(19)中华人民共和国国家知识产权局

(12)发明专利申请

(10)申请公布号 CN 109540818 A (43)申请公布日 2019.03.29

GO1N 21/82(2006.01) GO1N 33/53(2006.01)

(21)申请号 201811571605.0

(22)申请日 2018.12.21

(71)申请人 云南农业大学

地址 650201 云南省昆明市盘龙区云南农 业大学

(72)发明人 豆腾飞 贾俊静 闫世雄 李涛徐志强 段小花 谷大海 刘丽仙葛长荣 黄英 李琦华 荣华王坤 孙帅 程志斌

(74)专利代理机构 北京名华博信知识产权代理 有限公司 11453

代理人 李中强

(51) Int.CI.

GO1N 21/31(2006.01) GO1N 21/33(2006.01)

权利要求书1页 说明书9页

(54)发明名称

一种基于钙、磷血液生化标记选育武定鸡的 方法

(57)摘要

本发明涉及一种基于钙、磷血液生化标记选育武定鸡的方法,属于家禽血液生化标记技术领域,本发明具体包括以下步骤:1)采集待测定武定鸡的血样,制备血清,检测其血钙(Ca)、血磷(P)的浓度值;2)将步骤1)测得的浓度值与武定鸡血液生化标记进行对比,将待测武定鸡区别为骨骼发育正常型武定鸡和骨骼发育异常型武定鸡和骨骼发育异常型武定鸡中的浓度变化,结合检测的武定鸡的骨密度、骨强度,给出了骨骼发育正常型和骨骼发育异常型武定鸡血液生化标记,筛选优质鸡只,为武定鸡的早期选育提供理记,筛选优质鸡只,为武定鸡的早期选育提供理论基础,也为探究武定鸡的选育方法,为云南地方鸡种在育种工作中提供新思路。

- 1.一种基于钙、磷血液生化标记选育武定鸡的方法,其特征在于:具体包括以下步骤:
- 1) 采集待测定武定鸡的血样,制备血清,检测其血钙(Ca)、血磷(P)的浓度值;
- 2) 将步骤1) 测得的浓度值与武定鸡血液生化标记进行对比,将待测武定鸡区别为骨骼 发育正常型武定鸡和骨骼发育异常型武定鸡。
- 2.根据权利要求1所述的一种基于钙、磷血液生化标记选育武定鸡的方法,其特征在于:武定鸡血液生化标记的确立具体包括以下步骤:
- a.从武定鸡资源群体中随机选择骨骼发育正常型武定鸡家系和骨骼发育异常型武定鸡家系,分别检测其腿骨骨密度、骨强度,采集血样,制备血清;
- b.血钙(Ca)含量测定及计算方法:选用血钙(Ca)酶联免疫试剂盒,应用邻甲酚酞络合酮比色法对血清中的钙离子浓度进行测定,即在碱性条件下,样品中钙离子与邻甲酚酞络合酮生成红色络合物;在600nm测量吸光度,吸光度增加与血清钙离子浓度成正比,与同样处理的标准品比较,可求得样本中钙离子的含量;血钙浓度的计算如下:C_{样品}=A_{样品}/A_{校准}×C_{校准}
- c.血磷(P)含量测定及计算方法:选用血磷(P)酶联免疫试剂盒,应用紫外终点法对血清中的无机磷浓度进行测定,即在酸性条件下钼酸铵同血清中的无机磷反应,形成非还原性磷钼酸化合物,在340nm测量吸光度,吸光度增加与血清无机磷成正比,与同样处理的标准品比较,可求得样本中无机磷的含量;血磷浓度的计算如下:C_{KH}=A_{KH}/A_KAK
- d.根据步骤b、c所得数据,得出骨骼发育正常型武定鸡和骨骼发育异常型武定鸡血钙、 血磷的浓度值,再根据所选取的武定鸡的腿骨骨密度、骨强度,进行血钙、血磷与骨密度、骨 强度的相关性分析:
 - e.根据步骤d所得到的分析结果,确定武定鸡的血液生化标记。
- 3.根据权利要求1-2任一项所述的一种基于钙、磷血液生化标记选育武定鸡的方法,其特征在于:所述武定鸡的血液生化标记为血钙、血磷的浓度值,一月龄时,当血钙的浓度值在3.31mmo1/L以上,且血磷的浓度值在2.44mmo1/L以上,判定为骨骼发育正常型武定鸡,反之为骨骼发育异常型武定鸡;二月龄时,当血钙的浓度值在3.46mmo1/L以上,且血磷的浓度值在2.49mmo1/L以上,判定为骨骼发育正常型武定鸡,反之为骨骼发育异常型武定鸡。
- 4.根据权利要求1-2任一项所述的一种基于钙、磷血液生化标记选育武定鸡的方法,其特征在于:采血前断水、断食12小时,于次日早晨进行翅静脉采血;用离心管收集血样,静置30min于室温下3000rpm离心20min,取上清液,获得血清。

一种基于钙、磷血液生化标记选育武定鸡的方法

技术领域

[0001] 本发明属于家禽血液生化标记技术领域,具体的说,涉及一种基于钙、磷血液生化标记选育武定鸡的方法。

背景技术

[0002] 骨骼作为家禽体内重要的器官,其功能是对家禽的身体起到支持、保护和运动的作用。而近一个世纪来,家禽高强度生产性能的选育给家禽骨骼发育产生负面影响,导致增加骨骼发育缺陷、骨质疏松、软骨病等骨病的发病率,影响了家禽业的健康发展。家鸡骨密度和强度是家鸡重要的经济性状,每年因骨骼发育缺陷、骨质疏松、软骨病等骨病给家鸡业造成巨大的经济损失。美国研究显示骨骼畸形所引起的死亡率约占1.5%-3.2%,表明骨骼畸形每年给养禽业带来约15-20亿美元的损失(Jendral et al.,2008)。我国肉鸡平均骨病发病率为3%-16%,直接经济损失约为50-80亿。其中,由于遗传和营养因素引起骨骼发育缺陷而导致家禽的骨质疏松、软骨病、腿骨变脆等骨病的发生,造成家禽业巨大的经济损失。

[0003] 骨代谢过程必然会涉及到动物体对钙、磷的吸收和代谢,摄入充足的钙、磷对动物骨骼的正常发育至关重要。血液中,钙、磷水平是衡量动物钙、磷营养状况的重要标志。

[0004] 血钙主要以离子钙、枸橼酸钙和结合钙三种形式存在。其中,结合钙是蛋壳钙的主要来源。而钙的增加也是限定在结合钙部分,并保持与离子钙两者间的平衡状态(William et al.,2005)。血液中主要是游离的钙离子发挥生理作用,通过改变血浆中pH值,调节游离钙离子、蛋白结合钙以及血浆中总钙量之间的关系。

[0005] 血液中的磷主要以无机磷酸盐、有机磷酸酯和磷脂三种形式存在。无机磷酸盐主要存在于血浆中,后两种形式的磷主要存在于红细胞内。付强等研究表明,没有独立的调节机制来调控血液中磷浓度的平衡,磷产生生理作用主要是通过钙代谢的影响而间接进行:细胞外液中磷含量降低,相反钙离子含量升高,高浓度的钙降低甲状旁腺激素 (PTH) 的释放,减弱甲状旁腺激素对肾作用,磷的排出被降低,从而将细胞外液中的磷浓度提高;细胞外液中较低磷浓度会间接地刺激肾1-α羟化酶系产生磷酸化,促进其转化为1,25-二羟维生素D3,肠道内钙磷的吸收增强,使细胞外液中磷浓度升高。

[0006] 因此,钙、磷的适宜摄入,可促进钙磷吸收并在骨骼中的沉积,钙磷比例过高或过低均会影响钙、磷的吸收与沉积。

[0007] 武定鸡主要产于云南省楚雄自治州的武定县,体型较大,肉质鲜美,香味醇厚,备受人们喜爱,成为武定县乃至云南省独有的一张"名片"。尚未有关血钙、血磷含量对武定鸡骨骼发育影响的研究,为满足人们对地方鸡种的需求,有必要提出一种能选育骨骼发育良好的云南武定鸡的新方法,通过对血钙、血磷与骨骼发育的研究,建立一个血液生化标记,为云南武定鸡的早期选育做铺垫。

发明内容

[0008] 为了克服背景技术中存在的问题,本发明提供了一种基于钙、磷血液生化标记选育武定鸡的方法,通过测定血钙、血磷在骨骼发育正常型和骨骼发育异常型武定鸡中的浓度变化,结合检测的武定鸡的骨密度、骨强度,给出了骨骼发育正常型和骨骼发育异常型武定鸡血液生化标记,筛选优质鸡只,为武定鸡的早期选育提供理论基础,也为探究武定鸡的选育方法,为云南地方鸡种在雨中工作中提供新思路。

[0009] 为实现上述目的,本发明是通过如下技术方案实现的:

[0010] 所述的基于钙、磷血液生化标记选育武定鸡的方法,具体包括以下步骤:

[0011] 1) 采集待测定武定鸡的血样,制备血清,检测其血钙(Ca)、血磷(P)的浓度值;

[0012] 2) 将步骤1) 测得的浓度值与武定鸡血液生化标记进行对比,将待测武定鸡区别为骨骼发育正常型武定鸡和骨骼发育异常型武定鸡。

[0013] 进一步的,武定鸡血液生化标记的确立具体包括以下步骤:

[0014] a.从武定鸡资源群体中随机选择骨骼发育正常型武定鸡家系和骨骼发育异常型武定鸡家系,分别检测其腿骨骨密度、骨强度,采集血样,制备血清;

[0015] b.血钙(Ca)含量测定及计算方法:选用血钙(Ca)酶联免疫试剂盒,应用邻甲酚酞络合酮比色法对血清中的钙离子浓度进行测定,即在碱性条件下,样品中钙离子与邻甲酚酞络合酮生成红色络合物;在600nm测量吸光度,吸光度增加与血清钙离子浓度成正比,与同样处理的标准品比较,可求得样本中钙离子的含量;血钙浓度的计算如下:C_{KHL}=A_{KHL}/A_{KML}×C_{KML} (mmo1/L)

[0016] c.血磷(P)含量测定及计算方法:选用血磷(P)酶联免疫试剂盒,应用紫外终点法对血清中的无机磷浓度进行测定,即在酸性条件下钼酸铵同血清中的无机磷反应,形成非还原性磷钼酸化合物,在340nm测量吸光度,吸光度增加与血清无机磷成正比,与同样处理的标准品比较,可求得样本中无机磷的含量;血磷浓度的计算如下: $C_{\text{Hal}} = A_{\text{Hal}}/A_{\text{KØt}} \times C_{\text{KØt}}$ (mmol/L)

[0017] d.根据步骤b、c所得数据,得出骨骼发育正常型武定鸡和骨骼发育异常型武定鸡血钙、血磷的浓度值,再根据所选取的武定鸡的腿骨骨密度、骨强度,进行血钙、血磷与骨密度、骨强度的相关性分析:

[0018] e.根据步骤d所得到的分析结果,确定武定鸡的血液生化标记。

[0019] 进一步的,所述武定鸡的血液生化标记为血钙、血磷的浓度值,一月龄时,当血钙的浓度值在3.31mmo1/L以上,且血磷的浓度值在2.44mmo1/L以上,判定为骨骼发育正常型武定鸡,反之为骨骼发育异常型武定鸡;二月龄时,当血钙的浓度值在3.46mmo1/L以上,且血磷的浓度值在2.49mmo1/L以上,判定为骨骼发育正常型武定鸡,反之为骨骼发育异常型武定鸡。

[0020] 进一步的,采血前断水、断食12小时,于次日早晨进行翅静脉采血;用离心管收集血样,静置30min于室温下3000rpm离心20min,取上清液,获得血清。

[0021] 本发明的有益效果:

[0022] 本发明通过测定血钙、血磷在骨骼发育正常型和骨骼发育不良型武定鸡中的浓度变化,结合检测的武定鸡的骨密度、骨强度,给出了骨骼发育正常型和骨骼发育不良型武定鸡血液生化标记,筛选优质鸡只,为武定鸡的早期选育提供理论基础,也为探究武定鸡的选

育方法,为云南地方鸡种在雨中工作中提供新思路。

具体实施方式

[0023] 为了使本发明的目的、技术方案和有益效果更加清楚,下面将对本发明的优选实施例进行详细的说明,以方便技术人员理解。

[0024] 实施例1

[0025] 1.实验样品的采集和保存

[0026] (1)血清的制备

[0027] 在骨骼发育正常型武定鸡家系和骨骼发育异常型武定鸡家系中随机选取一月龄和二月龄骨骼发育正常型和骨骼发育异常型武定鸡各20只,分别采集其血液测定骨代谢相关生化指标。采血前断水、断食12小时,于次日早晨进行翅静脉采血。用10m1离心管收集血样3-4m1,静置30min于室温下3000rpm离心20min,取上清液(血清)于1.5m1的离心管中,放入-20℃冰箱中保存备用。

[0028] (2) 腿骨样品的采集

[0029] 分别于1、2月龄骨骼发育正常型和骨骼发育异常型武定鸡各屠宰20只,采集试验鸡左、右腿的股骨和胫骨。除去骨表面的软组织和结缔组织,用0.75%的生理盐水冲洗干净,并用蘸有生理盐水的纱布包裹,用自封袋封紧,-20℃保存备用于测定骨密度和骨强度指标。

[0030] 2. 腿骨骨密度检测

[0031] 试验鸡左股骨和左胫骨解冻后,采用QDR-4500型双能X线骨密度仪(Hologic公司,美国)测定骨密度。

[0032] 3. 腿骨骨强度检测

[0033] 试验鸡左股骨和左胫骨解冻后,将骨骼样品置于电子万能试验机(AG-IS,日本岛津公司)下进行三点弯曲试验,以检测骨强度指标:弹性模量、屈服应力、破坏应力、断裂应力。本试验所采用的跨距计算公式为:L=(a+3b)±0.5b,其中a为支撑轨的直径,b为骨骼的直径。加载速度为2mm/min。检测单位为昆明理工大学材料学院实验中心。

[0034] 4.血液生化指标检测

[0035] 血钙(Ca)、血磷(P)的测定方法根据试剂盒生产厂商(南京博湃生物技术有限公司(美国R&D分装试剂盒))使用说明书提供的操作方法进行:

[0036] (1) 血钙(Ca) 含量测定及计算方法:

[0037] 应用邻甲酚酞络合酮比色法对血清中的钙离子浓度进行测定。即在碱性条件下,样品中钙离子与邻甲酚酞络合酮生成红色络合物。在600nm测量吸光度,吸光度增加与血清钙离子浓度成正比,与同样处理的标准品比较,可求得样本中钙离子的含量。具体操作方法按照试剂盒进行。血钙浓度的计算如下:

[0038] $C_{HB} = A_{HB} / A_{RM} \times C_{RM} \pmod{1/L}$

[0039] (2) 血磷 (P) 含量测定及计算方法

[0040] 应用紫外终点法对血清中的无机磷浓度进行测定。即在酸性条件下钼酸铵同血清中的无机磷反应,形成非还原性磷钼酸化合物,在340nm测量吸光度,吸光度增加与血清无机磷成正比,与同样处理的标准品比较,可求得样本中无机磷的含量。具体操作方法按试剂

盒进行。血磷浓度的计算如下:

[0041] C样品 = A样品 / A核准 × C核准 (mmo1/L)

[0042] 5.数据统计

[0043] 表1一月龄武定鸡骨密度、骨强度数据

		指标	骨骼发育正常型	骨骼发育异常型
	骨密度	股骨骨密度含量	0.2	0. 169
	(g/cm^2)	胫骨骨密度含量	0. 4356	0. 4176
		股骨骨干弹性模量	2053.00*	1531.97
		胫骨骨干弹性模量	4261.54*	3104.41
[0044]		股骨骨干屈服应力	68.70*	46.09
	骨强度	胫骨骨干屈服应力	78.08*	65. 46
	(N/mm^2)	股骨骨干最大应力	92.66*	73.34
		胫骨骨干最大应力	125.91*	15.68
		股骨骨干断裂应力	76. 55*	57.52
		胫骨骨干断裂应力	90. 91*	79. 55

[0045] 注:同行数据,"*"表示差异显著(P<0.05)。

[0046] 表2二月龄武定鸡骨密度、骨强度数据

		指标	骨骼发育正常型	骨骼发育异常型
	骨密度	股骨骨密度含量	0. 2318*	0. 173
	(g/cm^2)	胫骨骨密度含量	0.5124*	0. 4066
		股骨骨干弹性模量	1766.01*	385. 32
		胫骨骨干弹性模量	1735.39*	1012.61
[0047]		股骨骨干屈服应力	41.55*	16. 17
	骨强度	胫骨骨干屈服应力	68.46*	32. 53
	(N/mm^2)	股骨骨干最大应力	52. 21*	21.49
		胫骨骨干最大应力	75.64*	10.32
		股骨骨干断裂应力	54.06*	18.76
		胫骨骨干断裂应力	59.94*	29. 49

[0048] 注:同行数据,"*"表示差异显著(P<0.05)。

[0049] 表3一月龄武定鸡血钙、血磷的含量

		骨骼发育正常型	骨骼发育异常型
[0050]	血清中Ca含量 (mmo1/L)	3. 74*	2. 80
	血清中P含量 (mmo1/L)	2.53	2.42

[0051] 注:同行数据,"*"表示差异显著(P<0.05)。

[0052] 表4二月龄武定鸡血钙、血磷的含量

		骨骼发育正常型	骨骼发育异常型
[0053]	血清中Ca含量 (mmo1/L)	3.94*	2. 89
	血清中P含量 (mmo1/L)	2.54	2.46

[0054] 注:同行数据,"*"表示差异显著(P<0.05)。

[0055] 表5一月龄骨骼发育正常型鸡血钙、血磷与骨密度、骨强度相关性分析

股骨骨干断裂应力 胫骨骨干断裂应力 0.717^{*}

[0056]												
	血清 中 Ca 含量	血清 中 P 含量	股骨 骨密 度含 量	胫骨 骨密 度含 量	股骨 骨干 弹性 模量	胫骨 骨干 弹性 模量	股骨 骨干 屈服 应力	胫骨 骨干 屈服 应力	股骨干 最力	胫骨 骨干 最大 应力	股骨 骨干 断裂 应力	胫骨 骨干 断裂 应力
血清中 Ca 含量	1	0.496*	0.385	0.184	0.570*	0.491*	0.294	0.558*	0.331	0.583*	0.476*	0.388
血清中 P 含量		1	0.567^{*}	0.430	0.495^{*}	0.460^{*}	0.343	0.327	0.383	0.465^{*}	0.381	0.564^{*}
股骨骨密度含量			1	0.864^{**}	0.502^{*}	0.493^{*}	0.432	0.556^{*}	0.432	0.584^{*}	0.215	0.573*
胫骨骨密度含量				1	0.327	0.254	0.478^{*}	0.378	0.310	0.432	0.070	0.414
股骨骨干弹性模量					1	0.806^{*}	0.647^{*}	0.583^{*}	0.825^{*}	0.753^{*}	0.869**	0.764^{*}
胫骨骨干弹性模量						1	0.451^{*}	0.727^{*}	0.802^{*}	0.662^{*}	0.740^{*}	0.726^{*}
股骨骨干屈服应力							1	0.460^{*}	0.390	0.462^{*}	0.480^{*}	0.586^{*}
胫骨骨干屈服应力								1	0.504^{*}	0.819^{*}	0.524^{*}	0.592*
股骨骨干最大应力									1	0.596^{*}	0.858^{*}	0.696^{*}
胫骨骨干最大应力										1	0.661*	0.758^{*}

[0057] 注: "**"表示在0.01水平上显著相关, "*"表示在0.05水平上显著相关。 [0058] 表6一月龄骨骼发育异常型鸡血钙、血磷与骨密度、骨强度相关性分析 [0059]

	血清	血清	股骨 骨密	胫骨 骨密	股骨 骨干	胫骨 骨干	股骨 骨干	胫骨 骨干	股骨 骨干	胫骨 骨干	股骨 骨干	胫骨 骨干
	中 Ca 含量	中 P 含量	度含量	度含量	弹性 模量	弹性 模量	屈服应力	屈服 应力	最大 应力	最大 应力	断裂应力	断裂应力
血清中 Ca 含量	1	0.758*	0.636*	0.826*	0.752*	0.534*	0.739*	0.453*	0.736*	0.866**	0.631*	0.550*
血清中 P 含量		1	0.515*	0.653^{*}	0.737^{*}	0.816^*	0.627^{*}	0.498^{*}	0.909**	0.870^{**}	0.634^{*}	0.555^{*}
股骨骨密度含量			1	0.581*	0.422	0.306	0.466^{*}	0.252	0.575^{*}	0.577^{*}	0.360	0.728^{*}
胫骨骨密度含量				1	0.747^{*}	0.528^{*}	0.669^*	0.571*	0.586^{*}	0.804^{*}	0.722^{*}	0.488^{*}
股骨骨干弹性模量					1	0.558^{*}	0.488^{*}	0.619^*	0.630^{*}	0.828^{*}	0.759^{*}	0.489^{*}
胫骨骨干弹性模量						1	0.323	0.246	0.775^{*}	0.549*	0.470^{*}	0.245
股骨骨干屈服应力							1	0.485^{*}	0.485^{*}	0.804^{*}	0.342	0.474^{*}
胫骨骨干屈服应力								1	0.381	0.577^{*}	0.558^{*}	0.226
股骨骨干最大应力									1	0.736^{*}	0.532^{*}	0.470^{*}
胫骨骨干最大应力										1	0.671^{*}	0.698^{*}
股骨骨干断裂应力											1	0.590^{*}
胫骨骨干断裂应力												1

[0060] 注: "**"表示在0.01水平上显著相关, "*"表示在0.05水平上显著相关。 [0061] 表7二月龄骨骼发育正常型鸡血钙、血磷与骨密度、骨强度相关性分析

6/9 页

Γ	Λ	Λ	۷	2	٦
ı	U	U	О	Z	

	1 000		股骨	胫骨	股骨	胫骨	股骨	胫骨	股骨	胫骨	股骨	胫骨
	血清	血清	骨密	骨密	骨干	骨干	骨干	骨干	骨干	骨干	骨干	骨干
	中 Ca 含量	中 P 含量	度含	度含	弹性	弹性	屈服	屈服	最大	最大	断裂	断裂
	立 里	上里	量	量	模量	模量	应力	应力	应力	应力	应力	应力
血清中 Ca 含量	1	0.339	0.584^{*}	0.483^{*}	0.313	0.274	0.421	0.744*	0.163	0.434	0.430	0.171
血清中 P 含量		1	0.341	0.416	0.353	0.531*	0.129	0.198	0.281	0.368	0.131	0.247
股骨骨密度含量			1	0.828^{*}	0.417	0.652^{*}	0.409	0.735*	0.587^{*}	0.619*	0.648^{*}	0.484^{*}
胫骨骨密度含量				1	0.316	0.553*	0.427	0.553^{*}	0.540^{*}	0.517^{*}	0.443	0.385
股骨骨干弹性模量					1	0.302	0.289	0.250	0.727^{*}	0.731^*	0.208	0.107
胫骨骨干弹性模量						1	0.348	0.566^{*}	0.306	0.478^{*}	0.647^{*}	0.633^{*}
股骨骨干屈服应力							1	0.576^{*}	0.268	0.427	0.455^{*}	0.079
胫骨骨干屈服应力								1	0.219	0.542^{*}	0.538^{*}	0.423
股骨骨干最大应力									1	0.488^{*}	0.084	0.197
胫骨骨干最大应力										1	0.429	0.316
股骨骨干断裂应力											1	0.514^{*}
胫骨骨干断裂应力												1

[0063] 注: "**"表示在0.01水平上显著相关, "*"表示在0.05水平上显著相关。 [0064] 表8二月龄骨骼发育异常型鸡血钙、血磷与骨密度、骨强度相关性分析 [0065]

	血清 中 Ca 含量	血清 中 P 含量	股骨 骨密 度含 量	胫骨 骨密 度含 量	股骨 骨干 弹性 模量	胫骨 骨干 弹性 模量	股骨 骨干 屈服 应力	胫骨 骨干 屈服 应力	股骨 骨干 最大 应力	胫骨 骨干 最大 应力	股骨 骨干 断裂 应力	胫骨 骨干 断裂 应力
血清中 Ca 含量	1	0.576*	0.759*	0.751*	0.606*	0.784*	0.062	0.614*	0.098	0.895**	0.247	0.549*
血清中 P 含量		1	0.789^{*}	0.380	0.272	0.698^{*}	0.145	0.348	0.341	0.655^{*}	0.479^{*}	0.601^{*}
股骨骨密度含量			1	0.575*	0.412	0.881**	0.347	0.434	0.205	0.778^{*}	0.544*	0.794^{*}
胫骨骨密度含量				1	0.739^{*}	0.673^{*}	0.200	0.589^{*}	0.211	0.674^{*}	0.500^{*}	0.519^{*}
股骨骨干弹性模量					1	0.545*	0.424	0.507^{*}	0.391	0.561*	0.454^{*}	0.418
胫骨骨干弹性模量						1	0.397	0.461*	0.360	0.794^{*}	0.441	0.608^{*}
股骨骨干屈服应力							1	0.040	0.337	0.182	0.227	0.457^{*}
胫骨骨干屈服应力								1	0.475^{*}	0.536^{*}	0.273	0.380
股骨骨干最大应力									1	0.123	0.453^{*}	0.152
胫骨骨干最大应力										1	0.175	0.588^{*}
股骨骨干断裂应力											1	0.599^{*}
胫骨骨干断裂应力												1

[0066] 注: "**"表示在0.01水平上显著相关, "*"表示在0.05水平上显著相关。

[0067] 6.结果分析

[0068] 由表1和表2可知,一、二月龄时的骨密度数据:骨骼发育正常型武定鸡的股骨骨密度含量、胫骨骨密度含量均高于骨骼发育异常型武定鸡,其中二月龄时差异显著(P<0.05)。一、二月龄时的骨强度数据:骨骼发育正常型武定鸡的股骨骨干弹性模量、胫骨骨干弹性模量、股骨骨干屈服应力、胫骨骨干屈服应力、股骨骨干最大应力、胫骨骨干最大应力、股骨骨干最大应力、股骨骨干断裂应力均显著高于骨骼发育异常型武定鸡(P<0.05)。

[0069] 由表3和表4可知,一、二月龄时的武定鸡血清中Ca含量数据:骨骼发育正常型武定鸡血清中Ca含量显著高于骨骼发育异常型武定鸡(P<0.05);一、二月龄时的武定鸡血清中P含量数据:骨骼发育正常型武定鸡血清中P含量高于骨骼发育异常型武定鸡。

[0070] 通过一、二月龄武定鸡骨密度和骨强度的相关性分析可知,一、二月龄时,骨骼发

[0071] 由上述相关性数据结果得出,血清中Ca、P含量对早期武定鸡骨骼发育有决定性作用,可作为早期选育优良骨骼发育武定鸡的血液生化标记。

[0072] 实施例2

[0073] 在云南武定鸡养殖场抽选体型一致、健康状况良好的一月龄武定鸡100只,分别检测其血液中Ca、P浓度值,根据所得浓度值在一定范围内进行统计分组,得到以下统计表。

[0074] 表9一月龄武定鸡血钙、血磷的含量统计

[0075]

分组	1	2	3	4	5
血清中Ca含量 (mmol/L)	2.52-2.82	2.83-3.13	3.14-3.44	3.45-3.75	3.76-4.06
武定鸡只数(只)	12	18	21	39	10
血清中 P 含量 (mmol/L)	2.31-2.36	2.37-2.42	2.43-2.48	2.49-2.54	2.55-2.60
武定鸡只数(只)	10	14	28	42	6

[0076] 将此5组一月龄武定鸡严格按照免疫程序,在相同饲养条件下饲养至二月龄,分别测定其胫骨骨密度(采用便携式骨密度仪进行检测),各组统计结果如下(见表10)。

[0077] 表10一月龄武定鸡平均胫骨骨密度统计

[0078]

分组	1	2	3	4	5
平均胫骨骨密度(g/cm²)	0.4162	0.4196	0.4247	0.4346	0.4373

[0079] 由表10可看出,第三组平均胫骨骨密度较第一组和第二组显著增高,且第四、五组依次增高,推论出第三组的区间范围是一个显著的折点范围,即一月龄时,血清中Ca含量范围(3.14-3.44mmo1/L)、血清中P含量范围(2.43-2.48mmo1/L)是折点范围。

[0080] 在对该折点范围内的鸡重复进行上述步骤,最终得到3.31mmo1/L是血清中Ca含量的显著折点,2.44mmo1/L是血清中P含量的显著折点。

[0081] 检测上述二月龄的武定鸡血清中的Ca、P含量,结果如下(见表11)

[0082] 表11二月龄武定鸡血钙、血磷的含量统计

[0083]

分组	1	2	3	4	5
血清中Ca含量 (mmol/L)	2.53-2.84	2.85-3.16	3.17-3.48	3.49-3.80	3.81-4.12
血清中P含量 (mmol/L)	2.21-2.30	2.31-2.40	2.41-2.50	2.51-2.60	2.61-2.70

[0084] 将此5组二月龄武定鸡严格按照免疫程序,在相同饲养条件下饲养至三月龄,分别测定其胫骨骨密度(其中有2只武定鸡因腿关节受伤,不计入统计结果),各组统计结果如下(见表12)。

[0085] 表12三月龄武定鸡平均胫骨骨密度增量统计

[0086]

分组	1	2	3	4	5
平均胫骨骨密度增量 (g/cm²)	0.0122	0.0114	0.0242	0.0285	0.0319

[0087] 由表12可看出,第三组平均胫骨骨密度增量较前两组显著增高,推论出第三区间范围是一个显著的折点范围,即二月龄时,血清中Ca含量(3.17-3.48mmo1/L)是折点范围,血清中P含量(2.41-2.50mmo1/L)是折点范围。

[0088] 将该两个折点范围内的武定鸡及相邻区间内Ca、P浓度值分别在3.17-3.48mmo1/L、2.41-2.50mmo1/L内的鸡只组合,然后重复进行上述步骤,最终得到最终得到3.46mmo1/L是血清中Ca含量的显著折点,2.49mmo1/L是血清中P含量的显著折点。

[0089] 在云南其他武定鸡养殖场按以上实验步骤多次重复实验,所得结论与上述实验结论相同,结论为:一月龄时,血清中Ca含量范围(3.14-3.44mmo1/L)、血清中P含量范围(2.43-2.48mmo1/L)是显著的折点范围,且3.31mmo1/L是血清中Ca含量的显著折点,2.44mmo1/L是血清中P含量的显著折点;二月龄时,血清中Ca含量(3.17-3.48mmo1/L)是折点范围,血清中P含量(2.41-2.50mmo1/L)是显著的折点范围,且3.46mmo1/L是血清中Ca含量的显著折点,2.49mmo1/L是血清中P含量的显著折点。

[0090] 实施例3

[0091] 1.实验材料的准备

[0092] 在云南武定县各武定鸡养殖场抽样一月龄武定鸡共120只(包含骨骼发育正常型和骨骼发育异常型),二月龄武定鸡共120只(包含骨骼发育正常型和骨骼发育异常型),分别测定其胫骨骨密度含量;进行翅静脉采血,用5m1离心管收集血样,静置30min于室温下3000rpm离心20min,取上清液,即得血清。

[0093] 2. 检测血清中Ca、P的浓度值

[0094] 应用邻甲酚酞络合酮比色法对血清中的钙离子浓度进行测定,即在碱性条件下,样品中钙离子与邻甲酚酞络合酮生成红色络合物。在600nm测量吸光度;应用紫外终点法对血清中的无机磷浓度进行测定,即在酸性条件下钼酸铵同血清中的无机磷反应,形成非还原性磷钼酸化合物,在340nm测量吸光度。吸光度增加与血清钙离子浓度和血清无机磷均成正比,与同样处理的标准品比较,可求得样本中血清钙离子浓度和血清无机磷的含量。

[0095] 3.比较分析

[0096] 一月龄时,胫骨骨密度含量在 $4.4176g/cm^2$ 以下的为31只,在 $0.4356g/cm^2$ 以上共有

72只,即120只武定鸡中,骨骼发育异常型武定鸡31只,骨骼发育正常型武定鸡72只。在31只骨骼发育异常型武定鸡中,有29只武定鸡血清中Ca含量在3.31mmo1/L以下,占骨骼发育异常型武定鸡的93.55%;有26只武定鸡血清中P含量在2.44mmo1/L以下,占骨骼发育异常型武定鸡的83.87%。在72只骨骼发育正常型武定鸡中,有66只武定鸡血清中Ca含量在3.31mmo1/L以上,占骨骼发育正常型武定鸡的91.67%;有61只武定鸡血清中P含量在2.44mmo1/L以上,占骨骼发育正常型武定鸡的84.72%。

[0097] 二月龄时,胫骨骨密度含量在0.4066g/cm²以下的为33只,在0.5124g/cm²以上共有76只,即120只武定鸡中,骨骼发育异常型武定鸡33只,骨骼发育正常型武定鸡76只。在33只骨骼发育异常型武定鸡中,有28只武定鸡血清中Ca含量在3.46mmo1/L以下,占骨骼发育异常型武定鸡的84.84%;有29只武定鸡血清中P含量在2.49mmo1/L以下,占骨骼发育异常型武定鸡的87.88%。在76只骨骼发育正常型武定鸡中,有67只武定鸡血清中Ca含量在3.46mmo1/L以上,占骨骼发育正常型武定鸡的88.12%;有64只武定鸡血清中P含量在2.49mmo1/L以上,占骨骼发育正常型武定鸡的84.21%。

[0098] 综上所述,本发明通过测定血钙、血磷在骨骼发育正常型和骨骼发育不良型武定鸡中的浓度变化,结合检测的武定鸡的骨密度、骨强度,给出了骨骼发育正常型和骨骼发育不良型武定鸡血液生化标记,筛选优质鸡只,为武定鸡的早期选育提供理论基础,也为探究武定鸡的选育方法,为云南地方鸡种在雨中工作中提供新思路。

[0099] 最后说明的是,以上优选实施例仅用于说明本发明的技术方案而非限制,尽管通过上述优选实施例已经对本发明进行了详细的描述,但本领域技术人员应当理解,可以在形式上和细节上对其作出各种各样的改变,而不偏离本发明权利要求书所限定的范围。

专利名称(译)	一种基于钙、磷血液生化标记选育武定鸡的方法				
公开(公告)号	CN109540818A	公开(公告)日	2019-03-29		
申请号	CN201811571605.0	申请日	2018-12-21		
[标]申请(专利权)人(译)	云南农业大学				
申请(专利权)人(译)	云南农业大学				
当前申请(专利权)人(译)	云南农业大学				
[标]发明人	豆贾闫李徐段谷刘葛黄李荣王孙程腾俊世涛志小大丽长英琦华坤帅斌				
发明人	豆贾闫李徐段谷刘葛黄李荣王孙程腾俊世涛志小大丽长英琦华坤帅斌				
IPC分类号	G01N21/31 G01N21/33 G01N21	/82 G01N33/53			
CPC分类号	G01N21/31 G01N21/33 G01N21/82 G01N33/53 G01N2021/825				
代理人(译)	李中强				
外部链接	Espacenet SIPO				
按 邢 (² 又)					

摘要(译)

本发明涉及一种基于钙、磷血液生化标记选育武定鸡的方法,属于家禽血液生化标记技术领域,本发明具体包括以下步骤:1)采集待测定武定鸡的血样,制备血清,检测其血钙(Ca)、血磷(P)的浓度值;2)将步骤1)测得的浓度值与武定鸡血液生化标记进行对比,将待测武定鸡区别为骨骼发育正常型武定鸡和骨骼发育异常型武定鸡。本发明通过测定血钙、血磷在骨骼发育正常型和

骨骼发育异常型武定鸡中的浓度变化,结合检测的武定鸡的骨密度、骨强度,给出了骨骼发育正常型和骨骼发育异常型武定鸡血液生化标记,筛选优质鸡只,为武定鸡的早期选育提供理论基础,也为探究武定鸡的选育方法,为云南地方鸡种在育种工作中提供新思路。

		骨骼发育正常型	骨骼发育异常型
H 3.3.		.,	
骨密度	股骨骨密度含量	0.2	0. 169
(g/cm^2)	胫骨骨密度含量	0. 4356	0.4176
	股骨骨干弹性模量	2053.00*	1531.97
	胫骨骨干弹性模量	4261.54 *	3104.41
	股骨骨干屈服应力	68.70*	46.09
骨强度	胫骨骨干屈服应力	78.08*	65. 46
$(\mathrm{N/mm}^2)$	股骨骨干最大应力	92.66*	73. 34
	胫骨骨干最大应力	125.91*	15.68
	股骨骨干断裂应力	76. 55*	57. 52
	胫骨骨干断裂应力	90.91*	79. 55