

(19)

Europäisches
Patentamt
European
Patent Office
Office européen
des brevets

(11)

EP 3 295 877 A1

(12)

EUROPEAN PATENT APPLICATION

(43) Date of publication:
21.03.2018 Bulletin 2018/12

(51) Int Cl.:
A61B 10/02 (2006.01) **A61B 10/04** (2006.01)

(21) Application number: 17196533.8

(22) Date of filing: 02.08.2013

(84) Designated Contracting States:
**AL AT BE BG CH CY CZ DE DK EE ES FI FR GB
GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO
PL PT RO RS SE SI SK SM TR**
Designated Extension States:
BA ME

(30) Priority: 03.08.2012 SE 1250909

(62) Document number(s) of the earlier application(s) in accordance with Art. 76 EPC:
13745068.0 / 2 879 588

(71) Applicant: **BibbInstruments AB**
223 63 Lund (SE)(72) Inventor: **Walther, Charles**
222 23 LUND (SE)(74) Representative: **Awapatent AB**
P.O. Box 5117
200 71 Malmö (SE)Remarks:

This application was filed on 16-10-2017 as a divisional application to the application mentioned under INID code 62.

(54) BIOPSY INSTRUMENT AND ENDOSCOPE

(57) A biopsy instrument (1) is disclosed comprising a guide wire (2) arranged in a sheath (3), a drill device (5) arranged at a first end (4) of said guide wire (2), and an actuator (11) for actuating said drill device (5), said actuator being arranged at a second end (10) of said guide wire (2). The drill device (5) comprises an outer tube (6) and an inner cutting device (7). The inner cutting device (7) is slidable and rotatable inside said outer tube (6). The inner cutting device (7) has a helical cutting edge (8). An endoscope comprising such an endoscopic instrument (1) is also disclosed, as well as a method for taking a biopsy sample from a tissue of a subject.

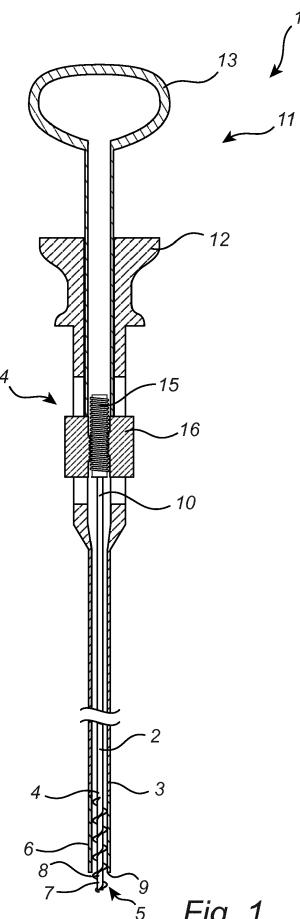


Fig. 1

Description**Technical Field of the Invention**

[0001] The present invention relates to a biopsy instrument. The biopsy instrument is especially suitable as an endoscopic biopsy instrument. The invention also relates to an endoscope comprising such a biopsy instrument.

Background Art

[0002] When evaluating various lesions and tumours, tissue samples may be acquired using a biopsy instrument. If a suspected lesion or tumour is located in or adjacent the gastrointestinal tract, an endoscopic biopsy instrument may be used. An example of an endoscopic biopsy instrument is described in US-5,865,724. This endoscopic biopsy instrument is generally comprised of a forceps arranged at a distal end of two control wires, and a handle arranged at a proximal end of the control wires, the control wires being enclosed in a plastic sheath. When taking a tissue sample with this type of endoscopic biopsy instrument, the wires in their sheath are inserted in a working channel of an endoscope, and the forceps are advanced to the site in the gastrointestinal tract where the sample is to be taken. By operating the handle of the endoscopic biopsy instrument, the forceps may be manoeuvred to scoop out a sample from the surface of the tissue.

[0003] For some diagnostic purposes the millimetre-sized sample thus retrievable is sufficient. However, for some types of lesions and tumours, such a small and superficial sample is inadequate for making a diagnosis. This is the case, e.g., for submucosal tumours, such as gastrointestinal stromal tumours (GIST). Since these tumours are located beneath the mucosa of the stomach or intestines, the forceps of the above-mentioned type of endoscopic biopsy instrument cannot reach into the tumour and retrieve a sufficiently large sample. Therefore, in order to get a sample that makes it possible to diagnose a submucosal tumour, it is often necessary to retrieve the sample surgically. Unfortunately, the fact that a patient has had surgery for diagnostic purposes increases the risk of complications, and reduces the survival rate, even if a malignant tumour is removed during subsequent therapeutic surgery. Thus, a need for an improved endoscopic biopsy instrument, which makes it possible to take larger samples and/or samples at a larger depth, e.g., beneath the mucosa of the gastrointestinal tract, remains.

Summary of the Invention

[0004] It is an object of the invention to provide a biopsy instrument, which overcomes the problems described above.

[0005] It is also an object of the invention to provide an endoscope which overcomes these problems.

[0006] According to a first aspect of the invention, these and other objects are achieved, in full or at least in part, by a biopsy instrument comprising:

5 a guide wire arranged in a sheath, the guide wire and sheath extending from a first end to a second end,
 the biopsy instrument further comprising
 an inner cutting device arranged at the first end of the guide wire,
 an outer tube arranged at the first end of the sheath, wherein the inner cutting device and the outer tube together form a drill device arranged at a first end of said guide wire,
 the biopsy instrument further comprising an actuator for actuating said drill device, said actuator being arranged at the second end of said the guide wire and sheath,
 wherein the inner cutting device is slidable and rotatable inside said the outer tube,
 wherein the inner cutting device has a helical cutting edge,
 wherein the inner cutting device with its helical edge is configured to be advanced and to be bored into the lesion or tumour to be evaluated by being rotated a plurality of turns,
 wherein the inner cutting device and the guide wire is rotated by the operator rotating a nut or wheel or toothed gear at the actuator,
 wherein the sheath is configured to advance the outer tube over the inner cutting device on an outside of the inner cutting device after the inner cutting device with its helical edge has been bored into the lesion or tumour to be evaluated, whereby the sample cut out and caught on the flange of the inner cutting device is enclosed by the outer tube.

[0007] With such a biopsy instrument, it is possible to take a biopsy sample at a greater depth as compared to prior art instruments. Further, a larger sample may be taken. Especially for investigating submucosal tumours, it is important to be able to take the sample at a greater depth, since otherwise it may not be possible to reach the tumour, through the overlying tissue. For other types of tumours, it is useful to get a larger sample, since this may provide more diagnostic material. By the outer tube being advancable over the inner cutting device on an outside of said inner cutting device, the outer tube may be advanced over the inner cutting to enclose the sample that has been cut out from the tissue and been caught on the flange of the inner cutting device.

[0008] According to a second aspect of the invention, these and other objects are achieved, in full or at least in part, by an endoscopic biopsy instrument comprising:

55 a guide wire arranged in a sheath,
 a drill device arranged at a first end of said guide wire, and

an actuator for actuating said drill device, said actuator being arranged at a second end of said guide wire,

wherein said drill device comprises an outer tube and an inner cutting device, said inner cutting device being slidable and rotatable inside said outer tube, said inner cutting device having a helical cutting edge. With such an endoscopic biopsy instrument, it is possible to take a biopsy sample at a greater depth as compared to prior art instruments. Further, a larger sample may be taken. Especially for investigating submucosal tumours, it is important to be able to take the sample at a greater depth, since otherwise it may not be possible to reach the tumour, through the overlying tissue. For other types of tumours, it is useful to get a larger sample, since this may provide more diagnostic material.

[0009] Preferred embodiments of the instruments disclosed above are disclosed below.

[0010] The sheath may have a diameter of 1-5 mm in order to fit in a working channel of an endoscope. The diameter of the drill device may be adapted to the diameter of the sheath, and may be 0.5-4 mm, generally 1-2 mm.

[0011] In an embodiment, the outer tube is advancable over the inner cutting device on an outside of said inner cutting device. Thereby, the outer tube may be advanced over the inner cutting to enclose the sample cut out from the tissue.

[0012] The inner cutting device of the drill device may comprise an inner core, said helical cutting edge being formed on a helical flange surrounding said inner core. In this manner, a rigid inner cutting device may be achieved, which may penetrate even tough tissues, such as the mucosa of the gastrointestinal tract.

[0013] The inner cutting device may be made of metal. Metal is readily machinable to the desired helical shape and may readily be sharpened to present a cutting edge. Metal is particularly advantageous if the endoscopic biopsy instrument is used in an endoscope comprising an ultrasound probe, since metal is visible in an ultrasonogram. Thus, the operator may, in an image acquired by the ultrasound probe, for instance see how deep into the tissue the inner cutting device has penetrated.

[0014] In an embodiment, the outer tube of the drill device has a cutting front edge. In this manner, the sample may even more securely be cut out from the tissue, should it not be completely cut off by the helical cutting edge of the inner cutting device.

[0015] At the second end, the guide wire may comprise an outside thread, and the actuator may comprise a rotatable portion having an inside thread, the inside thread being engagable with the outside thread of the guide wire for advancing the guide wire inside said sheath. In this manner, an easily manoeuvrable guide wire advancing device may be achieved. In one embodiment, the operator may advance the guide wire by simply rotating the

rotatable portion between his or her thumb and index finger.

[0016] Alternatively, at the second end, the guide wire may comprise a toothed portion, and the actuator may comprise a toothed gear, the toothed gear being engagable with the toothed portion of the guide wire for advancing the guide wire inside the sheath. This is another way of achieving an easily manoeuvrable guide wire advancing device. In one embodiment, the operator may advance the guide wire by simply rotating the toothed gear with his or her index finger.

[0017] The actuator may comprise a plunger arranged to advance said outer tube of said drill device on an outside of said inner cutting device. In this manner, an easily manoeuvrable outer tube advancing device may be achieved.

[0018] The actuator may comprise a second rotatable portion arranged to advance said outer tube of said drill device on an outside of said inner cutting device. This is another way of obtaining an easily manoeuvrable outer tube advancing device.

[0019] According to a third aspect of the invention, these and other objects are achieved, in full or at least in part, by an endoscope comprising:

25 an endoscopic insertion tube,
an imaging device arranged in said endoscopic insertion tube,
30 a biopsy instrument arranged in said endoscopic insertion tube. With such an endoscope, the same advantages may be achieved as with the biopsy instrument according to the first aspect of the invention. In the endoscope, the endoscopic biopsy instrument may be embodied in the same ways as the biopsy instrument according to the first aspect of the invention, with the same advantages.

[0020] According to an embodiment, the imaging device is an ultrasound probe. Ultrasonic imaging is particularly advantageous for evaluating submucous tumours.

[0021] According to a fourth aspect of the invention, these and other objects are achieved, in full or at least in part, by a method for taking a biopsy sample from a tissue of a subject, comprising:

45 providing an endoscopic biopsy instrument comprising a guide wire arranged in a sheath, a drill device arranged at a first end of said guide wire, and an actuator for actuating said drill device, said actuator being arranged at a second end of said guide wire, wherein said drill device comprises an outer tube and an inner cutting device, said inner cutting device being slidable and rotatable inside said outer tube, said inner cutting device having a helical cutting edge,
50 inserting said first end of said guide wire into a body cavity of said subject,
55 advancing said guide wire until said drill device is

applied to a surface of the tissue from which the biopsy sample is to be taken, advancing said guide wire inside said sheath such that said inner cutting device of said drill device is 5 rotatably bored into said tissue, such that the biopsy sample is cut out from said tissue, enclosing said biopsy sample in said outer tube by a translational movement of said outer tube in relation to said inner cutting device, and retrieving said biopsy sample by withdrawing said 10 first end of said guide wire from said body cavity. With such a method, it is possible to take a biopsy sample from a greater depth as compared to prior art methods. It is also possible to take a larger sample.

[0022] The body cavity may be part of the gastrointestinal tract of the subject.

[0023] In a variant of the method, the outer tube is advanced over the inner cutting device on an outside of the inner cutting device. In this way, the sample cut out by the inner cutting device is enclosed by the outer tube.

[0024] The endoscopic biopsy instrument may be inserted in an endoscopic insertion tube of an endoscope, said endoscope comprising an imaging device arranged in said endoscopic insertion tube. In this way, the endoscopic biopsy instrument may be securely guided to the site where the biopsy sample is to be taken.

[0025] Generally, the method of the invention may be varied in accordance with the different embodiments of the first aspect of the invention, with the same accompanying advantages.

[0026] Other objectives, features and advantages of the present invention will appear from the following detailed disclosure, from the attached claims, as well as from the drawings. It is noted that the invention relates to all possible combinations of features.

[0027] Generally, all terms used in the claims are to be interpreted according to their ordinary meaning in the technical field, unless explicitly defined otherwise herein. All references to "a/an/the [element, device, component, means, step, etc.]" are to be interpreted openly as referring to at least one instance of said element, device, component, means, step, etc., unless explicitly stated otherwise. The steps of any method disclosed herein do not have to be performed in the exact order disclosed, unless explicitly stated.

[0028] As used herein, the term "comprising" and variations of that term are not intended to exclude other additives, components, integers or steps.

Brief Description of the Drawings

[0029] The invention will be described in more detail with reference to the appended schematic drawings, which show an example of a presently preferred embodiment of the invention.

Fig. 1 is a cross sectional view of an endoscopic biopsy instrument according to an embodiment.

Fig. 2 is a detail view of an actuator of the endoscopic biopsy instrument of Fig. 1.

Fig. 3 is a cross sectional view of an endoscopic biopsy instrument according to a second embodiment.

Fig. 4 is a detail view of an inner cutting device of the endoscopic biopsy instrument of Fig. 1 or Fig. 3.

Fig. 5 is a cross sectional view showing use of an endoscope according to an embodiment.

Fig. 6 is a detail view of an actuator of an endoscopic biopsy instrument according to a third embodiment in a first position.

Fig. 7 is a detail view of the actuator of Fig. 6 in a second position.

Detailed Description of Preferred Embodiments of the Invention

[0030] In Fig. 1, an endoscopic biopsy instrument 1 is shown. The endoscopic biopsy instrument 1 comprises a guide wire 2 arranged in a sheath 3. At a first, distal end 4 of the guide wire 2, a drill device 5 is arranged. The drill device 5 comprises an outer tube 6 and an inner cutting device 7. The inner cutting device 7 is slidable and rotatable inside the outer tube 6, and has a helical cutting edge 8. The outer tube 6 is cylindrical and has a straight edge 9.

[0031] At a second, proximal end 10 of the guide wire 2, an actuator 11 comprising a handle 12 and a plunger 13 is arranged. The actuator 11 further comprises a guide wire advancing device 14. The guide wire advancing device comprises a threaded portion 15 at the proximal end of the guide wire 2 having an outside thread, and a rotatable portion 16 or nut having an inside thread. The threaded portion 15 of the guide wire 2 is engagable with the nut 16, such that rotation of the nut 16 causes the guide wire to rotate and move in its longitudinal direction, thus moving along the inside of the sheath 3.

[0032] As may be seen more clearly in Fig. 4, the inner cutting device 7 has an inner core 17 surrounded by a helical flange 18. The helical cutting edge 8 of the inner cutting device 7 is formed on the helical flange 18. The helical flange 18 forms more than one complete winding or turn around the inner core 17. At the distal end 19 of the inner cutting device 7 a hook or anchoring portion 20 is formed on the helical flange 18.

[0033] With reference to Fig. 2, the actuator 11 further comprises a housing 21 in which the wire, via the nut 16, is retained at retaining points 22, and a sheath advancing device 23 in the form of bars 24 attached to the plunger 13. Abutment portions 25 of the bars abut a cut-out edge of the sheath 3, such that when the plunger 13 is depressed, the bars 23, via the abutment portions 24, push the sheath 3 outwardly from the housing 21. Thereby, the sheath 3 advances the outer tube 6 of the drill device 5 over the inner cutting device 7 on an outside of the

inner cutting device 5.

[0034] In Fig. 3, an endoscopic biopsy instrument 101 according to a second embodiment is shown. Except for the actuator 111, the endoscopic biopsy instrument 101 in Fig. 3 has the same structure as the endoscopic biopsy instrument in Fig. 1. Like parts are in the embodiment in Fig. 3 marked with the same reference numerals as used in Fig. 1, but with the addition of 100 on each reference numeral.

[0035] Thus, the endoscopic biopsy instrument 101 comprises a guide wire 102 arranged in a sheath 103. At a distal end 104 of the guide wire 102 a drill device 105 of the same construction as the drill device 5 shown in Fig. 1 is arranged. The inner cutting device 107 is of the same construction as that shown in detail in Fig. 4. At the proximal end 110 of the guide wire 102, an actuator 111 is arranged. The actuator 111 comprises a handle 112, a plunger 113, and a guide wire advancing device 114. Different from the embodiment shown in Figs. 1 and 2, the guide wire advancing device 114 comprises a teethered portion 115 at the proximal end of the guide wire 102, and a toothed gear 116, which is engagable with the teethered portion 115 of the guide wire 102. By rotating the toothed gear 116, the guide wire 102 may be rotated and advanced in its longitudinal direction, thus moving along the inside of the sheath 103.

[0036] In Fig. 6, an endoscopic biopsy instrument 201 according to a third embodiment is shown. Except for the actuator 211, the endoscopic biopsy instrument 201 in Fig. 6 has the same structure as the endoscopic biopsy instrument in Fig. 1. Like parts are in the embodiment in Fig. 6 marked with the same reference numerals as used in Fig. 1, but with the addition of 200 on each reference numeral.

[0037] The actuator 211 comprises a guide wire advancing device 214 which similarly to the embodiment shown in Fig. 1 comprises a threaded portion 215 at the proximal end of the guide wire having an outside thread, and a first rotatable portion 216 or nut having an inside thread. The threaded portion 215 of the guide wire is engagable with the wheel or nut 216, such that rotation of the nut 216 causes the guide wire to rotate and move in its longitudinal direction, thus moving along the inside of the sheath 203. The outer tube advancing device 223 differs from the one in the first embodiment in that it comprises a second rotatable portion in the form of a second wheel or nut 226. Rotation of the second nut 226 causes a sheath advancing portion 228 connected to two parallel guide bars 227 to travel in a distal direction from a position shown in Fig. 6 to a position shown in Fig. 7, thereby advancing the sheath 203. The sheath 203 in turn advances the outer tube 206 of the drill device 205 over the inner cutting device on an outside of the inner cutting device. In the embodiment shown, the outer tube advancing device 223 additionally comprises an end block 229 attached to the proximal end of the guide bars 227. As an alternative to rotating the second nut 226, the end block 229 may be depressed, thereby advancing the

sheath advancing portion 228, which in turn advances the sheath 203, and thereby the outer tube 206.

[0038] In all of the shown embodiments, the sheath is made of a medical grade plastic material, whereas the outer tube and inner cutting device of the drill device are made of medical grade metal.

[0039] An endoscopic biopsy instrument according to either embodiment may be inserted in an endoscope 30 and used in the way schematically illustrated in Fig. 5.

10 An example of an endoscope with which the endoscopic biopsy instrument of the invention may be used may be seen in EP-1 849 414. In the following description of Fig. 5, the reference numerals used for the embodiment shown in Fig. 6 are used, but the endoscopic biopsy instrument according to the embodiment shown in Fig. 1 or Fig. 3 may just as well be used in the same way.

[0040] The endoscopic biopsy instrument 201 is inserted in a working channel of an endoscopic insertion tube 31 of the endoscope 30. A control unit 34 for the endoscope 30 is arranged at a proximal end 35 of the endoscopic insertion tube 31. At a distal end 36 of the insertion tube 31, an imaging device in the form of an ultrasound probe 37 or camera is arranged. Images captured by the ultrasound probe 37 or camera may be displayed on a

20 display 38.

25 **[0041]** In the illustration in Fig. 5, the endoscope is a gastroscope 30, which is inserted through the mouth of a patient. The insertion tube 31 is advanced through the oesophagus, down into the stomach, until the distal end 36 of the insertion tube 31 reaches the site which is to be investigated. Using the images acquired by the ultrasound probe 37 or camera, the operator may see the investigated site on the display 38. Since the inner cutting device 207 is made of metal, it is visible in an ultrasonogram.

30 During insertion of the endoscopic insertion tube 31 to the site to be investigated, the inner cutting device 207 is enclosed in the outer tube 206, such that the inner cutting device 207 does not injure the mucosa along the passage through the mouth, oesophagus and stomach, and such that the sample taken is not soiled by tissue accidentally caught by the inner cutting device 207 before the site to be investigated is reached. When the desired location is reached, the distal end 19 of the inner cutting device 207 of the endoscopic biopsy instrument 201 is

35 applied to the surface of the mucosa, and the hook 20 is anchored in the mucosa. By rotating the first nut 216, the operator advances the inner cutting device 207, boring it into and through the mucosa, and into the lesion or tumour to be evaluated. The inner cutting device 207 may be rotated a plurality of turns, in order to get a large sample from the quite tough mucous tissue. With a sufficiently long inner cutting device 207, the inner cutting device 207 may also be bored through the lesion or tumour, thereby also including some overlying tissue in the sample.

40 In this manner, a layered sample may be obtained, thereby enabling orientation of the retrieved biopsy sample. Once the inner cutting device 207 has been bored into the lesion or tumour to a depth which the operator, 45

50

55

guided by the images acquired by the ultrasound probe 37, considers is sufficient, the operator rotates the second nut 226, thereby advancing the outer tube 206 of the drill device 205 on the outside of the inner cutting device 207. In this manner, the sample cut out and caught on the flange 18 of the inner cutting device 207 is enclosed by the outer tube 206. Subsequently, the endoscopic biopsy instrument is withdrawn from the endoscope. Once the drill device 205 is outside the body of the patient, the outer tube 206 of the drill device 205 may be retracted, exposing the sample on the flange 18 of the inner cutting device 207. The sample is removed from the inner cutting device 207 and prepared for microscopic examination. Generally, more than one sample will be taken by reinserting the endoscopic biopsy instrument 201 in the endoscope 30, boring the inner cutting device 207 into the tissue, enclosing the cut-out sample in the outer tube 206, and withdrawing the endoscopic biopsy instrument 201 from the endoscope 30. This procedure may be repeated a number of times, until a desired number of biopsy samples have been obtained. When the desired number of samples has been retrieved, the endoscope may be withdrawn from the stomach, out through the oesophagus and mouth.

[0042] The skilled person realises that a number of modifications of the embodiments described herein are possible without departing from the scope of the invention, which is defined in the appended claims.

[0043] For instance, although the endoscope shown in Fig. 5 is a gastroscope, the invention is equally applicable to other endoscopes, such as coloscopes, and bronchoscopes.

[0044] The imaging device may be a camera. For investigating many types of tumours, a camera will be the first choice of imaging device. However, for investigating submucous tumours, the use of an ultrasound probe has been shown to give better results (See, e.g., Thorlacius et al. Endoskopiskt ultraljud inom gastroenterologin. Läkartidningen. 17 November 2009, No. 47.). Still, even when investigating submucosal tumours, the investigation may be started using a fibre-optic endoscope with a camera, and if the results are not satisfactory, the operator may switch to an endoscope with an ultrasound probe.

[0045] The edge of the outer tube is straight and, in the embodiments described above, not sharp. However, the edge may be made sharp, such that the outer tube has a cutting edge.

[0046] The material of the sheath is chosen such that the sheath may easily be inserted in the working channel of the endoscope in which it is to be supported, and such that the guide wire may be securely enclosed, yet freely movable inside the sheath. Examples of suitable materials are medical grade plastics materials, e.g., PTFE, FEP or polyolefin.

[0047] In the embodiments described above, the outer tube of the drill device is made of metal, e.g. medical grade steel. However, other materials, such as plastics

may be used.

[0048] The inner cutting device is preferably made of metal, such as medical grade steel, in order to make it visible in an ultrasonogram. However, if the endoscope in which the endoscopic biopsy instrument is supported, uses another type of imaging device, such as a camera, other materials may be used.

[0049] The length of the endoscopic biopsy instrument, or rather the length of the guide wire, may be chosen depending on where in the body of the patient the biopsy sample is to be taken. For instance, for use in a gastroscope, the length of the guide wire may be approximately 160 cm.

[0050] Similarly, the length of the inner cutting device may be chosen depending on where the biopsy sample is to be taken. As non-limiting examples, a length of 5-7 mm may be sufficient for taking a superficial biopsy, whereas a biopsy of a submucosal tumour, such as GIST, may require a length of 10-12 mm, or even 15 mm.

[0051] In the embodiments described above, the inner cutting device has an inner core. The inner cutting device may also be constructed without an inner core, as long as the inner cutting device has a helical cutting edge and is stiff enough to penetrate into the tissue at the site of investigation.

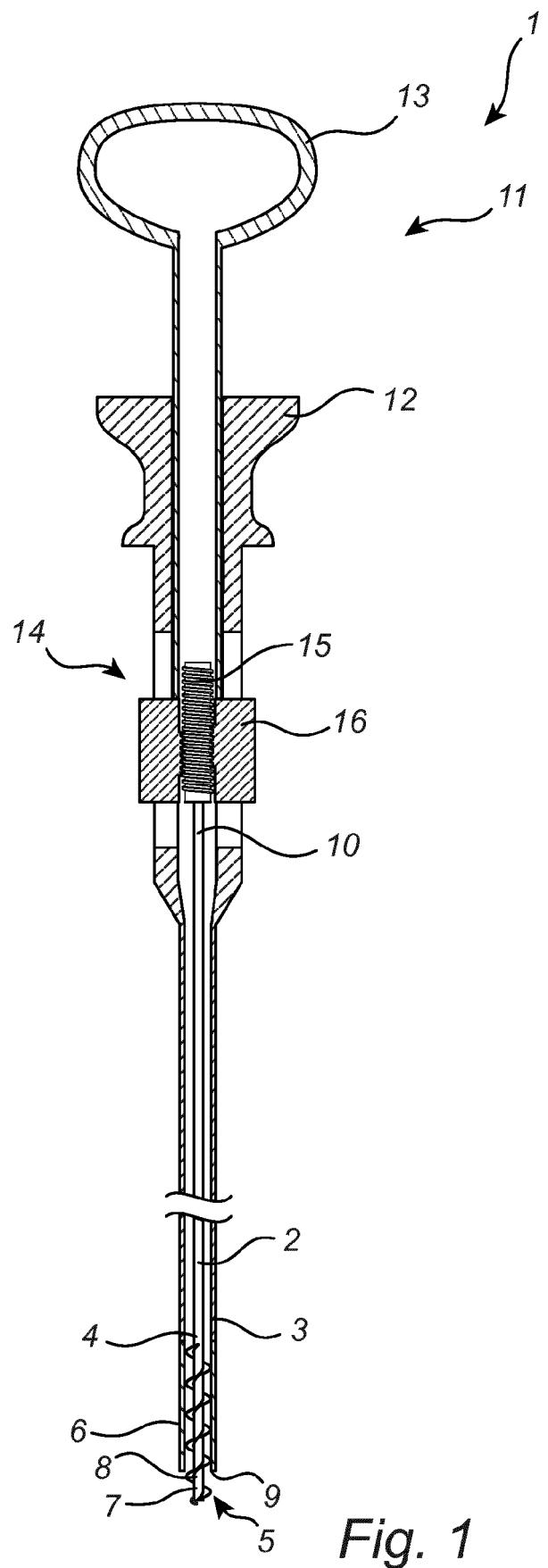
[0052] In the embodiment shown in Fig. 6, there are two ways of manoeuvring the outer tube advancing device 223, i.e. by rotation of the second nut 226 or by depression of the end block 229. It may in many instances be advantageous to use rotation for advancing the outer tube 206, because experiments show that if depression of the end block 229 is used, the operator may have a tendency of slightly pulling back the instrument while depressing the end block 229. This may lead to shearing of the biopsy. Therefore, the instrument may very well be constructed without the end block 229. In such case, the guide bars 227 need not extend all the way through the actuator 211, but could be replaced by shorter guide bars or other guide elements guiding the sheath advancing portion 228. However, the end block 229 and the longer guide bars 227 may provide comfortable stability to the actuator 211.

[0053] In the method described above, when the sample has been cut out from the tissue, the outer tube is advanced on the inner cutting device, such that the sample is enclosed in the outer tube. Instead, the inner cutting device may be retracted into the outer tube. In other words, the inner cutting device and the outer tube should be moved in translation relative to each other in order to enclose the cut-out sample in the outer tube.

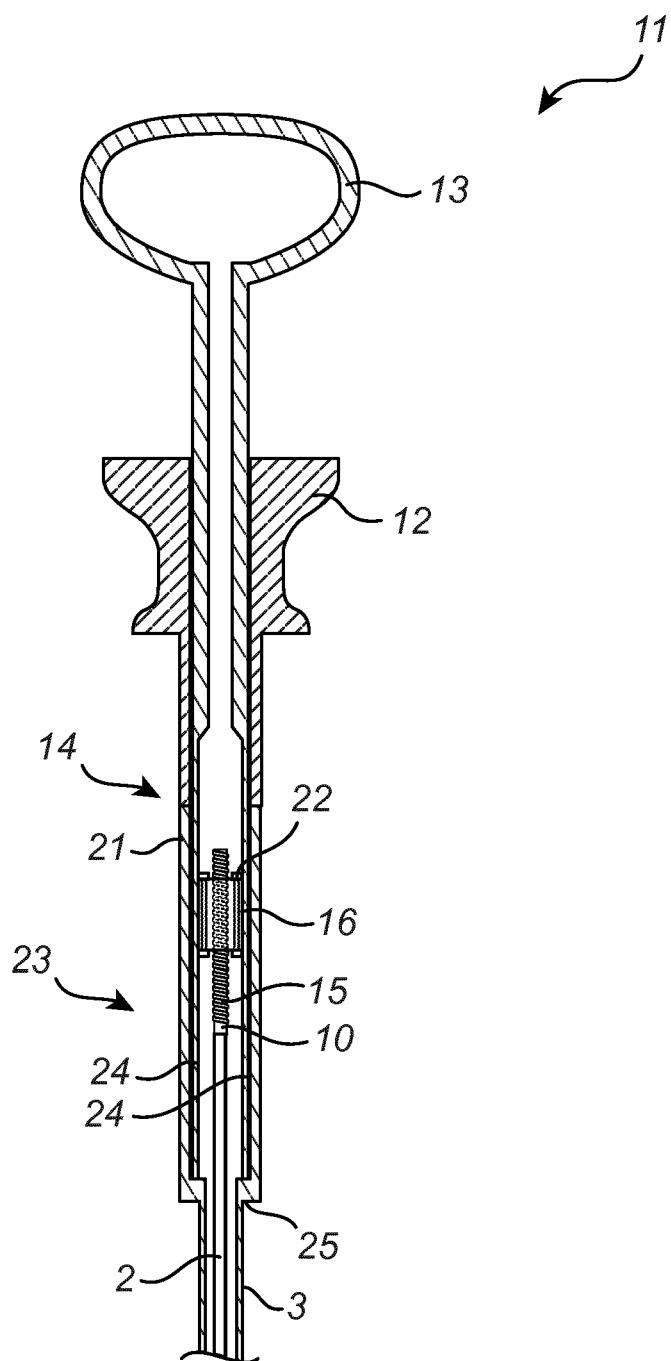
[0054] The endoscopic biopsy instrument is preferably a disposable instrument, for single use. However, it may be constructed for multiple use, as long as the materials chosen are suitable for the necessary sterilization, such as autoclaving.

[0055] The endoscopic biopsy instrument, the endoscope, and the method described above are particularly suitable for taking biopsy samples from submucous tu-

mours. However, the invention may be used to advantage also for taking biopsy samples from other tumours and lesions.

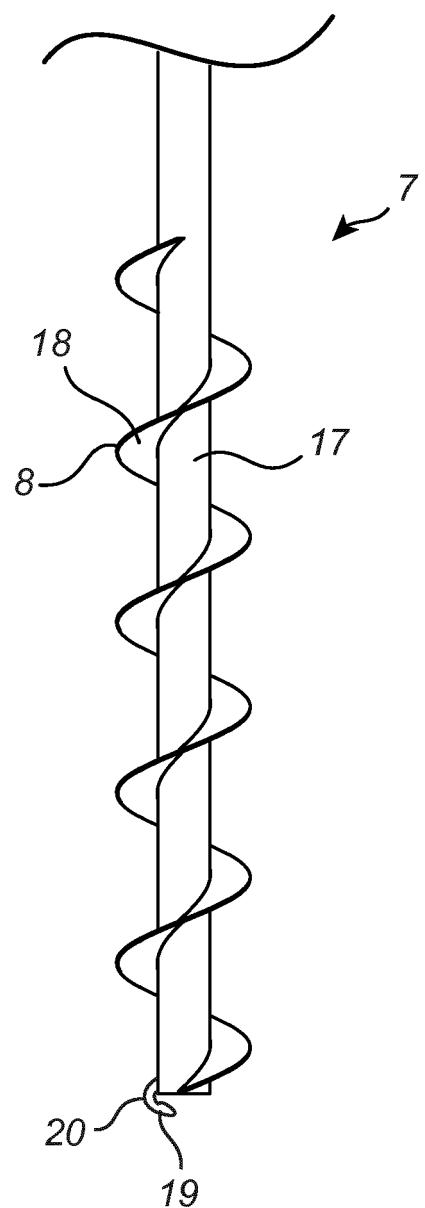

5

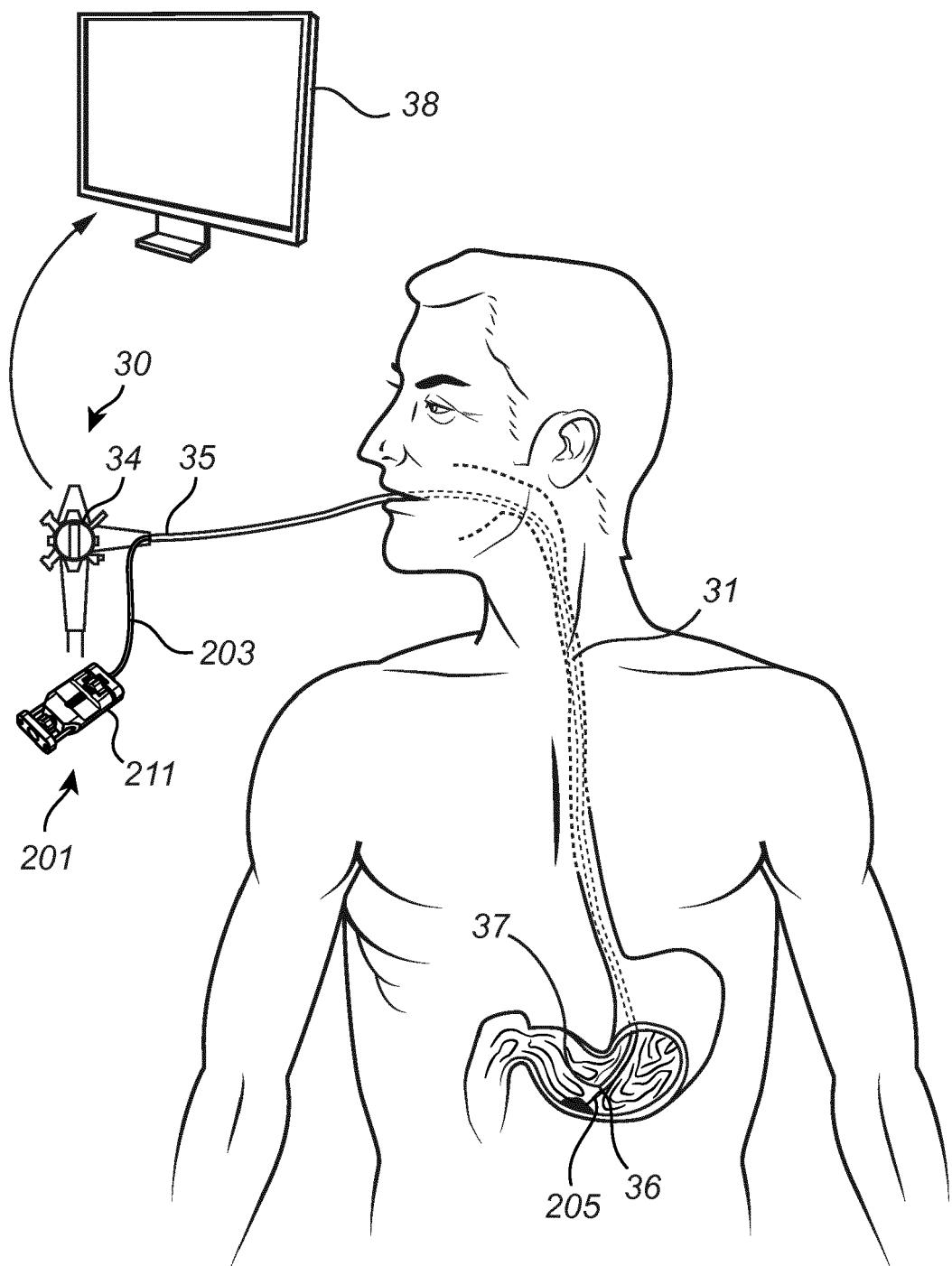
4. A biopsy instrument as claimed in any one of the preceding claims, wherein said outer tube (6; 106; 206) of said drill device (5; 105; 206) has a cutting front edge (9; 109).


Claims

1. A biopsy instrument comprising:

a guide wire (2; 102) arranged in a sheath (3; 103; 203), the guide wire (2; 102) and sheath (3; 103; 203) extending from a first end to a second end, the biopsy instrument further comprising:
 an inner cutting device (7; 107; 207) arranged at the first end (4; 104) of the guide wire (2; 102), an outer tube (6; 106; 206) arranged at the first end of the sheath (3; 103; 203),
 wherein the inner cutting device (7; 107; 207) and the outer tube (6; 106; 206) together form a drill device (5; 105; 205)
 the biopsy instrument further comprising an actuator (11; 111; 211) for actuating said drill device, said actuator being arranged at the second end (10; 110; 210) of the guide wire (2; 102) and sheath (3; 103; 203),
 wherein the inner cutting device (7; 107; 207) is
 10
 15
 20
 25
 30
 35
 40
 45
 50
 55
 60
 65
 70
 75
 80
 85
 90
 95
 100
 105
 110
 115
 120
 125
 130
 135
 140
 145
 150
 155
 160
 165
 170
 175
 180
 185
 190
 195
 200
 205
 210
 215
 220
 225
 230
 235
 240
 245
 250
 255
 260
 265
 270
 275
 280
 285
 290
 295
 300
 305
 310
 315
 320
 325
 330
 335
 340
 345
 350
 355
 360
 365
 370
 375
 380
 385
 390
 395
 400
 405
 410
 415
 420
 425
 430
 435
 440
 445
 450
 455
 460
 465
 470
 475
 480
 485
 490
 495
 500
 505
 510
 515
 520
 525
 530
 535
 540
 545
 550
 555
 560
 565
 570
 575
 580
 585
 590
 595
 600
 605
 610
 615
 620
 625
 630
 635
 640
 645
 650
 655
 660
 665
 670
 675
 680
 685
 690
 695
 700
 705
 710
 715
 720
 725
 730
 735
 740
 745
 750
 755
 760
 765
 770
 775
 780
 785
 790
 795
 800
 805
 810
 815
 820
 825
 830
 835
 840
 845
 850
 855
 860
 865
 870
 875
 880
 885
 890
 895
 900
 905
 910
 915
 920
 925
 930
 935
 940
 945
 950
 955
 960
 965
 970
 975
 980
 985
 990
 995
 1000
 1005
 1010
 1015
 1020
 1025
 1030
 1035
 1040
 1045
 1050
 1055
 1060
 1065
 1070
 1075
 1080
 1085
 1090
 1095
 1100
 1105
 1110
 1115
 1120
 1125
 1130
 1135
 1140
 1145
 1150
 1155
 1160
 1165
 1170
 1175
 1180
 1185
 1190
 1195
 1200
 1205
 1210
 1215
 1220
 1225
 1230
 1235
 1240
 1245
 1250
 1255
 1260
 1265
 1270
 1275
 1280
 1285
 1290
 1295
 1300
 1305
 1310
 1315
 1320
 1325
 1330
 1335
 1340
 1345
 1350
 1355
 1360
 1365
 1370
 1375
 1380
 1385
 1390
 1395
 1400
 1405
 1410
 1415
 1420
 1425
 1430
 1435
 1440
 1445
 1450
 1455
 1460
 1465
 1470
 1475
 1480
 1485
 1490
 1495
 1500
 1505
 1510
 1515
 1520
 1525
 1530
 1535
 1540
 1545
 1550
 1555
 1560
 1565
 1570
 1575
 1580
 1585
 1590
 1595
 1600
 1605
 1610
 1615
 1620
 1625
 1630
 1635
 1640
 1645
 1650
 1655
 1660
 1665
 1670
 1675
 1680
 1685
 1690
 1695
 1700
 1705
 1710
 1715
 1720
 1725
 1730
 1735
 1740
 1745
 1750
 1755
 1760
 1765
 1770
 1775
 1780
 1785
 1790
 1795
 1800
 1805
 1810
 1815
 1820
 1825
 1830
 1835
 1840
 1845
 1850
 1855
 1860
 1865
 1870
 1875
 1880
 1885
 1890
 1895
 1900
 1905
 1910
 1915
 1920
 1925
 1930
 1935
 1940
 1945
 1950
 1955
 1960
 1965
 1970
 1975
 1980
 1985
 1990
 1995
 2000
 2005
 2010
 2015
 2020
 2025
 2030
 2035
 2040
 2045
 2050
 2055
 2060
 2065
 2070
 2075
 2080
 2085
 2090
 2095
 2100
 2105
 2110
 2115
 2120
 2125
 2130
 2135
 2140
 2145
 2150
 2155
 2160
 2165
 2170
 2175
 2180
 2185
 2190
 2195
 2200
 2205
 2210
 2215
 2220
 2225
 2230
 2235
 2240
 2245
 2250
 2255
 2260
 2265
 2270
 2275
 2280
 2285
 2290
 2295
 2300
 2305
 2310
 2315
 2320
 2325
 2330
 2335
 2340
 2345
 2350
 2355
 2360
 2365
 2370
 2375
 2380
 2385
 2390
 2395
 2400
 2405
 2410
 2415
 2420
 2425
 2430
 2435
 2440
 2445
 2450
 2455
 2460
 2465
 2470
 2475
 2480
 2485
 2490
 2495
 2500
 2505
 2510
 2515
 2520
 2525
 2530
 2535
 2540
 2545
 2550
 2555
 2560
 2565
 2570
 2575
 2580
 2585
 2590
 2595
 2600
 2605
 2610
 2615
 2620
 2625
 2630
 2635
 2640
 2645
 2650
 2655
 2660
 2665
 2670
 2675
 2680
 2685
 2690
 2695
 2700
 2705
 2710
 2715
 2720
 2725
 2730
 2735
 2740
 2745
 2750
 2755
 2760
 2765
 2770
 2775
 2780
 2785
 2790
 2795
 2800
 2805
 2810
 2815
 2820
 2825
 2830
 2835
 2840
 2845
 2850
 2855
 2860
 2865
 2870
 2875
 2880
 2885
 2890
 2895
 2900
 2905
 2910
 2915
 2920
 2925
 2930
 2935
 2940
 2945
 2950
 2955
 2960
 2965
 2970
 2975
 2980
 2985
 2990
 2995
 3000
 3005
 3010
 3015
 3020
 3025
 3030
 3035
 3040
 3045
 3050
 3055
 3060
 3065
 3070
 3075
 3080
 3085
 3090
 3095
 3100
 3105
 3110
 3115
 3120
 3125
 3130
 3135
 3140
 3145
 3150
 3155
 3160
 3165
 3170
 3175
 3180
 3185
 3190
 3195
 3200
 3205
 3210
 3215
 3220
 3225
 3230
 3235
 3240
 3245
 3250
 3255
 3260
 3265
 3270
 3275
 3280
 3285
 3290
 3295
 3300
 3305
 3310
 3315
 3320
 3325
 3330
 3335
 3340
 3345
 3350
 3355
 3360
 3365
 3370
 3375
 3380
 3385
 3390
 3395
 3400
 3405
 3410
 3415
 3420
 3425
 3430
 3435
 3440
 3445
 3450
 3455
 3460
 3465
 3470
 3475
 3480
 3485
 3490
 3495
 3500
 3505
 3510
 3515
 3520
 3525
 3530
 3535
 3540
 3545
 3550
 3555
 3560
 3565
 3570
 3575
 3580
 3585
 3590
 3595
 3600
 3605
 3610
 3615
 3620
 3625
 3630
 3635
 3640
 3645
 3650
 3655
 3660
 3665
 3670
 3675
 3680
 3685
 3690
 3695
 3700
 3705
 3710
 3715
 3720
 3725
 3730
 3735
 3740
 3745
 3750
 3755
 3760
 3765
 3770
 3775
 3780
 3785
 3790
 3795
 3800
 3805
 3810
 3815
 3820
 3825
 3830
 3835
 3840
 3845
 3850
 3855
 3860
 3865
 3870
 3875
 3880
 3885
 3890
 3895
 3900
 3905
 3910
 3915
 3920
 3925
 3930
 3935
 3940
 3945
 3950
 3955
 3960
 3965
 3970
 3975
 3980
 3985
 3990
 3995
 4000
 4005
 4010
 4015
 4020
 4025
 4030
 4035
 4040
 4045
 4050
 4055
 4060
 4065
 4070
 4075
 4080
 4085
 4090
 4095
 4100
 4105
 4110
 4115
 4120
 4125
 4130
 4135
 4140
 4145
 4150
 4155
 4160
 4165
 4170
 4175
 4180
 4185
 4190
 4195
 4200
 4205
 4210
 4215
 4220
 4225
 4230
 4235
 4240
 4245
 4250
 4255
 4260
 4265
 4270
 4275
 4280
 4285
 4290
 4295
 4300
 4305
 4310
 4315
 4320
 4325
 4330
 4335
 4340
 4345
 4350
 4355
 4360
 4365
 4370
 4375
 4380
 4385
 4390
 4395
 4400
 4405
 4410
 4415
 4420
 4425
 4430
 4435
 4440
 4445
 4450
 4455
 4460
 4465
 4470
 4475
 4480
 4485
 4490
 4495
 4500
 4505
 4510
 4515
 4520
 4525
 4530
 4535
 4540
 4545
 4550
 4555
 4560
 4565
 4570
 4575
 4580
 4585
 4590
 4595
 4600
 4605
 4610
 4615
 4620
 4625
 4630
 4635
 4640
 4645
 4650
 4655
 4660
 4665
 4670
 4675
 4680
 4685
 4690
 4695
 4700
 4705
 4710
 4715
 4720
 4725
 4730
 4735
 4740
 4745
 4750
 4755
 4760
 4765
 4770
 4775
 4780
 4785
 4790
 4795
 4800
 4805
 4810
 4815
 4820
 4825
 4830
 4835
 4840
 4845
 4850
 4855
 4860
 4865
 4870
 4875
 4880
 4885
 4890
 4895
 4900
 4905
 4910
 4915
 4920
 4925
 4930
 4935
 4940
 4945
 4950
 4955
 4960
 4965
 4970
 4975
 4980
 4985
 4990
 4995
 5000
 5005
 5010
 5015
 5020
 5025
 5030
 5035
 5040
 5045
 5050
 5055
 5060
 5065
 5070
 5075
 5080
 5085
 5090
 5095
 5100
 5105
 5110
 5115
 5120
 5125
 5130
 5135
 5140
 5145
 5150
 5155
 5160
 5165
 5170
 5175
 5180
 5185
 5190
 5195
 5200
 5205
 5210
 5215
 5220
 5225
 5230
 5235
 5240
 5245
 5250
 5255
 5260
 5265
 5270
 5275
 5280
 5285
 5290
 5295
 5300
 5305
 5310
 5315
 5320
 5325
 5330
 5335
 5340
 5345
 5350
 5355
 5360
 5365
 5370
 5375
 5380
 5385
 5390
 5395
 5400
 5405
 5410
 5415
 5420
 5425
 5430
 5435
 5440
 5445
 5450
 5455
 5460
 5465
 5470
 5475
 5480
 5485
 5490
 5495
 5500
 5505
 5510
 5515
 5520
 5525
 5530
 5535
 5540
 5545
 5550
 5555
 5560
 5565
 5570
 5575
 5580
 5585
 5590
 5595
 5600
 5605
 5610
 5615
 5620
 5625
 5630
 5635
 5640
 5645
 5650
 5655
 5660
 5665
 5670
 5675
 5680
 5685
 5690
 5695
 5700
 5705
 5710
 5715
 5720
 5725
 5730
 5735
 5740
 5745
 5750
 5755
 5760
 5765
 5770
 5775
 5780
 5785
 5790
 5795
 5800
 5805
 5810
 5815
 5820
 5825
 5830
 5835
 5840
 5845
 5850
 5855
 5860
 5865
 5870
 5875
 5880
 5885
 5890
 5895
 5900
 5905
 5910
 5915
 5920
 5925
 5930
 5935
 5940
 5945
 5950
 5955
 5960
 5965
 5970
 5975
 5980
 5985
 5990
 5995
 6000
 6005
 6010
 6015
 6020
 6025
 6030
 6035
 6040
 6045
 6050
 6055
 6060
 6065
 6070
 6075
 6080
 6085
 6090
 6095
 6100
 6105
 6110
 6115
 6120
 6125
 6130
 6135
 6140
 6145
 6150
 6155
 6160
 6165
 6170
 6175
 6180
 6185
 6190
 6195
 6200
 6205
 6210
 6215
 6220
 6225
 6230
 6235
 6240
 6245
 6250
 6255
 6260
 6265
 6270
 6275
 6280
 6285
 6290
 6295
 6300
 6305
 6310
 6315
 6320
 6325
 6330
 6335
 6340
 6345
 6350
 6355
 6360
 6365
 6370
 6375
 6380
 6385
 6390
 6395
 6400
 6405
 6410
 6415
 6420
 6425
 6430
 6435
 6440
 6445
 6450
 6455
 6460
 6465
 6470
 6475
 6480
 6485
 6490
 6495
 6500
 6505
 6510
 6515
 6520
 6525
 6530
 6535
 6540
 6545
 6550
 6555
 6560
 6565
 6570
 6575
 6580
 6585
 6590
 6595
 6600
 6605
 6610
 6615
 6620
 6625
 6630
 6635
 6640
 6645
 6650
 6655
 6660
 6665
 6670
 6675
 6680
 6685
 6690
 6695
 6


Fig. 1


Fig. 2

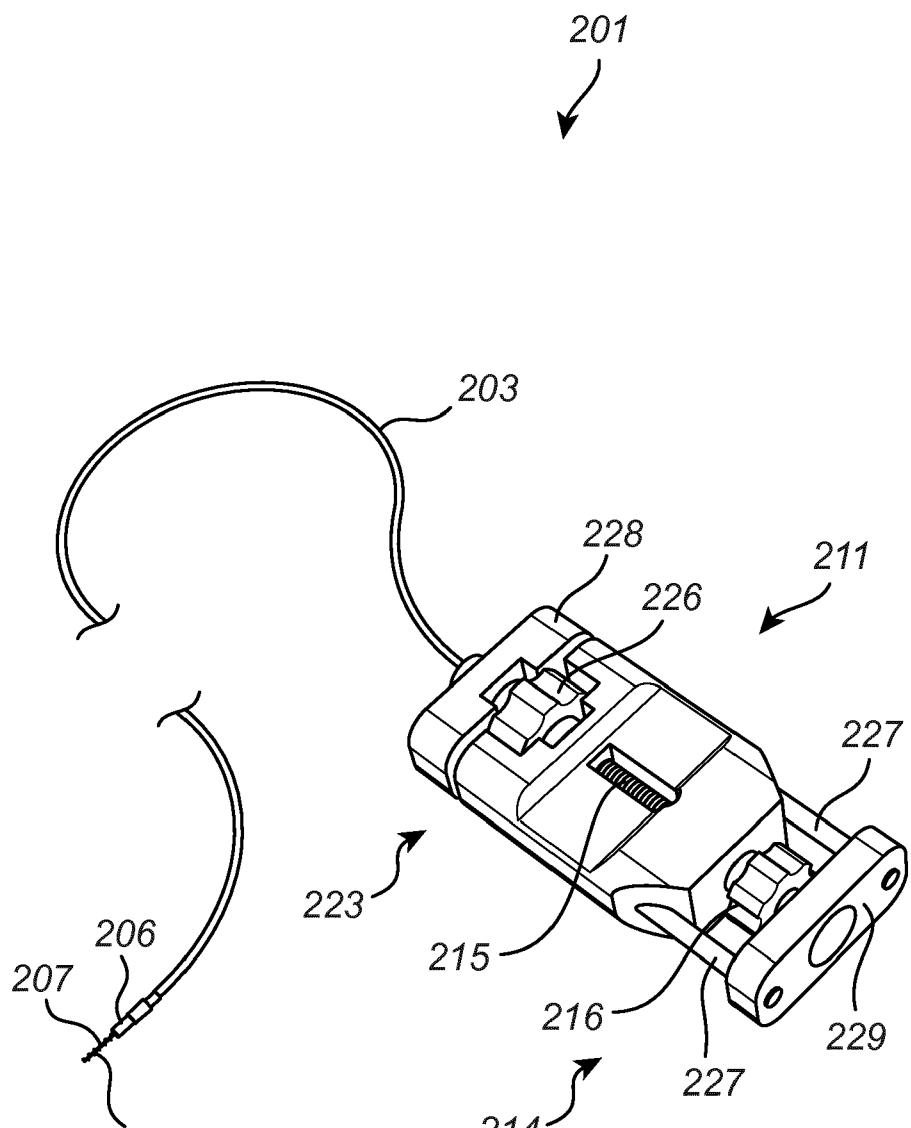

Fig. 3

Fig. 4

Fig. 5

Fig. 6

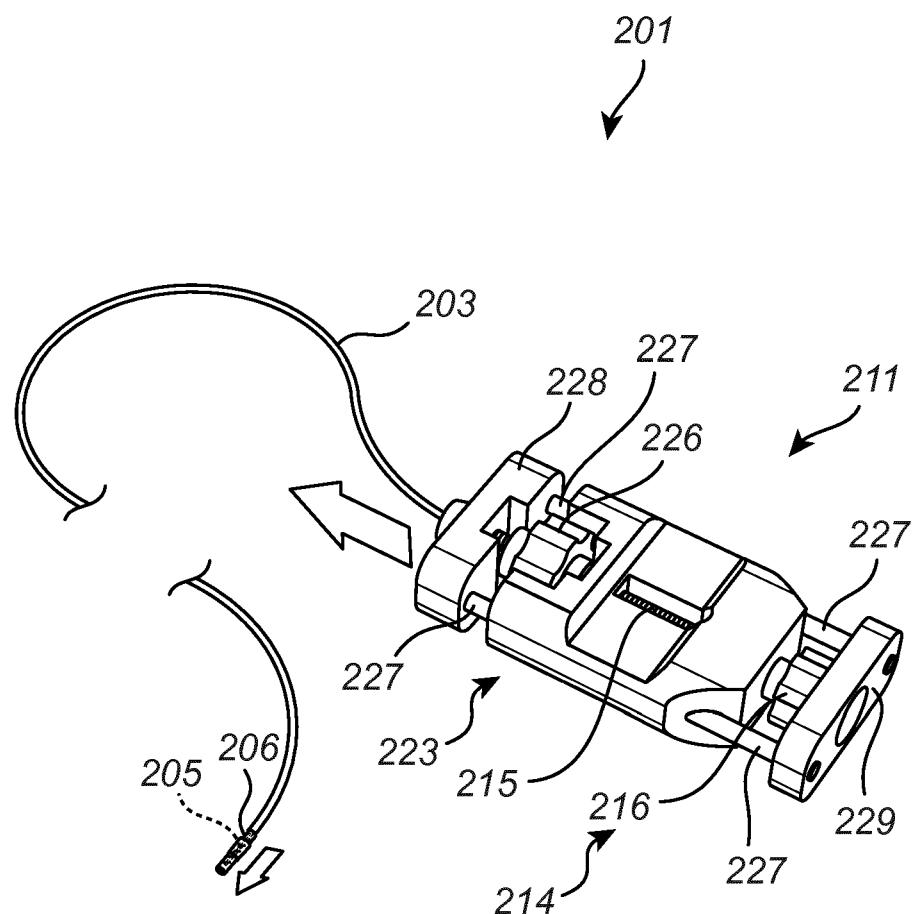


Fig. 7

EUROPEAN SEARCH REPORT

Application Number

EP 17 19 6533

5

DOCUMENTS CONSIDERED TO BE RELEVANT			
Category	Citation of document with indication, where appropriate, of relevant passages	Relevant to claim	CLASSIFICATION OF THE APPLICATION (IPC)
10	X US 2003/114773 A1 (JANSSENS JACQUES PHILLIBERT [BE]) 19 June 2003 (2003-06-19) * paragraph [0020] * * paragraph [0048] - paragraph [0057] * * paragraph [0061] - paragraph [0065] * * paragraph [0067] - paragraph [0071] * * paragraph [0087] ; figures 1-30 * -----	1-6	INV. A61B10/02 A61B10/04
15	X US 2008/103412 A1 (CHIN YEM [US]) 1 May 2008 (2008-05-01) * paragraph [0003] * * paragraph [0037] * * paragraph [0063] ; figure 4 * * paragraph [0065] - paragraph [0067] * * paragraph [0049] * -----	1-7	
20	X US 2009/118641 A1 (VAN DAM JACQUES [US] ET AL) 7 May 2009 (2009-05-07) * paragraph [0058] * * paragraph [0045] * * paragraph [0051] - paragraph [0052] * * paragraph [0067] - paragraph [0068] ; claims 75-103; figures 1-15 * -----	1,4,5	
25			TECHNICAL FIELDS SEARCHED (IPC)
30			A61B
35			
40			
45			
50	1 The present search report has been drawn up for all claims		
55	Place of search Munich	Date of completion of the search 6 February 2018	Examiner Jansson Godoy, Nina
CATEGORY OF CITED DOCUMENTS			
X : particularly relevant if taken alone Y : particularly relevant if combined with another document of the same category A : technological background O : non-written disclosure P : intermediate document			
T : theory or principle underlying the invention E : earlier patent document, but published on, or after the filing date D : document cited in the application L : document cited for other reasons & : member of the same patent family, corresponding document			

**ANNEX TO THE EUROPEAN SEARCH REPORT
ON EUROPEAN PATENT APPLICATION NO.**

EP 17 19 6533

5 This annex lists the patent family members relating to the patent documents cited in the above-mentioned European search report. The members are as contained in the European Patent Office EDP file on The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

06-02-2018

10	Patent document cited in search report	Publication date		Patent family member(s)	Publication date
15	US 2003114773	A1	19-06-2003	AT 292416 T BE 1013974 A3 DE 60203598 D1 DE 60203598 T2 EP 1359848 A1 ES 2240684 T3 JP 2004517706 A US 2003114773 A1 WO 02065919 A1	15-04-2005 14-01-2003 12-05-2005 11-05-2006 12-11-2003 16-10-2005 17-06-2004 19-06-2003 29-08-2002
	US 2008103412	A1	01-05-2008	US 2008103412 A1 US 2010256663 A1 US 2012191118 A1 US 2015100076 A1 US 2017119429 A1 WO 2008057330 A2	01-05-2008 07-10-2010 26-07-2012 09-04-2015 04-05-2017 15-05-2008
	US 2009118641	A1	07-05-2009	US 2009118641 A1 WO 2009058436 A1	07-05-2009 07-05-2009
20					
25					
30					
35					
40					
45					
50					
55					

EPO FORM P0459
For more details about this annex : see Official Journal of the European Patent Office, No. 12/82

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- US 5865724 A [0002]
- EP 1849414 A [0039]

Non-patent literature cited in the description

- **THORLACIUS et al.** Endoskopiskt ultraljud inom gastroenterologin. *Läkartidningen*, 17 November 2009 [0044]

专利名称(译)	活检器械和内窥镜		
公开(公告)号	EP3295877A1	公开(公告)日	2018-03-21
申请号	EP2017196533	申请日	2013-08-02
[标]发明人	WALTHER CHARLES		
发明人	WALTHER, CHARLES		
IPC分类号	A61B10/02 A61B10/04		
CPC分类号	A61B10/0233 A61B10/04 A61B2010/0208 A61B1/005 A61B1/018 A61B1/2736 A61B8/12 A61B8/445 A61B17/32002 A61B2017/0034 A61B2017/00862 A61M25/09 A61M2025/09183		
代理机构(译)	AWAPATENT AB		
优先权	1250909 2012-08-03 SE		
外部链接	Espacenet		

摘要(译)

公开了一种活检器械 (1) , 包括布置在护套 (3) 中的导丝 (2) , 布置在所述导丝 (2) 的第一端 (4) 处的钻孔装置 (5) , 以及致动器 (11)) 为了致动所述钻孔装置 (5) , 所述致动器布置在所述导丝 (2) 的第二端 (10) 处。钻孔装置 (5) 包括外管 (6) 和内切割装置 (7) 。内切割装置 (7) 可在所述外管 (6) 内滑动和旋转。内切割装置 (7) 具有螺旋切割边缘 (8) 。还公开了一种包括这种内窥镜器械 (1) 的内窥镜 , 以及一种用于从受试者的组织中取出活组织检查样品的方法。

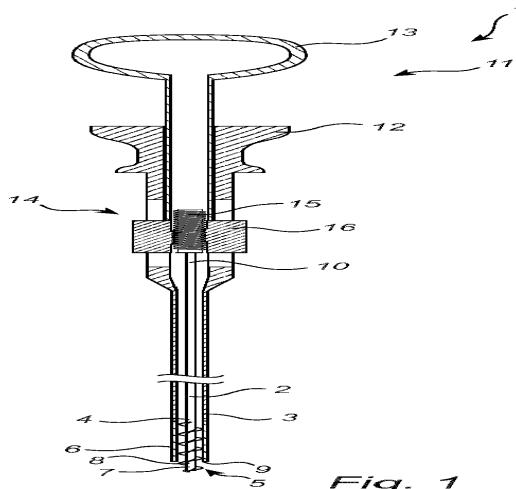


Fig. 1