# (19)中华人民共和国国家知识产权局



# (12)发明专利申请



(10)申请公布号 CN 106725740 A (43)申请公布日 2017.05.31

(21)申请号 201710114057.8

(22)申请日 2017.02.28

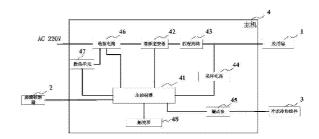
(71)申请人 重庆西山科技股份有限公司 地址 401121 重庆市北部新区高新园木星 科技发展中心(黄山大道中段9号)

(72)发明人 郭毅军 付健 陈建 赵正 温兴东

(74)专利代理机构 上海光华专利事务所 31219 代理人 高彦

(51) Int.CI.

A61B 17/32(2006.01)


权利要求书2页 说明书5页 附图2页

#### (54)发明名称

超声手术系统

#### (57)摘要

本发明的超声手术系统,包括:刀具、超声手术手柄、脚踏控制器、清洗冷却组件、及主机;脚踏控制器和主机间的通信方式设计成:所述脚踏控制器通过能切换的有线或无线方式连接所述主机,包括:当脚踏控制器和主机间有线缆连接时,主机对脚踏控制器供电;当脚踏控制器和主机间无线缆连接时,脚踏控制器在剩余电量高于预设阈值时采用无线方式工作;避免现有技术中脚踏控制器和主机间有线通信方式的弊端。



1.一种超声手术系统,其特征在于,包括:

应用端,其包括:刀具;超声手术手柄,连接于所述刀具,用于驱动所述刀具;

脚踏控制器,用于采集外部的输入信息并发出;

清洗冷却组件:

主机,电性连接所述清洗冷却组件、超声手术手柄、及脚踏控制器,用于控制所述超声 手术手柄驱动所述刀具对目标部位进行手术工作,并在所述切割过程中驱动所述清洗冷却 组件对目标部位进行清洗及冷却;以及用于以无线方式或有线方式从所述脚踏控制器接收 所述输入信息以执行预设的对应功能;

其中,所述脚踏控制器通过能切换的有线或无线方式连接所述主机,包括:当脚踏控制器和主机间有线缆连接时,主机对脚踏控制器供电;当脚踏控制器和主机间无线缆连接时,脚踏控制器在剩余电量高于预设阈值时采用无线方式工作。

- 2.根据权利要求1所述的超声手术系统,其特征在于,所述脚踏控制器通过能切换的有 线或无线方式连接所述主机,还包括:当脚踏控制器和主机间有线缆连接时,脚踏控制器采 用有线方式或无线方式工作。
  - 3.根据权利要求1所述的超声手术系统,其特征在于,所述主机包括: 主控制器;

高频逆变器, 电性连接目受控于所述主控制器以输出高频交流电压:

匹配网络,电性连接所述高频逆变器,并电性连接所述超声手术手柄以输出所述高频 交流电压;

采样电路,电性连接于所述主控制器及所述匹配网络的输出端,以对采样匹配网络的输出来获取采样信号并反馈至所述主控制器:

蠕动泵,电性连接并受控于所述主控制器,用于控制所述清洗冷却组件的输出;

电源电路,电性连接所述高频逆变器及主控制器,用于供电。

- 4.根据权利要求3所述的超声手术系统,其特征在于,所述主机还包括:散热单元,电性连接并受控于所述主控制器,且电性连接所述电源电路以获得供电。
- 5.根据权利要求3所述的超声手术系统,其特征在于,所述主机还包括:触控屏,电性连接所述主控制器,用于显示并供设置所述主控制器的工作参数。
  - 6.根据权利要求1或3所述的超声手术系统,其特征在于,所述超声手术手柄包括:

超声换能器,用于根据所述主机的信号输出转换高频机械振动输出;

与所述刀具分体设计的变幅杆,电性连接所述超声换能器,且所述变幅杆具有连接所述刀具且外露于所述超声手术手柄外壳的刀具接口,以用于放大所述高频机械振动的振幅后传导至所述刀具以令其产生高频机械振动而执行所述手术工作。

- 7.根据权利要求6所述的超声手术系统,其特征在于,所述超声手术手柄具有外壳,所述外壳内具有容纳所述超声换能器及变幅杆的容纳空间,所述超声换能器与变幅杆一体成型,所述超声换能器与变幅杆构成两级放大结构,且第一级放大结构的前端的直径小于或等于第二级放大结构的后端的直径。
- 8.根据权利要求1所述的超声手术系统,其特征在于,所述脚踏控制器还用于调节所述 超声手术手柄的输出功率;所述脚踏控制器采集踩下的行程量信息并传送至所述主控制器,所述主控制器按照预存的行程量与输出功率的关联关系来对应所述行程量调节所述超

声手术手柄的输出功率。

- 9.根据权利要求1所述的超声手术系统,其特征在于,所述脚踏控制器包括:A/D转换器,用于将其采集的模拟信号转换为数字信号形式输出至所述主机。
- 10.根据权利要求3所述的超声手术系统,其特征在于,所述采样信号包括:高频逆变器的输出电压和输出电流的相位差、以及电流最大值;所述主控制器根据所述采样信号调节高频逆变器的输出信号频率跟随所述超声手术手柄的工作频率。

# 超声手术系统

## 技术领域

[0001] 本发明涉及医疗器械技术领域,特别是涉及超声手术系统。

## 背景技术

[0002] 超声手术系统是利用超声的机械效应及空化效应进行骨组织或软组织或病变组织手术的一种医疗器械。该系统利用超声换能技术,通过特殊转换装置,将电能转化为机械能,经高频超声震荡,使所接触的组织细胞内水汽化,蛋白氢键断裂,从而将手术中需要切割的骨组织或软组织或病变组织彻底破坏。在使用时,超声刀具刀头的温度低于38℃,周围传播距离小于200微米。由于该高频超声波只对特定硬度的骨组织或特定空化阈值的软组织或病变组织具有破坏作用,不仅不会破坏到血管和神经组织,还能对手术伤口处起到止血作用,进一步缩小微创手术的创口,极大地提高了手术的精确性、可靠性和安全性。

[0003] 但是,现有的超声手术系统的脚踏控制器采用有线连接方式与主机连接,线缆上采用模拟信号进行通讯,过多的线缆牵绊造成手术现场杂乱,医护人员走动时也容易踢落线缆,且在线缆脱落时容易造成误操作或不可操作的状况,降低了手术安全性。

## 发明内容

[0004] 鉴于以上所述现有技术的缺点,本发明的目的在于提供超声手术系统,令脚踏控制器和主机间的通信方式可根据预定情形切换有线或无线方式,解决现有技术的问题。

[0005] 为实现上述目标及其他相关目标,本发明提供一种超声手术系统,包括:应用端,其包括:刀具;超声手术手柄,连接于所述刀具,用于驱动所述刀具;脚踏控制器,用于采集外部的输入信息并发出;清洗冷却组件;主机,电性连接所述清洗冷却组件、超声手术手柄、及脚踏控制器,用于控制所述超声手术手柄驱动所述刀具对目标部位进行手术工作,并在所述切割过程中驱动所述清洗冷却组件对目标部位进行清洗及冷却;以及用于以无线方式或有线方式从所述脚踏控制器接收所述输入信息以执行预设的对应功能;其中,所述脚踏控制器通过能切换的有线或无线方式连接所述主机,包括:当脚踏控制器和主机间有线缆连接时,主机对脚踏控制器供电;当脚踏控制器和主机间无线缆连接时,脚踏控制器在剩余电量高于预设阈值时采用无线方式工作。

[0006] 于本发明的一实施例中,所述脚踏控制器通过能切换的有线或无线方式连接所述 主机,还包括:当脚踏控制器和主机间有线缆连接时,脚踏控制器采用有线方式或无线方式 工作。

[0007] 于本发明的一实施例中,所述主机包括:主控制器;高频逆变器,电性连接且受控于所述主控制器以输出高频交流电压;匹配网络,电性连接所述高频逆变器,并电性连接所述超声手术手柄以输出所述高频交流电压;采样电路,电性连接于所述主控制器及所述匹配网络的输出端,以对采样匹配网络的输出来获取采样信号并反馈至所述主控制器;蠕动泵,电性连接并受控于所述主控制器,用于控制所述清洗冷却组件的输出;电源电路,电性连接所述高频逆变器及主控制器,用于供电。

[0008] 于本发明的一实施例中,所述主机还包括:散热单元,电性连接并受控于所述主控制器,且电性连接所述电源电路以获得供电。

[0009] 于本发明的一实施例中,所述主机还包括:触控屏,电性连接所述主控制器,用于显示并供设置所述主控制器的工作参数。

[0010] 于本发明的一实施例中,所述超声手术手柄包括:超声换能器,用于根据所述主机的信号输出转换高频机械振动输出;与所述刀具分体设计的变幅杆,电性连接所述超声换能器,且所述变幅杆具有连接所述刀具且外露于所述超声手术手柄外壳的刀具接口,以用于放大所述高频机械振动的振幅后传导至所述刀具以令其产生高频机械振动而执行所述手术工作。

[0011] 于本发明的一实施例中,所述超声手术手柄具有外壳,所述外壳内具有容纳所述超声换能器及变幅杆的容纳空间,所述超声换能器与变幅杆一体成型,所述超声换能器与变幅杆构成两级放大结构,且第一级放大结构的前端的直径小于或等于第二级放大结构的后端的直径。

[0012] 于本发明的一实施例中,所述脚踏控制器还用于调节所述超声手术手柄的输出功率;所述脚踏控制器采集踩下的行程量信息并传送至所述主控制器,所述主控制器手柄按照预存的行程量与输出功率的关联关系来对应所述行程量调节所述超声手术手柄的输出功率。

[0013] 于本发明的一实施例中,所述脚踏控制器包括:A/D转换器,用于将其采集的模拟信号转换为数字信号形式输出至所述主机。

[0014] 于本发明的一实施例中,所述采样信号包括:高频逆变器的输出电压和输出电流的相位差、以及电流最大值;所述主控制器根据所述采样信号调节高频逆变器的输出信号频率跟随所述超声手术手柄的工作频率。

[0015] 如上所述,本发明的超声手术系统,包括:刀具、超声手术手柄、脚踏控制器、清洗冷却组件、及主机;脚踏控制器和主机间的通信方式设计成:所述脚踏控制器通过能切换的有线或无线方式连接所述主机,包括:当脚踏控制器和主机间有线缆连接时,主机对脚踏控制器供电;当脚踏控制器和主机间无线缆连接时,脚踏控制器在剩余电量高于预设阈值时采用无线方式工作。在无线方式工作时,避免了使用时线缆的牵绊,方便使用。在脚踏控制器电池电量不足时,可切换至有线模式工作,保证了产品的使用时效性。数字信号的数据通讯,保证了通讯的稳定性。

#### 附图说明

[0016] 图1显示为本发明一实施例中超声手术系统的电路连接模块示意图。

[0017] 图2显示为本发明又一实施例中超声手术系统的电路连接模块示意图。

[0018] 图3显示为本发明一实施例中超声波手柄的结构示意图。

[0019] 元件标号说明

[0020] 1 应用端

[0021] 11 刀具

[0022] 12 超声手术手柄

[0023] 121 超声换能器

| [0024] | 122 | 变幅杆    |
|--------|-----|--------|
| [0025] | 123 | 刀具接口   |
| [0026] | 124 | 外壳     |
| [0027] | 2   | 脚踏控制器  |
| [0028] | 3   | 清洗冷却组件 |
| [0029] | 4   | 主机     |
| [0030] | 41  | 主控制器   |
| [0031] | 42  | 高频逆变器  |
| [0032] | 43  | 匹配网络   |
| [0033] | 44  | 采样电路   |
| [0034] | 45  | 蠕动泵    |
| [0035] | 46  | 电源电路   |
| [0036] | 47  | 散热单元   |
| [0037] | 48  | 触控屏    |

## 具体实施方式

[0038] 以下通过特定的具体实例说明本发明的实施方式,本领域技术人员可由本说明书所揭露的内容轻易地了解本发明的其他优点与功效。本发明还可以通过另外不同的具体实施方式加以实施或应用,本说明书中的各项细节也可以基于不同观点与应用,在没有背离本发明的精神下进行各种修饰或改变。需说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。

[0039] 如图1所示,本发明提供一种超声手术系统,包括:应用端1、脚踏控制器2、清洗冷却组件3、及主机4。

[0040] 应用端1,其包括:刀具11;超声手术手柄12,连接于所述刀具11,用于驱动所述刀具11。具体的,所述刀具11根据不同手术的应用要求,具有多种形态。刀具11利用超声手术手柄12传递来的振动能量,完成骨组织的切削。

[0041] 脚踏控制器2,用于采集外部的输入信息并发出;具体的,所述脚踏控制器2包括按钮或踏板,其可包括A/D转换器,用于将其采集的由于脚踏产生的模拟信号转换为数字信号形式输出至所述主机4,从而在有线模式下,有线线缆上数据传输采用数字信号进行,提高数据的抗干扰性。

[0042] 清洗冷却组件3,可通过喷出清洗液等对手术中刀具11和骨组织的接触部位进行清洁和冷却。

[0043] 主机4,电性连接所述清洗冷却组件3、超声手术手柄12、及脚踏控制器2,用于控制所述超声手术手柄12驱动所述刀具11对目标部位进行手术工作(例如切削或骨组织),并在所述切割过程中驱动所述清洗冷却组件3对目标部位进行清洗及冷却。

[0044] 具体的,所述主机4能输出高频振动的机械能至所述刀具11以令所述刀具11工作。

[0045] 其中,所述脚踏控制器2通过能切换的有线或无线方式连接所述主机4,包括:当脚踏控制器2和主机4间有线缆连接时,主机4对脚踏控制器2供电;当脚踏控制器2和主机4间无线缆连接时,脚踏控制器2在剩余电量高于预设阈值时采用无线方式工作;在无线方式工

作时,避免了使用时线缆的牵绊,方便使用。在脚踏控制器电池电量不足时,可通过线缆有 线连接主机进行充电,脚踏控制器也可切换至有线模式工作,保证了产品的持续正常使用。 数字信号的数据通讯,保证了通讯的稳定性。

[0046] 当然,所述脚踏控制器2通过能切换的有线或无线方式连接所述主机4,还可以包括: 当脚踏控制器2和主机4间有线缆连接时,脚踏控制器2采用有线方式或无线方式工作;从而使得两者间通信方式更为灵活多变。

[0047] 请一并参阅图2所示,展示一实施例中所述主机4的电路模块示意图。

[0048] 所述主机4包括:主控制器41;高频逆变器42,电性连接且受控于所述主控制器41以输出高频交流电压;匹配网络43,电性连接所述高频逆变器42,并电性连接所述超声手术手柄12以输出所述高频交流电压;采样电路44,电性连接于所述主控制器41及所述匹配网络43的输出端,以对采样匹配网络43的输出来获取采样信号并反馈至所述主控制器41;蠕动泵45,电性连接并受控于所述主控制器41,其可例如接入所述清洗冷却组件3的清洗液的输送管道,用于控制所述清洗冷却组件3的输出;电源电路46,电性连接所述高频逆变器42及主控制器41,其可接例如市电(交流220V)输入,并经变压等处理转换成供电电压输出,以对所述高频逆变器42及主控制器41供电;于本实施例中,所述主机4的结构简单可靠,成本较低。

[0049] 在工作中,主控制器41控制高频逆变器42输出高频交流电压,该电压通过匹配网络43送至应用端1后,使应用端1内的超声波换能器产生机械振动。机械振动通过变幅杆122的放大和耦合作用,推动刀头工作。

[0050] 所述主机4还用于从所述脚踏控制器2接收所述输入信息以执行预设的对应功能,例如,根据脚踏控制器2的输入调节所述超声手术手柄12的输出功率;所述脚踏控制器2采集踩下的行程量信息并传送至所述主控制器41,所述主控制器41手柄按照预存的行程量与输出功率的关联关系来对应所述行程量调节所述超声手术手柄12的输出功率。具体来讲,采样电路44检测出逆变器输出电压和电流的相位差、及电流最大值,并反馈给主控制器41,主控制器41通过判断电流的变化,控制高频逆变器42完成其输出信号频率自动跟踪应用端1的工作频率;当高频逆变器42的输出信号频率与应用端1工作频率相同时,产生谐振现象,此时换能器从高频逆变器42获取能量的效率最高,能量最大限度的传递到刀头上;主控制器41通过接收脚踏控制器2的信号,实现对刀具11刀头振幅的无级控制。

[0051] 在敏感组织处进行手术时,较大的振幅可能对组织造成伤害,需要精细操作;在非敏感组织处操作时,需要提高振幅以使手术时间缩短。手术中频繁的对主机设定进行操作比较麻烦。按本方案设计,可在手术中由操作医生根据需要加大或减小对脚踏控制器2的踩压力度,实现对超声手术刀具11刀头振幅的无级控制,随时对输出振幅进行调节,简化了医生的操作。

[0052] 于本发明的一实施例中,所述主机4还包括:散热单元47,例如风冷散热装置(散热风扇或散热鳍片等)或水冷散热装置,其用于主机4内散热,利于主机4散热而提升产品寿命;所述散热单元47电性连接并受控于所述主控制器41,且电性连接所述电源电路46以获得供电。

[0053] 于本发明的一实施例中,所述主机4还包括:触控屏48,电性连接所述主控制器41,用于显示人机交互界面及主控制器41的工作参数,供设置所述主控制器41的工作参数,触

控屏既可接收用户输入亦可对应输出显示,便于用户操作,提升用户体验。

[0054] 如图3所示,于本发明的一实施例中,所述超声手术手柄12包括:超声换能器121,用于根据所述主机4的信号输出转换高频机械振动输出;变幅杆122,电性连接所述超声换能器121,且所述变幅杆122具有连接所述刀具11的刀具接口123,以用于放大所述高频机械振动的振幅后传导至所述刀具11以令其产生高频机械振动而执行所述手术工作。

[0055] 超声手术手柄12朝向刀具11一端的方向为前,超声手术12远离刀具11一端的方向为后。所述超声换能器121与变幅杆122一体成型,所述超声换能器121与变幅杆122构成两级放大结构,且第一级放大结构的前端的直径小于或等于第二级放大结构的后端的直径;优选的,所述超声换能器121构成第一级放大结构,超声换能器121前端形成缩颈,变幅杆122构成第二级放大结构,变幅杆122前端也形成缩颈,超声换能器121前端与变幅杆122后端一体成型,且超声换能器121前端的直径小于或等于变幅杆122后端的直径。

[0056] 主机4提供的高频交流电信号通过超声换能器121转换为高频机械振动,经过变幅杆122放大振幅,使刀具11刀头对骨组织进行快速切割或磨削。

[0057] 所述超声手术手柄12还具有外壳124,所述外壳124内具有容纳所述超声换能器121及变幅杆122的容纳空间。

[0058] 如此设计,使得切割的稳定性更佳;并且,减少原材料的使用,降低了刀具的成本;缩小了刀具的体积,拆卸安装无需将外壳拆下即可实现,同时降低了外壳长期拆卸所带了的磨损及其他问题。

[0059] 综上所述,本发明的超声手术系统,包括:刀具、超声手术手柄、脚踏控制器、清洗冷却组件、及主机;脚踏控制器和主机间的通信方式设计成:所述脚踏控制器通过能切换的有线或无线方式连接所述主机,包括:当脚踏控制器和主机间有线缆连接时,主机对脚踏控制器供电;当脚踏控制器和主机间无线缆连接时,脚踏控制器在剩余电量高于预设阈值时采用无线方式工作。

[0060] 上述实施例仅例示性说明本发明的原理及其功效,而非用于限制本发明。任何熟悉此技术的人士皆可在不违背本发明的精神及范畴下,对上述实施例进行修饰或改变。因此,举凡所属技术领域中具有通常知识者在未脱离本发明所揭示的精神与技术思想下所完成的一切等效修饰或改变,仍应由本发明的权利要求所涵盖。

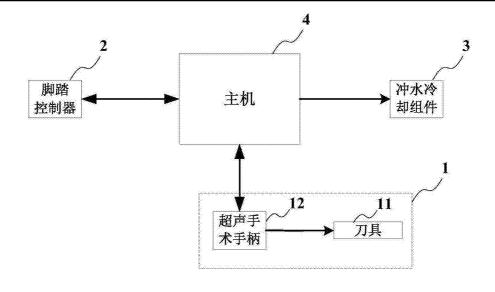



图1

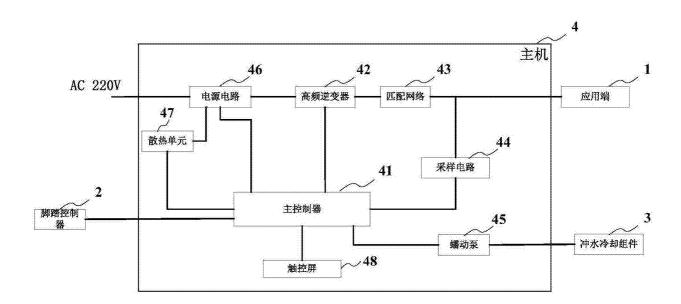
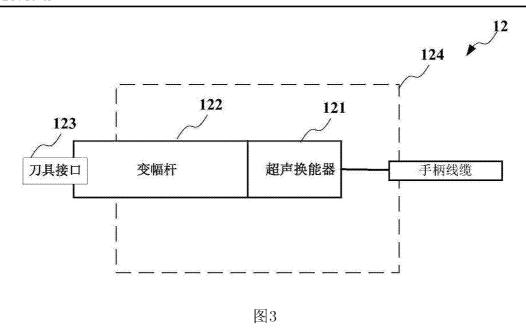
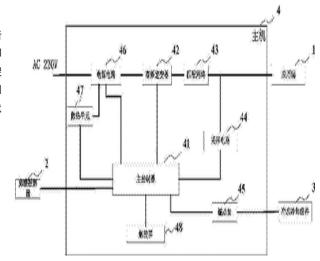




图2






| 专利名称(译)        | 超声手术系统                                                     |         |            |  |
|----------------|------------------------------------------------------------|---------|------------|--|
| 公开(公告)号        | CN106725740A                                               | 公开(公告)日 | 2017-05-31 |  |
| 申请号            | CN201710114057.8                                           | 申请日     | 2017-02-28 |  |
| [标]申请(专利权)人(译) | 重庆西山科技有限公司                                                 |         |            |  |
| 申请(专利权)人(译)    | 重庆西山科技股份有限公司                                               |         |            |  |
| 当前申请(专利权)人(译)  | 重庆西山科技股份有限公司                                               |         |            |  |
| [标]发明人         | 郭毅军<br>付健<br>陈建<br>赵正<br>温兴东                               |         |            |  |
| 发明人            | 郭毅军<br>付健<br>陈建<br>赵正<br>温兴东                               |         |            |  |
| IPC分类号         | A61B17/32                                                  |         |            |  |
| CPC分类号         | A61B17/320068 A61B2017/00137 A61B2017/00221 A61B2017/00973 |         |            |  |
| 代理人(译)         | 高彦                                                         |         |            |  |
| 外部链接           | Espacenet SIPO                                             |         |            |  |
|                |                                                            |         |            |  |

#### 摘要(译)

本发明的超声手术系统,包括:刀具、超声手术手柄、脚踏控制器、清洗冷却组件、及主机;脚踏控制器和主机间的通信方式设计成:所述脚踏控制器通过能切换的有线或无线方式连接所述主机,包括:当脚踏控制器和主机间有线缆连接时,主机对脚踏控制器供电;当脚踏控制器和主机间无线缆连接时,脚踏控制器在剩余电量高于预设阈值时采用无线方式工作;避免现有技术中脚踏控制器和主机间有线通信方式的弊端。

