

US008328829B2

(12) **United States Patent**
Olson

(10) **Patent No.:** **US 8,328,829 B2**
(45) **Date of Patent:** **Dec. 11, 2012**

(54) **HIGH CAPACITY DEBULKING CATHETER WITH RAZOR EDGE CUTTING WINDOW**

(75) Inventor: **William John Olson**, Plymouth, MN (US)

(73) Assignee: **Covidien LP**, Mansfield, MA (US)

(*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 1341 days.

(21) Appl. No.: **11/934,670**

(22) Filed: **Nov. 2, 2007**

(65) **Prior Publication Data**

US 2008/0065124 A1 Mar. 13, 2008

(51) **Int. Cl.**
A61B 17/22 (2006.01)
A61D 1/02 (2006.01)

(52) **U.S. Cl.** **606/159**; 623/8; 604/22; 604/27; 604/35

(58) **Field of Classification Search** 606/159; 623/8; 604/22, 27, 35

See application file for complete search history.

(56) **References Cited**

U.S. PATENT DOCUMENTS

1,481,078 A	1/1924	Albertson
2,178,790 A	11/1939	Henry
2,701,559 A	2/1955	Cooper
2,850,007 A	9/1958	Lingley
3,064,651 A	11/1960	Henderson
3,082,805 A	3/1963	Royce
3,320,957 A	5/1967	Sokolik
3,614,953 A	10/1971	Moss
3,683,891 A	8/1972	Eskridge et al.
3,705,577 A	12/1972	Sierra
3,732,858 A	5/1973	Banko

3,749,085 A	7/1973	Wilson et al.
3,800,783 A	4/1974	Jamshidi
3,815,604 A	6/1974	O'Malley et al.
3,831,585 A	8/1974	Brondy et al.
3,837,345 A	9/1974	Matar
3,845,375 A	10/1974	Stiebel
3,937,222 A	2/1976	Banko
3,945,375 A	3/1976	Banko

(Continued)

FOREIGN PATENT DOCUMENTS

CA 2000621 4/1990

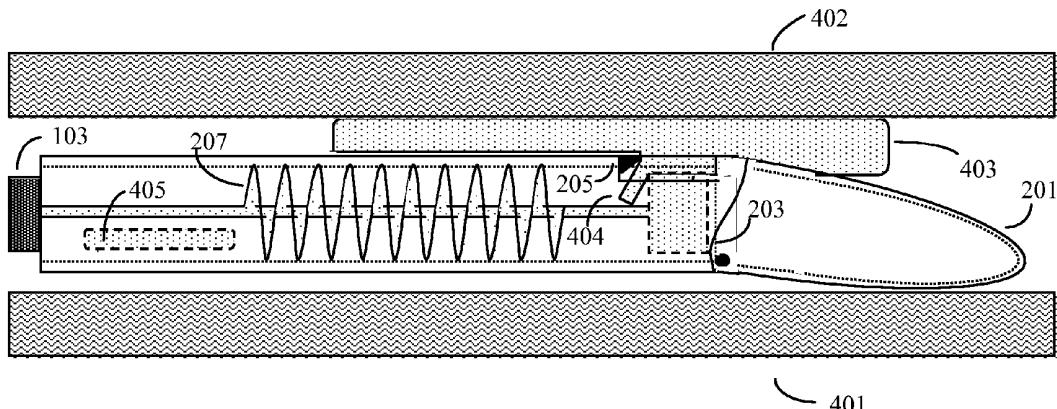
(Continued)

OTHER PUBLICATIONS

Abstract of DE 44 44 166 A1 (1 page).

(Continued)

Primary Examiner — Gary Jackson


Assistant Examiner — Kevin Everage

(74) *Attorney, Agent, or Firm* — Alana T. Bergman, Esq.

(57) **ABSTRACT**

The present invention is an atherectomy catheter with a hollow head. The head has a window with at least one internal bladed edge, a plunger, and an adjustable angle nose. The angle of the nose can be manipulated by the operator to apply pressure to an artery wall, thereby forcing the window and the window cutting edge up against a plaque target on the opposite side of the artery wall. The position of the plunger can be manipulated by the operator to open or close the window, thereby exposing or not exposing the bladed window edge, and optionally also pinching off dangling plaque fragments. Cut plaque enters the hollow catheter head through the open window, and is stored inside the catheter for removal from the body and subsequent analysis. In some embodiments, the catheter head may have optional sensors, or the plunger may also serve as a rotary cutter.

27 Claims, 5 Drawing Sheets

U.S. PATENT DOCUMENTS

3,976,077 A	8/1976	Kerfoot, Jr.	4,954,338 A	9/1990	Mattox
3,995,619 A	12/1976	Glatzer	4,957,482 A	9/1990	Shiber
4,007,732 A	2/1977	Kvavle et al.	4,966,604 A	10/1990	Reiss
4,020,847 A	5/1977	Clark, III	4,973,409 A	11/1990	Cook
4,030,503 A	6/1977	Clark, III	4,979,939 A	12/1990	Shiber
4,034,744 A	7/1977	Goldberg	4,979,951 A	12/1990	Simpson
4,038,985 A	8/1977	Chiulli	4,986,807 A	1/1991	Farr
4,112,708 A	9/1978	Fukuda	4,990,134 A	2/1991	Auth
4,177,797 A	12/1979	Baylis et al.	4,994,067 A	2/1991	Summers
4,210,146 A	7/1980	Banko	4,997,435 A	3/1991	Demeter
4,273,128 A	6/1981	Lary	5,000,185 A	3/1991	Yock
4,306,562 A	12/1981	Osborne	5,002,553 A	3/1991	Shiber
4,349,032 A	9/1982	Koyata	5,003,918 A	4/1991	Olson et al.
4,368,730 A	1/1983	Sharrock	5,007,896 A	4/1991	Shiber
4,424,045 A	1/1984	Kulischenko et al.	5,009,659 A	4/1991	Hamlin et al.
4,436,091 A	3/1984	Banko	5,019,088 A	5/1991	Farr
4,445,509 A	5/1984	Auth	5,024,234 A	6/1991	Leary et al.
4,490,139 A	12/1984	Huizinga et al.	5,024,651 A	6/1991	Shiber
4,494,057 A	1/1985	Hotta	5,026,384 A	6/1991	Farr et al.
4,512,344 A	4/1985	Barber	5,029,588 A	7/1991	Yock et al.
4,589,412 A	5/1986	Kensey	5,030,201 A	7/1991	Palestrant
4,603,694 A	8/1986	Wheeler	5,047,040 A	9/1991	Simpson et al.
4,620,547 A	11/1986	Boebel	5,049,124 A	9/1991	Bales, Jr.
4,631,052 A	12/1986	Kensey	5,053,044 A	10/1991	Mueller et al.
4,646,719 A	3/1987	Neuman et al.	5,054,492 A	10/1991	Scribner et al.
4,646,736 A	3/1987	Auth	5,064,435 A	11/1991	Porter
4,646,738 A	3/1987	Trott	5,071,425 A	12/1991	Gifford et al.
4,649,919 A	3/1987	Thimsen et al.	5,074,841 A	12/1991	Ademovic et al.
4,653,496 A	3/1987	Bundy et al.	5,077,506 A	12/1991	Krause et al.
4,664,112 A	5/1987	Kensey et al.	5,078,722 A	1/1992	Stevens
4,669,469 A	6/1987	Gifford, III et al.	5,084,010 A	1/1992	Plaia et al.
4,679,558 A	7/1987	Kensey et al.	5,085,662 A	2/1992	Willard
4,686,982 A	8/1987	Nash	5,087,265 A	2/1992	Summers
4,692,141 A	9/1987	Mahurkar	5,092,839 A	3/1992	Kipperman
4,696,298 A	9/1987	Higgins et al.	5,092,873 A	3/1992	Simpson et al.
4,696,667 A	9/1987	Masch	5,095,911 A	3/1992	Pomeranz
4,705,038 A	11/1987	Sjostrom	5,100,423 A	3/1992	Fearnott
4,706,671 A	11/1987	Weinrib	5,100,424 A	3/1992	Jang et al.
4,728,319 A	3/1988	Masch	5,100,426 A	3/1992	Nixon
4,729,763 A	3/1988	Henrie	5,110,822 A	5/1992	Sherba et al.
4,730,616 A	3/1988	Frisbie et al.	5,112,345 A	5/1992	Farr
4,732,154 A	3/1988	Shiber	5,114,399 A	5/1992	Kovalcheck
4,733,662 A	3/1988	DeSatnick et al.	5,115,814 A	5/1992	Griffith et al.
4,745,919 A	5/1988	Bundey et al.	5,120,323 A	6/1992	Shockley et al.
4,747,406 A	5/1988	Nash	5,127,902 A	7/1992	Fischell
4,747,821 A	5/1988	Kensey et al.	5,127,917 A	7/1992	Niederhauser et al.
4,754,755 A	7/1988	Husted	5,135,531 A	8/1992	Shiber
4,757,819 A	7/1988	Yokoi et al.	5,154,705 A	10/1992	Fleischhacker et al.
4,765,332 A	8/1988	Fischell et al.	5,154,724 A	10/1992	Andrews
4,771,774 A	9/1988	Simpson et al.	5,165,421 A	11/1992	Fleischhacker et al.
4,781,186 A	11/1988	Simpson et al.	5,176,693 A	1/1993	Pannek, Jr.
4,784,636 A	11/1988	Rydell	5,178,625 A	1/1993	Groshong
4,790,812 A	12/1988	Hawkins, Jr. et al.	5,181,920 A	1/1993	Mueller et al.
4,794,931 A	1/1989	Yock	5,183,432 A	2/1993	Noguchi
4,817,613 A	4/1989	Jaraczewski et al.	5,190,528 A	3/1993	Fonger et al.
4,819,634 A	4/1989	Shiber	5,192,291 A	3/1993	Pannek, Jr.
4,819,635 A	4/1989	Shapiro	5,195,956 A	3/1993	Stockmeier
4,838,268 A	6/1989	Keith et al.	5,211,651 A	5/1993	Reger et al.
4,842,579 A	6/1989	Shiber	5,217,474 A	6/1993	Zacca et al.
4,844,064 A	7/1989	Thimsen et al.	5,222,966 A	6/1993	Perkins et al.
4,848,343 A	7/1989	Wallsten et al.	5,224,488 A	7/1993	Neuffer
4,850,957 A	7/1989	Summers	5,224,945 A	7/1993	Pannek, Jr.
4,857,046 A	8/1989	Stevens et al.	5,224,949 A	7/1993	Gomringen et al.
4,867,157 A	9/1989	McGurk-Burleson et al.	5,226,909 A	7/1993	Evans et al.
4,870,953 A	10/1989	DonMichael et al.	5,226,910 A	7/1993	Kajiyama et al.
4,883,458 A	11/1989	Shiber	5,234,451 A	8/1993	Osypka
4,886,061 A	12/1989	Fischell et al.	5,242,460 A	9/1993	Klein et al.
4,886,490 A	12/1989	Shiber	5,242,461 A	9/1993	Kortenbach et al.
4,887,613 A	12/1989	Farr et al.	5,250,059 A	10/1993	Andreas et al.
4,894,051 A	1/1990	Shiber	5,250,065 A	10/1993	Clement et al.
4,899,757 A	2/1990	Pope, Jr. et al.	5,263,928 A	11/1993	Trauthen et al.
4,919,133 A	4/1990	Chiang	5,263,959 A	11/1993	Fischell
4,923,462 A	5/1990	Stevens	5,267,955 A	12/1993	Hanson
4,926,858 A	5/1990	Gifford, III et al.	5,267,982 A	12/1993	Sylvanowicz
4,928,693 A	5/1990	Goodin et al.	5,269,793 A	12/1993	Simpson et al.
4,936,987 A	6/1990	Persinski et al.	5,273,526 A	12/1993	Dance et al.
RE33,258 E	7/1990	Onik et al.	5,282,484 A	2/1994	Reger
4,950,238 A	8/1990	Sullivan	5,284,486 A	2/1994	Kotula et al.
			5,285,795 A	2/1994	Ryan et al.

US 8,328,829 B2

Page 3

5,295,493 A	3/1994	Radisch, Jr.	5,531,685 A	7/1996	Hemmer et al.
5,300,085 A	4/1994	Yock	5,531,690 A	7/1996	Solar
5,306,294 A	4/1994	Winston et al.	5,531,700 A	7/1996	Moore et al.
5,308,354 A	5/1994	Zacca et al.	5,540,707 A	7/1996	Resselmann et al.
5,312,425 A	5/1994	Evans et al.	5,549,601 A	8/1996	McIntyre et al.
5,312,427 A	5/1994	Shturman	5,554,163 A	9/1996	Shturman
5,314,438 A	5/1994	Shturman	5,556,408 A	9/1996	Farhat
5,318,032 A	6/1994	Lonsbury et al.	5,558,093 A	9/1996	Pomeranz
5,318,528 A	6/1994	Heaven et al.	5,562,726 A	10/1996	Chuter
5,318,576 A	6/1994	Plassche, Jr. et al.	5,562,728 A	10/1996	Lazarus et al.
5,321,501 A	6/1994	Swanson et al.	5,569,275 A	10/1996	Kotula et al.
5,322,508 A	6/1994	Viera	5,569,276 A	10/1996	Jang et al.
5,350,390 A	9/1994	Sher	5,569,277 A	10/1996	Evans et al.
5,356,418 A	10/1994	Shturman	5,569,279 A	10/1996	Rainin
5,358,472 A	10/1994	Vance et al.	5,570,693 A	11/1996	Jang et al.
5,358,485 A	10/1994	Vance et al.	5,571,122 A	11/1996	Kelly et al.
5,360,432 A	11/1994	Shturman	5,571,130 A	11/1996	Simpson et al.
5,366,463 A	11/1994	Ryan	5,575,817 A	11/1996	Martin
5,368,035 A	11/1994	Hamm et al.	5,584,842 A	12/1996	Fogarty et al.
5,370,609 A	12/1994	Drasler et al.	5,584,843 A	12/1996	Wulfman et al.
5,370,651 A	12/1994	Summers	5,609,605 A	3/1997	Marshall et al.
5,372,601 A	12/1994	Lary	5,618,293 A	4/1997	Sample et al.
5,372,602 A	12/1994	Burke	5,620,447 A	4/1997	Smith et al.
5,373,619 A	12/1994	Fleischhacker et al.	5,624,457 A	4/1997	Farley et al.
5,373,849 A	12/1994	Maroney et al.	5,626,562 A	5/1997	Castro
5,377,682 A	1/1995	Ueno et al.	5,626,576 A	5/1997	Janssen
5,378,234 A	1/1995	Hammerslag et al.	5,628,761 A	5/1997	Rizik
5,383,460 A	1/1995	Jang et al.	5,632,754 A	* 5/1997	Farley et al. 606/159
5,395,311 A	3/1995	Andrews	5,632,755 A	5/1997	Nordgren et al.
5,395,313 A	3/1995	Naves et al.	5,634,464 A	6/1997	Jang et al.
5,395,335 A	3/1995	Jang	5,643,296 A	7/1997	Hundertmark et al.
5,397,345 A	3/1995	Lazarus	5,643,298 A	7/1997	Nordgren et al.
5,402,790 A	4/1995	Jang et al.	5,649,941 A	7/1997	Lary
5,403,334 A	4/1995	Evans et al.	5,660,180 A	8/1997	Malinowski et al.
5,409,454 A	4/1995	Fischell et al.	5,662,671 A	9/1997	Barbut et al.
5,413,107 A	5/1995	Oakley et al.	5,665,098 A	9/1997	Kelly et al.
5,419,774 A	5/1995	Willard et al.	5,669,920 A	9/1997	Conley et al.
5,423,740 A	6/1995	Sullivan	5,674,232 A	10/1997	Halliburton
5,423,799 A	6/1995	Shiu	5,676,696 A	10/1997	Marcade
5,423,838 A	6/1995	Willard	5,676,697 A	10/1997	McDonald
5,423,846 A	6/1995	Fischell	5,681,336 A	10/1997	Clement et al.
5,427,107 A	6/1995	Milo et al.	5,682,897 A	11/1997	Pomeranz
5,429,136 A	7/1995	Milo et al.	5,683,449 A	11/1997	Marcade
5,431,673 A	7/1995	Summers et al.	5,683,453 A	11/1997	Palmaz
5,441,510 A	8/1995	Simpson et al.	5,688,234 A	11/1997	Frisbie
5,443,446 A	8/1995	Shturman	5,695,506 A	12/1997	Pike
5,443,497 A	8/1995	Venbrux	5,695,507 A	12/1997	Auth et al.
5,444,078 A	8/1995	Yu et al.	5,697,944 A	12/1997	Lary
5,445,155 A	8/1995	Sieben	5,700,240 A	12/1997	Barwick, Jr. et al.
5,449,369 A	9/1995	Imran	5,700,687 A	12/1997	Finn
5,451,233 A	9/1995	Yock	5,707,350 A	1/1998	Krause et al.
5,454,809 A	10/1995	Janssen	5,707,376 A	1/1998	Kavteladze et al.
5,456,667 A	10/1995	Ham et al.	5,707,383 A	1/1998	Bays et al.
5,456,689 A	10/1995	Kresch et al.	5,709,698 A	1/1998	Adams et al.
5,458,585 A	10/1995	Salmon et al.	5,713,913 A	2/1998	Lary et al.
5,459,570 A	10/1995	Swanson et al.	5,715,825 A	2/1998	Crowley
5,464,016 A	11/1995	Nicholas et al.	5,716,410 A	2/1998	Wang et al.
5,470,415 A	11/1995	Perkins et al.	5,720,735 A	2/1998	Dorros
5,485,042 A	1/1996	Burke et al.	5,724,977 A	3/1998	Yock et al.
5,485,840 A	1/1996	Bauman	5,728,123 A	3/1998	Lemelson et al.
5,487,729 A	1/1996	Avellanet et al.	5,733,296 A	3/1998	Rogers et al.
5,489,295 A	2/1996	Piplani et al.	5,735,816 A	4/1998	Lieber et al.
5,491,524 A	2/1996	Hellmuth et al.	5,741,270 A	4/1998	Hansen et al.
5,496,267 A	3/1996	Drasler et al.	5,766,192 A	6/1998	Zacca
5,501,694 A	3/1996	Ressemann et al.	5,772,674 A	6/1998	Nakhjavan
5,503,155 A	4/1996	Salmon et al.	5,775,327 A	7/1998	Randolph et al.
5,505,210 A	4/1996	Clement	5,776,114 A	7/1998	Frantzen et al.
5,507,292 A	4/1996	Jang et al.	5,776,153 A	7/1998	Rees
5,507,760 A	4/1996	Wynne et al.	5,779,643 A	7/1998	Lum et al.
5,507,761 A	4/1996	Duer	5,779,673 A	7/1998	Roth et al.
5,507,795 A	4/1996	Chiang et al.	5,779,721 A	7/1998	Nash
5,512,044 A	4/1996	Duer	5,779,722 A	7/1998	Shturman et al.
5,514,115 A	5/1996	Frantzen et al.	5,792,157 A	8/1998	Mische et al.
5,520,189 A	5/1996	Malinowski et al.	5,797,949 A	8/1998	Parodi
5,522,825 A	6/1996	Kropf et al.	5,799,655 A	9/1998	Jang et al.
5,522,880 A	6/1996	Barone et al.	5,807,329 A	9/1998	Gelman
5,527,292 A	6/1996	Adams et al.	5,810,867 A	9/1998	Zarbatany et al.
5,527,298 A	6/1996	Vance et al.	5,816,923 A	10/1998	Milo et al.
5,527,325 A	6/1996	Conley et al.	5,820,592 A	10/1998	Hammerslag

US 8,328,829 B2

Page 4

5,823,971 A	10/1998	Robinson et al.	6,159,195 A	12/2000	Ha et al.
5,824,039 A	10/1998	Piplani et al.	6,159,225 A	12/2000	Makower
5,824,055 A	10/1998	Spiridigliootti et al.	6,165,127 A	12/2000	Crowley
5,827,201 A	10/1998	Samson et al.	6,179,859 B1	1/2001	Bates et al.
5,827,229 A	10/1998	Auth et al.	6,183,432 B1	2/2001	Milo
5,827,304 A	10/1998	Hart	6,187,025 B1	2/2001	Machek
5,827,322 A	10/1998	Williams	6,190,353 B1	2/2001	Makower et al.
5,830,224 A	11/1998	Cohn et al.	6,191,862 B1	2/2001	Swanson et al.
5,836,957 A	11/1998	Schulz et al.	6,193,676 B1	2/2001	Winston et al.
5,843,022 A	12/1998	Willard et al.	6,196,963 B1	3/2001	Williams
5,843,103 A	12/1998	Wulfman	6,206,898 B1	3/2001	Honeycutt et al.
5,843,161 A	12/1998	Solovay	6,217,527 B1	4/2001	Selmon et al.
5,855,563 A	1/1999	Kaplan et al.	6,217,549 B1	4/2001	Selmon et al.
5,865,748 A	2/1999	Co et al.	6,217,595 B1	4/2001	Shturman et al.
5,868,685 A	2/1999	Powell et al.	6,221,049 B1	4/2001	Selmon et al.
5,868,767 A	2/1999	Farley et al.	6,221,332 B1	4/2001	Thumm et al.
5,871,536 A	2/1999	Lazarus	6,228,049 B1	5/2001	Schroeder et al.
5,873,882 A	2/1999	Straub et al.	6,228,076 B1	5/2001	Winston et al.
5,876,414 A	3/1999	Straub	6,231,546 B1	5/2001	Milo et al.
5,879,397 A	3/1999	Kalberer et al.	6,231,549 B1	5/2001	Noecker et al.
5,883,458 A	3/1999	Sumita et al.	6,235,000 B1	5/2001	Milo et al.
5,888,201 A	3/1999	Stinson et al.	6,238,405 B1	5/2001	Findlay, III et al.
5,895,399 A	4/1999	Barbut et al.	6,241,667 B1	6/2001	Vetter et al.
5,895,402 A	4/1999	Hundertmark et al.	6,241,744 B1	6/2001	Imran et al.
5,902,245 A	5/1999	Yock	6,245,012 B1	6/2001	Kleshinski
5,910,150 A	6/1999	Saadat	6,258,052 B1	7/2001	Milo
5,911,734 A	6/1999	Tsugita et al.	6,263,236 B1	7/2001	Kasinkas et al.
5,916,210 A	6/1999	Winston	6,264,611 B1	7/2001	Ishikawa et al.
5,922,003 A	7/1999	Anctil et al.	6,266,550 B1	7/2001	Selmon et al.
5,935,108 A	8/1999	Katoh et al.	6,277,138 B1	8/2001	Levinson et al.
5,938,645 A	8/1999	Gordon	6,283,951 B1	9/2001	Flaherty et al.
5,938,671 A	8/1999	Katoh et al.	6,283,983 B1	9/2001	Makower et al.
5,938,672 A	8/1999	Nash	6,299,622 B1	10/2001	Snow et al.
5,941,869 A	8/1999	Patterson et al.	6,299,623 B1	10/2001	Wulfman
5,947,985 A	9/1999	Imran	6,302,875 B1	10/2001	Makower et al.
5,948,184 A	9/1999	Frantzen et al.	6,305,834 B1	10/2001	Schubert et al.
5,951,480 A	9/1999	White et al.	6,312,444 B1	11/2001	Barbut
5,951,482 A	9/1999	Winston et al.	6,319,242 B1	11/2001	Patterson et al.
5,954,745 A	9/1999	Gertler et al.	6,319,275 B1	11/2001	Lashinski et al.
5,968,064 A	10/1999	Selmon et al.	6,330,884 B1	12/2001	Kim
5,972,019 A	10/1999	Engelson et al.	6,355,005 B1	3/2002	Powell et al.
5,985,397 A	11/1999	Witt et al.	6,361,545 B1	3/2002	Macoviak et al.
5,989,281 A	11/1999	Barbut et al.	6,375,615 B1	4/2002	Flaherty et al.
5,997,557 A	12/1999	Barbut et al.	6,383,195 B1	5/2002	Richard
6,001,112 A	12/1999	Taylor	6,383,205 B1	5/2002	Samson et al.
6,010,449 A	1/2000	Selmon et al.	6,394,976 B1	5/2002	Winston et al.
6,010,522 A	1/2000	Barbut et al.	6,398,798 B2	6/2002	Selmon et al.
6,013,072 A	1/2000	Winston et al.	6,422,736 B1	7/2002	Antonaides et al.
6,019,778 A	2/2000	Wilson et al.	6,423,081 B1	7/2002	Lee et al.
6,022,362 A	2/2000	Lee et al.	6,425,870 B1	7/2002	Flesch
6,027,450 A	2/2000	Brown et al.	6,428,551 B1	8/2002	Hall et al.
6,027,460 A	2/2000	Shturman	6,428,552 B1	8/2002	Sparks
6,027,514 A *	2/2000	Stine et al. 606/159	6,443,966 B1	9/2002	Shiu
6,032,673 A	3/2000	Savage et al.	6,445,939 B1	9/2002	Swanson et al.
6,036,646 A	3/2000	Barthe et al.	6,447,525 B2	9/2002	Follmer et al.
6,036,656 A	3/2000	Slater	6,451,036 B1	9/2002	Heitzmann et al.
6,036,707 A	3/2000	Spaulding	6,454,779 B1	9/2002	Taylor
6,039,693 A	3/2000	Seward et al.	6,475,226 B1	11/2002	Belef et al.
6,048,349 A	4/2000	Winston et al.	6,482,217 B1	11/2002	Pintor et al.
6,050,949 A	4/2000	White et al.	6,497,711 B1	12/2002	Plaia et al.
6,063,093 A	5/2000	Winston et al.	6,501,551 B1	12/2002	Tearney et al.
6,066,153 A	5/2000	Lev	6,520,975 B2	2/2003	Branco
6,068,603 A	5/2000	Suzuki	RE38,018 E	3/2003	Anctil et al.
6,068,638 A	5/2000	Makower	6,532,380 B1	3/2003	Close et al.
6,081,738 A	6/2000	Hinohara et al.	6,533,749 B1	3/2003	Mitusina et al.
RE36,764 E	7/2000	Zacca et al.	6,561,998 B1	5/2003	Roth et al.
6,095,990 A	8/2000	Parodi	6,565,588 B1	5/2003	Clement et al.
6,099,542 A	8/2000	Cohn et al.	6,569,177 B1	5/2003	Dillard et al.
6,106,515 A	8/2000	Winston et al.	6,592,526 B1	7/2003	Lenker
6,110,121 A	8/2000	Lenker	6,620,180 B1	9/2003	Bays et al.
6,120,515 A *	9/2000	Rogers et al. 606/159	6,623,437 B2	9/2003	Hinchliffe et al.
6,120,516 A	9/2000	Selmon et al.	6,623,495 B2	9/2003	Findlay, III et al.
6,126,649 A	10/2000	VanTassel et al.	6,623,496 B2	9/2003	Snow et al.
6,129,734 A	10/2000	Shturman et al.	6,629,953 B1	10/2003	Boyd
6,134,003 A	10/2000	Tearney et al.	6,638,233 B2	10/2003	Corvi et al.
6,152,909 A	11/2000	Bagaoisan et al.	RE38,335 E	11/2003	Aust et al.
6,152,938 A	11/2000	Curry	6,652,505 B1	11/2003	Tsugita
6,156,046 A *	12/2000	Passafaro et al. 606/159	6,652,548 B2	11/2003	Evans et al.
6,157,852 A	12/2000	Selmon et al.	6,656,195 B2	12/2003	Peters et al.

US 8,328,829 B2

Page 5

6,666,874	B2	12/2003	Heitzmann et al.	2007/0135712	A1	6/2007	Maschke
6,682,543	B2	1/2004	Barbut et al.	2007/0135886	A1	6/2007	Maschke
6,733,511	B2	5/2004	Hall et al.	2007/0225739	A1	9/2007	Pintor et al.
6,740,103	B2	5/2004	Hall et al.	2007/0265647	A1	11/2007	Bonnette et al.
6,746,462	B1	6/2004	Selman et al.	2007/0276419	A1	11/2007	Rosenthal
6,764,495	B2	7/2004	Lee et al.	2008/0001643	A1	1/2008	Lee
6,790,204	B2	9/2004	Zadno-Azizi et al.	2008/0004644	A1	1/2008	To et al.
6,790,215	B2	9/2004	Findlay, III et al.	2008/0004645	A1	1/2008	To et al.
6,818,001	B2	11/2004	Wulfman et al.	2008/0004646	A1	1/2008	To et al.
6,830,577	B2	12/2004	Nash et al.	2008/0004647	A1	1/2008	To et al.
6,843,797	B2	1/2005	Nash et al.	2008/0045986	A1	2/2008	To et al.
6,849,068	B1	2/2005	Bagaoisan et al.	2008/0051812	A1	2/2008	Schmitz et al.
6,863,676	B2	3/2005	Lee et al.	2008/0065125	A1	3/2008	Olson
6,911,026	B1	6/2005	Hall et al.	2008/0125799	A1	5/2008	Adams
6,970,732	B2	11/2005	Winston et al.	2008/0161840	A1	7/2008	Osiroff et al.
6,997,934	B2	2/2006	Snow et al.	2008/0177139	A1	7/2008	Courtney et al.
7,153,315	B2	12/2006	Miller	2008/0208227	A1	8/2008	Kadykowski et al.
7,172,610	B2	2/2007	Heitzmann et al.	2008/0312673	A1	12/2008	Viswanathan et al.
7,208,511	B2	4/2007	Williams et al.	2009/0012548	A1	1/2009	Thatcher et al.
7,235,088	B2	6/2007	Pintor et al.	2009/0018565	A1	1/2009	To et al.
7,318,831	B2	1/2008	Alvarez et al.	2009/0018566	A1	1/2009	Escudero et al.
7,388,495	B2	6/2008	Fallin et al.	2009/0138031	A1	5/2009	Tsukernik et al.
7,479,148	B2	1/2009	Beaupre	2009/0187203	A1	7/2009	Corvi et al.
7,488,322	B2	2/2009	Brunnett et al.	2009/0216125	A1	8/2009	Lenker
7,524,289	B2	4/2009	Lenker	2009/0216180	A1	8/2009	Lee et al.
7,603,166	B2	10/2009	Casscells, III et al.	2009/0226063	A1	9/2009	Rangwala et al.
7,708,749	B2	5/2010	Simpson et al.	2009/0234378	A1	9/2009	Escudero et al.
7,713,235	B2	5/2010	Torrance et al.	2009/0270888	A1	10/2009	Patel et al.
7,713,279	B2	5/2010	Simpson et al.	2009/0275966	A1	11/2009	Mitusina
7,729,745	B2	6/2010	Maschke	2009/0299394	A1	12/2009	Simpson et al.
7,734,332	B2	6/2010	Sher	2009/0306689	A1	12/2009	Weltz et al.
7,753,852	B2	7/2010	Maschke	2010/0049225	A1	2/2010	To et al.
7,758,599	B2	7/2010	Snow et al.	2010/0130996	A1	5/2010	Doud et al.
7,771,444	B2	8/2010	Patel et al.	2010/0198240	A1	8/2010	Simpson et al.
7,887,556	B2	2/2011	Simpson et al.	2010/0241147	A1	9/2010	Maschke
2001/0000041	A1	3/2001	Selman et al.	2010/0280534	A1	11/2010	Sher
2001/0031784	A1	10/2001	Petersen et al.	2010/0292721	A1	11/2010	Moberg
2001/0031981	A1	10/2001	Evans et al.	2010/0298850	A1	11/2010	Snow et al.
2001/0044622	A1	11/2001	Vardi et al.	2010/0312263	A1	12/2010	Moberg et al.
2002/0019644	A1	2/2002	Hastings et al.	2011/0004107	A1	1/2011	Rosenthal et al.
2002/0022788	A1	2/2002	Corvi et al.	2011/0022069	A1	1/2011	Mitusina
2002/0058904	A1	5/2002	Boock et al.	2011/0040315	A1	2/2011	To et al.
2002/0077373	A1	6/2002	Hudson	2011/0130777	A1	6/2011	Zhang et al.
2002/0077642	A1	6/2002	Patel et al.	2011/0144673	A1	6/2011	Zhang et al.
2002/0095141	A1	7/2002	Belef et al.				
2002/0103459	A1	8/2002	Sparks et al.				
2002/0177800	A1	11/2002	Bagaoisan et al.				
2002/0188307	A1	12/2002	Pintor et al.				
2003/0018346	A1	1/2003	Follmer et al.				
2003/0023263	A1	1/2003	Krolik et al.				
2003/0093098	A1	5/2003	Heitzmann et al.				
2003/0120295	A1	6/2003	Simpson et al.				
2003/0125757	A1	7/2003	Patel et al.				
2003/0125758	A1	7/2003	Simpson et al.				
2003/0199747	A1	10/2003	Michlitsch et al.				
2003/0206484	A1	11/2003	Childers et al.				
2003/0229369	A1	12/2003	Findlay, III et al.				
2004/0006358	A1	1/2004	Wulfman et al.				
2004/0049225	A1	3/2004	Denison				
2004/0167553	A1	8/2004	Simpson et al.				
2004/0167554	A1	8/2004	Simpson et al.				
2004/0193034	A1	9/2004	Wasicek et al.				
2004/0210245	A1	10/2004	Erickson et al.				
2005/0004585	A1	1/2005	Hall et al.				
2005/0004594	A1	1/2005	Nool et al.				
2005/0021063	A1	1/2005	Hall et al.				
2005/0042239	A1	2/2005	Lipiecki et al.				
2005/0090845	A1	4/2005	Boyd				
2005/0090849	A1	4/2005	Adams				
2005/0177068	A1	8/2005	Simpson				
2005/0216018	A1	9/2005	Sennett				
2005/0222596	A1	10/2005	Maschke				
2005/0222663	A1	10/2005	Simpson et al.				
2006/0015126	A1	1/2006	Sher				
2006/0235334	A1	10/2006	Corvi et al.				
2006/0259052	A1	11/2006	Pintor et al.				
2007/0010840	A1	1/2007	Rosenthal et al.				
2007/0038061	A1	2/2007	Huennenkens et al.				
2007/0049958	A1	3/2007	Adams				

FOREIGN PATENT DOCUMENTS

DE	3732236	C1	12/1988
DE	8900059	U1	5/1989
DE	93 03 531	U1	7/1994
DE	44 44 166	A1	6/1996
DE	29722136	U1	5/1999
EP	0086048	A2	8/1983
EP	0 107 009	A2	5/1984
EP	0 229 620	A2	7/1987
EP	0291170	A1	11/1988
EP	0 302 701	A2	2/1989
EP	0330843	A1	9/1989
EP	0373927	A2	6/1990
EP	0421457	A1	4/1991
EP	0 431 752	A2	6/1991
EP	0448859	A2	10/1991
EP	0463798	A1	1/1992
EP	0 490 565	A1	6/1992
EP	0514810	A1	11/1992
EP	0 526 042	A1	2/1993
EP	0533320	A2	3/1993
EP	0 608 911	A1	8/1994
EP	0 608 912	A1	8/1994
EP	0 611 522	A1	8/1994
EP	0 648 414	B1	4/1995
EP	0657140	A1	6/1995
EP	0 680 695	B1	11/1998
EP	0 983 749	A2	3/2000
EP	1 767 159	A1	3/2007
EP	1 875 871	A2	1/2008
GB	2093353	A	9/1982
GB	2 115 829	A	9/1983
GB	2210965	A	6/1989
JP	2-206452	A	8/1990

JP	2271847 A	11/1990
JP	3186256 A	8/1991
JP	4200459 A	7/1992
JP	5042162 A	2/1993
JP	5056984 A	3/1993
JP	5184679 A	7/1993
JP	6269460 A	9/1994
JP	7075611 B	8/1995
SU	442795 A1	9/1974
SU	665908 A1	6/1979
WO	WO 8906517 A1	7/1989
WO	WO 92/07500 A2	5/1992
WO	WO 9313716 A1	7/1993
WO	WO 9313717 A1	7/1993
WO	WO 9521576 A1	8/1995
WO	WO 9611648 A1	4/1996
WO	WO 9746164 A1	12/1997
WO	WO 9804199 A1	2/1998
WO	WO 9824372 A1	6/1998
WO	WO 99/39648 A1	8/1999
WO	WO 9952454 A1	10/1999
WO	WO 00/54735 A1	9/2000
WO	WO 00/62913 A1	10/2000
WO	WO 00/68300 A1	11/2000
WO	WO 00/72955 A1	12/2000
WO	WO 01/15609 A1	3/2001
WO	WO 01/19444 A1	3/2001
WO	WO 0130433 A1	5/2001
WO	WO 01/43857 A1	6/2001
WO	WO 0143809 A1	6/2001
WO	WO 02/16017 A2	2/2002
WO	WO 02/45598 A2	6/2002

OTHER PUBLICATIONS

Brezinski et al., "Optical Coherence Tomography for Optical Biopsy," *Circulation*, 93:1206-1213 (1996).

Brezinski et al., "Assessing Atherosclerotic Plaque Morphology: Comparison of Optical Coherence Tomography and High Frequency Intravascular Ultrasound," *Heart*, 77:397-403 (1997).

Huang et al., "Optical Coherence Tomography," *Science*, 254:1178-1181 (1991).

International Search Report and Written Opinion of PCT Application No. PCT/US04/12600, dated Jun. 13, 2008, 8 pages total.

International Search Report of PCT Application No. PCT/US04/12601, dated Jun. 30, 2005, 3 pages total.

Mar. 27, 2009 Communication from the European Patent Office regarding corresponding EP Application No. 01 991 343.3 (7 pages).

U.S. Appl. No. 12/431,210, filed Apr. 28, 2009, John B. Simpson et al. (59 pages).

Abstract of JP2206452A (1 page).

Amplatz Coronary Catheters, posted: Feb. 25, 2009, [online], [retrieved on Mar. 29, 2011], retrieved from the Cardiophile MD using Internet website <URL:<http://cardiophile.org/2009/02/amplatzcoronary-catheter.html>> (3 pages).

Judkins Left Coronary Catheter, posted: Feb. 19, 2009, [online], [retrieved on Mar. 29, 2011], retrieved from the Cardiophile MD using Internet website <URL:<http://cardiophile.org/2009/02/judkins-left-coronary-catheter.html>> (3 pages).

Translation of Aug. 15, 2007 mailed Japanese Patent Office Action, Application No. 1999-139033.

* cited by examiner

Figure 1

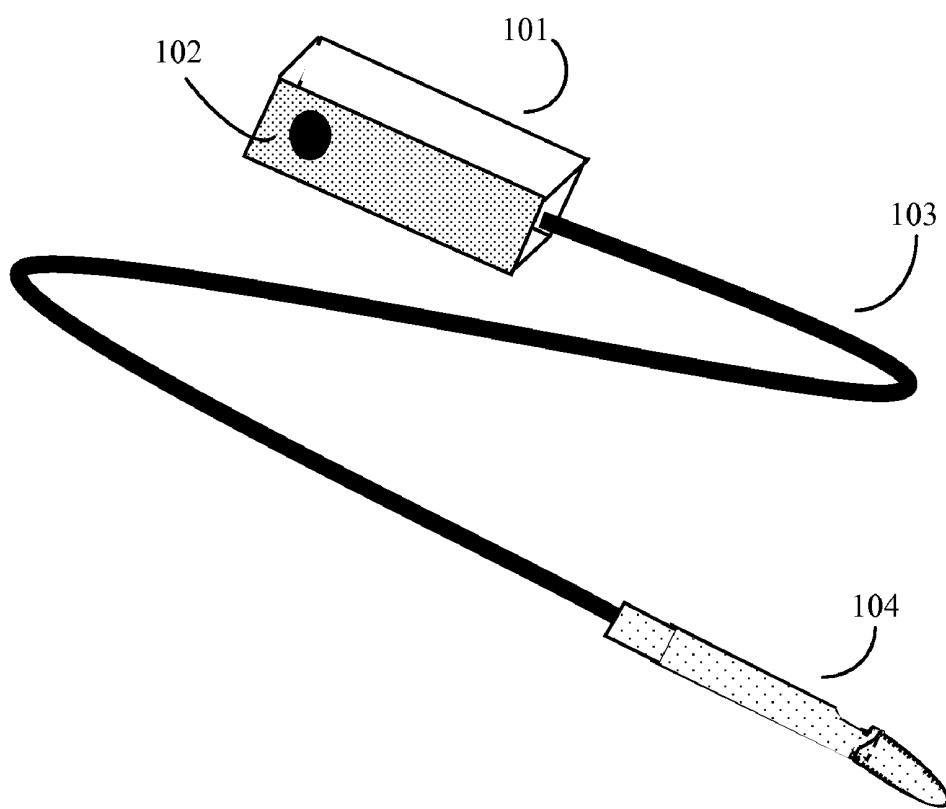


Figure 2

Figure 2A

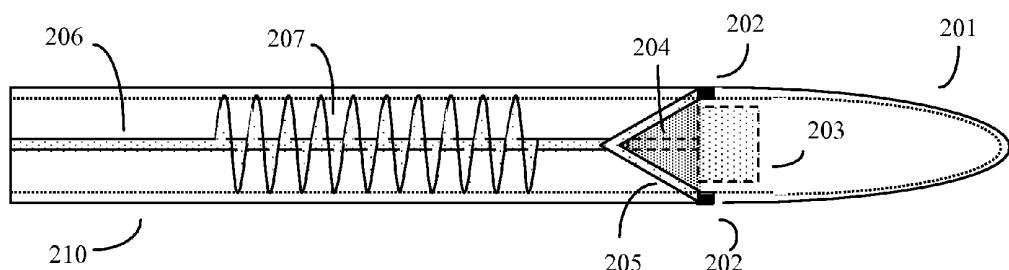


Figure 2B

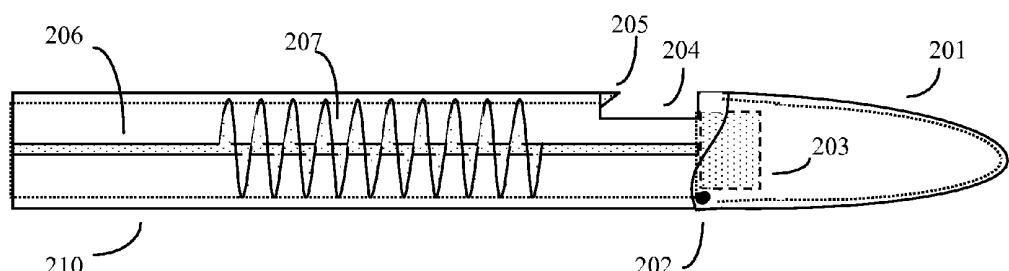


Figure 2C

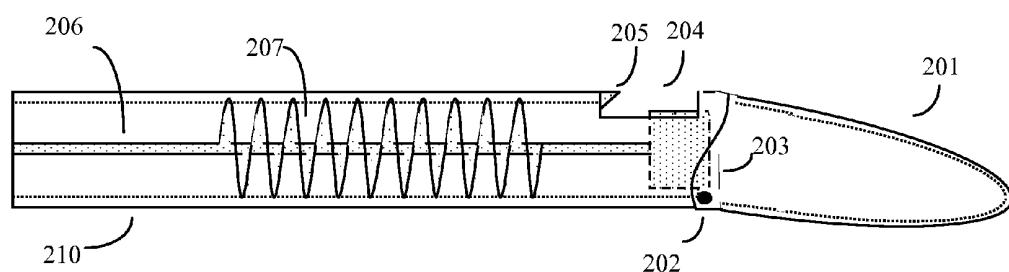


Figure 3

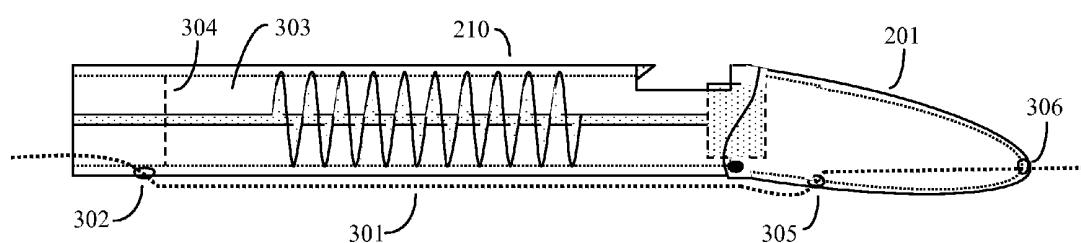


Figure 4

Figure 4A

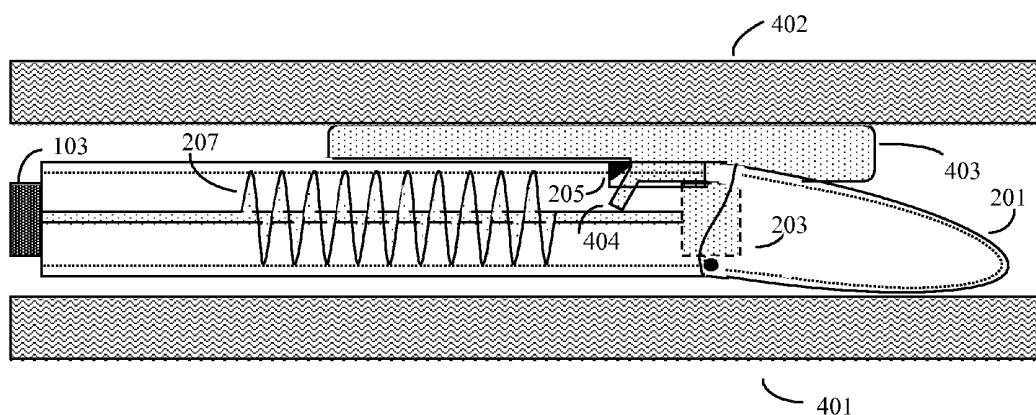


Figure 4B

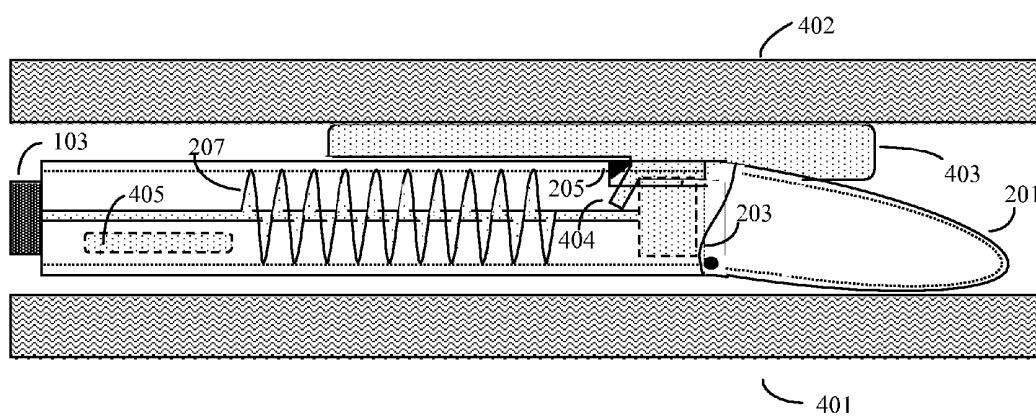
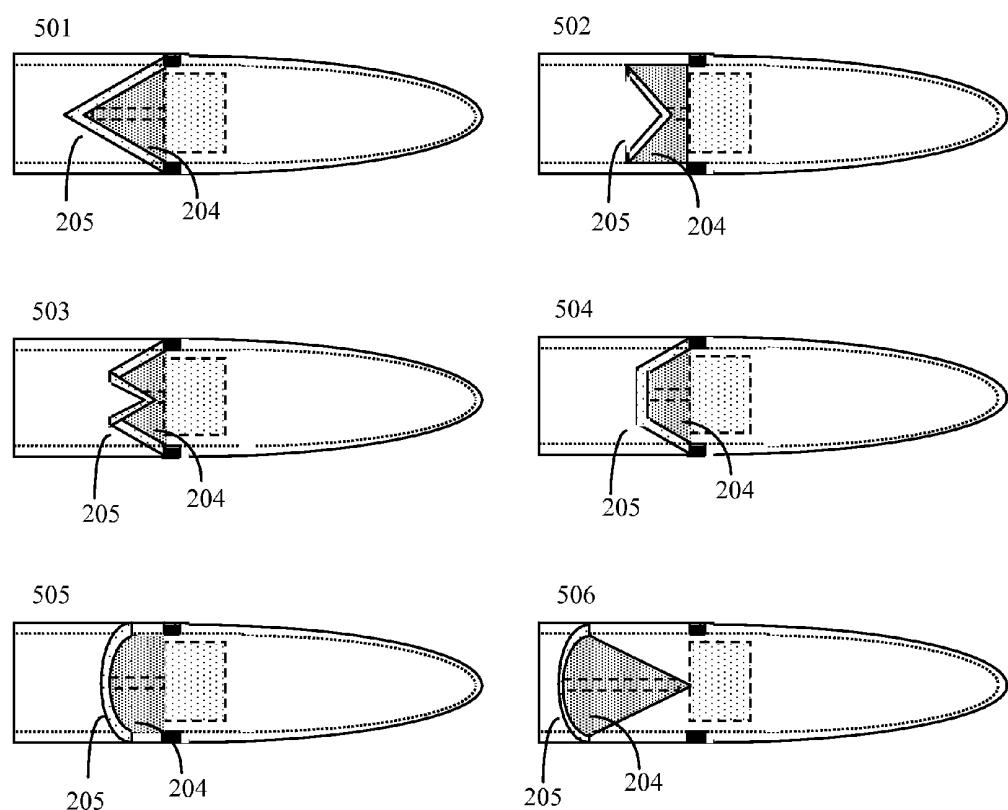



Figure 5

HIGH CAPACITY DEBULKING CATHETER WITH RAZOR EDGE CUTTING WINDOW

BACKGROUND OF THE INVENTION

Restriction of blood circulation due to the atherosclerotic build up of plaque in arteries is the source of much mortality and morbidity. Plaque deposits in cardiac arteries can result in angina and myocardial infarction. Plaque deposits in peripheral arteries of the limbs can result in peripheral artery disease (PAD). PAD affects about 20% of the population over 70, and in more severe forms (which afflict about 2 million people in the U.S.) can lead to non-healing ulcers, infection, and eventually loss of limb due to amputation. Most people die within two years of such amputations.

Although many techniques, such as stenting and balloon angioplasty, have been developed to help restore circulation to plaque occluded cardiac arteries, these methods tend to be less effective for peripheral arteries. Stents, although well suited to low-mobility cardiac arteries, tend to either restenose or frequently break in peripheral limb arteries because these arteries are subjected to greater movement and mechanical stress. Balloon angioplasty, which stretches the artery walls while it compresses and redistributes plaque, tends to cause a greater and typically less acceptable amount of artery wall damage when it is used with peripheral arteries. Additionally, since angioplasty simply redistributes plaque rather than actually removing plaque, in the higher mobility peripheral arteries, the redistributed plaque tends to relatively quickly distribute itself back into an unacceptable configuration again.

From the surgical perspective, one of the most ideal ways to treat arteries blocked by plaque is to remove the plaque from the inside of the artery using an atherectomy catheter. Such catheters, which come in a variety of different designs, can be introduced into the body at a convenient location and threaded inside the artery to the plaque occluded target region (which can usually be determined exactly using fluoroscopy and appropriate radio opaque contrast dyes). Once they are at the correct region, atherectomy catheters then surgically remove the occluding plaque.

Many different types of atherectomy catheter devices have been proposed, including catheters with rotating burrs (Boston Scientific Rotablator), lasers to photo-dissolve tissue (Spectrametrics Laser Catheter), and cutter-balloon catheters (Guidant AtheroCath). All have certain drawbacks, however, such as difficulty in traversing through small and tortuous arteries to get to the plaque occluded target zone or zones.

One of the biggest problems plaguing prior art atherectomy catheters is the problem of gracefully handing the shaved plaque remnants. Some designs, such as the Rotablator, make no attempt at all to handle the liberated plaque fragments, and instead let the fragments migrate through the circulation. This can cause many problems, because the liberated plaque remnants can be thrombogenic, and can end up causing downstream occlusions. Other catheter designs attempt to reduce this problem by capturing the plaque shavings and safely removing them from the body. Capturing the plaque shavings also makes the samples available for pathologic and medical diagnostic examination, and may give important information as to the root causes behind the plaque build-up in the first place.

Examples of such cutting catheters include Andreas U.S. Pat. No. 5,250,059; Farley, U.S. Pat. No. 5,624,457; Conley U.S. Pat. No. 5,669,920; Schultz U.S. Pat. No. 5,836,957; and Rogers U.S. Pat. No. 6,120,515. Other prior art includes Snow, U.S. application Ser. No. 09/930,372; Methods for removing atherosomatous material from a body lumen

More recent atherectomy catheters, such as the Fox Hollow SilverHawk articulated rotating blade atherectomy catheter,

have been designed to address such issues. The SilverHawk catheter (exemplified by U.S. patent application Ser. Nos. 10/027,418; 10/288,559; 10/896,747; and others) uses a unique rotating blade, window, and hinged hollow nose design, which can be controlled to either assume a straight position or an angled (drooped) position.

To use the SilverHawk atherectomy catheter, the operator will usually first insert a guide wire to the proper location, attach the SilverHawk to the guidewire, and introduce the SilverHawk through a convenient artery port, often located near the groin region. The operator then maneuvers the SilverHawk device to the appropriate region of plaque with the SilverHawk hinged (bendable) nose in a straight configuration. Once at the target zone, the operator then bends the angle of the SilverHawk's hollow nose. The nose contacts the artery wall opposite the plaque target, and which in turn results in an opposing force that presses the catheter's window and cutter against the plaque.

The operator will then spin-up the cutter, and move the catheter across the target zone. The rotary cutter cuts a thin strip of plaque, which is directed, by the motion of the cutter and the device's geometry, into the hollow nose cone. The cuttings stay in the nose cone, where they can eventually be removed from the body and analyzed.

The SilverHawk atherectomy catheter represented a significant advance in the state of the art, because it enabled substantially longer regions (often several centimeters or more) of plaque to be shaved for each pass of the catheter over a region. An additional advantage was that the catheter could be rotated; exposing the window and the rotating blade to another region, and a target region of plaque could thus be shaved multiple times, allowing precise control over the amount and geometry of the plaque reduction process.

Although the SilverHawk catheter demonstrated the utility of this type of approach, further improvements were still desirable. In particular, the available plaque storage space in the device's hollow nose cone was limited, and improvements in trimming partially attached plaque shavings were also desirable.

One problem was that whenever the nose cone filled with plaque, the catheter needed to be pulled from the body, cleaned, and then laboriously rethreaded to the correct location in the target zone again. This tended to significantly prolong the length and effort required for many medical procedures, and thus was undesirable to both physician and patient alike. Methods to reduce this burden were thus highly desirable.

A second problem was how to optimize plaque handling near the edges of trimmed areas. In some cases, plaque would be partially severed by the rotating cutter, yet still remain partially attached to the artery wall. This dangling plaque sometimes had a tendency to deform when a cutter passed over it, rather than be neatly severed and stored in the catheter's plaque storage compartment. Here, an alternative cutting means that could either cut the plaque from the opposite direction, and/or pinch off, cut, and store dangling plaque would be advantageous.

Atherectomy design engineers face some formidable design challenges, however. In order to navigate the narrow and tortuous arteries, veins and other lumens of the body, such catheters must have extremely small diameters, usually on the order of 1 to 3 millimeters (3-9 French). At the same time, the devices must be flexible enough to be threaded through such arteries, yet have sections that are rigid enough to accomplish the required positioning, cutting, and plaque storage functions.

Due to these many design constraints, mechanical designs that might be relatively simple to execute with larger diameter devices become very problematic at such extremely small diameters. Additional constraints, such as the need to use

biocompatible materials, the need for extremely high reliability, and the need for accommodate a wide variety of different plaque targets in different patients make the design of such devices quite challenging.

BRIEF SUMMARY OF THE INVENTION

The present invention is an improved atherectomy catheter designed with increased plaque carrying cap ability, and an improved ability to trim plaque, including the dangling portions of plaque that are still partially attached to artery or other body lumen walls. The catheter will normally comprise a long catheter tube, with a cutting head attached to the tube comprising at least a hollow rigid tubular portion with a bladed edge window, and an adjustable angle distal nose portion. The catheter head may additionally contain either a moveable plunger or a moveable plunger cutting wheel. The catheter may achieve its plaque cutting action by more than one modality.

In a first cutting modality, an operator controlled variable angle (drooping) nose or nose region is bent by the operator. The tip of the nose contacts an opposite artery wall or other body lumen, forcing (as an equal and opposite reaction) a bladed window opening on the opposite side of the catheter up against a target region of plaque on the opposite artery wall. The operator then retracts a plunger or shield that obscures the bladed edge of the catheter window, and advances the catheter. The bladed window edge shaves the plaque, and plaque shavings pass through the window opening into a hollow storage space inside the catheter, where the shavings are stored. The shavings may then be subsequently removed from the body and subjected to pathological or medical diagnostic analysis as needed.

In a second cutting modality, an operator uses the catheter's moveable plunger to close the catheter's open window. As it closes the window, the plunger presses any dangling plaque that is protruding into the window up against the bladed edge of the window. The dangling plaque is severed by the pinching action of the window blade and the plunger, and again enters the hollow storage space inside the catheter.

In a third cutting modality, an operator spins up a moveable combination plunger and cutting wheel, and uses the spinning plunger/cutting wheel to almost close the catheter's open window, while optionally advancing or retracting the catheter. The dangling plaque is thus subjected to cutting action from both sides, as well as a pinching action, and an optional force due to advancement or retraction of the catheter. The severed plaque fragment and again enters the hollow storage space inside the catheter.

In a fourth cutting modality, an operator may spin up a moveable plunger cutting wheel, and cut plaque by alternately advancing and retracting the catheter head. Plaque will be subjected to cutting from the bladed window when the catheter is advanced, and will be subjected to cutting from the rotating plunger when the catheter is retracted. As before, the shavings will again enter into the hollow storage space inside the catheter.

Normally, when the operator wishes to advance or retract the catheter through the body either towards or away from the target zone, the operator will use a mechanism connected to the plunger to close the window. This helps insure that the bladed window edge will not inadvertently damage non-target regions of the arteries or other body lumens.

It is contemplated that in normal operation, the operator may switch between various cutting modalities as appears best for the given situation. The present design gives the operator a greater number of cutting options than prior art designs, thus allowing quicker and more precise procedures to be accomplished. Due to the fact that the present invention stores the plaque shavings in the relatively large hollow stor-

age space of the catheter body, rather than the relatively small storage space of the catheter nose (as was done with prior art designs), the catheter may additionally operate for a longer period of time before it must be withdrawn from the body for cleaning, and reinserted. This speeds up the procedure time, and reduces the burden on patients and physicians.

In an alternative embodiment of the present invention, sensors may also be added to the design to help the operator properly position the device relative to target plaque or other body lumen targets of interest, and also properly orient the cutting window of the device.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 shows an overall view of the unit, including the proximal operator control, the catheter, and the distal catheter cutting head.

FIG. 2A shows a top view of the distal catheter cutting head.

FIG. 2B shows a side view of the distal catheter cutting head with the adjustable angle catheter nose in the up configuration.

FIG. 2C shows a side view of the distal catheter cutting head with the nose angled down in a drooped configuration.

FIG. 3 shows how a guide wire may be threaded through the catheter and the distal cutting head.

FIG. 4A shows the razor edge on the catheter window cutting through plaque with the plug in an open window configuration.

FIG. 4B shows the how dangling plaque may be cut off and stored in the head of the device by closing the plug.

FIG. 5 shows a variety of different catheter window blade edges.

DETAILED DESCRIPTION OF THE INVENTION

The present art is normally intended for use with human patients, as well as various veterinary applications. For simplicity, this combined human or animal use will be referred to as use in mammals, although of course such devices could also be used in appropriate non-mammal animals such as birds, reptiles, and amphibians, etc., as appropriate.

It should also be understood that although the examples of cutting unwanted plaque deposits in arteries are used throughout this disclosure, the actual invention may be used for a broader variety of applications, including removing tumors, getting biopsies, etc. in arteries, veins, and any other tubular or roughly tubular body lumen.

Nomenclature: The handle end of the catheter is the proximal location, and the nose cone tip of the catheter is the distal location.

An overview of the device is shown in FIG. 1. The device consists of a handle (101), one or more control knobs, tabs, or switches (102), a long catheter tube or shaft (103), and the cutting atherectomy head (104).

The catheter tube or shaft (103) will typically consist of a flexible tube, which is often hollow and capable of passing a guide wire, as well as optionally other materials such as drugs and contrast materials, control wires, drive shafts, sensors, sensor fibers or wires, ultrasonic signals, and the like. The control wires may optionally be used to operate plunger settings, nose angle, and the like as will be discussed in the next sections.

In some embodiments, the handle (101) may also contain a battery and motor for driving a screw material transport device in the catheter head (104), or a rotating combination plunger and cutter. In this case, the tube (103) may contain a shaft or hollow shaft additionally capable of transmitting torque from a motor mounted in the handle to the atherectomy head.

The cutting atherectomy head (104) will typically consist of a hollow body and a moveable tapered nose, which in some embodiments is connected to the front of the hollow body by at least one hinge. The head will additionally consist of at least a window with a razor edge, and a moveable plunger or combination plunger/cutter that can transition from a more distal (open window) position to a more proximal (closed window) position. Head (104) may additionally contain openings or ports to accommodate a guidewire to allow the catheter head to be precisely threaded through tortuous arteries, veins, or other body lumens.

In the event that use with a guide wire is desired, to allow the head's bladed window and plunger cutting mechanism to operate freely and without risk accidentally cutting or entangling with the guide wire, the guide wire may be routed to exit from the proximal region of the catheter head, and then reenter the catheter head at the distal region of the head, thus skipping the plaque cutting and storage regions of the head. In some configurations, the guide wire will reenter the catheter head at the distal nose region, travel through the nose end of the head for a short distance, and then finally exit the head again through a third exit port, often located near the tip of the catheter's nose located at the extreme distal end of the catheter.

FIG. 2A, 2B, and 2C show close-ups of the cutting atherectomy head (104) from various angles. FIG. 2A shows the head from the top. The figure shows the head's adjustable angle nose cone (201), hinge pins (202), moveable plug (203), window opening (204), window blade edge (205), the plug movement shaft (206) an optional helical screw to help move and compact any plaque shavings (207), and the main body of the head (210).

The catheter's nose (201) usually has a tapered or conicalatraumatic design intended to allow the catheter head to easily migrate through arteries. It may be composed of softer materials, and may additionally have an internal coiled spring or other means to allow the tip to bend somewhat as needed to migrate through tortuous arteries and other body lumen structures.

FIG. 2B shows the same head from the side. Here the adjustable angle nose (201) is shown in the "up" or straight configuration, which allows the catheter head to migrate though the tortuous arteries and body lumens with maximum ease. In this figure the plug (203) is shown in the extended configuration and the window (204) is open. In actual operation however, when the head is being moved through the arteries to a target site, plug (203) will normally be in a closed position, closing window (204), and normally blocking window blade (205). This closed position helps to prevent the window blade (205) from accidentally nicking or cutting non-target regions of the arteries or other body lumens while the device is being moved to and from its various target zones.

FIG. 2C shows the head from the side, showing the catheter operating in a cutting configuration after the catheter head has been threaded to its designated target zone. Once the catheter is in position, the adjustable angle catheter nose (201) is put into a bent or drooped position through either a cam mechanism (not shown), or other means. Suitable cam mechanisms and deflection means for adjusting the angle of similar type catheter noses were previously taught by copending application Ser. Nos. 10/896,741, and 10/027,418, the contents of which are incorporated herein by reference.

In this angled or drooped position, the nose cone (201), which is shown held to the main body (210) by hinge pins (202), rotates to a "bent" configuration. This adjustable angle nose is typically rotated by the operator increasing the angle of the bend until the nose tip makes contact with the opposite wall of a body lumen (i.e. an opposite artery wall). Once the nose tip makes contact with an opposite wall, an equal and opposite force is generated (by the normal laws of physics)

that acts to push or "urge" window (204) and the blade (205) against the target zone on the opposite lumen wall. This target is usually a plaque occluded region of an artery wall.

This design thus differs from earlier cutting catheter designs, such as the Guidant AtheroCath, which used a balloon on one side of the cutting head to force the cutting portion of the catheter against the target plaque.

One problem with earlier cutting catheter designs is the catheters either did not collect the plaque shavings at all (potentially causing significant complications and adverse effects), or else the earlier designs had only a relatively limited ability (storage volume) to store this collected plaque.

As an example, prior art atherectomy catheters typically stored plaque shavings in the hollow distal (nose) side of the catheter head. Although functional, the volume of this hollow nose is quite limited. As an unfortunate consequence, medical procedures had to be frequently interrupted whenever the catheter head filled up with plaque. The catheter then had to be carefully withdrawn, stored plaque removed, then slowly and carefully reinserted back to the target zone. This prolonged the medical procedures, and led to strain on the patient and physician, as well as encouraging less complete plaque removal.

By contrast, the present art solves this limited storage problem by adapting a novel design in which the plaque cutting blade (205) is mounted on one or more edges of a hollow window (204) that in turn opens up into a much larger plaque shaving storage area (206) contained in the main body of the catheter head (210).

A second advantage of the present invention's bladed window design that it gives the operator a wider variety of cutting options. The operator may use the bladed window (204, 205) as a scraper, paring off unwanted plaque by advancing the catheter. The operator may use the bladed window, in combination with a plunger (203) to pinch off plaque. The operator may use the bladed window with a combination plunger and rotary cutter to cut plaque from both directions. The net effect is that the operator has a greater variety of cutting means at his or her disposal, and can thus choose the most appropriate means to fit the particular target at hand.

In some embodiments, the catheter may additionally have sensors, such as directional ultrasonic or infrared sensors, mounted on the catheter head. In one embodiment, the orientation of the sensor or sensors is directed to give the operator information as to the status of the plaque and/or artery of or other body lumen that is facing the cutting window of the catheter. This can allow the operator to determine if the catheter is in the proper orientation relative to its intended target. Examples of such sensors were described in more detail in application Ser. No. 10/421,980, the contents of which are incorporated herein by reference.

Device dimensions: Typically the catheter cutting head (210) will have a diameter between about 1 to 2.2 millimeters. The cutting window (204) will typically have a length of about 1.2 to 2.5 millimeters. In embodiments where the plunger (203) is a plunger equipped with a cutting wheel that contains a cam or other orientation control mechanism that allows the cutting wheel portion of the plunger to extend slightly outside the window, the plunger orientation control mechanism may allow the plunger to at least temporarily be locked into a position that allows the cutting outer edge of the plunger to extend about 0.025 to 0.64 mm outside the cutting window.

This adjustable "slightly outside" configuration can also be used when the plunger does not have a cutting edge as well, as a slightly protruding plunger creates a "safety razor" type configuration in which any tendency of the blade to cut too deeply is mitigated by the force of the artery wall against the protruding plunger.

The net effect of the present design is to allow the operator to move the catheter backward along the target region of plaque, and shave off a long thin portion of this plaque using the cutting edge of plunger (203). The operator may then move the catheter forward, and cut off plaque using blade (205). In this configuration, both forward and backward movement can produce cutting activity, if desired.

The plunger (203) will typically have a diameter of about 1.14 mm, and a width typically at least as long as window (204). The window facing side of the plunger and may have a dull edge, a sharp cutting edge, other edge. The geometry of the plunger's window-facing edge may be chosen so that when the plunger is moved to close the window, window blade (205) may be partially or totally covered or obscured by the plunger. Alternatively, the plunger may be designed to provide a flat or curved edge to help pinch material, and may be designed as to stop just short of contacting the window blade so as to avoid dulling window blade (205). If plunger (203) is designed to function as a cutting wheel, then usually some sort of safety stop will be used so as to prevent plunger (203) from coming into total contact with blade edge (205).

If the plunger is designed to additionally operate as a rotating cutting wheel, then the catheter will have a mechanism to rotate the plunger/cutting wheel at high speeds, typically greater than 100 rotations per minute (rpm), preferably around 8000 rotations per minute (rpm).

As previously discussed, in some configurations, the plunger will be mounted on a shuttle or cam mechanism to allow the operator to adjust the protrusion of the plunger from the window. This will allow plunger (203) to function somewhat as the stop on a safety razor, and help prevent blade (205) from accidentally penetrating too far into plaque during a cutting step. That is, plunger (203) may be angled as to protrude partially outside of the window (204), and in particular further outside window (204) than blade (205). Thus if blade (205) starts to cut too deep, the protruding portion of plunger (203) will then start to generate a downward deflection force to help prevent blade (205) from cutting at a larger depth.

The cutting edge of the blades may be optionally hardened by an appropriate coating, such as ME-92, tungsten carbide, or other suitable materials as taught by U.S. Pat. Nos. 4,771,774; 5,242,460; 5,312,425; 5,431,673; and 5,674,232.

In other cases, the action of blade can be facilitated by ultrasonic vibration, laser cutting, radiofrequency electrodes, and the like. In this case, appropriate mechanisms (i.e. a piezoelectric ultrasonic vibrator, laser diode or optical fiber, electrodes, etc. may also be provided in the catheter head to drive the blade as needed. If the action of the ultrasonic, laser, or electrode cutter is sufficiently robust enough as to make it a spinning blade unnecessary, then the blade may either not be spun up, or the blade rotary mechanism may be omitted, or a non-rotating blade may be used.

In many embodiments, it will be useful to allow the location and orientation of the catheter head to be identified by constructing the catheter head (210), nose (201), and cutting window/plunger region (204), (203) out of suitable combinations of translucent and radio opaque materials, thus, for example, enabling the region distal to the cutting window to be distinguished from the region proximal to the cutting head by fluoroscopy or other X-ray detection means.

In addition to fluoroscopy localization, other modalities, such as light (optical) and sonic (ultrasonic) localization methods may also be used. Here orientation may be facilitated by running a fiber optic strand through the catheter tube (103) (not shown) to an appropriate location on the catheter head, and determining the location and orientation of the head by optical means. Alternatively an ultrasonic transducer or pickup may be incorporated into the catheter head.

Typically the flexible outer catheter tube (103) between the handle (101) and the head (104) will have a length between 50 cm and 200 cm, a diameter between 1 French (0.33 mm) and 12 French (4 mm), and will usually be between 3 French (1 mm) and 9 French (3 mm) in diameter. The catheter body will often be made from extruded organic polymers such as polyvinylchloride, polyurethane, polyester, polytetrafluoroethylene (PTFE), silicon rubber, or similar materials. The catheter body may be reinforced as needed with wires, coils, or filaments as needed to give the body additional strength and to control rigidity and pushability.

Portions of the catheter head (104) (distal region of the catheter) will often be rigid or partially rigid, and can be made from materials such as metals, hard plastics, composite materials, NiTi steel (optionally coated with titanium nitride, tantalum, ME-92® or diamonds. Usually stainless steel or platinum/iridium will be used. The length of the middle portion of the catheter head may vary between about 5 to 35 mm, and will usually be between about 10 to 25 mm; however alternative lengths (longer or shorter) may also be used.

As previously discussed, the extreme distal end of the catheter head (the nose) (201) will usually be made to be both flexible andatraumatic so as to allow the catheter to be threaded through arteries with maximum ease and minimum trauma. Because, in this design, the nose is no longer used to store plaque, this nose design may be optimized to accommodate the plunger, optional cams or drive mechanisms, and also optimized to allow easy passage of the catheter through arteries. In some cases, the distal tip will have an inner coil construction to maximize flexibility. The distance between the rigid part of the catheter head and the distal end tip of the flexible catheter nose will typically be between 10 and 30 mm, but may vary as needs dictate.

The present device will often be designed to make use of a monorail guidewire to assist in positioning the cutter to the proper location at the target site. Usually the guidewire will have diameters between about 0.010" and 0.032", usually around 0.014". Although this guidewire may optionally pass through much of the 50 to 200 cm length of the flexible catheter through a hollow hole in the center of the catheter, it will usually be desirable to have the guidewire leave catheter head proximal to the plaque storage, window, cutting and cutting driver mechanism, and then rejoin the catheter head after these portions have been passed. This prevents interference with the plaque debulking mechanism. Thus the guidewire may have a portion that is external to the catheter head in this region.

In some embodiments, it may be desirable to protect the portion or portions of the guidewire that is briefly external to the catheter head by a guidewire lumen or a telescoping guidewire lumen with a length between about 2 and 14 cm, or even longer as needed to accommodate higher plaque storage volumes. This telescoping guidewire lumen protects both the guidewire from accidental cutting or entanglement with the blade and window, and also helps protect the patient's artery or other body lumen linings from inadvertent excessive pressure while the catheter head traverses narrow passages.

FIG. 3 shows one example of how the catheter of the present invention may interact with a guide wire. In order to do this, either the catheter tube (103) and or the catheter head and nose (210), (201) may have hollow passages or openings in order to be compatible with such guide wires. This is shown in FIG. 3. Here a guide wire (301) originally threaded through the hollow catheter tube (103) exits the catheter head (210) at aperture (302). The guide wire thus bypasses the hollow plaque storage region of the catheter head (303) which in this example may be separated from the hollow catheter tube (103) by a divider (304).

In this embodiment, the guidewire travels outside of the head of the catheter (210) for a while (e.g. 5 to 15 cm) until it

reaches a first opening (305) in the catheter nose. The guide wire may then be threaded through the catheter nose until it reaches a second opening (306), where it may then exit. Other guide wire configurations may be used, or alternatively, no guide wire at all may be used.

As shown in FIG. 4A, once the catheter head has been maneuvered to the appropriate target zone, the adjustable angle nose (201) is angled or drooped, and the plug (203) is pushed distally (201), opening up window (204) and exposing the window knife edge (205). The angled or drooped nose (201) contacts the opposite wall of artery or body lumen (401), providing pressure to force or "urge" window (204) and knife edge (205) against the wall of the artery (402) and against the target plaque (403). The operator can then advance (more) the catheter head (210) forward (distally) by applying forward pressure to the catheter tube (103) or advancing some other type of drive mechanism.

Blade (205) shaves off some of this plaque (403) and this removed plaque (404) enters the hollow cavity of catheter head (210). Helical screw (207) can then act to move this plaque further back into the storage cavity. As previously discussed, plunger (203) can optionally be rotated by a cam mechanism and advanced partially out of the window (205) in order to provide greater control over the depth of the cut by blade (205).

As shown in FIG. 4B, the dangling plaque (404) can also be trimmed by moving plunger (203) proximally back into the catheter head (210) thus closing or partially closing window (204). The plunger forces the dangling plaque (404) up against the knife edge (205) pinching or cutting the dangling plaque. This severed plaque (405) then enters the hollow capillary head where it can be moved to the back by an optional helical screw (207), suction, or other mechanism.

As previously discussed, in alternative embodiments, plunger (203) may be a rotating plunger that also has its own cutting head along the edge of the plunger facing the window. Alternatively plunger (203) may have an edge configuration designed to shield or partially shield blade (205) from inadvertent contact with body lumens when the window (204) is closed or partially closed by the plunger (203). The plunger mechanism may additionally have various cams or stops designed to place the plunger at the appropriate angle and orientation necessary to perform its function.

FIG. 5 (501) to (506) shows various alternate blade (205) and window (204) configurations that may be used with the device.

The invention claimed is:

1. A catheter comprising:
a flexible tube comprising a proximal end and a distal end;
said flexible tube having dimensions and flexibility compatible with migration through at least some arteries or veins or other body lumens of a living mammal;
a catheter head with dimensions also compatible with migration through at least some arteries or veins or other body lumens of a living mammal;
said catheter head comprising a substantially rigid housing coupled to the distal end of said flexible tube;
said rigid housing comprising at least a window to the space outside said housing that also opens into a hollow inner portion of said housing;
at least one edge of said window comprising a blade with at least one cutting edge facing in the distal direction of said catheter;

50

- a moveable plunger disposed in the hollow portion of said rigid housing, the moveable plunger comprising a plug and a rotatable shaft having a helical screw that moves shaved material proximally upon rotation of the shaft; wherein said catheter contains a mechanism to allow an operator of said catheter to adjust said plunger to open or close said window;

wherein said plunger can be powered to rotate; and wherein said plug has a cutting edge along the circumference of the plug that faces in the proximal direction of said catheter.

5 2. The catheter of claim 1, wherein said catheter additionally contains a deflectable nose region mounted on the distal end of said rigid housing, and a mechanism to allow said operator to deflect said nose region against a body lumen, thereby pushing said window and said blade against an opposite wall of said body lumen, allowing said blade to cut material from said body lumen.

10 3. The catheter of claim 1, wherein said plug has a cylindrical configuration; wherein the axis of said cylindrical plug is substantially aligned along the long axis of said catheter; and wherein said plunger can be powered to rotate at a speed greater than 100 rpm.

15 4. The catheter of claim 1, in which said window is bounded on all sides by said rigid housing.

5 5. The catheter of claim 1, wherein said plunger is configured to allow said window blade to contact a body lumen when said plunger has opened said window; and wherein the geometry of said window and said hollow portion is configured to allow material shaved by said blade to enter into the hollow portion of said housing when the position of said catheter head is manipulated by said operator.

20 6. The catheter of claim 1, wherein said hollow portion of said rigid housing is used to store material excised from a body lumen.

7. The catheter of claim 1, in which the proximal end of said catheter tube is connected to a handle or control mechanism for controlling said catheter, said handle or control mechanism being designed for use by a human operator, and said handle or control mechanism remaining outside the body of said mammal at all times.

30 8. The catheter of claim 1, in which said flexible tube is hollow, and said flexible tube acts to conduct torque, drugs, contrast dyes, ultrasonic vibration, fiber optical signals, mechanical deflection signals, electrical current, electrical signals, or a guide wire across some or all of the length of the tube.

9. The catheter of claim 1, in which said catheter head comprises a sensor oriented to survey material that is positioned near the blade zone of said window and in which said sensor is selected from the group consisting of ultrasound transducer arrays, optical fibers, and coherence tomography devices.

40 10. The catheter of claim 1, wherein the plug is able to be disposed distal to said window.

11. A catheter comprising:
a flexible tube comprising a proximal end and a distal end;
said flexible tube having dimensions and flexibility compatible with migration through at least some arteries or veins or other body lumens of a living mammal;
a catheter head with dimensions also compatible with migration through at least some arteries or veins or other body lumens of a living mammal;
said catheter head comprising a substantially rigid housing coupled to the distal end of said flexible tube;
said rigid housing comprising at least a window to the space outside said housing that also opens into a hollow inner portion of said housing;
at least one edge of said window comprising a blade with at least one cutting edge facing in the distal direction of said catheter;

50

- a moveable plunger disposed in the hollow portion of said rigid housing, the moveable plunger comprising a plug and a rotatable shaft having a helical screw that moves shaved material proximally upon rotation of the shaft; wherein said moveable plunger can be manipulated by an operator of said catheter to open or close said window;

11

wherein said catheter additionally contains a deflectable nose region mounted on the distal end of said rigid housing, and a mechanism to allow said operator to deflect said nose region against a body lumen, thereby pushing said window and said blade against an opposite wall of said body lumen, allowing said blade to cut material from said body lumen;
 wherein said plunger can be powered to rotate; and wherein said plug has a cutting edge along the circumference of the plug that faces in the proximal direction of said catheter.

12. The catheter of claim **11**, wherein said plunger is configured to allow said window blade to contact a body lumen when said plunger has opened said window; and wherein the geometry of said window and said hollow portion is configured to allow material shaved by said blade to enter into the hollow portion of said housing when the position of said catheter head is manipulated by said operator.

13. The catheter of claim **11**, wherein said hollow portion of said rigid housing is used to store material excised from a body lumen.

14. The catheter of claim **11**, in which the proximal end of said catheter tube is connected to a handle or control mechanism for controlling said catheter, said handle or control mechanism being intended for use by a human operator, and said handle or control mechanism remaining outside the body of said mammal at all times.

15. The catheter of claim **11**, in which said flexible tube is hollow, and said flexible tube acts to conduct torque, drugs, contrast dyes, ultrasonic vibration, fiber optical signals, mechanical deflection signals, electrical current, electrical signals, or a guide wire across some or all of the length of the tube.

16. The catheter of claim **11**, wherein said plug has a cylindrical configuration; wherein the axis of said cylindrical plug is substantially aligned along the long axis of said catheter; and wherein said plunger can be powered to rotate at a speed greater than 100 rpm.

17. The catheter of claim **11**, in which said window is bounded on all sides by said rigid housing.

18. The catheter of claim **11**, wherein the plug is able to be disposed distal to said window.

19. A catheter comprising:
 a flexible tube comprising a proximal end and a distal end; said flexible tube having dimensions and flexibility compatible with migration through at least some arteries or veins or other body lumens of a living mammal;
 a catheter head with dimensions also compatible with migration through at least some arteries or veins or other body lumens of a living mammal;
 said catheter head comprising a substantially rigid housing coupled to the distal end of said flexible tube; in which said catheter head comprises a sensor oriented to survey material that is positioned near the blade zone of said window;
 said rigid housing additionally comprising at least a window to the space outside said housing that also opens into a hollow inner portion of said housing;

12

at least one edge of said window comprising a blade with at least one cutting edge facing in the distal direction of said catheter;

a moveable plunger disposed in the hollow portion of said rigid housing, the moveable plunger comprising a plug and a rotatable shaft having a helical screw that moves shaved material proximally upon rotation of the shaft; wherein said moveable plunger can be manipulated by an operator of said catheter to open or close said window; wherein said catheter additionally contains a deflectable nose region mounted on the distal end of said rigid housing, and a mechanism to allow said operator to deflect said nose region against a body lumen, thereby pushing said window and said blade against an opposite wall of said body lumen, allowing said blade to cut material from said body lumen;

wherein said plunger can be powered to rotate; and wherein said plug has a cutting edge along the circumference of the plug that faces in the proximal direction of said catheter.

20. The catheter of claim **19**, wherein said plunger is configured to allow said window blade to contact a body lumen when said plunger has opened said window; and wherein the geometry of said window and said hollow portion is configured to allow material shaved by said blade to enter into the hollow portion of said housing when the position of said catheter head is manipulated by said operator.

21. The catheter of claim **19**, wherein said hollow portion of said rigid housing is used to store material excised from a body lumen.

22. The catheter of claim **19**, in which the proximal end of said catheter tube is connected to a handle or control mechanism for controlling said catheter, said handle or control mechanism being intended for use by a human operator, and said handle or control mechanism remaining outside the body of said mammal at all times.

23. The catheter of claim **19**, in which said flexible tube is hollow, and said flexible tube acts to conduct torque, drugs, contrast dyes, ultrasonic vibration, fiber optical signals, mechanical deflection signals, electrical current, electrical signals, or a guide wire across some or all of the length of the tube.

24. The catheter of claim **19**, in which said sensor is selected from the group consisting of ultrasound transducer arrays, optical sensors, optical fibers, and coherence tomography devices.

25. The catheter of claim **19**, wherein said plug has a cylindrical configuration; wherein the axis of said cylindrical plug is substantially aligned along the long axis of said catheter; and wherein said plunger can be powered to rotate at a speed greater than 100 rpm.

26. The catheter of claim **19**, in which said window is bounded on all sides by said rigid housing.

27. The catheter of claim **19**, wherein the plug is able to be disposed distal to said window.

* * * * *

专利名称(译)	高容量减压导管，带有剃刀边缘切割窗口		
公开(公告)号	US8328829	公开(公告)日	2012-12-11
申请号	US11/934670	申请日	2007-11-02
[标]申请(专利权)人(译)	FOXHOLLOW TECH		
申请(专利权)人(译)	FOXHOLLOW TECHNOLOGIES , INC.		
当前申请(专利权)人(译)	COVIDIEN LP		
[标]发明人	OLSON WILLIAM JOHN		
发明人	OLSON, WILLIAM JOHN		
IPC分类号	A61B17/22 A61D1/02		
CPC分类号	A61B17/320783 A61B17/32075 A61B2017/320775 A61B2017/320791		
审查员(译)	JACKSON , GARY		
优先权	60/272273 2001-02-27 US 09/930372 2001-08-14 US 60/257704 2000-12-20 US 10/027418 2001-12-19 US 09/378224 1999-08-19 US 10/288559 2002-11-04 US		
其他公开文献	US20080065124A1		
外部链接	Espacenet USPTO		

摘要(译)

本发明是一种具有中空头部的粥样斑块切除术导管。头部有一个窗口，至少有一个内部刀刃，一个柱塞和一个可调角度的鼻子。可以由操作者操纵鼻子的角度以向动脉壁施加压力，从而迫使窗口和窗口切割边缘向上抵靠动脉壁的相对侧上的斑块目标。操作者可以操纵柱塞的位置以打开或关闭窗口，从而暴露或不暴露叶片窗口边缘，并且可选地还夹住悬挂的斑块碎片。切割斑块通过打开的窗口进入中空导管头部，并存储在导管内以便从身体中取出并随后进行分析。在一些实施例中，导管头可以具有可选的传感器，或者柱塞也可以用作旋转切割器。

