(19)中华人民共和国国家知识产权局

(12)发明专利申请

(10)申请公布号 CN 110590561 A (43)申请公布日 2019. 12. 20

(21)申请号 201910787922.4

(22)申请日 2019.08.26

(71)申请人 北京勤邦生物技术有限公司 地址 102206 北京市昌平区回龙观国际信息产业基地高新四街8号

(72)发明人 吴小胜 崔海峰 万字平 马玉华 朱亮亮 王喜平 王兆芹 杨春艳 丛倩千

(51) Int.CI.

COTC 205/44(2006.01)

COTC 201/12(2006.01)

GO1N 33/53(2006.01)

GO1N 33/531(2006.01)

GO1N 33/577(2006.01)

CO7K 14/765(2006.01)

CO7K 14/77(2006.01)

CO7K 16/44(2006.01)

CO7K 14/795(2006.01)

权利要求书1页 说明书7页 附图1页

(54)发明名称

除草醚半抗原、人工抗原和抗体及其制备方 法和应用

(57)摘要

本发明公开了除草醚半抗原、人工抗原和抗体及其制备方法和应用,本发明提供的除草醚半抗原既最大程度保留了除草醚的特征结构,使得除草醚半抗原的免疫原性明显增强,又具有可以与载体蛋白发生偶联的醛基;用除草醚半抗原与载体蛋白偶联后得到的除草醚人工抗原去免疫动物,更有利于刺激动物免疫应答产生特异性更强、灵敏度更高的抗体,经检测除草醚抗体的灵敏度可达0.1 µg/L,与其他农药的交叉反应率低,为后续建立除草醚的各种免疫分析方法提供了基础。

$$CI \longrightarrow CI \longrightarrow NO_2 \longrightarrow CI \longrightarrow NO_2$$

1.一种除草醚半抗原,其特征在于,其具有如下结构式:

- 2.如权利要求1所述的除草醚半抗原的制备方法,其特征在于,其是由2,4-二氯苯酚与2-氯-5-硝基苯胺反应得到。
- 3.如权利要求2所述的除草醚半抗原的制备方法,其特征在于,该制备方法为:取2,4-二氯苯酚加乙腈溶解,加入强碱和无水碘化亚铜,充分搅拌后,加入2-氯-5-硝基苯胺,回流反应12h,反应完毕后,进行分离纯化后得到除草醚半抗原;其中,所述2,4-二氯苯酚、强碱和2-氯-5-硝基苯胺的物质的量之比为1:(1.0-1.5):(1.0-1.2);所述强碱为KOH、NaOH或NaH中的任意一种。
- 4.如权利要求2所述的除草醚半抗原的制备方法,其特征在于,该制备方法的具体步骤如下:取2,4-二氯苯酚1.6g加乙腈100mL溶解,加入KOH 0.67g和无水碘化亚铜0.7g,充分搅拌后,加入2-氯-5-硝基苯胺1.85g,回流反应12h,反应完毕后降至室温,过滤,滤液蒸干,用60mL体积比为1:3的无水乙醚-正己烷重结晶,得到除草醚半抗原。
- 5.一种除草醚人工抗原,其特征在于,其是载体蛋白和权利要求1所述的除草醚半抗原 偶联得到的偶联物。
- 6.如权利要求5所述的除草醚人工抗原,其特征在于,所述载体蛋白为牛血清白蛋白、 卵清蛋白、人血清白蛋白或血蓝蛋白。
 - 7. 如权利要求5所述的除草醚人工抗原的制备方法,其特征在于,包括如下步骤:

将所述除草醚半抗原溶于有机溶剂中,即为A液;

将载体蛋白溶解在0.05mo1/L的CB缓冲液中,得到B液;以及

将所述A液滴加到所述B液中,4℃反应24h,加硼氢化钠,继续搅拌3h,纯化后得到所述除草醚人工抗原。

- 8.一种除草醚抗体,其特征在于,它是由权利要求5所述的除草醚人工抗原经动物免疫得到,其能与除草醚发生特异性免疫反应。
 - 9.一种权利要求8所述的除草醚抗体在检测除草醚残留中的应用。

除草醚半抗原、人工抗原和抗体及其制备方法和应用

技术领域

[0001] 本发明属于食品安全检测领域。更具体地,本发明涉及除草醚半抗原、人工抗原和抗体及其制备方法和应用。

背景技术

[0002] 除草醚 (Nitrofen) 是一种水旱田除草剂,在各种土质、气温条件下均可适用,主要防治某些一年生阔叶及禾本科杂草,可用于白菜、甘蓝、萝卜、油菜、芥菜、水萝卜、茎兰、菜花、芹菜、胡萝卜、香菜、茵香、葛笋、阁蒿、菠菜等以及某些豆科蔬菜等菜田。除草醚作为醚类选择性触杀型除草剂,由于对试验动物具有致畸、致突变、致癌作用,多数国家已禁止生产和使用。

[0003] 目前,国内外检测除草醚主要有气相色谱法、高效液相色谱法和气相色谱质谱法等分析方法。仪器检测法存在样品前处理繁琐、检测时间长、仪器贵重等缺点,所以在我国无法得到广泛应用,并且不符合现场检测"在短时间内低成本对大量样品进行准确检测和筛选"的要求。而免疫学检测分析技术以其高灵敏、特异性高、快速、操作简便等优点在药物残留检测领域已被广泛应用,比起仪器等检验方法有很多优势。所以免疫分析为除草醚残留研究提供了一条新的分析检测方法。

[0004] 在建立免疫学检测方法并应用该检测方法检测除草醚残留量时,关键技术在于能够获取到特异性强、灵敏度高的抗体,而要实现这一目标,前提条件就是得合成、制备出合适的除草醚半抗原。但是,目前,国内还没有针对除草醚半抗原的相关报道。

发明内容

[0005] 针对现有技术中存在的不足之处,本发明提供一种能最大程度保留除草醚的特征结构,又具有一定长度连接臂的半抗原以及这种半抗原的制备方法;以此半抗原制备的人工抗原、检测灵敏度高和特异性强的抗体;以及此半抗原的应用。

[0006] 本发明所要解决的技术问题是通过以下技术方案来实现的:

[0007] 本发明的第一个目的是提供一种除草醚半抗原,其具有如下结构式:

[0009] 本发明的第二个目的是提供一种除草醚半抗原的制备方法,其是由2,4-二氯苯酚与2-氯-5-硝基苯胺反应得到。

[0010] 进一步地,该制备方法为:取2,4-二氯苯酚加乙腈溶解,加入强碱和无水碘化亚铜,充分搅拌后,加入2-氯-5-硝基苯胺,回流反应12h,反应完毕后,进行分离纯化后得到除草醚半抗原;其中,所述2,4-二氯苯酚、强碱和2-氯-5-硝基苯胺的物质的量之比为1:(1.0-1.5):(1.0-1.2);所述强碱为KOH、NaOH或NaH中的任意一种。

[0011] 进一步地,该制备方法的具体步骤如下:取2,4-二氯苯酚1.6g加乙腈100mL溶解,加入KOH 0.67g和无水碘化亚铜0.7g,充分搅拌后,加入2-氯-5-硝基苯胺1.85g,回流反应12h,反应完毕后降至室温,过滤,滤液蒸干,用60mL体积比为1:3的无水乙醚-正己烷重结晶,得到除草醚半抗原。

[0012] 本发明的第三个目的是提供一种除草醚人工抗原,其是载体蛋白和上述除草醚半抗原偶联得到的偶联物。

[0013] 进一步地,所述载体蛋白为牛血清白蛋白、卵清蛋白、人血清白蛋白或血蓝蛋白。

[0014] 本发明的第四个目的是提供一种除草醚人工抗原的制备方法,包括如下步骤:

[0015] 将上述除草醚半抗原溶于有机溶剂中,即为A液;

[0016] 将载体蛋白溶解在0.05mo1/L的CB缓冲液中,得到B液;以及

[0017] 将所述A液滴加到所述B液中,4℃反应24h,加硼氢化钠,继续搅拌3h,纯化后得到 所述除草醚人工抗原。

[0018] 本发明的第五个目的是提供一种除草醚抗体,它是由上述除草醚人工抗原经动物免疫得到,其能与除草醚发生特异性免疫反应。

[0019] 进一步地,所述除草醚抗体为单克隆抗体或多克隆抗体。

[0020] 本发明的第六个目的是提供上述除草醚抗体在检测除草醚残留中的应用。

[0021] 本发明具有如下有益效果:

[0022] 本发明提供的除草醚半抗原既最大程度保留了除草醚的特征结构,使得除草醚半抗原的免疫原性明显增强,又具有可以与载体蛋白发生偶联的醛基;用除草醚半抗原与载体蛋白偶联后得到的除草醚人工抗原去免疫动物,更有利于刺激动物免疫应答产生特异性更强、灵敏度更高的抗体,为后续建立除草醚的各种免疫分析方法提供基础。

[0023] 本发明中采用2,4-二氯苯酚与2-氯-5-硝基苯胺反应制备除草醚半抗原,反应步骤简单,所需实验条件温和、易于控制,制备的除草醚半抗原的纯度和产率较高。

[0024] 采用本发明的除草醚人工抗原得到的除草醚抗体的效价、特异性、亲和力都较好, 灵敏度可达0.1 μg/L, 与其他农药的交叉反应率低。

附图说明

[0025] 图1是本发明除草醚半抗原的合成路线

具体实施方式

[0026] 第一方面,本发明提供一种除草醚半抗原,其具有如下结构式:

[0028] 本发明提供的除草醚半抗原既最大程度保留了除草醚的特征结构,使得除草醚半抗原的免疫原性明显增强,又具有可以与载体蛋白发生偶联的醛基;用除草醚半抗原与载体蛋白偶联后得到的除草醚人工抗原去免疫动物,更有利于刺激动物免疫应答产生特异性更强、灵敏度更高的抗体。本发明的除草醚半抗原弥补了国内除草醚免疫学检测方法技术领域的空白,为除草醚免疫检测方法的进一步发展奠定了基础。

[0029] 第二方面,本发明提供上述除草醚半抗原的制备方法,其是由2,4-二氯苯酚与2-氯-5-硝基苯胺反应得到。

[0030] 优选地,除草醚半抗原的制备方法为:取2,4-二氯苯酚加乙腈溶解,加入强碱和无水碘化亚铜,充分搅拌后,加入2-氯-5-硝基苯胺,回流反应12h,反应完毕后,进行分离纯化后得到除草醚半抗原:

[0031] 其中,所述2,4-二氯苯酚、强碱和2-氯-5-硝基苯胺的物质的量之比为1:(1.0-1.5):(1.0-1.2)。

[0032] 本发明在除草醚半抗原的制备中,加入强碱和无水碘化亚铜,强碱起到为后续反应提供碱性条件的作用,无水碘化亚铜是催化剂。

[0033] 本发明中,并不具体限定强碱的种类,可以采用已有的各种强碱,作为举例,所述强碱可以为KOH、NaOH或NaH中的任意一种;作为优选,所述强碱为KOH。

[0034] 本发明中,2,4-二氯苯酚和2-氯-5-硝基苯胺的物质的量之比需要进行严格限定。若2,4-二氯苯酚的用量过多,则2,4-二氯苯酚反应不完全,影响后续反应效率;若2,4-二氯苯酚的用量过少,不仅造成2-氯-5-硝基苯胺的浪费,而且由于2-氯-5-硝基苯胺本身有黄色,除去这种颜色的过程也非常困难。

[0035] 本发明中采用2,4-二氯苯酚与2-氯-5-硝基苯胺反应制备除草醚半抗原,反应步骤简单,所需实验条件温和、易于控制,制备的除草醚半抗原的纯度和产率较高。

[0036] 第三方面,本发明还提供一种除草醚人工抗原,其是载体蛋白和上述除草醚半抗原偶联得到的偶联物。

[0037] 优选地,所述载体蛋白为牛血清白蛋白、卵清蛋白、人血清白蛋白或血蓝蛋白。

[0038] 除草醚半抗原分子仅具有免疫反应性,而不具有免疫原性。因此,为了赋予除草醚半抗原分子以免疫原性,还需要将该除草醚半抗原分子与合适的载体蛋白分子偶联、结合在一起,由此产生既具有免疫反应性又具有免疫原性的除草醚人工抗原。

[0039] 第四方面,本发明还提供上述除草醚人工抗原的制备方法,包括如下步骤:

[0040] 将上述除草醚半抗原溶于有机溶剂中,即为A液;

[0041] 将载体蛋白溶解在0.05mo1/L的CB缓冲液中,得到B液;以及

[0042] 将所述A液滴加到所述B液中,4℃反应24h,加硼氢化钠,继续搅拌3h,纯化后得到所述除草醚人工抗原。

[0043] 本发明中,将除草醚半抗原用有机溶剂溶解,然后滴加到载体蛋白溶液中,反应形成的Schiff碱是一种不稳定的状态,本发明中还进一步加入硼氢化钠,不稳定的Schiff碱经硼氢化钠还原后变得更稳定,使获得的除草醚人工抗原长时间存放效果也不会变差。

[0044] 第五方面,本发明还提供一种除草醚抗体,它是由上述除草醚人工抗原经动物免疫得到,其能与除草醚发生特异性免疫反应。

[0045] 所述除草醚抗体可以为单克隆抗体或多克隆抗体。另外,对于所述除草醚抗体,可以采用本领域常规方法来进行制备。

[0046] 在一个具体的实施方案中,所述除草醚抗体为特异性针对上述除草醚半抗原的除草醚人工抗原的鼠源单克隆抗体。

[0047] 采用本发明的除草醚人工抗原得到的除草醚抗体的效价、特异性、亲和力都较好, 与其他农药的交叉反应率低。

[0048] 第六方面,本发明还提供上述除草醚抗体在检测除草醚残留中的应用。

[0049] 本发明通过除草醚人工抗原诱导免疫动物产生抗体,从而用于除草醚免疫检测分析中。

[0050] 所述的除草醚免疫检测包括但不限于除草醚ELISA试剂盒和除草醚胶体金试纸条。

[0051] 下面结合具体实施例进一步详细说明本发明,但实施例仅是本发明的优选实施方式,并不是对本发明的限定。

[0052] 实施例1

[0053] 一种除草醚半抗原的制备方法,步骤如下:取2,4-二氯苯酚1.6g加乙腈100mL溶解,加入KOH 0.67g和无水碘化亚铜0.7g,充分搅拌后,加入2-氯-5-硝基苯胺1.85g,回流反应12h,反应完毕后降至室温,过滤,滤液蒸干,用60mL体积比为1:3的无水乙醚-正己烷重结晶,得到除草醚半抗原。

[0054] 实施例2

[0055] 一种除草醚半抗原的制备方法,步骤如下:取2,4-二氯苯酚1.6g加乙腈100mL溶解,加入NaH 0.26g和无水碘化亚铜0.7g,充分搅拌后,加入2-氯-5-硝基苯胺1.69g,回流反应12h,反应完毕后降至室温,过滤,滤液蒸干,用60mL体积比为1:3的无水乙醚-正己烷重结晶,得到除草醚半抗原。

[0056] 实施例3

[0057] 一种除草醚半抗原的制备方法,步骤如下:取2,4-二氯苯酚1.6g加乙腈100mL溶解,加入NaOH 0.55g和无水碘化亚铜0.7g,充分搅拌后,加入2-氯-5-硝基苯胺2.03g,回流反应12h,反应完毕后降至室温,过滤,滤液蒸干,用60mL体积比为1:3的无水乙醚-正己烷重结晶,得到除草醚半抗原。

[0058] 实施例4

[0059] 一种除草醚人工抗原的制备方法,步骤如下:

[0060] 取实施例1制备的除草醚半抗原12mg溶于1mL DMF中,溶解澄清,得到A液;取牛血清白蛋白(BSA)50mg溶解在0.05mo1/L的CB缓冲液中,得到B液;将A液滴加到B液中,4℃反应

24h,加硼氢化钠6mg,继续搅拌3h,用0.02mo1/L PBS透析纯化3天,每天换液3次,得到与牛血清白蛋白偶联的除草醚人工抗原,分装,-20℃保存。

[0061] 实施例5

[0062] 一种除草醚人工抗原的制备方法,步骤如下:

[0063] 取实施例1制备的除草醚半抗原6mg溶于1mL DMF中,溶解澄清,得到A液;取卵清蛋白 (0VA) 50mg溶解在0.05mo1/L的CB缓冲液中,得到B液;将A液滴加到B液中,4℃反应24h,加硼氢化钠4mg,继续搅拌3h,用0.02mo1/L PBS透析纯化3天,每天换液3次,得到与卵清蛋白偶联的除草醚人工抗原,分装,-20℃保存。

[0064] 实施例6

[0065] 一种除草醚抗体,其制备方法为:

[0066] 1.动物免疫

[0067] 取健康的6~8周雌性Balb/c小鼠10只(分为A与B两组,每组5只),初次免疫用弗氏完全佐剂乳化后颈背部皮下多点注射,每只小鼠免疫剂量为200μg与牛血清白蛋白偶联的除草醚人工抗原;之后加强免疫每两周颈背部皮下多点注射一次,乳化用弗氏不完全佐剂;最后一次免疫使用生理盐水代替弗氏不完全佐剂,采用腹腔注射,注射剂量和前面几次相同。具体免疫步骤见表1。

[0068] 表1小鼠免疫程序

	免疫次数	时间/d	免疫剂量/(μg/只)	免疫方法	佐剂
[0069]	初免	0	200	颈背部皮下多点注射	弗氏完全佐剂
	二免	15	200	同上	弗氏不完全佐剂
	三免	30	200	同上	同上
	四免	44	200	同上	同上
	加强	58(融合前三天)	200	腹腔注射	不加佐剂

[0070] 第三次、四次、加强免疫后7d,对小鼠断尾取血,ELISA方法测定小鼠血清效价,具体步骤如下:

[0071] (1) 用0.05mo1/L pH9.6的碳酸盐缓冲液将与卵清蛋白偶联的除草醚人工抗原做 1:1000稀释,每孔100μL包被酶标板,37°C孵育2h,甩掉包被液,以PBST洗涤1次,拍干;

[0072] (2) 每孔加入150µL封闭液,37℃反应2h后倾去封闭液,拍干:

[0073] (3) 每孔加入 50μ L以PBS倍比稀释的抗血清,25 ℃反应30min后倾去反应液,以PBST 洗涤 $3\sim5$ 次,每次间隔30s,拍干;

[0074] (4) 加PBS稀释的辣根过氧化物酶标记的羊抗鼠抗抗体(1:1000)100 μ L/孔,25℃反应30 \min ,以PBST洗涤3~5次,每次间隔30 s ,拍干;

[0075] (5) 每孔加入底物显色液A液和B液各50μL,25℃避光反应15min,每孔加入50μL2mo1/L的H₂SO₄溶液终止反应;

[0076] (6) 酶标仪测定波长在450nm的0D值,以样品孔0D₄₅₀接近于1的稀释倍数作为阳性血清的效价。

[0077] 2.细胞融合

[0078] (1) 饲养细胞制备:断颈处死8~10周龄Balb/c小鼠,浸泡在75%酒精中5min,随即放入超净工作台内,腹部朝上放于平皿内或固定于解剖板上。用眼科镊子夹起小鼠腹部皮

肤,用剪刀剪一小口,注意切勿剪破腹膜,以免腹腔液外流和污染。然后用剪刀向上下两侧做钝性分离,充分暴露腹膜。用酒精棉球擦拭腹膜消毒。用注射器吸取5mL RPMI-1640基础培养液,注入小鼠腹腔,轻轻抽回注射器,晃动小鼠腿部和尾部几次。用原注射器抽回腹腔内液体,注入离心管。如此反复操作3~4次。1000r/min离心10min,弃上清。用20~50mL完全培养液重悬细胞,100µL/孔滴加到培养板,置培养箱备用。

[0079] (2) 脾细胞制备:加强免疫后3d,取免疫Balb/c小鼠,眼眶采血后脱臼处死,在75%酒精中消毒后取脾脏,去除结缔组织,制备脾细胞悬液,转移到50mL离心管中,加RPMI-1640至30mL,1500~2000r/min离心5min,弃上清,加RPMI-1640至30mL,计数待用。

[0080] (3) 骨髓瘤细胞制备:取3瓶生长状态良好的(活细胞数>95%) 骨髓瘤细胞,将之完全吹下,转移到50mL离心管中,加RPMI-1640至30mL,1500~2000r/min离心5min,弃上清,加RPMI-1640至30mL,计数待用。

[0081] (4)细胞混合:脾细胞:骨髓瘤细胞=8:1,混合,1500~2000r/min离心5min。

[0082] (5)细胞融合:将混合好的细胞离心,倒干上清,把沉淀细胞块弹成糊状,置37℃水浴,在1min内加入1mL融合剂,融合剂为聚乙二醇(PEG)4000,作用2min,并轻轻搅拌细胞,在随后4min内加入20mL无血清的PEG营养液,1000r/min离心10min,弃上清。用20~50mL完全培养液重悬细胞,铺种于含饲养细胞的96孔细胞培养板,每孔100μL,置培养箱中。

[0083] 3.细胞株筛选

[0084] 待细胞长至孔底的1/2~1/3时,即可进行抗体检测。采用ELISA方法对有杂交瘤细胞生长的培养孔进行筛选,筛选分两步:第一步先用间接ELISA筛选出阳性细胞孔,第二步选用除草醚为标准品,用间接竞争ELISA对阳性细胞进行抑制效果测定。选出对除草醚标准品具有较好抑制的孔,采用有限稀释法进行亚克隆,用同样的方法进行检测。重复三次,即可得到能稳定分泌除草醚单克隆抗体的细胞株。

[0085] 4. 腹水制备

[0086] 将液体石蜡注射6~8周Ba1b/c小鼠,500µL/只。10天后将处于对数生长期的杂交瘤细胞用RPMI-1640基础培养基收集,用血球计数板和显微镜计数,细胞浓度在 1.0×10^6 ~ 1.5×10^6 个/mL范围内。每只小鼠0.5mL杂交瘤细胞注射到腹腔。注意观察在一周后小鼠腹部膨大,用无菌注射器于小鼠腹腔采集腹水,每隔一到两天采集一次,这样多次反复采集直到小鼠自然死亡。4°C下5000r/min离心5min,收集上清,并去掉腹水上层漂浮的脂肪和蛋白质膜。

[0087] 5. 抗体纯化

[0088] 单克隆抗体采用辛酸-硫酸铵方法纯化。

[0089] 6. 抗体效价测定

[0090] 采用间接ELISA方法测定抗体效价,步骤参考1.中动物免疫的血清效价测定。结果显示,除草醚单克降抗体的效价≥20000。

[0091] 7. 抗体交叉反应性测定

[0092] 采用间接竞争ELISA方法测定,结果发现,除草醚单克隆抗体对除草醚及其他醚类除草剂的交叉反应率为:除草醚为100%,甲氧除草醚为11.3%,甲羧除草醚为7.9%,三氟硝草醚、乙氧氟草醚、苯草醚、吡草醚、喹氧灵、氟乳醚、乳氟禾草灵、乙羧氟草醚均<1%。由此可见,所制备的抗体特异性较好。

[0093] 以上所述实施例仅表达了本发明的实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制,但凡采用等同替换或等效变换的形式所获得的技术方案,均应落在本发明的保护范围之内。

图1

专利名称(译)	除草醚半抗原、人	、工抗原和抗体及其	其制备方法和应用		
公开(公告)号	CN110590561A		公开(公告	f)日	2019-12-20
申请号	CN201910787922	2.4	申ì	青日	2019-08-26
[标]申请(专利权)人(译)	北京勤邦生物技术	有限公司			
申请(专利权)人(译)	北京勤邦生物技术	有限公司			
当前申请(专利权)人(译)	北京勤邦生物技术	有限公司			
[标]发明人	吴崔万马朱王王杨丛小海宇玉亮喜兆春倩胜峰平华亮平芹艳千				
发明人	吴崔 万 马 朱 王 王 杨 丛 市 平 华 亮 平 芹 艳 毛 子 玉 亮 春 千 千 卷				
IPC分类号	C07C205/44 C07 C07K16/44	C201/12 G01N33/	/53 G01N33/531 G01	N33/577 C0	7K14/765 C07K14/77 C07K14/795
CPC分类号	C07C205/44 C07	K14/765 C07K14/	77 C07K14/795 C07F	K16/44 G01N	N33/53 G01N33/531 G01N33/577
外部链接	Espacenet SIF	<u> </u>			

摘要(译)

本发明公开了除草醚半抗原、人工抗原和抗体及其制备方法和应用,本发明提供的除草醚半抗原既最大程度保留了除草醚的特征结构,使得除草醚半抗原的免疫原性明显增强,又具有可以与载体蛋白发生偶联的醛基;用除草醚半抗原与载体蛋白偶联后得到的除草醚人工抗原去免疫动物,更有利于刺激动物免疫应答产生特异性更强、灵敏度更高的抗体,经检测除草醚抗体的灵敏度可达0.1µg/L,与其他农药的交叉反应率低,为后续建立除草醚的各种免疫分析方法提供了基础。