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ULTRASONIC SURGICAL INSTRUMENTS

CROSS-REFERENCE TO RELATED
APPLICATION

This application is a divisional application under 35
U.S.C. §121 of co-pending U S. patent application Ser. No.
12/503,769, filed on Jul. 15, 2009, entitled ULTRASONIC
SURGICAL INSTRUMENTS, now U.S. Pat. No. 8,663,
220, which is hereby incorporated by reference herein in its
entirety.

BACKGROUND

The present disclosure generally relates to ultrasonic
surgical systems and, more particularly, to ultrasonic sys-
tems that allow surgeons to perform cutting and coagulation.

Ultrasonic surgical instruments are finding increasingly
widespread applications in surgical procedures by virtue of
the unique performance characteristics of such instruments.
Depending upon specific instrument configurations and
operational parameters, ultrasonic surgical instruments can
provide substantially simultaneous cutting of tissue and
homeostasis by coagulation, desirably minimizing patient
trauma. The cutting action is typically realized by an-end
effector, or blade tip, at the distal end of the instrument,
which transmits ultrasonic energy to tissue brought into
contact with the end effector. Ultrasonic instruments of this
nature can be configured for open surgical use, laparoscopic,
or endoscopic surgical procedures including robotic-assisted
procedures.

Some surgical instruments utilize ultrasonic energy for
both precise cutting and controlled coagulation. Ultrasonic
energy cuts and coagulates by using lower temperatures than
those used by electrosurgery. Vibrating at high frequencies
(e.g., 55,500 times per second), the ultrasonic blade dena-
tures protein in the tissue to form a sticky coagulum.
Pressure exerted on tissue with the blade surface collapses
blood vessels and allows the coagulum to form a hemostatic
seal. The precision of cutting and coagulation is controlled
by the surgeon’s technique and adjusting the power level,
blade edge, tissue traction, and blade pressure.

A primary challenge of ultrasonic technology for medical
devices, however, continues to be sealing of blood vessels.
Work done by the applicant and others has shown that
optimum vessel sealing occurs when the inner muscle layer
of a vessel is separated and moved away from the adventitia
layer prior to the application of standard ultrasonic energy.
Current efforts to achieve this separation have involved
increasing the clamp force applied to the vessel.

Furthermore, the user does not always have visual feed-
back of the tissue being cut. Accordingly, it would be
desirable to provide some form of feedback to indicate to the
user that the cut is complete when visual feedback is
unavailable. Moreover, without some form of feedback
indicator to indicate that the cut is complete, the user may
continue to activate the harmonic instrument even though
the cut is complete, which cause possible damage to the
harmonic instrument and surrounding tissue by the heat that
is generated exponentially when activating a harmonic
instrument with nothing between the jaws.

It would be desirable to provide an ultrasonic surgical
instrument that overcomes some of the deficiencies of
current instruments. The ultrasonic surgical instrument
described herein overcomes those deficiencies.

SUMMARY

In various embodiments, a surgical instrument comprising
a handpiece housing, an acoustic assembly supported within
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the handpiece housing, wherein the acoustic assembly is
configured to produce vibrations, and a waveguide compris-
ing a proximal end and a distal end, wherein the proximal
end is mounted to the acoustic assembly such that vibrations
produced by the acoustic assembly are transmitted to the
waveguide is disclosed. The surgical instrument further
comprises an ultrasonic blade coupled to the distal end of the
waveguide, wherein the ultrasonic blade comprises a tissue
treatment portion configured to cut and coagulate tissue, a
clamp movable between an open position and a closed
position relative to the waveguide, wherein the clamp com-
prises a first electrode and a second electrode, and wherein
the first electrode and the second electrode longitudinally
overlap the tissue treatment portion of the ultrasonic blade
when the clamp is in the closed position, a first conductor in
electrical communication with the first electrode, and a
second conductor in electrical communication with the
second electrode, wherein the first conductor and the second
conductor are configured to be placed in electrical commu-
nication with a power source such that current can flow from
the first electrode to the second electrode through tissue
positioned intermediate the first electrode and the second
electrode.

In various embodiments, a surgical instrument comprising
a housing, an acoustic assembly supported within the hous-
ing, wherein the acoustic assembly is configured to produce
vibrations, and a waveguide coupled to the acoustic assem-
bly is disclosed. The surgical instrument further comprises
an ultrasonic blade extending from the waveguide, wherein
the ultrasonic blade comprises a tissue treatment area con-
figured to cut and coagulate tissue, and a clamp movable
between an open position and a closed position relative to
the waveguide. The clamp comprises an electrically non-
conductive pad, a first electrode embedded in the electrically
non-conductive pad, and a second electrode embedded in the
electrically non-conductive pad, wherein the first electrode
and the second electrode longitudinally overlap the tissue
treatment area of the ultrasonic blade when the clamp is in
the closed position. The surgical instrument further com-
prises a first conductor in electrical communication with the
first electrode and a second conductor in electrical commu-
nication with the second electrode, wherein the first con-
ductor and the second conductor are configured to be placed
in electrical communication with a power source such that
current can flow from the first electrode to the second
electrode through tissue positioned intermediate the first
electrode and the second electrode.

FIGURES

The features of various embodiments are set forth with
particularity in the appended claims. The various embodi-
ments, however, both as to organization and methods of
operation, together with further objects and advantages
thereof, may best be understood by reference to the follow-
ing description, taken in conjunction with the accompanying
drawings as follows.

FIG. 1 illustrates a surgical instrument comprising an
ultrasonic surgical instrument system and an electrosurgery
surgical instrument system.

FIG. 2 illustrates a portion of a handpiece assembly of the
surgical instrument of FIG. 1 with a portion of the handpiece
housing removed and an acoustic assembly operably
engaged with a waveguide of the surgical instrument.
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FIG. 3 illustrates the handpiece assembly of FIG. 2 with
the acoustic assembly removed to illustrate positive and
negative electrode contacts configured to supply the acoustic
assembly with power.

FIG. 4 is a detail view of a portion of the acoustic
assembly of FIG. 2.

FIG. 5 is a detail view of the end effector of the ultrasonic
surgical instrument of FIG. 1.

FIG. 6 is a perspective view of an embodiment of a sheath
assembly comprising an inner sheath and an outer sheath
which can define a first passageway for a waveguide of an
ultrasonic instrument and a second passageway for a return
conductor.

FIG. 7 is aperspective view of an embodiment of a sheath
configured to surround at least a portion of a waveguide of
an ultrasonic surgical instrument, wherein a conductor can
be embedded in at least a portion of a sheath.

FIG. 8 is a perspective view of an embodiment of a clamp
arm assembly configured to hold tissue against a waveguide
of an ultrasonic surgical instrument.

FIG. 9 is a perspective view of another embodiment of a
clamp arm assembly having downwardly-extending walls
which extend below a tissue-contacting surface.

FIG. 10 is a cross-sectional end view of the clamp arm
assembly of FIG. 9 positioned in a closed position relative
to a waveguide of an ultrasonic surgical instrument.

FIG. 11 is a perspective view of a tissue-contacting pad of
a clamp arm assembly, wherein the pad includes first and
second electrodes embedded therein and positioned relative
to a waveguide of an ultrasonic surgical instrument.

FIG. 12 is a perspective view of another embodiment of
a tissue-contacting pad of a clamp arm assembly, wherein
the pad includes first and second electrodes mounted thereto
and positioned relative to a waveguide of an ultrasonic
surgical instrument.

FIG. 13 is a perspective view of another embodiment of
a tissue-contacting pad of a clamp arm assembly, wherein
the pad includes first and second point electrodes embedded
therein.

FIG. 14 is a perspective view of an embodiment of a
sheath configured to surround at least a portion of a wave-
guide of an ultrasonic surgical instrument, wherein first and
second conductors can be embedded in at least a portion of
a sheath.

FIG. 15 is a perspective view of an embodiment of a
sheath assembly comprising an inner sheath and an outer
sheath, wherein the inner sheath and the outer sheath may
comprise first and second conductors.

FIG. 16 is an end view of a clamp arm assembly holding
tissue against a waveguide.

FIG. 17 is an end view of an alternative embodiment of
a clamp arm assembly holding tissue against a waveguide.

FIG. 18 illustrates one embodiment of a drive system of
an ultrasonic generator module, which creates the ultrasonic
electrical signal for driving an ultrasonic transducer.

FIG. 19 illustrates one embodiment of a drive system of
a generator comprising a tissue impedance module.

FIG. 20 is a schematic diagram of a tissue impedance
module coupled to a blade and a clamp arm assembly with
tissue located therebetween.

DESCRIPTION

Before explaining various embodiments of ultrasonic
surgical instruments in detail, it should be noted that the
illustrative embodiments are not limited in application or use
to the details of construction and arrangement of parts
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illustrated in the accompanying drawings and description.
The illustrative embodiments may be implemented or incor-
porated in other embodiments, variations and modifications,
and may be practiced or carried out in various ways. Further,
unless otherwise indicated, the terms and expressions
employed herein have been chosen for the purpose of
describing the illustrative embodiments for the convenience
of the reader and are not for the purpose of limitation
thereof.

Further, it is understood that any one or more of the
following-described embodiments, expressions of embodi-
ments, examples, can be combined with any one or more of
the other following-described embodiments, expressions of
embodiments, and examples.

Various embodiments are directed to improved ultrasonic
surgical instruments configured for effecting tissue dissect-
ing, cutting, and/or coagulation during surgical procedures.
In one embodiment, an ultrasonic surgical instrument appa-
ratus is configured for use in open surgical procedures, but
has applications in other types of surgery, such as laparo-
scopic, endoscopic, and robotic-assisted procedures. Versa-
tile use is facilitated by selective use of ultrasonic energy.

It will be appreciated that the terms “proximal” and
“distal” are used herein with reference to a clinician gripping
a handpiece assembly. Thus, an end effector is distal with
respect to the more proximal handpiece assembly. It will be
further appreciated that, for convenience and clarity, spatial
terms such as “top” and “bottom” also are used herein with
respect to the clinician gripping the handpiece assembly.
However, surgical instruments are used in many orientations
and positions, and these terms are not intended to be limiting
and absolute.

The various embodiments will be described in combina-
tion with an ultrasonic instrument as described herein. Such
description is provided by way of example, and not limita-
tion, and is not intended to limit the scope and applications
thereof. For example, any one of the described embodiments
is useful in combination with a multitude of ultrasonic
instruments including those described in, for example, U.S.
Pat. Nos. 5,322,055; 5,449,370; 5,630,420, 5,935,144;
5,938.633; 5,944,737, 5,954,736; 6,278,218; 6,283,981;
6,309,400; 6,325,811; and 6,436,115, wherein the disclosure
of each of the patents is herein incorporated by reference.
Also incorporated by reference in its entirety is commonly-
owned, co-pending U.S. patent application Ser. No. 11/726,
625, entitled ULTRASONIC SURGICAL INSTRUMENTS,
filed on Mar. 22, 2007, now U.S. Patent Application Publi-
cation No. 2008/0234710. The disclosure of each the fol-
lowing commonly-owned U.S. Patent Applications is incor-
porated herein by reference in its entirety:

(1) U.S. patent application Ser. No. 12/503,770, entitled
“ROTATING TRANSDUCER MOUNT FOR ULTRA-
SONIC SURGICAL INSTRUMENTS”, now U.S. Pat. No.
8,461,744, and

(2) U.S. patent application Ser. No. 12/503,766, entitled
“IMPEDENCE MONITORING APPARATUS, SYSTEM,
AND METHOD FOR ULTRASONIC SURGICAL
INSTRUMENTS”, now U.S. Patent Application Publication
No. 2011/0015627,

(3) U.S. patent application Ser. No. 12/503,775, entitled
“ULTRASONIC DEVICE FOR CUTTING AND COAGU-
LATING WITH STEPPED OUTPUT”, now U.S. Pat. No.
8,058.771.

As will become apparent from the following description,
it is contemplated that embodiments of the surgical instru-
ment described herein may be used in association with an
oscillator module of a surgical system, whereby ultrasonic
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energy from the oscillator module provides the desired
ultrasonic actuation for the present surgical instrument. It is
also contemplated that embodiments of the surgical instru-
ment described herein may be used in association with a
signal generator module of a surgical system, whereby
electrical energy in the form of radio frequencies (RF), for
example, is used to provide feedback to the user regarding
the surgical instrument. The ultrasonic oscillator and/or the
signal generator modules may be non-detachably integrated
with the surgical instrument or may be provided as separate
components, which can be electrically attachable to the
surgical instrument.

One embodiment of the present surgical apparatus is
particularly configured for disposable use by virtue of its
straightforward construction. However, it is also contem-
plated that other embodiments of the present surgical instru-
ment can be configured for non-disposable or multiple uses.
Detachable connection of the present surgical instrument
with an associated oscillator and signal generator unit is
presently disclosed for single-patient use for illustrative
purposes only. However, non-detachable integrated connec-
tion of the present surgical instrument with an associated
oscillator and/or signal generator unit is also contemplated.
Accordingly, various embodiments of the presently
described surgical instruments may be configured for single
use and/or multiple uses and with either detachable and/or
non-detachable integral oscillator and/or signal generator
modules, without limitation. All combinations of such con-
figurations are contemplated to be within the scope of the
present disclosure.

FIG. 1 illustrates one embodiment of a surgical system
100. The surgical system 100 includes a generator 112 and
an ultrasonic surgical instrument 110. The generator 112 is
connected to an ultrasonic transducer 114 portion of the
ultrasonic surgical instrument 110 via a suitable transmis-
sion medium such as a cable 142. In one embodiment, the
generator 112 is coupled to an ultrasonic generator module
180 and a signal generator module 102. In various embodi-
ments, the ultrasonic generator module 180 and/or the signal
generator module 102 each may be formed integrally with
the generator 112 or may be provided as a separate circuit
modules electrically coupled to the generator 112 (shown in
phantom to illustrate this option). In one embodiment, the
signal generator module 102 may be formed integrally with
the ultrasonic generator module 180. Although in the pres-
ently disclosed embodiment, the generator 112 is shown
separate from the surgical instrument 110, in one embodi-
ment, the generator 112 may be formed integrally with the
surgical instrument 110 to form a unitary surgical system
100. The generator 112 comprises an input device 406
located on a front panel of the generator 112 console. The
input device 406 may comprise any suitable device that
generates signals suitable for programming the operation of
the generator 112 as subsequently described with reference
to FIG. 18. Still with reference to FIG. 1, the cable 142 may
comprise multiple electrical conductors 139, 141 for the
application of electrical energy to positive (+) and negative
(-) electrodes of the ultrasonic transducer 114. It will be
noted that, in some applications, the ultrasonic transducer
114 may be referred to as a “handle assembly” because the
surgical instrument 110 of the surgical system 100 may be
configured such that a surgeon may grasp and manipulate the
ultrasonic transducer 114 during various procedures and
operations.

In one embodiment, the generator 112 may be imple-
mented as an electrosurgery unit (ESU) capable of supplying
power sufficient to perform bipolar electrosurgery using
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radio frequency (RF) energy. In one embodiment, the ESU
can be a bipolar ERBE ICC 350 sold by ERBE USA, Inc. of
Marietta, Ga. In bipolar electrosurgery applications, as pre-
viously discussed, a surgical instrument having an active
electrode and a return electrode can be utilized, wherein the
active electrode and the return electrode can be positioned
against, or adjacent to, the tissue to be treated such that
current can flow from the active electrode to the return
electrode through the tissue. Accordingly, the generator 112
may be configured for therapeutic purposes by applying
electrical energy to the tissue T sufficient for treating the
tissue (e.g., cauterization).

In one embodiment, the signal generator module 102 may
be configured to deliver a subtherapeutic RF signal to
implement a tissue impedance measurement module. In one
embodiment, the signal generator module 102 comprises a
bipolar radio frequency generator as described in more detail
below. In one embodiment, signal generator module 102
may be configured to monitor the electrical impedance Z, of
tissue T (FIG. 5) and to control the characteristics of time
and power level based on the tissue impedance Z,. The tissue
impedance 7, may be determined by applying the subthera-
peutic RF signal to the tissue T and measuring the current
through the tissue T (FIGS. 5, 10, 16, 17) by way of a return
electrode on provided on a clamp member 151, as discussed
in more detail below. Accordingly, the signal generator
module 102 may be configured for subtherapeutic purposes
for measuring the impedance or other electrical character-
istics of the tissue T. Techniques and circuit configurations
for measuring the impedance or other electrical character-
istics of the tissue T are discussed in more detail below with
reference to FIGS. 18-20 below.

A suitable ultrasonic generator module 180 may be con-
figured to functionally operate in a manner similar to the
GEN 300 sold by Ethicon Endo-Surgery, Inc. of Cincinnati,
Ohio as is disclosed in one or more of the following U.S.
Patents, all of which are incorporated by reference herein:
U.S. Pat. No. 6,480,796 (Method for Improving the Start Up
of an Ultrasonic System Under Zero Load Conditions); U.S.
Pat. No. 6,537,291 (Method for Detecting a Loose Blade in
a Handle Connected to an Ultrasonic Surgical System); U.S.
Pat. No. 6,626,926 (Method for Driving an Ultrasonic
System to Improve Acquisition of Blade Resonance Fre-
quency at Startup); U.S. Pat. No. 6,633,234 (Method for
Detecting Blade Breakage Using Rate and/or Impedance
Information); U.S. Pat. No. 6,662,127 (Method for Detect-
ing Presence of a Blade in an Ultrasonic System); U.S. Pat.
No. 6,678,621 (Output Displacement Control Using Phase
Margin in an Ultrasonic Surgical Handle); U.S. Pat. No.
6,679,899 (Method for Detecting Transverse Vibrations in
an Ultrasonic Handle); U.S. Pat. No. 6,908,472 (Apparatus
and Method for Altering Generator Functions in an Ultra-
sonic Surgical System); U.S. Pat. No. 6,977,495 (Detection
Circuitry for Surgical Handpiece System); U.S. Pat. No.
7,077.853 (Method for Calculating Transducer Capacitance
to Determine Transducer Temperature); U.S. Pat. No. 7,179,
271 (Method for Driving an Ultrasonic System to Improve
Acquisition of Blade Resonance Frequency at Startup); and
U.S. Pat. No. 7,273,483 (Apparatus and Method for Alerting
Generator Function in an Ultrasonic Surgical System).

In accordance with the described embodiments, the ultra-
sonic generator module 180 produces electrical signals of a
particular voltage, current, and frequency, e.g. 55,500 cycles
per second (Hz). The generator is 112 connected by the cable
142 to the ultrasonic generator module 180 in the handpiece
assembly 160, which contains piezoceramic elements form-
ing the ultrasonic transducer 114. In response to a switch 143
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on the handpiece assembly 160 or a foot switch 144 con-
nected to the generator 112 by another cable 105 the
generator signal is applied to the transducer 114, which
causes a longitudinal vibration of its elements. A structure
connects the transducer 114 to a surgical blade 146, which
is thus vibrated at ultrasonic frequencies when the generator
signal is applied to the transducer 114. The structure is
designed to resonate at the selected frequency, thus ampli-
fying the motion initiated by the transducer 114. In one
embodiment, the generator 112 is configured to produce a
particular voltage, current, and/or frequency output signal
that can be stepped with high resolution, accuracy, and
repeatability.

Referring now to FIGS. 1-4, the handpiece assembly 160
of the surgical instrument system 110 may include a hand-
piece housing 116 that operably supports the end effector
150. The handpiece housing 116 rotatably supports an
acoustic assembly 124 therein. The acoustic assembly 124
includes the ultrasonic transducer 114 that generally
includes a transduction portion 118, a first resonator or
end-bell 120, a second resonator or fore-bell 122, and
ancillary components as shown in FIG. 2. In various
embodiments, the ultrasonic energy produced by the trans-
ducer 114 can be transmitted through the acoustic assembly
124 to the end effector 150 via the ultrasonic transmission
waveguide 147 as shown in FIGS. 1 and 3. In order for the
acoustic assembly 124 to deliver energy to the waveguide
147, and ultimately to the end effector 150, the components
of the acoustic assembly 124 are acoustically coupled to the
blade 146. For example, the distal end of the ultrasonic
transducer 114 may be acoustically coupled to the proximal
end 170 of the waveguide 147 by a coupling assembly that
enables the acoustic assembly 124 to freely rotate relative to
the waveguide 147 while transmitting ultrasonic energy
thereto.

As shown in FIG. 3, the proximal end 170 of the wave-
guide 147 may be provided with an aperture 172 therein that
is sized to receive a stem (not shown) that protrudes distally
from the fore-bell 122. In various embodiments, piezoelec-
tric elements 132, for example, can be compressed between
the end-bell 120 and the fore-bell 122 to form a stack of
piezoelectric elements when the end-bell 120 and the fore-
bell 122 are assembled together as illustrated in FIGS. 2-4.
The piezoelectric elements 132 may be fabricated from any
suitable material, such as, for example, lead zirconate-
titanate, lead meta-niobate, lead titanate, and/or any suitable
piezoelectric crystal material, for example. As shown in
FIGS. 2 and 4, the transducer 114 may comprise electrodes,
such as at least one positive electrode 134 and at least one
negative electrode 136, for example, which can be config-
ured to create a voltage potential across the one or more
piezoelectric elements 132. As shown in FIG. 2, the positive
electrode 134 and the negative electrode 136, and the
piezoelectric elements 132 can each be configured with a
bore (not shown) that cooperates to form a passageway that
can receive a threaded portion of the end-bell 120. In one
embodiment, the positive electrode 134 is provided in the
form of an annular ring that has a first circumference “PC”
and the negative electrode 136 is also provided in the form
of an annular ring that has a second circumference “NC.” As
shown in FIG. 2, in various embodiments, the stack of
piezoelectric elements 132 may have an outer circumference
“OC” that is less than the first and second circumferences
“PC” and “NC.”

In various embodiments, the handpiece housing 116 may
support the ultrasonic generator module 180 and/or the
signal generator module 102. In one embodiment, the ultra-

20

25

35

40

45

60

65

8

sonic generator module 180 may be electrically coupled to
an electrical contact assembly 190 that may comprise a
positive slip ring contact 191 that is mounted within hand-
piece housing 116 for rotatable contact with the positive
electrode 134. The positive slip ring contact 191 is electri-
cally coupled to the ultrasonic generator module 180 by a
positive ultrasonic supply cable/conductor 192. The electri-
cal contact assembly 190 may further comprise a negative
slip ring contact 194 that is mounted within handpiece
housing 116 for rotatable contact with the negative electrode
136. The negative slip ring contact 194 is electrically
coupled to the ultrasonic generator module 180 by a nega-
tive ultrasonic supply cable 195. It will be appreciated that
such arrangement enables the acoustic assembly 124 to
freely rotate relative to the ultrasonic generator module 180
while remaining in full electrical contact therewith.

In various embodiments, the ultrasonic transmission
waveguide 147 may comprise a plurality of stabilizing
silicone rings or compliant supports (not shown) positioned
at, or at least near, a plurality of nodes. As was discussed
above, the silicone rings can dampen undesirable vibration
and isolate the ultrasonic energy from the sheath 158 that at
least partially surrounds the waveguide 147, thereby assur-
ing the flow of ultrasonic energy in a longitudinal direction
to the distal end 152 of the end effector 150 with maximum
efficiency.

As shown in FIGS. 2 and 3, the sheath 158 can be coupled
to a rotation wheel 159 that is rotatably attached to the distal
end of the handpiece assembly 160. The rotation wheel 159
facilitates selective rotation of the sheath 158 and the
waveguide 147 relative to the handpiece assembly 160. The
sheath 158 may have an adapter portion 162 that may be
threaded or snapped onto the rotation wheel 159. The
rotation wheel 159 may include a flanged portion (not
shown) that is snapped into an annular groove in the
handpiece assembly 160 to facilitate rotation of the sheath
158 and waveguide 147 relative to the handpiece assembly
160 about axis A-A. In one embodiment, the sheath 158 also
includes a hollow tubular portion 164 through which the
waveguide 147 extends in the manner described in further
detail above. In various embodiments, the adapter 162 of the
sheath 158 may be constructed from ULTEM®, for
example, and the tubular portion 164 may be fabricated from
stainless steel, for example. In at least one embodiment, the
ultrasonic transmission waveguide 147 may have polymeric
material, for example, surrounding it in order to isolate it
from outside contact.

In the embodiment, as shown in FIG. 1, the ultrasonic
generator module 180 is electrically coupled to the elec-
tronic signal/radio frequency generator 112 by the cables
139, 141 which may be housed in a sheath to form the cable
142. Because the acoustic assembly 124 can freely rotate
relative to the ultrasonic generator module 180, the wave-
guide 147 and the end effector 150 may be freely rotated
about axis A-A relative to the handpiece assembly 160
without causing the cable 142 to undesirably twist and
tangle.

As illustrated in FIGS. 2 and 3, the handpiece assembly
160 may have a pistol grip configuration and operably
support a movable trigger assembly 145 that is pivotally
supported within the handpiece assembly 160. To facilitate
easy assembly, the handpiece assembly 160 may comprise
two housing segments 162 that are coupled together by
threaded fasteners, snap features, adhesive. The movable
trigger assembly 145 includes a trigger portion 153 that has
a pair of spaced attachment arms 154 that each has a hole
155 therethrough. Holes 155 are each sized to receive a
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corresponding pivot pin (not shown) that protrudes from
each of the housing segments 162. Such arrangement pet-
mits the trigger portion 153 to pivot relative to the handpiece
assembly 160 about an axis that is substantially transverse to
axis A-A.

As shown in FIGS. 2 and 3, the trigger assembly 145 may
comprise an actuation arm 156 that is attached to the trigger
portion 153 via an intermediate link 157. The actuation arm
156 is pivotally coupled (pinned) to the trigger yoke 185.
The arm 156 has a mounting pin 186 extending transversely
therethrough that is sized to be slidably received in corre-
sponding elongated cavities 187 formed in the housing
segments 162. See FIGS. 2 and 3. Such arrangement facili-
tates the axial movement of the actuation arm 156 within the
handpiece assembly 160 in response to pivoting the trigger
portion 153.

In the embodiment illustrated in FIG. 1, the end effector
150 portion of the surgical system 100 comprises a clamp
arm assembly 149 connected at a distal end of the surgical
instrument 110. The blade 146 forms a first (e.g., energizing)
electrode and the clamp arm assembly 149 comprises an
electrically conductive portion that forms a second (e.g.,
return) electrode. The signal generator module 102 is
coupled to the blade 146 and the clamp arm assembly 149
through a suitable transmission medium such as a cable 137.
The cable 137 comprises multiple electrical conductors for
applying a voltage to the tissue and providing a return path
for current flowing through the tissue back to the signal
generator module 102. In various embodiments, the signal
generator module 102 may be formed integrally with the
generator 112 or may be provided as a separate circuit
coupled to the generator 112 and, in one embodiment, may
be formed integrally with the ultrasonic generator module
180 (shown in phantom to illustrate these options).

In one embodiment, the surgical system 100 illustrated in
FIG. 1 may comprise components for selectively energizing
an end effector 150 and transmitting mechanical energy
thereto and, in addition, selectively energizing the end
effector 150 with therapeutic and/or subtherapeutic electri-
cal energy. The surgical instrument 110 may be switchable
between a first operating mode in which mechanical energy,
or vibrations at ultrasonic frequencies (e.g., 55.5 kHz), are
transmitted to the end effector 150 and a second operating
mode in which electrical energy (e.g., therapeutic and/or
subtherapeutic), or current, is permitted to flow through the
end effector 150. In certain embodiments, referring to FIG.
1, in a first operating mode of the surgical instrument 110,
for example, the transducer 114 converts electrical energy
supplied thereto by the ultrasonic generator module 180
(e.g., an ultrasonic oscillator) of the generator 112 into
mechanical vibrations and transmit the vibrations into a
waveguide 147 to the blade 146 portion of the end effector
150, for example. Such mechanical vibrations can be gen-
erated at ultrasonic frequencies, although any suitable fre-
quency, or frequencies, can be used. In the second operating
mode of the surgical instrument 110, an electrical current
may be supplied by the generator 112 that can flow through
the transducer 114, the waveguide 147, and the end effector
150. The current flowing through the waveguide 147 and
end effector 150 can be an alternating current (AC current),
wherein, in various embodiments, the wave form of the AC
current can be sinusoidal and/or may comprise a series of
step intervals, for example.

In one embodiment, the current supplied by the signal
generator module 102 is an RF current. In any event, the
surgical instrument 110 may comprise a supply path and a
return path, wherein the tissue T (FIG. 5) being treated
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completes, or closes, an electrical circuit, or loop, compris-
ing a supply path through the transducer 114, the waveguide
147, and the blade 146 and a return path through conductor
cable 137. In one embodiment, the patient can be positioned
on a conductive pad wherein the current can flow from a
supply path of the surgical instrument, through the patient,
and into the conductive pad in order to complete the elec-
trical circuit.

Still referring to FIG. 1, as previously discussed, in one
embodiment the surgical instrument system 110 may be
energized by the generator 112 by way of the foot switch 144
in order to energize the end effector 150. When actuated, the
foot switch 144 triggers the generator 112 to deliver elec-
trical energy to the handpiece assembly 160, for example.
Although the foot switch 144 may be suitable in many
circumstances, other suitable switches can be used. In vari-
ous embodiments, the surgical instrument system 110 may
comprise at least one supply conductor 139 and at least one
return conductor 141, wherein current can be supplied to
handpiece assembly 160 via the supply conductor 139 and
wherein the current can flow back to the generator 112 via
return conductor 141. In various embodiments, the supply
conductor 139 and the return conductor 141 may comprise
insulated wires and/or any other suitable type of conductor.
In certain embodiments, as described below, the supply
conductor 139 and the return conductor 141 may be con-
tained within and/or may comprise a cable extending
between, or at least partially between, the generator 112 and
the transducer 114 portion of the handpiece assembly 160. In
any event, the generator 112 can be configured to apply a
sufficient voltage differential between the supply conductor
139 and the return conductor 141 such that sufficient current
can be supplied to the transducer 114.

In various embodiments, still referring to FIG. 1, the
supply conductor 139 and the return conductor 141 may be
operably connected to a transducer drive unit 135, wherein
the drive unit 135 can be configured to receive current from
the generator 112 via the supply conductor 139. In certain
embodiments, the handpiece assembly 160 may comprise a
switch, such as a toggle switch 143, for example, which can
be manipulated to place the surgical instrument 110 in one
of a first operating mode and a second operating mode. In
one embodiment, as described below, the toggle switch 143
may comprise a first toggle button 143a which can be
depressed to place the surgical instrument 110 in the first
operating mode and, in addition, a second toggle button
1435 which can be depressed to place the surgical instru-
ment in the second operating mode. Although a toggle
switch 1s illustrated and described herein, any suitable
switch, or switches, can be used. When the first toggle button
143a is depressed, the transducer drive unit 135 can operate
a transducer, such as the transducer 114, for example, such
that the transducer 114 produces vibrations. The transducer
114 may comprise one or more piezoelectric elements 132,
wherein the drive unit 135 can be configured to apply a
voltage differential, and/or a series of voltage differentials,
across the piezoelectric elements 132 such that they
mechanically vibrate in a desired manner. Also, the trans-
ducer 114 may comprise one or more electrodes, such as a
positive electrode 134 and a negative electrode 136, for
example, positioned intermediate and/or adjacent to the
piezoelectric elements 132. In one embodiment, the surgical
instrument 110 may comprise a positive polarizing conduc-
tor 192 operably connected to the drive unit 135 and a
positive electrode 134 and, in addition, a negative polarizing
conductor 195 operably connected to the drive unit 135 and
the negative electrode 136, wherein the drive unit 135 can be
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configured to polarize the electrodes 134, 136 via the
polarizing conductors 192, 195, respectively.

In various embodiments, the transducer 114 may com-
prise a fore-bell 122 and a velocity transformer 128 which
can be configured to conduct the vibrations produced by the
piezoelectric elements 132 into the transmission waveguide
147. In certain embodiments, referring still to FIG. 1, the
transmission waveguide 147 may comprise an elongate shaft
portion surrounded, or at least partially surrounded, by a
sheath 158, for example, wherein the waveguide 147 may
comprise a distal end 152. The distal end 152 of the
waveguide 147 may comprise part of the end effector 150,
wherein the end effector 150 may comprise the clamp
member 151 having a rotatable clamp arm, or jaw, which can
be pivoted between an open position in which tissue can be
positioned intermediate the blade 146 and the clamp mem-
ber 151 and a closed position in which clamp member 151
can position and/or compress the tissue T (FIG. 5) against
the blade 146. In various embodiments, a surgical instru-
ment may comprise a lever or actuator, such as a jaw closure
trigger 145, for example, which can be actuated by a surgeon
in order to pivot the clamp member 151 between its open
and closed positions. In at least one embodiment, the jaw
closure trigger 145 can be operably engaged with a push/pull
rod operably engaged with the clamp member 151 wherein,
when the jaw closure trigger 145 is closed or moved toward
the handpiece assembly 160, the closure trigger 145 can
push the push/pull rod distally and pivot the clamp member
151 toward the blade 146 into its closed position. Corre-
spondingly, the jaw closure trigger 145 can be pivoted into
its open position in order to pull the rod proximally and pivot
the clamp member 151 away from the blade 146 into its
open position.

In any event, once the tissue T (FIG. 5) has been suitably
positioned within the jaws of the end effector 150, the
transducer 114 can be operated by the drive unit 135 in order
to transmit mechanical energy, or vibrations, into the tar-
geted tissue T. In some embodiments, the actuation of the
foot switch 144 may be sufficient to actuate the transducer
114. In certain other embodiments, the actuation of a dif-
ferent switch may be required in addition to or in lieu of the
actuation of the foot switch 144. In one embodiment, the
actuation of the foot switch 144 can supply power to the
drive unit 135, although the actuation of the jaw closure
trigger 145, and the trigger closure switch 147, may be
required before the drive unit 135 can drive the transducer
114. In various embodiments, the jaw closure trigger 145
can be moved between a first, or open, position in which the
trigger closure switch 147 is in an open state, or condition,
and a second, or closed, position in which the trigger closure
switch 147 is in a closed state, or condition. When the trigger
closure switch 147 is in its closed condition, in various
embodiments, a circuit within the drive unit 135, for
example, can be closed such that the drive unit 135 can drive
the transducer 114.

Referring still to FI1G. 1, In various applications, a surgeon
may desire to treat tissue using mechanical energy, or
vibrations, transmitted through the blade 146, for example.
In various other applications, the surgeon may desire to treat
the tissue using therapeutic electrical energy transmitted
through the blade 146. In various other applications, the
surgeon may desire to obtain feedback in regards to a state
of the tissue T (FIG. 5) by measuring the electrical properties
of the tissue T (e.g., impedance) using subtherapeutic elec-
trical energy transmitted through the blade 146. In various
embodiments, the toggle switch 143 can be manipulated to
place the surgical instrument 110 in the second operating
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mode. In at least one such embodiment, the second toggle
button 1435 of the toggle switch 143 can be depressed in
order to switch the surgical instrument 110 from the first
operating mode into the second operating mode. As
described below, the depression of the second toggle button
143b can configure the handpiece assembly 160 such that
the drive unit 135 does not drive the transducer 114 but
rather, the power supplied to the handpiece assembly 160
from generator 112 can flow into the blade 146 without
being converted into mechanical energy, or vibrations. In
one embodiment, referring now to FIG. 5, the distal end 152
of the blade 146 can be positioned against the targeted tissue
“T” and, in addition, the distal end 153 of the clamp member
151 can also be positioned against the tissue T such that
current can flow from the supply conductor 139 into the
blade 136, through the tissue T, and return back to the
generator 112 via the clamp member 151, the return con-
ductors 137, 141. As shown in FIG. 5, the clamp member
151 can be configured such that it is not in contact with the
blade 146 when the clamp member 151 is in the closed
position.

With reference now back to FIG. 1, in various embodi-
ments, the return conductor 137 may comprise an insulated
wire having a first end operably coupled with the clamp
member 151 and a second end operably coupled with the
return conductor 141, wherein current can flow through the
return conductor 137 when the toggle switch 143 is in the
second configuration and the trigger closure switch 147 has
been closed by the trigger 145. In one embodiment, current
will not flow through the return conductor 137 when the
trigger closure switch 147 is in an open condition and/or
when the toggle switch 143 is in the first configuration, i.e.,
when the first toggle button 143a is depressed, as described
above. In any event, in various circumstances, the current
flowing through the tissue T (FIG. 5) from the distal end 152
of the blade 146 to the distal end 153 of the clamp member
151 can treat the tissue positioned intermediate, and/or
surrounding, the distal ends 152, 153. In another embodi-
ment, the current may be subtherapeutic for measuring the
electrical state of the tissue T (FIG. 5).

The distal end 152 of the blade 146 may comprise a
supply electrode while the distal end 153 of the clamp
member 151 may comprise a return electrode. In various
other embodiments, current can be supplied to the conductor
137 such that the distal end 153 of the clamp member 151
may comprise the supply electrode and the distal end 152 of
the blade 146 may comprise the return electrode. In one
embodiment, the current can return to the generator 112 via
the blade 146, the waveguide 147, and the conductor 139. In
either event, referring again to FIG. 1, at least a portion of
the return conductor 137 can extend along the outside of the
sheath 158, wherein at least another portion of the return
conductor 137 can extend through the handpiece assembly
160. In certain embodiments, although not illustrated, at
least a portion of the return conductor 137 can be positioned
within the sheath 158 and can extend alongside the blade
146.

A s shown in FIG. 6, in some embodiments, the surgical
instrument 110 may comprise an inner sheath 257 and an
outer sheath 258, wherein the inner sheath 257 can define a
first, or inner, passageway 259, and wherein the inner sheath
257 and the outer sheath 258 can define a second, or outer,
passageway 261 therebetween. In one embodiment, the
blade 146 can extend through the inner passageway 259 and
the return conductor 137, and/or any other suitable conduc-
tor, can extend through the outer passageway 261. In various
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other embodiments, a conductor can be embedded in at least
a portion of the inner sheath 257 or the outer sheath 258.

As shown in FIG. 7, in one embodiment, a sheath may
comprise a non-electrically conductive or insulative material
358, such as plastic and/or rubber, for example, overmolded
onto a conductive insert 357, which can be comprised of
copper, for example, wherein the conductive insert 357 can
allow current flowing through the blade 146 to return to the
generator 112 after it has passed through the targeted tissue
T (FIG. 5) as described above. In various embodiments, the
insulative material 358 can entirely, or at least substantially,
surround the conductive insert 357 such that current flowing
through the conductive insert 357 does not unintentionally
short to non-targeted tissue, for example. In at least one
embodiment, the insulative material 358 can cover the inside
surface and the outside surface of the conductive insert 357.
In certain embodiments, although not illustrated, an insula-
tive material of a sheath may cover only the outer surface of
a conductive insert, for example.

In various embodiments, as described above, a first end of
the return conductor 137 can be operably coupled to the
clamp member 151 such that current can flow therethrough.
In certain embodiments, the first end of the return conductor
137 can be soldered and/or welded to the clamp member
151. In one embodiment, although not illustrated, the clamp
member 151 may comprise an aperture configured to receive
the first end of the return conductor 137 wherein a fastener
can be inserted into the aperture in order to secure the first
end therein. In at least one such embodiment, the sidewalls
of the aperture can be at least partially threaded and the
fastener can be threadably received in the threaded aperture.

As shown in FIG. 8, in one embodiment, a clamp arm
assembly 451 may comprise a conductive jacket 472
mounted to a base 449. In one embodiment, the first end of
the return conductor 137 may be mounted to the conductive
jacket 472 such that current can flow from the blade 146,
through tissue positioned intermediate the jacket 472 and the
blade 146, and then into the jacket 472 and to the return
conductor 137. In various embodiments, the conductive
jacket 472 may comprise a center portion 473 and at least
one downwardly-extending sidewall 474 which can extend
below bottom the surface 475 of the base 449. In the
illustrated embodiment, the conductive jacket 472 has two
sidewalls 474 extending downwardly on opposite sides of
the base 449. In certain embodiments, the center portion 473
may comprise at least one aperture 476 which can be
configured to receive a projection 477 extending from the
base 449. In one embodiment, the projections 477 can be
press-fit within the apertures 476 in order to secure the
conductive jacket 472 to the base 449 although, in some
embodiments, the projections 477 can be deformed after
they have been inserted into the apertures 476. In various
embodiments, fasteners can be used to secure the conductive
jacket 472 to the base 449.

In various embodiments, the clamp arm assembly 451
may comprise a non-electrically conductive or insulative
material, such as plastic and/or rubber, for example, posi-
tioned intermediate the conductive jacket 472 and the base
449. The insulative material can prevent current from flow-
ing, or shorting, between the conductive jacket 472 and the
base 449. In various embodiments, referring again to FIG. 8,
the base 449 may comprise at least one aperture 478, for
example, which can be configured to receive a pivot pin (not
illustrated), wherein the pivot pin can be configured to
pivotably mount the base 449 to the sheath 158, for example,
such that the clamp arm assembly 451 can be rotated
between open and closed positions relative to the sheath 158.
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In the embodiment illustrated in FIG. 8, the base 449
includes two apertures 478 positioned on opposite sides of
the base 449. In one embodiment, the pivot pin can be
comprised of a non-electrically conductive or insulative
material, such as plastic and/or rubber, for example, which
can be configured to prevent current from flowing into the
sheath 158 even if the base 449 is in electrical contact with
the conductive jacket 472, for example.

In various embodiments, as described above, the surgical
instrument system 110 can be configured such that current
can flow from the distal tip of the blade 146, through the
tissue T (FIG. 5), and then to the distal tip of the clamp
member 151. In one embodiment, as shown in to FIG. 5, the
clamp member 151 may comprise a tissue engaging pad or
clamp pad 155, for example, mounted thereto, wherein the
pad 155 can be configured to contact tissue positioned
intermediate the clamp member 151 and the waveguide 147.
In one expression of the embodiment, the pad 155 may be
formed of a non-electrically conductive or insulative mate-
rial, such as polytetrafluoroethylene (PTFE), such as for
example TEFLON®: a trademark name of E. 1. Du Pont de
Nemours and Company, a low coeflicient of friction polymer
material, or any other suitable low-friction material. The
non-electrically conductive or insulative material can also
server to prevent current from flowing between the clamp
member 151 and the blade 146 without first passing through
the distal end 152 of the blade 146, the targeted tissue T, and
the distal end 153 of the clamp member 151. In various
embodiments, the pad 155 can be attached to the clamp
member 151 utilizing an adhesive, for example. The clamp
pad 155 mounts on the clamp member 151 for cooperation
with the blade 146, with pivotal movement of the clamp
member 151 positioning the clamp pad 155 in substantially
parallel relationship to, and in contact with, the blade 146,
thereby defining a tissue treatment region. By this construc-
tion, tissue is grasped between the clamp pad 155 and the
blade 146. The clamp pad 155 may be provided with a
non-smooth surface, such as a saw tooth-like configuration
to enhance the gripping of tissue in cooperation with the
blade 146. The saw tooth-like configuration, or teeth, pro-
vide traction against the movement of the blade 146. The
teeth also provide counter traction to the blade 146 and
clamping movement. It will be appreciated that the saw
tooth-like configuration is just one example of many tissue
engaging surfaces to prevent movement of the tissue relative
to the movement of the blade 146. Other illustrative
examples include bumps, criss-cross patterns, tread patterns,
a bead, or sand blasted surface.

In various other embodiments, the surgical instrument 110
can be configured such that current can flow through tissue
clamped between the blade 146, for example, and the clamp
member 151 without having to first pass through the distal
ends thereof. In at least one embodiment, referring now to
FIG. 9, a clamp arm assembly 551 may comprise an elec-
trically-conductive member 572 and a pad 555 attached
thereto, wherein the electrically-conductive member 572
may comprise at least one sidewall 574 extending down-
wardly therefrom. In one embodiment, current can flow
between the blade 146, for example, through tissue posi-
tioned between the blade 146 and the sidewalls 574 of the
clamp arm assembly 551, and into the sidewalls 574. In
various embodiments, gaps can be defined between each
sidewall 574 and the blade 146 and, in addition, a gap can
be defined between the tissue-contacting surface 575 of the
pad 555 and the blade 146.

In one embodiment, referring now to FIG. 10, the gaps
between each sidewall 574 and the waveguide 147 can be
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defined by a distance “D1,” wherein the distance D1 can be
selected such that, when the clamp arm assembly 551 is
positioned in a closed position, the tissue positioned inter-
mediate each of the sidewalls 574 and the blade 146 can be
compressed. Although these gaps are illustrated as having
the same distance D1, other embodiments are envisioned in
which the gaps have different distances. A gap between the
tissue-contacting surface 575 and the blade 146 can be
defined by a distance “D2,” wherein the distance D2 also
may be selected such that, when the clamp arm assembly
551 is positioned in a closed position, the tissue-contacting
surface 575 can be contact and/or compress the tissue
against blade 146.

In various embodiments, a clamp arm assembly may
comprise an electrically-conductive pad mounted thereto. In
at least one such embodiment, such a pad can be configured
to contact and/or compress tissue positioned intermediate
the clamp arm assembly and a waveguide, such as the blade
146, for example, such that current can flow from the blade
146 into the pad. In certain embodiments, the electrically
conductive pad can be comprised of a typically conductive
material, such as copper, for example. In at least one
embodiment, the pad can be comprised of a typically non-
conductive material, such as PTFE, for example, which can
be impregnated with electrically conductive particles, such
as medical grade stainless steel, for example, such that the
pad is sufficiently conductive to permit current to flow
between the blade 146 and the clamp arm.

In one embodiment, as previously discussed, the surgical
instrument 110 comprises the blade 146, for example, which
may comprise a first electrode and, in addition, a clamp arm,
such as the clamp member 151, for example, which may
comprise a second electrode. In various embodiments, as
also discussed above, the blade 146 may comprise a supply
electrode whereas the clamp member 151 may comprise a
return electrode. Alternatively, the clamp member 151 may
comprise the supply electrode while the blade 146 may
comprise the return electrode. In various other embodi-
ments, a clamp arm may comprise both the supply electrode
and the return electrode. In certain embodiments, referring
now to FIG. 11, a clamp arm may comprise a pad 655 and
two or more electrodes, such as a first electrode 682 and a
second electrode 683, for example. In one embodiment, the
pad 655 can be comprised of a non-electrically conductive
or insulative material, such as PTFE, for example, as pre-
viously discussed with reference to the clamp pad 155 (FIG.
5), whereas the electrodes 682, 683 can be comprised of an
electrically conductive material, such as copper and/or a
PTFE material having electrically conductive particles
mixed therein, for example. In various embodiments, the
first electrode 682 and/or the second electrode 683 can be
embedded within the pad 655. In at least one such embodi-
ment, the pad 655 can be molded onto the electrodes 682,
683 whereas, in certain embodiments, the electrodes 682,
683 can be inserted and/or press-fit into openings formed in
the pad 655.

In various embodiments, the first electrode 682 can be
positioned adjacent to a first side 674a of the pad 655 while
the second electrode 683 can be positioned adjacent to a
second side 6745 of the pad 655. In use, the first electrode
682 may comprise a supply electrode and the second elec-
trode 683 may comprise a return electrode, wherein current
can flow from the supply electrode 682, through tissue
clamped or positioned between the pad 655 and the blade
146, for example, and into the return electrode 683. In one
embodiment, a supply wire can be operably coupled with the
first electrode 682 and a return wire can be operably coupled
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with the second electrode 683 such that current can be
supplied thereto from a power source, such as the generator
112, for example. In various embodiments, referring still to
FIG. 11, the electrodes 682, 683 can be positioned within the
pad 655 such that the electrodes 682, 683 do not contact the
blade 146 when the clamp member 151 (FIG. 5) is in a
closed position and short to the blade 146. Although the
illustrated embodiment comprises one supply electrode and
one return electrode positioned within a pad, embodiments
are envisioned in which a pad includes more than one supply
electrode and/or more than one return electrode.

As discussed above, electrodes can be embedded within
the pad of a clamp arm assembly. In various embodiments,
first and second electrodes can be mounted to the sides of a
clamp arm pad. Referring now to FIG. 12, a clamp arm may
comprise a pad 755, for example, which can be configured
to hold tissue against the blade 146, for example, wherein a
first electrode 782 can be mounted to a first side 7744 of the
pad 755 and wherein a second electrode 783 can be mounted
to a second side 774b of the pad 755. In various embodi-
ments, the electrodes 782, 783 can be positioned within
cut-outs in the sides of the pad 755 wherein, in certain
embodiments, the electrodes 782, 783 can be adhered and/or
fastened, for example, to the pad 755. The first electrode 782
may comprise a supply electrode and the second electrode
783 may comprise a return electrode, wherein current can
flow from the supply electrode 782, through tissue clamped
or positioned between the pad 755 and the blade 146, for
example, and into the return electrode 783. In one embodi-
ment, a supply wire can be operably coupled with the first
electrode 782 and a return wire can be operably coupled with
the second electrode 783 such that current can be supplied
thereto from a power source, such as the generator 112, for
example. Furthermore, the electrodes 782, 783 can be
mounted to the pad 755 such that the electrodes 782, 783 do
not contact the blade 146 and create an electrical short
thereto. Although the illustrated embodiment comprises one
supply electrode and one return electrode mounted to a pad,
embodiments are envisioned in which a pad includes more
than one supply electrode and/or more than one return
electrode.

Still referring to FIG. 12, various electrodes can be
configured such that they extend in a longitudinal direction
which is parallel, or at least substantially parallel, to the
longitudinal axis of the blade 146, for example. In various
embodiments, the electrodes can extend along an end effec-
tor such that the entire length of the tissue positioned within
the end effector can be treated. In various embodiments,
referring now to FIG. 13, a clamp arm may comprise a pad
885 having two point electrodes. More particularly, in one
embodiment, the pad 855 may comprise a first point elec-
trode 882 and a second point electrode 883 positioned
therein, wherein current can flow through tissue positioned
intermediate the first point electrode 882 and the second
point electrode 883. In at least one such embodiment, the
pad 855 can be comprised of a non-electrically conductive
material, the first point electrode 882 may comprise a supply
electrode, and the second point electrode 883 may comprise
a return electrode. In various embodiments, the electrodes
882, 883 can be embedded within the pad 885 and, in one
embodiment the pad 885 can be molded around the elec-
trodes 882, 883. In certain embodiments, the electrodes 882,
883 can be inserted into apertures within the pad 855. A
supply wire can be operably coupled with the first electrode
882 and a return wire can be operably coupled with the
second electrode 883 such that current can be supplied
thereto from a power source, such as the generator 112, for
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example. Furthermore, the electrodes 882, 883 can be posi-
tioned within the pad 855 such that the electrodes 882, 883
do not contact the blade 146 and create an electrical short
thereto. In one embodiment, the clamp arm supporting pad
885, and/or a sheath rotatably supporting the clamp arm,
may further comprise a stop which can be configured to
prevent the pad 855 from rotating into a position in which
the electrodes 882, 883 contact the blade 146. Although the
illustrated embodiment comprises one supply point elec-
trode and one return point electrode positioned within a pad,
other embodiments are envisioned in which a pad includes
more than one supply point electrode and/or more than one
return point electrode. Various embodiments are envisioned
in which a pad includes an array of supply point electrodes
and/or an array of return point electrodes.

In various embodiments, as described above, a surgical
instrument may comprise a clamp arm including both a
supply electrode and a return electrode. In one embodiment,
the surgical instrument may comprise a waveguide which
does not comprise an electrode. In certain embodiments, a
supply electrode and a return electrode can be configured
such that current can flow therebetween along a predeter-
mined path. In various embodiments, such a path can be
one-dimensional. Embodiments having two point elec-
trodes, for example, can permit such a path. In other
embodiments, such a path can be two-dimensional. Embodi-
ments having an array of point electrodes, for example, can
permit such a path. A two-dimensional path can be referred
to as a field. In certain embodiments, a path can be three-
dimensional. In at least one such embodiment, a clamp arm
assembly can have a supply electrode and a return electrode
while the waveguide may comprise one of a supply elec-
trode or a return electrode. In embodiments where the
waveguide comprises a return electrode, current can flow
from the supply electrode of the clamp arm assembly to the
return electrode of the clamp arm assembly and the return
electrode of the waveguide. In one such embodiment, the
return electrodes may comprise a common ground. In
embodiments where the waveguide comprises a supply
electrode, current can flow from the waveguide and the
supply electrode of the clamp arm assembly to the return
electrode of the clamp arm assembly. Such arrangements can
permit the current to flow in a three-dimensional path, or
field.

In various embodiments, referring now to FIG. 14, the
surgical instrument 110 may comprise a sheath encompass-
ing, or at least partially encompassing, a portion of the blade
146 wherein a sheath may comprise both at least one supply
conductor and at least one return conductor. In one embodi-
ment, a sheath may comprise a plurality of conductive
inserts, such as a first conductive msert 957a and a second
conductive inserts 957b, for example, wherein the first
conductive insert 957a¢ may comprise a supply conductor
and wherein the second conductive insert 9576 may com-
prise a return conductor. In various embodiments, a non-
electrically conductive or insulative material 958, such as
plastic and/or rubber, for example, can be overmolded onto
the first and second conductive inserts 957a, 9575 in order
to comprise the sheath. In various other embodiments, the
surgical instrument 110 may comprise, referring now to FIG.
15, a sheath assembly encompassing, or at least partially
encompassing, a portion of a waveguide wherein the sheath
assembly may comprise an inner sheath, such as an inner
sheath 1057, for example, and an outer sheath, such as an
outer sheath 1058, for example. In one embodiment, the
inner sheath 1057 may comprise a supply conductor oper-
ably coupled with a supply electrode in a clamp arm
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assembly, wherein the outer sheath 1058 may comprise a
return conductor operably coupled with a return electrode in
the clamp arm assembly. In certain embodiments, the inner
sheath 1057 and/or the outer sheath 1058 may be comprised
of an electrically conductive material, such as medical grade
stainless steel, for example, wherein, in one embodiment,
one or more surfaces of the inner sheath 1057 and/or the
outer sheath 1058 can be coated, or at least partially coated,
in a non-conductive material, such as a material comprising
poly(p-xylylene) polymers, for example. Materials com-
prised of poly(p-xylylene) polymers are often sold under the
tradename of Parylene™.

In various embodiments, a clamp arm can be moved
between open and closed positions in order position and/or
compress tissue T against a blade. In one embodiment,
referring to FIG. 16, a clamp arm 1151 may comprise a base
1149 and a pad 1155 mounted to the base 1149, wherein the
pad 1155 can be configured to contact and compress tissue
T against the blade 146, for example. As illustrated in FIG.
16, the pad 1155 may comprise a tissue-contacting surface
1175 which, although it may include various serrations,
ridges, and/or surface texturing, is planar, or at least sub-
stantially planar. In such embodiments, especially when the
blade 146 has a round or arcuate cross-section, only a small
portion of the tissue T positioned intermediate the blade 146
and the pad 1155 may contact the surface area, or perimeter,
of the blade 146. As illustrated in FIG. 16, the tissue T may
contact the blade 146 at a contact point P. Various alternative
embodiments are envisioned in which the clamp arm 1251,
for example, may comprise downwardly-extending side-
walls 1274 which extend below a tissue-contacting surface
1275 of the pad 1255, for example, although a clamp arm
may comprise a tissue-contacting surface with or without a
pad. In one embodiment, referring to FIG. 17, the sidewalls
1274 can be configured to contact the tissue T positioned
laterally with respect to the blade 146 and push the tissue T
downwardly. As illustrated in FIG. 17, the sidewalls 1274
can push the tissue T downwardly such that the tissue T
positioned intermediate the sidewalls 1274 contacts a larger
surface area, or perimeter, on the blade 146 as compared to
the embodiment illustrated in FIG. 16. Owing to the larger
contact area, the blade 146 may be more efficient in cutting,
coagulating, and/or otherwise treating the tissue. In embodi-
ments where the blade 146 may comprise a circular or
arcuate cross-section, the perimeter contact distance, i.e., the
distance in which the tissue is in contact with the perimeter
of the blade 146, may comprise an arclength (s) which can
equal the product of the radius of curvature of the arc R and
the sweep angle 6 defined between the two contact points P.
As illustrated in FIG. 17, the contact points P can represent
the endpoints of the perimeter in which the tissue T contacts
the blade 146. Although the illustrated blade 146 is depicted
as having a curved or arcuate cross-section, any other
suitable cross-section may be used.

In various embodiments, the tissue-contacting surface
1275 of the clamp arm 1251 can define a plane 1298 which
can represent the portions of the pad 1255 which contact the
tissue T positioned within the end effector when the clamp
arm 1251 1s rotated between its open and closed positions.
As illustrated in FIG. 17, the sidewalls 1274 of the clamp
arm 1251 can extend through the plane 1298, wherein, when
the clamp arm 1251 is rotated from an open position into a
closed position, the sidewalls 1274 can be positioned later-
ally along the opposite sides of the blade 146 and, in
addition, the tissue-contacting surface 1275 can be posi-
tioned against, or adjacent to, the top surface of the blade
146 such that the plane 1298 is aligned with, or respect to,
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a plane 1299 extending through the top surface of the blade
146. In one embodiment, the plane 1299 can be defined as
a tangential plane which is tangential to the perimeter of the
blade 146. In one embodiment, the plane 1299 can be
tangential to the top tissue-contacting surface of the blade
146, for example, wherein the top tissue-contacting surface
of the 146 may comprise the surface closest to the clamp
tissue-contacting surface 1275 when the clamp arm 1271 is
in its closed position. In the illustrated embodiment, still
referring to FIG. 17, the planes 1298, 1299 can be parallel,
or at least substantially parallel, to one another when the
tissue-contacting surface 1275 is positioned adjacent to the
blade 146, while the planes 1298, 1299 can be co-planar, or
at least substantially co-planar, with one another when the
tissue-contacting surface 1275 is in contact with the blade
146. The sidewalls 1274 can be sized and configured such
that they extend through the blade plane 1299 when the
clamp arm 1271 is in the closed position. In various embodi-
ments, the sidewalls 1274 may not extend through the plane
1299 when the clamp arm 1251 is in the open position. In
one embodiment, the sidewalls 1274 may “break” the plane
1299 as the clamp arm 1251 is being closed, but before it is
completely closed. In one embodiment, the sidewalls 1274
may break the plane 1299 just before the clamp arm 1251
reaches its completely closed position.

FIG. 18 illustrates one embodiment of a drive system 32
of the ultrasonic generator module 180 shown in FIG. 1,
which creates an ultrasonic electrical signal for driving an
ultrasonic transducer. With reference now to FIGS. 1 and 18,
the drive system 32 is flexible and can create an ultrasonic
electrical drive signal 416 at a desired frequency and power
level setting for driving the ultrasonic transducer 114. In
various embodiments, the generator 112 may comprise
several separate functional elements, such as modules and/or
blocks. Although certain modules and/or blocks may be
described by way of example, it can be appreciated that a
greater or lesser number of modules and/or blocks may be
used and still fall within the scope of the embodiments.
Further, although various embodiments may be described in
terms of modules and/or blocks to facilitate description,
such modules and/or blocks may be implemented by one or
more hardware components, e.g., processors, Digital Signal
Processors (DSPs), Programmable Logic Devices (PLDs),
Application Specific Integrated Circuits (ASICs), circuits,
registers and/or software components, e.g., programs, sub-
routines, logic and/or combinations of hardware and soft-
ware components.

In one embodiment, the ultrasonic generator module 180
drive system 32 may comprise one or more embedded
applications implemented as firmware, software, hardware,
or any combination thereof. The ultrasonic generator mod-
ule 180 drive system 32 may comprise various executable
modules such as software, programs, data, drivers, applica-
tion program interfaces (APIs), and so forth. The firmware
may be stored in nonvolatile memory (NVM), such as in
bit-masked read-only memory (ROM) or flash memory. In
various implementations, storing the firmware in ROM may
preserve flash memory. The NVM may comprise other types
of memory including, for example, programmable ROM
(PROM), erasable programmable ROM (EPROM), electri-
cally erasable programmable ROM (EEPROM), or battery
backed random-access memory (RAM) such as dynamic
RAM (DRAM), Double-Data-Rate DRAM (DDRAM), and/
or synchronous DRAM (SDRAM).

In one embodiment, the ultrasonic generator module 180
drive system 32 comprises a hardware component imple-
mented as a processor 400 for executing program instruc-
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tions for monitoring various measurable characteristics of
the ultrasonic surgical instrument 110 and generating a
corresponding output control signal for operating the surgi-
cal instrument 110. In various embodiments, the output
control signal is for driving the ultrasonic transducer 114 in
cutting and/or coagulation operating modes, measuring elec-
trical characteristics of the surgical instrument 110 and/or
the tissue T, and providing feedback to use. It will be
appreciated by those skilled in the art that the ultrasonic
generator module 180 and the drive system 32 may comprise
additional or fewer components and only a simplified ver-
sion of the ultrasonic generator module 180 and the drive
system 32 are described herein for conciseness and clarity.
In various embodiments, as previously discussed, the hard-
ware component may be implemented as a DSP, PLD, ASIC,
circuits, and/or registers. In one embodiment, the processor
400 may be configured to store and execute computer
software program instructions to generate the step function
output signals for driving various components of the ultra-
sonic surgical instrument 110, such as the transducer 114, the
end effector 150, and/or the blade 146.

In one embodiment, under control of one or more soft-
ware program routines, the processor 400 executes the
methods in accordance with the described embodiments to
perform a variety of functions, such as, for example, gen-
erating a step function formed by a stepwise waveform of
drive signals comprising current (I), voltage (V), and/or
frequency (f) for various time intervals or periods (T),
driving the ultrasonic transducer 114, driving the end effec-
tor 150 using therapeutic and/or subtherapeutic electrical
signals (e.g., RF signal), measuring the impedance (7) of the
transducer 114, measuring the impedance (Z,) of the tissue
T, and/or providing feedback to the user. In one embodi-
ment, stepwise waveforms of the drive signals may be
generated by forming a piecewise linear combination of
constant functions over a plurality of time intervals created
by stepping the ultrasonic generator module 180 drive
signals, e.g., output drive current (I), voltage (V), and/or
frequency (f). The time intervals or periods (T) may be
predetermined (e.g., fixed and/or programmed by the user)
or may be variable. Variable time intervals may be defined
by setting the drive signal to a first value and maintaining the
drive signal at that value until a change is detected in a
monitored characteristic. Examples of monitored character-
istics may comprise, for example, transducer impedance,
tissue impedance, tissue heating, tissue transection, tissue
coagulation, and the like. The ultrasonic drive signals gen-
erated by the ultrasonic generator module 180 include,
without limitation, ultrasonic drive signals that excite vari-
ous vibratory modes of the ultrasonic transducer 114 such as
the primary longitudinal mode and harmonics thereof as
well flexural and torsional vibratory modes.

In one embodiment, the executable modules comprise one
or more algorithm(s) 402 stored in memory that when
executed causes the processor 400 to perform a variety of
functions, such as, for example, generating a step function
formed by a stepwise waveform of drive signals comprising
current (I), voltage (V), and/or frequency (f) for various time
intervals or periods (T), driving the ultrasonic transducer
114, driving the end effector 150 using a therapeutic and/or
subtherapeutic electrical signal (e.g., RF signal), measuring
the impedance (Z) of the transducer 114, measuring the
impedance (Z,) of the tissue T, and/or providing feedback in
accordance with a state of the tissue T. In one embodiment,
an algorithm 402 is executed by the processor 400 to
generate a step function formed by a stepwise waveform of
drive signals comprising current (I), voltage (V), and/or



US 9,764,164 B2

21

frequency (f) for various time intervals or periods (T). The
stepwise waveforms of the drive signals may be generated
by forming a piecewise linear combination of constant
functions over two or more time intervals created by step-
ping the generator’s 30 output drive current (I), voltage (V),
and/or frequency (f). The drive signals may be generated
either for predetermined fixed time intervals or periods (T)
of time or variable time intervals or periods of time in
accordance with the one or more stepped output algorithm(s)
402. Under control of the processor 400, the ultrasonic
generator module 180 steps (e.g., increment or decrement)
the current (1), voltage (V), and/or frequency (f) up or down
at a particular resolution for a predetermined period (T) or
until a predetermined condition is detected, such as a change
in a monitored characteristic (e.g., transducer impedance,
tissue impedance). The steps can change in programmed
increments or decrements. If other steps are desired, the
ultrasonic generator module 180 can increase or decrease the
step adaptively based on measured system characteristics. In
other embodiments, algorithms 402 may be executed by the
processor 400 to drive the ultrasonic transducer 114, drive
the end effector 150 using a therapeutic and/or subtherapeu-
tic electrical signal (e.g., RF signal), measure the impedance
(Z) of the transducer 114, measure the impedance (Z,) of the
tissue T, and/or to provide feedback in accordance with a
state of the tissue T.

In operation, the user can program the operation of the
ultrasonic generator module 180 using the input device 406
located on the front panel of the ultrasonic generator module
180 console. The input device 406 may comprise any
suitable device that generates signals 408 that can be applied
to the processor 400 to control the operation of the ultrasonic
generator module 180. In various embodiments, the input
device 406 includes buttons, switches, thumbwheels, key-
board, keypad, touch screen monitor, pointing device,
remote connection to a general purpose or dedicated com-
puter. In other embodiments, the input device 406 may
comprise a suitable user interface. Accordingly, by way of
the input device 406, the user can set or program the current
(D), voltage (V), frequency (f), and/or period (T) for pro-
gramming the step function output of the ultrasonic genera-
tor module 180. The processor 400 then displays the selected
power level by sending a signal on line 410 to an output
indicator 412.

In various embodiments, the output indicator 412 may
provide visual, audible, and/or tactile feedback to the sur-
geon to indicate the status of a surgical procedure, such as,
for example, when tissue cutting and coagulating is com-
plete based on a measured characteristic of the ultrasonic
surgical instrument 110, e.g., transducer impedance, tissue
impedance, or other measurements as subsequently
described. By way of example, and not limitation, visual
feedback comprises any type of visual indication device
including incandescent lamps or light emitting diodes
(LED:s), graphical user interface, display, analog indicator,
digital indicator, bar graph display, digital alphanumeric
display. By way of example, and not limitation, audible
feedback comprises any type of buzzer, computer generated
tone, computerized speech, voice user interface (VUI) to
interact with computers through a voice/speech platform. By
way of example, and not limitation, tactile feedback com-
prises any type of vibratory feedback provided through the
instrument handpiece assembly 160 or simply housing
handle assembly.

In one embodiment, the processor 400 may be configured
or programmed to generate a digital current signal 414 and
a digital frequency signal 418. These signals 414, 418 are
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applied to a direct digital synthesizer (DDS) circuit 420 to
adjust the amplitude and the frequency (f) of the current
output signal 416 to the transducer 114. The output of the
DDS circuit 420 is applied to an amplifier 422 whose output
is applied to a transformer 424. The output of the trans-
former 424 is the signal 416 applied to the ultrasonic
transducer 114, which is coupled to the blade 146 by way of
the waveguide 147.

In one embodiment, the ultrasonic generator module 180
comprises one or more measurement modules or compo-
nents that may be configured to monitor measurable char-
acteristics of the ultrasonic instrument 110. In embodiment
illustrated in FIG. 18, the processor 400 may be employed
to monitor and calculate system characteristics. As shown,
the processor 400 measures the impedance 7 of the trans-
ducer 114 by monitoring the current supplied to the trans-
ducer 114 and the voltage applied to the transducer 114. In
one embodiment, a current sense circuit 426 is employed to
sense the current flowing through the transducer 114 and a
voltage sense circuit 428 is employed to sense the output
voltage applied to the transducer 114. These signals may be
applied to the analog-to-digital converter 432 (ADC) via an
analog multiplexer 430 circuit or switching circuit arrange-
ment. The analog multiplexer 430 routes the appropriate
analog signal to the ADC 432 for conversion. In other
embodiments, multiple ADCs 432 may be employed for
each measured characteristic instead of the multiplexer 430
circuit. The processor 400 receives the digital output 433 of
the ADC 432 and calculates the transducer impedance 7
based on the measured values of current and voltage. In
response to the transducer impedance (Z), the processor 400
controls the operation of the surgical instrument 110. For
example, the processor 400 can adjust the power delivered
to the transducer 114, can shut off the power to the trans-
ducer 114, and/or provide feedback to the user. In one
embodiment, the processor 400 adjusts the output drive
signal 416 such that it can generate a desired power versus
load curve. In one embodiment, in accordance with a
programmed step function algorithms 402, the processor
400 can step the drive signal 416, e.g., the current or
frequency, in any suitable increment or decrement in
response to the transducer impedance 7.

With reference back now to FIGS. 1 and 18, to actually
cause the surgical blade 146 to vibrate, e.g., actuate the blade
146, the user activates the foot switch 144 or the switch 143
on the handpiece assembly 160, as discussed above. This
activation outputs the drive signal 416 to the transducer 114
based on programmed values of current (I), frequency (f),
and corresponding time periods (T). After a predetermined
fixed time period (T), or variable time period based on a
measurable system characteristic such as changes in the
impedance 7 of the transducer 114, the processor 400
changes the output current step or frequency step in accor-
dance with the programmed values. The output indicator 412
communicates the particular state of the process to the user.

The operation of the ultrasonic generator module 180 may
be programmed to provide a variety of output drive signals
to measure electrical properties of current, voltage, power,
impedance, and frequency associated with the transducer
114 in an unloaded state, a lightly loaded state, and a heavily
loaded state, for example. When the ultrasonic transducer
114 is in an unloaded state, the ultrasonic generator module
180 output may be stepped in a first sequence, for example.
In one embodiment, the ultrasonic generator module 180 is
initially activated at about time 0 resulting in a drive current
rising to a first set point I, of about 100 mA. The current is
maintained at the first set point I, for a first period T, . At the
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end of the first period T,, e.g., about 1 second, the current set
point is changed, e.g., stepped, by the ultrasonic generator
module 180 in accordance with the software, e.g., the step
function algorithm(s) 402, to a second set point I, of about
175 mA for a second period T,, e.g., about 2 seconds. At the
end of the second period T,, e.g., at about 3 seconds, the
ultrasonic generator module 180 software changes the cur-
rent to a third set point I of about 350 mA. The voltage,
current, power, and frequency respond only slightly because
there is no load on the system.

When the ultrasonic transducer 114 is in a lightly loaded
state, the ultrasonic generator module 180 is activated at
about time 0 resulting in the current rising to the first current
set point I, of about 100 mA. At about 1 second the current
set point is changed within the ultrasonic generator module
180 by the software to I, of about 175 mA, and then again
at about 3 seconds the ultrasonic generator module 180
changes the current 300 set point to I of about 350 mA. The
voltage, current, power, and frequency respond to the light
load.

When the ultrasonic transducer 114 is in a heavily loaded
state, the ultrasonic generator module 180 is activated at
about time O resulting in the current rising to the first set
point I, of about 100 mA. At about 1 second the current set
point is changed within the ultrasonic generator module 180
by the software to 1, of about 175 mA, and then again at
about 3 seconds the ultrasonic generator module 180
changes the current 300 set point to I, of about 350 mA. The
voltage, current, power, and frequency respond to the heavy
load.

It will be appreciated by those skilled in the art that the
current step function set points (e.g., I, I,, 1;) and the time
intervals or periods (e.g., T;, T,) of duration for each of the
step function set points described above are not limited to
the values described herein and may be adjusted to any
suitable value as may be desired for a given set of surgical
procedures. Additional or fewer current set points and peri-
ods of duration may be selected as may be desired for a
given set of design characteristics or performance con-
straints. As previously discussed, the periods may be pre-
determined by programming or may be variable based on
measurable system characteristics. The embodiments are not
limited in this context.

Having described operational details of various embodi-
ments of the surgical system 100, operations for the above
surgical system 100 may be further described in terms of a
process for cutting and coagulating a blood vessel employ-
ing a surgical instrument comprising the input device 406
and the transducer impedance measurement capabilities
described with reference to FIG. 18. Although a particular
process is described in connection with the operational
details, it can be appreciated that the process merely pro-
vides an example of how the general functionality described
herein can be implemented by the surgical system 100.
Further, the given process does not necessarily have to be
executed in the order presented herein unless otherwise
indicated. As previously discussed, the input device 406 may
be employed to program the stepped output (e.g., current,
voltage, frequency) to the ultrasonic transducer 114/blade
146 assembly.

Accordingly, one technique for sealing a vessel includes
separating and moving the inner muscle layer of the vessel
away from the adventitia layer prior to the application of
standard ultrasonic energy to transect and seal the vessel.
Although conventional methods have achieved this separa-
tion by increasing the force applied to the clamp member
151, disclosed is an alternative apparatus and method for
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cutting and coagulating tissue without relying on clamp
force alone. In order to more effectively separate the tissue
layers of a vessel, for example, the ultrasonic generator
module 180 may be programmed to apply a frequency step
function to the ultrasonic transducer 114 to mechanically
displace the blade 146 in multiple modes in accordance with
the step function. In one embodiment, the frequency step
function may be programmed by way of the user interface
406, wherein the user can select a stepped-frequency pro-
gram, the frequency (f) for each step, and the corresponding
time period (T) of duration for each step for which the
ultrasonic transducer 114 will be excited. The user may
program a complete operational cycle by setting multiple
frequencies for multiple periods to perform various surgical
procedures.

In one embodiment. a first ultrasonic frequency may be
set initially to mechanically separate the muscle tissue layer
of a vessel prior to applying a second ultrasonic frequency
to cut and seal the vessel. By way of example, and not
limitation, in accordance with one implementation of the
program, initially, the ultrasonic generator module 180 is
programmed to output a first drive frequency f, for a first
period T, of time (for example less than approximately 1
second), wherein the first frequency f, is significantly off
resonance, for example, f,/2, 2f; or other structural resonant
frequencies, where f, is the resonant frequency (e.g., 55.5
kHz). The first frequency f, provides a low level of mechani-
cal vibration action to the blade 146 that, in conjunction with
the clamp force, mechanically separates the muscle tissue
layer (subtherapeutic) of the vessel without causing signifi-
cant heating that generally occurs at resonance. After the
first period T,, the ultrasonic generator module 180 is
programmed to automatically switch the drive frequency to
the resonant frequency f,, for a second period T, to transect
and seal the vessel. The duration of the second period T,
may be programmed or may be determined by the length of
time it actually takes to cut and seal the vessel as determined
by the user or may be based on measured system charac-
teristics such as the transducer impedance Z as described in
more detail below.

In one embodiment, the tissue/vessel transection process
(e.g., separating the muscle layer of the vessel from the
adventitia layer and transecting/sealing the vessel) may be
automated by sensing the impedance Z characteristics of the
transducer 114 to detect when the transection of the tissue/
vessel occurs. The impedance Z can be correlated to the
transection of the muscle layer and to the transection/sealing
of the vessel to provide a trigger for the processor 400 to
generate the frequency and/or current step function output.
As previously discussed with reference to FIG. 18, the
impedance Z of the transducer 114 may be calculated by the
processor 400 based on the current flowing through trans-
ducer 114 and the voltage applied to the transducer 114
while the blade 146 is under various loads. Because the
impedance Z of the transducer 114 is proportional to the load
applied to the blade 146, as the load on the blade 146
increases the impedance Z of the transducer 114 increases
and as the load on the blade 146 decreases the impedance 7
of the transducer 114 decreases. Accordingly, the impedance
7 of the transducer 114 can be monitored to detect the
transection of the inner muscle tissue layer of the vessel
from the adventitia layer and can also be monitored to detect
when the vessel has been transected and sealed.

In one embodiment, the ultrasonic surgical instrument 110
may be operated in accordance with a programmed step
function algorithm responsive to the transducer impedance
Z. In one embodiment, a frequency step function output may
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be initiated based on a comparison of the transducer imped-
ance Z and one or more predetermined thresholds that have
been correlated with tissue loads against the blade 146.
When the transducer impedance Z transitions above or
below (e.g., crosses) a threshold, the processor 400 applies
a digital frequency signal 418 to the DDS circuit 420 to
change the frequency of the drive signal 416 by a predeter-
mined step in accordance with the step function algorithm(s)
402 responsive to the transducer impedance Z. In operation,
the blade 146 is first located at the tissue treatment site. The
processor 400 applies a first digital frequency signal 418 to
set a first drive frequency f; that is off resonance (e.g., {,/2,
2f,, or other structural resonant frequencies, where f, is the
resonant frequency). The drive signal 416 is applied to the
transducer 114 in response to activation of the switch 312a
on the handpiece assembly 160 or the foot switch 434.
During this period the ultrasonic transducer 114 mechani-
cally activates the blade 146 at the first drive frequency f;.
A force or load may be applied to the clamp member 151 and
the blade 146 to facilitate this process. During this period,
the processor 400 monitors the transducer impedance Z until
the load on the blade 146 changes and the transducer
impedance 7 crosses a predetermined threshold to indicate
that the tissue layer has been transected. The processor 400
then applies a second digital frequency signal 418 to set a
second drive frequency f,, e.g., the resonant frequency f; or
other suitable frequency for transecting, coagulating, and
sealing tissue. Another portion of the tissue (e.g., the vessel)
is then grasped between the clamp member 151 and the
blade 146. The transducer 114 is now energized by the drive
signal 416 at the second drive frequency f, by actuating
either the foot switch 434 or the switch 312a on the
handpiece assembly 160. It will be appreciated by those
skilled in the art that the drive current (I) output also may be
stepped as described with reference to FIGS. 6-8 based on
the transducer impedance Z.

According to one embodiment of a step function algo-
rithm 402, the processor 400 initially sets a first drive
frequency f; that is significantly off resonance to separate the
inner muscle layer of the vessel from the adventitia layer.
During this period of operation the processor 400 monitors
the transducer impedance Z to determine when the inner
muscle layer is transected or separated from the adventitia
layer. Because the transducer impedance Z is correlated to
the load applied to the blade 146, for example, cutting more
tissue decrease the load on the blade 146 and the transducer
impedance 7. The transection of the inner muscle layer is
detected when the transducer impedance 7 drops below a
predetermined threshold. When the change in transducer
impedance Z indicates that the vessel has been separated
from the inner muscle layer, the processor 400 sets the drive
frequency to the resonant frequency f;,. The vessel is then
grasped between the blade 146 and the clamp member 151
and the transducer 114 is activated by actuating either the
foot switch or the switch on the handpiece assembly 160 to
transect and seal the vessel. In one embodiment, the imped-
ance 7 change may range between about 1.5 to about 4 times
a base impedance measurements from an initial point of
contact with the tissue to a point just before the muscle layer
is transected and sealed.

With reference now to FIGS. 1, 8, and 19, as previously
discussed, in one embodiment, the surgical system 100, and
the ultrasonic surgical instrument 110, comprises the signal
generator module 102. In one embodiment, the signal gen-
erator module 102 may be implemented as a tissue imped-
ance module 502. Although in the presently disclosed
embodiment, the signal generator module 102 is shown
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separate from the surgical instrument 110, in one embodi-
ment, the signal generator module 102 may be formed
integrally with the surgical instrument 110, as shown in
phantom in FIG. 1, such that the surgical instrument 110
forms a unitary surgical system. In one embodiment, surgi-
cal instrument the signal generator module 102 may be
configured to monitor the electrical impedance 7, of the
tissue T (FIGS. 5, 10, 16, 17) to control the characteristics
of time and power level based on the impedance Z, of the
tissue T. In one embodiment, the tissue impedance Z, may be
determined by applying a subtherapeutic radio frequency
(RF) signal to the tissue T and measuring the current through
the tissue T by way of a return electrode on the clamp
member 151, as previously discussed. In the schematic
diagram shown in FIG. 19, an end effector portion of the
surgical system 100 comprises the clamp arm assembly 451
(FIG. 8) connected to the distal end of the outer sheath 158.
The blade 146 forms a first (e.g., energizing) electrode and
the clamp arm assembly 451 comprises an electrically
conductive portion that forms a second (e.g., return) elec-
trode. The tissue impedance module 502 is coupled to the
blade 146 and the clamp arm assembly 451 through a
suitable transmission medium such as a cable 137. The cable
137 comprises multiple electrical conductors for applying a
voltage to the tissue T and providing a return path for current
flowing through the tissue T back to the impedance module
502. In various embodiments, the tissue impedance module
502 may be formed integrally with the generator 112 or may
be provided as a separate circuit coupled to the generator 112
(shown in phantom to illustrate this option).

Still with reference to FIGS. 1, 8, and 19 illustrates one
embodiment of an integrated generator module 320 com-
prising the ultrasonic generator module 180 and the signal
generator module 102. As shown, the signal generator
module 102 is configured as a tissue impedance module 502.
The integrated generator module 320 generates the ultra-
sonic electrical drive signal 416 to drive the ultrasonic
transducer 114. In one embodiment, the tissue impedance
module 502 may be configured to measure the impedance 7,
of the tissue T (FIGS. 5, 10, 16, 17) grasped between the
blade 146 and the clamp arm assembly 451. The tissue
impedance module 502 comprises an RF oscillator 506, a
voltage sensing circuit 508, and a current sensing circuit
510. The voltage and current sensing circuits 508, 510
respond to the RF voltage v, applied to the blade 146
electrode and the RF current i, flowing through the blade
146 clectrode, the tissue, and the conductive portion of the
clamp arm assembly 451. The sensed voltage v, -and current
i are converted to digital form by the ADC 432 via the
analog multiplexer 430. The processor 400 receives the
digitized output 433 of the ADC 432 and determines the
tissue impedance 7, by calculating the ratio of the RF
voltage v, to current i, ;measured by the voltage sense circuit
508 and the current sense circuit 510. In one embodiment,
the transection of the inner muscle layer and the tissue may
be detected by sensing the tissue impedance Z,. Accordingly,
detection of the tissue impedance 7, may be integrated with
an automated process for separating the inner muscle layer
from the outer adventitia layer prior to transecting the tissue
without causing a significant amount of heating, which
normally occurs at resonance. Additional clamp arm and
sheath assemblies comprising an electrode as shown in
FIGS. 9-17 may be employed without limitation.

FIG. 20 is a schematic diagram of the signal generator
module 102 configured as the tissue impedance module 502
coupled to the blade 146 and the clamp arm assembly 415
with tissue T located therebetween. With reference now to
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FIGS. 1, 8, and 18-20, the generator 112 comprises the
signal generator module 102 configured as the tissue imped-
ance module 502 configured for monitoring the impedance
Z, of the tissue T located between the blade 146 and the
clamp arm assembly 451 during the tissue transection pro-
cess. The tissue impedance module 502 may is coupled to
the ultrasonic surgical instrument 110 by way of the cables
137, 139. The cable includes a first “energizing” conductor
139 connected to the blade 146 (e.g., positive [+] electrode)
and a second “return” conductor 137 connected to the
conductive jacket 472 (e.g., negative [~] electrode) of the
clamp arm assembly 451. In one embodiment, RF voltage v,
is applied to the blade 146 to cause RF current i, to flow
through the tissue T. The second conductor 137 provides the
return path for the current i,,back to the tissue impedance
module 502. The distal end of the return conductor 137 is
connected to the conductive jacket 472 such that the current
i, can flow from the blade 146, through the tissue T
positioned intermediate the conductive jacket 472 and the
blade 146, and the conductive jacket 472 to the return
conductor 137. The impedance module 502 connects in
circuit, by way of the first and second conductors 137, 139.
In one embodiment, the RF energy may be applied to the
blade 146 through the ultrasonic transducer 114 and the
waveguide 147. Tt is worthwhile noting that the RF energy
applied to the tissue T for purposes of measuring the tissue
impedance Z, is a low level subtherapeutic signal that does
not contribute in a significant manner, or at all, to the
treatment of the tissue T.

Having described operational details of various embodi-
ments of the surgical system 100, operations for the above
surgical system 100 may be further described with reference
to FIGS. 1, 8, and 18-20 in terms of a process for cutting and
coagulating a blood vessel employing a surgical instrument
comprising the input device 406 and the tissue impedance
module 502. Although a particular process is described in
connection with the operational details, it can be appreciated
that the process merely provides an example of how the
general functionality described herein can be implemented
by the surgical system 100. Further, the given process does
not necessarily have to be executed in the order presented
herein unless otherwise indicated. As previously discussed,
the input device 406 may be employed to program the step
function output (e.g., current, voltage, frequency) to the
ultrasonic transducer 114/blade 146 assembly.

In one embodiment, the ultrasonic surgical instrument 110
may be operated in accordance with a programmed step
function algorithm 402 responsive to the tissue impedance
7,. In one embodiment, a frequency step function output
may be initiated based on a comparison of the tissue
impedance 7, and predetermined thresholds that have been
correlated with various tissue states (e.g., desiccation,
transection, sealing). When the tissue impedance 7, transi-
tions above or below (e.g., crosses) a threshold, the proces-
sor 400 applies a digital frequency signal 418 to the DDS
circuit 420 to change the frequency of an ultrasonic oscil-
lator by a predetermined step in accordance with the step
function algorithm 402 responsive to the tissue impedance
Z,

In operation, the blade 146 is located at the tissue treat-
ment site. The tissue T is grasped between the blade 146 and
the clamp arm assembly 451 such that the blade 146 and the
conductive jacket 472 make electrical contact with the tissue
T. The processor 400 applies a first digital frequency signal
418 to set a first drive frequency f, that is off resonance (e.g.,
/2, 2f;, or other structural resonant frequencies, where f; is
the resonant frequency). The blade 146 is electrically ener-
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gized by the low level subtherapeutic RF voltage v, supplied
by the tissue impedance module 502. The drive signal 416
is applied to the transducer 114/blade 146 in response to
actuation of the switch 143 on the handpiece assembly 160
or the foot switch 144434 until the tissue impedance Z, of the
tissue T changes by a predetermined amount. A force or load
is then applied to the clamp arm assembly 451 and the blade
146. During this period the ultrasonic transducer 114
mechanically activates the blade 146 at the first drive
frequency f, and as a result, the tissue T begins to desiccate
from the ultrasonic action applied between the blade 146 and
the one or more clamp pads 155 of the clamp arm assembly
451 causing the impedance Z, of the tissue T to increase.
Eventually, as the tissue T is transected by the ultrasonic
action and applied clamp force, the impedance Z, of the
tissue T becomes very high or infinite. It will be appreciated
by those skilled in the art that the drive current (I) output also
may be stepped as described above based on measured
impedance Z, of the tissue T.

In one embodiment, the impedance Z, of tissue T may be
monitored by the impedance module 502 in accordance with
the following process. A measurable RF current i, is con-
veyed through the first energizing conductor 139 to the blade
146, through the tissue T, and back to the impedance module
502 through the conductive jacket 472 and the second
conductor 137. As the tissue T is desiccated and cut by the
ultrasonic action of the blade 146 acting against the one or
more clamp pads 155, the impedance of the tissue 514
increases and thus the current i, in the return path, i.e., the
second conductor 137, decreases. The impedance module
502 measures the tissue impedance 7, and conveys a repre-
sentative signal to the ADC 432 whose digital output 433 is
provided to the processor 400. The processor 400 calculates
the tissue impedance Z, based on these measured values of
v,rand i, In response to the transducer impedance (Z,), the
processor 400 controls the operation of the surgical instru-
ment 110. For example, the processor 400 can adjust the
power delivered to the transducer 114, can shut off the power
to the transducer 114, and/or provide feedback to the user. In
one embodiment, the processor 400 steps the frequency by
any suitable increment or decrement in response to changes
in the impedance Z, of the tissue T. In other embodiments,
the processor 400 controls the drive signals 416 and can
make any necessary adjustments in amplitude and frequency
in response to the tissue impedance Z,. In one embodiment,
the processor 400 can cut off the drive signal 416 when the
tissue impedance Z, reaches a predetermined threshold
value.

Accordingly, by way of example, and not limitation, in
one embodiment, the ultrasonic surgical instrument 110 may
be operated in accordance with a programmed stepped
output algorithm to separate the inner muscle layer of a
vessel from the adventitia layer prior to transecting and
sealing the vessel. As previously discussed, according to one
step function algorithm, the processor 400 initially sets a
first drive frequency f, that is significantly off resonance.
The transducer 114 is activated to separate the inner muscle
layer of the vessel from the adventitia layer and the tissue
impedance module 502 applies a subtherapeutic RF voltage
v,ssignal to the blade 146. During this period T, of operation
the processor 400 monitors the tissue impedance 7, to
determine when the inner muscle layer is transected or
separated from the adventitia layer. The tissue impedance Z,
is correlated to the load applied to the blade 146, for
example, when the tissue becomes desiccated or when the
tissue is transected the tissue impedance Z, becomes
extremely high or infinite. The change in tissue impedance
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7, indicates that the vessel has been separated or transected
from the inner muscle layer and the generator 112 is deac-
tivated for a second period of time T,. The processor 400
then sets the drive frequency to the resonant frequency 1.
The vessel is then grasped between the blade 146 and the
clamp arm assembly 451 and the transducer 114 is reacti-
vated to transect and seal the vessel. Continuous monitoring
of the tissue impedance 7, provides an indication of when
the vessel is transected and sealed. Also, the tissue imped-
ance 7, may be monitored to provide an indication of the
completeness of the tissue cutting and/or coagulating pro-
cess or to stop the activation of the generator 112 and/or the
ultrasonic generator module 180 when the impedance Z, of
the tissue T reaches a predetermined threshold value. The
threshold for the tissue impedance Z, may be selected, for
example, to indicate that the vessel has been transected. In
one embodiment, the tissue impedance 7, may range
between about 10 Ohms to about 1000 Ohms from an initial
point to a point just before the muscle layer is transected and
sealed.

The applicants have discovered that experiments that run
varying current set points (both increasing and decreasing)
and dwell times indicate that the described embodiments can
be used to separate the inner muscle layer from the outer
adventitia layer prior to completing the transection resulting
in improved hemostasis and potentially lower total energy
(heat) at the transection site. Furthermore, although the
surgical instrument 110 has been described in regards to
impedance threshold detection schemes to determine when
the muscle layer is separated from the adventitia, other
embodiments that do not employ any detection scheme are
within the scope of the present disclosure. For example,
embodiments of the surgical instrument 110 may be
employed in simplified surgical systems wherein non-reso-
nant power is applied to separate the layers for a predeter-
mined time of approximately 1 second or less, prior to
applying a resonant power to cut the tissue. The embodi-
ments are not limited in this context.

In various embodiments, the surgical instrument 110 may
be programmed for detecting a change of state of tissue
being manipulated by an ultrasonic surgical instrument and
providing feedback to the user to indicate that the tissue has
undergone such change of state or that there is a high
likelihood that the tissue has undergone such change of state.
As used herein, the tissue may undergo a change of state
when the tissue is separated from other layers of tissue or
bone, when the tissue is cut or transected, when the tissue is
coagulated, and so forth while being manipulated with an
end effector of an ultrasonic surgical instrument, such as, for
example, the end effector 150 of the ultrasonic surgical
instrument 110. A change in tissue state may be determined
based on the likelihood of an occurrence of a tissue sepa-
ration event.

With reference to FIGS. 1, 5, and 18-20, in various
embodiments, the impedance 7 and the tissue Z,, as well as
any other suitable electrical measurements, that can be made
with the surgical system 100, may be used to provide
feedback by the output indicator 412 shown in FIGS. 18 and
19. The output indicator 412 is particularly useful in appli-
cations where the tissue being manipulated by the end
effector 151 is out of the user’s field of view and the user
cannot see when a change of state occurs in the tissue T. The
output indicator 412 communicates to the user that a change
in tissue state has occurred as determined in accordance with
the operations described with respect to various logic flows.
As previously discussed, the output indicator 412 may be
configured to provide various types of feedback to the user
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including, without limitation, visual, audible, and/or tactile
feedback to indicate to the user (e.g., surgeon, clinician) that
the tissue has undergone a change of state of the tissue. By
way of example, and not limitation, as previously discussed,
visual feedback comprises any type of visual indication
device including incandescent lamps or LEDs, graphical
user interface, display, analog indicator, digital indicator, bar
graph display, digital alphanumeric display. By way of
example, and not limitation, audible feedback comprises any
type of buzzer, computer generated tone, computerized
speech, VUI to interact with computers through a voice/
speech platform. By way of example, and not limitation,
tactile feedback comprises any type of vibratory feedback
provided through the instrument housing handpiece assem-
bly 160.

The processor 400 to determines a change in tissue state
in accordance with the operations described above and
provides feedback to the user by way of the output indicator
412. The processor 400 monitors and evaluates the voltage,
current, and/or frequency signal samples available from the
generator 32, 320 and according to the evaluation of such
signal samples determines whether a change in tissue state
has occurred. A change in tissue state may be determined
based on the type of ultrasonic instrument and the power
level that the instrument is energized at. In response to the
feedback, the operational mode of the ultrasonic surgical
instrument 110 may be controlled by the user or may be
automatically or semi-automatically controlled.

In one embodiment, the processor 400 portion of the drive
system 32, 320 samples the voltage (v), current (i), and
frequency (f) signals of the ultrasonic generator module 180
and/or the signal generator module 102. As previously
discussed, the output indicator 412 may provide visual,
audible, and/or tactile feedback to alert the user of the
ultrasonic surgical instrument 110 that a change in tissue
state has occurred. In various embodiments, in response to
the feedback from the output indicator 412, the operational
modes of the generator 112, the ultrasonic generator module
180, the signal generator module 102, and/or the ultrasonic
instrument 110 may be controlled manually, automatically,
or semi-automatically. The operational modes include, with-
out limitation, disconnecting or shutting down the output
power, reducing the output power, cycling the output power,
pulsing the output power, and/or outputting momentary
surge of high-power. In one embodiment, the operational
modes include, operating the surgical instrument 110 in a
first operating mode in which the transducer 14 produces
mechanical energy, or vibrations, that are transmitted to the
end effector 151 and a second operating mode in which
electrical energy, or current, can flow through the end
effector 151 to perform electrosurgery. The operational
modes of the ultrasonic instrument 110 in response to the
change in tissue state can be selected, for example, to
minimize heating effects of the end effector 151, e.g., of the
clamp pad 155, to prevent or minimize possible damage to
the surgical instrument 110, and/or surrounding tissue. This
is advantageous because heat is generated exponentially
when the transducer 114 is activated with nothing between
the jaws of the end effector 151 as is the case when a change
in tissue state occurs.

In various embodiments, the change of state of the tissue
may be determined based on transducer and tissue imped-
ance measurements as previously described, or based on
voltage, current, and frequency measurements in accordance
with the operations described in the disclosure of the fol-
lowing commonly-owned U.S. Patent Application, which is
incorporated herein by reference in its entirety: U.S. patent
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application Ser. No. 12/503,775, entitled “ULTRASONIC
DEVICE FOR CUTTING AND COAGULATING WITH
STEPPED OUTPUT,” now U.S. Pat. No. 8,058,771.

The devices disclosed herein can be designed to be
disposed of after a single use, or they can be designed to be
used multiple times. In either case, however, the device can
be reconditioned for reuse afier at least one use. Recondi-
tioning can include any combination of the steps of disas-
sembly of the device, followed by cleaning or replacement
of particular pieces, and subsequent reassembly. In particu-
lar, the device can be disassembled, and any number of the
particular pieces or parts of the device can be selectively
replaced or removed in any combination. Upon cleaning
and/or replacement of particular parts, the device can be
reassembled for subsequent use either at a reconditioning
facility, or by a surgical team immediately prior to a surgical
procedure. Those skilled in the art will appreciate that
reconditioning of a device can utilize a variety of techniques
for disassembly, cleaning/replacement, and reassembly. Use
of such techniques, and the resulting reconditioned device,
are all within the scope of the present application.

Preferably, the various embodiments described herein will
be processed before surgery. First, a new or used instrument
is obtained and if necessary cleaned. The instrument can
then be sterilized. In one sterilization technique, the instru-
ment is placed in a closed and sealed container, such as a
plastic or TYVEK bag. The container and instrument are
then placed in a field of radiation that can penetrate the
container, such as gamma radiation, x-rays, or high-energy
electrons. The radiation kills bacteria on the instrument and
in the container. The sterilized instrument can then be stored
in the sterile container. The sealed container keeps the
instrument sterile until it is opened in the medical facility.
Sterilization can also be done by any number of ways known
to those skilled in the art including beta or gamma radiation,
ethylene oxide, and/or steam.

In various embodiments, an ultrasonic surgical instrument
can be supplied to a surgeon with a waveguide and/or end
effector already operably coupled with a transducer of the
surgical instrument. In at least one such embodiment, the
surgeon, or other clinician, can remove the ultrasonic sur-
gical instrument from a sterilized package, plug the ultra-
sonic instrument into a generator, as outlined above, and use
the ultrasonic instrument during a surgical procedure. Such
a system can obviate the need for a surgeon, or other
clinician, to assemble a waveguide and/or end effector to the
ultrasonic surgical instrument. After the ultrasonic surgical
instrument has been used, the surgeon, or other clinician, can
place the ultrasonic instrument into a sealable package,
wherein the package can be transported to a sterilization
facility. At the sterilization facility, the ultrasonic instrument
can be disinfected, wherein any expended parts can be
discarded and replaced while any reusable parts can be
sterilized and used once again. Thereafter, the ultrasonic
instrument can be reassembled, tested, placed into a sterile
package, and/or sterilized after being placed into a package.
Once sterilized, the reprocessed ultrasonic surgical instru-
ment can be used once again.

Although various embodiments have been described
herein, many modifications and variations to those embodi-
ments may be implemented. For example, different types of
end effectors may be employed. Also, where materials are
disclosed for certain components, other materials may be
used. The foregoing description and following claims are
intended to cover all such modification and variations.

Any patent, publication, or other disclosure material, in
whole or in part, that is said to be incorporated by reference

20

25

40

45

60

65

32

herein is incorporated herein only to the extent that the
incorporated materials does not conflict with existing defi-
nitions, statements, or other disclosure material set forth in
this disclosure. As such, and to the extent necessary, the
disclosure as explicitly set forth herein supersedes any
conflicting material incorporated herein by reference. Any
material, or portion thereof, that is said to be incorporated by
reference herein, but which conflicts with existing defini-
tions, statements, or other disclosure material set forth
herein will only be incorporated to the extent that no conflict
arises between that incorporated material and the existing
disclosure material.

What is claimed is:

1. A surgical instrument, comprising:

a handpiece housing;

an acoustic assembly supported within said handpiece
housing, wherein said acoustic assembly is configured
to produce vibrations;

a waveguide comprising a proximal end and a distal end,
wherein said proximal end is mounted to said acoustic
assembly such that vibrations produced by said acous-
tic assembly are transmitted to said waveguide;

an ultrasonic blade coupled to said distal end of said
waveguide, wherein said ultrasonic blade comprises a
tissue treatment portion configured to cut and coagulate
tissue;

a clamp movable between an open position and a closed
position relative to said waveguide, wherein said clamp
comprises a first electrode and a second electrode, and
wherein said first electrode and said second electrode
longitudinally overlap said tissue treatment portion of
said ultrasonic blade when said clamp is in said closed
position;

a first conductor in electrical communication with said
first electrode; and

a second conductor in electrical communication with said
second electrode, wherein said first conductor and said
second conductor are configured to be placed in elec-
trical communication with a power source such that
current can flow from said first electrode to said second
electrode through tissue positioned intermediate said
first electrode and said second electrode.

2. The surgical instrument of claim 1, wherein said clamp
comprises a tissue-contacting pad, and wherein said first
electrode and said second electrode are embedded in said
tissue-contacting pad.

3. The surgical instrument of claim 2, wherein said first
electrode comprises a first point electrode, wherein said
second electrode comprises a second point electrode, and
wherein said first point electrode is positioned closer to said
distal end of said waveguide than said second point elec-
trode.

4. The surgical instrument of claim 1, wherein said clamp
comprises a tissue-contacting pad, wherein said tissue-con-
tacting pad comprises a first side and a second side, wherein
said first electrode is mounted to said first side, and wherein
said second electrode is mounted to said second side.

5. A surgical instrument, comprising:

a housing;

an acoustic assembly supported within said housing,
wherein said acoustic assembly is configured to pro-
duce vibrations;

a waveguide coupled to said acoustic assembly;

an ultrasonic blade extending from said waveguide,
wherein said ultrasonic blade comprises a tissue treat-
ment area configured to cut and coagulate tissue;
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a clamp movable between an open position and a closed
position relative to said waveguide, wherein said clamp
comprises:
an electrically non-conductive pad,

a first electrode embedded in said electrically non-
conductive pad; and

a second electrode embedded in said electrically non-
conductive pad, wherein said first electrode and said
second electrode longitudinally overlap said tissue
treatment area of said ultrasonic blade when said
clamp is in said closed position;

a first conductor in electrical communication with said
first electrode; and

asecond conductor in electrical communication with said
second electrode, wherein said first conductor and said
second conductor are configured to be placed in elec-
trical communication with a power source such that
current can flow from said first electrode to said second
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electrode through tissue positioned intermediate said
first electrode and said second electrode.

6. The surgical instrument of claim 5, wherein said first
electrode and said second electrode are laterally offset.

7. The surgical instrument of claim 5, wherein said first
electrode comprises a first longitudinal electrode, and
wherein said second electrode comprises a second longitu-
dinal electrode.

8. The surgical instrument of claim 7, wherein said second
electrode extends parallel to said first electrode.

9. The surgical instrument of claim 7, wherein said
electrically non-conductive pad comprises a first lateral side
and a second lateral side, wherein said first electrode is
mounted to said first lateral side, and wherein said second
electrode is mounted to said second lateral side.

10. The surgical instrument of claim 5, wherein said first
electrode comprises a first point electrode, and wherein said
second electrode comprises a second point electrode.
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