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(57) ABSTRACT

Heart valve operation is assessed with patient-specific medi-
cal diagnostic imaging data. To deal with the complex motion
of the passive valve tissue, a hierarchal model is used. Rigid
global motion of the overall valve, non-rigid local motion of
landmarks of the valve, and surface motion of the valve are
modeled sequentially. For the non-rigid local motion, a spec-
tral trajectory approach is used in the model to determine
location and motion of the landmarks more efficiently than
detection and tracking. Given efficiencies in processing, more
than one valve may be modeled at a same time. A graphic
overlay representing the valve in four dimensions and/or
quantities may be provided during an imaging session. One or
more of these features may be used in combination or inde-
pendently.
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VALVE ASSESSMENT FROM MEDICAL
DIAGNOSTIC IMAGING DATA

RELATED APPLICATIONS

[0001] The present patent document claims the benefit of
the filing dates under 35 U.S.C. §119(e) of Provisional U.S.
Patent Application Ser. Nos. 61/260,496, filed Nov. 12,2009,
61/161,155, filed Mar. 18, 2009, and 61/161,134, filed Mar.
18, 2009, which are hereby incorporated by reference.

BACKGROUND

[0002] Thepresent embodiments relate to medical diagnos-
tic imaging or quantification. In particular, assessment of
heart valves is performed from medical diagnostic imaging
data.

[0003] Valvular surgery accounts for up to 20% of all car-
diac procedures in the United States and is applied in nearly
100,000 patients every year. Yet, with an average cost of
$120,000 and 5.6% in hospital death rate, valve operations are
expensive and risky cardiac interventions. Aortic and mitral
valves are most commonly affected, cumulating in 64% and
15%, respectively of all valvular heart disease (VHD) cases.
[0004] The heart valves play a key role in the cardiovascu-
lar system by regulating the blood flow inside the heart cham-
bers and human body. In particular, the aortic and mitral
valves execute synchronized rapid opening and closing
movements to govern the fluid interaction in between the left
atrium (LA), left ventricle (LV) and aorta (Ao).

[0005] Congenital, degenerative, structural, infective or
inflammatory diseases can provoke dysfunctions, resulting in
stenotic and regurgitant valves. The blood flow is obstructed
or, in case of regurgitant valves, blood leaks due to improper
closing. Both conditions may greatly interfere with the pump-
ing function of the heart, causing life-threatening conditions.
Severe cases require valve surgery, while mild to moderate
cases benefit from accurate diagnosis and long-term medical
management. Precise morphological and functional knowl-
edge about the aortic-mitral apparatus is important for diag-
nosis, therapy-planning, surgery or percutaneous interven-
tion as well as patient monitoring and follow-up.

[0006] Non-invasive investigations are based on two-di-
mensional images, user-dependent processing and manually
performed, potentially inaccurate measurements. Imaging
modalities, such as Cardiac Computed Tomography (CT) and
Transesophageal Echocardiography (TEE), enable for
dynamic four dimensional scans of the beating heart over the
whole cardiac cycle. Such volumetric time-resolved data
encodes comprehensive structural and dynamic information.
However, the four dimensional scans are rarely exploited in
clinical practice due to data size and complexity. Perceiving
the valve operation is difficult.

[0007] Diagnosis may be assisted by modeling. Dynamic
model estimation determines patient specific parameters
from volume scan data. Modeling may be approached in two
steps—object delineation and motion estimation.

[0008] For object delineation, approaches may be based on
active shape models (ASM), active appearance models
(AAM) or de-formable models. These methods often involve
semi-automatic inference or require manual initialization for
object location. Discriminative learning methods may effi-
ciently solve localization problems by classifying image
regions as containing a target object. This learning-based
approach may be applied to three-dimensional object local-
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ization by introducing an efficient search method referred to
as marginal space learning (MSL). To handle the large num-
ber of possible pose parameters of a 3D object, an exhaustive
search of hypotheses is performed in sub-spaces with gradu-
ally increased dimensionality.

[0009] For motion estimation in time dependent four-di-
mensional problems, tracking methods have been used. To
improve robustness, many tracking algorithms integrate key
frame detection. The loose coupling between detector and
tracker often outputs temporally inconsistent results.

[0010] Trajectory-based features have also increasingly
attracted attention in motion analysis and recognition. The
inherent representative power of both shape and trajectory
projections of non-rigid motion are equal, but the represen-
tation in the trajectory space may significantly reduce the
number of parameters to be optimized. This duality has been
exploited in motion reconstruction and segmentation of struc-
ture from motion. In particular, for periodic motion, fre-
quency domain analysis shows promising results in motion
estimation and recognition.

[0011] The majority of cardiac models focus on the repre-
sentation of the left (LV) and the right ventricle (RV). More
comprehensive models include the left (LA) and right atrium
(RA), ventricular outflow tracts (LVOT and RVOT), or the
aorta (Ao) and pulmonary trunk (PA). Nevertheless, the mod-
els do not explicitly model the aortic or mitral valves. Existent
valve models are mostly generic and used for hemodynamic
studies or analysis of various prostheses rather than being
patient specific. A model of the mitral valve used for manual
segmentation of TEE data has been proposed. The model
includes only the mitral valve annulus and closure line during
systole, so is both static and simple. A representation of the
aortic-mitral coupling has been proposed. This model is
dynamic but limited to only a curvilinear representation of the
aortic and mitral annuli. Due to the narrow level of detail and
insufficient parameterization, none of the existent valve mod-
els are applicable for comprehensive patient-specific model-
ing or clinical assessment.

BRIEF SUMMARY

[0012] By way of introduction, the preferred embodiments
described below include methods, computer readable media
and systems for assessing heart valve operation with medical
diagnostic imaging data. To deal with the complex motion of
the passive valve tissue, a hierarchal model is used. Rigid
global motion of the overall valve, non-rigid local motion of
landmarks of the valve, and surface motion of the valve are
modeled sequentially. For the non-rigid local motion, a spec-
tral trajectory approach is used in the model to determine
location and motion of the landmarks more efficiently than
detection and tracking. Given efficiencies in processing, more
than one valve may be modeled at a same time. A graphic
overlay representing the valve in four dimensions and/or
quantities may be provided during an imaging session. One or
more of these features may be used in combination or inde-
pendently.

[0013] In a first aspect, a method is provided for assessing
heart valve operation with medical diagnostic imaging data.
A first location of a heart valve is estimated from application
of the medical diagnostic imaging data to a global location
model. The first location is within a volume represented by
the medical diagnostic imaging data. A second location of a
landmark of the heart valve relative to the heart valve is
estimated. The estimating of the second location is a function
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of the estimated first location. A surface of the heart valve is
estimated as a function of the estimated second location of the
landmark. Animage representing the heart valve is displayed.
The image is a function of the surface.

[0014] In a second aspect, a computer readable storage
medium has stored therein data representing instructions
executable by a programmed processor for assessing heart
valve operation with medical diagnostic imaging data. The
storage medium includes instructions for determining Fourier
components of motion of non-linear valve motion of a heart
valve from the medical diagnostic imaging data, the medical
diagnostic imaging data representing a sequence of volumes
including the heart valve, inverse transforming the Fourier
components, the inverse transforming providing trajectories
of a landmark of the heart valve, the trajectories comprising
motion of the landmark over time, ranking the trajectories
with a machine learnt probabilities, and selecting a highest
ranked trajectory.

[0015] In athird aspect, a system is provided for assessing
heart valve operation with medical diagnostic ultrasound
data. An ultrasound scanner is configured to scan a heart
volume of'a patient. The scan provides the medical diagnostic
ultrasound data representing the heart volume at different
times as a sequence. A processor is configured to detect, as a
function of application of the medical diagnostic imaging
data to a machine-learnt probabilistic model, valve motion in
the sequence from the medical diagnostic imaging data. The
valve motion is passive motion, and the detection occurs
during the scan. A display is configured to generate a visual-
ization of the valve motion through the sequence. The visu-
alization is generated during a same examination session as
the scan.

[0016] In a fourth aspect, a computer readable storage
medium has stored therein data representing instructions
executable by a programmed processor for assessing heart
valve operation with medical diagnostic imaging data. The
storage medium includes instructions for estimating heart
valve shape or orientation at a plurality of different times
through a sequence for each of at least two heart valves, the
estimating being from medical diagnostic imaging data rep-
resenting a heart volume of a patient over at least a portion of
a heart cycle, and calculating a quantity as a function of the
heart valve shape or orientation for both of the at least two
heart valves.

[0017] The present invention is defined by the following
claims, and nothing in this section should be taken as a limi-
tation on those claims. Further aspects and advantages of the
invention are discussed below in conjunction with the pre-
ferred embodiments and may be later claimed independently
or in combination.

BRIEF DESCRIPTION OF THE DRAWINGS

[0018] The components and the figures are not necessarily
to scale, emphasis instead being placed upon illustrating the
principles of the invention. Moreover, in the figures, like
reference numerals designate corresponding parts throughout
the different views.

[0019] FIG.1isanexample illustration of a medical image
of patient-specific aortic and mitral valve models;

[0020] FIG. 2 is a flow chart diagram of embodiments of
methods for assessing heart valve operation with medical
diagnostic imaging data;

[0021] FIG. 3 is an example illustration of a medical image
of a heart valve with a global segmentation;
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[0022] FIG. 4 is an illustration of example landmarks for a
heart valve;
[0023] FIG. 5 illustrates example medical images of mesh

or grid surfaces of a heart valve;

[0024] FIG. 6 shows example plane intersections of a heart
valve for maintaining temporal and spatial consistency
according to one embodiment;

[0025] FIG. 7 is a diagram of medical images representing
hierarchal model estimation according to one embodiment;
[0026] FIG. 8 is a diagram of one embodiment of spectral
trajectory modeling;

[0027] FIG.9isagraphical example of possible trajectories
and corresponding Fourier components;

[0028] FIG. 10 illustrates an example for feature extraction
in trajectory modeling;

[0029] FIG. 11 shows an embodiment of estimation of sur-
faces;
[0030] FIG. 12 shows example medical images with esti-

mated valve overlays;

[0031] FIG. 13 illustrates example heart valve measure-
ments with medical images;

[0032] FIG. 14 shows example graphs of error comparison
between valve models;

[0033] FIG. 15 is a Bland-Altman plot for valve areas in one
example;

[0034] FIG. 16 shows graphs representing example errors;
[0035] FIG. 17 shows example measurements determined

before and after mitral annuloplasty; and

[0036] FIG. 18 is a block diagram of one embodiment of a
system for assessing heart valve operation with medical diag-
nostic imaging data.

DETAILED DESCRIPTION OF THE DRAWINGS
AND PRESENTLY

Preferred Embodiments

[0037] A patient-specific model of the aortic and mitral
valves is automatically estimated from volumetric sequences.
As decisions in cardiology increasingly rely on non-invasive
methods, fast and precise image processing tools may assist
analysis workflow. An automatic system for patient specific
modeling and quantification of the left heart valves is pro-
vided. The modeling operates on cardiac computed tomogra-
phy (CT) or ultrasound (e.g.. transesophageal echocardio-
gram (TEE)) data. Robust algorithms, based on
discriminative learning, are used to estimate patient specific
parameters from sequences of volumes covering a cardiac
cycle.

[0038] The joint valve model includes a physiologically-
driven parameterization to represent the full morphological
and dynamical aspects of the aortic-mitral apparatus. It also
introduces a complete framework for patient-specific param-
eter estimation from CT and TEE data. Moreover, a model-
based valve quantification methodology is presented along
with extensive clinical experiments.

[0039] The robust conversion of four dimensional CT or
TEE data into relevant morphological and functional quanti-
ties comprises three aspects: physiological modeling, patient-
specific model estimation, and model-driven quantification.
The aortic-mitral coupling is represented through a math-
ematical model sufficiently descriptive and flexible to capture
complex morphological, dynamic and pathological variation.
It includes all major anatomic landmarks and structures and
likewise it is hierarchically designed to facilitate automatic
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estimation of its parameters. This holistic representation is
hierarchically defined on three abstraction levels: global loca-
tion and rigid motion model, non-rigid landmark motion
model, and comprehensive aortic-mitral model. The rough
location and cardiac motion is computed applying marginal
space learning. The rapid and complex motion of the valves,
represented by anatomical landmarks, is estimated using a
trajectory spectrum learning algorithm. The obtained land-
mark model guides the fitting of the full physiological valve
model, which is locally refined through learned boundary
detectors.

[0040] Robust machine-learning algorithms process the
four-dimensional data coming from the medical scanners and
estimate patient-specific models of the valves. FIG. 1 shows
an example mesh overlay provided for imaging of the arotic-
mitral valve combination. The valves may be viewed from
different directions for assessment. Quantification based on
the identification of the valve locations, sizes, motion, orien-
tation, or operation may be output. As aresult, a wide-ranging
automatic analysis can be performed to measure relevant
morphological and functional aspects of the subject valves.
[0041] Measurements computed from the aortic mitral rep-
resentation support an effective morphological and functional
clinical evaluation. Extensive experiments on heterogeneous
data set, cumulated to 1516 TEE volumes from 65 4D TEE
sequences and 690 cardiac CT volumes from 694D CT
sequences, demonstrated a speed of 4.8 seconds per volume
and average accuracy of 1.45 mm with respect to expert
defined ground truth. Additional clinical validations show the
quantification precision to be in the range of inter-user vari-
ability.

[0042] Overall, a comprehensive physiologically-driven
model of the aortic and mitral valves captures the full mor-
phology and dynamics as well as pathologic variations. Valve
model parameters are estimated from four-dimensional CT or
TEE data. Morphological quantification and measurement of
dynamic variations over the entire cardiac cycle are sup-
ported. Simultaneous analysis of the aortic-mitral complex is
provided for concomitant clinical management and in-depth
understanding of the reciprocal functional influences.

[0043] FIG. 2 shows a method for assessing heart valve
operation with medical diagnostic imaging data. The method
is implemented by a medical diagnostic imaging system, a
review station, a workstation, a computer, a PACS station, a
server, combinations thereof, or other device for image pro-
cessing medical ultrasound data. For example, the system or
computer readable media shown in FIG. 18 implements the
method, but other systems may be used.

[0044] The method is implemented in the order shown or a
different order. Additional, different, or fewer acts may be
performed. For example, acts 26-32 are not provided. As
another example, acts 26-32 are provided without other acts.
In another example, acts 36 or 38 are provided using other
modeling of the valves.

[0045] The acts are performed in real-time, such as during
scanning. The user may view images of act 36 while scanning
to acquire another dataset representing the volume. The
images may be associated with previous performance of acts
20-38 in the same imaging session, but with different volume
data. For example, acts 20-38 are performed for an initial scan
and for subsequent scans during the same imaging session or
while the patient is still at the medical facility. Measurements
and/or images of automatically detected anatomy may be
provided in seconds, such as 10 or fewer seconds.

Sep. 23,2010

[0046] The modeling and patient-specific fitting of the
model may be performed for any valve or heart valve. In one
embodiment, a single heart valve is identified and parameter-
ized. In other embodiments, more than one heart valve is
identified and parameterized at a same time or during a same
imaging session. For example, the mitral valve and the aortic
valve are physiologically modeled.

[0047] For patient specific modeling, one or more sets of
data are obtained. Ultrasound or computed tomography data
is obtained. Any medical imaging modality capable of scan-
ning a volume multiple times during a heart cycle may be
used, such as TEE echocardiography. The ultrasound data
corresponds to a data set interpolated to a regular 3D grid,
displayed images (e.g., detected and scan converted ultra-
sound data), beamformed data, detected data, and/or scan
converted data. The ultrasound data represents a volume or
3D region of a patient. The region includes tissue, fluid or
other structures. Different structures or types of structures
react to the acoustic energy differently. The shape of a struc-
ture or spatial aspect may be reflected in B-mode or harmonic
data. The data represents the region of the patient.

[0048] For determining the location, shape, motion, size or
other characteristic of a heart valve, the valve is modeled
generally. The model is fit to patient specific data by estima-
tion. The estimation is performed in sequential stages, such as
associated with a hierarchal model. For example, alocation of
the global valve relative to the volume is estimated, a location
in the valve relative to other portions of the valve is then
estimated, and a surface of the valve is then estimated. Each
stage may use the same or different algorithms. For example,
separate machine-learnt algorithms are used.

[0049] In one embodiment, a physiological model of the
aortic and mitral valves is designed to capture complex mor-
phological, dynamical and pathological variations. The hier-
archical definition is constructed on three abstraction levels:
global location and rigid motion model, non-rigid landmark
motion model, and comprehensive aortic-mitral model.
Along with the parameterization, an anatomically driven
resampling method to establish point correspondence
required for the construction of a statistical shape model is
provided. A collision detection and repair algorithm may
provide physiological consistency.

[0050] For estimating from the model relative to a particu-
lar patient, patient-specific aortic-mitral model estimation is
provided. The model parameters are estimated from volumet-
ric sequences (3D+time data) to construct patient-specific
aortic-mitral representations. A robust learning-based algo-
rithm, which in concordance with the hierarchical parameter-
ization, includes three stages: global location and rigid
motion estimation, non-rigid landmark motion estimation
and comprehensive aortic-mitral estimation. FIG. 7 illus-
trates an example algorithm. Each stage may be implemented
differently. In one embodiment, trajectory spectrum learning
(TSL) with local-spatio-temporal (LST) features is used for
the non-rigid landmark motion estimate. The number of
stages may be fewer or more. The same algorithm is used for
either ultrasound or computer tomography data. Alterna-
tively, different algorithms are trained for the different types
of data.

[0051] Any machine training may be used for one or more
stages. The machine-trained classifier is any one or more
classifiers. A single class or binary classifier, collection of
different classifiers, cascaded classifiers, hierarchal classifier,
multi-class classifier, model-based classifier, classifier based
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on machine learning, or combinations thereof may be used.
Multi-class classifiers include CART, K-nearest neighbors,
neural network (e.g., multi-layer perceptron), mixture mod-
els, or others. A probabilistic boosting tree may be used.
Error-correcting output code (ECOC) may be used.

[0052] The classifier is trained from a training data set
using a computer. Any number of expert annotated sets of data
is used. For example, about 200 hundred volume sequences
representing the heart and including one or more valves are
annotated. The annotation indicates valve landmarks and/or
surfaces within the volumes. The different anatomies of each
volume are annotated. This large number of annotations
allows use of a probabilistic boosting tree to learn relevant
features over a large pool of 3-D Haar, and/or steerable fea-
tures. Both features may be efficiently computed and be effec-
tive as a feature space for boosting classifiers. Other features
may be used. Each classifier uses the data sets and annotations
specific to the anatomy being classified.

[0053] In one embodiment, the classifier is a knowledge-
based probabilistic model, such as marginal space learning
using a hierarchical search. A database of known cases is
collected for machine learning, providing a database-driven
knowledge-based approach. For training data, three-dimen-
sional context information is preserved and guides the detec-
tion process. Knowledge is embedded in large annotated data
repositories where expert clinicians manually indicate the
anatomies and/or measurement indicators for the anatomies.
Training and detecting the location of measurement indica-
tors include detecting the associated anatomy since the mea-
surement indicator indicates the anatomy. The detectors are
trained on a large number of annotated 3D volumes. The
classifier learns various feature vectors for distinguishing
between a desired anatomy and information not being
detected. In alternative embodiments, the classifier is manu-
ally programmed.

[0054] For learning-based approaches, the classifier is
taught to distinguish based on features. For example, the
probability model algorithm selectively combines features
into a strong committee of weak learners based on Haar-like
local rectangle filters whose rapid computation is enabled by
the use of an integral image. Features that are relevant to the
anatomies are extracted and learned in a machine algorithm
based on the experts’ annotations, resulting in a probabilistic
model. A large pool of features may be extracted. The training
determines the most determinative features for a given clas-
sification and discards non-determinative features. Different
combinations of features may be used for detecting different
anatomies, the same anatomy at different resolutions, and/or
the same anatomy associated with different translation, rota-
tion, or scale. For example, different sequential classification
stages utilize different features computed from the 3D vol-
ume data. Each classifier selects a set of discriminative fea-
tures that are used to distinguish the positive target from
negatives. The features are selected from a large pool of
features. The large pool is determined by a programmer or
may include features systematically determined.

[0055] A tree structure may be learned and may offer effi-
ciency in both training and application. Often, in the midst of
boosting a multi-class classifier, one class (or several classes)
has been completely separated from the remaining ones and
further boosting yields no additional improvement in terms of
the classification accuracy. For efficient training, a tree struc-
ture is trained. To take advantage of this fact, a tree structure
is trained by focusing on the remaining classes to improve
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learning efficiency. Posterior probabilities or known distribu-
tions may be computed, such as by correlating anterior prob-
abilities together.

[0056] To handle the background classes with many
examples, a cascade training procedure may be used. A cas-
cade of boosted binary-class strong classifiers may result. The
cascade of classifiers provides a unified algorithm able to
detect and classify multiple objects while rejecting the back-
ground classes. The cascade structure corresponds to a degen-
erate decision tree. Such a scenario presents an unbalanced
nature of data samples. The background class has voluminous
samples because all data points not belonging to the object
classes belong to the background class. Alternatively, the
classifiers are sequentially trained without cascade.

[0057] The probabilistic boosting tree (PBT) unifies clas-
sification, recognition, and clustering into one treatment. A
probabilistic boosting tree is learned for each anatomy or
stage of interest. The classifier is a tree-based structure with
which the posterior probabilities of the presence of the
anatomy of interest are calculated from given data. Each
detector not only provides a binary decision for a given
sample, but also a confidence value associated with the deci-
sion. The nodes in the tree are constructed by a combination
of simple classifiers using boosting techniques, such as dis-
closed by Tu, “Probabilistic Boosting-Tree: Learning Dis-
criminative Models for Classification, Recognition, and
Clustering,” Proc. Intl Conf. on Computer Vision, pp 1589-
1596, 2005.

[0058] Referring to FIG. 2, a global location is estimated.
For example, the location of a heart valve relative to the
overall volume is estimated. In one embodiment, the estima-
tion is of a rigid valve structure or bounding box without
consideration to non-rigid, localized motion of the heart
valve. The global location model is a rigid motion model. The
location of the valve relative to the heart is determined.
[0059] The estimation is performed by applying patient-
specific data representing the volume to a global location
model. The global location of both aortic and mitral valves is
parameterized through a similarity transformation in the
three-dimensional space, illustrated as a bounding box in
FIG. 3. A time variable t augments the representation to
capture the temporal variation during the cardiac cycle.

0={(c,.0, 0 G s 0, 0 (5,5, 5,1} M

—_- = —
where (¢,.¢,.c.) (0 . . @ )(5,8,,5,) are the position, ori-
entation and scale parameters as represented in FIG. 3.
[0060] The anatomically-driven definition is provided for
each parameter in 0 for one or more valves. The rigid motion
is modeled independently for the aortic and mitral valves, but
a same model may be used.

[0061] The aortic valve connects the left ventricular out-
flow tract to the ascending aorta and includes the aortic root
and three leaflets/cusps (left (L) aortic leaflet, right (R) aortic
leaflet and none (N) aortic leaflet). The root extends from the
basal ring to the sinutublar junction and builds the supporting
structure for the leaflets. These are fixed to the root on a
crown-like attachment and can be thought of as semi-lunar
pockets. The position parameter (C,,C,,C,) .o, 1$ given by the
valve’s barycenter, while the corresponding scale (s,,5,.5,)
is chosen to comprise the entire underlying anatomy.

aortic

=
Thelong axis a _ is defined by the normal vectors to the aortic
commissural plane, which is the main axis of the aortic root.

.
The short axis o, is given by the normalized vector pointing
from the barycenter (c,c,,C.),,,.. 10 the interconnection

3y
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point of the left and right leaflet, the left/right-commissure
—
point. The o direction is constructed from the cross-product
— —
of a and a..
[0062] Located in between the left atrium and the left ven-
tricle, the mitrel valve includes the posterior leaflet, anterior
leaflet, annulus and subvalvular apparatus. The latter consists
of the chordae tendiae and papillary muscles, which are not

explicitly treated in this work. The barycentric position (c,,

C,sC.)mizras A0 sCale parameters (8,.8,,5.) iz, ar€ COmputed

—
from the mitral leaflets. o is described by the normal vector

.
to the mitral annulus, while o , points from the barycenter
(€€ysC.) murrs toward the postero-annular midpoint. The

parameters of the global location and rigid motion model, as
noted above, are described by anatomical landmarks.

[0063] Using this mode, the global location of valves for a
given patient may be estimated. To estimate, amachine-learnt
algorithm is trained. The location and motion parameters 0
are estimated using the marginal space learning (MSL)
framework in combination with a Random Sample Consen-
sus (RANSAC). Other machine learning may be used. Given
a sequence of volumes I, the task is to find similarity param-
eters 6 with maximum posterior probability:

arg maxgp(0l)=arg maxgp(0(0), . . ., 0(n-1IK0), ...
An-1)) 4

[0064] To solve equation (4), the object localization is for-
mulated as a classification problem, and 6(t) is estimated for
each time step t independently from the corresponding vol-
umes I(t). The probability p(8(t)I(t)) is modeled by a learned
detector D, which evaluates and scores a large number of
hypotheses for 6(t). D is trained using the Probabilistic Boost-
ing Tree (PBT), positive and negative samples extracted from
the ground-truth, as well as efficient 3D Haar wavelet and
steerable features. Other training and/or features may be
used.

[0065] The object localization task is performed by scan-
ning the trained detector D exhaustively over different
hypotheses to find the most plausible values for 6(t) at each
time step t. As the number ofhypotheses to be tested increases
exponentially with the dimensionality of the search space, a
sequential scan in a nine-dimensional, similarity transform,
space may be computationally unfeasible. Suppose each
dimension in 6(t) is discretized to n values, the total number
of hypotheses is n° and even for a small n=15 becomes
extreme 3.98°*1°, To overcome this limitation, the MSL
framework (e.g., translation, translation and orientation, and
then translation, orientation and scale) is applied to break the
original parameters space Z into subsets of increasing mar-
ginal spaces:

3, cSc ... cE=s

By decomposing the original search space as follows

Z(CnyCs)

el

- —
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the target posterior probability can be expressed as:

POV p(cre,c:l)

p(0,, 0,0 lC,Ce (1)

3z

- = =
D(8::8,8:1 @ 5 Oy, @,C,,,6,,C.,1 (1)

20 Ol Qs
[0066] Inpractice, one arrangement for MSL sorts the mar-
ginal spaces in a descending order based on their variance.
Learning parameters with low variance first may decrease the
overall precision of the detection. Due to heterogeneity in CT
and TEE acquisition protocols and physiological variations of
the heart, the highest variance comes from translation fol-
lowed by orientationand scale. This order is confirmed by our
experiments to output the best results.

[0067] Instead of using a single detector D, detectors are
trained for each marginal space (D,, D, and D;) and detect by
gradually increasing dimensionality. After each stage, only a
limited number of high-probability candidates are kept to
significantly reduce the search space. In one example
embodiment, the 100 highest score candidates are retained in
2, and 50 in X,, such that the smallest subgroup which is
likely to include the optimal solution is preserved.

[0068] 6(t) hypotheses estimated from each time step t are
aggregated to obtain a temporal consistent global location
and motion 8 by employing RANSAC. Other formulas may
be used. From randomly sampled 6 candidates, the one yield-
ing the maximum number of inliers is picked as the final
motion. Inliers are considered within a distance of 0=7 mm
from the current candidate and extracted at each time step t.
Other distances and step lengths may be used. The distance
measure d(6(t),, 8(t),) is given by the maximum L1 norm of
the standard unit axis deformed by the parameters 6(t); and
B(1),, respectively. The resulting time-coherent 6 describes
the global location and rigid motion over the entire cardiac
cycle.

[0069] Inact22 of FIG. 1, a location of a landmark of the
heart valve is estimated. The location is relative to the heart
valve. The global motion is accounted for such that the land-
mark estimation corresponds to local motion of the valve
itself without motion of the global valve position. The esti-
mating of the landmark location is a function of the estimated
global location to better isolate the non-rigid, local motion of
the heart valve. The estimate is provided by applying medical
diagnostic imaging data for a patient to a trained model.
[0070] The location or motion of a plurality of landmarks
may be estimated. The aortic and mitral valves execute a rapid
opening-closing movement, which follows a complex and
synchronized motion pattern. Normalized by the time-depen-
dent similarity transformation (e.g., the estimated global
motion), the non-rigid motion is represented through a model
of any number, such as eighteen, anatomically-defined land-
marks.

[0071] FIG. 4 shows an example of eighteen landmarks in
images and as a connected group. Three aortic commissure
points, i.e., LR-Comm, NL-Comm and RN-Comm, describe
the interconnection locations of the aortic leaflets, while three
hinges, i.e., L-Hinge, R-Hinge, and N-Hinge, are their lowest
attachment points to the root. For each leaflet of the aortic and
mitral valves, the center of the corresponding free-edge is
marked by the leaflet tip point: UR/N-Tip tips for aortic
valves and Ant/Post-Tip (anterior/posterior) leaflet tips for
mitral valves. The two interconnection points of the mitral
leaflets at their free edges are defined by the mitral Ant/Post-
Comm, while the mitral annulus is fixed by the L/R-Trigone
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and posteroannular midpoint (PostAnn Midpoint). Finally,
the interface between the aorta and coronary arteries is sym-
bolized using the UR-Ostium, the two coronary ostia. Besides
the well defined anatomical meaning, the chosen landmarks
serve as anchor points for qualitative and quantitative clinical
assessment, are robustly identifiable by doctors, and possess
particular visual patterns.

[0072] Any model may be used. In one embodiment, the
motion of each landmark is modeled over time as a trajectory.
The model incorporates spectral information, such as Fourier
components, for each of the landmarks. A trajectory is deter-
mined for each landmark. The motion of each anatomical
landmark j can be parameterized by its corresponding trajec-
tory o/ over a full cardiac cycle or over a portion of a cycle.
For a given volume sequence I(t), one trajectory o/ is com-
posed by the concatenation of the spatial coordinates:

al =@l ©),al (1), .., (), .., 0 (n-1)] o)

where o/ are spatial coordinates with o’/ ()e[ > and t an
equidistant discrete time variable t=0, n-1.

[0073] The anatomical landmarks are also used to compute
the parameters of the global location and rigid motion as
follows: (¢,.c,,¢,) aortic equals the gravity center of the aortic

-

landmarks, except aortic leaflet tips. o _ is the normal vector
—

to the LR-Comm, NL-Comm, RN-Comm plane, c., is the

—

unit vector orthogonal to o, which points from (c,,¢,,¢.) 0
— —

to LR-Comm, a, is the cross-product of a,; and

=
O (8.,58,55,) yorsic 15 given by the maximal distance between

the center (¢ €,,C,,C,) 40 and the aortic landmarks, sepa-

— > — .
rately along each axes (o , . , c.). Analogues to the aortic
valve, the barycentric position (C;,C,,C,)pspy 18 computed

from the mitral landmarks, except mitral leaflet tip. E)Z is the
normal vector to the [/R-Trigone, PostAnn Midpoint plane,

ins orthogonal to ZZ and points from (€,.C,,,C, )iy, toWards
the PostAnn Midpoint. The scale parameters (8,.5,,8.) 10
are defined as for the aortic valve to provide the entire mitral
anatomy. Other parameters may be used to define the bound-
ing box or extent of the valve for global motion estimation.
[0074] For non-rigid landmark motion estimation, the cor-
responding model is applied to patient specific data. Based on
the determined global location and rigid motion, the trajec-
tory spectrum learning algorithm estimates the non-linear
valve movements from volumetric sequences. The objective
is to find for each landmark j its trajectory o/, with the
maximum posterior probability from a series of volumes I,
given the rigid motion 6:

arg maxcfp((x7 11,0)=arg maxa?'p(OL?(O), co (=D

(0), ..., Jn=-1)0(0),. .., 0(-1)) )

[0075] While it is difficult to solve equation 5 directly,
various assumptions, such as the Markovian property of the
motion, may be applied to the posterior distribution over o
7(t) given images up to time t. The results are often not
guaranteed to be smooth and may diverge over time due to
error accumulation. These fundamental issues can be
addressed effectively if both temporal and spatial appearance
information is considered over the whole sequence at once.

[0076] To address both motion over time and location, a
Fourier transform may be used in act 26. The trajectory of the
landmark through the sequence is estimated as a function of a

Sep. 23,2010

Fourier transform. Fourier components of non-linear valve
motion of a heart valve are determined from the medical
diagnostic imaging data. Global motion of the heart valve in
the volume is removed so that the non-linear valve motion is
isolated from global motion. For each Fourier component, a
plurality of hypotheses is estimated. .
[0077] In detail, the trajectory representation ¢’ intro-
duced in equation 2 can be uniquely represented by the con-
catenation of its discrete Fourier transform (DFT) coeffi-
cients,

s ), 5T (1), .87 (n=1)] 6)

obtained through the DFT equation:

where s/ (NeC? is the frequency spectrum of the x, y, or z
components of the trajectory o/ (t),and £=0, 1, ..., n-1. FIG.
9 shows a plurality of possible spatial trajectories and three
corresponding Fourier components. A trajectory e/ can be
reconstructed from the spectral coefficients s/ applying the
inverse DFT:

oy M

s (f)en

a7(t) =
f=0

[0078] The Fourier components are inverse transformed in
act 28. The inverse transforming provides trajectories of the
landmark of the heart valve. The inverse transform solves for
location and motion at a same time. As the results are evalu-
ated in the real space, the estimated trajectory is obtained
using the magnitude of the inverse DFT result s/ . From the
DFT parameterization, equation 5 can be reformulated as
finding the DFT spectrum s/, with maximal posterior prob-
ability:

arg maxjp(s7 |7,0)=arg max, 7 (0), . .. ,ST(H—I)‘I(O),

o In-1),0(0),. . ., 6(n-1)) ®)
[0079] Instead of estimating the motion trajectory directly,
discriminative learning is used to detect the spectrum s in the
frequency domain by optimizing equation 8. The DFT
decomposes the trajectory space in orthogonal subspaces,
which enables the estimation of each component s/ (f) sepa-
rately. The DFT spectrum representation is compact, espe-
cially for periodic motion. Compact representation may allow
for efficient learning and optimization. The posterior distri-
bution is clustered in small regions, facilitating marginaliza-
tion and pruning of the higher dimensional parameter spaces.
[0080] The trajectory spectrum learning and detection are
performed efficiently in DFT subspaces with gradually
increased dimensionality. The intuition is to perform a spec-
tral coarse-to-fine motion estimation, where the detection of
coarse level motion (low frequency) is incrementally refined
with high frequency components representing fine deforma-
tions. Local-Spatio-Temporal Features (LST) features may
incorporate both the spatial and temporal context.

[0081] FIG. 8 shows one embodiment of the trajectory
spectrum learning algorithm. The stages of spectrum learning
are described below. For each landmark, a number of possible
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trajectories is equal to the number of Fourier components
included. Different numbers of possible trajectories and Fou-
rier components may be used for different landmarks. For
example, motion associated with one landmark may be less
complex so only lower frequency components are used while
motion for another landmark is more complex so higher fre-
quency components are used.

[0082] Local orientation and scaling of image features may
reduce ambiguity and may significantly improve learning
performance. The image representation is extended by align-
ing contextual spatial features in time to capture four-dimen-
sional information and support motion learning from noisy
data. The 4D location of the proposed F*?( ) features is
parameterized by the similarity parameters 6.

F*DOO),T\Ls)=t(FPDIP(+i*))i=-T, . .., T) ©)

[0083] Three-dimensional () features extract simple
gradient and intensity information from steerable patterns
spatially align with 0(t). The similarity parameters 6 are
defined separately for the aortic and mitral valves, but may be
defined in common. Knowing that motion is locally coherent
in time, F>P() is applied in a temporal neighborhood t-T to
t+T at discrete locations evenly distributed with respect to the
current time t.

[0084] FIG. 10 shows an example of a local-spatio-tempo-
ral feature. A window 2T wide is shown centered or aligned
with a certain position, orientation and scale, at time t. The
temporal context length of the illustrated LST feature is T,
spanned symmetrical relative to t. The features for time t are
determined by the spatial and temporal data within the win-
dow.

[0085] The final value of a Local-Spatial-Temporal (LST)
feature is the result of time integration using a set of linear
kernels T, which weight spatial features F>”( ) according to
their distance from the current frame t. A simple example for
T is the average function over the interval [-T, T,

F3D

=1VQI+DZ__AF*DUIO(t+i*s)).

[0086] The parameter T steers the size of the temporal
context, while s is a time normalization factor derived from
the training set and the number of time steps of the volume
sequence 1. Values for T can be selected by the probabilistic
boosting tree (PBT) in the training stage. Since the time
window size has an inverse relationship with the motion
locality, the introduced 4D local features are in consensus
with a coarse-to-fine search. In one embodiment, the features
with larger T values are selected to capture the lower fre-
quency motion, and the value of T decreases for higher fre-
quency motion components.

[0087] Thespace marginalization and training procedure of
the trajectory estimator is learned using a machine and train-
ing data. The motion trajectory is parameterized by the DFT
spectrum components s/ (f), =0, . .., n-1. FIG. 9 shows that
the variation of the spectrum components decreases substan-
tially as the frequency increases. The example spectrum com-
ponents shown in the three boxes and the possible spatial
trajectories shown in the cube are for aortic leaflet tips. The
cube portion of FIG. 9 shows the aligned trajectories in the
Cartesian space by removing the global similarity transfor-
mations. The corresponding three trajectories demonstrate
the compact spectrum representation.

[0088] Trajectories canbe approximated by a few dominant
components:
tef{0,.. ., n-1},C<<n
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identified during training. The obtained compact search space
can be divided in a set of subspaces. Two types of subspace
are provided—individual component subspaces Z* and mar-
ginalized subspaces Z, defined as:

Z(kt':{?(:k)} (10)
5,3, x2® (11
$oCE C ... CF, r=[Tl 1y

[0089] The subspaces 2% are efficiently represented by a
set of corresponding hypotheses H* obtained from the train-
ing set. The trajectories are ranked in act 30 with machine
learnt probabilities. The pruned search space enables efficient
learning and optimization:

%, =HOXH x . xHD, p=[7)

[0090] The training algorithm starts by learning the poste-
rior probability distribution in the DC marginal space Z,,.
Subsequently, the learned detectors D, are applied to identify
high probable candidates C_ from the hypotheses) H. In the
following step, the dimensionality of the space is increased by
adding the next spectrum component (in this case the funda-
mental frequency, =), Learning is performed in the
restricted space defined by the extracted high probability
regions and hypotheses set C,xH". The possible hypothesis
determined from the prior spectrum component is used to
limit the search based on the next spectrum component. The
same operation is repeated until reaching the genuine search
space X, ;.

[0091] For each marginal space X, corresponding dis-
criminative classifiers D, are trained on sets of positives Pos,
and negatives Neg,. Samples constructed from high probabil-
ity candidates C,_, and hypotheses H* are analyzed. The
sample set C,_ xH™® is separated into positive and negative
examples by comparing the corresponding trajectories to the
ground truth in the spatial domain using the following dis-
tance measure:

4 4 5 5
d(a{, aé] = mrax”a{(t) —aé(t)”

where 0./ | and ¢/, denote two trajectories for the j-th land-
mark. The ground truth spectrum is trimmed to the k-th com-
ponent to match the dimensionality of the current marginal
space Z,. Given the local-spatio-temporal features extracted
from positive and negative positions, the probabilistic boost-
ing tree (PBT) is applied to train a strong classifier D,. The
above procedure is repeated, increasing the search space
dimensionality in each step, until detectors are trained for all
marginal spaces 2, . .., 2.

[0092] For estimation using the learned probabilities, fea-
tures are calculated in Euclidian space, such as the local-
spatio-temporal features. The values of the features are a
function of the medical diagnostic imaging data for a plurality
of instances in the sequence. The features are applied to the
learned detector for motion estimation from unseen (i.e., not
used for training) or patient-specific data.

[0093] In one embodiment, motion estimation is provided
using the spectrum associated with the possible trajectories.
The detection procedure is performed for object localization
and motion estimation of valve landmarks from unseen volu-
metric sequences. The parameter estimation is conducted in
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the marginalized search spaces E, .. ., X, | using the trained
spectrum detectors Dy, . . ., D _,. Starting from an initial
zero-spectrum (i.e., DC spectrum), we incrementally esti-
mate the magnitude and phase of each frequency component

?(k). At the stage k shown in FIG. 8, the corresponding
robust classifier D, is exhaustively scanned over the potential
candidates C,., xH®. The probability of a candidate C,eC,.
1xH® is computed by the following objective function:

(13)

n-1
p(Ce) = I_[ D UDFT(C, 1, 1)
=0

wheret=0, ..., n-1 isthe time instance (i.e., frame or volume
index). After each step k, the top 50 or other number of
trajectory candidates C, with high probability values are pre-
served for the next step k+1. The set of potential candidates
C,., is constructed from the cross product of the candidates
C, and H*Y), The procedure is repeated until a final set of
trajectory candidates C,_|, defined in the full space E, |, is
computed.

[0094] The highest ranked trajectory is selected in act 32.
For example, the trajectory associated with the highest prob-
ability output after the final set of trajectory candidates are
generated is selected. Other trajectories may also be selected,
such as selecting all of the trajectories and combining them.
In one embodiment, the final trajectory is selected as the
average of all elements in C,, but other functions may be
used. The value of r may be a function of the type of motion
typical for the landmark. The selected trajectory may be used
to determine the location of the landmark at any given time.

[0095] Inact34,one or more surfaces of the heart valve are
estimated as a function of the estimated location of a land-
mark. The locations, at a given time, of a plurality of land-
marks associated with a surface may be used to estimate the
location of the surface.

[0096] The surfaces have a motion throughout the heart
cycleas well. The surface location for each time t is estimated,
providing an estimate of the motion of the surface. Each
surface location is estimated independently of the location of
the surface at other times. Alternatively, the location of the
surface is based on a surface trajectory estimation.

[0097] The surface motion may be relative to the landmark
motion. Due to mass or other characteristics of the surface,
surface movement occurs relative to the landmark motion and
the global valve motion. Both landmark and global valve
motion may be considered in determining the surface motion.
Alternatively, surface motion is determined independently of
other motion.

[0098] The surface or surfaces are estimated with a com-
prehensive aortic-mitral model in one embodiment. A model
for separate valves or only one valve may be used. In one
embodiment, the full geometry of the valves is modeled using
surface meshes constructed along rectangular grids of verti-
ces. For each anatomic structure a, the underlying grid is
spanned along two physiologically aligned parametric direc-

r-15

tions, ; and 7 Each vertex v,“e[® has four neighbors,
except the edge and corner points with three and two neigh-
bors, respectively. A rectangular grid with nxm vertices is
represented by (n-1)x(m-1)x2 triangular faces. The model
M at a particular time step t is uniquely defined by vertex
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collections of the anatomic structures. The time parameter t
extends the representation for capturing valve dynamics:

_[fa [ a g, (©)
M= {vo A ,le},... ,{LO”,... ,VN';},[

first anatomy

n-th anatomy

where n=6, the number of represented anatomies, and N . ..
N, are the numbers of vertices for a particular anatomy. The
six represented structures are the aortic root, the three aortic
leaflets and the two mitral leaflets, which are depicted in FIG.
5 together with their spatial relations to the above described
anatomical landmarks.

[0099] The aortic root connects the ascending aorta to the
left ventricle outflow tract and is represented through a tubu-
lar grid (FIG. 5(a)). This is aligned with the aortic circumfer-
ential u and ascending directions v and includes 36x20 ver-
tices and 1368 faces. The root is constrained by six
anatomical landmarks, i.e., three commissures and three
hinges, with a fixed correspondence on the grid. The three
aortic leaflets, the L-, R- and N-leaflet, are modeled as
paraboloids on a grid of 11x7 vertices and 120 faces (FIG.
5(b)). The aortic leaflets are stitched to the root on a crown
like attachment ring, which defines the parametric p direction
at the borders. The vertex correspondence between the root
and leaflets along the merging curve is symmetric and kept
fixed. The leaflets are constrained by the corresponding
hinges, commissures and tip landmarks, where the v direction
1s the ascending vector from the hinge to the tip.

[0100] The mitral leaflets separate the LA and LV hemo-
dynamically and are connected to the endocardial wall by the
saddle shaped mitral annulus. Both are modeled as parabo-
loids and their upper margins define the annulus implicitly.
Their grids are aligned with the circumferential annulus
direction u and the orthogonal direction v pointing from the
annulus toward leaflet tips and commissures (FIGS. 5(c) and
5(d)). The anterior leaflet is constructed from 18x9 vertices
and 272 faces while the posterior leaflet is represented with
24x9 vertices and 368 faces. Both leaflets are fixed by the
mitral commissures and their corresponding leaflet tips. The
left/right trigones and the postero-annular midpoint further
confine the anterior and posterior leaflets, respectively. Other
mesh or surface definitions, assumptions, or parameters may
be used.

[0101] Spatial and temporal consistency is maintained.
Point correspondence between the models from different car-
diac phases and patients is required for building a statistical
shape model. Itis difficult to obtain and maintain a consistent
parameterization in complex three-dimensional surfaces.
Cutting planes can be applied to intersect surfaces. FIGS.
6(b), 6(c) and 6(d) show examples, but other planes, shapes,
lines, or points may be used. Cutting planes may be used to
generate two-dimensional contours, such as shown in FIG.
6(a). The cutting planes may be uniformly resampled using
simple methods. Hence, by defining a set of physiological-
based cutting planes for each model component, surfaces are
consistently resampled to establish the desired point corre-
spondence.

[0102] The mitral annulus is a saddle shaped curve and
likewise the free edges are non-planar too. A rotation axis-
based resampling method is applied for both mitral leaflets, as
represented in examples of FIGS. 6(d) and 6(c). The intersec-
tion planes pass through the annular midpoints of the opposite
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leaflet. The intersection planes are rotated around the normal
of the plane spanned by the commissures and the respectively
used annular midpoint.

[0103] For the aortic root (see FIG. 6(d)), a pseudo parallel
slice based method is used. Cutting planes are equidistantly
distributed along the centerline following the v direction. To
account for the bending of the aortic root, especially between
the commissure and hinge level, at each location the plane
normal is aligned with the centerline’s tangent. The aortic
leaflets are an exception as resampling along the iso-curves
along their u and v directions is found to be sufficient. Other
plane locations or approaches for consistent parameterization
may be used.

[0104] As the model preserves point correspondence,
numerical errors accumulated during the estimation process
canbe detected and corrected according to model constraints.
For instance, during valve closure, the leaflets are touching
each other, forming the leaflet-coaptation area. To ensure high
quality visualization, potential intersections along the closure
lines, caused by numerical errors, can be removed by averag-
ing corresponding points within the intersection area.

[0105] For application of the comprehensive model or sur-
face model in the hierarchical approach, the final stage is the
delineation of the full dynamic morphology of the aortic-
mitral or other valve complex. The shape model is first esti-
mated in the end-diastolic (ED) and end-systolic (ES) phases
of the cardiac cycle. Then the non-rigid deformation is propa-
gated to the remaining phases using a learned motion prior.
FIG. 11 summarizes the steps for non-rigid shape estimation.
[0106] Estimation of the surfaces is performed in cardiac
key phases. Given the previously detected anatomical land-
marks in the ED and ES phases, a precomputed mean model
of the anatomy is placed into the volumes I(t.,) and I(t;o)
through a thin-plate-spline (TPS) transform, but other trans-
forms may be used. In order to provide a locally accurate
model estimate, a learning-based 3D boundary detection is
then applied to deforming the shape to capture the anatomical
and pathological variations. FIG. 11 (top) shows boundary
detection to deform the shape for model estimation in cardiac
key phases, end-diastole and end-systole.

[0107] For application of the surface model, a learning-
based approach utilizes gradients and/or image intensities at
different image resolutions for estimation. A local neighbor-
hood is incorporated into the estimation. The features are
computed using samples from a local neighborhood.

[0108] The boundary detector is trained using the probabi-
listic boosting-tree (PBT) on multi-scale steerable features.
In testing, the boundary detector is used to evaluate a set of
hypotheses, which are drawn along the normal at each of the
discrete boundary points. The new boundary points are set to
the hypotheses with maximal probability. The final model is
obtained after projecting the estimated points to a principal
component analysis (PCA) space, which covers 99.5% of the
shape variation using 72 and 98 modes for the aortic and
mitral valves, respectively. Other numbers of modes may be
provided.

[0109] The bottom of FIG. 11 illustrates estimation in the
full cardiac cycle or motion estimation. Starting from the
detection results in the ED and ES phases, the model defor-
mations are propagated in both forward and backward direc-
tions using learned motion priors. The motion prior is esti-
mated at the training stage using motion manifold learning
and hierarchical K-means clustering from a pre-annotated
database of sequences containing one cardiac cycle each.
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Firstly, the temporal deformations are aligned by 4D genet-
alized procrustes analysis. Next, a low-dimensional embed-
ding is computed from the aligned training sequences using
the ISOMAP algorithm to represent the highly nonlinear
motion of the heart valves. Finally, in order to extract the
modes of motion, the motion sequences are then clustered
with hierarchical K-means based on the Euclidean distance in
the lower dimensional manifold.

[0110] To ensure temporal consistency and smooth motion,
and to avoid drifting and outliers, two collaborative trackers,
an optical flow tracker and a boundary detection tracker, are
used, but other numbers or types of trackers may be used. The
optical flow tracker directly computes the temporal displace-
ment for each point from one frame to the next. Initialized by
one-step forward prediction, the detection tracker obtains the
deformations in each frame with maximal probability. The
results are then fused into a single estimate by averaging the
computed deformations, and the procedure is repeated until
the full 4D model is estimated for the complete sequence. The
collaborative trackers complement each other, as the optical
flow tracker provides temporally consistent results and its
major issue of drifting is addressed by the boundary detection
along with the one-step forward prediction.

[0111] Inact 36 of FIG. 2, an image representing the heart
valve is displayed. The image is a function of the surface
calculated in act 34. The image may be the mesh calculated in
act 34. The mesh is an outline, but other outlines, such as
interconnected landmarks, may be displayed. In alternative
embodiments, the image is of the landmarks and/or trajecto-
ries calculated in act 22.

[0112] In one embodiment, the estimated information is
overlaid on a rendering of the heart or valves. FIG. 12 shows
various examples of valve images rendered from medical data
with a same scale and perspective as an outline overlaid on the
rendering. Color coding or other display modulation may be
used with or in addition to an overlay. For example, different
surfaces of the valve are rendered from B-mode data in gray
scale with color modulation specific to the surface. One sur-
face may be rendered in one color and another in another
color. Alternatively, each valve or any valve portion is dis-
played with modulation of the same color such that the valves
are highlighted relative to other heart tissue.

[0113] Onerendering or multiple renderings from the same
volume may be displayed. In one embodiment, a sequence of
images is displayed. The sequence is rendered from the dif-
ferent volumes throughout a portion or entire heart cycle. For
each image in the sequence, the corresponding detected or
estimated valve information is displayed. The surface corre-
sponding to the valve at the given time represented by an
image is displayed. The images of the sequence may be dis-
played in succession to show or represent the motion of the
valves. The representation of the valve is generated as a
function of the global motion, the local motion, and/or the
surfaces estimated through the sequence. The trajectories are
used to determine the landmark and/or surface locations
through the sequence.

[0114] FIG. 12 shows examples of estimated patient-spe-
cific models from TEE and CT data. Healthy valves from
three different cardiac phases in TEE from atrial aspect (FIG.
12(a)) and CT data in four chamber view (FIG. 12(5)).
Example displays of images are shown for pathologic valves
with bicuspid aortic valve (FI1G. 12(c)), aortic root dilation
and regurgitation (FIG. 12(d)), moderate aortic stenosis (FIG.
12(e)), mitral stenosis (FIG. 12(f)), mitral prolapse (FIG.
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12(g)), bicuspid aortic valve with prolapsing leaflets (FIG.
12(h)), aortic stenosis with severe calcification (FIG. 12(i))
and dilated aortic root (FIG. 12())).

[0115] Any type of rendering of the outline and/or the view
from the medical data may be used. Surface, projection or
other rendering may be used. Planar reconstructions may be
used.

[0116] Inact38 of FIG. 2, the valve information is used for
quantification. One or more quantities are calculated from the
valve representation. The surface information, landmark
information, global position information, or combinations
thereof are used. The estimated information may be used to
identify medical image or scan data to be used for calculation.
Alternatively, the estimated information itself, such as dis-
tance between landmarks or surface area, is used.

[0117] In one embodiment, the quantity is a function of
information from two or more valves. One value is a function
of information associated with multiple valves. The valve
information is estimated independently of each other or with
consideration of both valves.

[0118] The quantity may be for a given time or volume or
may include temporal information. For example, the quantity
is an average throughout the heart cycle or is a change
between two phases of the cycle. The heart valve shape, size,
or orientation may be estimated at a plurality of different
times through a sequence for each of the heart valves.

[0119] In one embodiment, model-based quantification of
the aortic-mitral apparatus is provided. From the estimated
patient-specific model, a wide-ranging morphological and
functional characterization of the aortic-mitral apparatus is
provided. In comparison with quantification by manual mea-
surements from 2D imaging, quantification from the 4D esti-
mations may increase precision by modeling and measuring
the natural three-dimensional valve anatomy, provide repro-
ducibility through automatic quantification and avoidance of
user-dependent manipulation, provide functional assessment
from dynamic measurements performed over the entire car-
diac-cycle, and provide comprehensive analysis including
complex parameters such as shape curvatures, deformation
fields and volumetric variations.

[0120] Valvular dimensions over the whole cardiac cycle
facilitate accurate diagnosis and disease severity assessment.
The model-driven measurements of the aortic valve area
(AVA) as well as the mitral valve (MVA) and annulus area
(MAA) are precisely computed from the full underlying
anatomy as opposed to indirect or 2D measurements. FIG. 13
shows example quantification. In particular, examples of aor-
tic-mitral morphological and functional measurements are
shown. FIG. 13(a) shows, from left to right: aortic valve
model with measurement traces, aortic valve area, aortic root
diameters and ostia to leaflets distances. FIG. 13(b) shows
mitral valve with measurement traces, mitral valve and annu-
lus area, mitral annular deviation in ED and ES and aortic-
mitral angle and centroid distance.

[0121] In-depth analysis of complex pathologies can be
performed through independent sinuses quantization and
annulo-planar deviation assessment for the aortic and mitral
valves, respectively. Dimensions of the aortic root at the ven-
triculo-arterial junction (VAIJ), sinus of valsalva (SV) and
sinotubular junction (STJ) as well as the inter ostia angle are
used in aortic valve replacement and repair surgery. These,
along with measurements of the mitral annulus and leaflets,
such as the mitral annular circumference (AC), anteroposte-
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rior diameter (APD) and anterolateral-posteromedial diam-
eter (AL-PM-D), may be automatically computed.

[0122] Emerging percutaneous and minimally invasive
valve interventions require extensive non-invasive assess-
ment and can substantially benefit from the model-based
quantification. For instance, precise knowledge of the coro-
nary ostia position prevents hazardous ischemic complica-
tions by avoiding the potential misplacement of aortic valve
implants. The estimation presents an integral three-dimen-
sional configuration of critical structures (ostia, commis-
sures, hinges, etc.) and calculates their relative location over
the entire cardiac cycle. Additionally, the joint model charac-
terizes the aortic-mitral interconnection by quantifying the
inter-annular angle and centroid distances, which facilitates
the challenging management of multi-morbid patients.
[0123] Other quantities may be calculated. The estimation
may provide consistent and comprehensive positioning of
any part of a valve over a desired time period, allowing
calculation of any valve related quantity. Functional and mor-
phological measurements can be efficiently performed for
individual valve patients to potentially improve their clinical
management.

[0124] In one embodiment, the method of FIG. 2 is per-
formed for testing the performance of the proposed patient-
specific modeling and quantification for aortic and mitral
valves. Experiments are performed on a large data set. The
performance of the model estimation algorithm is determined
for cardiac CT and TEE volumetric sequences. The quantifi-
cation performance and accuracy for the proposed system is
determined.

[0125] Any data set may be used for training. In the test,
functional cardiac studies are acquired using CT and TEE
scanners from 134 patients affected by various cardiovascular
diseases such as: bicuspid aortic valve, dilated aortic root,
stenotic aortic/mitral, regurgitant aortic/mitral, and prolapsed
valves. The imaging data includes 690 CT and 1516 TEE
volumes, which are collected from one or more medical cen-
ters in one or more locations over any period.

[0126] Using heterogeneous imaging protocols, TEE
exams are performed with Siemens Acuson Sequoia (Moun-
tain View, Calif., USA) and Philips IE33 (Andover, Mass.,
USA) ultrasound machines, but other ultrasound machines
may be used. TEE data includes an equal amount of rotational
(3 to 5 degrees) and matrix array acquisitions. A complete
cardiac cycle is captured in a series of 7 to 39 volumes,
depending on the patient’s heart beat rate and scanning pro-
tocol. Image resolution and size varies for the TEE data set
from 0.6 to 1 mm and 136x128x112 to 160x160x120 voxels,
respectively.

[0127] CT scans are acquired using Siemens Somatom
Sensation or Definition scanners (Forchheim, Germany), but
other CT scanners may be used. The ECG gated Cardiac CT
sequences include 10 volumes per cardiac cycle, where each
volume contains 80-350 slices with 153x153 to 512x512
pixels. The in-slice resolution is isotropic and varies between
0.28 to 1.00 mm with a slice thickness from 0.4 to 2.0 mm.
[0128] CT acquisitions contain both valves. The ultrasound
acquisitions may also contain both valves. In some cases, the
CT or ultrasound acquisitions may contain data for only one
valve. For example, TEE exams may focus either on the aortic
or mitral valve. In the test example, the TEE exams are only
for one valve. Ten cases are annotated by four distinct users
for the purpose of conducting inter-user variability study.
Both CT and TEE studies from a same patient may be used.
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[0129] For training the model estimators, the ground truth
is obtained through an annotation process, which is guided by
experts. For example, the non-rigid landmark motion model
is manually determined by placing each anatomical landmark
at the correct location in the entire cardiac cycle of a given
study. The comprehensive aortic-mitral model is initialized
through its mean model placed at the correct image location,
expressed by the thin-plate-spline transform estimated from
the previously annotated non-rigid landmark motion model.
The ground-truth of the comprehensive aortic-mitral model is
manually adjusted to delineate the true valves boundary over
the entire cardiac cycle. From the annotated non-rigid land-
mark motion model, the global location and rigid motion
model ground-truth is determined.

[0130] The machine learnt classifiers are trained using the
training data. The learnt classifiers may be applied to test data.
The test data has a known ground truth, such as through
manual designation. The output of the estimators in the global
valve position, the local landmark positions, and the surfaces.
[0131] The precision of the global location and rigid
motion estimation is measured at the box corners of the
detected time-dependent similarity transformation. The aver-
age Fuclidean distance between the eight bounding box

=
points, defined by the similarity transform (c,, ¢, c,), (o,

Ey, gz) (84 8,5 8,), and the ground-truth box is reported. To
measure the accuracy of the non-rigid landmark motion esti-
mation, detected and ground-truth trajectories of all land-
marks are compared at each discrete time step using the
Euclidean distance. The accuracy of the surface models
obtained by the comprehensive aortic-mural estimation is
evaluated by utilizing the point-to-mesh distance. For each
point on a surface (mesh), the closest point (not necessarily
oneofthe vertices) on the other surface is used to calculate the
Euclidean distance. For symmetric measurement, the point-
to-mesh distance is calculated in two directions, from
detected to ground truth surfaces and vice versa.

[0132] The performance evaluation is conducted using
three-fold cross-validation by dividing the entire dataset into
three equal sized subsets, and sequentially using two sets for
training and one for testing. Table I summarizes the model
estimation performance averaged over the three evaluation
runs. The last column represents the 80th percentile of the
error values. The estimation accuracy averages at 1.54 mm
and 1.36 mm for TEE and CT data, respectively. On a stan-
dard PC with a quad-core 3.2 GHz processor and 2.0 GB
memory, the total computation time for the tree estimation
stages is 4.8 seconds per volume (approx 120 sec for average
length volume sequences), from which the global location
and rigid motion estimation requires %15 of the computation
time (approx 0.7 sec), non-rigid landmark motion %54 (ap-
prox 2.6 sec) and comprehensive aortic-mural estimation
%31 (approx 1.5 sec). FIG. 14 shows estimation results on
various pathologies for both valves and imaging modalities.

TABLE I

ERRORS FOR EACH ESTIMATION STAGE IN TEE AND CT

Mean Std.  Median  80%

TEE

Global Location and Rigid Motion 6.95 4.12 5.96 8.72
Non-Rigid Landmark Motion 3.78 1.55 343 4.85
Comprehensive Aortic-Mitral 154 1.17 1.16 1.78
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TABLE I-continued

ERRORS FOR FACH ESTIMATION STAGE IN TEE AND CT

Mean Std.  Median  80%
CT
Global Location and Rigid Motion 8.09 332 7.57 10.4
Non-Rigid Landmark Motion 293 1.36 2.59 338
Comprehensive Aortic-Mitral 136 0.93 1.30 1.53
[0133] For the non-rigid landmark motion, the error distri-

bution is compared it to optical flow and tracking-by-detec-
tion approaches. FIG. 14(a) presents the error distribution
over the entire cardiac cycle, where the end-diastolic phase is
at t=0. Although performed forward and backward, the opti-
cal flow approach is affected by drifting. In the same time, the
tracking-by-detection error is unevenly distributed, which
reflects in temporal inconsistent and noisy results. F1IG. 14(5)
shows the error distribution over the 18 landmarks. Both
tracking-by-detection and optical flow perform significantly
worse on highly mobile landmarks as the aortic leaflet tips
(landmarks 9, 10 and 11) and mitral leaflet tips (landmarks 15
and 16). The proposed trajectory spectrum learning demon-
strates a time consistent and model-independent precision,
superior in both cases to reference methods.

[0134] The quantification precision of the system for the
measurements is evaluated in comparison to manual expert
measurements. Table II shows the accuracy for the VAI, SV
and SJ aortic root diameters and AC, APD and AL-PM-D
dimensions of the mitral valve. The Bland-Altman plots for
the (a) aortic valve area and (b) mitral annular area in FIG. 15
demonstrate a strong agreement between manual and model-
based measurements for aortic valve areas and mitral annular
areas. The aortic valve experiments are performed on CT data
from 36 patients, while the mitral valve experiments are
evaluated on TEE data from 10 patients, based on the input of
expert cardiologists.

TABLEII

SYSTEM-PRECISION FOR VARIOUS DIMENSIONS OF
THE AORTIC-MITRAL APPARATUS.

Mean STD
VAT (cm) 0.137 0.017
SV (cm) 0.166 0.043
STI (cm) 0.098 0.029
AC (cm) 0.846 0.3
APD (em) 0.325 0.219
AL-PM-D (cm) 0.509 037

[0135] Moreover, from a subset of 19 TEE patients, mea-
surements of the aortic-mitral complex are compared to lit-
erature reported values. Distances between the centroids of
the aortic and mitral annulae as well as interannular angles are
computed. The latter is the angle between the vectors, which
point from the highest point of the anterior mitral annulus to
the aortic and mitral annular centroids respectively. The mean
interannular angle and interannular centroid distance are 137.
0x12.2 and 26.5+4.2, respectively compared to 136.2+12.6
and 25.0+3.2 reported in the literature.

[0136] Based on a subgroup of patients, which underwent
both, cardiac CT and TEE, an inter-modality difference may
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be measured. To demonstrate the consistency of the model-
driven quantification, the model and measurements ate cre-
ated from both CT and TEE scans. The aortic valve area,
inter-commissural distances, and the VAJ, SV, S] diameters
are measured for both types of data. A strong correlation
r=0.98, p<0.0001 and 0.97-0.99 confidence interval may
result.

[0137] An inter-user experiment is conducted on a ran-
domly selected subset of ten studies, which have their corre-
sponding patient-specific valve models manually fitted by
four experienced users. The inter-user variability and system
error is computed on four measurements derived from both
valves, i.e. the interannular angle and interannular centroid
distance, performed in end-diastolic (ED) and end-systolic
(ES) phases. The inter-user variability is determined by com-
puting the standard deviation for each of the four different
user measurements and subsequently averaging those to
obtain the total variability. To quantify the system error, the
automatic measurement result is compared to the mean of the
different users. FIG. 16 shows the system-error for the
selected sequences with respect to the inter-user variability.
The variability is determined from the standard deviation.
Note that except for 3% of the cases, the system-error lies
within 90% of the inter-user confidence interval. The hori-
zontal lines closest to 0 mm represent 80% system error. The
horizontal lines furthest from 0 mm represent 90% error. The
variability of measurements obtained by different users on the
same data reveals feasible confidence intervals and desired
precision of the automated patient-specific modeling algo-
rithm.

[0138] Finally, the quantification performance may be
studied for a patient who undergoes a mitral annuloplasty
procedure, intended to reduce mitral regurgitation. Pre- and
post-TEE exams are performed before and after the success-
ful mitral valve repair. The measurements of the mitral valve
area in FIG. 17 shows measurements obtained before (dotted
lines) and after (solid lines) mitral annuloplasty: (a) Aortic
and Mitral valvular area, and (b) Aortic and Mitral annular
area. F1G. 17(a) demonstrates the regurgitant mitral valve to
be cured after procedure. Although not explicitly targeted, the
intervention may have an indirect effect on the aortic valve,
also illustrated in FIG. 17(b) by the annular and valvular
areas. The observation concurs with clinical findings.

[0139] FIG. 18 shows a system for assessing heart valve
operation with medical diagnostic ultrasound data. The sys-
tem includes a transducer 18, an ultrasound scanner 10, and a
display 16. The ultrasound scanner 10 includes a processor 12
and a memory 14. In alternative embodiments, the system is
a CT scanner or system. Additional, different, or fewer com-
ponents may be used. For example, an ultrasound scanner 10
is provided for acquiring ultrasound data representing a vol-
ume, and a separate database, server, workstation, and/or
computer is provided for estimating, display of estimate over-
lay information, and quantification.

[0140] The ultrasound scanner 10 includes a transmit
beamformer, receive beamformer, B-mode detector, Doppler
detector, harmonic response detector, contrast agent detector,
scan converter, filter, combinations thereof, or other now
known or later developed medical diagnostic ultrasound sys-
tem components. As another example, the transducer 18 is not
provided, such as where the system is a workstation for off-
line or later measurement of valve anatomy.

[0141] The transducer 18 is a piezoelectric or capacitive
device operable to convert between acoustic and electrical
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energy. The transducer 18 is an array of elements, such as a
multi-dimensional or two-dimensional array. Alternatively,
the transducer 18 is a wobbler for mechanical scanning in one
dimension and electrical scanning in another dimension. In
another embodiment, the array is a one-dimensional array on
a cardiac catheter or a TEE probe.

[0142] The ultrasound scanner 10 uses the transducer 18 to
scan a heart volume of a patient. Electrical and/or mechanical
steering allows transmission and reception along different
scan lines in the volume. Any scan pattern may be used. For
example, a plurality of different planes through the heart is
scanned by rotating a TEE array, moving a catheter array, or
volume scanning with a matrix array. In one embodiment, the
transmit beam is wide enough for reception along a plurality
of scan lines. In another embodiment, a plane, collimated or
diverging transmit waveform is provided for reception along
a plurality, large number, or all scan lines.

[0143] The scan provides the medical diagnostic ultra-
sound data representing the heart volume at different times as
a sequence. The scan is repeated to provide data for the
volume at different times. Ultrasound data representing a
volume is provided in response to the scanning. The ultra-
sound data is beamformed, detected, and/or scan converted.
The ultrasound data may be in any format, such as polar
coordinate, Cartesian coordinate, a three-dimensional grid,
two-dimensional planes in Cartesian coordinate with polar
coordinate spacing between planes, or other format. The
ultrasound data may be of any type, such as B-mode, flow
mode, Doppler mode, contrast agent, harmonic, or other
ultrasound modes of imaging.

[0144] Thememory 141s a buffer, cache, RAM, removable
media, hard drive, magnetic, optical, database, or other now
known or later developed memory. The memory 14 is a single
device or group of two or more devices. The memory 14 is
shown within the system 10, but may be outside or remote
from other components of the system 10.

[0145] The memory 14 stores the ultrasound data, such as
ultrasound data representing a heart volume at different times
in aheart cycle. The heart volume including at least one valve,
but other portions of the heart may be represented. The
memory 14 stores flow (e.g., velocity, energy or both) and/or
B-mode ultrasound data. Alternatively, the medical image
data is transferred to the processor 12 from another device.
The medical image ultrasound data is a three-dimensional
data set, or a sequence of such sets. The data represents a
three-dimensional region. Any format may be used, such as
voxels interpolated to a three-dimensional grid or data repre-
senting parallel or non-parallel planes.

[0146] For real-time imaging, the ultrasound data bypasses
the memory 14, is temporarily stored in the memory 14, or is
loaded from the memory 14. Real-time imaging may allow
delay of a fraction of seconds, or even seconds, between
acquisition of data and imaging with measurements. For
example, real-time imaging is provided by generating the
images substantially simultaneously with the acquisition of
the data by scanning. While scanning to acquire a next or
subsequent set of data, images and measurements are gener-
ated for a previous set of data. The imaging occurs during the
same imaging session used to acquire the data. The amount of
delay between acquisition and imaging for real-time opera-
tion may vary, such as a greater delay for initially locating
valve anatomies with less delay for measurements. In alter-
native embodiments, the ultrasound data is stored in the
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memory 14 from a previous imaging session and used for
measuring and/or generating a planar reconstruction without
concurrent acquisition.

[0147] The memory 14 is additionally or alternatively a
computer readable storage medium with processing instruc-
tions. The memory 14 stores data representing instructions
executable by the programmed processor 12 for assessing
heart valve operation with medical diagnostic imaging data.
The instructions for implementing the processes, methods
and/or techniques discussed herein are provided on com-
puter-readable storage media or memories, such as a cache,
buffer, RAM, removable media, hard drive or other computer
readable storage media. Computer readable storage media
include various types of volatile and nonvolatile storage
media. The functions, acts or tasks illustrated in the figures or
described herein are executed in response to one or more sets
of instructions stored in or on computer readable storage
media. The functions, acts or tasks are independent of the
particular type of instructions set, storage media, processor or
processing strategy and may be performed by software, hard-
ware, integrated circuits, firmware, micro code and the like,
operating alone or in combination. Likewise, processing
strategies may include multiprocessing, multitasking, paral-
lel processing and the like. In one embodiment, the instruc-
tions are stored on a removable media device for reading by
local or remote systems. In other embodiments, the instruc-
tions are stored in a remote location for transfer through a
computer network or over telephone lines. In yet other
embodiments, the instructions are stored within a given com-
puter, CPU, GPU, or system.

[0148] The processor 12 is a general processor, digital sig-
nal processor, three-dimensional data processor, graphics
processing unit, application specific integrated circuit, field
programmable gate array, digital circuit, analog circuit, com-
binations thereof, or other now known or later developed
device for processing medical image data. The processor 12 is
a single device, a plurality of devices, or a network. For more
than one device, parallel or sequential division of processing
may be used. Different devices making up the processor 12
may perform different functions, such as an automated
anatomy detector and a separate device for performing mea-
surements associated with the detected anatomy. In one
embodiment, the processor 12 is a control processor or other
processor of a medical diagnostic imaging system, such as a
medical diagnostic ultrasound imaging system processor.
The processor 12 operates pursuant to stored instructions to
perform various acts described herein, such as obtaining data,
detecting anatomy, measuring anatomy, and/or controlling
imaging.

[0149] The processor 12 is configured to detect valve
motion. The valve motion is passive motion. The valve oper-
ates in response to movement of the heart and includes little
active muscle movement. The valve motion is detected as a
function of application of the medical diagnostic imaging
data to a machine-learnt probabilistic model. The valve
motion in represented in the sequence from the medical diag-
nostic imaging data. The detection occurs during a scan of a
patient for feedback while the patient is being scanned or at
the medical facility. Detection may occur at other times.
[0150] In one embodiment, the processor 12 is configured
to detect the valve motion by simultaneously solving for
location and motion of a landmark. The spectral trajectory
model is applied as a machine-learnt probabilistic model. The
landmark location may be estimated without other estima-
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tion. In another embodiment, a hierarchal model is used by
the processor 12 to estimate global motion assuming a rigid
heart valve, then non-linear motion of landmarks of the heart
valve, and then a surface of the heart valve.

[0151] The processor 12 may performs machine learning
and/or applies a machine-learnt algorithm. For example, the
processor 12 applies a probabilistic model to detect valve
anatomy. The probabilistic model is a machine-learned clas-
sifier. Any classifier may be applied, such as a model-based
classifier or a learned classifier (e.g., classifier based on
machine learning). For learned classifiers, binary or multi-
class classifiers may be used, such as Bayesian or neural
network classifiers. The classifier is instructions, a matrix, a
learned code, or other software and/or hardware for distin-
guishing between information in a medical image.

[0152] The classifier may include a plurality of models or
classifiers (e.g., detectors) operable together or indepen-
dently. For example, different probabilistic models are
trained for different anatomy or types of motion. The proba-
bilistic models may be joint or dependent. The location of
other anatomies is used to limit or define a search space for a
current anatomy and/or as a feature input for classification of
another anatomy.

[0153] Thedifferent classifiers for joint classification, mar-
ginal space classification, and/or multiple resolution classifi-
cation are the same or different types of classifiers. The same
or different types of classifiers may be used for the same type
of classification, such as different types of classifiers being
used for different marginal space classification (e.g., the clas-
sifier for global motion is different than the classifier for
surface location).

[0154] In one embodiment, the probabilistic model is
formed from a plurality of probabilistic boosting tree classi-
fiers. Separate training and resulting machine-trained classi-
fiers are provided for each type of motion of interest. For each
of these separate classifiers, separate probabilistic boosting
tree classifiers are provided for each of the marginal space
types. For example, the classifiers follow the marginal space
learning protocol.

[0155] Forapplication, the processor 12 calculates features
for classification. The same or different features are used for
classification in each stage. Using a machine-trained transla-
tion classifier, the features are used to rule out hypotheses,
leaving a subset of remaining hypotheses.

[0156] The features are three-dimensional features. 3D
data is used to calculate the features. The window function
defining the data is a cube, but may have other volume shapes.
The window is translated, rotated, and scaled as part of
searching for an anatomy. The same or different sized win-
dows are used for different anatomies.

[0157] Any features may be used. Different types of fea-
tures may be used for the same classifier, or all of the features
are of a same type for a given classifier. In one embodiment,
Haar wavelet-like and/or steerable features are calculated.
Haar wavelet-like features represent the difference between
different portions of a region. Any number of features may be
used, such as tens, hundreds, or thousands. The machine
learning process may operate to determine a desired subset or
set of features to be used for a given classification task. In one
embodiment, the type of features used is gradient features.
For example, the “steerable” features described by Zheng, et
al. in “Fast Automatic Heart Chamber Segmentation from 3D
CT Data Using Marginal Space Learning and Steerable Fea-
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tures,” Proc. Intl Conf. on Computer Vision, pp. 1-8, 2007, are
used. Other types of features may alternatively or additionally
be used.

[0158] The processor 12 is configured to use the estimates.
For example, a display is generated of the valve operation
over time. As another example, a quantity is calculated and
output on the image display, as a number or as part of a graph.
Any quantity may be calculated, such as a quantity represent-
ing a characteristic of the valve motion. In one embodiment,
the quantity is a function of information for two heart valves.
[0159] In one embodiment, the classifier is trained with
measurement annotations, such as caliper positions. The
detection of the anatomy provides the caliper positions as an
output of the classifier. The measurement corresponding to
the caliper position is performed, such as measuring a diam-
eter or distance.

[0160] The display 16 is a CRT, LCD, plasma, projector,
printer, or other output device for showing an image. The
display 16 displays an image of the detected anatomy, such as
an image of a valve rendered from medical data and overlaid
or highlighted based on the estimates of the valve position.
The display 16 displays a sequence of renderings to generate
a visualization of the valve motion through the sequence. The
visualization for one time or a sequence may be generated
during a same examination session as the scan. The detected
anatomy may or may not be segmented, such as just display-
ing the valve. Alternatively or additionally, a value of the
measurement is displayed. The value may be displayed in a
chart, graph, and/or on an image.

[0161] While the invention has been described above by
reference to various embodiments, it should be understood
that many changes and modifications can be made without
departing from the scope of the invention. It is therefore
intended that the foregoing detailed description be regarded
as illustrative rather than limiting, and that it be understood
that it is the following claims, including all equivalents, that
are intended to define the spirit and scope of this invention.

1(We) claim:

1. A method for assessing heart valve operation with medi-
cal diagnostic imaging data, the method comprising;

estimating, with a processor, a first location of a heart valve

from application of the medical diagnostic imaging data
to a global location model, the first location being within
avolume represented by the medical diagnostic imaging
data;

estimating, with the processor, a second location of a land-

mark of the heart valve relative to the heart valve, the
estimating of the second location being a function of the
estimated first location;

estimating, with the processor, a surface of the heart valve

as a function of the estimated second location of the
landmark; and

displaying animage representing the heart valve, the image

being a function of the surface.

2. The method of claim 1 wherein estimating the first
location, estimating the second location, and estimating the
surface are performed with separate machine learnt algo-
rithms, the separate machine learnt algorithms comprising
statistical models.

3. The method of claim 1 wherein estimating the first
location comprises estimating a rigid, global motion of the
heart valve without consideration of non-rigid, localized
motion of the heart valve, wherein estimating the second
location comprises estimating a non-rigid, local motion of the
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heart valve with the medical diagnostic imaging data, and
wherein estimating the surface comprises estimating motion
of the surface relative to the non-rigid, local motion.

4. The method of claim 1 wherein estimating the second
location comprises estimating a trajectory of the landmark
through a sequence as a function of a Fourier transform.

5. The method of claim 1 wherein displaying comprises
displaying an outline representing the surface on the image,
the image generated as a function of ultrasound, computed
tomography or ultrasound and computer tomography data.

6. The method of claim 1 wherein the heart valve is a mitral
valve, and further comprising:

performing the three estimating acts for an aortic valve, the

estimating for the aortic valve being independent of the
estimating for the mitral valve; and

outputting a quantity as a function of information for both

the mitral and aortic valve.

7. The method of claim 1 wherein displaying comprises
displaying a sequence of images, including the image, repre-
senting the heart valve through a cardiac cycle, the estimating
acts performed for the sequence, the images of the sequence
each being a function of the surface corresponding to a same
time of the cardiac cycle as the image, wherein the estimating
and displaying occur during a scanning session of a patient.

8. In a computer readable storage medium having stored
therein data representing instructions executable by a pro-
grammed processor for assessing heart valve operation with
medical diagnostic imaging data, the storage medium com-
prising instructions for:

determining Fourier components of motion of non-linear

valve motion of a heart valve from the medical diagnos-
tic imaging data, the medical diagnostic imaging data
representing a sequence of volumes including the heart
valve;

inverse transforming the Fourier components, the inverse

transforming providing trajectories of a landmark of the
heart valve, the trajectories comprising motion of the
landmark over time;

ranking the trajectories with a machine learnt probabilities;

and

selecting a highest ranked trajectory.

9. The computer readable storage medium of claim 8 fur-
ther comprising instructions for performing the determining,
inverse transforming, ranking and selecting for different land-
marks, a number of trajectories and a number of Fourier
components being equal for each of the landmarks and being
different for different ones of the landmarks.

10. The computer readable storage medium of claim 8
wherein determining and inverse transforming comprise
solving location and motion at a same time.

11. The computer readable storage medium of claim 8
wherein ranking comprises:

calculating features in Euclidian space, values of the fea-

tures being a function of the medical diagnostic imaging
data for a plurality of instances in the sequence.

12. The computer readable storage medium of claim 8
wherein determining Fourier components comprises calcu-
lating hypotheses for each of the Fourier components.

13. The computer readable storage medium of claim 8
further comprising instructions for isolating the non-linear
valve motion from global motion of the heart valve in the
volume, and wherein the highest ranked trajectory is used to
determine locations of the landmark, and surface location
through the sequence is estimated from the locations.
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14. The computer readable storage medium of claim 8
further comprising instructions for generating, as a function
of the highest ranked trajectory, a representation of the valve
through the sequence, and quantifying as a function of the
representation.

15. A system for assessing heart valve operation with medi-
cal diagnostic ultrasound data, the system comprising:

an ultrasound scanner configured to scan a heart volume of
a patient, the scan providing the medical diagnostic
ultrasound data representing the heart volume at differ-
ent times as a sequence;

a processor configured to detect, as a function of applica-
tion of the medical diagnostic imaging data to a
machine-leamt probabilistic model, valve motion in the
sequence from the medical diagnostic imaging data, the
valve motion being passive motion, the detection occur-
ring during the scan;

adisplay configured to generate a visualization of the valve
motion through the sequence, the visualization gener-
ated during a same examination session as the scan.

16. The system of claim 15 wherein the processor is con-
figured to detect the valve motion by simultaneously solving
for location and motion of a landmark with a spectral trajec-
tory model as the machine-learnt probabilistic model.

17. The system of claim 15 wherein the processor is con-
figured to calculate a quantity representing a characteristic of
the valve motion from the detected valve motion.

18. The system of claim 17 wherein the quantity is a func-
tion of information for two heart valves.

19. The system of claim 15 wherein the processor is con-
figured to detect with a hierarchal model estimating global
motion assuming a rigid heart valve, then non-linear motion
of landmarks ofthe heart valve, and then a surface ofthe heart
valve.

20. In a computer readable storage medium having stored
therein data representing instructions executable by a pro-
grammed processor for assessing heart valve operation with
medical diagnostic imaging data, the storage medium com-
prising instructions for:

estimating heart valve shape or orientation at a plurality of
different times through a sequence for each of at least
two heart valves, the estimating being from medical
diagnostic imaging data representing a heart volume of a
patient over at least a portion of a heart cycle; and

calculating a quantity as a function of the heart valve shape
or orientation for both of the at least two heart valves.

21. In a computer readable storage medium having stored
therein data representing instructions executable by a pro-
grammed processor for modeling heart valve operation with
medical diagnostic imaging data, the storage medium com-
prising instructions for:

heirarchally defining heart valve motion into a global, rigid
motion, a non-rigid landmark motion, and a surface
motion;
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training a first machine learned classifier for estimating the

global, rigid motion;

training a second machine learned classifier for estimating

the non-rigid landmark motion; and

training a third machine learned classifier for estimating

the surface motion.

22. The computer readable storage medium of claim 21
wherein training the first machine learned classifier com-
prises parameterizing the heart valve through similarity in
three-dimensions with position, then the position and orien-
tation, and then the position, the orientation and scale, the
scale comprising an entire anatomy of the heart valve, for
each of an aortic valve and a mitral valve, wherein an aortic
position is given by an aortic barycenter, a long axis of the
entire anatomy of the aortic valve being normal vectors to an
aortic commissural plane, the aortic commissural plane com-
prising a main axis of an aortic root, a short axis of the entire
anatomy of the aortic valve being a normalized vector point-
ing from the barycenter to an interconnection point of left and
right leaflets, and wherein a mitral position is given by a
mitral barycenter, a long axis of the entire anatomy of the
mitral valve being a normal vector to a mitral annulus, and a
short axis of the entire anatomy of the mitral valve being from
the barycenter to a postero-annular midpoint.

23. The computer readable storage medium of claim 21
wherein training the second machine learned classifier com-
prises parameterizing the non-rigid landmark motion as a
trajectory of location as a function of time for each of a
plurality of landmarks, the landmarks comprising three aortic
commissure points comprising LR-Comm, NL-Comm and
RN-Comm, the landmarks comprising interconnection loca-
tions of aortic leaflets with three hinges comprising L-Hinge,
R-Hinge, and N-Hinge, the three hinges having lowest attach-
ment points at a root, wherein for each aortic leaflet, a center
ofacorresponding free-edge is marked by theleaflet tip point,
wherein mitral leaflets comprise anterior and posterior leaflet
tips, two interconnection points of the mitral leaflets at free
edges defined by a mitral anterior and posterior commissure
points, where a mitral annulus is fixed by the L/R-Trigone and
posteroannular midpoint, and wherein an interface between
aorta and coronary arteries is symbolized using a UR-Ostium.

24. The computer readable storage medium of claim 21
wherein training the third machine learned classifier com-
prises parameterizing the surface motion with a grid varying
as a function of time.

25. The computer readable storage medium of claim 21
further comprising instructions for:

maintaining spatial and temporal consistency between the

global, rigid motion, the non-rigid landmark motion,
and the surface motion with two-dimensional contours
defined by cut planes.
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