(19) 中华人民共和国国家知识产权局

(12) 发明专利申请

(10)申请公布号 CN 101724054 A (43)申请公布日 2010.06.09

(21)申请号 200810305166.9

(22)申请日 2008.10.24

(71)申请人 李建远

地址 264000 山东省烟台市毓璜顶东路 20 号

(72) 发明人 李建远

(51) Int. CI.

CO7K 14/435 (2006.01)

C12N 15/12 (2006. 01)

C12N 15/63 (2006.01)

C12N 5/10 (2006. 01)

CO7K 16/18 (2006.01)

A61K 38/17(2006.01)

A61K 31/7088 (2006.01)

A61K 48/00 (2006.01)

A61K 35/12(2006.01)

A61P 15/16 (2006. 01) *A61P 31/00* (2006. 01)

GO1N 33/53 (2006.01)

权利要求书 1 页 说明书 8 页 附图 1 页

(54) 发明名称

人类附睾表达精子结合蛋白 HEL-213 及其编码基因与应用

(57) 摘要

本发明属于生物技术和医学领域。本发明公开了一种新的人附睾特异表达精子结合蛋白HEL-213 及其制备和应用。公开了本发明编码HEL-213 蛋白的氨基酸序列,提供携带编码本发明蛋白的 DNA 序列的重组表达载体。该蛋白定位于成熟精子的顶体区,在附睾的头、体及睾丸,心、肝、脾、肾表达量较高,在胃组织没有表达。用Western blot 在附睾检测到一条 20KD 左右条带。HEL-213 蛋白可作为免疫性避孕药的研发,以及男性不育症的临床诊断与治疗的靶蛋白。基于HEL-213 蛋白开发的相应基因或蛋白检测方法,将广泛用于生殖医学研究领域。

- 1. 一种人类附睾表达精子结合蛋白 HEL-213, 其特征在于, 它具有序列表中序列 2 的 氨基酸序列或将序列 2 的氨基酸序列经过一个或几个氨基酸残基的取代、缺失或添加且具有与序列 2 的氨基酸残基序列相同活性的序列 2 衍生的蛋白质和通过化学方法合成的蛋白质。
 - 2. 一种人类附睾表达精子结合蛋白 HEL-213 的编码基因,它是下列核苷酸序列之一: 序列表中序列 1 的核苷酸序列;

与序列表中序列 1 限定的 DNA 序列具有 90%以上同源性,且编码相同功能蛋白的 DNA 序列。

- 3. 含有权利要求 2 所述基因的真核和原核表达载体。
- 4. 含有权利要求 2 所述基因的细胞系。
- 5. 针对权利要求 1 所述蛋白质所制备的各种抗体以及以该抗体为活性成分的试剂。
- 6. 针对权利要求 1 所述蛋白质提供的药物组合物,所述组合物包含本发明所述的蛋白、核苷酸序列、构建物或细胞,以及药学上可接受的载体。
 - 7. 根据权利要求1所述的蛋白在不育症诊断中的应用。
 - 8. 根据权利要求1所述的蛋白在不育症治疗中的应用。
 - 9. 根据权利要求 2 所述的基因在开发新的避孕药物中的应用。
 - 10. 根据权利要求1所述的蛋白在制备新的抗生素中的应用。

人类附睾表达精子结合蛋白 HEL-213 及其编码基因与应用

技术领域

[0001] 本发明属于生物技术与医学领域。具体地说,本发明涉及一种新的人类附睾表达精子结合蛋白 HEL-213 及其编码基因与应用

背景技术

[0002] 本世纪人类的发展面临着两个严峻的问题:一方面,全球人口在急速膨胀,预计在2050年将达到90亿;另一方面,据世界卫生组织调查,大约15%的夫妇存在着不育问题,发达国家不育症的发病率在最近10年飚升,欧洲发达国家可高达30%,其中男性因素约占一半。世界卫生组织预测,随着环境污染和性传播疾病等致病因素的增加,本世纪,不育症将成为仅次于肿瘤和心脑血管病的第三大疾病。但男性不育并未引起社会和医学界的足够重视,因此有关男性生殖健康的研究进展缓慢,明显落后于其它学科。缺少分子生物学层面诊断与治疗不育症的有效方法。由于精子发育障碍不能自然受精,需要医生通过做试管婴儿获取后代。利用此种技术获取后代,不仅耗费了宝贵的时间与资金,而且存在很多影响健康的潜在因素,失去了正常生育过程中精卵天然结合、优势选择遗传后代的机会。给家庭与社会带来了沉重的精神和经济负担。

[0003] 全世界人口的急剧增长造成了资源耗竭和环境恶化,成为人类健康与生存的严重威胁。当前世界人口已超过60亿,据专家估计,中国资源环境能支撑的最大人口容量为15-16亿。目前可供人类选择的避孕措施还很有限,离"高效、安全、可逆"的标准还相差较远。发展安全有效、先进实用的避孕节育新技术、新产品,以满足不同人群、不同层次的避孕用药的个性化要求是近年来国内外避孕节育技术发展的总趋势。

[0004] 附睾是精子成熟的重要器官,睾丸产生的精子需要通过与附睾管腔微环境相互作用才能获得运动、受精、防御和维持正常胚胎发育以及防御等生物学功能。附睾内大约有200余种分泌蛋白与精子相互作用,参与精子成熟过程,但是人们对这些蛋白的功能知之甚少。与精子成熟相关的附睾蛋白的研究将有助于推动男性生殖医学的研究进展,为男性不育症的诊断和治疗以及开发新型避孕药物提供侯选分子靶标,同时有可能对附睾环节的男性避孕带来新的思路和突破。

发明内容

[0005] 本发明的第一个目的是提供一种新的人类附睾表达精子结合蛋白 HEL-213。

[0006] 一种人类附睾表达精子结合蛋白 HEL-213,它具有序列表中序列 2 的氨基酸序列或将序列 2 的氨基酸残基序列经过一个或几个氨基酸残基的取代、缺失或添加且具有与序列 2 的氨基酸残基序列相同活性的由序列 2 衍生的蛋白质或多肽。

[0007] 本发明的人附睾分泌蛋白命名为:HEL-213;由199个氨基酸残基组成。HEL-213蛋白存在有3个N糖基化位点,3个N-+四烷酰基化位点和13个磷酸化位点,包括1个cAMP依赖的蛋白激酶磷酸化位点,7个酪蛋白激酶II磷酸化位点和5个蛋白激酶C磷酸化位点。而且,分子中含有1个Microbodies C-terminal targeting signal。

[0008] 本发明的第二个目的是提供编码人附睾分泌蛋白 HEL-213 的基因。它是下列核苷酸序列之一:

[0009] 序列表中序列 1 的 DNA 序列, GenBank 注册号为:FJ237361;

[0010] 编码序列表中 SEQ ID No. 2 蛋白质序列的多核苷酸;

[0011] 与序列表中序列 1 限定的 DNA 序列具有 90%以上同源性,且编码相同功能蛋白质的 DNA 序列。

[0012] 序列表中的 SEQ ID No. 1,全长 c DNA 序列为 907bp,定位于人 14 号染色体上,编码 199 个氨基酸,编码蛋白为 HEL-213,含有信号肽,其开放阅读框为 600bp,是一个完整的读码框。

[0013] 本发明的第三方面,提供了采用基因工程技术制备具有人类附睾表达精子结合蛋白 HEL-213 活性多肽的方法,它包括含有上述多核苷酸序列的载体,以及被该载体转化或转导的宿主细胞。

[0014] 本发明的第四方面,提供了与上述人类附睾表达精子结合蛋白 HEL-213 特异性结合的抗体,以及由此开发的用于附睾功能异常所致的不育症的辅助诊断。

[0015] 本发明的第五方面,提供了检测样本中是否存在人类附睾表达精子结合蛋白 HEL-213 的方法,它包括:将待测样品与分泌蛋白的特异性抗体在一定条件下共同作用,观察是否形成抗原抗体复合物,有抗原抗体复合物形成就提示样品中存在分泌蛋白。

[0016] 本发明的第六方面,提供了本发明蛋白和其编码序列的用途。例如本发明蛋白可被作为诊断不育症的分子靶点,或作为有效药物成分用于治疗不育症,或作为开发新型避孕药物的靶分子,或被用于筛选促进人类附睾表达蛋白 HEL-213 活性的激动剂,或被用于筛选抑制人类附睾表达精子结合蛋白 HEL-213 活性的拮抗剂,或被用于肽指纹图谱鉴定。根据人类附睾表达精子结合蛋白 HEL-213 的编码序列或其片段,可设计引物或探针用于PCR 或核酸杂交,或者用于制备基因芯片。本发明蛋白还可用于药物组合物,以此作为有效活性成分,用于生产一种对抗病原微生物感染以及肿瘤等疾病的药物。

[0017] 本发明的第七方面,提供了一种药物组合物,所述组合物包含本发明所述的蛋白、核苷酸序列、构建物或细胞,以及药学上可接受的载体。

[0018] 本发明的蛋白能够在附睾内特异性表达,定位于精子头后部,因此可能与精卵识别有关。因为它是一种天然的蛋白多肽,可以预见可能具有较少的副作用,本发明的其他优点可从以下的详细描述获知。

附图说明

[0019] 图 1. HEL-213 蛋白在人精子上的免疫荧光定位

[0020] 红色荧光显示精子核;绿色荧光显示 HEL-213 蛋白在精子上的定位;

[0021] A 组:阳性对照, A3 显示 HEL-75 蛋白结合于整个精子(文章已发表);

[0022] B组:阴性对照。

[0023] C组:HEL-213蛋白定位, C3. 显示HEL-213蛋白结合在精子头后部。

[0024] 比例尺:5mm。

[0025] 图 2 HEL-213 基因组织表达图谱

[0026] 1 附睾头 2 附睾体 3 附睾尾 4 睾丸 5 心 6 肝 7 脾 8 肾 9 胃 10 阴性

对照

[0027] 图 3. HEL-213 蛋白在附睾液表达的 western blot 结果

[0028] M:Marker: 1:阳性对照, HEL-75蛋白: 2:阴性对照, 小鼠血清: 3:HEL-213蛋白

[0029] 本发明的蛋白包括了所述蛋白多肽的具有相同或相似性生物活性或功能的变异形式,这些变异形式包括(但并不限于):相对于天然蛋白的氨基酸序列有若干个(通常为1-50个,较佳地1-30个,更佳地1-20个,最佳的1-10个)氨基酸的缺失、插入和取代。另外,所述缺失或插入(增加)也可发生在C末端和/或N末端(通常有20个以内,较佳地为10个以内,更佳地为5个以内的氨基酸缺失或增加),在本领域中,用性能相近或相似的氨基酸进行取代时,通常不会改变氨基酸的功能,提供功能相似氨基酸的保守性置换表是本领域所熟知的。下列5组各自含有能相互保守置换的氨基酸;脂族:甘氨酸(G)、丙氨酸(A)、缬氨酸(V)、亮氨酸(L)、异亮氨酸(I);芳族:苯丙氨酸(F)、酪氨酸(Y)、色氨酸(W);含硫:甲硫氨酸(M)、半胱氨酸(C);碱性:精氨酸(R)、赖氨酸(K)、组氨酸(H);酸性:天冬氨酸(D)、谷氨酰胺(Q)。另外,该术语还包括了蛋白的片段或衍生物,条件是该片段或衍生物保留了所希望的蛋白生物活性。

[0030] 本发明的核苷酸序列通常可以用 PCR 扩增法、重组法或人工合成的方法获得。对于 PCR 扩增法,可根据本发明所公开的有关核苷酸序列,尤其是开放阅读框序列来设计引物,用本领域技术人员已知的常规方法所制备的 cDNA 文库作为模板,扩增而得有关序列。这通常是将其克隆入载体,再转入细胞,然后通过常规方法从增殖后的宿主细胞中分离得到有关序列。

[0031] 本发明中,使用本领域技术人员已知的常规方法将包含编码本发明的蛋白的核苷酸序列插入到载体中,这些方法包括但不限于体外重组 DNA 技术,体内重组技术等。

[0032] 上述载体可用于转化或转染适当的原核和真核细胞,以使其能够表达所编码的本发明的蛋白,宿主细胞可以是原核细胞,如细菌细胞,或是低等真核细胞,如酵母细胞;或是高等真核细胞,如昆虫细胞等。可采用的转化、转染方法包括但并不限于:磷酸钙共沉淀法、显微注射、电穿孔、脂质体介导等。

[0033] 本发明的蛋白在细胞内表达,如果需要,可利用其物理的、化学的和其他特性通过各种方法分离和纯化表达产物,这些方法是本领域技术人员所熟知的。这些方法的例子包括但不限于:常规的复性处理、用常规的蛋白沉淀剂处理(盐析方法)、离心、渗透破菌、声波破菌、超离心、分子筛层析、吸附层析、离子交换层析、高效液相层析和其它各种层析技术及这些方法的结合。

[0034] 本发明还包括对蛋白或其片段具有特异性的多克隆抗体和单克隆抗体,还包括具有免疫活性的抗体片段或嵌合抗体,如具有鼠抗体结合特异性但仍保留来自人的抗体部分的抗体。

[0035] 本发明的抗体可以通过本领域内技术人员已知的各种技术进行制备。例如,纯化的基因产物或者其具有抗原性的片段,可被施用于动物以诱导多克隆抗体的产生,本发明的抗体也可以是单克隆抗体。此类单克隆抗体可以利用杂交瘤技术来制备。

[0036] 发明人通过研究进一步发现,该蛋白定位于成熟精子的头后区(图 1),在附睾的头、体及睾丸,心、肝、脾、肾表达量较高,在胃组织没有表达(图 2)。发明人在大肠杆菌中表达了人 HEL-213 蛋白,用其免疫小鼠,获得了其多抗血清。发明人用 Western blot 在附睾

体部检测到一条 20KD 左右条带(图 3)。

[0037] 本发明的药物组合可根据各种需要制成各种剂型,通常可将药物组合物制成可注射剂,例如液体溶液或悬浮液;还可制成在注射前适合配入溶液或悬液中、溶液载体的固体形式,脂质体也包括在药学上可接受的载体的定义中,本发明的药物组合物可由医师根据患者种类、年龄、体重和大致疾病状况、给药方式等因素确定对病人有益的剂量进行施用,为了提高用药效果,本发明的蛋白也可以与其他药物共同使用。

[0038] 下面结合具体实例,进一步阐述本发明,应理解这些实例仅用于说明本发明而不用于限制本发明的范围,除非另有描述,本发明的实施将采用分子生物学、微生物学、重组DNA和免疫学的常规技术,这些均是本领域技术人员所知的。这些技术在下面文献中有完整的描述:例如 Sambrook《分子克隆实验指南》第二版(1989);《DNA 克隆》第 I 和第 II 卷 (D. N. Glover编辑,1985);《寡核苷酸合成》(M. J. Gait编辑,1984);《核酸杂交》(B. D. Hames和 S。 J。Higgins编辑。1984);《蛋白质纯化;原理和实践》第 2版(Spring-Verlag, N. Y.),以及《实验免疫学手册》I-IV卷 (D. C. Weir和 C. C. Blackwell编辑 1986)或者,可以按照试剂生产商所提供的说明书进行。

具体实施方式

[0039] 实施例 1. 采用基因工程技术制备人类附睾表达蛋白 HEL-213

[0040] 基因克隆及序列分析

[0041] 对本实验室构建的人附睾 cDNA 文库进行大规模测序筛选,获取表达序列标签 (EST),利用 Unigene 数据库进行电子克隆,获得人 HEL-213 全长 cDNA。使用 Expasy Translate tool(http://us.expasy.orghttp://us.expasy.org), InterProScan(http://www.ebi.ac.uk/Tools/http://www.ebi.ac.uk/Tools/) 和 Protein 术 roteinblast(http://www.ncbi.nlm.nih.gov/BLAST/http://www.ncbi.nlm.nih.gov/BLAST/)等预测HEL 213 肽序列及假定功能。SignalP(http://www.cbs.dtu.dkhttp://www.cbs.dtu.dk),PSORTII和 WoLFPSORT(http://psort.nibb.ac.jp)等软件分析预测该蛋白的信号肽及胞内定位。ProfileScan(http://myhits.isb-sib.ch/cgi-bin/PFSCANhttp://myhits.isb-sib.ch/cgi-bin/PFSCANhttp://myhits.isb-sib.ch/cgi-bin/PFSCANhttp://myhits.isb-sib.ch/cgi-bin/PFSCAN)预测 N端糖基化和磷酸化位点。

[0042] 对获得的人 HEL-213 全长 cDNA,根据生物信息学预测 HEL-213 编码区,设计一对特异引物:F01:5'-TTGGTACCGACGACGACGACGACGACGACGACGACGACGTTTCCTCTGCTGC-3',F02:5'- GCGGCGA ATTCCAACTTAGAGCCACAAAC-3',上下游引物两端分别引进限制性内切酶位点 KpnI 和 EcoRI。引物由上海生工生物工程技术服务有限公司合成。以本实验室构建的人附睾 cDNA 文库为模板,PCR 扩增 HEL-213 基因片段。PCR 反应条件:94℃预变性 10min,(94℃,40s;55℃,45s;70℃,30s)30个循环,70℃延伸 10min,4℃保存。反应结束后,1.0%琼脂糖凝胶电泳检测并分离回收目的片段,插入克隆载体 pMD-18T 中进行测序鉴定。

[0043] 重组 HEL-213 蛋白表达及纯化

[0044] 测序鉴定后HEL-213基因通过KpnI和EcoRI位点克隆至表达载体pET-32b(+)中,使其与融合标签阅读框一致。重组表达载体pET32b(+)-HEL-213转入E.coli BL21(DE3)感受态细胞,利用菌落PCR筛选阳性克隆,工程菌株在1mM IPTG,32℃条件下诱导4h后,N端带有His-tag的重组蛋白通过"两步镍亲和层析法"对重组HEL-213蛋白进行分离纯化。

简单地说,"第一步亲和层析"用于纯化重组 Trx-HEL-213 融合蛋白。然后融合蛋白用重组肠激酶裂解,释放融合标签。最后,运用"第二步亲和层析"回收重组 HEL-213 蛋白。纯化后的重组蛋白用 Bradford (Bradford 1976) 法进行定量,然后用冷冻干燥进行保存。

[0045] 实施例 2. 抗 HEL-213 多克隆抗血清的制备

[0046] 用重组 HEL-213 蛋白免疫 BALB/C 小鼠制备多抗。简单地说,每只老鼠于第 1 天注射 $50\,\mu\,g$ 重组蛋白与等量的完全福氏佐剂 (CFA)。然后在第 15,30 和 45 天注射 $25\,\mu\,g$ 重组蛋白和等量的不完全福氏佐剂 (IFA) 加强免疫。第 60 天从眼球取血,分离血清后用 ELASA 和 western blot 分析抗体的效价和特异性。ELISA 分析表明抗体效价达到 1 : 10000。Westernblot 显示对重组蛋白和从人附睾液中抽取的天然 HEL-213 都具有良好的特异性。

[0047] 实施例 3. 人 HEL-213 mRNA 组织表达谱研究

[0048] 为了确定 HEL-213 的表达模式,采用半定量 RT-PCR 分析 HEL-213 基因在人附睾头、体、尾,睾丸,心,肝,脾,肺,肾,胃等组织中的表达差异。用 TRIzol (Tiangen,Bei jing,China) 抽提总 RNA,1ug 总 RNA 用 20UAMV 逆转录酶 (Promega) 和 0. 3ugoligodT18 (Promega) 反转录成 cDNA。然后,2ul 合成的 cDNA 利用基因特异引物进行 PCR 扩增。20ul 反应体系含有:2ul $10 \times PCR$ buffer (with $MgCl_2$),2ul dNTP Mix(10mmol/L),1ul 每个引 ul (25umol/L),1ul Taq DNA聚合酶(2.5U/ul),2ulcDNA模板以及 11ulddH20。PCR 反应的程序为:94℃,10min;94℃,1min;54℃(对 HEL-213)/49℃(β-actin)30s;72℃,1min(35循环);72℃延伸 7min。β-actin 的表达作为内参。所有 PCR 扩增产物用 1.5%琼脂糖电泳分析。结果显示,该基因的 mRNA 在人附睾头、体、睾丸、心、肝、脾、肾组织均有表达,在胃组织没有表达。

[0049] 实施例 4. 人 HEL-213 蛋白在组织的免疫荧光定位

[0050] 取人睾丸、附睾组织冰冻切片,进行免疫荧光染色,其中一抗为鼠抗 rHEL-213 多抗 (1:400),二抗为 FITC-标记羊抗鼠 IgG (1:200),细胞核用 PI 染色。染色后所有的切片用 80%甘油封片,然后用共聚焦显微镜 (LeicaTCSSP2 AOBS) 观察结果。实验同时以小鼠免疫前血清替代一抗作为阴性对照。

[0051] 实施例 5. 人附睾蛋白提取物与 Western blot

[0052] 将从人附睾液中提取的总蛋白抽提物 20ug,用 15% SDS-PAGE 分离,然后湿转到 PVDF 膜上进行 western blot。鼠抗人 HEL-213 多抗为一抗(1: 5000),二抗为 HRP-标记羊抗鼠 IgG(1:500)。辣根过氧化酶的活性用增强型 HRP-DAB 底物显色试剂盒分析 Westernblot 显示抗人 HEL-213 多抗对重组蛋白和从人附睾液中抽取的天然 HEL-213 都具有良好的特异性。

[0053] 实施例 6. 人 HEL-213 蛋白在精子的免疫荧光定位

[0054] 收集精子用 PBS 洗涤后涂布于 1% 明胶包被的载玻片上,自然晾干,然后用甲醇固定 10 分钟。含有精子的载玻片用 3% BSA 在室温下封闭 1 小时,然后添加鼠抗 10 HEL-213 多抗 (1:200),4 C过夜。免疫前小鼠血清做阴性对照。用 PBST (PBScontaining 0.1% Tween-20) 洗涤三次,加入对应的 FITC-标记羊抗鼠 1g C二抗 (1:200)。载玻片用 PBST 洗涤三次,然后用 80% 甘油封片。用 01 ympus B X-52 显微镜观察,10 EL-213 蛋白结合在精子的头后部,可能与精卵识别有关。

[0055] 实施例 7. HEL-213 重组蛋白的抗菌活性

[0056] 运用克隆菌落形成单位 (CFU) 分析抗菌活性。简单地说,过夜培养的 E. coli

XL-1b1ue 生长到对数期(0D600 = 0.4-0.5)后用 10 mM PBS(pH7.4)稀释。大约 $2 \times 10^6 \text{CFU/ml}$ 细菌在与 $12.5 \sim 100 \text{ug/ml}$ 的 HEL-213 混合,37 C 培养。在开始培养后的 15,30,60 和 120 min 分别在取样。将样品用 10 mMPBS (pH7.4)做系列稀释,每个稀释度取 100 ul 涂布于 LB 琼脂平板,37 C 培养过夜至形成单菌落。统计菌落个数,抗菌活性用细菌存活的百分数表示,公式为:%存活=(蛋白处理后存活克隆数/未经蛋白处理后存活的克隆数)×100 s。实验以 10 mMPBS (pH7.4)代替蛋白处理细菌作为阴性对照。

[0057] 实施例 8 HEL-213 与精子运动性以及体外受精的关系研究

[0058] 利用 HEL-213 多抗封闭正常人精子,然后进行精子运动性和体外受精分析。实验按照 vitro life 标准试剂盒提供的方法进行。简单地说,精子先用 SpermRinse-30于37℃、5% CO₂培养 1 小时获能。然后按照 1:200 加入鼠抗 rHEL-213 多抗,于 37℃、6% CO₂培养 2 小时进行封闭。封闭后的精子分成两部分,一部分直接利用计算机辅助系统分析精子的运动性。另一部分用 G-Fert 洗涤 2 次,并调整至终浓度为 $1.0 \times 10^7 \text{cells/ml}$ 。加入 100 ul 精子样品于 35mm 的培养皿中,然后覆盖石蜡油放入 37 ℃、6% CO₂ 和饱和湿度培养箱内待用。经 G-MOPS 处理后成熟卵母细胞加入预先准备好的受精滴中,在 37 ℃、6% CO₂ 和饱和湿度培养箱中培养观察受精情况,每日记录胚胎发育情况。以上所有实验同时用免疫前小鼠血清作为阴性对照。

```
[0059]
        序列表
[0060]
        <110> 李建远
[0061]
        <120>人类附睾表达精子结合蛋白 HEL-213 及其编码基因与应用
[0062]
        <160>2
[0063]
        <170>PatentIn version 3.5
[0064]
        <210>1
[0065]
        <211>907
[0066]
        <212>DNA
[0067]
        <213>Homo sapiens
[0068]
        <220>
[0069]
        <221>CDS
[0070]
        <222>(112).. (711)
[0071]
        <400>1
[0072]
                                                                              60
        agcggtgtga cctagagcag gcatggaatt ttgggtgtca ccaggtaaac agagccctca
[0073]
        gcatctgaat agaaactgaa caggaacaga agagattaca ctacatctga g atg gag
                                                                             117
[0074]
                                                                   Met Glu
[0075]
[0076]
        acc ttt cct ctg ctg ctc agc ctg ggc ctg gtt ctt gca gaa gca
                                                                             165
[0077]
        Thr Phe Pro Leu Leu Leu Ser Leu Gly Leu Val Leu Ala Glu Ala
[0078]
                5
                                     10
                                                          15
[0079]
        tca gaa agc aca atg aag ata att aaa gaa gaa ttt aca gac gaa gag
                                                                             213
[0080]
        Ser Glu Ser Thr Met Lys Ile Ile Lys Glu Glu Phe Thr Asp Glu Glu
[0081]
            20
                                 25
                                                      30
```

[0082]	atg caa tat gac atg gca aaa agt ggc caa gaa aaa cag acc att gag	261
[0083]	Met Gln Tyr Asp Met Ala Lys Ser Gly Gln Glu Lys Gln Thr Ile Glu	
[0084]	35 40 45 50	
[0085]	ata tta atg aac ccg atc ctg tta gtt aaa aat acc agc ctc agc atg	309
[0086]	Ile Leu Met Asn Pro Ile Leu Leu Val Lys Asn Thr Ser Leu Ser Met	
[0087]	55 60 65	
[8800]	tcc aag gat gat atg tct tcc aca tta ctg aca ttc aga agt tta cat	357
[0089]	Ser Lys Asp Asp Met Ser Ser Thr Leu Leu Thr Phe Arg Ser Leu His	
[0090]	70 75 80	
[0091]	tat aat gac ccc aag gga aac agt tcg ggt aat gac aaa gag tgt tgc	405
[0092]	Tyr Asn Asp Pro Lys Gly Asn Ser Ser Gly Asn Asp Lys Glu Cys Cys	
[0093]	85 90 95	
[0094]	aat gac atg aca gtc tgg aga aaa gtt tca gaa gca aac gga tcg tgc	453
[0095]	Asn Asp Met Thr Val Trp Arg Lys Val Ser Glu Ala Asn Gly Ser Cys	
[0096]	100 105 110	
[0097]	aag tgg agc aat aac ttc atc cgc agc tcc aca gaa gtg atg cgc agg	501
[0098]	Lys Trp Ser Asn Asn Phe Ile Arg Ser Ser Thr Glu Val Met Arg Arg	
[0099]	115 120 125 130	
[0100]	gtc cac agg gcc cec agc tgc aag ttt gta cag aat cet ggc ata agc	549
[0101]	Val His Arg Ala Pro Ser Cys Lys Phe Val Gln Asn Pro Gly Ile Ser	
[0102]	135 140 145	
[0103]	tgc tgt gag agc cta gaa ctg gaa aat aca gtg tgc cag ttc act aca	597
[0104]	Cys Cys Glu Ser Leu Glu Leu Glu Asn Thr Val Cys Gln Phe Thr Thr	
[0105]	150 155 160	
[0106]	ggc aaa caa ttc ccc agg tgc caa tac cat agt gtt acc tca tta gag	645
[0107]	Gly Lys Gln Phe Pro Arg Cys Gln Tyr His Ser Val Thr Ser Leu Glu	
[0108]	165 170 175	
[0109]	aag ata ttg aca gtg ctg aca ggt cat tct ctg atg agc tgg tta gtt	693
[0110]	Lys Ile Leu Thr Val Leu Thr Gly His Ser Leu Met Ser Trp Leu Val	
[0111]	180 185 190	
[0112]	tgt ggc tct aag ttg taa atcccacaga gctttaggac tagggtctta	741
[0113]	Cys Gly Ser Lys Leu	
[0114]	195	
[0115]	ctaaagaagg acctettett gtteattett gtttaaacet tteettaata tetaetettt	801
[0116]	agcactatag tgaactcctg attatttatt ctaactggag gagtgaaaaa tccaaaattg	861
[0117]	tggataattc aattaaaagt tatgactgac aaaaaaaaaa	907
[0118]	<210>2	
[0119]	<211>199	
[0120]	<212>PRT	

[0121]	<213>Homo sapiens
[0122]	<400> 2
[0123]	Met Glu Thr Phe Pro Leu Leu Leu Ser Leu Gly Leu Val Leu Ala
[0124]	1 5 10 15
[0125]	Glu Ala Ser Glu Ser Thr Met Lys Ile Ile Lys Glu Glu Phe Thr Asp
[0126]	20 25 30
[0127]	Glu Glu Met Gln Tyr Asp Met Ala Lys Ser Gly Gln Glu Lys Gln Thr
[0128]	35 40 45
[0129]	Ile Glu Ile Leu Met Asn Pro Ile Leu Leu Val Lys Asn Thr Ser Leu
[0130]	50 55 60
[0131]	Ser Met Ser Lys Asp Asp Met Ser Ser Thr Leu Leu Thr Phe Arg Ser
[0132]	65 70 75 80
[0133]	Leu His Tyr Asn Asp Pro Lys Gly Asn Ser Ser Gly Asn Asp Lys Glu
[0134]	85 90 95
[0135]	Cys Cys Asn Asp Met Thr Val Trp Arg Lys Val Ser Glu Ala Asn Gly
[0136]	100 105 110
[0137]	Ser Cys Lys Trp Ser Asn Asn Phe Ile Arg Ser Ser Thr Glu Val Met
[0138]	115 120 125
[0139]	Arg Arg Val His Arg Ala Pro Ser Cys Lys Phe Val Gln Asn Pro Gly
[0140]	130 135 140
[0141]	Ile Ser Cys Cys Glu Ser Leu Glu Leu Glu Asn Thr Val Cys Gln Phe
[0142]	145
[0143]	Thr Thr Gly Lys Gln Phe Pro Arg Cys Gln Tyr His Ser Val Thr Ser
[0144]	165 170 175
[0145]	Leu Glu Lys Ile Leu Thr Val Leu Thr Gly His Ser Leu Met Ser Trp
[0146]	180 185 190
[0147]	Leu Val Cys Gly Ser Lys Leu
[0148]	195

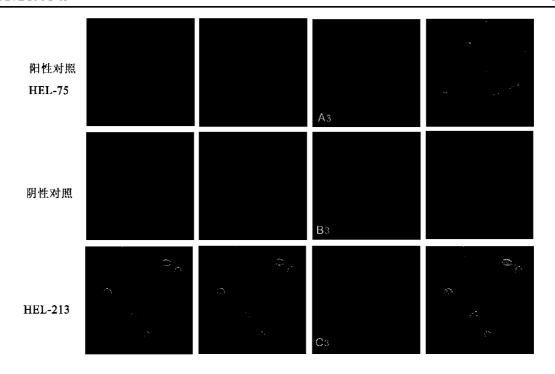
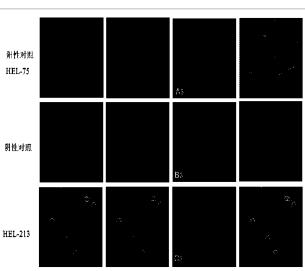


图 1

灰度值	附黎头	附察体	附察尾	察丸	45	AT	脾	NA NA	BB
HEL-213	55.75	58.68	39.56	57.68	70.39	68.54	54.53	71.45	3.67
β -actin	71.4	68.S	70.4	69.3	72.2	695	67.8	68.3	693

图 2


图 3

专利名称(译)	人类附睾表达精子结合蛋白HEL-213及其编码基因与应用					
公开(公告)号	CN101724054A	公开(公告)日	2010-06-09			
申请号	CN200810305166.9	申请日	2008-10-24			
[标]申请(专利权)人(译)	李建远					
申请(专利权)人(译)	李建远					
当前申请(专利权)人(译)	李建远					
[标]发明人	李建远					
发明人	李建远					
IPC分类号	C07K14/435 C12N15/12 C12N15/63 C12N5/10 C07K16/18 A61K38/17 A61K31/7088 A61K48/00 A61K35/12 A61P15/16 A61P31/00 G01N33/53 A61K35/48					
外部链接	Espacenet SIPO					

摘要(译)

本发明属于生物技术和医学领域。本发明公开了一种新的人附睾特异表达精子结合蛋白HEL-213及其制备和应用。公开了本发明编码HEL-213蛋白的氨基酸序列,提供携带编码本发明蛋白的DNA序列的重组表达载体。该蛋白定位于成熟精子的顶体区,在附睾的头、体及睾丸,心、肝、脾、肾表达量较高,在胃组织没有表达。用Western blot在附睾检测到一条20KD左右条带。HEL-213蛋白可作为免疫性避孕药的研发,以及男性不育症的临床诊断与治疗的靶蛋白。基于HEL-213蛋白开发的相应基因或蛋白检测方法,将广泛用于生殖医学研究领域。

