(19)中华人民共和国国家知识产权局

(12)发明专利申请

(10)申请公布号 CN 108982849 A (43)申请公布日 2018.12.11

(21)申请号 201810587349.8

(22)申请日 2018.06.06

(71)申请人 四川农业大学 地址 610000 四川省成都市温江区惠民路 211号

(72)发明人 杨光友 梁雨琴

(74)专利代理机构 成都正华专利代理事务所 (普通合伙) 51229

代理人 何凡

(51) Int.CI.

GO1N 33/573(2006.01)

GO1N 33/535(2006.01)

GO1N 33/536(2006.01)

C12N 9/08(2006.01)

C12N 15/70(2006.01)

权利要求书1页 说明书6页 序列表1页 附图2页

(54)发明名称

EG-TPx的应用以及用于诊断家畜细粒棘球 蚴病的试剂盒

(57)摘要

本发明公开了Eg-TPx的应用以及用于诊断家畜细粒棘球蚴病的试剂盒,Eg-TPx能够作为免疫抗原能够被自然感染细粒棘球蚴病的绵羊阳性血清识别,应用于间接ELISA检测时,具有良好的免疫原性,较高的特异性和灵敏度,灵敏度为92.6%、特异性为99.0%,与其他带科绦虫病阳性血清的交叉反应较低。以细粒棘球绦虫硫氧还蛋白过氧化物酶制得的免疫抗原建立的ELISA检测方法具有良好的诊断效果,可以用于疫区牛羊细粒棘球蚴病的初步筛选。

- 1.细粒棘球绦虫硫氧还蛋白过氧化物酶在制备检测家畜细粒棘球蚴病的重组抗原中的应用。
 - 2.根据权利要求1所述的应用,其特征在于,家畜为牛羊。
- 3.检测家畜细粒棘球蚴病的ELISA试剂盒,其特征在于,包括权利要求1或2所述重组抗原、抗原包被液、稀释液、洗涤液、酶标液、封闭液、HRP标记的二抗、TMB显色液和终止液。
- 4.根据权利要求3所述的检测家畜细粒棘球蚴病的ELISA试剂盒,其特征在于,所述重组抗原通过以下方法制备得到:
- (1)设计引物,提取细粒棘球绦虫总RNA,反转录成cDNA,并将其作为模板,进行PCR扩增;

其中,上游引物序列为:5'-CGCGGATCCATGGCTGTTGTTGG-3';

下游引物序列为:5'-CCGGAATTCTCACGAGCTCATGAACGA-3';

- (2) 重组质粒的构建和鉴定:
- (3) 重组蛋白的诱导表达和纯化。
- 5.根据权利要求4所述的检测家畜细粒棘球蚴病的ELISA试剂盒,其特征在于,步骤(1)中PCR扩增体系为:PCR MasterMix 0.5 μ L、RNase Free dH₂0 0.35 μ L、cDNA模板0.5 μ L、上游引物0.5 μ L、下游引物0.5 μ L;扩增程序为:95℃预变性5min,95℃变性40s,58℃退火45s,72℃延伸45s,35个循环,最后72℃延伸10min。
- 6.根据权利要求4所述的检测家畜细粒棘球蚴病的ELISA试剂盒,其特征在于,步骤(2) 具体过程为:将PCR产物与载体连接,转化感受态细胞,筛选菌落、培养,PCR鉴定然后测序, 将测序无误的菌液扩大培养,提取质粒,对质粒进行酶切回收,回收的目的条带与表达载体 连接,转化,筛选阳性菌落提取质粒,双酶切鉴定并测序,将测序无误的重组表达质粒转化 到大肠杆菌中。
- 7.根据权利要求4所述的检测家畜细粒棘球蚴病的ELISA试剂盒,其特征在于,步骤(3) 具体过程为:将表达菌接种于含AMP的LB培养基中,于37℃、160r/min条件下培养5-6h后加入IPTG诱导表达5-6h,收集诱导后的菌液进行SDS-PAGE电泳分析,然后离心收集菌体,用裂解液重悬,再超声裂解、离心,分别取上清和沉淀进行可溶性分析,并对诱导后的菌液进行重组蛋白纯化。
- 8.根据权利要求3所述的检测家畜细粒棘球蚴病的ELISA试剂盒,其特征在于,所述封闭液为5%脱脂奶粉。
- 9.根据权利要求3所述的检测家畜细粒棘球蚴病的ELISA试剂盒,其特征在于,所述HRP标记的二抗为HRP标记的山羊或绵羊抗兔二抗。

EG-TPx的应用以及用于诊断家畜细粒棘球蚴病的试剂盒

技术领域

[0001] 本发明属于生物技术领域,具体涉及一种细粒棘球绦虫硫氧还蛋白过氧化物酶 (Eg-TPx)的应用以及用于诊断家畜细粒棘球蚴病的试剂盒。

背景技术

[0002] 细粒棘球蚴病,是一种由细粒棘球绦虫(Echinococcus granulosus)的中绦期幼虫寄生在多种哺乳动物肝脏、肺脏等而引起的一种人兽共患病。该病又称囊性包虫病(hydatid disease),呈世界性分布,严重的威胁了公共卫生事业和畜牧业的发展。目前,该病感染了约300万人,估计每年造成损失7.6亿美元。此外,该病在畜牧业造成了至少30亿美元的经济损失,其中包括动物体重减少,牛奶产量减少和生育率降低等问题。因此,该病已经被世界卫生组织列为《被忽视的热带疾病》。

[0003] 我国是包虫病主要流行的国家之一,其主要流行于西北部的农牧地区,目前我国包虫病至少有368个流行县。据学者推算,我国包虫病负担占全球疾病负担40%。由于该病对我国西部、北部农牧民群众带来的重大损失,该病已被列为我国《国家中长期动物疫病防治规划》(2012年-2020年)优先防治和重点防范的动物疾病。

[0004] 目前,家畜包虫病的监测与检疫主要依赖屠宰场尸体剖检后肉眼观察和血清学诊断方法。由于未做进一步组织学鉴定,仅通过肉眼观察屠宰后了动物病理变化通常有较高的错误率(15.4%)。然而关于该病重组诊断抗原的报道还较少,并且存在敏感性和特异性不高等问题,因此,筛选一种有效,灵敏,特异的重组诊断抗原并且建立准确的诊断方法是今后需要突破的重点研究方向之一。

发明内容

[0005] 针对现有技术中存在的上述问题,本发明提供一种细粒棘球绦虫硫氧还蛋白过氧化物酶(Eg-TPx)的应用,使其能够被自然感染细粒棘球蚴病的绵羊阳性血清识别,应用于间接ELISA试剂盒检测时,具有良好的免疫原性,较高的特异性和灵敏度,减少与其他带科绦虫病阳性血清的交叉反应。

[0006] 为实现上述目的,本发明解决其技术问题所采用的技术方案是:

[0007] 将细粒棘球绦虫硫氧还蛋白过氧化物酶用于制备检测家畜细粒棘球蚴病的重组抗原。

[0008] 进一步地,家畜为牛羊。

[0009] 一种检测家畜细粒棘球蚴病的ELISA试剂盒,包括上述重组抗原、抗原包被液、稀释液、洗涤液、酶标液、封闭液、HRP标记的二抗、TMB显色液和终止液。

[0010] 上述检测家畜细粒棘球蚴病的重组抗原的制备方法,包括以下步骤:

[0011] (1)设计引物,提取细粒棘球绦虫总RNA,反转录成cDNA,并将其作为模板,进行PCR 扩增;

[0012] 其中,上游引物(TPx-F)序列为:

[0013] 5'-CGCGGATCCATGGCTGCTGTTGTTGG-3';

[0014] 下游引物(TPx-R)序列为:5'-CCGGAATTCTCACGAGCTCATGAACGA-3';

[0015] (2) 重组质粒的构建和鉴定;

[0016] (3) 重组蛋白的诱导表达和纯化。

[0017] 进一步地,步骤(1)中PCR扩增体系为:PCR MasterMix 0.5μL、RNase Free dH₂0 0.35μL、cDNA模板0.5μL、上游引物0.5μL、下游引物0.5μL;扩增程序为:95℃预变性5min,95 ℃变性40s,58℃退火45s,72℃延伸45s,35个循环,最后72℃延伸10min。

[0018] 进一步地,步骤(2)具体过程为:将PCR产物与pMD19-T载体连接,转化DH5α感受态细胞,筛选菌落、培养,PCR鉴定然后测序,将测序无误的菌液扩大培养,提取质粒,对质粒进行酶切回收,回收的目的条带与表达载体pET32a(+)连接,转化,筛选阳性菌落提取质粒,双酶切鉴定并测序,将测序无误的重组表达质粒转化到大肠杆菌BL21中。

[0019] 进一步地,步骤(3)具体过程为:将表达菌接种于含AMP的LB培养基中,于37℃、160r/min条件下培养5-6h后加入IPTG诱导表达5-6h,收集诱导后的菌液进行SDS-PAGE电泳分析,然后离心收集菌体,用裂解液重悬,再超声裂解、离心,分别取上清和沉淀进行可溶性分析,并对诱导后的菌液进行重组蛋白纯化。

[0020] 进一步地,封闭液为5%脱脂奶粉。

[0021] 进一步地,HRP标记的二抗为HRP标记的山羊或绵羊抗兔二抗。

[0022] 本发明的有益效果为:本发明提供的细粒棘球绦虫硫氧还蛋白过氧化物酶(Eg-TPx)在制备检测家畜(尤其是牛羊)细粒棘球蚴病的重组抗原中的应用,其可以作为免疫抗原能够被自然感染细粒棘球蚴病的绵羊阳性血清识别,应用于间接ELISA检测时,具有良好的免疫原性,较高的特异性和灵敏度,灵敏度为92.6%、特异性为99.0%,与其他带科绦虫病阳性血清的交叉反应较低。由此可知,以细粒棘球绦虫硫氧还蛋白过氧化物酶制得的免疫抗原建立的ELISA检测方法具有良好的诊断效果,可以用于疫区牛羊细粒棘球蚴病的初步筛选。

附图说明

[0023] 图1为为Eg-TPx基因的PCR扩增凝胶图。

[0024] 图2为r Eg-TPx的western blot图;其中,M为蛋白质标准品,1为纯化后的rEg-TPx;2:自然感染细粒棘球蚴病的绵羊阳性血清识别rEg-TPx;3:健康绵羊血清识别rEg-TPx。

[0025] 图3为间接ELISA对rEg-TPx的特异性分析和临床试验结果图。

具体实施方式

[0026] 实施例1制备重组抗原

[0027] 1、细粒棘绦虫总RNA的提取

[0028] 取出液氮保存的细粒棘球蚴,用研钵将其磨碎,随后参照天根的动物组织RNA提取试剂盒说明书提取总RNA。

[0029] 2、第一链cDNA的合成

[0030] 以抽提的细粒棘球蚴总RNA为模板,以01igo dT(18)为反转录引物,参照Thermo公

司反转录试剂盒说明书进行操作。

[0031] 3、Eg-TPx基因的扩增

[0032] 根据公布的Eg-TPx (EgrG_000791700)的基因序列,利用Primer Premier 5.0软件设计引物:

[0033] TPx-F:5'-CGCGGATCCATGGCTGCTGTTGTTGG-3'(SEQ ID NO:1),下划线为BamHI;

[0034] TPx-R:5'-CCGGAATTCTCACGAGCTCATGAACGA-3'(SEQ ID NO:2),下划线为EcoRI。

[0035] 扩增体系(10μL):PCR MasterMix 0.5μL、RNase Free dH₂0 0.35μL、cDNA模板0.5 μL、上游引物0.5μL、下游引物0.5μL;扩增程序为:95℃预变性5min,95℃变性40s,58℃退火 45s,72℃延伸45s,35个循环,最后72℃延伸10min。

[0036] 扩增程序为:95℃预变性5min,95℃变性40s,58℃退火45s,72℃延伸45s,35个循环,最后72℃延伸10min。

[0037] 以以细粒棘球绦虫原头蚴的cDNA为模板扩增出一条582bp左右的条带,如图1所示。

[0038] 4、基因克隆、鉴定及转化

[0039] (1) 基因克隆测序

[0040] 将PCR产物跑凝胶电泳,然后回收目的片段,将目的片段与pMD19-T载体连接,4℃过夜。

[0041] 连接体系(8µL)为:Solution 1 4µL、DNA模板3.5µL、PMD19-T载体0.5µL。

[0042] 取连接产物8μL加入30μL DH5α感受态细胞,轻柔混匀,冰水浴30min,42℃热激90s,冰浴5min,随后加600μL液体培养基,200r/min培养2h后,将菌液涂于Amp抗性的固体培养基上,37℃培养12h。

[0043] 挑取单个菌落接种于LB肉汤中,37℃振荡培养6h,用菌液为模板进行菌液PCR鉴定,将PCR检测为阳性的菌液送往生物公司测序。

[0044] 经测序得到的序列与GeneDB中Eg-TPx (EgrG_000791700) 的序列相似性达到 100%。

[0045] (2) 质粒提取

[0046] 测序结果比对正确后,将菌株扩大培养,参照天根生化有限公司的质粒小提试剂 盒操作说明进行:

[0047] ①取5mL菌液,离心收集沉淀;

[0048] ②加入悬浮液P1悬浮菌体,并加入裂解液P2对菌液进行裂解;

[0049] ③加入P1产生沉淀,翻转混合,静置10min后于12,000r/min离心15min。

[0050] ④吸取上清至收集管中,加600µL漂洗溶液PW,静置2min,于12,000r/min离心1min,弃废液;

[0051] ⑤重复④:

[0052] ⑥晾干漂洗液后用75μL洗脱液回收质粒,保存于-20℃。

[0053] (3) 质粒酶切回收

[0054] 将提取的pMD19-T-Eg-TPx用Takara BamHI和XhoI快切酶双酶切,37℃酶切10min,将酶切产物进行琼脂糖凝胶电泳后,切胶回收单一条带。

[0055] (4)目的片段连接表达载体

[0056] 将双酶切得到的Eg-TPx目的片段和pET32a(+)载体于22℃连接2h,转化,所得菌液进行PCR鉴定,同时对重组质粒进行双酶切鉴定。

[0057] 5、重组蛋白的表达与纯化

[0058] (1) 重组蛋白的表达

[0059] ①将测序正确的重组质粒pET32a(+)-TPx转入E.coli BL21(DE3)表达菌;

[0060] ②将表达菌接种于一瓶含20mL的新鲜的LB(含AMP 100µg/mL)培养液中,于37℃、160r/min摇床培养6h,然后加入诱导剂IPTG(1mmo1/L),于37℃、160r/min诱导5h;

[0061] ③分别取诱导后的菌液1.5mL于两个新EP管中,在4 \mathbb{C} 、12,000r/min条件下离心 1min,收集菌体,分别加入10 μ L 5×SDS上样Buffer和40 μ L PBS溶液,充分混匀;

[0062] ④沸水煮10min,离心后取上清进行SDS-PAGE;

[0063] ⑤用考马斯亮蓝染色1h,脱色后观察表达情况。

[0064] (2) 重组蛋白的可溶性分析

[0065] 将含有重组质粒pET32a(+)-TPx的表达菌菌接种于500mL含AMP的液体培养基中,37℃、1700r/min培养至菌液浑浊,加入最佳IPTG浓度,诱导6h。将菌液于8000r/min条件下离心10min,沉淀用裂解液(20mM Tris-HC1,pH8.0)悬浮,超声破碎菌体。将破碎后的菌体裂解液在4℃、12,000r/min条件下离心10min,分离沉淀与上清;沉淀加入适量的8M尿素中溶解。上清和沉淀各取40μL,分别加10μL ddH20,煮沸10min,12,000r/min离心10min,进行SDS-PAGE电泳,分析rEg-TPx是否为可溶性表达。

[0066] (3) 重组蛋白的纯化

[0067] 根据上述步骤对重组菌诱导表达,获得大量重组蛋白菌液,然后进行如下操作:

[0068] ①取1L菌液,8,000r/min离心10min,弃上清,收集菌体,加入裂解液;

[0069] ②超声波破碎,直到所有菌体破碎完全;

[0070] ③12,000r/min离心15min,留上清;

[0071] ④将样品于0.22µm滤膜过滤后上样;

[0072] ⑤用Binding Buffer洗至基线平稳;

[0073] ⑥分别用50mM,100mM,200mM,300mM,400mM咪唑洗脱液进行洗脱,收集洗脱峰;

[0074] ⑦用400mM咪唑洗脱液清洗后,用20%的乙醇洗涤至离子浓度为0,将柱子于4℃保存;

[0075] ⑧将蛋白用超滤管进行超滤和浓缩,多次加入PBS进行溶液的置换,以除去原有的 咪唑,并且将纯化后的蛋白保存于-80℃;

[0076] ⑨蛋白浓缩后,进行SDS-PAGE检查,并以BCA蛋白质定量试剂盒测定蛋白浓度。

[0077] 结果:Eg-TPx成功连接在pET-32a载体上,转化进入BL21大肠杆菌中诱导表达,表达的重组蛋白大小为39kDa左右,符合预期大小;可溶性分析结果显示,rEg-TPx表达均为可溶性蛋白;纯化后的重组蛋白为单一条带。

[0078] 6、免疫原性分析

[0079] 采用免疫印迹法进行分析,具体操作如下:

[0080] ①制备蛋白质电泳凝胶,对纯化后的蛋白进行SDS-PAGE电泳:

[0081] ②蛋白质电泳结束后,取蛋白质所在的相应凝胶部位,放入转膜缓冲液中进行平衡,共3次,每次4min;

- [0082] ③将硝酸纤维素滤膜 (NC膜) 和24层滤纸置于转移缓冲液中浸泡5min;
- [0083] ④按顺序将阴极电极板、24层滤纸、凝胶、NC膜、24层滤纸置于Bio-Rad半干式转印槽内,盖上阳极电极板,35mA转膜30min;
- [0084] ⑤结束后,取出NC膜,浸泡在3%BSA的TBST中,4℃封闭过夜;
- [0085] ⑥封闭结束后,剪开NC膜,阴性和阳性分开放置,加入1:200稀释的绵羊阳性血清,室温孵育2h后,倒掉一抗,用TBST快速洗膜3次,5min/次;
- [0086] ⑦将HRP标记的IgG按1:1000稀释后,加入NC膜,室温孵育2h后,倒掉二抗,洗涤;
- [0087] ⑧将NC膜置于平皿中,以新鲜底物显色液冲洗直至显色;
- [0088] ⑨显色后,用双蒸水冲洗NC膜终止显色,并对结果进行拍照记录。
- [0089] 免疫印迹显示,rEg-TPx能被细粒棘球蚴病阳性绵羊血清识别,且为单一条带(图2),说明rEg-TPx具有较好的免疫原性。
- [0090] 实施例2间接ELISA方法的建立
- [0091] 1、间接ELISA操作步骤
- [0092] (1)以抗原包被液按比列稀释重组抗原rEg-TPx,每孔100µL加入96酶标板中进行包被;
- [0093] (2) 倒掉包被液,拍干孔内液体,用PBST洗涤,每次5min,重复四次;
- [0094] (3) 加入封闭液封闭;
- [0095] (4) 洗涤后用PBS按比例稀释血清后,每孔100µL加入酶标孔孵育,倒掉液体;
- [0096] (5) 洗涤后每孔加入100µL稀释好的HRP标记的山羊或绵羊抗兔二抗,孵育;
- [0097] (6) 在避光条件下向孔中加入可溶性单组分底物TMB进行显色反应;
- [0098] (7) 在孔中加入100µL 2M H₂SO₄终止反应,在紫外吸光度为450nm时测定其0D值;
- [0099] (8) 倒掉液体,拍干后,用PBST洗涤,每次5min,重复四次;
- [0100] (9) 倒掉液体,拍干后,在避光条件下进行颜色反应,向孔中加入可溶性单组分底物TMB,每孔100µL,室温孵育10-20min:
- [0101] (10) 再向孔中加入 100μ L 2M H_2SO_4 终止反应,立即将96孔板置于酶标仪上,在紫外吸光度为450nm时测定其0D值。
- [0102] 2、确定最佳工作条件
- [0103] (1) 用棋盘滴定法确定最佳抗原和血清稀释浓度,设置6个抗原浓度梯度,血清从1:20到1:640作倍比稀释,以P/N最大的条件作为最佳。
- [0104] (2) 最佳封闭液的确定,分别用1%BSA,5%BSA,1%脱脂牛奶,5%脱脂牛奶封闭,以P/N最大的条件作为最佳。
- [0105] (3) 阴、阳性血清反应时间的确定,按照确定的条件来筛选阴、阳性血清的最佳孵育时间,设为37℃0.5h、1h、1.5h 3个组,以P/N最大的浓度为最佳反应时间。
- [0106] (4) 二抗作用的最佳浓度的确定,分别设1:2000,1:3000,1:4000,1:5000四个稀释浓度进行摸索,以P/N最大的条件作为最佳浓度。
- [0107] ELISA结果显示,P/N值达到最高的抗原最佳浓度为0.9µg/每孔,血清最佳稀释浓度为1:40,最佳封闭条件是5%脱脂奶粉,血清孵育最佳时间是37℃60min,二抗最佳稀释浓度为1:3000。
- [0108] 3、临界值的确定

[0109] 在最佳条件下,测定24份绵羊细粒棘球蚴病阴性血清的0D₄₅₀。设置三个重复,按照临界值=平均值+3倍标准差计算。

[0110] 用24份绵羊阴性血清样品的 $0D_{450}$ 值确定临界值,通过统计学分析,计算出24份绵羊阴性血清样品 $0D_{450}$ 值的平均值为0.619,标准差为0.058。根据计算公式:临界值=阴性样本 $0D_{450}$ 平均值+3倍标准差,得出临界值为0.792,即 $0D_{450}$ >0.792时,理论上可判定为阳性, $0D_{450}$ <0.792可判定为阴性。

[0111] 4、批内批间重复性试验

[0112] 取同一批次包被的板子,检测5份已知为细粒棘球蚴病阳性的绵羊血清,每份设置 3个重复孔,按照已经建立的ELISA方法,进行批内重复试验。

[0113] 取3个批次包被的板子,在最佳条件下,检测3份细粒棘球蚴病阳性的绵羊血清,每份设置3个重复孔,按照已经建立的ELISA方法,进行批间重复试验。计算变异系数,检测该方法的批内批间重复性。

[0114] 批内重复性试验结果显示,板内的变异系数在0.354%-0.874%之间,平均值为0.564%;批间重复性试验结果显示,板间变异系数在0.453%-1.23%之间,平均值为0.815%。

[0115] 5、临床试验

[0116] 用本发明建立的间接ELISA方法分别用27份细粒棘球蚴病阳性绵羊血清检测各蛋白的敏感性;后用21份细颈囊尾蚴山羊阳性血清,20份脑多头蚴山羊阳性血清,15份莫尼次绦虫绵羊阳性血清,16份捻转血矛线虫山羊阳性血清,7份肝片吸虫山羊阳性血清和24份细粒棘球蚴病阴性绵羊血清检测特异性;最后再检测60份免疫了Eg95疫苗的山羊血清。

[0117] 对照组:用两个商业试剂盒对上述交叉反应血清,27份绵羊阳性血清和30份免疫了Eg95疫苗的山羊血清进行检测。

[0118] 计算公式:敏感性=ELISA检测阳性数/剖解检测阳性数*100%;

[0119] 特异性=ELISA检测阴性数/剖解检测阴性数*100%。

[0120] 采用本发明建立的间接ELISA方法进行检测,检测结果如图3所示,结果显示与山羊脑包虫血清有1个交叉反应24份阴性血清0D450均小于临界值,其特异性为99.0%;27份绵羊细粒棘球蚴病阳性血清的0D450均大于临界值,其敏感性达92.6%。

[0121] 用两种商业试剂盒对上述血清 (27份阳性血清,79份交叉反应血清) 进行临床检测,结果显示试剂盒A与绵羊莫尼茨绦虫阳性血清有1个交叉反应,与山羊细颈囊尾蚴阳性血清有3个交叉反应,与山羊捻转血矛线虫阳性血清有4个交叉反应,与山羊脑包虫阳性血清有3个交叉反应,因此,其特异性为81.0%,并且对30份免疫了Eg95的绵羊血清检测中有11个交叉反应,其符合率仅有63.3%;在对27份绵羊细粒棘球蚴病阳性血清检测中,19份显示为阳性,因此其敏感性为70.4%;试剂盒B与绵羊莫尼茨绦虫阳性血清有7个交叉反应,与山羊细颈囊尾蚴阳性血清有8个交叉反应,与山羊捻转血矛线虫阳性血清有6个交叉反应,与山羊脑包虫阳性血清有4个交叉反应,与肝片吸虫阳性血清有3个交叉反应,因此,其特异性为64.6%,并且对30份免疫了Eg95的绵羊血清检测中有22个交叉反应,其符合率仅有26.7%;在对27份绵羊细粒棘球蚴病阳性血清检测中,21份显示为阳性,因此其敏感性为77.8%。

序列表

- <110>四川农业大学
- <120> EG-TPx的应用以及用于诊断家畜细粒棘球蚴病的试剂盒
- <160> 2
- <170> SIPOSequenceListing 1.0
- <210> 1
- <211> 26
- <212> DNA
- <213> 人工序列(Artificial Sequence)
- <400> 1
- cgcggatcca tggctgctgt tgttgg 26
- <210> 2
- <211> 27
- <212> DNA
- <213> 人工序列(Artificial Sequence)
- <400> 2
- ccggaattct cacgagctca tgaacga 27

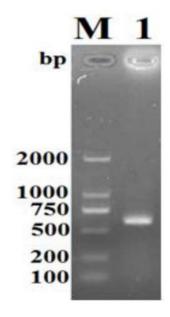


图1

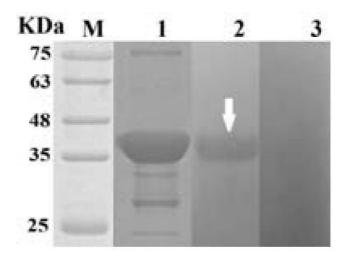
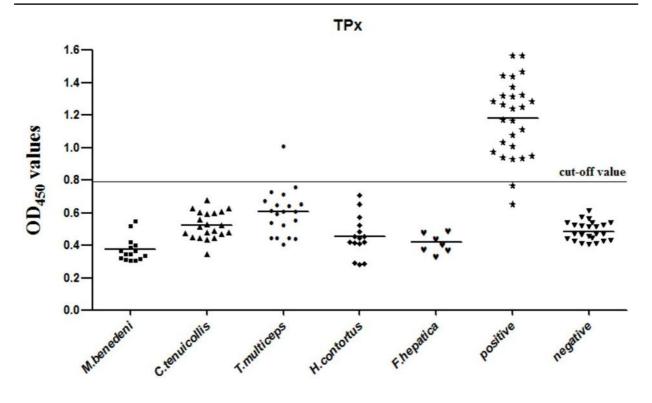



图2

专利名称(译)	EG-TPx的应用以及用于诊断家畜细粒棘球蚴病的试剂盒		
公开(公告)号	CN108982849A	公开(公告)日	2018-12-11
申请号	CN201810587349.8	申请日	2018-06-06
[标]申请(专利权)人(译)	四川农业大学		
申请(专利权)人(译)	四川农业大学		
当前申请(专利权)人(译)	四川农业大学		
[标]发明人	杨光友 梁雨琴		
发明人	杨光友 梁雨琴		
IPC分类号	G01N33/573 G01N33/535 G01N33/536 C12N9/08 C12N15/70		
CPC分类号	G01N33/573 C12N9/0065 C12Y111/01015 G01N33/535 G01N33/536 G01N2333/908		
代理人(译)	何凡		
外部链接	Espacenet SIPO		

摘要(译)

本发明公开了Eg-TPx的应用以及用于诊断家畜细粒棘球蚴病的试剂盒,Eg-TPx能够作为免疫抗原能够被自然感染细粒棘球蚴病的绵羊阳性血清识别,应用于间接ELISA检测时,具有良好的免疫原性,较高的特异性和灵敏度,灵敏度为92.6%、特异性为99.0%,与其他带科绦虫病阳性血清的交叉反应较低。以细粒棘球绦虫硫氧还蛋白过氧化物酶制得的免疫抗原建立的ELISA检测方法具有良好的诊断效果,可以用于疫区牛羊细粒棘球蚴病的初步筛选。