaagcaaa agttaatgg gtcatctggg aaaaatactg	3137
	aagtatcaaa ggtatttgca tgtgaatgtt ggttatgttcc ttctatccca ctttgcata	3197
	tattctatga aagttgagtt aaatgatagc taaaatatct gttcaacag catgtaaaaa	3257
	gttattttaa ctgttacaag tcattataca attttgaatg ttctgtatgtt tcttttaac	3317
	agtttaggtt caaaggcttg ttttattttt ggtgtttttt attaattttt atagttatgtat	3377
	gtcacttcctt attgaaatgtt aagcttagctt gtacccatgtt atgtgagctc catgagagca	3437
	ggtagttttt ttgttccat tgctgtatctt attcccaacg cctcatgaca gtgcctggca	3497
	catagtaggc actcaataaaa tacttggta atgaatgaaa aaaaaaaaaa a	3548
	<210> 26	
	<211> 692	

<212> PRT

<213> Mus musculus

5

<400> 26

Met Pro Ser Ala Thr Ser His Ser Gly Ser Gly Ser Lys Ser Ser Gly
 10 1 5 10 15

Pro Pro Pro Pro Ser Gly Ser Ser Gly Ser Glu Ala Ala Ala Gly Ala
 15 20 25 30

Ala Ala Pro Ala Ser Gln His Pro Ala Thr Gly Thr Gly Ala Val Gln
 20 35 40 45

Thr Glu Ala Met Lys Gln Ile Leu Gly Val Ile Asp Lys Lys Leu Arg
 25 50 55 60

Asn Leu Glu Lys Lys Gly Lys Leu Asp Asp Tyr Gln Glu Arg Met
 30 65 70 75 80

Asn Lys Gly Glu Arg Leu Asn Gln Asp Gln Leu Asp Ala Val Ser Lys
 35 85 90 95

Tyr Gln Glu Val Thr Asn Asn Leu Glu Phe Ala Lys Glu Leu Gln Arg
 40 100 105 110

Ser Phe Met Ala Leu Ser Gln Asp Ile Gln Lys Thr Ile Lys Lys Thr
 45 115 120 125

Ala Arg Arg Glu Gln Leu Met Arg Glu Glu Ala Glu Gln Lys Arg Leu
 50 130 135 140

Lys Thr Val Leu Glu Leu Gln Tyr Val Leu Asp Lys Leu Gly Asp Asp
 55

145 150 155 160

5 Asp Val Arg Thr Asp Leu Lys Gln Gly Leu Ser Gly Val Pro Ile Leu
165 170 175

10 Ser Glu Glu Glu Leu Ser Leu Leu Asp Glu Phe Tyr Lys Leu Val Asp
180 185 190

15 Pro Glu Arg Asp Met Ser Leu Arg Leu Asn Glu Gln Tyr Glu His Ala
195 200 205

20 Ser Ile His Leu Trp Asp Leu Leu Glu Gly Lys Glu Lys Pro Val Cys
210 215 220

25 Gly Thr Thr Tyr Lys Ala Leu Lys Glu Ile Val Glu Arg Val Phe Gln
225 230 235 240

30 Ser Asn Tyr Phe Asp Ser Thr His Asn His Gln Asn Gly Leu Cys Glu
245 250 255

35 Glu Glu Glu Ala Ala Ser Ala Pro Thr Val Glu Asp Gln Val Ala Glu
260 265 270

40 Ala Glu Pro Glu Pro Ala Glu Glu Tyr Thr Glu Gln Ser Glu Val Glu
275 280 285

45 Ser Thr Glu Tyr Val Asn Arg Gln Phe Met Ala Glu Thr Gln Phe Ser
290 295 300

50 Ser Gly Glu Lys Glu Gln Val Asp Glu Trp Thr Val Glu Thr Val Glu
305 310 315 320

55

EP 2 325 648 A1

Val Val Asn Ser Leu Gln Gln Gln Pro Gln Ala Ala Ser Pro Ser Val
5 325 330 335

Pro Glu Pro His Ser Leu Thr Pro Val Ala Gln Ser Asp Pro Leu Val
10 340 345 350

Arg Arg Gln Arg Val Gln Asp Leu Met Ala Gln Met Gln Gly Pro Tyr
15 355 360 365

Asn Phe Ile Gln Asp Ser Met Leu Asp Phe Glu Asn Gln Thr Leu Asp
20 370 375 380

Pro Ala Ile Val Ser Ala Gln Pro Met Asn Pro Thr Gln Asn Met Asp
25 385 390 395 400

Met Pro Gln Leu Val Cys Pro Gln Val His Ser Glu Ser Arg Leu Ala
30 405 410 415

Gln Ser Asn Gln Val Pro Val Gln Pro Glu Ala Thr Gln Val Pro Leu
35 420 425 430

Val Ser Ser Thr Ser Glu Gly Tyr Thr Ala Ser Gln Pro Leu Tyr Gln
40 435 440 445

Pro Ser His Ala Thr Glu Gln Arg Pro Gln Lys Glu Pro Met Asp Gln
45 450 455 460

Ile Gln Ala Thr Ile Ser Leu Asn Thr Asp Gln Thr Thr Ala Ser Ser
50 465 470 475 480

Ser Leu Pro Ala Ala Ser Gln Pro Gln Val Phe Gln Ala Gly Thr Ser
55

485	490	495
5		
Lys Pro Leu His Ser Ser Gly Ile Asn Val Asn Ala Ala Pro Phe Gln		
500	505	510
10		
Ser Met Gln Thr Val Phe Asn Met Asn Ala Pro Val Pro Pro Ala Asn		
515	520	525
15		
Glu Pro Glu Thr Leu Lys Gln Gln Ser Gln Tyr Gln Ala Thr Tyr Asn		
530	535	540
20		
Gln Ser Phe Ser Ser Gln Pro His Gln Val Glu Gln Thr Glu Leu Gln		
545	550	555
560		
25		
Gln Asp Gln Leu Gln Thr Val Val Gly Thr Tyr His Gly Ser Gln Asp		
565	570	575
30		
Gln Pro His Gln Val Pro Gly Asn His Gln Gln Pro Pro Gln Gln Asn		
580	585	590
35		
Thr Gly Phe Pro Arg Ser Ser Gln Pro Tyr Tyr Asn Ser Arg Gly Val		
595	600	605
40		
Ser Arg Gly Gly Ser Arg Gly Ala Arg Gly Leu Met Asn Gly Tyr Arg		
610	615	620
45		
Gly Pro Ala Asn Gly Phe Arg Gly Gly Tyr Asp Gly Tyr Arg Pro Ser		
625	630	635
640		
50		
Phe Ser Asn Thr Pro Asn Ser Gly Tyr Ser Gln Ser Gln Phe Thr Ala		
645	650	655
55		

Pro Arg Asp Tyr Ser Gly Tyr Gln Arg Asp Gly Tyr Gln Gln Asn Phe
 5 660 665 670

 Lys Arg Gly Ser Gly Gln Ser Gly Pro Arg Gly Ala Pro Arg Gly Asn
 10 675 680 685

 Ile Leu Trp Trp
 15 690

 <210> 27
 20 <211> 3508
 <212> DNA
 <213> *Mus musculus*

 25 <220>
 <221> CDS
 <222> (139)..(2217)
 <223>
 30
 <400> 27
 cccaccgcgc ggcgcgttag ccgcctgccc gcccgcgc tgcgcttt gtcccgctc 60

 35 tctcccgctc cgttcctga cttgctggtc ttgtccttcc ctcccgcttt ttccctctcc 120

 tctttctcg gtctaaag atg ccc tcg gcc acc agc cac agc gga agc ggc 171
 Met Pro Ser Ala Thr Ser His Ser Gly Ser Gly
 40 1 5 10

 agc aaa tcg tcg gga ccg ccg ccg tcc ggt tcc tcc ggg agt gag 219
 Ser Lys Ser Ser Gly Pro Pro Pro Ser Gly Ser Ser Gly Ser Glu
 45 15 20 25

 gcg gcg gcc ggg gca gct gcg ccg gct tct cag cat ccg gca acc ggc 267
 Ala Ala Ala Gly Ala Ala Ala Pro Ala Ser Gln His Pro Ala Thr Gly
 50 30 35 40

 acc ggc gcc gtc cag acc gag gcc atg aag cag att ctc ggc gta atc 315
 Thr Gly Ala Val Gln Thr Glu Ala Met Lys Gln Ile Leu Gly Val Ile
 55

	45	50	55	
5	gac aag aaa ctt cg ^g aac ct ^g gag aag aaa aag ggt aaa ctt gat gat			363
	Asp Lys Lys Leu Arg Asn Leu Glu Lys Lys Lys Gly Lys Leu Asp Asp			
60	65	70	75	
10	tac cag gaa cga at ^g aat aaa ggg gaa agg ctc aat caa gac cag ct ^g			411
	Tyr Gln Glu Arg Met Asn Lys Gly Glu Arg Leu Asn Gln Asp Gln Leu			
	80	85	90	
15	gat gcc gta tct aag tac cag gaa gtc aca aat aat ttg gag ttt gca			459
	Asp Ala Val Ser Lys Tyr Gln Glu Val Thr Asn Asn Leu Glu Phe Ala			
	95	100	105	
20	aag gaa tta cag agg agt ttc at ^g gca tta agt caa gat att cag aaa			507
	Lys Glu Leu Gln Arg Ser Phe Met Ala Leu Ser Gln Asp Ile Gln Lys			
	110	115	120	
25	aca ata aag aag aca gca cgt cgg gaa cag ctt at ^g aga gaa gaa gca			555
	Thr Ile Lys Lys Thr Ala Arg Arg Glu Gln Leu Met Arg Glu Glu Ala			
	125	130	135	
30	gaa cag aag cgc tta aaa act gta ctt gag tta cag tat gta ttg gat			603
	Glu Gln Lys Arg Leu Lys Thr Val Leu Glu Leu Gln Tyr Val Leu Asp			
	140	145	150	155
35	aag ctg gga gat gat gat gt ^g aga aca gat ct ^g aaa caa ggt ttg agt			651
	Lys Leu Gly Asp Asp Asp Val Arg Thr Asp Leu Lys Gln Gly Leu Ser			
	160	165	170	
40	gga gt ^g cca ata ttg tct gag gag ttg tca ttg ct ^g gat gag ttc			699
	Gly Val Pro Ile Leu Ser Glu Glu Leu Ser Leu Leu Asp Glu Phe			
	175	180	185	
45	tac aag ctc gta gat cct gag cgt gac at ^g agt tta agg tta aat gag			747
	Tyr Lys Leu Val Asp Pro Glu Arg Asp Met Ser Leu Arg Leu Asn Glu			
	190	195	200	
50	cag tat gaa cat gcc tca att cac ttg tgg gat ttg ct ^g gaa ggg aaa			795
	Gln Tyr Glu His Ala Ser Ile His Leu Trp Asp Leu Leu Glu Gly Lys			
	205	210	215	
55				

EP 2 325 648 A1

5	gaa aag cct gtg tgt gga aca acc tat aaa gct cta aag gaa att gtt Glu Lys Pro Val Cys Gly Thr Thr Tyr Lys Ala Leu Lys Glu Ile Val 220 225 230 235	843
10	gag cgt gtt ttc cag tca aac tac ttt gat agc act cac aat cat caa Glu Arg Val Phe Gln Ser Asn Tyr Phe Asp Ser Thr His Asn His Gln 240 245 250	891
15	aat ggg ttg tgt gag gag gaa gag gcg gct tca gcg ccc aca gtg gag Asn Gly Leu Cys Glu Glu Glu Ala Ala Ser Ala Pro Thr Val Glu 255 260 265	939
20	gac cag gta gct gaa gct gaa cct gag cca gcg gaa gaa tac aca gag Asp Gln Val Ala Glu Ala Glu Pro Glu Pro Ala Glu Glu Tyr Thr Glu 270 275 280	987
25	caa agt gag gtt gaa tca aca gag tat gtc aat agg cag ttc atg gca Gln Ser Glu Val Glu Ser Thr Glu Tyr Val Asn Arg Gln Phe Met Ala 285 290 295	1035
30	gaa aca cag ttc agc agt ggt gag aag gag caa gtg gat gag tgg aca Glu Thr Gln Phe Ser Ser Gly Glu Lys Glu Gln Val Asp Glu Trp Thr 300 305 310 315	1083
35	gtt gaa aca gtt gag gtt gta aac tca ctc cag cag caa cct cag gct Val Glu Thr Val Glu Val Val Asn Ser Leu Gln Gln Pro Gln Ala 320 325 330	1131
40	gcg tcc cct tca gtc cca gag ccc cac tct ttg act cca gtg gct cag Ala Ser Pro Ser Val Pro Glu Pro His Ser Leu Thr Pro Val Ala Gln 335 340 345	1179
45	tca gat cca ctt gtg aga agg cag cgt gta caa gat ctt atg gca caa Ser Asp Pro Leu Val Arg Arg Gln Arg Val Gln Asp Leu Met Ala Gln 350 355 360	1227
50	atg caa ggg ccc tat aat ttc ata cag gat tca atg ttg gat ttt gaa Met Gln Gly Pro Tyr Asn Phe Ile Gln Asp Ser Met Leu Asp Phe Glu 365 370 375	1275
55	aat cag acg ctt gat cct gcc att gta tcc gca cag cct atg aac cct Asn Gln Thr Leu Asp Pro Ala Ile Val Ser Ala Gln Pro Met Asn Pro	1323

EP 2 325 648 A1

	380	385	390	395		
5	acc cag aac atg gat atg cct cag ctg gtt tgc cct cag gtt cat tct Thr Gln Asn Met Asp Met Pro Gln Leu Val Cys Pro Gln Val His Ser	400	405	410	1371	
10	gaa tct aga ctt gcc caa tct aat caa gtt cct gta caa cca gaa gcc Glu Ser Arg Leu Ala Gln Ser Asn Gln Val Pro Val Gln Pro Glu Ala	415	420	425	1419	
15	aca cag gtt cct ttg gtt tca tcc aca agt gag ggg tat aca gca tct Thr Gln Val Pro Leu Val Ser Ser Thr Ser Glu Gly Tyr Thr Ala Ser	430	435	440	1467	
20	cag ccc ttg tac cag cca tct cat gct acg gag cag cgg ccg cag aaa Gln Pro Leu Tyr Gln Pro Ser His Ala Thr Glu Gln Arg Pro Gln Lys	445	450	455	1515	
25	gag cca atg gat cag att cag gca aca ata tct ttg aat aca gac cag Glu Pro Met Asp Gln Ile Gln Ala Thr Ile Ser Leu Asn Thr Asp Gln	460	465	470	475	1563
30	act aca gca tcc tca tcc ctt cct gct gct tct cag cct caa gtg ttc Thr Thr Ala Ser Ser Leu Pro Ala Ala Ser Gln Pro Gln Val Phe	480	485	490	1611	
35	cag gct ggg aca agt aaa cct ttg cac agc agt gga atc aat gta aat Gln Ala Gly Thr Ser Lys Pro Leu His Ser Ser Gly Ile Asn Val Asn	495	500	505	1659	
40	gca gct cca ttc cag tcc atg caa acg gtg ttc aat atg aat gct cca Ala Ala Pro Phe Gln Ser Met Gln Thr Val Phe Asn Met Asn Ala Pro	510	515	520	1707	
45	gtc cct cct gct aat gaa cca gaa acg tta aaa caa cag agt cag tac Val Pro Pro Ala Asn Glu Pro Glu Thr Leu Lys Gln Gln Ser Gln Tyr	525	530	535	1755	
50	cag gcc act tat aac cag agt ttt tcc agt cag cct cac caa gtg gaa Gln Ala Thr Tyr Asn Gln Ser Phe Ser Ser Gln Pro His Gln Val Glu	540	545	550	555	1803
55						

EP 2 325 648 A1

5	caa aca gag ctt caa caa gac caa ctg caa acg gtg gtt ggc act tac Gln Thr Glu Leu Gln Gln Asp Gln Leu Gln Thr Val Val Gly Thr Tyr 560 565 570	1851
10	cat gga tcc cag gac cag cct cat caa gtg cct ggt aac cac cag caa His Gly Ser Gln Asp Gln Pro His Gln Val Pro Gly Asn His Gln Gln 575 580 585	1899
15	ccc cca cag cag aac act ggc ttt cca cgt agc agt cag cct tat tac Pro Pro Gln Gln Asn Thr Gly Phe Pro Arg Ser Ser Gln Pro Tyr Tyr 590 595 600	1947
20	aac agt cgt ggg gta tct cga gga ggg tct cgt ggt gcc aga ggc ttg Asn Ser Arg Gly Val Ser Arg Gly Ser Arg Gly Ala Arg Gly Leu 605 610 615	1995
25	atg aat gga tac agg ggc cct gcc aat gga ttt aga gga gga tat gat Met Asn Gly Tyr Arg Gly Pro Ala Asn Gly Phe Arg Gly Gly Tyr Asp 620 625 630 635	2043
30	ggt tac cgc cct tca ttc tcg aac act cca aac agt ggt tat tca cag Gly Tyr Arg Pro Ser Phe Ser Asn Thr Pro Asn Ser Gly Tyr Ser Gln 640 645 650	2091
35	tct cag ttc act gct ccc cgg gac tac tct ggt tac cag cgg gat gga Ser Gln Phe Thr Ala Pro Arg Asp Tyr Ser Gly Tyr Gln Arg Asp Gly 655 660 665	2139
40	tat cag cag aat ttc aag cga ggc tct ggg cag agt gga cca cgg gga Tyr Gln Gln Asn Phe Lys Arg Gly Ser Gly Gln Ser Gly Pro Arg Gly 670 675 680	2187
45	gcc cca cga ggt aat ata ttg tgg tgg tga tcctagctcc tatgtggagc Ala Pro Arg Gly Asn Ile Leu Trp Trp 685 690	2237
50	ttctgttctg gccttggaaag aactgttcat agtccgcatt taggttacat gtttaggaata catttatctt ttccagactt gttgctaaag attaaatgaa atgctctgtt tctaaaattt	2297 2357
55	catcttgaat ccaaattta attttgaat gactttccct gctgttgtct tcaaaatcag	2417

	aacattttct ctgcctcaga aaagcgaaaa tccaaactgga aatttatttt tcaggtctta	2477
5	aaacctgcta aatgtttta ggaagtacctt actgaaactt tttgtaaagac atttttggaa	2537
	cgagctgaa catttatata aatttattac cctcttgat tttgaaaca tgcatattat	2597
10	atttaggctg agaagccctt caaatggcca gataagccac agtttagct agagaaccat	2657
	ttagaattga cataactaat ctaaacttga acacttttag gaccaatgtt agtgttctaa	2717
15	ataccaacat atttctgatg tttaaacaga tctccaaat tcttaggacc ttgatgtcat	2777
	taaaatttag aatgacaaggc ttaagaggct ttagttcat ttgttttca agtaatgaaa	2837
20	aataatttct tacatggca gatagttat ttgttgaaca attacaggtt gcatttcatg	2897
	taatctgatg ttctaaatgg ttctcttattt gaaggaggaa aaagaattttt gtttcttaca	2957
25	gtttttggct ggccatgaca tgtataaaat gtatattaag gaggaattttt aaagtacttt	3017
	aatttgaatg ctagtggcaa ttgatcatta agaaagtactt ttaaagcaaa aggttaatgg	3077
30	gtcatctggg aaaaatactg aagtatcaaa ggtatttgcgttgtaaatgtt ggttatgtt	3137
	ttctatccca cttttagca tattctatgtt aagttgatgtt aaatgtatgc taaaatatct	3197
35	gtttcaacag catgtaaaaa gttttttaa ctgttacaag tcattataca attttgaatg	3257
	ttctgttagtt tcttttaac agtttaggtt caaaggctgtt ttttcattctt ggtgttttt	3317
40	attaattttt atagttatgtt gtcacttcctt attgaaatgtt aagcttagcgtt gtacccatgtt	3377
	atgtgagctt catgagagca ggtttttttt ttgttccatc tgctgtatctt attcccaacgtt	3437
45	cctcatgaca gtgcctggca catagtaggc actcaataaa tacttttttttta atgaatgaaa	3497
	aaaaaaaaaaa a	3508
50		
	<210> 28	
	<211> 692	
55	<212> PRT	

<213> Mus musculus

5 <400> 28

Met Pro Ser Ala Thr Ser His Ser Gly Ser Gly Ser Lys Ser Ser Gly

1 5 10 15

10

Pro Pro Pro Pro Ser Gly Ser Ser Gly Ser Glu Ala Ala Ala Gly Ala

20 25 30

15

Ala Ala Pro Ala Ser Gln His Pro Ala Thr Gly Thr Gly Ala Val Gln

35 40 45

20

Thr Glu Ala Met Lys Gln Ile Leu Gly Val Ile Asp Lys Lys Leu Arg

50 55 60

25

Asn Leu Glu Lys Lys Gly Lys Leu Asp Asp Tyr Gln Glu Arg Met

65 70 75 80

30

Asn Lys Gly Glu Arg Leu Asn Gln Asp Gln Leu Asp Ala Val Ser Lys

85 90 95

35

Tyr Gln Glu Val Thr Asn Asn Leu Glu Phe Ala Lys Glu Leu Gln Arg

100 105 110

40

Ser Phe Met Ala Leu Ser Gln Asp Ile Gln Lys Thr Ile Lys Lys Thr

115 120 125

45

Ala Arg Arg Glu Gln Leu Met Arg Glu Glu Ala Glu Gln Lys Arg Leu

130 135 140

50

Lys Thr Val Leu Glu Leu Gln Tyr Val Leu Asp Lys Leu Gly Asp Asp

145 150 155 160

55

5 Asp Val Arg Thr Asp Leu Lys Gln Gly Leu Ser Gly Val Pro Ile Leu
165 170 175

10 Ser Glu Glu Glu Leu Ser Leu Leu Asp Glu Phe Tyr Lys Leu Val Asp
180 185 190

15 Pro Glu Arg Asp Met Ser Leu Arg Leu Asn Glu Gln Tyr Glu His Ala
195 200 205

20 Ser Ile His Leu Trp Asp Leu Leu Glu Gly Lys Glu Lys Pro Val Cys
210 215 220

25 Gly Thr Thr Tyr Lys Ala Leu Lys Glu Ile Val Glu Arg Val Phe Gln
225 230 235 240

30 Ser Asn Tyr Phe Asp Ser Thr His Asn His Gln Asn Gly Leu Cys Glu
245 250 255

35 Glu Glu Glu Ala Ala Ser Ala Pro Thr Val Glu Asp Gln Val Ala Glu
260 265 270

40 Ala Glu Pro Glu Pro Ala Glu Glu Tyr Thr Glu Gln Ser Glu Val Glu
275 280 285

45 Ser Thr Glu Tyr Val Asn Arg Gln Phe Met Ala Glu Thr Gln Phe Ser
290 295 300

50 Ser Gly Glu Lys Glu Gln Val Asp Glu Trp Thr Val Glu Thr Val Glu
305 310 315 320

EP 2 325 648 A1

Val Val Asn Ser Leu Gln Gln Gln Pro Gln Ala Ala Ser Pro Ser Val
325 330 335

5

Pro Glu Pro His Ser Leu Thr Pro Val Ala Gln Ser Asp Pro Leu Val
340 345 350

10

Arg Arg Gln Arg Val Gln Asp Leu Met Ala Gln Met Gln Gly Pro Tyr
355 360 365

15

Asn Phe Ile Gln Asp Ser Met Leu Asp Phe Glu Asn Gln Thr Leu Asp
370 375 380

20

Pro Ala Ile Val Ser Ala Gln Pro Met Asn Pro Thr Gln Asn Met Asp
385 390 395 400

25

Met Pro Gln Leu Val Cys Pro Gln Val His Ser Glu Ser Arg Leu Ala
405 410 415

30

Gln Ser Asn Gln Val Pro Val Gln Pro Glu Ala Thr Gln Val Pro Leu
420 425 430

35

Val Ser Ser Thr Ser Glu Gly Tyr Thr Ala Ser Gln Pro Leu Tyr Gln
435 440 445

40

Pro Ser His Ala Thr Glu Gln Arg Pro Gln Lys Glu Pro Met Asp Gln
450 455 460

45

Ile Gln Ala Thr Ile Ser Leu Asn Thr Asp Gln Thr Thr Ala Ser Ser
465 470 475 480

50

Ser Leu Pro Ala Ala Ser Gln Pro Gln Val Phe Gln Ala Gly Thr Ser
485 490 495

55

5 Lys Pro Leu His Ser Ser Gly Ile Asn Val Asn Ala Ala Pro Phe Gln
 500 505 510

10 Ser Met Gln Thr Val Phe Asn Met Asn Ala Pro Val Pro Pro Ala Asn
 515 520 525

15 Glu Pro Glu Thr Leu Lys Gln Gln Ser Gln Tyr Gln Ala Thr Tyr Asn
 530 535 540

20 Gln Ser Phe Ser Ser Gln Pro His Gln Val Glu Gln Thr Glu Leu Gln
 545 550 555 560

25 Gln Asp Gln Leu Gln Thr Val Val Gly Thr Tyr His Gly Ser Gln Asp
 565 570 575

30 Gln Pro His Gln Val Pro Gly Asn His Gln Gln Pro Pro Gln Gln Asn
 580 585 590

35 Thr Gly Phe Pro Arg Ser Ser Gln Pro Tyr Tyr Asn Ser Arg Gly Val
 595 600 605

40 Ser Arg Gly Gly Ser Arg Gly Ala Arg Gly Leu Met Asn Gly Tyr Arg
 610 615 620

45 Gly Pro Ala Asn Gly Phe Arg Gly Gly Tyr Asp Gly Tyr Arg Pro Ser
 625 630 635 640

50 Phe Ser Asn Thr Pro Asn Ser Gly Tyr Ser Gln Ser Gln Phe Thr Ala
 645 650 655

Pro Arg Asp Tyr Ser Gly Tyr Gln Arg Asp Gly Tyr Gln Gln Asn Phe
 660 665 670
 5

Lys Arg Gly Ser Gly Gln Ser Gly Pro Arg Gly Ala Pro Arg Gly Asn
 675 680 685
 10

Ile Leu Trp Trp
 690
 15

<210> 29
 <211> 2109
 20 <212> DNA
 <213> Gallus gallus

<220>
 25 <221> CDS
 <222> (1).. (2109)
 <223>

30 <400> 29
 atg ccc tcg gct acc aac ggc acc atg gcg agc agc agc ggg aag gcg 48
 Met Pro Ser Ala Thr Asn Gly Thr Met Ala Ser Ser Ser Gly Lys Ala
 1 5 10 15
 35 ggc ccg ggc ggc aac gag cag gcc ccg gcg gca gcg gcg gcc ccg 96
 Gly Pro Gly Gly Asn Glu Gln Ala Pro Ala Ala Ala Ala Ala Pro
 20 25 30

40 cag gcg tcg ggc ggc agc atc acc tcg gtt cag acc gag gcc atg aag 144
 Gln Ala Ser Gly Gly Ser Ile Thr Ser Val Gln Thr Glu Ala Met Lys
 35 40 45

45 cag atc ttg gga gtg atc gac aaa aag ctc cgc aac ctc gag aag aaa 192
 Gln Ile Leu Gly Val Ile Asp Lys Lys Leu Arg Asn Leu Glu Lys Lys
 50 55 60

55 aag agc aaa ctt gac gat tac cag gaa cga atg aac aag ggg gaa cgt 240
 Lys Ser Lys Leu Asp Asp Tyr Gln Glu Arg Met Asn Lys Gly Glu Arg
 65 70 75 80

5	cta aat caa gat caa ctg gat gca gtg tca aaa tac cag gaa gtg aca Leu Asn Gln Asp Gln Leu Asp Ala Val Ser Lys Tyr Gln Glu Val Thr 85	90	95	288	
10	aat aac ctg gaa ttc gct aaa gaa ctg cag agg agc ttt atg gca ctg Asn Asn Leu Glu Phe Ala Lys Glu Leu Gln Arg Ser Phe Met Ala Leu 100	105	110	336	
15	agc caa gat atc cag aaa aca ata aaa aag acg gct cgc agg gag cag Ser Gln Asp Ile Gln Lys Thr Ile Lys Lys Thr Ala Arg Arg Glu Gln 115	120	125	384	
20	ctg atg aga gaa gag gct gag cag aag cgt tta aag act gtg cta gag Leu Met Arg Glu Glu Ala Glu Gln Lys Arg Leu Lys Thr Val Leu Glu 130	135	140	432	
25	ctg cag ttc att ttg gac aag ttg ggt gac gat gaa gtg cgc agt gac Leu Gln Phe Ile Leu Asp Lys Leu Gly Asp Asp Glu Val Arg Ser Asp 145	150	155	160	480
30	ttg aaa caa gga tca aat gga gta ccg gta ctg aca gag gag gaa ctg Leu Lys Gln Gly Ser Asn Gly Val Pro Val Leu Thr Glu Glu Leu 165	170	175	528	
35	aca atg ctg gat gaa ttt tac aag cta gtt tac cct gaa agg gac atg Thr Met Leu Asp Glu Phe Tyr Lys Leu Val Tyr Pro Glu Arg Asp Met 180	185	190	576	
40	aac atg agg ttg aat gag cag tat gag caa gca tct gtt cac ctg tgg Asn Met Arg Leu Asn Glu Gln Tyr Glu Gln Ala Ser Val His Leu Trp 195	200	205	624	
45	gac tta ctg gaa ggg aag gaa aaa ccc gtt tgt gga aca acc tat aaa Asp Leu Leu Glu Gly Lys Glu Lys Pro Val Cys Gly Thr Thr Tyr Lys 210	215	220	672	
50	gcc ctg aag gag gtt gtt gaa cgt att ctt caa act agt tac ttt gat Ala Leu Lys Glu Val Val Glu Arg Ile Leu Gln Thr Ser Tyr Phe Asp 225	230	235	240	720
55	agc acc cat aac cat cag aac ggg tta tgt gag gaa gaa gag gca gca			768	

EP 2 325 648 A1

5	Ser Thr His Asn His Gln Asn Gly Leu Cys Glu Glu Glu Ala Ala			
	245	250	255	
10	ccc aca cct gca gta gaa gac act gta gca gaa gct gag cct gat cca			816
	Pro Thr Pro Ala Val Glu Asp Thr Val Ala Glu Ala Glu Pro Asp Pro			
	260	265	270	
15	gca gaa gaa ttt act gaa cct act gaa gtt gaa tcg act gag tat gta			864
	Ala Glu Glu Phe Thr Glu Pro Thr Glu Val Glu Ser Thr Glu Tyr Val			
	275	280	285	
20	aac aga caa ttc atg gca gag act cag ttc agc agt agt gag aag gaa			912
	Asn Arg Gln Phe Met Ala Glu Thr Gln Phe Ser Ser Ser Glu Lys Glu			
	290	295	300	
25	cag gta gat gag tgg aca gtt gaa acg gtt gag gta aat tca ctg			960
	Gln Val Asp Glu Trp Thr Val Glu Thr Val Glu Val Val Asn Ser Leu			
	305	310	315	320
30	cag caa caa aca caa gct aca tct cct cca gtt cct gaa cct cat aca			1008
	Gln Gln Gln Thr Gln Ala Thr Ser Pro Pro Val Pro Glu Pro His Thr			
	325	330	335	
35	ctc act act gtg gct caa gca gat cct ctt gtt aga aga cag aga gta			1056
	Leu Thr Thr Val Ala Gln Ala Asp Pro Leu Val Arg Arg Gln Arg Val			
	340	345	350	
40	cag gac ctt atg gcc cag atg cag ggt cca tat aac ttc atg cag gac			1104
	Gln Asp Leu Met Ala Gln Met Gln Gly Pro Tyr Asn Phe Met Gln Asp			
	355	360	365	
45	tct atg ctg gag ttt gag aac cag aca ctt gat cct gcc att gta tct			1152
	Ser Met Leu Glu Phe Glu Asn Gln Thr Leu Asp Pro Ala Ile Val Ser			
	370	375	380	
50	gca cag ccc atg aat cca gca cag aat ttg gac atg ccg caa atg gtc			1200
	Ala Gln Pro Met Asn Pro Ala Gln Asn Leu Asp Met Pro Gln Met Val			
	385	390	395	400
55	tgc cct cca gtt cat act gag tca aga ctt gcc cag cct aat caa gtt			1248
	Cys Pro Pro Val His Thr Glu Ser Arg Leu Ala Gln Pro Asn Gln Val			
	405	410	415	

5	cct gtg caa cca gaa gct acg cag gtt ccc ttg gtt tca tct aca agt Pro Val Gln Pro Glu Ala Thr Gln Val Pro Leu Val Ser Ser Thr Ser 420 425 430	1296
10	gag gga tat aca gcc tcc cag ccc atg tat cag cct tct cat acc aca Glu Gly Tyr Thr Ala Ser Gln Pro Met Tyr Gln Pro Ser His Thr Thr 435 440 445	1344
15	gag caa cgg cca cag aag gaa tcc att gac cag att cag gct tca atg Glu Gln Arg Pro Gln Lys Glu Ser Ile Asp Gln Ile Gln Ala Ser Met 450 455 460	1392
20	tca ctg aat gca gac cag acc ccg tca tca tca ctt ccc act gca Ser Leu Asn Ala Asp Gln Thr Pro Ser Ser Ser Leu Pro Thr Ala 465 470 475 480	1440
25	tcc cag ccg caa gtt ttc caa gct gga tct agc aaa cct ttg cat agc Ser Gln Pro Gln Val Phe Gln Ala Gly Ser Ser Lys Pro Leu His Ser 485 490 495	1488
30	agc gga atc aat gtt aat gca gct cca ttc caa tcc atg caa aca gta Ser Gly Ile Asn Val Asn Ala Ala Pro Phe Gln Ser Met Gln Thr Val 500 505 510	1536
35	ttc aac atg aat gca cct gtt cct cct gtt aat gag cca gaa gcc ctt Phe Asn Met Asn Ala Pro Val Pro Pro Val Asn Glu Pro Glu Ala Leu 515 520 525	1584
40	aag caa caa aat cag tac cag gcc agt tac aac cag agt ttc tcc aat Lys Gln Gln Asn Gln Tyr Gln Ala Ser Tyr Asn Gln Ser Phe Ser Asn 530 535 540	1632
45	cag cca cac caa gta gaa caa tca gat ctt cag caa gaa cag ctc cag Gln Pro His Gln Val Glu Gln Ser Asp Leu Gln Gln Glu Gln Leu Gln 545 550 555 560	1680
50	aca gtg gtt ggt act tac cat ggt tct ccg gac cag acc cat caa gtg Thr Val Val Gly Thr Tyr His Gly Ser Pro Asp Gln Thr His Gln Val 565 570 575	1728
55	gca gga aac cac cag caa cct ccc cag cag aat act gga ttt cca cgc	1776

Ala Gly Asn His Gln Gln Pro Pro Gln Gln Asn Thr Gly Phe Pro Arg
 580 585 590

5 aac agt cag cct tat tac aac agt cgg gga gtg tct cgt ggt gga tca 1824
 Asn Ser Gln Pro Tyr Tyr Asn Ser Arg Gly Val Ser Arg Gly Gly Ser
 595 600 605

10 cgt ggg act cgt gga ttg atg aat ggt tac agg gga cct gca aat gga 1872
 Arg Gly Thr Arg Gly Leu Met Asn Gly Tyr Arg Gly Pro Ala Asn Gly
 610 615 620

15 ttt aga gga gga tat gat ggc tac cgt cct tca ttt tcc aac act ccg 1920
 Phe Arg Gly Gly Tyr Asp Gly Tyr Arg Pro Ser Phe Ser Asn Thr Pro
 625 630 635 640

20 aac agt ggt tac acg cag ccc caa ttt aat gct cct cga gat tat tca 1968
 Asn Ser Gly Tyr Thr Gln Pro Gln Phe Asn Ala Pro Arg Asp Tyr Ser
 645 650 655

25 aac tac cag cgg gat gga tat cag cag aac ttc aaa cgt ggt tct gga 2016
 Asn Tyr Gln Arg Asp Gly Tyr Gln Gln Asn Phe Lys Arg Gly Ser Gly
 660 665 670

30 caa agt ggg cct cgg gga gct cct cga ggt cgt gga ggg ccc cca aga 2064
 Gln Ser Gly Pro Arg Gly Ala Pro Arg Gly Arg Gly Pro Pro Arg
 675 680 685

35 cca aac aga ggg atg cct caa atg aac gct cag caa gtg aat taa 2109
 Pro Asn Arg Gly Met Pro Gln Met Asn Ala Gln Gln Val Asn
 690 695 700

40 <210> 30
 <211> 702
 45 <212> PRT
 <213> Gallus gallus

50 <400> 30

Met Pro Ser Ala Thr Asn Gly Thr Met Ala Ser Ser Ser Gly Lys Ala
 1 5 10 15

5	Gly Pro Gly Asn Glu Gln Ala Pro Ala Ala Ala Ala Ala Pro	20	25	30	
10	Gln Ala Ser Gly Gly Ser Ile Thr Ser Val Gln Thr Glu Ala Met Lys	35	40	45	
15	Gln Ile Leu Gly Val Ile Asp Lys Lys Leu Arg Asn Leu Glu Lys Lys	50	55	60	
20	Lys Ser Lys Leu Asp Asp Tyr Gln Glu Arg Met Asn Lys Gly Glu Arg	65	70	75	80
25	Leu Asn Gln Asp Gln Leu Asp Ala Val Ser Lys Tyr Gln Glu Val Thr	85	90	95	
30	Asn Asn Leu Glu Phe Ala Lys Glu Leu Gln Arg Ser Phe Met Ala Leu	100	105	110	
35	Ser Gln Asp Ile Gln Lys Thr Ile Lys Lys Thr Ala Arg Arg Glu Gln	115	120	125	
40	Leu Met Arg Glu Glu Ala Glu Gln Lys Arg Leu Lys Thr Val Leu Glu	130	135	140	
45	Leu Gln Phe Ile Leu Asp Lys Leu Gly Asp Asp Glu Val Arg Ser Asp	145	150	155	160
50	Leu Lys Gln Gly Ser Asn Gly Val Pro Val Leu Thr Glu Glu Leu	165	170	175	
55	Thr Met Leu Asp Glu Phe Tyr Lys Leu Val Tyr Pro Glu Arg Asp Met				

180 185 190

5

Asn Met Arg Leu Asn Glu Gln Tyr Glu Gln Ala Ser Val His Leu Trp
195 200 205

10

Asp Leu Leu Glu Gly Lys Glu Lys Pro Val Cys Gly Thr Thr Tyr Lys
210 215 220

15

Ala Leu Lys Glu Val Val Glu Arg Ile Leu Gln Thr Ser Tyr Phe Asp
225 230 235 240

20

Ser Thr His Asn His Gln Asn Gly Leu Cys Glu Glu Glu Ala Ala
245 250 255

25

Pro Thr Pro Ala Val Glu Asp Thr Val Ala Glu Ala Glu Pro Asp Pro
260 265 270

30

Ala Glu Glu Phe Thr Glu Pro Thr Glu Val Glu Ser Thr Glu Tyr Val
275 280 285

35

Asn Arg Gln Phe Met Ala Glu Thr Gln Phe Ser Ser Ser Glu Lys Glu
290 295 300

40

Gln Val Asp Glu Trp Thr Val Glu Thr Val Glu Val Val Asn Ser Leu
305 310 315 320

45

Gln Gln Gln Thr Gln Ala Thr Ser Pro Pro Val Pro Glu Pro His Thr
325 330 335

50

Leu Thr Thr Val Ala Gln Ala Asp Pro Leu Val Arg Arg Gln Arg Val
340 345 350

55

5 Gln Asp Leu Met Ala Gln Met Gln Gly Pro Tyr Asn Phe Met Gln Asp
355 360 365

10 Ser Met Leu Glu Phe Glu Asn Gln Thr Leu Asp Pro Ala Ile Val Ser
370 375 380

15 Ala Gln Pro Met Asn Pro Ala Gln Asn Leu Asp Met Pro Gln Met Val
385 390 395 400

20 Cys Pro Pro Val His Thr Glu Ser Arg Leu Ala Gln Pro Asn Gln Val
405 410 415

25 Pro Val Gln Pro Glu Ala Thr Gln Val Pro Leu Val Ser Ser Thr Ser
420 425 430

30 Glu Gly Tyr Thr Ala Ser Gln Pro Met Tyr Gln Pro Ser His Thr Thr
435 440 445

35 Glu Gln Arg Pro Gln Lys Glu Ser Ile Asp Gln Ile Gln Ala Ser Met
450 455 460

40 Ser Leu Asn Ala Asp Gln Thr Pro Ser Ser Ser Leu Pro Thr Ala
465 470 475 480

45 Ser Gln Pro Gln Val Phe Gln Ala Gly Ser Ser Lys Pro Leu His Ser
485 490 495

50 Ser Gly Ile Asn Val Asn Ala Ala Pro Phe Gln Ser Met Gln Thr Val
500 505 510

55 Phe Asn Met Asn Ala Pro Val Pro Pro Val Asn Glu Pro Glu Ala Leu

EP 2 325 648 A1

515 520 525

5

Lys Gln Gln Asn Gln Tyr Gln Ala Ser Tyr Asn Gln Ser Phe Ser Asn
530 535 540

10

Gln Pro His Gln Val Glu Gln Ser Asp Leu Gln Gln Glu Gln Leu Gln
545 550 555 560

15

Thr Val Val Gly Thr Tyr His Gly Ser Pro Asp Gln Thr His Gln Val
565 570 575

20

Ala Gly Asn His Gln Gln Pro Pro Gln Gln Asn Thr Gly Phe Pro Arg
580 585 590

25

Asn Ser Gln Pro Tyr Tyr Asn Ser Arg Gly Val Ser Arg Gly Ser
595 600 605

30

Arg Gly Thr Arg Gly Leu Met Asn Gly Tyr Arg Gly Pro Ala Asn Gly
610 615 620

35

Phe Arg Gly Gly Tyr Asp Gly Tyr Arg Pro Ser Phe Ser Asn Thr Pro
625 630 635 640

40

Asn Ser Gly Tyr Thr Gln Pro Gln Phe Asn Ala Pro Arg Asp Tyr Ser
645 650 655

45

Asn Tyr Gln Arg Asp Gly Tyr Gln Gln Asn Phe Lys Arg Gly Ser Gly
660 665 670

50

Gln Ser Gly Pro Arg Gly Ala Pro Arg Gly Arg Gly Gly Pro Pro Arg
675 680 685

55

Pro Asn Arg Gly Met Pro Gln Met Asn Ala Gln Gln Val Asn
5 690 695 700

10 <210> 31
<211> 20
<212> DNA
<213> Artificial

15 <220>
<223> T3 primer

20 <400> 31
aattaaccct cactaaaggg 20

25 <210> 32
<211> 19
<212> DNA
<213> Artificial

30 <220>
<223> T7 primer

35 <400> 32
taatacgact cactatagg 19

40 <210> 33
<211> 18
<212> DNA
<213> Artificial

45 <220>
<223> primer

50 <400> 33
aaggtttgaa tggagtc 18

55 <210> 34

5 <211> 18
<212> DNA
<213> Artificial

10 <220>
<223> primer

15 <400> 34
tgctccttt caccactg 18

20 <210> 35
<211> 18
<212> DNA
<213> Artificial

25 <220>
<223> GAPDH primer

30 <400> 35
gggctgctt taactctg 18

35 <210> 36
<211> 18
<212> DNA
<213> Artificial

40 <220>
<223> GAPDH primer

45 <400> 36
ccagggaaatg agcttgac 18

50 <210> 37
<211> 27
<212> DNA
<213> Artificial

55 <220>
<223> primer

5 <400> 37
 catatggcat taagtcaaga tattcag 27

10 <210> 38
 <211> 23
 <212> DNA
 <213> Artificial

15 <220>
 <223> primer

20 <400> 38
 ggtacctttg cggcatccct ctg 23

25 <210> 39
 <211> 21
 <212> DNA
 <213> Artificial

30 <220>
 <223> primer

35 <400> 39
 catatgccgt cggccaccag c 21

40 <210> 40
 <211> 22
 <212> DNA
 <213> Artificial

45 <220>
 <223> primer

50 <400> 40
 ggtaccattc acttgctgag tg 22

55 <210> 41

5 <211> 23
<212> DNA
<213> Artificial

10 <220>
<223> primer
<400> 41
gagctcatgc cctcgccac cag 23

15 <210> 42
<211> 23
<212> DNA
20 <213> Artificial

25 <220>
<223> primer
<400> 42
ctcgagttaa ttcacttgct gag 23

30 <210> 43
<211> 14
<212> PRT
35 <213> Homo sapiens

40 <400> 43
Arg Asn Leu Glu Lys Lys Gly Lys Leu Asp Asp Tyr Gln
1 5 10

45 <210> 44
<211> 148
<212> PRT
<213> Mus musculus

50 <400> 44
Met Glu Trp Ser Gly Val Phe Ile Phe Leu Leu Ser Gly Thr Ala Gly

EP 2 325 648 A1

1 5 10 15

5 Val Leu Ser Glu Val Gln Leu His Gln Phe Gly Ala Glu Leu Val Lys
20 25 30

10 Pro Gly Ala Ser Val Lys Ile Ser Cys Lys Ala Ser Gly Tyr Thr Phe
35 40 45

15 Thr Asp Tyr Asn Met Asp Trp Val Lys Gln Ser His Gly Lys Ser Leu
50 55 60

20 Glu Trp Ile Gly Asp Ile Asn Pro Asn Tyr Asp Ser Thr Ser Tyr Asn
65 70 75 80

25 Gln Lys Phe Lys Gly Lys Ala Thr Leu Thr Val Asp Lys Ser Ser Ser
85 90 95

30 Thr Ala Tyr Met Glu Leu Arg Ser Leu Thr Ser Glu Asp Thr Ala Val
100 105 110

35 Tyr Tyr Cys Ala Arg Ser Arg Ser Tyr Asp Tyr Glu Gly Phe Ala Tyr
115 120 125

40 Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ala Ala Lys Thr Thr Pro
130 135 140

45 Pro Ser Val Tyr
145

50 <210> 45
<211> 132
<212> PRT
55

<213> Mus musculus

5 <400> 45

Ala Val Leu Arg Cys Ser Arg Gly Leu Leu Val Ile Trp Ile Ser Asp

1 5 10 15

10

Ile Gln Leu Thr Gln Ser Pro Ser Ser Leu Ala Val Thr Ala Gly Glu

20 25 30

15

Lys Val Thr Met Ser Cys Lys Ser Ser Gln Ser Leu Leu Trp Ser Val

35 40 45

20

Asn Gln Lys Asn Tyr Leu Ser Trp Tyr Gln Gln Lys Gln Arg Gln Pro

50 55 60

25

Pro Lys Leu Leu Ile Tyr Gly Ala Ser Ile Arg Glu Ser Trp Val Pro

65 70 75 80

30

Asp Arg Phe Thr Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile

85 90 95

35

Ser Asn Val His Ala Glu Asp Leu Ala Val Tyr Tyr Cys Gln His Asn

100 105 110

40

His Gly Ser Phe Leu Pro Ser Arg Ser Glu Gln Val Pro Ser Trp Arg

115 120 125

45

Ser Asn Asn Arg

130

50

<210> 46

<211> 117

55

<212> PRT

<213> Mus musculus

5

<400> 46

Arg Thr Thr Ser His Met Asp Ser Asp Ile Gln Leu Thr Gln Ser Pro
10 1 5 10 15

Ala Ser Leu Ser Ala Ser Val Gly Glu Thr Val Thr Ile Thr Cys Arg
15 20 25 30

Ala Ser Gly Asn Ile His Asn Tyr Leu Ala Trp Tyr Gln Gln Lys Gln
20 35 40 45

Gly Lys Ser Pro Gln Leu Leu Val Tyr Asn Ala Lys Thr Leu Ala Asp
25 50 55 60

Gly Val Pro Ser Arg Phe Ser Gly Ser Gly Thr Gln Tyr Ser
30 65 70 75 80

Leu Lys Ile Asn Ser Leu Gln Pro Glu Asp Phe Gly Ser Tyr Tyr Cys
35 85 90 95

Gln His Phe Trp Ser Thr Leu Thr Phe Gly Gly Thr Lys Leu Glu
40 100 105 110

Ile Lys Gln Ser Asp
45 115

50 <210> 47

<211> 94

<212> PRT

<213> Mus musculus

55

<400> 47

5 Ser Gly Asp Arg Val Ser Leu Ser Cys Arg Ala Ser Gln Ser Ile Ser
1 5 10 15

10 Asn Tyr Leu His Trp Tyr Gln Gln Lys Ser His Glu Ser Pro Arg Leu
20 25 30

15 Leu Ile Lys Tyr Ala Ser Gln Ser Ile Ser Gly Ile Pro Ser Arg Phe
35 40 45

20 Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Ser Ile Asn Ser Val
50 55 60

25 Glu Thr Glu Asp Phe Gly Met Tyr Phe Cys Gln Gln Ser Asn Ser Trp
65 70 75 80

30 Pro Tyr Thr Phe Gly Ala Gly Thr Lys Leu Glu Ile Lys Gln
85 90

35 <210> 48
<211> 105
<212> PRT
<213> *Mus musculus*

40 <400> 48

45 Gly Leu Phe Cys Ser Val Glu Arg Cys His Tyr Gln Leu Gln Ser Ser
1 5 10 15

50 Gln Asn Leu Leu Ser Ile Val Asn Arg Tyr His Tyr Met Ser Gly Asn
20 25 30

55 Pro Pro Lys Leu Leu Val Tyr Pro Ala Leu Leu Ile Tyr Glu Ala Ser

35	40	45	
5			
Ile Thr Lys Ser Cys Val Pro Asp Arg Phe Thr Arg Ser Gly Ser Gly			
50	55	60	
10			
Thr Asn Phe Thr Leu Thr Ile Asn Phe Val His Ala Asp Asp Leu Ile			
65	70	75	80
15			
Phe Tyr Tyr Cys Gln His Asn Arg Gly Ser Phe Leu Pro Ser Ser Ser			
85	90	95	
20			
Val Gln Val Pro Arg Arg Arg Ser Asn			
100	105		
25			
<210> 49			
<211> 100			
<212> PRT			
30			
<213> Mus musculus			
<400> 49			
35			
Asp Ile Leu Gln Ala Ser Gly Tyr Ser Phe Thr Gly Tyr Thr Met Asn			
1	5	10	15
40			
Trp Val Lys Gln Ser His Gly Lys Asn Leu Glu Trp Ile Gly Leu Ile			
20	25	30	
45			
Asn Pro Tyr Asn Gly Gly Thr Ser Tyr Asn Gln Lys Phe Lys Gly Lys			
35	40	45	
50			
Ala Thr Leu Thr Val Asp Lys Ser Ser Ser Thr Ala Tyr Met Glu Leu			
50	55	60	

Leu Ser Leu Thr Ser Glu Asp Ser Ala Val Tyr Tyr Cys Ala Arg Trp
65 70 75 80

5

Gly Val Trp Ser Ala Met Asp Tyr Trp Gly Gln Gly Thr Thr Val Thr
85 90 95

10

Val Ser Ser Lys
100

15

<210> 50

<211> 90

20 <212> PRT

<213> Mus musculus

<400> 50

25

Asp Arg Val Ser Ile Thr Cys Lys Ala Ser Gln Asn Val Arg Thr Ala
1 5 10 15

30

Val Ala Trp Tyr Gln Gln Lys Pro Arg Gln Ser Pro Lys Ala Leu Ile
20 25 30

35

Tyr Leu Ala Ser Asn Arg Asp Thr Gly Leu Pro Asp Arg Phe Pro Gly
35 40 45

40

Arg Gly Ser Gly Thr Asp Phe Thr Leu Asn Ile Thr Asn Val Gln Ser
50 55 60

45

Glu Asp Leu Glu Asp Tyr Phe Cys Leu Gln His Cys Asn Tyr Pro Asn
65 70 75 80

50

Glu Phe Arg Gly Cys Thr Lys Val Pro Ile
85 90

55

5 <210> 51
 <211> 116
 <212> PRT
 <213> Mus musculus

10 <400> 51

15 Leu Gln Glu Ser Gly Ala Glu Leu Ala Arg Pro Gly Ala Ser Val Lys
 1 5 10 15

20 Leu Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Ser Tyr Trp Met Gln
 20 25 30

25 Trp Val Lys Gln Arg Pro Gly Gln Gly Leu Glu Trp Ile Gly Ala Ile
 35 40 45

30 Tyr Pro Gly Asp Gly Asp Thr Arg Tyr Thr Gln Lys Phe Lys Gly Lys
 50 55 60

35 Ala Thr Leu Thr Ala Asp Lys Ser Ser Ser Thr Ala Tyr Met Gln Leu
 65 70 75 80

40 Ser Ser Leu Ala Ser Glu Asp Ser Ala Val Tyr Tyr Cys Ala Arg Gly
 85 90 95

45 Glu Tyr Gly Asn Tyr Phe Ala Tyr Trp Gly Gln Gly Thr Thr Val Thr
 100 105 110

50 Val Ser Ser Asn
 115

55 <210> 52
 <211> 100

<212> PRT

<213> Mus musculus

5

〈400〉 52

10	Thr	Ser	Asp	Ala	Ser	Leu	Gly	Glu	Arg	Val	Thr	Ile	Thr	Cys	Lys	Ala
	1				5					10					15	

20 Lys Ser Pro Lys Thr Leu Ile Tyr Arg Ala Asn Arg Leu Val Asp Gly
 35 40 45

25	Val	Pro	Ser	Arg	Phe	Ser	Gly	Ser	Gly	Gln	Asp	Tyr	Ser	Leu
	50					55				60				

30	Thr	Ile	Ser	Ser	Leu	Glu	Tyr	Glu	Asp	Met	Gly	Ile	Tyr	Tyr	Cys	Leu
	65				70					75					80	

35 Gln Tyr Asp Glu Phe Pro Leu Thr Phe Gly Gly Gly Thr Lys Leu Glu
85 90 95

Ile Lys Gln Lys

〈210〉 53

45 <211> 108

<212> PRT

<213> *Mus musculus*

50 <400> 53

(100) 88

Ala-Trp-Leu

1

Ala Trp Leu Ser Gln Leu Ser Cys Thr Ala Ser Gly Phe Asn Ile Lys
1 5 10 15

5 Asp Thr Tyr Met His Trp Val Lys Gln Arg Pro Glu Gln Gly Leu Glu
 20 25 30

10 Trp Ile Gly Arg Ile Asp Pro Ala Asn Gly Asn Thr Lys Tyr Asp Pro
 35 40 45

15 Lys Phe Gln Gly Lys Ala Thr Ile Thr Ala Asp Thr Ser Ser Asn Thr
 50 55 60

20 Ala Tyr Leu Gln Leu Ser Ser Leu Thr Ser Glu Asp Thr Ala Val Tyr
 65 70 75 80

25 Tyr Cys Ala Arg Pro Ile His Tyr Tyr Gly Ser Ser Leu Ala Tyr
 85 90 95

30 Trp Gly Gln Gly Thr Thr Val Thr Val Ser Ser Lys
 100 105

35 <210> 54
 <211> 104
 <212> PRT
 <213> Mus musculus
 40 <400> 54

45 Glu Phe His Ala Val Ser Leu Gly Gln Arg Ala Thr Ile Ser Cys Arg
 1 5 10 15

50 Ala Ser Glu Ser Val Asp Ser Tyr Gly Asn Ser Phe Met His Trp Tyr
 20 25 30

55 Gln Gln Lys Pro Gly Gln Pro Pro Lys Leu Leu Ile Tyr Arg Ala Ser

35 40 45

5

Asn Leu Glu Ser Gly Ile Pro Ala Arg Phe Ser Gly Ser Gly Ser Arg
50 55 60

10

Thr Asp Phe Thr Leu Thr Ile Asn Pro Val Glu Ala Asp Asp Val Ala
65 70 75 80

15

Thr Tyr Tyr Cys Gln Gln Ser Asn Glu Asp Pro Gly Arg Ser Glu Val
85 90 95

20

Val Pro Ser Trp Arg Ser Asn Lys
100

25

<210> 55

<211> 109

<212> PRT

30

<213> Mus musculus

<400> 55

35

Pro Arg Ala Ser Leu Gly Val Ser Glu Thr Leu Leu Cys Thr Ser Gly
1 5 10 15

40

Phe Thr Phe Thr Asp Tyr Tyr Met Ser Trp Val Arg Gln Pro Pro Gly
20 25 30

45

Lys Ala Leu Glu Trp Leu Gly Phe Ile Arg Asn Lys Ala Asn Gly Tyr
35 40 45

50

Thr Thr Glu Tyr Ser Ala Ser Val Lys Gly Arg Phe Thr Ile Ser Arg
50 55 60

55

EP 2 325 648 A1

Asp Asn Ser Gln Ser Ile Leu Tyr Leu Gln Met Asn Thr Leu Arg Ala
65 70 75 80

5

Glu Asp Ser Ala Thr Tyr Tyr Cys Ala Arg Ala Asn Trp Ala Phe Asp
85 90 95

10

Tyr Trp Gly Gln Gly Thr Thr Val Thr Val Ser Ser Lys
100 105

15

<210> 56

<211> 94

20

<212> PRT

<213> Mus musculus

<400> 56

25

Ser Gly Asp Arg Val Ser Leu Ser Cys Arg Ala Ser Gln Ser Ile Ser
1 5 10 15

30

Asn Tyr Leu His Trp Tyr Gln Gln Lys Ser His Glu Ser Pro Arg Leu
20 25 30

35

Leu Ile Lys Tyr Ala Ser Gln Ser Ile Ser Gly Ile Pro Ser Arg Phe
35 40 45

40

Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Ser Ile Asn Ser Val
50 55 60

45

Glu Thr Glu Asp Phe Gly Met Tyr Phe Cys Gln Gln Ser Asn Ser Trp
65 70 75 80

50

Pro Tyr Thr Phe Gly Gly Gly Thr Lys Leu Glu Ile Lys Gln
85 90

55

5 <210> 57
 <211> 111
 <212> PRT
 <213> *Mus musculus*
 10 <400> 57
 15 Pro Ala Cys Leu Pro Gly Gly Ser Leu Arg Leu Ser Cys Ala Thr Ser
 1 1 5 10 15
 20 Gly Phe Thr Phe Thr Asp Tyr Tyr Met Ser Trp Val Arg Gln Pro Pro
 20 20 25 30
 25 Gly Lys Ala Leu Glu Trp Leu Gly Phe Ile Arg Asn Lys Ala Asn Gly
 25 35 40 45
 30 Tyr Thr Thr Glu Tyr Ser Ala Ser Val Lys Gly Arg Phe Thr Ile Ser
 30 50 55 60
 35 Arg Asp Asn Ser Gln Ser Ile Leu Tyr Leu Gln Met Asn Thr Leu Arg
 35 65 70 75 80
 40 Ala Glu Asp Ser Ala Thr Tyr Tyr Cys Ala Arg Ala Pro Leu Leu Tyr
 40 85 90 95
 45 Tyr Ala Met Asp Tyr Trp Gly Gln Gly Thr Thr Val Thr Val Ser
 45 100 105 110
 50 <210> 58
 <211> 102
 <212> PRT
 <213> *Mus musculus*
 55 <400> 58

Arg Leu Pro Phe Tyr Ser Leu Glu Gln Arg Ala Thr Ile Ser Tyr Arg
 1 5 10 15

Ala Ser Lys Asn Val Ser Thr Ser Gly Tyr Ser Tyr Met His Trp Asn
 10 20 25 30

Gln Gln Lys Pro Gly Gln Pro Pro Lys Leu Leu Ile Tyr Leu Val Ser
 15 35 40 45

Asn Leu Glu Ser Gly Val Pro Ala Arg Phe Ser Gly Ser Gly
 20 50 55 60

Thr Asp Phe Thr Leu Asn Ile His Pro Val Glu Glu Glu Asp Ala Ala
 25 65 70 75 80

Thr Tyr Tyr Cys Gln His Ile Arg Glu Leu Thr Arg Ser Glu Leu Val
 30 85 90 95

Pro Ser Trp Lys Ser Asn
 35 100

40 <210> 59
 <211> 101
 <212> PRT
 <213> Mus musculus

45 <400> 59

Val Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Ser Tyr Trp Met His
 50 1 5 10 15

Trp Val Lys Gln Arg Pro Gly Gln Gly Leu Glu Trp Ile Gly Met Ile
 55 20 25 30

5 Asp Pro Ser Asn Ser Glu Thr Arg Leu Asn Gln Lys Phe Lys Asp Lys
 35 40 45

10 Ala Thr Leu Asn Val Asp Lys Ser Ser Asn Thr Ala Tyr Met Gln Leu
 50 55 60

15 Ser Ser Leu Thr Ser Glu Asp Ser Ala Val Tyr Tyr Cys Ala Arg Gly
 65 70 75 80

20 Leu Arg His Tyr Trp Tyr Phe Asp Val Trp Gly Gln Gly Thr Thr Val
 85 90 95

25 Thr Val Ser Ser Lys
 100

30 <210> 60
 <211> 99
 <212> PRT
 <213> *Mus musculus*

35 <400> 60

40 Thr Ile Leu Trp Arg Glu Gly Pro Phe Ser Tyr Arg Ala Ser Lys Ser
 1 5 10 15

45 Val Ser Thr Ser Gly Tyr Ser Tyr Met His Trp Asn Gln Gln Lys Pro
 20 25 30

50 Gly Gln Pro Pro Arg Leu Leu Ile Tyr Leu Val Ser Asn Leu Glu Ser
 35 40 45

55 Gly Val Pro Ala Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr

50 55 60

5 Leu Asn Ile His Pro Val Glu Glu Glu Asp Ala Ala Thr Tyr Tyr Cys
65 70 75 80

10 Gln His Ile Arg Glu Leu Thr Arg Ser Glu Glu Val Pro Ser Trp Arg
85 90 95

15 Ser Asn Lys

20 <210> 61
<211> 58
<212> PRT
25 <213> Homo sapiens

<400> 61

30 Val Phe Gln Ser Asn Tyr Phe Asp Ser Thr His Asn His Gln Asn Gly
1 5 10 15

35 Leu Cys Glu Glu Glu Ala Ala Ser Ala Pro Ala Val Glu Asp Gln
20 25 30

40 Val Pro Glu Ala Glu Pro Glu Pro Ala Glu Glu Tyr Thr Glu Gln Ser
35 40 45

45 Glu Val Glu Ser Thr Glu Tyr Val Asn Arg
50 55

50 <210> 62
<211> 15
<212> PRT
55 <213> Homo sapiens

〈400〉 62

5

Tyr Thr Glu Gln Ser Glu Val Glu Ser Thr Glu Tyr Val Asn Arg
 1 5 10 15

10

〈210〉 63

〈211〉 11

<212> PRT

15

<213> Homo sapiens

<400> 63

20

Ser Glu Val Glu Ser Thr Glu Tyr Val Asn Arg
1 5 10

25

Claims

30 1. A method for detecting a cancer, comprising measuring the expression of a polypeptide having a reactivity of binding via an antigen-antibody reaction to an antibody against a CAPRIN-1 protein having any one of the amino acid sequences shown in the even-numbered SEQ ID NOS: 2-30 in the Sequence Listing, in a sample separated from a living organism.

35 2. The method according to claim 1, wherein the polypeptide to be measured is a CAPRIN-1 protein having any one of the amino acid sequences shown in the even-numbered SEQ ID NOS: 2-30 or a polypeptide having 85% or more sequence identity with the CAPRIN-1 protein.

40 3. The method according to claim 1 or 2, wherein the living organism is a human, a dog, or a cat.

45 4. The method according to claim 3, wherein the living organism is a dog and the polypeptide to be measured has an amino acid sequence shown in any one of the even-numbered SEQ ID NOS: 2-30.

50 5. The method according to claim 4, wherein the living organism is a dog and the polypeptide to be measured has the amino acid sequence shown in SEQ ID NO: 6, 8, 10, 12, or 14.

6. The method according to claim 3, wherein the living organism is a human and the polypeptide to be measured has the amino acid sequence shown in SEQ ID NO: 2 or 4.

7. The method according to any one of claims 1 to 6, wherein the expression of the polypeptide is measured by immunoassay of an antibody that can be contained in the sample and is induced *in vivo* against the polypeptide to be measured.

8. The method according to any one of claims 1 to 7, wherein the sample is serum, blood plasma, ascite, or pleural effusion.

55 9. The method according to any one of claims 1 to 6, wherein the expression of the polypeptide is measured by measuring mRNA encoding the polypeptide, which is contained in the sample.

10. The method according to claim 9, comprising examining the existing amount of the mRNA in the sample using a

polynucleotide that specifically hybridizes to a partial sequence of 15 or more nucleotides in the nucleotide sequence of the mRNA.

- 5 11. The method according to claim 10, wherein the living organism is a dog and the polynucleotide is a polynucleotide specifically hybridizing to a partial sequence of 15 or more nucleotides in the nucleotide sequence shown in SEQ ID NO: 5, 7, 9, 11, or 13.
- 10 12. The method according to claim 10, wherein the living organism is a human and the polynucleotide is a polynucleotide specifically hybridizing to a partial sequence of 15 or more nucleotides in the nucleotide sequence shown in SEQ ID NO: 1 or 3.
13. The method according to any one of claims 9 to 12, wherein the sample is a tissue or a cell.
- 15 14. The method according to any one of claims 1 to 13, wherein the cancer is at least one type of cancer selected from the group consisting of brain tumor, squamous cell carcinoma of the head, neck, lung, uterus or esophagus, melanoma, adenocarcinoma of the lung or uterus, renal cancer, malignant mixed tumor, hepatocellular carcinoma, basal cell carcinoma, acanthoma-like gingival tumor, tumor of the oral cavity, perianal adenocarcinoma, anal sac tumor, anal sac apocrine adenocarcinoma, sertoli cell carcinoma, cancer of vaginal vestibule, sebaceous adenocarcinoma, sebaceous epithelioma, sebaceous adenoma, sweat gland carcinoma, intranasal adenocarcinoma, nasal adenocarcinoma, thyroid cancer, large-bowel cancer, bronchial adenocarcinoma, adenocarcinoma, ductal carcinoma, breast adenocarcinoma, composite type breast adenocarcinoma, malignant mammary mixed tumor, intraductal papillary adenocarcinoma, fibrosarcoma, hemangiopericytoma, osteosarcoma, chondrosarcoma, soft tissue sarcoma, histiocytic sarcoma, myxosarcoma, undifferentiated sarcoma, lung cancer, mastocytoma, cutaneous leiomyoma, intraperitoneal leiomyoma, leiomyoma, chronic lymphocytic leukemia, lymphoma, gastrointestinal lymphoma, digestive lymphoma, small-cell-to-medium-cell lymphoma, adrenomedullary tumor, granulosa cell tumor, and pheochromocytoma.
- 20 15. The method according to any one of claims 1 to 14, comprising further detecting the malignancy of a cancer based on the fact that the malignancy of cancer is high when the expression level of the polypeptide is higher than that of a control.
- 25 16. The method according to any one of claims 1 to 15, comprising further detecting the progression of cancer on the basis of the indicator that the extent of cancer is advanced when the expression level of the polypeptide is higher than that of a control.
- 30 17. A reagent for detecting a cancer, comprising a polypeptide that has a reactivity of binding via an antigen-antibody reaction to an antibody that is induced *in vivo* against a CAPRIN-1 protein having any one of the amino acid sequences shown in the even-numbered SEQ ID NOS: 2-30 in the Sequence Listing.
- 35 18. A reagent for detecting a cancer, comprising an antibody or antigen-binding fragment thereof that undergoes an antigen-antibody reaction with a polypeptide, wherein the polypeptide has a reactivity of binding via an antigen-antibody reaction to an antibody against a CAPRIN-1 protein having any one of the amino acid sequences shown in the even-numbered SEQ ID NOS: 2-30 in the Sequence Listing and is produced *in vivo*.
- 40 19. The reagent for detecting cancer according to claim 18, wherein the antibody or antigen-binding fragment thereof that undergoes an antigen-antibody reaction with the polypeptide is an antibody or antigen-binding fragment thereof that binds to the surface of a cancer cell.
- 45 20. The reagent for detecting cancer according to claim 18 or 19, wherein the antibody or antigen-binding fragment thereof that undergoes an antigen-antibody reaction with the polypeptide has an immunological reactivity with:
a polypeptide comprising an amino acid sequence of 7 or more continuous amino acid residues within the region of amino acid residue Nos. 50-98 or amino acid residue Nos. 233-305 in any one of the amino acid sequences shown in the even-numbered SEQ IDS NO: 2-30 excluding SEQ ID NO: 6 and SEQ ID NO: 18 or
55 a polypeptide comprising the polypeptide as a partial sequence.
- 50 21. The reagent for detecting a cancer according to any one of claims 18 to 20, wherein the antibody or antigen-binding fragment thereof that undergoes an antigen-antibody reaction with the polypeptide is an antibody or antigen-binding

fragment thereof which binds to SEQ ID NO: 43, a monoclonal antibody or antigen-binding fragment thereof having the amino acid sequences of SEQ ID NOS: 44 and 45, a monoclonal antibody or antigen-binding fragment thereof having the amino acid sequences of SEQ ID NOS: 44 and 46, a monoclonal antibody or antigen-binding fragment thereof having the amino acid sequences of SEQ ID NOS: 44 and 47, a monoclonal antibody or antigen-binding fragment thereof having the amino acid sequences of SEQ ID NOS: 44 and 48, a monoclonal antibody or antigen-binding fragment thereof having the amino acid sequences of SEQ ID NOS: 49 and 50, a monoclonal antibody or antigen-binding fragment thereof having the amino acid sequences of SEQ ID NOS: 51 and 52, a monoclonal antibody or antigen-binding fragment thereof having the amino acid sequences of SEQ ID NOS: 53 and 54, a monoclonal antibody or antigen-binding fragment thereof having the amino acid sequences of SEQ ID NOS: 55 and 56, a monoclonal antibody or antigen-binding fragment thereof having the amino acid sequences of SEQ ID NOS: 57 and 58, or a monoclonal antibody or antigen-binding fragment thereof having the amino acid sequences of SEQ ID NOS: 59 and 60.

5

10

15

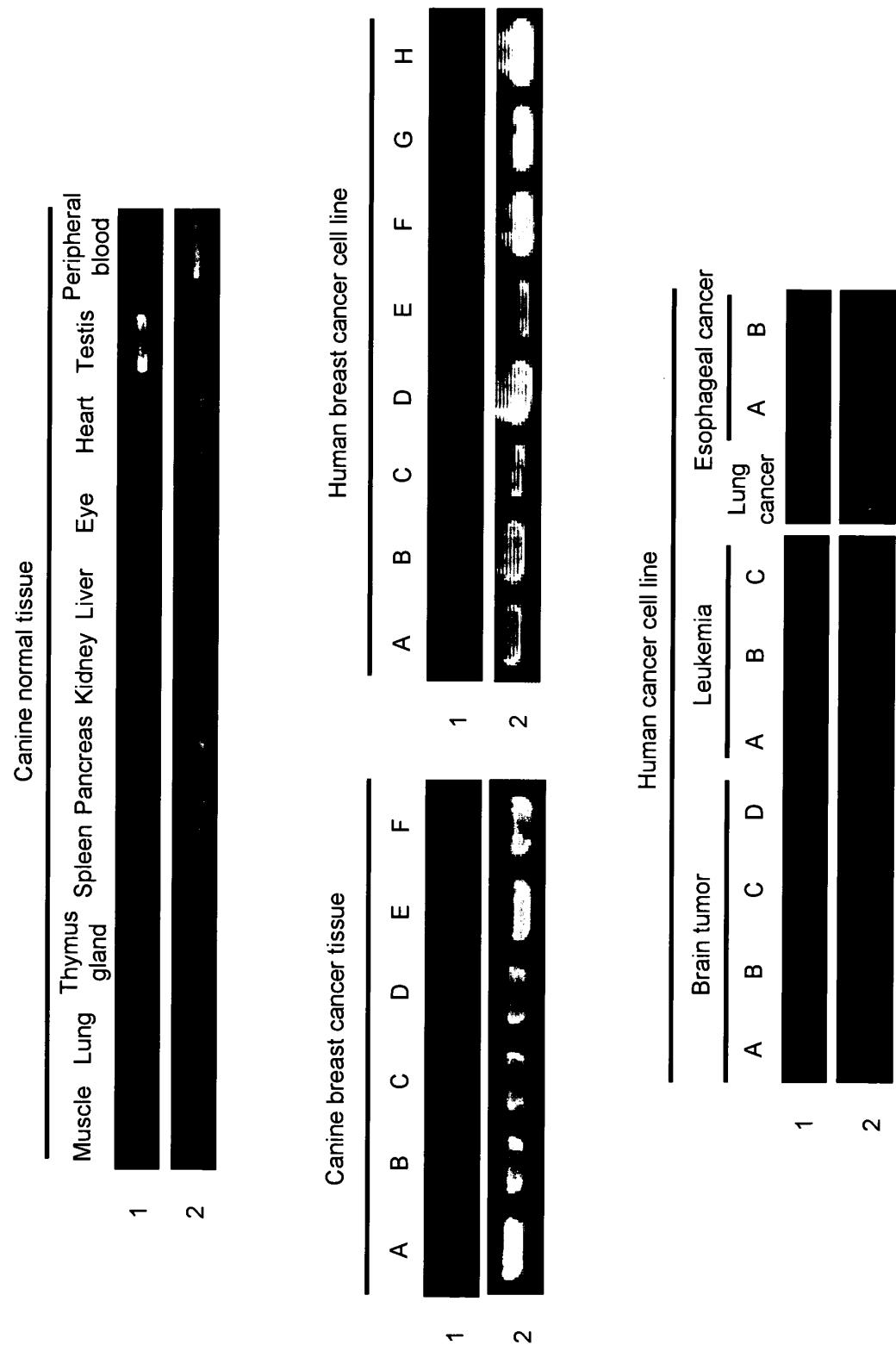
22. A reagent for detecting a cancer, comprising a polynucleotide that specifically hybridizes to a partial sequence of 15 or more nucleotides in any one of the nucleotide sequences shown in the odd-numbered SEQ ID NOS: 1-29 in the Sequence Listing.

20

25

30

35


40

45

50

55

Fig. 1

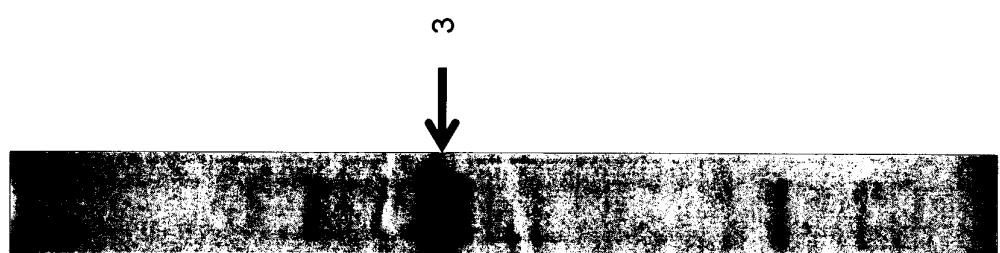


Fig. 2

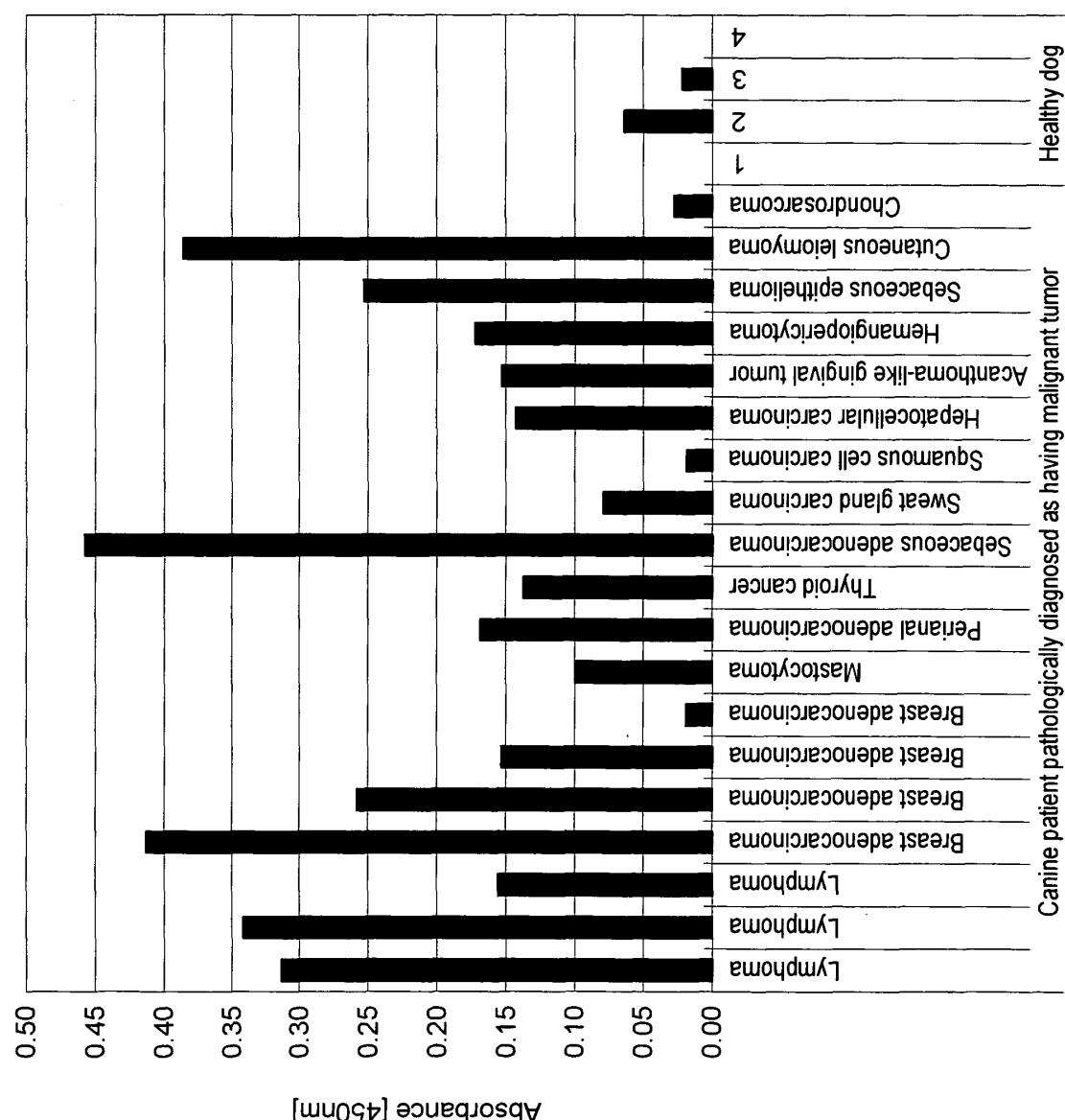


Fig. 3

Fig. 4

INTERNATIONAL SEARCH REPORT		International application No. PCT/JP2009/063883									
<p>A. CLASSIFICATION OF SUBJECT MATTER G01N33/574(2006.01)i, C12N15/09(2006.01)i, C12Q1/68(2006.01)i, G01N33/53(2006.01)i</p> <p>According to International Patent Classification (IPC) or to both national classification and IPC</p>											
<p>B. FIELDS SEARCHED Minimum documentation searched (classification system followed by classification symbols) G01N33/574, C12N15/09, C12Q1/68, G01N33/53</p>											
<p>Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Jitsuyo Shinan Koho 1922-1996 Jitsuyo Shinan Toroku Koho 1996-2009 Kokai Jitsuyo Shinan Koho 1971-2009 Toroku Jitsuyo Shinan Koho 1994-2009</p>											
<p>Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) JSTplus/JMEDPlus/JST7580 (JDreamII), CA/MEDLINE/BIOSIS (STN)</p>											
<p>C. DOCUMENTS CONSIDERED TO BE RELEVANT</p> <table border="1"> <thead> <tr> <th>Category*</th> <th>Citation of document, with indication, where appropriate, of the relevant passages</th> <th>Relevant to claim No.</th> </tr> </thead> <tbody> <tr> <td>X</td> <td>JP 2002-540790 A (Corixa Corp.), 03 December, 2002 (03.12.02), Abstract; Par. Nos. [0051], [0106], [0122], [0123], [0125] (example 3) sequence Nos.84, 93 & US 6444425 B1 & US 2003/0118599 A1 & US 2004/0225900 A1 & EP 1187915 A & WO 2000/060077 A2 & AU 4185100 A</td> <td>1, 3, 7-20, 22</td> </tr> <tr> <td>A</td> <td>JP 2003-528587 A (HUMAN GENOME SCIENCES, INC.), 30 September, 2003 (30.09.03), Sequence No.159 & EP 1224285 A & WO 2001/032910 A2 & AU 1438001 A & CA 2388822 A</td> <td>1-22</td> </tr> </tbody> </table>			Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.	X	JP 2002-540790 A (Corixa Corp.), 03 December, 2002 (03.12.02), Abstract; Par. Nos. [0051], [0106], [0122], [0123], [0125] (example 3) sequence Nos.84, 93 & US 6444425 B1 & US 2003/0118599 A1 & US 2004/0225900 A1 & EP 1187915 A & WO 2000/060077 A2 & AU 4185100 A	1, 3, 7-20, 22	A	JP 2003-528587 A (HUMAN GENOME SCIENCES, INC.), 30 September, 2003 (30.09.03), Sequence No.159 & EP 1224285 A & WO 2001/032910 A2 & AU 1438001 A & CA 2388822 A	1-22
Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.									
X	JP 2002-540790 A (Corixa Corp.), 03 December, 2002 (03.12.02), Abstract; Par. Nos. [0051], [0106], [0122], [0123], [0125] (example 3) sequence Nos.84, 93 & US 6444425 B1 & US 2003/0118599 A1 & US 2004/0225900 A1 & EP 1187915 A & WO 2000/060077 A2 & AU 4185100 A	1, 3, 7-20, 22									
A	JP 2003-528587 A (HUMAN GENOME SCIENCES, INC.), 30 September, 2003 (30.09.03), Sequence No.159 & EP 1224285 A & WO 2001/032910 A2 & AU 1438001 A & CA 2388822 A	1-22									
<p><input checked="" type="checkbox"/> Further documents are listed in the continuation of Box C. <input type="checkbox"/> See patent family annex.</p>											
<p>* Special categories of cited documents: "A" document defining the general state of the art which is not considered to be of particular relevance "E" earlier application or patent but published on or after the international filing date "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or other means "P" document published prior to the international filing date but later than the priority date claimed</p>											
<p>"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art "&" document member of the same patent family</p>											
Date of the actual completion of the international search 28 August, 2009 (28.08.09)		Date of mailing of the international search report 08 September, 2009 (08.09.09)									
Name and mailing address of the ISA/ Japanese Patent Office		Authorized officer									
Facsimile No.		Telephone No.									

INTERNATIONAL SEARCH REPORT		International application No. PCT/JP2009/063883
C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT		
Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	WO 2008/088583 A2 (Immunotope Inc.), 24 July, 2008 (24.07.08), SEQ ID NO:168 & US 2008/0107668 A1 & EP 2061503 A & CA 2661651 A	1-22
A	Katsafanas, George C.; Moss, Bernard, Colocalization of transcription and translation within cytoplasmic poxvirus factories coordinates viral expression and subjugates host functions, <i>Cell Host & Microbe</i> , 2007, Vol.2, No.4, Page.221-228	1-22
A	Solomon, Samuel; Xu, Yaoxian; Wang, Bin; David, Muriel D.; Schubert, Peter; Kennedy, Derek; Schrader, John W., Distinct structural features of caprin-1 mediate its interaction with G3BP-1 and its induction of phosphorylation of eukaryotic translation initiation factor 2 alpha, entry to cytoplasmic stress granules, and selective interaction with a subset of mRNAs, <i>Molecular and Cellular Biology</i> , 2007, Vol.27, No.6, Page.2324-2342	1-22

Form PCT/ISA/210 (continuation of second sheet) (April 2007)

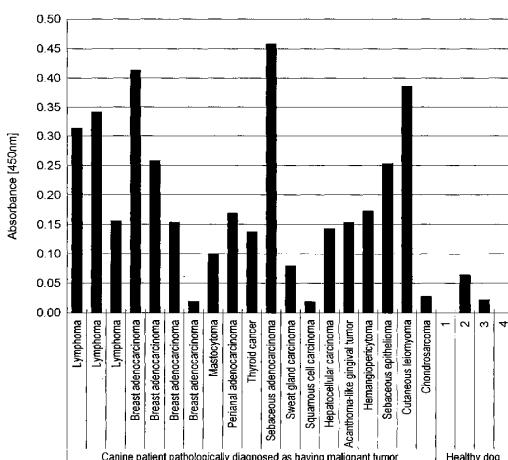
REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- US 20080075722 A [0017]
- WO 2005100998 A [0017]
- JP 2008202320 A [0145]

Non-patent literature cited in the description


- *J Biol Chem.*, 1995, vol. 270, 20717-20723 [0016] [0017]
- *J Immunol.*, 2004, vol. 172, 2389-2400 [0016] [0017]
- **Karlin ; Altschul.** *Proc. Natl. Acad. Sci. U.S.A.*, 1993, vol. 87, 2264-2268 [0035]
- **Altschul et al.** *Nucleic Acids Res.*, 1997, vol. 25, 3389-3402 [0035]
- Seikagaku Jikken Koza. Protein Chemistry IV, Chemical Modification and Peptide Synthesis. KAGAKU DOZIN CO., LTD, 1981 [0038]
- Molecular Cloning. **Sambrook et al.** Current Protocols in Molecular Biology. Cold Spring Harbor Laboratory Press, 1989 [0038]
- Short Protocols in Molecular Biology. **Ausubel et al.** A Compendium of Methods from Current Protocols in Molecular Biology. John Wiley & Sons, 1995 [0038]

专利名称(译)	癌症检测方法		
公开(公告)号	EP2325648A1	公开(公告)日	2011-05-25
申请号	EP2009805010	申请日	2009-08-05
[标]申请(专利权)人(译)	东丽株式会社		
申请(专利权)人(译)	TORAY INDUSTRIES , INC.		
当前申请(专利权)人(译)	TORAY INDUSTRIES , INC.		
[标]发明人	OKANO FUMIYOSHI SUZUKI KANA		
发明人	OKANO, FUMIYOSHI SUZUKI, KANA		
IPC分类号	G01N33/574 C12N15/09 C12Q1/68 G01N33/53		
CPC分类号	C12Q1/6886 C12Q2600/112 G01N33/57407 G01N33/57415 G01N33/6893 G01N33/53 G01N33/574		
优先权	2008202320 2008-08-05 JP		
其他公开文献	EP2325648B1 EP2325648A4		
外部链接	Espacenet		

摘要(译)

本发明涉及一种检测癌症的方法，包括测量具有与抗CAPRIN-1蛋白抗体结合的反应性的多肽的表达，所述CAPRIN-1蛋白具有偶数SEQ ID NO中任一所示的氨基酸序列：序列表中的2-30通过在与生物体分离的样品中的抗原 - 抗体反应，以及用于检测包含CAPRIN-1蛋白或其片段的癌症的试剂，针对CAPRIN-1蛋白的抗体或其片段，或编码CAPRIN-1蛋白或其片段的多核苷酸。

Fig. 3

