(19)中华人民共和国国家知识产权局

(12)发明专利申请

(10)申请公布号 CN 109839507 A (43)申请公布日 2019.06.04

(21)申请号 201711210105.X

(22)申请日 2017.11.27

(71)申请人 江苏坤辉生物科技有限公司 地址 226400 江苏省南通市如东掘港镇如 东生命健康产业园5号楼西二楼

(72)发明人 殷卫海 张铭超

(74)专利代理机构 北京安杰律师事务所 11627 代理人 袁沁菲

(51) Int.CI.

GO1N 33/68(2006.01)

GO1N 33/561(2006.01)

GO1N 33/531(2006.01)

权利要求书1页 说明书7页 附图3页

(54)发明名称

一种检测紫外光损伤的生物标志物及其应 用

(57)摘要

本发明提供了一种诊断或检测紫外损伤的新型标志物角蛋白1或其降解物,其中当细胞或组织经过紫外光照射后,组织中的角蛋白1或其降解物的含量、结构会发生变化,且这种变化与组织损伤呈正相关。本发明还提供了另外一种诊断或检测紫外损伤的方法,通过对比组织损伤前后角蛋白1或其降解物的变化率计算或预测皮肤损伤程度。

- 1.分子标记物在制备用于诊断和预测紫外线诱导皮肤细胞或组织损伤的试剂或试剂 盒中的应用,其特征在于,所述分子标记物包括角蛋白1。
- 2.如权利要求1所述的应用,其特征在于,所述分子标记物的检测包括基因水平、蛋白 质水平、和蛋白结构变化中的一种或多种。
- 3. 如权利要求1或2所述的应用,其特征在于,所述分子标记物还包括缺失部分氨基酸序列的角蛋白1片段。
 - 4.一种诊断和预测紫外线诱导皮肤损伤的方法,包括以下步骤:
- (1) 当皮肤受到紫外线照射后,检测受试者的皮肤表皮中的角蛋白1的含量、结构中的至少一种;
- (2) 检测所述受试者未受到紫外线照射损伤下的皮肤表皮中的角蛋白1的含量、结构中的至少一种:
 - (3) 将步骤(1) 和步骤(2) 中获得的角蛋白1的含量、结构相对比,计算相应的变化率;
 - (4) 根据所述变化率,诊断或预测所述受试者的紫外线诱导皮肤损伤程度。
- 5.如权利要求4中所述的方法,在所述预测紫外线诱导皮肤损伤的方法中,检测皮肤表皮中的角蛋白1的时间点时,皮肤表皮还不能被观察到具有损伤。
 - 6.一种非诊断治疗目的检测紫外线诱导皮肤损伤的方法,包括以下步骤:
- (1) 在实验对象的皮肤受到包含一定剂量紫外光的光源照射后,检测所述实验对象经过含紫外光的光源照射的皮肤中角蛋白1含量、结构中的至少一种,其中所述剂量=紫外光功率×照射时间;
- (2) 同样检测所述实验对象未受到含紫外光的光源照射的皮肤表皮中的角蛋白1的含量、结构中的至少一种;
 - (3) 将步骤(1) 和步骤(2) 中获得的角蛋白1的含量、结构相对比, 计算相应的变化率;
- (4)根据所述变化率,监测或预测所述受试者的紫外线诱导皮肤损伤程度或皮肤健康状态。
- 7.如权利要求4至6中任一项所述的方法,其特征在于,所述紫外光包括UVB、UVC中的一种以上。
- 8.如权利要求4至6中任一项所述的方法,其特征在于,所述角蛋白1的检测包括基因水平、蛋白质水平、蛋白质结构变化中的一种或多种。
- 9. 如权利要求4至6中任一项所述的方法,其特征在于,所述角蛋白1还包括缺失部分氨基酸序列的角蛋白1片段。
- 10.如权利要求1至6中任一项所述的方法,其特征在于,所述检测角蛋白1含量、结构的方法包括免疫印迹、免疫组化、免疫荧光、荧光光谱、拉曼光谱、光学检测、或物理性质检测的一种或多种。
- 11.一种模型,该模型用于紫外线诱导皮肤损伤的抑制或激动药物的筛选,其特征在于,使用权利要求4至10中任一项所述的方法构建该筛选模型。
 - 12. 如权利要求11所述的模型在制备用于治疗紫外线诱导皮肤损伤的药物中的应用。

一种检测紫外光损伤的生物标志物及其应用

技术领域

[0001] 本发明涉及预测和检测紫外光诱导皮肤损伤的生物标志物,具体是基于检测皮肤中角蛋白1含量和结构变化,作为预测和检测紫外光诱导皮肤损伤的生物标志物的检测方法及其应用。

背景技术

[0002] 阳光中的紫外线是人的皮肤受到紫外线辐射损伤的主要原因,紫外线辐射对于皮肤会产生多种病理作用,例如皮肤红肿,脱皮,炎症,溃烂,以及多种皮肤疾病等,并会产生大量活性氧化物,造成皮下细胞的DNA损伤,加速皮肤衰老。事实上,人体皮肤衰老90%的原因是由于紫外线照射,而紫外线诱导的最严重的疾病是皮肤癌,已有研究证明,90%以上的皮肤癌是由阳光中的紫外线照射引起的。皮肤癌患者占所有癌症患者中的40%,全世界每年有300多万新发皮肤癌病例,而皮肤癌基金会也指出,五分之一的美国人在一生中的某个阶段会得皮肤癌。随着人类工业化的进展,大气层中负责阻挡紫外线的臭氧层在不断变薄,有专家曾预测,臭氧层厚度减少1%,紫外线辐射强度增加2%。因此,对于皮肤紫外线损伤的检测对于人们提高皮肤的健康水平、防止皮肤癌等重大皮肤疾病的产生,都有着重大的社会经济意义和临床价值。

[0003] 而在我国,由于人口压力巨大,诊断和就医困难,紫外皮肤损伤尚未得到足够的重视,往往很多皮肤受创患者只有受到特别强的皮损后才会门诊就医,而使得近年来,我国乃至于全世界紫外创伤导致的皮肤病和皮肤癌患者数量逐渐增多。因此,有效的皮肤紫外损伤的检测方法和手段,以及低成本便携式的紫外损伤检测设备,对于皮肤健康的监测、皮肤疾病特别是皮肤癌的诊断和治疗,意义重大。

[0004] 现在临床上皮肤紫外线损伤的诊断以皮肤科医生目测为主,对医生的经验依赖性强,且只能对较严重的皮肤损伤进行评估,无法实现对紫外线造成的积累性皮肤损伤,特别是皮肤癌变的早期诊断。现有的皮肤损伤检测仪器,只能通过紫外光在组织传播过程中的吸收不同,对皮下进行反射成像实现一个非常粗略的估计。其原理是:紫外灯照射皮肤,检测皮肤反射回的光线,由于正常皮肤组织和受损区域对光线的吸收系数不同,将反射或散射回来的光线进行成像,从而可以对皮肤内黑色素、水分、脂质的含量做一个非常粗略的估计。由于激光在组织中的传播对于散射非常敏感,而且根据瑞利散射和弥散射原理,光子散射量与波长的四次方成反比,对于紫外光这种超短波长而言,其在皮肤组织的传播受到散射的干扰已经非常显著,同时紫外光在正常细胞中的吸收也非常强烈,因此,这种反射成像会受到非常多因素的干扰,准确率和重复性都非常低。对于同样一个人而言,在不同组织,或同样组织中的不同肌肉状态下的测量,可能测得的结果差异已经与紫外受损造成的差异相当。因此,这类仪器清晰度、灵敏度差,无法检测紫外线造成的早期皮肤损伤,对皮肤损伤及进一步的皮肤疾病的早期检测和预防毫无指导意义,在临床上几乎没有应用。特别地,对于皮肤科门诊,往往只能使用光实验对皮肤的紫外敏感性做一个定性评估,其方法是,在一个非见光皮肤区域,如背部的一块皮肤上进行紫外光照射,然后通过这块皮肤出现的红斑

面积来评价患者的皮肤紫外敏感性,既不准确,也无法进行损伤的直接检测。

发明内容

[0005] 本发明提供了一种分子标记物在制备用于诊断和预测紫外线诱导细胞和组织损伤的试剂或试剂盒中的应用,其中,所述分子标记物包括角蛋白1。

[0006] 在本发明中,所述角蛋白1的检测包括基因水平、蛋白质水平、蛋白结构变化中的一种或多种。其中,角蛋白1优选是缺失部分氨基酸序列的角蛋白1片段,也称为角蛋白1降解物;角蛋白1可以是上述片段蛋白和全长角蛋白1的混合组合物,检测上述蛋白或组合物不限于蛋白质水平,还可以是基因水平,包括磷酸化、乙酰化等修饰水平。

[0007] 在一个实施例中,所述角蛋白1还包括蛋白结构变化,其中,所述蛋白结构包括角蛋白1与其他蛋白例如角蛋白10所形成的二聚体结构,其中角蛋白1包括缺失部分氨基酸序列的角蛋白1片段,即所述蛋白结构包括缺失部分氨基酸序列的角蛋白1片段和其他蛋白例如角蛋白10所形成的二聚体结构。

[0008] 本发明另一方面,提供了一种诊断和预测紫外线诱导皮肤损伤的方法,包括以下步骤:

[0009] (1) 当皮肤受到紫外线照射损伤后,检测受试者的皮肤表皮中的角蛋白1的含量、结构中的至少一种;

[0010] (2) 检测所述受试者未受到紫外线照射损伤下的皮肤表皮中的角蛋白1的含量、结构中的至少一种;

[0011] (3) 将步骤(1) 和步骤(2) 中获得的角蛋白1的含量、结构相对比,计算相应的变化率;

[0012] (4) 根据所述变化率,诊断或预测所述受试者的紫外线诱导皮肤损伤程度。

[0013] 本发明还提供了一种非诊断治疗目的检测紫外线诱导皮肤损伤的方法,包括以下步骤:

[0014] (1) 在实验对象的皮肤受到包含一定剂量紫外光的光源照射后,检测所述实验对象经过含紫外光的光源照射的皮肤中角蛋白1降解物含量、结构中的至少一种,其中所述剂量=紫外光功率×照射时间;

[0015] (2) 同样检测所述实验对象未受到含紫外光的光源照射的皮肤表皮中的角蛋白1 降解物的含量、结构中的至少一种:

[0016] (3) 将步骤(1) 和步骤(2) 中获得的角蛋白1降解物的含量、结构相对比, 计算相应的变化率:

[0017] (4) 根据所述变化率,监测或预测所述受试者的紫外线诱导皮肤损伤程度或皮肤健康状态。

[0018] 在一个具体的实施例中,检测实验对象的时间点为皮肤受到一定氧化应激条件处理或影响下的0-30天内检测实验对象,优选7天内,更优选3天内。

[0019] 在本发明中,紫外光包括UVB、UBC中的一种或多种。

[0020] 在一个实施例中,所述角蛋白1包括基因水平、蛋白质水平、蛋白质结构中的一种或多种。其中,角蛋白1包括但不限于全长的角蛋白 1,或角蛋白1缺失部分氨基酸序列的角蛋白1片段,或该片段蛋白和全长角蛋白1的混合,检测上述蛋白不限于蛋白质水平,还可以

是基因水平,包括磷酸化、乙酰化等修饰水平。

[0021] 在一个实施例中,所述角蛋白1还包括蛋白结构变化,其中,所述蛋白结构包括角蛋白1与其他蛋白例如角蛋白10所形成的二聚体结构,其中角蛋白1包括其缺失部分氨基酸序列的角蛋白1片段,即所述蛋白结构包括缺失部分氨基酸序列的角蛋白1片段和其他蛋白例如角蛋白10所形成的二聚体结构。

在本发明中,缺失部分氨基酸序列的角蛋白1片段也称作角蛋白1降解物,其选自 缺失1至644之间任意数个氨基酸的角蛋白1片段,该缺失可以是角蛋白1的N端的缺失,也可 以是角蛋白1的C端的缺失,还可以是角蛋白1全序列中任意氨基酸的组合的缺失。例如缺失 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18, 19,20,21,22,23,24,25,26,27,28, 29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50, 51,52,53, 54,55,56,57,58,59,60,61,62,63,64,65,66, 67,68,69,70,71,72,73,74,75,76,77,78, 79\80\81\82\83\84\85\86\87\88\89\90\91\92\93\94\95\96\97\98\99\100\101\102\ 103、104、105、106、107、108、109、110、111、112、113、114、115、116、117、118、119、120、121、 122、123、124、125、126、127、128、129、130、131、132、133、134、135、136、137、138、139、 140、141、142、143、144、145、146、147、148、149、150、 151、152、153、154、155、156、157、158、 159,160,161,162,163, 164,165,166,167,168,169,170,171,172,173,174,175,176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196、197、198、199、200、201、202、 203、204、205、206、207、208、209、210、211、212、213、214、 215、216、217、218、219、220、221、222、223、224、225、226、227、228、229、230、231、232、 233、234、235、236、237、238、239、240、241、 242、243、244、245、246、247、248、249、250、251、 252,253,254, 255,256,257,258,259,260,261,262,263,264,265,266,267, 268,269, 270、271、272、273、274、275、276、277、278、279、280、 281、282、283、284、285、286、287、288、 289,290,291,292,293, 294,295,296,297,298,299,300,301,302,303,304,305,306, 307,308,309,310,311,312,313,314,315,316,317,318,319, 320,321,322,323,324,325, 326,327,328,329,330,331,332, 333,334,335,336,337,338,339,340,341,342,343,344, 345、346、347、348、349、350、351、352、353、354、355、356、357、358、359、360、361、362、 363、364、365、366、367、368、369、370、371、 372、373、374、375、376、377、378、379、380、381、 382,383,384, 385,386,387,388,389,390,391,392,393,394,395,396,397, 398,399, 400,401,402,403,404,405,406,407,408,409,410, 411,412,413,414,415,416,417,418, 419、420、421、422、423、424、425、426、427、428、429、430、431、432、433、434、435、436、 437、 438,439,440,441,442,443,444,445,446,447,448,449, 450,451,452,453,454,455,456, 457,458,459,460,461,462, 463,464,465,466,467,468,469,470,471,472,473,474,475, 476、477、478、479、480、481、482、483、484、485、486、487、488、 489、490、491、492、493、494、 495,496,497,498,499,500,501, 502,503,504,505,506,507,508,509,510,511,512,513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532,533,534,535,536,537,538,539,540, 541,542,543,544,545,546,547,548,549,550, 551、552、553、554、555、556、557、558、559、560、561、562、563、564、565、566、567、568、 569、570、571、572、573、574、575、576、577、578、579、 580、581、582、583、584、585、586、587、 588,589,590,591,592, 593,594,595,596,597,598,599,600,601,602,603,604,605, 606、607、608、609、610、611、612、613、614、615、616、617、618、 619、620、621、622、623、624、625、626、627、628、629、630、631、 632、633、634、635、636、637、638、639、640、641、642、643、644 个氨基酸的角蛋白1片段中的一个或多个。

[0023] 在一个实施例中,所述检测角蛋白1或角蛋白1降解物含量、结构的方法包括免疫印迹、免疫组化、免疫荧光、荧光光谱、拉曼光谱、光学检测、或物理性质检测的一种或多种。

[0024] 本发明的另一方面,还提供了一种模型,该模型用于紫外线诱导皮肤损伤的抑制或激动药物的筛选,其特征在于,使用本发明所述的方法构建该筛选模型。

[0025] 本发明进一步提供了所述模型在制备用于治疗紫外线诱导皮肤损伤的药物中的应用。

附图说明

[0026] 图1示出UVB处理6小时内,KRT1含量下降图。

[0027] 图2示出UVB处理7天内,HE染色表皮形态变化图。

[0028] 图3示出UVB处理7天内,IE染色耳朵形态变化图。

[0029] 图4示出UVC处理1小时内,KRT1含量下降图,KRT10含量不变图。

[0030] 图5示出UVC处理3天内,IE染色表皮形态变化图。

[0031] 图6示出UVC处理3天内,HE染色耳朵形态变化图。

具体实施方式

[0032] 下面将通过具体描述,对本发明作进一步的说明。

[0033] 除非另有限定,本文中所使用的所有技术和科学术语具有与本发明所属技术领域的普通技术人员通常理解相同的含义。

[0034] 如本文所用,"角蛋白1"、"keratin 1"、"KRT1"可互换,其是包括能够使用角蛋白1 抗体识别检测的角蛋白,其可以是单一物质,也可以是混合物;在本发明中,角蛋白1包括其缺失部分氨基酸序列的角蛋白1片段,所述缺失部分氨基酸序列的角蛋白1片段为角蛋白1的N 端或C端缺失1至644个氨基酸中任一种的角蛋白1片段或其组合。

[0035] 如本文所用,"缺失部分氨基酸序列的角蛋白1片段"、"角蛋白 1降解物"、"降解物"可互换,其是指角蛋白1的N端或C端缺失1至644 个氨基酸中任一种的角蛋白1片段或其组合。

[0036] 实施例1UVB照射后皮下荧光的变化

[0037] 角蛋白家族中亚型众多,且功能各异。在上皮细胞中,角蛋白参与多种重要的功能,包括中间丝的形成,炎症反应,细胞信号传导等。而与角蛋白相互作用的蛋白,数量就更加庞大,近数百种,且这一数字还随着科学研究的发现在不断增加,因此角蛋白家族和与这些蛋白中相互作用蛋白中寻找具有检测和精确预测皮肤损伤的标志物,意义重大。本发明中发现的角蛋白1具有明确诊断和预测紫外造成的皮肤损伤的能力,具有良好的医用价值。

[0038] 根据本发明,使用雄性C57小鼠,UVB照射的小鼠重量在18-25g范围之间。辐射完成后,小鼠在动物房中进行饲养,条件为22-24℃,12 小时的明/暗循环,并可自由进食取水。

[0039] 其后2小时,6小时牺牲小鼠,取损伤皮肤进行免疫蛋白印迹实验,测定角蛋白1的含量。一天或五天后牺牲小鼠,取损伤皮肤组织,进行 H&E(苏木精&伊红染色)检测。

[0040] 皮肤组织的储存:皮肤取出后,取出适量组织浸泡于4%多聚甲醛,用于制作石蜡切片,剩余组织用铝箔纸包裹好,使用液氮冷冻,之后转移到-80℃冰箱长期保存。

[0041] 皮肤组织石蜡切片:将皮肤组织浸泡4%多聚甲醛溶液24h,然后依照石蜡切片的制作方法依次浸自来水、蒸馏水、梯度酒精、二甲苯、石蜡,制作成石蜡切片。

[0042] 皮肤石蜡切片的H&E染色:将石蜡切片浸二甲苯脱蜡,然后依次浸于梯度酒精、蒸馏水,苏木素染色10分钟,自来水流水冲洗30分钟,蒸馏水浸泡30秒,95%乙醇10s,伊红复染30秒,70%酒精洗涤2次,依次浸梯度酒精、二甲苯,中性树脂封片。

[0043] 对染色结果拍照、量化:对上述两种染色进行拍照。并针对表皮角质化厚度,表皮厚度等指标进行量化。

[0044] 统计分析: 所有数据按照平均值 ± 标准差的方式给出, 数据使用单因素方差分析进行评估, P值小于0.05认为是统计学显著的。

[0045] 免疫蛋白印迹实验(western blot)

[0046] 1.蛋白样品制备

[0047] 用水合氯醛过量麻醉动物后,取耳朵组织,放入称重的EP管中,加入裂解液,置于冰上,研磨,加入裂解液,离心取上清分装后存于-80度冰箱。

[0048] 2.蛋白浓度测定

[0049] 按照BCA试剂盒的说明书,配制标准浓度蛋白。

[0050] 3.SDS聚丙烯酰胺凝胶电泳

[0051] 将配制好的凝胶固定在电泳装置中,分别将蛋白样品加入。电泳、转膜,牛奶室温封闭、TBST洗涤后加入一抗过夜。TBST洗后加入HRP标记的二抗。最后用显色液对硝酸纤维膜进行显色,在成像系统中曝光拍照。

[0052] 实验结果如下图所示:

[0053] UVB处理后的第2小时,6小时后,发现角蛋白1的含量显著下降。且与时间呈现正相关趋势(图1)。图1A为蛋白免疫印迹代表图,图1B 为量化图。此时耳朵并没有观察到皮肤损伤。

[0054] 然后,在UVB处理的第1、3、7天,经过对表皮组织切片HE染色,发现皮肤表皮在UVB处理后的第1天时,没有明显增厚。在UVB处理后的第3天时,呈现显著增厚。在UVB处理后的第7天显著增厚,且程度高于3天。表皮增厚代表UVB造成皮肤损伤(图2A和2B)。

[0055] 更明显的是,UVB处理1、3、7天,切片HE染色,发现小鼠的耳朵在UVB处理后的第1天时,没有明显增厚。UVB处理后的第3天时,呈现显著增厚。UVB处理后的第7天显著增厚,且程度高于3天。其中,耳朵增厚代表UVB造成皮肤损伤(图3A和3B)。

[0056] 由以上实验可以得出,皮肤经过紫外线(UVB)照射后,角蛋白1 含量发生变化,其原因是因为形成了角蛋白1的降解物。且角蛋白1(包括其降解物)的变化与皮肤损伤呈正相关。因此,可以用角蛋白1(包括其降解物)含量的变化预测皮肤损伤程度。

[0057] 发明人还发现,不同剂量的UVB处理均得到了上述类似的结果,即皮肤经过UVB照射后,皮肤表皮组织中的角蛋白1的含量下降,产生了角蛋白1降解物,该降解物的分子量小于全长角蛋白分子量。另外,发明人通过大量的实验数据发现,当UVB处理后检测角蛋白1的含量下降5%以上(例如5%、10%、15%、20%、30%、50%或以上),或检测到角蛋白1的降解物时,在检测角蛋白1后的第2天之后的时间点(例如检测角蛋白1后的第2天、第3天、第4天、

第5天、第6天、第7天、或一周以上,诸如2周以上,1个月以上等)可以观察到皮肤组织损伤。 这说明角蛋白1作为预测的标记物,其灵敏度非常高,可以在损伤还没有发生时就可以通过 含量变化和角蛋白1降解物的出现来预测后续损伤的形成。

[0058] 然而,除角蛋白1外,其他的角蛋白亚型(角蛋白2、5、10等以及相互作用蛋白等近数百种蛋白)和相关标记物均没有发现能够用于预测皮肤损伤。也充分说明角蛋白1的特异性非常高。

[0059] 实施例2 UVC照射后皮下荧光的变化

[0060] 根据本发明,使用雄性C57小鼠,UVC照射的小鼠重量在18-25g范围之间。辐射完成后,小鼠在动物房中进行饲养,条件为22-24℃,12 小时的明/暗循环,并可自由进食取水。

[0061] 其后1小时内牺牲小鼠,取损伤皮肤进行免疫蛋白印迹实验,测定角蛋白1的含量。 一天或三天后牺牲小鼠,取损伤皮肤组织,进行H&E(苏木精&伊红染色)检测。

[0062] 皮肤组织的储存:皮肤取出后,取出适量组织浸泡于4%多聚甲醛,用于制作石蜡切片,剩余组织用铝箔纸包裹好,使用液氮冷冻,之后转移到-80℃冰箱长期保存。

[0063] 皮肤组织石蜡切片:将皮肤组织浸泡4%多聚甲醛溶液24h,然后依照石蜡切片的制作方法依次浸自来水、蒸馏水、梯度酒精、二甲苯、石蜡,制作成石蜡切片。

[0064] 皮肤石蜡切片的H&E染色:将石蜡切片浸二甲苯脱蜡,然后依次浸于梯度酒精、蒸馏水,苏木素染色10分钟,自来水流水冲洗30分钟,蒸馏水浸泡30秒,95%乙醇10s,伊红复染30秒,70%酒精洗涤2次,依次浸梯度酒精、二甲苯,中性树脂封片。

[0065] 对染色结果拍照、量化:对上述两种染色进行拍照。并针对表皮角质化厚度,表皮厚度等指标进行量化。

[0066] 统计分析: 所有数据按照平均值 ± 标准差的方式给出, 数据使用单因素方差分析进行评估, P值小于0.05认为是统计学显著的。

[0067] 免疫蛋白印迹实验(western blot)

[0068] 1.蛋白样品制备

[0069] 用水合氯醛过量麻醉动物后,取耳朵组织,放入称重的EP管中,加入裂解液,置于冰上,研磨,加入裂解液,离心取上清分装后存于-80度冰箱。

[0070] 2.蛋白浓度测定

[0071] 按照BCA试剂盒的说明书,配制标准浓度蛋白。

[0072] 3.SDS聚丙烯酰胺凝胶电泳

[0073] 将配制好的凝胶固定在电泳装置中,分别将蛋白样品加入。电泳、转膜,牛奶室温封闭、TBST洗涤后加入一抗过夜。TBST洗后加入HRP标记的二抗。最后用显色液对硝酸纤维膜进行显色,在成像系统中曝光拍照。

[0074] 实验结果如下所示:

[0075] UVC处理1小时内,使用UVC 0.33J/cm^2 处理组、 0.66J/cm^2 处理组发现角蛋白1的含量显著下降,且与UVC的剂量呈正相关(图4A)。然而,同样作为角蛋白家族中的重要组成之一的角蛋白10的含量却没有变化(图4B)

[0076] 图5示出了UVC处理第1、3天,切片HE染色,结果发现皮肤表皮在第1天时,角质细胞没有明显减少。但在第3天时,角质细胞显著减少,且程度与UVC的剂量呈正相关。角质细胞减少代表UVC造成的皮肤损伤。

[0077] 图6使出了UVC处理的第1、3天,切片HE染色,发现皮耳朵在第 1天时,没有明显增厚。第3天时,呈现显著增厚。耳朵增厚代表UVC 造成皮肤损伤。

[0078] 由以上实验可以得出,皮肤经过紫外线(UVC)照射后,角蛋白 1含量发生变化,形成角蛋白1的降解物。且该变化与皮肤损伤呈正相关。因此,角蛋白1及其降解物含量的变化能够预测皮肤损伤程度。

[0079] 本领域的技术人员应当明了,尽管为了举例说明的目的,本文描述了本发明的具体实施方式,但可以对其进行各种修改而不偏离本发明的精神和范围。因此,本发明的具体实施方式和实施例不应当视为限制本发明的范围。本发明仅受所附权利要求的限制。本申请中引用的所有文献均完整地并入本文作为参考。

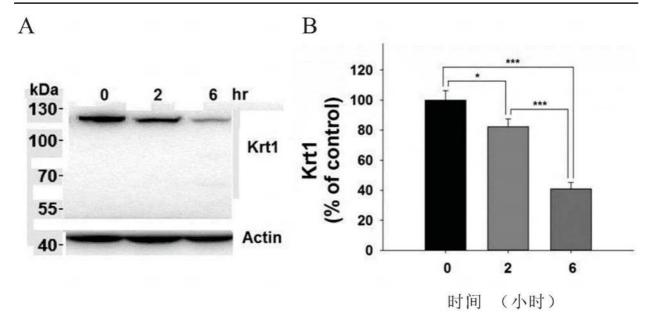


图1

A B

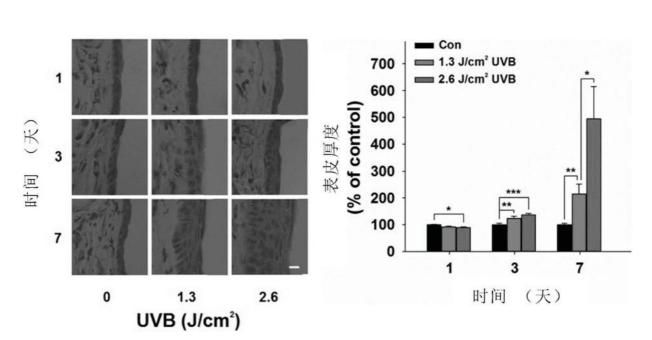


图2

A B

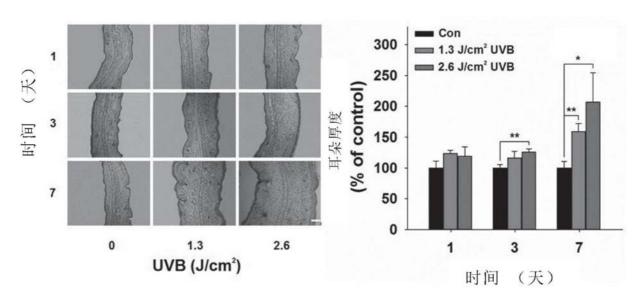


图3

В A o Jichi o,33 Jichi o,66 Jichi 130 kd Krt1 55 kd 100 kd 70 kd Actin 40 kd Actin 40 kd 140 120 Krt10 (% of control) 120 Krt1 (% of control) 100 100 80 60 60 40 20 20 0 0 0.33 0.66 0.33 0.66 UVC (J/cm²) UVC (J/cm²)

图4

A B

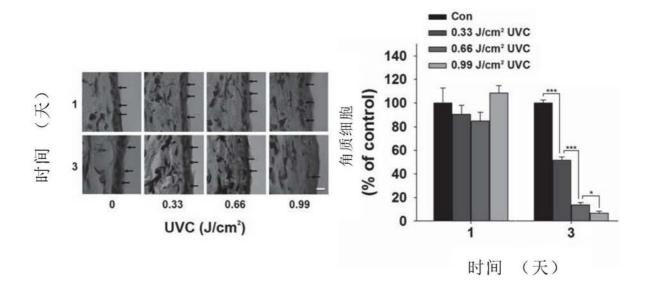
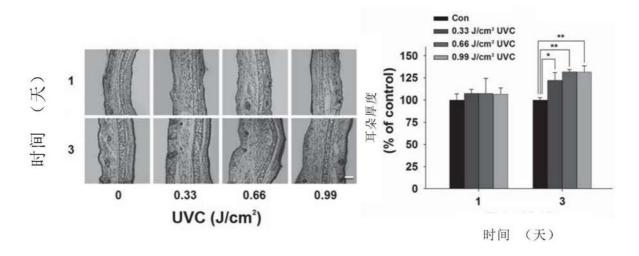
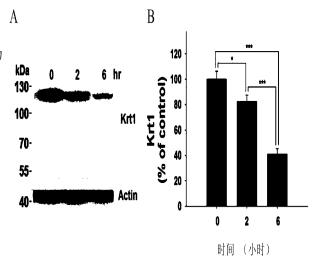


图5

A B




图6

专利名称(译)	一种检测紫外光损伤的生物标志物及其应用			
公开(公告)号	CN109839507A	公开(公告)日	2019-06-04	
申请号	CN201711210105.X	申请日	2017-11-27	
[标]申请(专利权)人(译)	江苏坤辉生物科技有限公司			
申请(专利权)人(译)	江苏坤辉生物科技有限公司			
当前申请(专利权)人(译)	江苏坤辉生物科技有限公司			
[标]发明人	殷卫海 张铭超			
发明人	殷卫海张铭超			
IPC分类号	G01N33/68 G01N33/561 G01N33/5	31		
外部链接	Espacenet SIPO			

摘要(译)

本发明提供了一种诊断或检测紫外损伤的新型标志物角蛋白1或其降解物,其中当细胞或组织经过紫外光照射后,组织中的角蛋白1或其降解物的含量、结构会发生变化,且这种变化与组织损伤呈正相关。本发明还提供了另外一种诊断或检测紫外损伤的方法,通过对比组织损伤前后角蛋白1或其降解物的变化率计算或预测皮肤损伤程度。

