

US009375268B2

(12) United States Patent Long

(10) Patent No.: US 9,375,268 B2 (45) Date of Patent: Jun. 28, 2016

(54) ELECTROPORATION ABLATION APPARATUS, SYSTEM, AND METHOD

(71) Applicant: Ethicon Endo-Surgery, Inc., Cincinnati, OH (US)

Inventor: Gary L. Long, Cincinnati, OH (US)

(73) Assignee: Ethicon Endo-Surgery, Inc., Cincinnati,

OH (US)

(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35

U.S.C. 154(b) by 105 days.

(21) Appl. No.: 13/890,589

(72)

(22) Filed: May 9, 2013

(65) Prior Publication Data

US 2013/0261389 A1 Oct. 3, 2013

Related U.S. Application Data

(60) Continuation of application No. 12/694,452, filed on Jan. 27, 2010, now Pat. No. 8,449,538, which is a division of application No. 11/706,766, filed on Feb. 15, 2007, now Pat. No. 7,655,004.

(51) **Int. Cl.**A61B 18/14 (2006.01)

A61N 1/32 (2006.01)

(Continued)

(52) U.S. Cl.

(58) Field of Classification Search

CPC A61B 2018/00166; A61B 2018/00202; A61B 2018/1425; A61B 2018/1427; A61B 2018/143; A61B 18/1477

(56) References Cited

U.S. PATENT DOCUMENTS

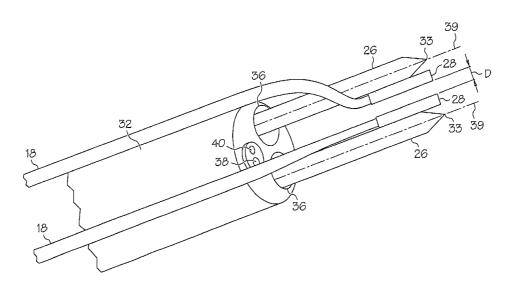
645,576 A 3/1900 Telsa 649,621 A 5/1900 Tesla (Continued)

FOREIGN PATENT DOCUMENTS

AU 666310 B2 2/1996 DE 3008120 A1 9/1980 (Continued)

OTHER PUBLICATIONS

Edd, et al., "In Vivo Results of a New Focal Tissue Ablation Technique: Irreversible Electroporation," IEEE Trans Biomed Eng, vol. 53, pp. 1409-1415, 2006.


(Continued)

Primary Examiner — Ronald Hupczey, Jr.

(57) ABSTRACT

A surgical instrument, such as an endoscopic or laparoscopic instrument, includes an ablation device. The ablation device includes an elongate relatively flexible member having a proximal end and a distal end, the flexible member includes at least a first working channel. A first and second electrode extends from a working channel at the distal end of the flexible member. The first and second electrodes are adapted to be endoscopically located in a tissue treatment region. The first and second electrodes are adapted to couple to an electrical waveform generator to receive an irreversible electroporation electrical waveform sufficient to ablate tissue located between the first and second electrodes. The waveform parameters of the irreversible electroporation electrical waveform are determined based on image information received from the tissue treatment region.

19 Claims, 12 Drawing Sheets

(51)	Int. Cl.			4,491,13	2 A	1/1985	Aikins
(31)	A61B 1/018		(2006.01)	4,492,23		1/1985	
	A61B 1/04		(2006.01)	4,527,33			Lasner et al.
	A61B 1/06		(2006.01)	4,527,56			Eguchi et al.
	A61N 1/30		(2006.01)	4,538,59 D281,10			Boebel et al. Davison
	A61B 18/00		(2006.01)	4,569,34		2/1986	
(52)	U.S. Cl.		(2000.01)	4,580,55	51 A	4/1986	Siegmund et al.
(32)		461	N1/306 (2013.01); A61N 1/327	4,646,72		3/1987	
			B 2018/00482 (2013.01); A61B	4,653,47 4,655,21			Bonnet Petruzzi
	(=	/,	2018/00577 (2013.01)	4,657,01			Garito et al.
				4,657,01	8 A	4/1987	
(56)		Referen	ices Cited	4,669,47 4,671,47		6/1987 6/1987	Brandfield
	110	DATES ITE	DOOLD COME	4,677,98			Llinas et al.
	U.S.	PALENT	DOCUMENTS	4,685,44	17 A	8/1987	Iversen et al.
	787,412 A	4/1905	Tesla	4,711,24	10 A		Goldwasser et al.
	1,039,354 A		Bonadio	4,712,54 4,721,11			Honkanen Schintgen et al.
	1,127,948 A		Wappler	4,727,60		2/1988	Avakian
	1,482,653 A	2/1924 4/1926		4,733,66	52 A		DeSatnick et al.
	1,581,706 A 1,581,707 A	4/1926		D295,89		5/1988	
	1,581,708 A	4/1926		4,742,81 4,753,22			Kawashima et al. Bremer
	1,581,709 A	4/1926		4,763,66		8/1988	
	1,581,710 A 1,625,602 A	4/1926	White Gould et al.	4,770,18	88 A	9/1988	Chikama
	1,916,722 A	7/1933		4,790,62			Van Hoye et al.
	2,028,635 A		Wappler	4,791,70 4,796,62			Tucker Tucker
	2,031,682 A		Wappler et al.	4,807,59		2/1989	
	2,113,246 A		Wappler Anderson	4,815,45	60 A	3/1989	
	2,137,710 A 2,155,365 A		Rankin	4,819,62			Okutsu
	2,191,858 A		Moore	4,823,79 4,829,99		4/1989 5/1989	
	2,196,620 A	4/1940		4,836,18		6/1989	
	2,388,137 A 2,451,077 A	10/1945	Graumlich Emeio	4,846,57			Taylor et al.
	2,493,108 A		Casey, Jr.	4,867,14			Hovis et al.
	2,504,152 A	4/1950	Riker et al.	4,869,23 4,869,45			Opie et al. Bourne
	2,938,382 A		De Graaf	4,873,97		10/1989	Hanna
	2,952,206 A 3,044,461 A		Becksted Murdock	4,880,01			Nierman
	3,069,195 A	12/1962		4,904,04 4,911,14			Sogawa et al. Sosnowski et al.
	3,070,088 A	12/1962		4,926,86			Stice et al.
	3,170,471 A 3,435,824 A		Schnitzer Gamponia	4,934,36	54 A	6/1990	
	3,470,876 A	10/1969		4,938,21			Specht et al.
	3,481,325 A	12/1969	Glassman	4,950,27 4,950,28		8/1990 8/1990	
	3,595,239 A	7/1971		4,953,53			Nakamura et al.
	3,669,487 A 3,746,881 A		Roberts et al. Fitch et al.	4,960,13			Hewson
	3,799,672 A	3/1974		4,977,88 4,979,49		12/1990 12/1990	
	3,854,473 A	12/1974		4,979,95			Transue et al.
	3,946,740 A 3,948,251 A		Bassett Hosono	4,984,58		1/1991	Stice
	3,961,632 A		Moossun	4,990,15		2/1991	
	3,965,890 A	6/1976	Gauthier	4,991,56 4,994,07			Takahashi et al. Genese et al.
	3,994,301 A	11/1976		5,007,91	7 A	4/1991	
	4,011,872 A 4,012,812 A	3/1977	Komiya Black	5,010,87			Henley et al.
	4,085,743 A	4/1978		5,020,51 5,020,53			Heckele Parker et al.
	4,164,225 A		Johnson et al.	5,025,77		6/1991	
	4,170,997 A 4,174,715 A		Pinnow et al.	5,026,37	9 A	6/1991	Yoon
	4,174,713 A 4,178,920 A	11/1979	Cawood, Jr. et al.	5,033,16			Bindon
	4,207,873 A	6/1980	Kruy	5,037,43 5,041,12			Wilk et al. Hayhurst et al.
	4,235,238 A		Ogiu et al.	5,046,51			Gatturna et al.
	4,258,716 A 4,269,174 A	3/1981 5/1981	Sutherland	5,050,58	85 A	9/1991	Takahashi
	4,269,174 A 4,278,077 A		Adair Mizumoto	5,052,37		10/1991	
	4,281,646 A	8/1981	Kinoshita	5,065,51 5,066,29			Dulebohn Kozak et al.
	4,285,344 A		Marshall	5,066,29 5,098,37			Piontek et al.
	4,311,143 A 4,329,980 A		Komiya Terada	5,108,42			Fowler
	4,393,872 A		Reznik et al.	5,123,91	3 A	6/1992	Wilk et al.
	4,396,021 A	8/1983	Baumgartner	5,123,91		6/1992	
	4,406,656 A		Hattler et al.	5,133,72			Bales et al.
	4,452,246 A 4,461,281 A		Bader et al. Carson	5,147,37 5,174,30			Fernandez Bales et al.
	7,701,201 A	111704	Carson	5,174,30	o A	12/1772	Daics Ct al.

(56)	Referer	ices Cited	5,366,466 A		Christian et al.
U.S	. PATENT	DOCUMENTS	5,366,467 A 5,368,605 A	11/1994	,
5.176.126 A	1/1002	Chilromo	5,370,647 A 5,370,679 A	12/1994 12/1994	Graber et al. Atlee, III
5,190,050 A		Chikama Nitzsche	5,374,273 A	12/1994	Nakao et al.
5,190,555 A		Wetter et al.	5,374,275 A	12/1994	Bradley et al.
5,192,284 A		Pleatman	5,374,277 A 5,374,953 A	12/1994 12/1994	Hassler Sasaki et al.
5,192,300 A 5,197,963 A		Fowler Parins	5,376,077 A	12/1994	Gomringer
5,201,752 A		Brown et al.	5,377,695 A	1/1995	An Haack
5,201,908 A	4/1993		5,383,877 A 5,383,888 A	1/1995 1/1995	Clarke Zvenyatsky et al.
5,203,785 A 5,203,787 A	4/1993 4/1993	Slater Noblitt et al.	5,386,817 A	2/1995	Jones
5,209,747 A		Knoepfler	5,387,259 A	2/1995	Davidson
5,217,003 A	6/1993		5,391,174 A 5,392,789 A	2/1995 2/1995	Weston Slater et al.
5,217,453 A 5,219,357 A	6/1993 6/1993	Wilk Honkanen et al.	5,395,386 A	3/1995	Slater
5,219,358 A		Bendel et al.	5,397,332 A		Kammerer et al.
5,222,362 A		Maus et al.	5,401,248 A 5,403,311 A	3/1995 4/1995	Bencini Abele et al.
5,222,965 A 5,234,437 A	6/1993 8/1993	· .	5,403,328 A	4/1995	Shallman
5,234,453 A	8/1993	Smith et al.	5,403,342 A	4/1995	Tovey et al.
5,235,964 A	8/1993		5,403,348 A 5,405,073 A	4/1995 4/1995	Bonutti Porter
5,242,456 A 5,245,460 A		Nash et al. Allen et al.	5,405,359 A	4/1995	Pierce
5,246,424 A	9/1993		5,409,478 A		Gerry et al.
5,257,999 A		Slanetz, Jr.	5,417,699 A 5,423,821 A		Klein et al. Pasque
5,259,366 A 5,263,958 A		Reydel et al. deGuillebon et al.	5,431,635 A	7/1995	
5,273,524 A		Fox et al.	5,433,721 A		Hooven et al.
5,275,607 A		Lo et al.	5,433,735 A 5,439,471 A	7/1995 8/1995	Zanakis et al. Kerr
5,275,614 A 5,275,616 A		Haber et al. Fowler	5,439,478 A		Palmer
5,284,128 A	2/1994	Hart	5,441,059 A	8/1995	Dannan
5,284,162 A	2/1994		5,441,494 A 5,441,498 A	8/1995 8/1995	Ortiz Perkins
5,287,845 A 5,287,852 A		Faul et al. Arkinstall	5,441,499 A		Fritzsch
5,290,299 A	3/1994	Fain et al.	5,443,463 A	8/1995	Stern et al.
5,290,302 A		Pericic Cohen et al.	5,445,638 A 5,445,648 A	8/1995 8/1995	•
5,295,977 A 5,297,536 A	3/1994		5,449,021 A	9/1995	Chikama
5,297,687 A	3/1994		5,454,827 A 5,456,667 A	10/1995 10/1995	Aust et al. Ham et al.
5,301,061 A 5,312,023 A	4/1994 5/1994	Nakada et al. Green et al.	5,456,684 A	10/1995	Schmidt et al.
5,312,333 A	5/1994		5,458,131 A	10/1995	Wilk
5,312,351 A	5/1994		5,458,583 A 5,460,168 A	10/1995 10/1995	McNeely et al. Masubuchi et al.
5,312,416 A 5,312,423 A	5/1994 5/1994	Spaeth et al. Rosenbluth et al.	5,460,629 A	10/1995	Shlain et al.
5,318,589 A	6/1994	Lichtman	5,462,561 A	10/1995	
5,320,636 A	6/1994		5,465,731 A 5,467,763 A	11/1995	Bell et al. McMahon et al.
5,324,261 A 5,325,845 A	6/1994 7/1994	Amundson et al. Adair	5,468,250 A		Paraschac et al.
5,330,471 A		Eggers	5,470,308 A		Edwards et al.
5,330,486 A 5,330,488 A	7/1994	Wilk Goldrath	5,470,320 A 5,472,441 A	11/1995 12/1995	Tiefenbrun et al. Edwards et al.
5,330,486 A 5,330,496 A		Alferness	5,478,347 A	12/1995	Aranyi
5,330,502 A	7/1994	Hassler et al.	5,478,352 A	12/1995 1/1996	Fowler Kammerer et al.
5,331,971 A 5,334,168 A		Bales et al. Hemmer	5,480,404 A 5,482,029 A	1/1996	Sekiguchi et al.
5,334,198 A		Hart et al.	5,482,054 A	1/1996	Slater et al.
5,336,192 A	8/1994	Palestrant	5,484,451 A	1/1996	Akopov et al. Adair
5,336,222 A 5,339,805 A		Durgin, Jr. et al. Parker	5,489,256 A 5,496,347 A	2/1996 3/1996	Hashiguchi et al.
5,341,815 A	8/1994		5,499,990 A	3/1996	Schülken et al.
5,342,396 A	8/1994	Cook	5,499,992 A 5,499,997 A	3/1996 3/1996	Meade et al. Sharpe et al.
5,344,428 A 5,345,927 A	9/1994 9/1994	Griffiths Bonutti	5,500,012 A	3/1996	Brucker et al.
5,348,259 A		Blanco et al.	5,501,692 A	3/1996	Riza
5,350,391 A	9/1994	Iacovelli	5,503,616 A	4/1996 4/1006	
5,352,184 A 5,352,222 A	10/1994 10/1994	Goldberg et al. Rydell	5,505,686 A 5,507,755 A		Willis et al. Gresl et al.
5,354,302 A	10/1994		5,511,564 A	4/1996	
5,354,311 A		Kambin et al.	5,514,157 A		Nicholas et al.
5,356,381 A		Ensminger et al.	5,518,501 A		Oneda et al.
5,356,408 A 5,360,428 A	10/1994 11/1994	Hutchinson, Jr.	5,522,829 A 5,522,830 A		Michalos Aranyi
5,364,408 A	11/1994	Gordon	5,527,321 A	6/1996	Hinchliffe
5,364,410 A	11/1994	Failla et al.	5,533,418 A	7/1996	Wu et al.

(56)	Refere	nces Cited	5,709,708	Α	1/1998	Thal	
(50)	Reserve	ices cited	5,711,921		1/1998	Langford	
U.	S. PATENT	DOCUMENTS	5,716,326			Dannan	
	=4000	***	5,716,375 5,725,542		2/1998 3/1998		
5,536,248 A 5,538,509 A		Weaver et al.	5,728,094			Edwards	
5,540,648 A	7/1996	Dunlap et al.	5,730,740			Wales et al.	
5,549,637 A		Crainich	5,735,849			Baden et al.	
5,554,151 A	9/1996	Hinchliffe	5,741,234			Aboul-Hosn	
5,555,883 A		Avitall	5,741,278			Stevens McBrayer et al.	
5,558,133 A		Bortoli et al.	5,741,285 5,741,429			Donadio, III et al.	
5,562,693 A 5,569,243 A		Devlin et al. Kortenbach et al.	5,743,456			Jones et al.	
5,569,298 A		Schnell	5,746,759			Meade et al.	
5,571,090 A	11/1996		5,749,826			Faulkner	
5,573,540 A	11/1996		5,749,881			Sackier et al.	
5,578,030 A	11/1996		5,749,889 5,752,951		5/1998	Bacich et al.	
5,582,611 A 5,582,617 A		Tsuruta et al. Klieman et al.	5,755,731			Grinberg	
5,584,845 A	12/1996		5,759,150			Konou et al.	
5,590,660 A		MacAulay et al.	5,759,151			Sturges	
5,591,179 A		Edelstein	5,762,604			Kieturakis	
5,591,205 A		Fowler	5,766,167 5,766,170		6/1998	Eggers et al.	
5,593,420 A 5,595,562 A	1/1997 1/1997	Eubanks, Jr. et al.	5,766,205			Zvenyatsky et al.	
5,597,378 A		Jervis	5,769,849		6/1998		
5,601,573 A		Fogelberg et al.	5,776,188			Shepherd et al.	
5,601,574 A	2/1997	Stefanchik et al.	5,779,701			McBrayer et al.	
5,601,588 A		Tonomura et al.	5,779,716 5,779,720			Cano et al. Walder-Utz et al.	
5,601,602 A 5,604,531 A		Fowler Iddan et al.	5,779,727			Orejola	
5,607,386 A	3/1997		5,782,859			Nicholas et al.	
5,607,389 A		Edwards et al.	5,782,861			Cragg et al.	
5,607,406 A		Hernandez et al.	5,782,866			Wenstrom, Jr.	
5,607,450 A		Zvenyatsky et al.	5,791,022 5,792,113			Bohman Kramer et al.	
5,609,601 A 5,613,975 A		Kolesa et al. Christy	5,792,113			Swain et al.	
5,613,977 A		Weber et al.	5,792,165			Klieman et al.	
5,614,943 A		Nakamura et al.	5,797,835		8/1998		
5,616,117 A		Dinkler et al.	5,797,928			Kogasaka	
5,618,303 A		Marlow et al.	5,797,939 5,797,941		8/1998 8/1998	Schulze et al.	
5,620,415 A 5,624,399 A		Lucey et al. Ackerman	5,797,959			Castro et al.	
5,624,431 A		Gerry et al.	5,797,960			Stevens et al.	
5,626,578 A	5/1997	Tihon	5,800,449		9/1998		
5,626,587 A		Bishop et al.	5,800,451 5,803,903			Buess et al. Athas et al.	
5,628,732 A 5,630,782 A		Antoon, Jr. et al. Adair	5,807,395			Mulier et al.	
5,630,795 A		Kuramoto et al.	5,808,665		9/1998	Green	
5,643,283 A		Younker	5,810,805	A *	9/1998	Sutcu	
5,643,292 A	7/1997		5 910 906	A	0/1009	Ritchart et al.	606/45
5,643,294 A 5,644,798 A	7/1997 7/1997	Tovey et al.	5,810,806 5,810,849			Kontos	
5,645,083 A		Essig et al.	5,810,865			Koscher et al.	
5,645,519 A		Lee et al.	5,810,876			Kelleher	
5,645,565 A		Rudd et al.	5,810,877			Roth et al.	
5,649,372 A		Souza	5,813,976 5,814,026		9/1998	Filipi et al.	
5,653,677 A 5,653,690 A		Okada et al. Booth et al.	5,814,058			Carlson et al.	
5,653,722 A		Kieturakis	5,817,061	Α		Goodwin et al.	
5,657,755 A	8/1997		5,817,107		10/1998		
5,662,621 A		Lafontaine	5,817,119 5,818,527			Klieman et al. Yamaguchi et al.	
5,662,663 A		Shallman	5,819,736	A		Avny et al.	
5,667,527 A 5,669,875 A	9/1997	van Eerdenburg	5,823,947			Yoon et al.	
5,681,276 A		Lundquist	5,824,071	A		Nelson et al.	
5,681,279 A	10/1997	Roper et al.	5,827,190			Palcic et al.	
5,681,324 A		Kammerer et al.	5,827,276 5,827,281		10/1998	LeVeen et al.	
5,681,330 A		Hughett et al.	5,827,299			Thomason et al.	
5,685,820 A 5,690,606 A		Riek et al. Slotman	5,827,323			Klieman et al.	
5,690,656 A		Cope et al.	5,830,221			Stein et al.	
5,690,660 A	11/1997	Kauker et al.	5,830,231	A		Geiges, Jr.	
5,695,448 A		Kimura et al.	5,833,603			Kovacs et al.	
5,695,505 A	12/1997		5,833,700			Fogelberg et al.	
5,695,511 A 5,700,275 A		Cano et al. Bell et al.	5,833,703 5,833,715			Manushakian Vachon et al.	
5,700,273 A 5,702,438 A	12/1997		5,836,960			Kolesa et al.	
5,704,892 A		Adair	5,843,017		12/1998		
, ,							

(56)	Referen	nces Cited			30,365		2/2000	
IIC	DATENIT	DOCUMENTS			30,384 30,634		2/2000	Nezhat Wu et al.
0.5.	PALENI	DOCUMENTS			33,399		3/2000	
5,843,121 A	12/1998	Yoon			33,401			Edwards et al.
5,849,022 A		Sakashita et al.			36,640			Corace et al.
5,853,374 A		Hart et al.			36,685 50,992			Mueller Nichols
5,855,569 A 5,855,585 A	1/1999	Komi Kontos		,	53,927		4/2000	
5,860,913 A		Yamaya et al.			53,937			Edwards et al.
5,860,995 A		Berkelaar			59,719			Yamamoto et al.
5,868,762 A		Cragg et al.			66,160 68,603		5/2000	Colvin et al.
5,873,849 A 5,876,411 A		Bernard Kontos			68,629			Haissaguerre et al.
5,882,331 A		Sasaki		6,0	71,233	A	6/2000	Ishikawa et al.
5,882,344 A		Stouder, Jr.			74,408			Freeman
5,893,846 A		Bales et al.			86,530 90,105		7/2000	Zepeda et al.
5,893,874 A 5,893,875 A		Bourque et al. O'Connor et al.		,	90,108			McBrayer et al.
5,897,487 A	4/1999				90,129		7/2000	
5,899,919 A		Eubanks, Jr. et al.			96,046		8/2000	
5,902,238 A		Golden et al.			02,909 02,926			Chen et al. Tartaglia et al.
5,902,254 A 5,904,702 A		Magram Ek et al.		6,1	06,473	A		Violante et al.
5,906,625 A		Bito et al.			06,521		8/2000	Blewett et al 606/41
5,908,420 A		Parins et al.			09,852 10,154			Shahinpoor et al. Shimomura et al.
5,908,429 A 5,911,737 A	6/1999	Yoon Lee et al.			10,183		8/2000	
5,916,146 A		Allotta et al.			13,593		9/2000	Tu et al.
5,916,147 A	6/1999	Boury		,	17,144			Nobles et al.
5,921,892 A		Easton			17,158 23,718			Measamer et al. Tu et al.
5,921,993 A 5,921,997 A	7/1999 7/1999	Fogelberg et al.			31,790		10/2000	
5,922,008 A		Gimpelson		,	39,555			Hart et al.
5,925,052 A		Simmons			41,037 46,391		10/2000 11/2000	Upton et al.
5,928,255 A		Meade et al. Kontos			48,222			Ramsey, III
5,928,266 A 5,936,536 A		Morris		,	49,653			Deslauriers
5,938,661 A	8/1999	Hahnen			49,662			Pugliesi et al.
5,941,815 A		Chang			52,871 52,920	A A	11/2000	Foley et al. Thompson et al.
5,944,718 A 5,951,547 A		Austin et al. Gough et al.			56,006			Brosens et al.
5,951,549 A		Richardson et al.			59,200			Verdura et al.
5,954,720 A		Wilson et al.	505(4.44	,	65,175 65,184			Wampler et al. Verdura et al.
5,954,731 A * 5,957,936 A		Yoon et al.	606/144		68,570		1/2001	
5,957,943 A		Vaitekunas		6,1	68,605	B1		Measamer et al.
5,957,953 A		DiPoto et al.			69,269			Maynard
5,964,782 A		Lafontaine et al.			70,130 73,872		1/2001	Hamilton et al.
5,970,581 A 5,971,995 A		Chadwick et al. Rousseau		6,1	79,776	B1		Adams et al.
5,972,002 A	10/1999	Bark et al.			79,832			Jones et al.
5,976,074 A		Moriyama			79,837 83,420			Hooven Douk et al.
5,976,075 A 5,976,130 A		Beane et al. McBrayer et al.			90,353			Makower et al.
5,976,130 A		Guglielmi et al.			90,383			Schmaltz et al.
5,980,539 A	11/1999				90,384 90,399		2/2001	Ouchi Palmer et al.
5,980,556 A 5,984,938 A	11/1999	Giordano et al.			03,533		3/2001	
5,984,939 A	11/1999			6,2	06,872	B1	3/2001	Lafond et al.
5,984,950 A	11/1999	Cragg et al.			06,877			Kese et al.
5,989,182 A		Hori et al. Blewett	A 61D 19/1477		06,904 10,409		3/2001 4/2001	Ellman et al.
3,993,447 A	11/1999	Diewett	600/105		14,007		4/2001	Anderson
5,993,474 A	11/1999		000,200		14,028			Yoon et al.
5,995,875 A		Blewett et al.			16,043 28,096			Swanson et al. Marchand
5,997,555 A 6,001,120 A	12/1999 12/1999				31,506			Hu et al.
6,004,269 A	12/1999	Crowley et al.		6,2	34,958	B1	5/2001	Snoke et al.
6,004,330 A	12/1999	Middleman et al.			40,312			Alfano et al.
6,007,566 A		Wenstrom, Jr. Swain et al.			45,079 46,914			Nobles et al. de la Rama et al.
6,010,515 A 6,012,494 A		Balazs			58,064			Smith et al.
6,016,452 A		Kasevich			61,242		7/2001	Roberts et al.
6,017,356 A		Frederick et al.		,	64,664			Avellanet
6,019,770 A 6,024,708 A		Christoudias Bales et al.			70,497 70,505			Sekino et al. Yoshida et al.
6,024,747 A		Kontos			70,505			Bonutti
6,027,522 A		Palmer			83,963		9/2001	

(56)		Referen	ces Cited	6,562,034			Edwards et al.
	11.0	DATES TO	DOCER (ENTER	6,562,035		5/2003	
	U.S.	PATENT	DOCUMENTS	6,562,052 6,569,120			Nobles et al. Green et al.
6.28	7,304 B1	0/2001	Eggers et al.	6,569,159			Edwards et al.
	7,504 B1 3,909 B1		Chu et al.	6,572,629	B2		Kalloo et al.
	3,952 B1		Brosens et al.	6,572,635			Bonutti
	6,630 B1		Altman et al.	6,575,988			Rousseau
	4,963 B1		Vaska et al.	6,579,311 6,581,889			Makower Carpenter et al.
	2,578 B1 5,534 B1		Houle et al. Hawley et al.	6,585,642			Christopher
	6,177 B1		Schoenbach et al.	6,585,717	B1		Wittenberger et al.
6,32	8,730 B1		Harkrider, Jr.	6,587,750			Gerbi et al.
	0,267 B1		Stefanchik	6,592,559 6,592,603		7/2003	Pakter et al.
	0,278 B1		Lenker et al.	6,594,971			Addy et al.
	2,503 B1 2,541 B1		Matsui et al. Kienzle et al.	6,602,262			Griego et al.
	2,543 B1	3/2002		6,605,105			Cuschieri et al.
6,35	5,013 B1		van Muiden	6,610,072			Christy et al.
	5,035 B1		Manushakian	6,610,074 6,613,038			Santilli Bonutti et al.
	1,534 B1		Chen et al.	6,613,068		9/2003	
	4,879 B1 8,340 B2		Chen et al. Malecki et al.	6,616,632		9/2003	
	1.956 B1		Wilson et al.	6,620,193			Lau et al.
	9,366 B1	4/2002	Fleischman et al.	6,623,448		9/2003	
	3,195 B1		Richard	6,626,919 6,632,171			Swanstrom Iddan et al.
,	3,197 B1		Conlon et al.	6,632,229			Yamanouchi
	7,671 B1 1,029 B1		Rubinsky et al. Hooven et al.	6,632,234			Kieturakis et al.
	8,708 B1		Hastings et al.	6,638,275			McGaffigan et al.
	2,735 B1		Langevin	6,638,286			Burbank et al.
	2,746 B1		Whayne et al.	6,645,225 6,652,518			Atkinson Wellman et al.
	6,440 B1		Stefanchik	6,652,521		11/2003	
	9,727 B1 9,733 B1		Bales et al. Conlon et al.	6,652,545			Shipp et al.
	9,639 B2		Walther et al.	6,652,551		11/2003	Heiss
	9,641 B1		Mark et al.	6,656,194			Gannoe et al.
	7,089 B1		Knowlton	6,663,641			Kovac et al.
	1,500 B1		Jacobs et al.	6,663,655 6,666,854		12/2003	Ginn et al.
	6,107 B1 3,970 B1	8/2002 9/2002	Wang et al. Schulze et al.	6,672,338			Esashi et al.
	3,988 B2		Felt et al.	6,673,058	B2	1/2004	Snow
	7,511 B1	9/2002		6,673,087			Chang et al.
	7,523 B1		Middleman et al.	6,673,092 6,676,685			Bacher Pedros et al.
	4,783 B1 4,785 B2	9/2002		6,679,882			Kornerup
	4,785 B2 8,074 B1		De Hoyos Garza Matsui et al.	6,685,628		2/2004	
,	8,076 B1	10/2002		6,685,724	B1		Haluck
	4,701 B1	10/2002	Hooven et al.	6,692,445			Roberts et al.
- · · -	4,702 B2		Schulze et al.	6,692,462 6,692,493			Mackenzie et al. McGovern et al.
	0,218 B1 5,104 B1	10/2002		6,699,180		3/2004	Kobayashi
	5,104 B1 5,411 B1		Lutz et al. Konstorum et al.	6,699,256			Logan et al.
	9,745 B1	12/2002		6,699,263		3/2004	
	1,626 B1		Stone et al.	6,706,018			Westlund et al.
	1,627 B1	12/2002		6,708,066 6,709,188			Herbst et al. Ushimaru
	1,691 B1 3,590 B1		Morley et al. Wessman et al.	6,709,445			Boebel et al.
	4,893 B2		Dubrul et al.	6,716,226	B2	4/2004	Sixto, Jr. et al.
,	0,176 B1		Truckai et al.	6,731,875			Kartalopoulos
	3,192 B1	1/2003		6,736,822 6,740,030			McClellan et al. Martone et al.
	6,190 B1		Walshe	6,740,030			Shadduck
	8,827 B1 4,239 B2		Manhes Shimmura et al.	6,743,166			Berci et al.
	7,534 B1		McGovern et al.	6,743,226	B2		Cosman et al.
6,52	0,954 B2	2/2003		6,743,239			Kuehn et al.
	6,320 B2		Mitchell	6,743,240 6,749,560			Smith et al. Konstorum et al.
	7,782 B2		Hogg et al.	6,749,560			Lunsford et al.
	0,880 B2 0,922 B2		Pagliuca Cosman et al.	6,752,768			Burdorff et al.
	5,764 B2		Imran et al.	6,752,811			Chu et al.
	7,200 B2	3/2003	Leysieffer et al.	6,752,822	B2	6/2004	Jespersen
	3,456 B1		Freeman	6,758,857			Cioanta et al.
	1,270 B1		Bimbo et al.	6,761,685			Adams et al.
	1,356 B2		Rousseau Manda et al	6,761,718			Madsen
	4,766 B2 4,823 B2		Maeda et al. Palmer et al.	6,761,722 6,767,356	DZ B2		Cole et al. Kanner et al.
	4,823 B2 4,829 B2		Schulze et al.	6,773,434			Ciarrocca
	8,384 B2		Mayenberger	6,776,165		8/2004	
0,00	, ~~		,	,,	_		

(56)		Referen	ces Cited	6,984,205			Gazdzinski
	HS	PATENT	DOCUMENTS	6,986,738 6,986,774			Glukhovsky et al. Middleman et al.
	0.5.	17111111	DOCUMENTS	6,988,987			Ishikawa et al.
6,776,78	7 B2	8/2004	Phung et al.	6,989,028			Lashinski et al.
6,780,15			Grabover et al.	6,991,602			Nakazawa et al. Madhani et al.
6,780,35			Jacobson	6,991,627 6,991,631			Woloszko et al.
6,783,49 6,786,38			Saadat et al. Hoffman	6,994,706			Chornenky et al.
6,786,86			Matsuura et al.	6,994,708			Manzo
6,786,90			Swanson et al.	6,997,870			Couvillon, Jr.
6,788,97			Fenn et al.	6,997,931			Sauer et al.
6,790,17			Saadat et al.	7,000,818 7,001,329			Shelton, IV et al. Kobayashi et al.
6,790,21 6,795,72			Schulze et al. Chornenky et al.	7,001,341			Gellman et al.
6,800,05			Tartaglia et al.	7,008,375		3/2006	Weisel
6,808,49			Kortenbach et al.	7,008,419			Shadduck
6,817,97			Cooper et al.	7,009,634 7,010,340			Iddan et al. Scarantino et al.
6,818,00			Dampney et al.	7,010,340			Kimblad
6,824,54 6,830,54		12/2004	Smith et al.	7,018,373			Suzuki
6,836,68			Ingle et al.	7,020,531			Colliou et al.
6,837,84			Ewers et al.	7,025,580			Heagy et al.
6,840,24			Downing	7,025,721		4/2006 4/2006	Cohen et al.
6,840,93			Morley et al.	7,029,435 7,029,438			Morin et al.
6,843,79 6,861,25			Sixto, Jr. et al. Cole et al.	7,029,450			Gellman
6,866,62		3/2005		7,032,600		4/2006	Fukuda et al.
6,866,62			Goodman et al.	7,035,680			Partridge et al.
6,869,39	4 B2		Ishibiki	7,037,290			Gardeski et al.
6,878,10			Herrmann	7,041,052 7,052,454		5/2006	Saadat et al.
6,878,11			Yang et al.	7,052,489			Griego et al.
6,881,21 6,881,21			Ryan et al. Di Caprio et al.	7,056,330			Gayton
6,884,21			Raz et al.	7,060,024			Long et al.
6,887,25		5/2005	Shimm	7,060,025			Long et al.
6,889,08			Behl et al.	7,063,697 7,063,715		6/2006	Onuki et al.
6,890,29			Michels et al.	7,065,713			Fowler et al.
6,896,68 6,896,69			Gadberry et al. Ginn et al.	7,066,936		6/2006	
6,899,71			Hooven	7,070,559			Adams et al.
6,908,42			Fleener et al.	7,070,602			Smith et al.
6,908,47			Jud et al.	7,076,305 7,083,618			Imran et al. Couture et al.
6,913,61			Schwarz et al.	7,083,618			Jahns et al.
6,916,28 6,918,87			Moriyama Schulze	7,083,629			Weller et al.
6,918,90		7/2005		7,083,635		8/2006	
6,918,90		7/2005	Bonner et al.	7,087,010			Ootawara et al.
6,926,72			Mulhauser et al.	7,087,071 7,088,923			Nicholas et al. Haruyama
6,926,72 6,932,81			Cooke et al.	7,088,923			Dycus et al.
6,932,81		8/2005 8/2005	Ryan Roop et al.	7,090,683		8/2006	Brock et al.
6,932,82		8/2005	r.	7,090,685	B2	8/2006	Kortenbach et al.
6,932,83			Lizardi et al.	7,093,518			Gmeilbauer
6,936,00		8/2005		7,101,371 7,101,372			Dycus et al. Dycus et al.
6,939,29 6,939,29		9/2005		7,101,372			Dycus et al.
6,939,32			Mizuno Hall et al.	7,105,000			McBrayer
6,942,61			Ewers et al.	7,105,005		9/2006	
6,944,49		9/2005		7,108,696			Daniel et al.
6,945,47			Wuttke et al.	7,108,703 7,112,208			Danitz et al. Morris et al.
6,945,97			Kortenbach et al.	7,112,208			Park et al.
6,949,09 6,955,64		10/2005	Davison et al.	7,115,124		10/2006	
6,955,68		10/2005		7,117,703	B2		Kato et al.
6,958,03			Friedman et al.	7,118,531		10/2006	
6,960,16			Saadat et al.	7,118,578			West, Jr. et al.
6,960,16			Ewers et al.	7,118,587 7,128,708			Dycus et al. Saadat et al.
6,960,18 6,962,58			Nicolette Johnson et al.	7,120,700			Chornenky et al.
6,964,66			Kidooka	RE39,415		11/2006	Bales et al.
6,966,90			Marshall et al.	7,131,978	B2	11/2006	Sancoff et al.
6,966,91			Sixto, Jr. et al.	7,131,979			DiCarlo et al.
6,967,46		11/2005		7,131,980			Field et al.
6,971,98			Orban, III	7,137,980			Buysse et al.
6,972,01 6,974,41		12/2005	Smith et al.	7,137,981 7,146,984		11/2006	Long Stack et al.
6,976,99			Sachatello et al.	7,140,984		12/2006	
6,984,20			Tartaglia et al.	7,150,097			Sremcich et al.
- , ,			J	, , '	-		

(56)	Referei	ices Cited	7,494,499			Nagase et al.
U.S	S. PATENT	DOCUMENTS	7,497,867 7,498,950	B1	3/2009	Lasner et al. Ertas et al.
7 150 655 P2	12/2006	M	7,507,200 7,507,239		3/2009 3/2009	Okada Shadduck
7,150,655 B2 7,150,750 B2		Mastrototaro et al. Damarati	7,510,107		3/2009	Timm et al.
7,152,488 B2		Hedrich et al.	7,511,733		3/2009	Takizawa et al.
7,153,321 B2	12/2006	Andrews	7,515,953 7,520,876		4/2009 4/2009	Madar et al. Ressemann et al.
7,156,845 B2 7,160,296 B2		Mulier et al. Pearson et al.	7,524,281		4/2009	Chu et al.
7,163,525 B2		Franer	7,524,302		4/2009	Tower
7,169,104 B2		Ueda et al.	7,534,228 7,540,872		5/2009 6/2009	Williams Schechter et al.
7,172,714 B2 7,175,591 B2		Jacobson Kaladelfos	7,542,807		6/2009	Bertolero et al.
7,179,254 B2		Pendekanti et al.	7,544,203		6/2009	Chin et al.
7,186,265 B2		Sharkawy et al.	7,548,040 7,549,564		6/2009 6/2009	Lee et al. Boudreaux
7,188,627 B2 7,195,612 B2		Nelson et al. Van Sloten et al.	7,549,991		6/2009	Lu et al.
7,195,631 B2	3/2007	Dumbauld	7,549,998		6/2009	Braun
7,204,820 B2 7,207,997 B2	4/2007 4/2007	Akahoshi Shipp et al.	7,553,278 7,553,298		6/2009 6/2009	Kucklick Hunt et al.
7,207,997 B2 7,208,005 B2		Frecker et al.	7,559,452	B2	7/2009	Wales et al.
7,211,089 B2		Kear et al	7,559,887 7,559,916		7/2009	Dannan Smith at al
7,211,092 B2 7,220,227 B2	5/2007 5/2007	Hughett Sasaki et al.	7,560,006		7/2009 7/2009	Smith et al. Rakos et al.
7,223,271 B2		Muramatsu et al.	7,561,907	B2	7/2009	Fuimaono et al.
7,223,272 B2		Francere et al.	7,561,916		7/2009 7/2009	Hunt et al. Blackmore et al.
7,229,438 B2 7,232,414 B2		Young Gonzalez	7,565,201 7,566,334		7/2009	Christian et al.
7,232,445 B2		Kortenbach et al.	7,575,144	B2	8/2009	Ortiz et al.
7,235,089 B1		McGuckin, Jr.	7,575,548 7,579,550		8/2009 8/2009	Takemoto et al. Dayton et al.
7,241,290 B2 7,244,228 B2		Doyle et al. Lubowski	7,582,096		9/2009	Gellman et al.
7,250,027 B2	7/2007		7,588,177	B2	9/2009	Racenet
7,252,660 B2	8/2007		7,588,557 7,591,781		9/2009 9/2009	Nakao Hirata
7,255,675 B2 7,261,725 B2		Gertner et al. Binmoeller	7,591,781		10/2009	Boudreaux et al.
7,270,663 B2		Nakao	7,604,150		10/2009	Boudreaux
7,288,075 B2		Parihar et al.	7,608,083 7,611,479		10/2009 11/2009	Lee et al. Cragg et al.
7,291,127 B2 7,294,139 B1		Eidenschink Gengler	7,615,002		11/2009	Rothweiler et al.
7,301,250 B2	11/2007	Cassel	7,615,005		11/2009	Stefanchik et al.
7,306,597 B2 7,308,828 B2	12/2007	Manzo Hashimoto	7,618,398 7,621,936		11/2009 11/2009	Holman et al. Cragg et al.
7,308,828 B2 7,311,107 B2		Harel et al.	7,632,250	B2	12/2009	Smith et al.
7,318,802 B2		Suzuki et al.	7,635,373 7,637,903		12/2009 12/2009	Ortiz Lentz et al.
7,320,695 B2 7,322,934 B2		Carroll Miyake et al.	7,648,519			Lee et al.
7,323,006 B2		Andreas et al.	7,650,742	B2		Ushijima
7,329,256 B2		Johnson et al.	7,651,483 7,651,509			Byrum et al. Bojarski et al.
7,329,257 B2 7,329,383 B2		Kanehira et al. Stinson	7,653,438		1/2010	Deem et al.
7,335,220 B2		Khosravi et al.	7,654,431			Hueil et al.
7,341,554 B2		Sekine et al.	7,655,004 7,662,089		2/2010 2/2010	Okada et al.
7,344,536 B1 7,352,387 B2		Lunsford et al. Yamamoto	7,666,180	B2	2/2010	Holsten et al.
7,364,582 B2	4/2008	Lee	7,666,203			Chanduszko et al.
7,371,215 B2 7,381,216 B2		Colliou et al. Buzzard et al.	7,670,282 7,670,336		3/2010 3/2010	Young et al.
7,381,210 B2 7,390,324 B2		Whalen et al.	7,674,259	B2	3/2010	Shadduck
7,393,322 B2	7/2008	Wenchell	7,678,043 7,680,543		3/2010 3/2010	
7,402,162 B2 7,404,791 B2		Ouchi Linares et al.	7,684,599			Horn et al.
7,410,483 B2		Danitz et al.	7,684,851	B2	3/2010	Miyake et al.
7,413,563 B2	8/2008	Corcoran et al.	7,686,826 7,697,970			Lee et al. Uchiyama et al.
7,416,554 B2 7,422,590 B2		Lam et al. Kupferschmid et al.	7,699,835			Lee et al.
7,435,229 B2	10/2008		7,699,864			Kick et al.
7,435,257 B2		Lashinski et al.	7,713,189 7,713,270		5/2010 5/2010	
7,441,507 B2 7,442,166 B2		Teraura et al. Huang et al.	7,713,270			Kalloo et al.
7,452,327 B2	11/2008	Durgin et al.	7,736,374	B2	6/2010	Vaughan et al.
7,455,208 B2	11/2008	Wales et al.	7,744,615			Couture
7,455,675 B2 7,468,066 B2		Schur et al. Vargas et al.	7,749,161 7,751,866			Beckman et al. Aoki et al.
7,476,237 B2		Taniguchi et al.	7,751,800			Piskun et al.
7,479,104 B2	1/2009	Lau et al.	7,753,933	B2	7/2010	Ginn et al.
7,485,093 B2		Glukhovsky	7,758,577			Nobis et al.
7,488,295 B2	2/2009	Burbank et al.	7,762,949	DΖ	7/2010	INAKAO

(56)		Referen	ces Cited		8,062,311			Litscher et al.
	HS	PATENT	DOCUMENTS		8,066,632 8,066,702			Dario et al. Rittman, III et al.
	0.5.	17111111	DOCUMENTS		8,070,759			Stefanchik et al.
7,762,99		7/2010	Birk et al.		8,070,804			Hyde et al.
7,763,017			Petrick et al.		8,075,572 8,075,587		12/2011	Stefanchik et al.
7,765,010 7,766,890			Chornenky et al. Kornkven Volk et a	a1	8,088,062			Zwolinski
7,770,58			Danek et al.		8,096,459			Ortiz et al.
7,771,410	5 B2		Spivey et al.		8,096,941			Fowler et al.
7,771,43° 7,780,68°			Hogg et al. Roue et al.		8,100,922 8,109,872			Griffith Kennedy, II et al.
7,780,69			Stefanchik		8,114,072	B2	2/2012	Long et al.
7,784,663	3 B2		Shelton, IV		8,114,119			Spivey et al.
7,794,409			Damarati		8,118,821 8,118,834		2/2012	Mouw Goraltchouk et al.
7,794,44° 7,794,45°			Dann et al. McIntyre et al.		8,131,371			Demarals et al.
7,794,47			Hess et al.		8,147,424			Kassab et al.
7,798,380			Schall et al.		8,157,813 8,157,834			Ko et al. Conlon
7,815,569 7,815,569			Stefanchik et al. Stefanchik et al.		8,172,772			Zwolinski et al.
7,815,659			Conlon et al.		8,182,414		5/2012	Handa et al.
7,815,662	2 B2	10/2010	Spivey et al.		8,187,166			Kuth et al.
7,819,830			Levine et al.		8,200,334 8,206,295		6/2012	Min et al.
7,828,186 7,833,156		11/2010	Williams et al.		8,211,125		7/2012	
7,833,23		11/2010			8,216,224			Morris et al.
7,837,61			Le et al.		8,221,310 8,241,204		7/2012 8/2012	Saadat et al.
7,842,023 7,842,063		11/2010 11/2010			8,251,068			Schnell
7,846,17			Kullas et al.		8,252,057		8/2012	Fox
7,850,660			Uth et al.		8,262,563			Bakos et al.
7,857,183			Shelton, IV		8,262,655 8,262,680			Ghabrial et al. Swain et al.
7,862,546 7,862,553			Conlon et al. Ewaschuk		8,267,854			Asada et al.
7,867,210			Wahr et al.		8,303,581			Arts et al.
7,871,37			Komiya et al.		8,308,738 8,317,806			Nobis et al. Coe et al.
7,879,004 7,883,45		2/2011	Seibel et al.		8,317,800			Karasawa et al.
7,887,530			Zemlok et al.		8,328,836	B2		Conlon et al.
7,887,55	3 B2		Lin et al.		8,337,394 8,337,492			Vakharia Kunis et al.
7,892,220			Faller et al. Uchimura et al.		8,343,041			Byers et al.
7,896,80 7,896,88			Rimbaugh et al.		8,353,487	B2		Trusty et al.
7,905,82	8 B2	3/2011	Brock et al.		8,357,170			Stefanchik
7,909,809			Scopton et al.		8,359,093 8,361,066		1/2013	Wariar Long et al.
7,914,513 7,918,783	5 B2		Voorhees, Jr. Okada et al.		8,361,112			Carroll, II et al.
7,918,869	€ B2		Saadat et al.		8,403,926	B2		Nobis et al.
7,922,74	3 B2		Heinrich et al.		8,409,200 8,425,505		4/2013	Holcomb et al.
7,927,27 7,931,62			Dimitriou et al. Smith et al.		8,430,811		4/2013	Hess et al.
7,937,14			Demarais et al.		8,449,452	B2	5/2013	Iddan et al.
7,945,332			Schechter		8,449,538 8,454,594		5/2013	Long Demarais et al.
7,947,000 7,953,320			Vargas et al. Farr et al.		8,475,359			Asada et al.
7,955,29			Carroll et al.		8,480,657	B2	7/2013	Bakos
7,959,62			Utley		8,480,689			Spivey et al.
7.050.630) D2	6/2011	Vouna at al	606/41	8,485,968 8,496,574			Weimer et al. Trusty et al.
7,959,629 7,963,97			Young et al. Criscuolo		8,500,697			Kurth et al.
7,965,180			Koyama		8,506,564			Long et al.
7,967,803			Fitzgerald et al.		8,523,939 8,529,563			Hausen Long et al.
7,969,473 7,972,330			Kotoda Alejandro et al.		8,545,396			Cover et al.
7,976,45			Stefanchik et al.		8,568,410			Vakharia et al.
7,976,55	2 B2		Suzuki		8,579,897			Vakharia et al.
7,985,239 7,988,613			Suzuki Mikkaichi et al.		8,608,652 8,623,011		1/2013	Voegele et al. Spivey
7,988,68			Ziaie et al.		8,636,648	B2	1/2014	Gazdzinski
8,021,36	2 B2	9/2011	Deem et al.		8,636,730			Keppel
8,029,504		10/2011			8,652,150 8,668,686			Swain et al. Govari et al.
8,034,046 8,037,59			Eidenschink Spivey et al.		8,679,003		3/2014	
8,048,06			Davalos et al.		8,727,967			Weitzner
8,048,10	8 B2	11/2011	Sibbitt et al.		8,747,401	B2	6/2014	Gonzalez et al.
8,052,699			Sherwinter		8,753,335			Moshe et al.
8,057,510 8,062,300			Ginn et al. Nobis et al.		8,771,173 8,771,260			Fonger et al. Conlon et al.
0,002,300	∠ور د	11/2011	110015 Ct al.		0,771,200	1/2	112014	Comon et al.

(56)		Referen	ces Cited	2004/0199052			Banik et al.
	TTC	DATENIT	DOCUMENTS	2004/0199159 2004/0206859			Lee et al. Chong et al.
	0.5.	PALENT	DOCUMENTS	2004/0200839			Erickson et al.
8,828,03	1 B2	9/2014	Fox et al.	2004/0215058		10/2004	Zirps et al.
8,880,18			Hastings et al.	2004/0225183			Michlitsch et al.
8,888,792		11/2014	Harris et al.	2004/0225186			Horne, Jr. et al.
8,906,03			Zwolinski et al.	2004/0225323 2004/0230095			Nagase et al. Stefanchik et al.
2001/0023333			Wise et al. Diokno et al.	2004/0230095			Stefanchik et al.
2002/002277: 2002/002285			Goldsteen et al.	2004/0230161		11/2004	
2002/0023353			Ting-Kung	2004/0243108		12/2004	
2002/002905			Bonutti	2004/0249246		12/2004	
2002/0042562			Meron et al.	2004/0249367 2004/0249394		12/2004 12/2004	
2002/0049439 2002/0068949			Mulier et al. Sixto, Jr. et al.	2004/0249443		12/2004	
2002/000894			Sixto, Jr. et al.	2004/0254572	A1		McIntyre et al.
2002/0082510			Stefanchik	2004/0260198			Rothberg et al.
2002/008255			Yachia et al.	2004/0260315 2004/0260337		12/2004	Dell et al.
2002/0095164			Andreas et al. Sauer et al.	2005/0004515			Hart et al.
2002/0107530 2002/013311:			Gordon et al.	2005/0033265			Engel et al.
2002/0138086			Sixto, Jr. et al.	2005/0033277			Clague et al.
2002/0147456			Diduch et al.	2005/0033319		2/2005 2/2005	Gambale et al. Smith et al.
2002/0165592			Glukhovsky et al.	2005/0033333 2005/0043690		2/2005	
2002/017380: 2002/018359:			Matsuno et al. Matsuura et al.	2005/0049616			Rivera et al.
2003/0014090			Abrahamson	2005/0059963	A1		Phan et al.
2003/0018373		1/2003	Eckhardt et al.	2005/0059964		3/2005	
2003/002325:			Miles et al.	2005/0065397 2005/0065509			Saadat et al. Coldwell et al.
2003/0036679			Kortenbach et al. Jacobs et al.	2005/0065517		3/2005	
2003/0069602 2003/007847			Foley et al.	2005/0070754		3/2005	Nobis et al.
2003/008368			Moutafis et al.	2005/0070763			Nobis et al.
2003/011473			Cadeddu et al.	2005/0070764			Nobis et al.
2003/0114732			Webler et al.	2005/0070947 2005/0080413			Franer et al. Canady
2003/012025′ 2003/0124009			Houston et al. Ravi et al.	2005/0080435			Smith et al.
2003/012400			Martone et al.	2005/0085693			Belson et al.
2003/0130656		7/2003		2005/0085832			Sancoff et al.
2003/0139640			Sharrow et al.	2005/0090837 2005/0090838			Sixto, Jr. et al. Sixto, Jr. et al.
2003/015852 2003/0167062		8/2003	Amerı Gambale et al.	2005/0096502		5/2005	
2003/0107002			Page et al.	2005/0101837			Kalloo et al.
2003/0176880			Long et al.	2005/0101838			Camillocci et al.
2003/018735			Franck et al.	2005/0101984 2005/0107663			Chanduszko et al. Saadat et al.
2003/021661: 2003/021661:		11/2003 11/2003		2005/0107664			Kalloo et al.
2003/021001.		11/2003		2005/0110881			Glukhovsky et al.
2003/0225312			Suzuki et al.	2005/0113847		5/2005	Gadberry et al.
2003/0225332		12/2003	Okada et al.	2005/0119613 2005/0124855		6/2005	Moenning et al.
2003/0229269			Humphrey	2005/0124833			Jaffe et al. Smith et al.
2003/022937 2003/0236549			Whitworth Bonadio et al.	2005/0131279			Boulais et al.
2004/0002683			Nicholson et al.	2005/0131457			Douglas et al.
2004/0024414			Downing	2005/0137454			Saadat et al.
2004/0034369			Sauer et al.	2005/0143647 2005/0143690		6/2005	Minai et al.
2004/0054322 2004/009800		3/2004 5/2004		2005/0143774		6/2005	
2004/0101450			Kuroshima et al.	2005/0143803			Watson et al.
2004/0104999		6/2004		2005/0149087			Ahlberg et al.
2004/0116948			Sixto, Jr. et al.	2005/0149096 2005/0159648		7/2005	Hilal et al.
2004/0127940 2004/013307			Ginn et al. Obenchain et al.	2005/0155048			Okada et al.
2004/013307			Kilcoyne et al.	2005/0165378			Heinrich et al.
2004/0136779			Bhaskar	2005/0165411			Orban, III
2004/013852			Saadat et al.	2005/0165429			Douglas et al. Yamanouchi
2004/0138529 2004/013858			Wiltshire et al. Lyons, IV	2005/0182429 2005/0192478			Williams et al.
2004/013838			Pierce et al.	2005/0192598			Johnson et al.
2004/016754:			Sadler et al.	2005/0192602	A1	9/2005	
2004/0176699) A1	9/2004	Walker et al.	2005/0192654			Chanduszko et al.
2004/0186350			Brenneman et al.	2005/0209624		9/2005	
2004/0193009 2004/0193146			Jaffe et al. Lee et al.	2005/0215858 2005/0216036		9/2005 9/2005	Vail, III
2004/0193180			Kortenbach et al.	2005/0216050			Sepetka et al.
2004/0193188			Francese	2005/0228224		10/2005	Okada et al.
2004/0193189			Kortenbach et al.	2005/0228406	A1	10/2005	Bose
2004/0193200) A1	9/2004	Dworschak et al.	2005/0234297	A1	10/2005	Devierre et al.

(56)	Referen	ces Cited	2006/0195084		8/2006	
U.S. I	PATENT	DOCUMENTS	2006/0200005 2006/0200121			Bjork et al. Mowery
			2006/0200169		9/2006	
2005/0240249 A1	10/2005		2006/0200170		9/2006	
2005/0250983 A1		Tremaglio et al.	2006/0200199 2006/0217665		9/2006	Bonutti et al.
2005/0250987 A1	11/2005	Ewers et al.	2006/0217603			Lau et al.
	11/2005		2006/0217742			Messerly et al.
		Vaughan et al.	2006/0217743			Messerly et al.
2005/0251176 A1		Swanstrom et al.	2006/0229639			Whitfield
		Nobis et al.	2006/0229640 2006/0237022			Whitfield Chen et al.
2005/0267492 A1 2005/0272975 A1		Poncet et al. McWeeney et al.	2006/0237023			Cox et al.
2005/0272977 A1		Saadat et al.	2006/0241570		10/2006	
2005/0273084 A1		Hinman et al.	2006/0247500 2006/0247576		11/2006 11/2006	Voegele et al.
2005/0274935 A1	12/2005		2006/0247576			Schwartz et al.
2005/0277945 A1 2005/0277951 A1		Saadat et al. Smith et al.	2006/0247673			Voegele et al.
2005/0277952 A1		Arp et al.	2006/0253004			Frisch et al.
		Smith et al.	2006/0253039			McKenna et al. Stefanchik et al.
2005/0277955 A1		Palmer et al. Francese et al.	2006/0258907 2006/0258908			Stefanchik et al.
2005/0277956 A1 2005/0277957 A1		Kuhns et al.	2006/0258910			Stefanchik et al.
2005/0283118 A1		Uth et al.	2006/0258954			Timberlake et al.
2005/0283119 A1		Uth et al.	2006/0258955 2006/0259010			Hoffman et al. Stefanchik et al.
2005/0288555 A1		Binmoeller Wehrstein et al.	2006/0259010			Miyamoto et al.
2006/0004406 A1 2006/0004409 A1		Nobis et al.	2006/0264752	A1*	11/2006	Rubinsky et al 600/439
2006/0004410 A1		Nobis et al.	2006/0264904	A1	11/2006	Kerby et al.
2006/0015009 A1		Jaffe et al.	2006/0264930 2006/0270902			Nishimura
2006/0015131 A1		Kierce et al.	2006/0270902			Igarashi et al. Latterell et al.
2006/0020167 A1 2006/0020247 A1		Sitzmann Kagan et al.	2006/0271102			Bosshard et al.
2006/0025654 A1		Suzuki et al.	2006/0276835		12/2006	
2006/0025781 A1		Young et al.	2006/0281970 2006/0282106			Stokes et al. Cole et al.
2006/0025812 A1		Shelton, IV Nobis et al.	2006/0282100			Horn et al.
2006/0025819 A1 2006/0036267 A1		Saadat et al.	2006/0287644			Inganas et al.
2006/0041188 A1		Dirusso et al.	2006/0287666			Saadat et al.
2006/0058582 A1		Maahs et al.	2006/0293626 2007/0000550			Byrum et al. Osinski
2006/0058776 A1 2006/0064083 A1		Bilsbury Khalaj et al.	2007/0000330		1/2007	Glukhovsky
2006/0069396 A1		Meade et al.	2007/0005019		1/2007	Okishige
2006/0069424 A1	3/2006	Acosta et al.	2007/0010801			Chen et al.
2006/0069425 A1		Hillis et al.	2007/0015965 2007/0016225		1/2007	Cox et al.
2006/0069429 A1 2006/0074413 A1		Spence et al. Behzadian	2007/0027469		2/2007	
2006/0079890 A1	4/2006		2007/0032700			Fowler et al.
2006/0089528 A1	4/2006	Tartaglia et al.	2007/0032701			Fowler et al.
2006/0095031 A1 2006/0095060 A1		Ormsby Mayenberger et al.	2007/0043261 2007/0049800			Watanabe et al. Boulais
2006/0093000 AT 2006/0100687 AT		Fahey et al.	2007/0049902		3/2007	Griffin et al.
2006/0106423 A1		Weisel et al.	2007/0049968			Sibbitt et al.
2006/0111209 A1		Hinman et al.	2007/0051375 2007/0060880			Milliman Gregorich et al.
2006/0111210 A1 2006/0111703 A1		Hinman et al. Kunis et al.	2007/0066869			Hoffman
2006/0111704 A1		Brenneman et al.	2007/0067017		3/2007	
2006/0129166 A1		Lavelle	2007/0073102			Matsuno et al.
2006/0135962 A1		Kick et al.	2007/0073269 2007/0078439			Becker Grandt et al.
2006/0135971 A1 2006/0135984 A1		Swanstrom et al. Kramer et al.	2007/0079924			Saadat et al.
2006/0142644 A1		Mulac et al.	2007/0083195			Werneth et al.
2006/0142652 A1		Keenan	2007/0088370 2007/0100375			Kahle et al. Mikkaichi et al.
2006/0142790 A1 2006/0142798 A1		Gertner Holman et al.	2007/0100373			Mikkaichi et al.
2006/0142798 A1 2006/0149129 A1		Watts et al.	2007/0106113		5/2007	
2006/0149131 A1	7/2006	Or	2007/0106118			Moriyama
2006/0149132 A1	7/2006		2007/0106317 2007/0112251			Shelton, IV et al. Nakhuda
2006/0149135 A1 2006/0161190 A1	7/2006 7/2006	Paz Gadberry et al.	2007/0112231			Weber et al.
2006/0167416 A1		Mathis et al.	2007/0112331			Pearson et al 606/34
2006/0167482 A1	7/2006	Swain et al.	2007/0112383			Conlon et al.
2006/0178560 A1		Saadat et al.	2007/0112385			Conlon
2006/0183975 A1 2006/0184161 A1		Saadat et al. Maahs et al.	2007/0112417 2007/0112425			Shanley et al. Schaller et al.
2006/0184161 A1 2006/0189844 A1	8/2006		2007/0112425			Artale et al.
2006/0189845 A1		Maahs et al.	2007/0123840		5/2007	
2006/0190027 A1	8/2006	Downey	2007/0129605	A1	6/2007	Schaaf

(56)		Referen	ces Cited	2008/0097159	A1	4/2008	Ishiguro
(20)				2008/0097472	A1	4/2008	Agmon et al.
	U.S. I	PATENT	DOCUMENTS	2008/0097483			Ortiz et al.
				2008/0103527 2008/0114384			Martin et al. Chang et al.
2007/0129719			Kendale et al.	2008/0114384			Williams
2007/0129760 2007/0135709			Demarais et al. Rioux et al.	2008/0119891			Miles et al.
2007/0135803		6/2007		2008/0125774		5/2008	Palanker et al.
2007/0142706			Matsui et al.	2008/0125796			Graham
2007/0142710			Yokoi et al.	2008/0132892			Lunsford et al.
2007/0142779			Duane et al.	2008/0139882 2008/0140069			Fujimori
2007/0142780			Van Lue	2008/0140069			Filloux et al. Vegesna
2007/0154460 2007/0156028			Kraft et al. Van Lue et al.	2008/0147056			van der Weide et al.
2007/0156116			Gonzalez	2008/0150754			Quendt
2007/0156127			Rioux et al.	2008/0171907	A1		Long et al.
2007/0161855	A1	7/2007	Mikkaichi et al.	2008/0177135			Muyari et al
2007/0162101		7/2007	Burgermeister et al.	2008/0188710			Segawa et al. Weitzner et al.
2007/0167901			Herrig et al.	2008/0188868 2008/0200755		8/2008	
2007/0173686 2007/0173691			Lin et al. Yokoi et al.	2008/0200762		8/2008	
2007/0173869		7/2007		2008/0200911		8/2008	
2007/0173870			Zacharias	2008/0200933			Bakos et al.
2007/0173872	2 A1	7/2007	Neuenfeldt	2008/0200934		8/2008	
2007/0179525			Frecker et al.	2008/0208213 2008/0208280			Benjamin et al. Lindenthaler et al.
2007/0179530			Tieu et al.	2008/0208280			Schwartz
2007/0191904 2007/0197865			Libbus et al. Miyake et al.	2008/0228213			Blakeney et al.
2007/01978057			Gelbart et al.	2008/0230972			Ganley
2007/0203398			Bonadio et al.	2008/0234696	A1		Taylor et al.
2007/0203487	A1	8/2007		2008/0243106			Coe et al.
2007/0208336			Kim et al.	2008/0243148			Mikkaichi et al.
2007/0208364			Smith et al.	2008/0243176 2008/0249567		10/2008	Weitzner et al.
2007/0208407			Gerdts et al.	2008/0262513			Stahler et al.
2007/0213754 2007/0225552			Mikkaichi et al. Segawa et al.	2008/0262524			Bangera et al.
2007/0225554			Maseda et al.	2008/0262540	A1		Bangera et al.
2007/0233040		10/2007	Macnamara et al.	2008/0275474			Martin et al.
2007/0244356	A1		Carrillo, Jr. et al.	2008/0275475			Schwemberger et al.
2007/0244358		10/2007		2008/0287737 2008/0287801		11/2008	Magnin et al.
2007/0250038		10/2007		2008/0287801			Smith et al.
2007/0250057 2007/0255096			Nobis et al. Stefanchik et al.	2008/0300461			Shaw et al.
2007/0255100			Barlow et al.	2008/0300547	A 1	12/2008	Bakos
2007/0255273	A1	11/2007	Fernandez et al.	2008/0300571			LePivert
2007/0255303			Bakos et al.	2008/0306493 2008/0309758			Shibata et al. Karasawa et al.
2007/0255306			Conlon et al.	2008/0309738			Zwolinski
2007/0260112 2007/0260117			Rahmani Zwolinski et al.	2008/0312499			Handa et al.
2007/0260121			Bakos et al.	2008/0312500			Asada et al.
2007/0260242			Dycus et al.	2008/0312506			Spivey et al.
2007/0260273			Cropper et al.	2008/0319436			Daniel et al.
2007/0260302		11/2007		2008/0319439 2009/0005636			Ootsubu Pang et al.
2007/0265494 2007/0270629		11/2007	Leanna et al.	2009/00303030			Minakuchi
2007/0270829			Conlon et al.	2009/0054728		2/2009	
2007/0270895			Nobis et al.	2009/0062788			Long et al.
2007/0270907	A1		Stokes et al.	2009/0062795			Vakharia et al.
2007/0282165			Hopkins et al.	2009/0069634 2009/0076499		3/2009 3/2009	
2007/0282371			Lee et al. Goldfarb et al.	2009/0078736			Van Lue
2007/0293727 2007/0299387			Williams et al.	2009/0082627			Karasawa et al.
2008/0004650		1/2008		2009/0082776	A1	3/2009	Cresina
2008/0015409			Barlow et al.	2009/0082779		3/2009	
2008/0015413			Barlow et al.	2009/0093690			Yoshizawa
2008/0015552			Doyle et al.	2009/0112059 2009/0112063		4/2009 4/2009	Bakos et al.
2008/0021416 2008/0022927			Arai et al. Zhang et al.	2009/0125042		5/2009	
2008/0022327			Grabinsky	2009/0131751		5/2009	Spivey et al.
2008/0033244			Matsui et al.	2009/0143639	A1	6/2009	Stark
2008/0033451	. A1	2/2008	Rieber et al.	2009/0143649		6/2009	
2008/0051629			Sugiyama et al.	2009/0143794			Conlon et al.
2008/0051735			Measamer et al.	2009/0143818			Faller et al.
2008/0058586		3/2008	Karpiel Kieturakis et al.	2009/0149710		6/2009 6/2009	Stefanchik et al. Torrie et al.
2008/0058854 2008/0065169			Colliou et al.	2009/0163770 2009/0177031		7/2009	
2008/0003109		3/2008		2009/0177031			Conlon
2008/0086172			Martin et al.	2009/0182325			Werneth et al.
2008/0091068		4/2008		2009/0182332			Long et al.

(56)	Referer	ices Cited		2011/0152923	A1 (5/2011	Fox
				2011/0160514	A1 (5/2011	Long et al.
U.S	S. PATENT	DOCUMENTS		2011/0190659 2011/0190764			Long et al. Long et al.
2009/0192344 A1	7/2000	Bakos et al.		2011/0190704			Amling et al.
2009/0192534 A1 2009/0192534 A1		Ortiz et al.		2011/0224665	A1 9	9/2011	Crosby et al.
2009/0198212 A1		Timberlake et al.		2011/0245619			Holcomb
2009/0198231 A1		Esser et al.		2011/0282149			Vargas et al. Cadeddu et al.
2009/0198253 A1		Omori Yates et al.		2011/0284014 2011/0285488			Scott et al.
2009/0209990 A1 2009/0210000 A1		Sullivan et al.		2012/0004502			Weitzner et al.
2009/0216248 A1		Uenohara et al.		2012/0029335		2/2012	
2009/0221873 A1		McGrath		2012/0078266 2012/0088965			Tyson, Jr. Stokes et al.
2009/0227999 A1	9/2009 9/2009	Willis et al.		2012/0089089			Swain et al.
2009/0228001 A1 2009/0248055 A1		Spivey et al.		2012/0089093			Trusty
2009/0259105 A1		Miyano et al.		2012/0101331			Gilad et al.
2009/0269317 A1		Davalos		2012/0101413 2012/0116155			Beetel et al. Trusty
2009/0281559 A1 2009/0287206 A1	11/2009 11/2009	Swain et al.		2012/0110133			Khait et al.
2009/0287200 A1 2009/0287236 A1		Bakos et al.		2012/0150172			Ortiz et al.
2009/0292164 A1		Yamatani		2012/0179148			Conlon
2009/0292167 A1		Kimoto		2012/0191075 2012/0191076			Trusty Voegele et al.
2009/0306470 A1 2009/0322864 A1		Karasawa et al. Karasawa et al.		2012/0191070			Long et al.
2009/0326332 A1	12/2009			2012/0220999	A1 3	8/2012	Long
2010/0010294 A1	1/2010	Conlon et al.		2012/0221002			Long et al.
2010/0010298 A1		Bakos et al.		2012/0238796 2012/0289857			Conlon Toth et al.
2010/0010303 A1 2010/0023032 A1		Bakos Granja Filho		2012/0289837			Long et al.
2010/0023032 A1 2010/0030211 A1		Davalos et al.		2013/0030430			Stewart et al.
2010/0036198 A1		Tacchino et al.		2013/0090666			Hess et al.
2010/0042045 A1		Splvey		2013/0138091 2013/0158348			Coe et al. Nobis et al.
2010/0048990 A1 2010/0049223 A1	2/2010	Bakos Granja Filho		2013/0138348			Iddan et al.
2010/0049223 A1 2010/0056862 A1		Bakos		2013/0217970			Weisenburgh, II et al.
2010/0056864 A1	3/2010			2013/0231530			Lien et al.
2010/0076451 A1		Zwolinski et al.		2013/0245356 2013/0331649			Fernandez et al. Khait et al.
2010/0076460 A1 2010/0081875 A1		Taylor et al. Fowler et al.		2013/0331049			Bakos et al.
2010/0081873 A1 2010/0091128 A1		Ogasawara et al.		2014/0031813			Tellio et al.
2010/0113872 A1	5/2010	Asada et al.		2014/0039491			Bakos et al.
2010/0121362 A1		Clague et al.		2014/0039492 2014/0052126		2/2014	Long Long et al.
2010/0130817 A1 2010/0152539 A1		Conlon Ghabrial et al.		2014/0052216			Long et al.
2010/0152725 A1		Pearson et al.		2014/0121678			Trusty et al.
2010/0152746 A1		Ceniccola et al.		2014/0243597 2014/0343360			Weisenburgh, II et al. Shohat et al.
2010/0191050 A1		Zwolinski		2014/0343300			Harris et al.
2010/0191267 A1 2010/0198149 A1	7/2010 8/2010			2015/0230858			Long et al.
2010/0198248 A1	8/2010	Vakharia		2015/0265335	A1 9	9/2015	Bakos et al.
2010/0198254 A1		Schaeffer		2015/0265342	A1 9	9/2015	Long et al.
2010/0210906 A1 2010/0217367 A1		Wendlandt Belson		FO	DEIGN	DATE	NET DOCK IN MENUTO
2010/0217307 A1 2010/0249700 A1		Spivey		FC	KEIGN	PALE	NT DOCUMENTS
2010/0256628 A1		Pearson et al.	I	D E	432358	85 A1	1/1995
2010/0261994 A1		Davalos et al.	I	DΕ	1971379	97 A1	10/1997
2010/0268025 A1 2010/0286791 A1	10/2010	Goldsmith		DE 100	1975705		8/2008
2010/0298642 A1		Trusty et al.		DE 1020 EP	00602787 008633		10/2009 8/1983
2010/0312056 A1		Galperin et al.		EP	028641		10/1988
2010/0331622 A2	12/2010	Conlon Davalos et al.	I	EΡ	049949		8/1992
2010/0331758 A1 2011/0077476 A1		Rofougaran		EP	058945		3/1994
2011/0087224 A1		Cadeddu et al.		EP EP	046447 052967		3/1995 2/1996
2011/0087266 A1		Conlon et al.		EP	077300		5/1997
2011/0087267 A1 2011/0093009 A1	4/2011 4/2011	Spivey et al.		EP	062100	9 B1	7/1997
2011/0093009 A1 2011/0098694 A1	4/2011			EP EP	072486 076062		7/1999 11/1999
2011/0098704 A1	4/2011	Long et al.		EP EP	076062		7/2001
2011/0106221 A1		Neal, II et al.	I	EΡ	128135		2/2003
2011/0112434 A1 2011/0112527 A1		Ghabrial et al. Hamilton, Jr. et al.		EP	094716		5/2003
2011/0112327 A1 2011/0115891 A1		Trusty	1	EP EP	083683 140283		12/2003 3/2004
2011/0124964 A1	5/2011			EP	074491		4/2004 4/2004
2011/0152610 A1		Trusty et al.	I	EΡ	093151	15 B1	8/2004
2011/0152859 A1		Long et al.		EP ZD	094112		10/2004
2011/0152878 A1 2011/0152888 A1		Trusty et al. Ho et al.		EP EP	141184 115061		10/2004 11/2004
2011/01/2000 Al	0/2011	TIO VE GII.	1		115001		11/2007

(56)	Referenc	es Cited	WO	WO 95/09666 A1	4/1995
()			WO	WO 96/22056 A1	7/1996
	FOREIGN PATEN	T DOCUMENTS	WO	WO 96/27331 A1	9/1996
			WO	WO 96/39946 A1	12/1996
EP	1477104 A1	11/2004	WO WO	WO 97/12557 A1 WO 98/01080 A1	4/1997 1/1998
EP EP	1481642 A1 1493391 A1	12/2004 1/2005	wo	WO 99/00060 A1	1/1999
EP EP	0848598 B1	2/2005	WO	WO 99/09919 A1	3/1999
EP	1281360 B1	3/2005	WO	WO 99/17661 A1	4/1999
EP	1568330 A1	8/2005	WO	WO 99/30622 A2	6/1999
EP	1452143 B1	9/2005	WO	WO 00/22996 A1	4/2000
EP	1616527 A2	1/2006	WO WO	WO 00/35358 A1 WO 00/68665 A1	6/2000 11/2000
EP	1006888 B1	3/2006	wo	WO 00/08003 A1 WO 01/10319 A1	2/2001
EP EP	1629764 A1 1013229 B1	3/2006 6/2006	WO	WO 01/26708 A1	4/2001
EP	1721561 A1	11/2006	WO	WO 01/41627 A2	6/2001
EP	1153578 B1	3/2007	WO	WO 01/58360 A2	8/2001
EP	1334696 B1	3/2007	WO	WO 02/11621 A2	2/2002
EP	1769766 A1	4/2007	WO WO	WO 02/34122 A2 WO 02/094082 A2	5/2002 11/2002
EP	1836971 A2 1836980 A1	9/2007	wo	WO 03/045260 A1	6/2003
EP EP	1854421 A2	9/2007 11/2007	WO	WO 03/047684 A2	6/2003
EP	1857061 A1	11/2007	WO	WO 03/059412 A2	7/2003
EP	1875876 A1	1/2008	WO	WO 03/078721 A2	9/2003
EP	1891881 A1	2/2008	WO	WO 03/081761 A2	10/2003
EP	1902663 A1	3/2008	WO WO	WO 03/082129 A2 WO 2004/006789 A1	10/2003 1/2004
EP	1477106 B1	6/2008	WO	WO 2004/000789 AT WO 2004/028613 A2	4/2004
EP EP	1949844 A1 1518499 B1	7/2008 8/2008	WO	WO 2004/037123 A1	5/2004
EP	1582138 B1	9/2008	WO	WO 2004/037149 A1	5/2004
EP	1709918 B1	10/2008	WO	WO 2004/052221 A1	6/2004
EP	1985226 A2	10/2008	WO	WO 2004/086984 A1	10/2004
EP	1994904 A1	11/2008	WO WO	WO 2005/009211 A2 WO 2005/018467 A2	2/2005 3/2005
EP	1707130 B1	12/2008	WO	WO 2005/037088 A2	4/2005
EP EP	0723462 B1 1769749 B1	3/2009 11/2009	WO	WO 2005/048827 A1	6/2005
EP	2135545 A2	12/2009	WO	WO 2005/065284 A2	7/2005
EP	1493397 B1	9/2011	WO	WO 2005/097019 A2	10/2005
EP	2659847 A1	11/2013	WO	WO 2005/097234 A2	10/2005
FR	2731610 A1	9/1996	WO WO	WO 2005/112810 A2	12/2005
GB	330629 A	6/1930	WO	WO 2005/120363 A1 WO 2005/122866 A1	12/2005 12/2005
GB GB	2335860 A 2403909 A	10/1999 1/2005	WO	WO 2006/007399 A1	1/2006
GB	2421190 A	6/2006	WO	WO 2006/012630 A2	2/2006
GB	2443261 A	4/2008	WO	WO 2006/040109 A1	4/2006
JР	56-46674	4/1981	WO	WO 2006/041881 A2	4/2006
JР	63309252 A	12/1988	WO WO	WO 2006/060405 A2 WO 2006/110733 A2	6/2006 10/2006
JP JP	4038960 A H 06-269460 A	2/1992 9/1994	WO	WO 2006/110733 A2 WO 2006/113216 A2	10/2006
JР	8-29699 A	2/1996	WO	WO 2007/013059 A2	2/2007
JP	H 9-75365	3/1997	WO	WO 2007/014063 A2	2/2007
JP	H 10-24049 A	1/1998	WO	WO 2007/035537 A2	3/2007
JP	2000/107197 A	4/2000	WO	WO 2007/048085 A2	4/2007
JР	2000245683 A	9/2000	WO WO	WO 2007/063550 A2 WO 2007/100067 A1	6/2007 9/2007
JP JP	2001-526072 A 2002-369791 A	12/2001 12/2002	WO	WO 2007/100007 AT	9/2007
JР	2002-309791 A 2003-088494 A	3/2003	WO	WO 2007/135577 A2	11/2007
JР	2003-235852 A	8/2003	WO	WO 2007/143200 A2	12/2007
JP	2004-33525 A	2/2004	WO	WO 2007/144004 A1	12/2007
JР	2004-065745 A	3/2004	WO WO	WO 2008/005433 A1 WO 2008/033356 A2	1/2008 3/2008
JР	2005-121947 A	5/2005	WO	WO 2008/033330 A2 WO 2008/034103 A2	3/2008
JP JP	2005-261514 A 2005-296063 A	9/2005 10/2005	WO	WO 2008/041225 A2	4/2008
JР	2006297005 A	11/2006	WO	WO 2008/076337 A1	6/2008
ĴР	2006-343510 A	12/2006	WO	WO 2008/076800 A2	6/2008
JP	2007-20806 A	2/2007	WO	WO 2008/079440 A2	7/2008
JР	2007-125264 A	5/2007	WO WO	WO 2008/080062 A2 WO 2008/101075 A2	7/2008 8/2008
JР	2007-516792 A	6/2007	wo	WO 2008/1010/3 A2 WO 2008/101086 A2	8/2008
JP NL	2010/503496 A 1021295 C2	2/2010 2/2004	wo	WO 2008/101080 A2 WO 2008/102154 A2	8/2008
SU	194230	5/1967	WO	WO 2008/108863 A2	9/2008
SU	980703	12/1982	WO	WO 2008/151237 A1	12/2008
WO	WO 84/01707 A1	5/1984	WO	WO 2009/021030 A1	2/2009
WO	WO 86/07543 A1	12/1986	WO	WO 2009/027065 A1	3/2009
WO	WO 92/13494 A1	8/1992	WO	WO 2009/029065 A1	3/2009
WO	WO 93/10850 A1	6/1993	WO	WO 2009/032623 A2	3/2009
WO	WO 93/20760 A1	10/1993	WO	WO 2009/036457 A1	3/2009
WO WO	WO 93/20765 A1 WO 94/22383 A1	10/1993 10/1994	WO WO	WO 2009/121017 A1 WO 2010/027688 A1	10/2009 3/2010
WO	W O 37/22303 Al	10/1 <i>33</i> 7	WO	#O 2010/02/000 Al	5/2010

(56) References Cited

FOREIGN PATENT DOCUMENTS

WO	WO 2010/056716 A2	5/2010
WO	WO 2010/080974 A1	7/2010
WO	WO 2010/088481 A1	8/2010
WO	WO 2012/031204 A2	3/2012
WO	WO 2012/071526 A2	5/2012
WO	WO 2013/044378 A1	4/2013

OTHER PUBLICATIONS

Collins et al., "Local Gene Therapy of Solid Tumors with GM-CSF and B7-1 Eradicates Both Treated and Distal Tumors," Cancer Gene Therapy, vol. 13, pp. 1061-1071 (2006).

Partial International Search Report for PCT/US2008/053973, Oct. 16, 2008 (2 pages).

International Search Report for PCT/US2008/053973, Dec. 22, 2008 (9 pages).

International Search Report and Written Opinion for PCT/US2008/085771, Oct. 30, 2009 (14 pages).

International Preliminary Report on Patentability for PCT/US2008/053973, Aug. 19, 2009 (12 pages).

Written Opinion for PCT/US2008/053973, Dec. 22, 2008 (12 pages). Michael S. Kavic, M.D., "Natural Orifice Translumenal Endoscopic Surgery: "NOTES"", JSLS, vol. 10, pp. 133-134 (2006).

Ethicon, Inc., "Wound Closure Manual: Chapter 3 (The Surgical Needle)," 15 pages, (1994).

Guido M. Sclabas, M.D., et al., "Endoluminal Methods for Gastrotomy Closure in Natural Orifice TransEnteric Surgery (NOTES)," Surgical Innovation, vol. 13, No. 1, pp. 23-30, Mar. 2006. Fritscher-Ravens, et al., "Transgastric Gastropexy and Hiatal Hernia Repair for GERD Under EUS Control: a Porcine Model," Gastrointestinal Endoscopy, vol. 59, No. 1, pp. 89-95, 2004.

Ogando, "Prototype Tools That Go With the Flow," Design News, 2 pages, Jul. 17, 2006.

Kennedy, et al., "High-Burst-Strength, Feedback-Controlled Bipolar Vessel Sealing," Surgical Endoscopy, vol. 12, pp. 876-878 (1998).

K. Sumiyama et al., "Transesophageal Mediastinoscopy by Submucosal Endoscopy With Mucosal Flap Safety Value Technique," Gastrointest Endosc., Apr. 2007, vol. 65(4), pp. 679-683 (Abstract).

K. Sumiyama et al., "Submucosal Endoscopy with Mucosal Flap Safety Valve," Gastrointest Endosc. Apr. 2007, vol. 65(4) pp. 694-695 (Abstract).

K. Sumiyama et al., "Transgastric Cholecystectomy: Transgastric Accessibility to the Gallbladder Improved with the SEMF Method and a Novel Multibending Therapeutic Endoscope," Gastrointest Endosc., Jun. 2007, vol. 65(7), pp. 1028-1034 (Abstract).

K. Sumiyama et al., "Endoscopic Caps," Tech. Gastrointest. Endosc., vol. 8, pp. 28-32, 2006.

"Z-Offset Technique Used in the Introduction of Trocar During Laparoscopic Surgery," M.S. Hershey NOTES Presentation to EES NOTES Development Team, Sep. 27, 2007.

F.N. Denans, Nouveau Procede Pour La Guerison Des Plaies Des Intestines. Extrait Des Seances De La Societe Royale De Medecine De Marseille, Pendant Le Mois De Dec. 1825, et le Premier Tremestre De 1826, Séance Du 24 Fevrier 1826. Recueil De La Societe Royale De Medecin De Marseille. Marseille: Impr. D'Achard, 1826; 1:127-31. (with English translation).

I. Fraser, "An Historical Perspective on Mechanical Aids in Intestinal Anastamosis," Surg. Gynecol. Obstet. (Oct. 1982), vol. 155, pp. 566-574.

M.E. Ryan et al., "Endoscopic Intervention for Biliary Leaks After Laparoscopic Cholecystectomy: A Multicenter Review," Gastrointest. Endosc., vol. 47(3), 1998, pp. 261-266.

C. Cope, "Creation of Compression Gastroenterostomy by Means of the Oral, Percutaneous, or Surgical Introduction of Magnets: Feasibility Study in Swine," J. Vasc Interv Radio!, (1995), vol. 6(4), pp. 539-545.

J.W. Hazey et al., "Natural Orifice Transgastric Endoscopic Peritoneoscopy in Humans: Initial Clinical Trial," Surg Endosc, (Jan. 2008), vol. 22(1), pp. 16-20.

N. Chopita et al., "Endoscopic Gastroenteric Anastamosis Using Magnets," Endoscopy, (2005), vol. 37(4), pp. 313-317.

C. Cope et al., "Long Term Patency of Experimental Magnetic Compression Gastroenteric Anastomoses Achieved with Covered Stents," Gastrointest Endosc, (2001), vol. 53, pp. 780-784.

H. Okajima et al., "Magnet Compression Anastamosis for Bile Duct Stenosis After Duct to Duct Biliary Reconstruction in Living Donor Liver Transplantation," Liver Transplantation (2005), pp. 473-475.

A. Fritscher-Ravens et al., "Transluminal Endosurgery: Single Lumen Access Anastamotic Device for Flexible Endoscopy," Gastrointestinal Endosc, (2003), vol. 58(4), pp. 585-591.

G.A. Hallenbeck, M.D. et al., "An Instrument for Colorectal Anastomosis Without Sutrues," Dis Col Rectum, (1963), vol. 5, pp. 98-101.

T. Hardy, Jr., M.D. et al., "A Biofragmentable Ring for Sutureless Bowel Anastomosis. An Experimental Study," Dis Col Rectum, (1985), vol. 28, pp. 484-490.

P. O'Neill, M.D. et al., "Nonsuture Intestinal Anastomosis," Am J. Surg, (1962), vol. 104, pp. 761-767.

C.P. Swain, M.D. et al., "Anastomosis at Flexible Endoscopy: An Experimental Study of Compression Button Gastrojejunostomy," Gastrointest Endosc, (1991), vol. 37, pp. 628-632.

J.B. Murphy, M.D., "Cholecysto-Intestinal, Gastro-Intestinal, Entero-Intestinal Anastomosis, and Approximation Without Sutures (original research)," Med Rec, (Dec. 10, 1892), vol. 42(24), pp. 665-676

USGI® EndoSurgical Operating System—g-Prox® Tissue Grasper/Approximation Device; [online] URL: http://www.usgimedical.com/eos/components-gprox.htm—accessed May 30, 2008 (2 pages). Printout of web page—http://www.vacumed.com/zcom/product/Product.do?compid=27&prodid=852, #51XX Low-Cost Permanent Tubes 2MM ID, Smooth Interior Walls, VacuMed, Ventura, California, Accessed Jul. 24, 2007.

Endoscopic Retrograde Cholangiopancreatogram (ERCP); [online] URL: http://www.webmd.com/digestive-disorders/endoscopic-retrograde-cholangiopancreatogram-ercp.htm; last updated: Apr. 30, 2007; accessed: Feb. 21, 2008 (6 pages).

ERCP; Jackson Siegelbaum Gastroenterology; [online] URL: http://www.gicare.com/pated/epdgs20.htm; accessed Feb. 21, 2008 (3 pages)

D.G. Fong et al., "Transcolonic Ventral Wall Hernia Mesh Fixation in a Porcine Model," Endoscopy 2007; 39: 865-869.

B. Rubinsky, Ph.D., "Irreversible Electroporation in Medicine," Technology in Cancer Research and Treatment, vol. 6, No. 4, Aug. 2007, pp. 255-259.

D.B. Nelson, MD et al., "Endoscopic Hemostatic Devices," Gastrointestinal Endoscopy, vol. 54, No. 6, 2001, pp. 833-840.

CRETM Pulmonary Balloon Dilator; [online] URL: http://www.bostonscientific.com/Device.bsci?page=HCP_Overview

&navRe1ld=1000.1003&method=D \dots , accessed Jul. 18, 2008 (4 pages).

J.D. Paulson, M.D., et al., "Development of Flexible Culdoscopy," The Journal of the American Association of Gynecologic Laparoscopists, Nov. 1999, vol. 6, No. 4, pp. 487-490.

H. Seifert, et al., "Retroperitoneal Endoscopic Debridement for Infected Peripancreatic Necrosis," The Lancet, Research Letters, vol. 356, Aug. 19, 2000, pp. 653-655.

K.E. Mönkemüller, M.D., et al., "Transmural Drainage of Pancreatic Fluid Collections Without Electrocautery Using the Seldinger Technique," Gastrointestinal Endoscopy, vol. 48, No. 2, 1998, pp. 195-200, (Received Oct. 3, 1997; Accepted Mar. 31, 1998).

D. Wilhelm et al., "An Innovative, Safe and Sterile Sigmoid Access (ISSA) for NOTES," Endoscopy 2007, vol. 39, pp. 401-406.

Nakazawa et al., "Radiofrequency Ablation of Hepatocellular Carcinoma: Correlation Between Local Tumor Progression After Ablation and Ablative Margin," AJR, 188, pp. 480-488 (Feb. 2007).

Miklavčič et al., "A validated model of in vivo electric field distribution in tissues for electrochemotherapy and for DNA electrotransfer for gene therapy," Biochimica et Biophysica Acta, 1523, pp. 73-83 (2000).

(56) References Cited

OTHER PUBLICATIONS

Evans, "Ablative and cathether-delivered therapies for colorectal liver metastases (CRLM)," EJSO, 33, pp. S64-S75 (2007).

Wong et al., "Combined Percutaneous Radiofrequency Ablation and Ethanol Injection for Hepatocellular Carcinoma in High-Risk Locations," AJR, 190, pp. W187-W195 (2008).

Heller et al., "Electrically mediated plasmid DNA delivery to hepatocellular carcinomas in vivo," Gene Therapy, 7, pp. 826-829 (2000).

Widera et al., "Increased DNA Vaccine Delivery and Immunogenicity by Electroporation In Vivo," The Journal of Immunology, 164, pp. 4635-4640 (2000).

Weaver et al., "Theory of electroporation: A review," Bioelectrochemistry and Bioenergetics, 41, pp. 135-160 (1996).

Mulier et al., "Radiofrequency Ablation Versus Resection for Resectable Colorectal Liver Metastases: Time for a Randomized Trial?" Annals of Surgical Oncology, 15(1), pp. 144-157 (2008).

Link et al., "Regional Chemotherapy of Nonresectable Colorectal Liver Metastases with Mitoxanthrone, 5-Fluorouracil, Folinic Acid, and Mitomycin C May Prolong Survival," Cancer, 92, pp. 2746-2753 (2001).

Guyton et al., "Membrane Potentials and Action Potentials," W.B. Sanders, ed. Textbook of Medical Physiology, p. 56 (2000).

Guyton et al., "Contraction of Skeletal Muscle," Textbook of Medical Physiology, pp. 82-84 (2000).

"Ethicon Endo-Surgery Novel Investigational Notes and SSL Devices Featured in 15 Presentations at Sages," Apr. 22, 2009 Press Release; URL http://www.jnj.com/connect/news/all/20090422_152000; accessed Aug. 28, 2009 (3 pages).

"Ethicon Endo-Surgery Studies Presented At DDW Demonstrate Potential of Pure NOTES Surgery With Company's Toolbox," Jun. 3, 2009 Press Release; URL http://www.jnj.com/connect/news/prod-uct/20090603_120000; accessed Aug. 28, 2009 (3 pages).

Castellvi et al., "Hybrid Transvaginal NOTES Sleeve Gastrectomy in a Porcine Model Using a Magnetically Anchored Camera and Novel Instrumentation," Abstract submitted along with Poster at Sages Annual Meeting in Phoenix, AZ, Apr. 22, 2009 (1 page).

Castellvi et al., "Hybrid Transvaginal NOTES Sleeve Gastrectomy in a Porcine Model Using a Magnetically Anchored Camera and Novel Instrumentation," Poster submitted along with Abstract at Sages Annual Meeting in Phoenix, AZ, Apr. 22, 2009 (1 page).

OCTO Port Modular Laparoscopy System for Single Incision Access, Jan. 4, 2010; URL http://www.medgadget.com/archives/2010/01/octo_port_modular_laparo . . . ; accessed Jan. 5, 2010 (4 pages).

Hakko Retractors, obtained Aug. 25, 2009 (5 pages).

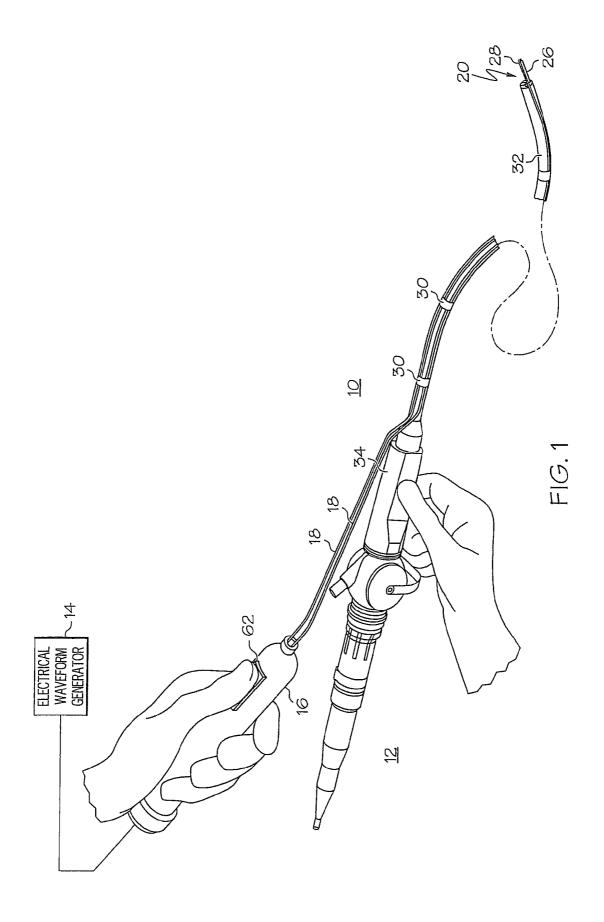
Zadno et al., "Linear Superelasticity in Cold-Worked NI-TI," Engineering Aspects of Shape Memory Alloys, pp. 414-419 (1990).

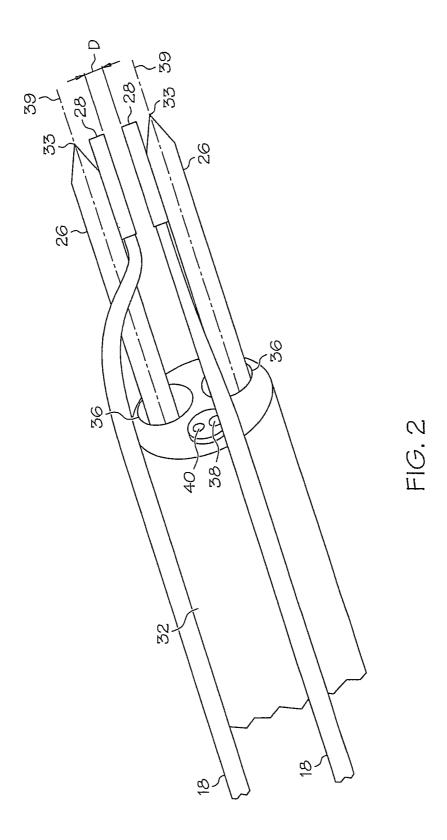
How Stuff Works "How Smart Structures Will Work," http://science. howstuffworks.com/engineering/structural/smart-structure1.htm; accessed online Nov. 1, 2011 (3 pages).

Instant Armor: Science Videos—Science News—ScienCentral; http://www.sciencentral.com/articles./view.php3?article_

id=218392121; accessed online Nov. 1, 2011 (2 pages).

Stanway, Smart Fluids: Current and Future Developments. Material Science and Technology, 20, pp. 931-939, 2004; accessed online Nov. 1, 2011 at http://www.dynamics.group.shef.ac.uk/smart/smart. html (7 pages).


Jolly et al., Properties and Applications of Commercial Magnetorheological Fluids. SPIE 5th Annual Int. Symposium on Smart Structures and Materials, 1998 (18 pages).


Rutala et al. "Guideline for Disinfection and Sterilization in Healthcare Facilities, 2008" (available at http://www.cdc.gov/hicpac/Disinfection_Sterilization/13_11sterilizingPractices.html). Bewlay et al., "Spinning" in ASM Handbook, vol. 14B, Metalworking: Sheet Forming (2006).

Schoenbach et al. "Bacterial Decontamination of Liquids with Pulsed Electric Fields" IEEE Transactions on Dielectrics and Electrical Insulation. vol. 7 No. 5. Oct. 2000, pp. 637-645.

Davalos, et al., "Tissue Ablation with Irreversible Electroporation," Annals of Biomedical Engineering, 33.2 (2005): 223-231.

* cited by examiner

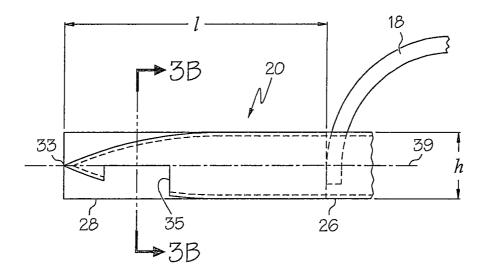


FIG. 3A

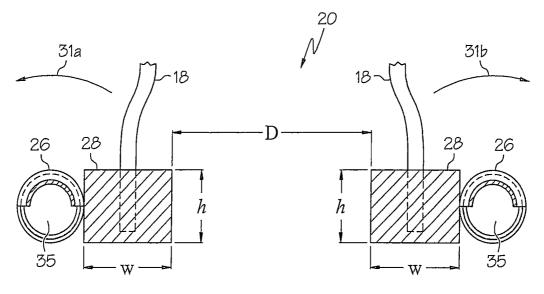


FIG. 3B

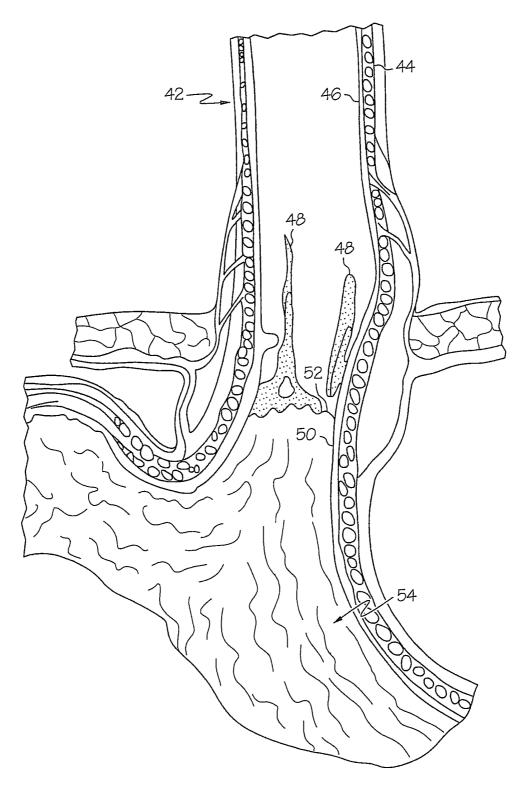
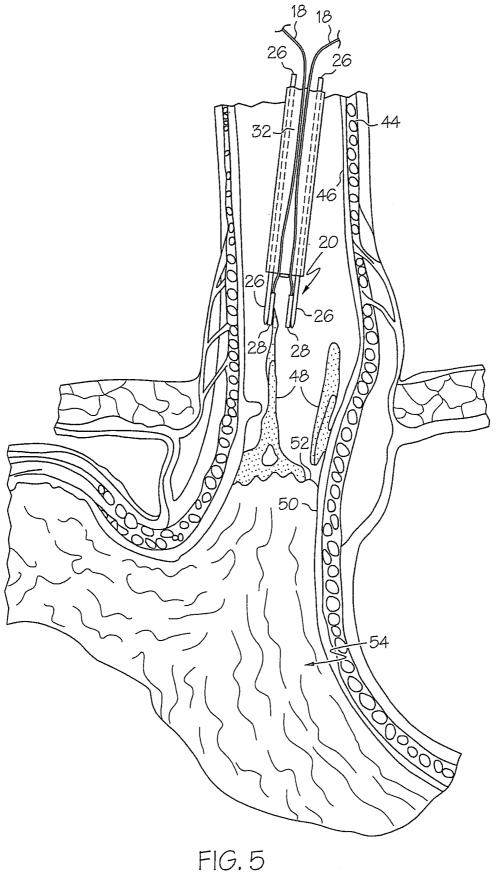
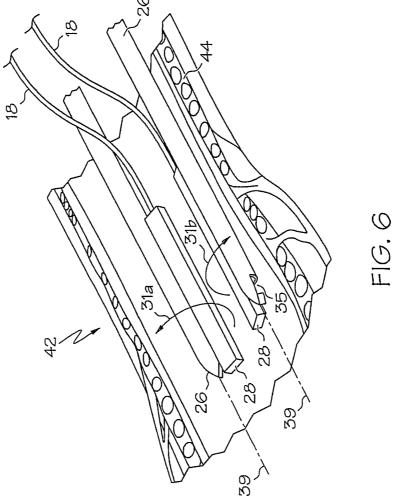
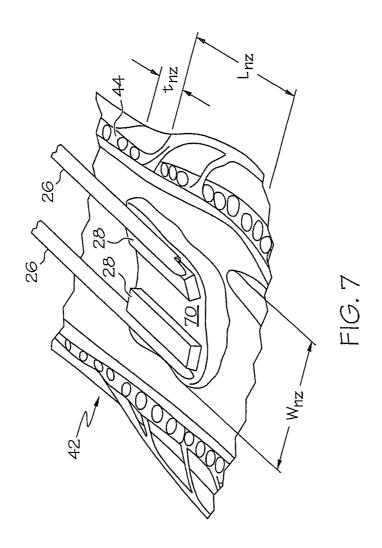
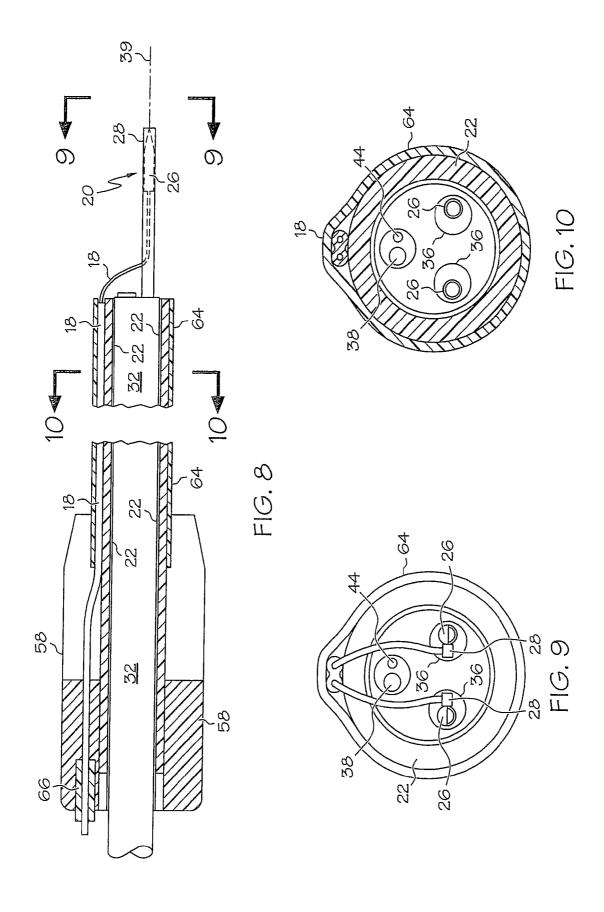






FIG. 4

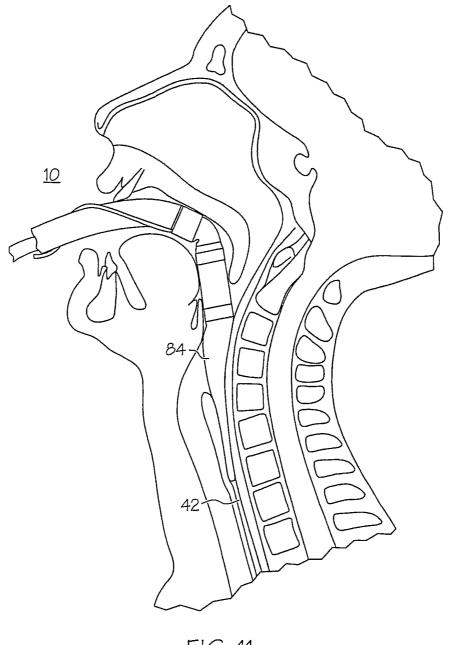
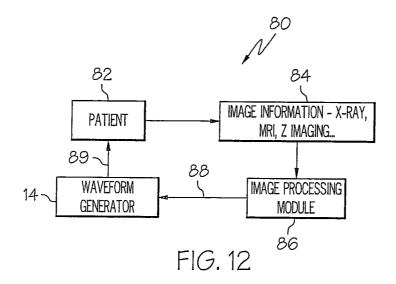
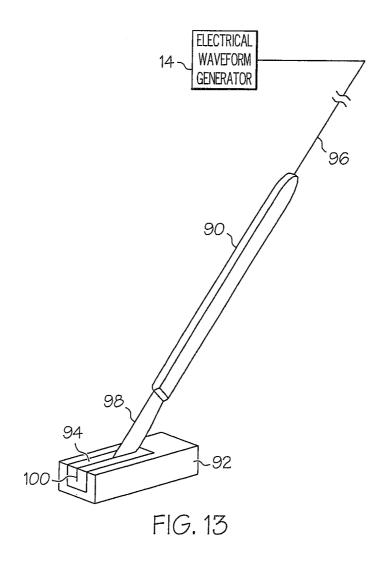
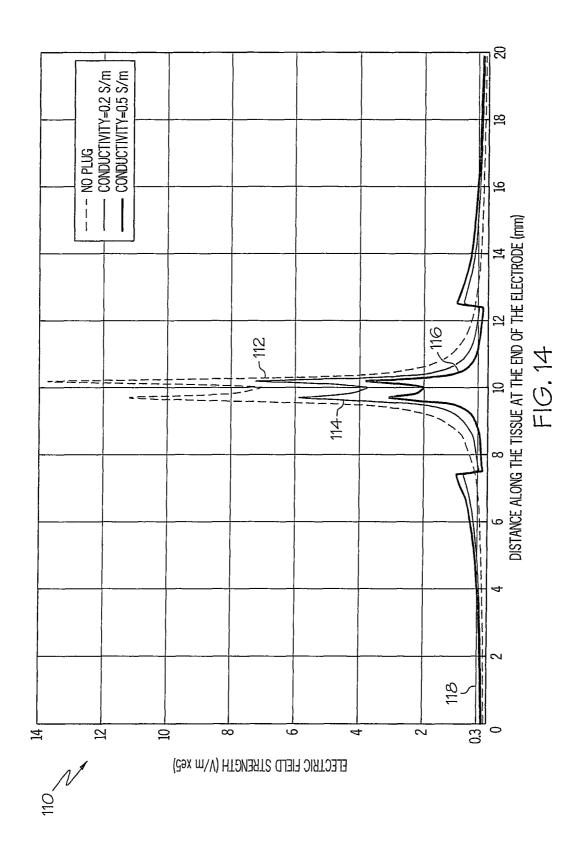
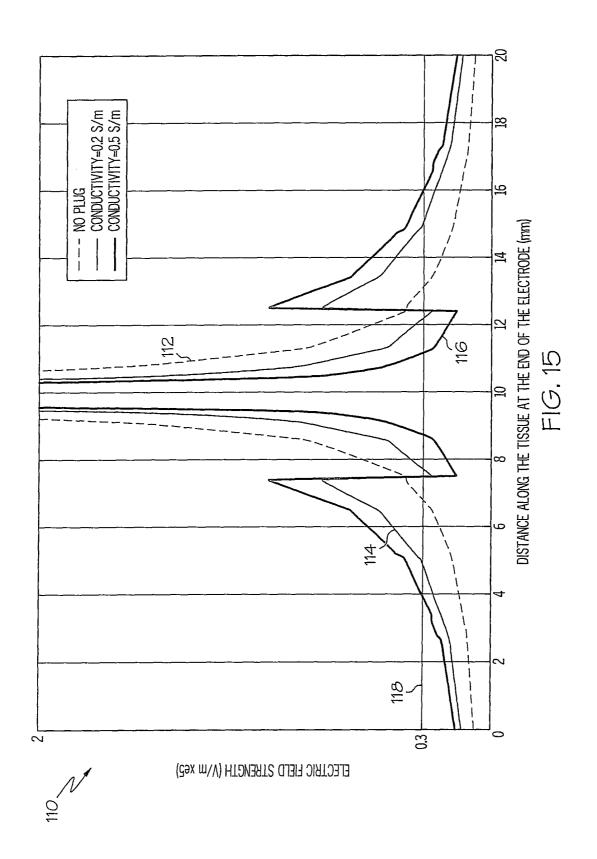






FIG. 11

1

ELECTROPORATION ABLATION APPARATUS, SYSTEM, AND METHOD

CROSS REFERENCE TO RELATED APPLICATIONS

This application is a continuation application of U.S. patent application Ser. No. 12/694,452, filed Jan. 27, 2010, entitled ELECTROPORATION ABLATION APPARATUS, SYSTEM AND METHOD, now U.S. Patent Application Publication No. 2010/0130975, which issued as U.S. Pat. No. 8,449,538 on May 28, 2013, which is a divisional application, under 35 U.S.C. §121, of U.S. patent application Ser. No. 11/706,766, filed Feb. 15, 2007, entitled ELECTROPORA-TION ABLATION APPARATUS, SYSTEM, AND METHOD, now U.S. Pat. No. 7,655,004, which is related to U.S. patent application Ser. No. 12/635,298, filed Dec. 10, 2009, entitled ELECTROPORATION ABLATION APPA-RATUS, SYSTEM, AND METHOD, now U.S. Pat. No. 20 8,029,504, and U.S. patent application Ser. No. 11/706,591, filed Feb. 15, 2007, entitled ELECTRICAL ABLATION APPARATUS, SYSTEM, AND METHOD, now U.S. Patent Application Publication No. 2008/0200911, each of which is incorporated herein by reference in its entirety.

BACKGROUND

Electrical therapy techniques have been employed in medicine to treat pain and other and other conditions. Electrical ablation techniques have been employed in medicine for the removal of diseased tissue or abnormal growths from the body. Nevertheless, there is a need for improved medical instruments to electrically ablate or destroy diseased tissue or abnormal growths from the body, such as cancer tissue. There may be a need for such electrical therapy techniques to be performed endoscopically.

Electrical therapy probes comprising electrodes may be required to electrically treat diseased tissue. The electrodes may be introduced into the patient endoscopically to the tissue treatment region by passing the electrodes through the working channel of an endoscope.

SUMMARY

In one another general aspect, the various embodiments are directed to an apparatus. In at least one embodiment, the apparatus comprises a first channel and a second channel; a first probe positioned at least partially within the first channel, 50 wherein the first probe comprises a first distal portion and defines a first longitudinal axis; and a first rotatable electrode coupled to the first distal portion of the first probe and laterally offset from the first longitudinal axis, wherein the first rotatable electrode is structured to rotate about the first lon- 55 tion system. gitudinal axis. The apparatus further comprises a second probe positioned at least partially within the second channel, wherein the second probe comprises a second distal portion and defines a second longitudinal axis; and a second rotatable electrode coupled to the second distal portion of the second 60 probe and laterally offset from the second longitudinal axis. wherein the second rotatable electrode is structured to rotate about the second longitudinal axis, and wherein the first and second rotatable electrodes are configured to couple to an electrical waveform generator and to receive an irreversible 65 electroporation electrical waveform. The apparatus further comprises an adjustable ablation region defined between the

2

first and second rotatable electrodes, wherein the ablation region is adjustable by rotating at least one of the first and second electrodes.

In yet another general aspect, the various embodiments are directed to a system. In at least one embodiment, the system comprises a first channel and a second channel; a first probe positioned at least partially within the first channel, wherein the first probe comprises a first distal portion and defines a first longitudinal axis; and a first rotatable electrode extending from the first distal portion of the first probe and laterally offset from the first longitudinal axis, wherein the first rotatable electrode is structured to rotate about the first longitudinal axis. The system further comprises a second probe positioned at least partially within the second channel, wherein the second probe comprises a second distal portion and defines a second longitudinal axis; and a second rotatable electrode extending from the second distal portion of the second probe and laterally offset from the second longitudinal axis, wherein the second rotatable electrode is structured to rotate about the second longitudinal axis, and wherein the first and second rotatable electrodes are coupled to an electrical waveform generator and structured to receive an irreversible electroporation electrical waveform. The system fur-25 ther comprises an adjustable ablation region defined between the first and second rotatable electrodes, wherein the ablation region is adjustable by rotating at least one of the first and second electrodes.

In another general aspect, the various embodiments are directed to a method. In at least one embodiment, the method comprises positioning an elongate member comprising first and second channels within a body cavity, wherein a first and a second probe are disposed within the respective first and second channels, wherein the first and second probes each define a central axis, wherein a first and second electrode are coupled to the distal ends of the respective first and second probes, and wherein the first and second electrode are laterally offset from the central axes of the respective first and second probes. The method further comprises rotating at least one of the first and second probes about the central axis of the respective at least one first and second probes to adjust an ablation region positioned between the first and second electrodes.

FIGURES

The novel features of the various embodiments of the invention are set forth with particularity in the appended claims. The various embodiments of the invention, however, both as to organization and methods of operation, together with further objects and advantages thereof, may best be understood by reference to the following description, taken in conjunction with the accompanying drawings as follows.

FIG. 1 illustrates one embodiment of an endoscopic ablation system.

FIG. 2 is an enlarged view of one embodiment of a therapeutic/diagnostic probe of one embodiment of the endoscopic ablation system shown in FIG. 1.

FIG. 3A is a side view of a distal end of one embodiment of a therapeutic/diagnostic probe comprising a biopsy probe and an electrical therapy electrode assembly.

FIG. 3B is a sectional view of one embodiment of a therapeutic/diagnostic probe taken along section line 3B-3B showing the geometric relationship between the electrodes and the diagnostic probes.

FIG. 4 is a sectional view of the lower end of an esophagus and the upper portion of a stomach of a human being.

FIG. 5 illustrates the use of one embodiment of an endoscopic ablation system to treat diseased tissue in the lower esophagus.

FIG. **6** illustrates the use of one embodiment of an endoscopic ablation system to treat diseased tissue in the lower seophagus.

FIG. 7 illustrates one embodiment of a necrotic zone defined by the geometry and placement of the electrical therapy electrodes.

FIG. **8** is a sectional view taken along the longitudinal axis of one embodiment of an endoscopic ablation system shown in FIG. **1**.

FIG. **9** is an end view taken along line **9-9** of one embodiment of a therapeutic/diagnostic probe of the endoscopic ablation system shown in FIG. **8**.

FIG. 10 is a sectional view taken along line 10-10 of a rotation tube of the endoscopic ablation system shown in FIG. 8.

FIG. 11 shows one embodiment of a distal portion of an endoscopic ablation system shown in FIG. 1 partially inserted 20 into the esophagus of a patient.

FIG. 12 is a diagram of one embodiment of a control loop for one embodiment of an irreversible electroporation therapy procedure to treat diseased tissue as described herein.

FIG. 13 illustrates one embodiment of an electrical scalpel 25 for dissecting tissue.

FIG. 14 is a graphical representation (graph) of electric field strength (along the y-axis) as a function of distance from an electrical therapy electrode under various conductivity environments near diseased tissue.

FIG. 15 is a close up of the graph shown in FIG. 14.

DESCRIPTION

The various embodiments described herein are directed to 35 diagnostic and electrical therapy ablation devices. The diagnostic devices comprise biopsy probes. The electrical therapy ablation devices comprise probes and electrodes that can be positioned in a tissue treatment region of a patient endoscopically. An endoscopic electrode is inserted through a working 40 channel of an endoscope. The placement and location of the electrodes can be important for effective and efficient therapy. Once positioned, the electrical therapy electrodes deliver electrical current to the treatment region. The electrical current is generated by a control unit or generator external to the 45 patient and typically has particular waveform characteristics, such as frequency, amplitude, and pulse width. Depending on the diagnostic or therapeutic treatment rendered, the probes may comprise one electrode containing both a cathode and an anode or may contain a plurality of electrodes with at least 50 one serving as a cathode and at least one serving as an anode.

Electrical therapy ablation may employ electroporation, or electropermeabilization, techniques where an externally applied electrical field significantly increases the electrical conductivity and permeability of a cell plasma membrane. 55 Electroporation is the generation of a destabilizing electric potential across biological membranes. In electroporation, pores are formed when the voltage across the cell plasma membrane exceeds its dielectric strength. Electroporation destabilizing electric potentials are generally in the range of 60 several hundred volts across a distance of several millimeters. Below certain magnitude thresholds, the electric potentials may be applied across a biological membrane as a way of introducing some substance into a cell, such as loading it with a molecular probe, a drug that can change the function of the 65 cell, a piece of coding DNA, or increase the uptake of drugs in cells. If the strength of the applied electrical field and/or

4

duration of exposure to it are properly chosen, the pores formed by the electrical pulse reseal after a short period of time, during which extra-cellular compounds have a chance to enter into the cell. Thus, below a certain threshold, the process is reversible and the potential does not permanently damage the cell membrane. This process may be referred to as reversible electroporation (RE).

On the other hand, the excessive exposure of live cells to large electrical fields (or potentials) can cause apoptosis and/ or necrosis—the processes that result in cell death. Accordingly, this may be referred to irreversible electroporation (IRE) because the cells die when exposed to excessive electrical potentials across the cell membranes. The various embodiments described herein are directed to electrical therapy ablation devices such as electroporation ablation devices. In one embodiment, the electroporation ablation device may be an IRE device to destroy cells by applying an electric potential to the cell membrane. The IRE potentials may be applied to cell membranes of diseased tissue in order to kill the diseased cells. The IRE may be applied in the form of direct current (DC) electrical waveforms having a characteristic frequency, amplitude, and pulse width.

Electroporation may be performed with devices called electroporators, appliances which create the electric current and send it through the cell. The electroporators may comprise two or more metallic (e.g., Ag, AgCl) electrodes connected to an energy source to generate an electric field having a suitable characteristic waveform output in terms of frequency, amplitude, and pulse width.

Endoscopy means looking inside and refers to looking inside the human body for medical reasons. Endoscopy may be performed using an instrument called an endoscope. Endoscopy is a minimally invasive diagnostic medical procedure used to evaluate the interior surfaces of an organ by inserting a small tube into the body, often, but not necessarily, through a natural body opening. Through the endoscope, the operator is able to see abnormal or diseased tissue such as lesions and other surface conditions. The endoscope may have a rigid or a flexible tube or member and in addition to providing an image for visual inspection and photography, the endoscope enables taking biopsies, retrieving foreign objects, and introducing medical instruments to a tissue treatment region. Endoscopy is the vehicle for minimally invasive surgery.

The embodiments of the electrical therapy ablation devices may be employed for treating diseased tissue, tissue masses, tissue tumors, and lesions (diseased tissue). More particularly, the electrical therapy ablation devices may be employed in minimally invasive therapeutic treatment of diseased tissue. The electrical therapy ablation devices may be employed to deliver energy to the diseased tissue to ablate or destroy tumors, masses, legions, and other abnormal tissue growths. In one embodiment, the electrical therapy ablation devices and techniques described herein may be employed in the treatment of cancer by quickly creating necrosis of live tissue and destroying cancerous tissue in-vivo. These minimally invasive therapeutic treatment of diseased tissue where medical instruments are introduced to a tissue treatment region within the body of a patient through a natural opening are known as Natural Orifice Translumenal Endoscopic Surgery (NOTES)TM.

A biopsy is a medical procedure involving the removal of cells or tissues for examination. The tissue is often examined under a microscope and can also be analyzed chemically (for example, using polymerase chain reaction [PCR] techniques). When only a sample of tissue is removed, the procedure is called an incisional biopsy or core biopsy. When an entire lump or suspicious area is removed, the procedure is

-

called an excisional biopsy. When a sample of tissue or fluid is removed with a needle, the procedure is called a needle aspiration biopsy. A procedure called "optical biopsy" may be employed where optical coherence tomography may be adapted to allow high-speed visualization of tissue in a living 5 animal with a catheter-endoscope 1 millimeter in diameter. Optical biopsy may be used to obtain cross-sectional images of internal tissues.

Biopsy specimens may be taken from part of a lesion when the cause of a disease is uncertain or its extent or exact 10 character is in doubt. Vasculitis, for instance, is usually diagnosed on biopsy. Additionally, pathologic examination of a biopsy can determine whether a lesion is benign or malignant, and can help differentiate between different types of cancer.

FIG. 1 illustrates one embodiment of an endoscopic ablation system 10. The endoscopic ablation system 10 may be employed to electrically treat diseased tissue such as tumors and lesions. The endoscopic ablation system 10 may be configured to be positioned within a natural opening of a patient such as the colon or the esophagus and can be passed through 20 the opening to a tissue treatment region. The illustrated endoscopic ablation system 10 may be used to treat diseased tissue via the colon or the esophagus of the patient, for example. The tissue treatment region may be located in the esophagus, colon, liver, breast, brain, and lung, among others. The endo- 25 scopic ablation system 10 can be configured to treat a number of lesions and ostepathologies including but not limited to metastatic lesions, tumors, fractures, infected site, inflamed sites, and the like. Once positioned at the target tissue treatment region, the endoscopic ablation system 10 can be configured to treat and ablate diseased tissue in that region. In one embodiment, the endoscopic ablation system 10 may be employed as a diagnostic instrument to collect a tissue sample using a biopsy device introduced into the tissue treatment region via an endoscope (e.g., the endoscopic ablation system 35 10). In one embodiment, the endoscopic ablation system 10 may be adapted to treat diseased tissue, such as cancers, of the gastrointestinal (GI) tract or esophagus that may be accessed orally. In another embodiment, the endoscopic ablation system 10 may be adapted to treat diseased tissue, such as can- 40 cers, of the liver or other organs that may be accessible transanally through the colon and/or the abdomen.

One embodiment of the endoscopic ablation system 10 may be mounted on a flexible endoscope 12 (also referred to as endoscope 12), such as the GIF-100 model available from 45 Olympus Corporation. The flexible endoscope 12 includes an endoscope handle 34 and a flexible shaft 32. The endoscopic ablation system 10 generally comprises one or more therapeutic/diagnostic probe 20, a plurality of conductors 18, a handpiece 16 having a switch 62, and an electrical waveform 50 generator 14. In one embodiment, the electrical waveform generator 14 may be a high voltage direct current (DC) irreversible electroporation (IRE) generator. The therapeutic/diagnostic probe 20 is located at a distal end of the flexible shaft 32 and the conductors 18 attach to the flexible shaft 32 using 55 a plurality of clips 30. The therapeutic/diagnostic probe 20 comprises an elongate member attached to an electrical energy delivery device comprising one or more electrical therapy electrodes 28. In one embodiment, the therapeutic/ diagnostic probe 20 extends through a bore in the flexible 60 shaft 32 such as a working channel 36 (FIG. 2). In one embodiment, the therapeutic/diagnostic probe 20 may comprise elongate diagnostic probes 26 attached or joined to the electrodes 28 that extend through the working channel 36. In another embodiment, the flexible shaft 32 may comprise two 65 working channels 36 and a first diagnostic probe 26 joined to a first electrode 28 that extends through the distal end of a first

6

working channels 36 and a second diagnostic probe 26 joined to a second electrode 28 that extends through the distal end of a second working channel 36. In one embodiment, the diagnostic probe comprises one or more diagnostic probes 26 attached or joined in any suitable manner to the electrodes 28. For example, the diagnostic probes 26 may be joined or attached to the electrodes 28 by welding, soldering, brazing or other well known techniques. Many different energy sources may be used for welding, soldering, or brazing such as, for example, a gas flame, an electric arc, a laser, an electron beam, friction, and ultrasound. Thus, in one embodiment, the therapeutic/diagnostic probe 20 may be employed in a diagnostic mode to take a biopsy sample of the diseased tissue using the diagnostic probes 26 and, in one embodiment the therapeutic/diagnostic probe 20 may be employed in a therapeutic mode by treating diseased tissue with electrical current delivered by the electrodes 28. In other embodiments, the therapeutic/diagnostic probe 20 may be employed in a combination of therapeutic and diagnostic modes. The therapeutic/diagnostic probe 20 may be passed though the one or more working channels 36 located within the flexible shaft 32. The therapeutic/diagnostic probe 20 is delivered to the tissue treatment region endoscopically and is located on top of the diseased tissue to be electrically treated. Once the therapeutic/diagnostic probe 20 is suitably located by the operator, manual operation of the switch 62 on the handpiece 16 electrically connects or disconnects the electrodes 28 to the electrical waveform generator 14. Alternatively, the switch 62 may be mounted on, for example, a foot switch (not shown).

In one embodiment, the electrical waveform generator 14 may be a conventional, bipolar/monopolar electrosurgical generator (ICC200 Erbe Inc.) or an IRE generator such as one of many models commercially available, including Model Number ECM800, available from BTX Boston, Mass. The IRE generator generates electrical waveforms having predetermined frequency, amplitude, and pulse width. The application of these electrical waveforms to the cell membrane causes the cell to die. The IRE electrical waveforms are applied to the cell membranes of diseased tissue in order to kill the diseased cells and ablate the diseased tissue. IRE electrical waveforms suitable to destroy the cells of diseased tissues energy are generally in the form of direct current (DC) electrical pulses delivered at a frequency in the range of 1-20 Hz, amplitude in the range of 100-1000 VDC, and pulse width in the range of 0.01-100 ms. For example, an electrical waveform having amplitude of 500 VDC and pulse duration of 20 ms may be delivered at a pulse repetition rate or frequency of 10 HZ can destroy a reasonably large volume of diseased tissue. Unlike RF ablation systems which require high power and energy input into the tissue to heat and destroy the tissue, IRE requires very little energy input into the tissue, rather the destruction of the tissue is caused by high electric fields. It has been determined that in order to destroy living tissue, the waveforms have to generate an electric field of at least 30,000 V/m in the tissue treatment region. In one embodiment, the IRE generator 14 may generate voltages from about 100-1000 VDC. The IRE generator 14 may generate voltage pulses from 0.01-100 ms. These pulses may be generated at a suitable pulse repetition rate. The electrical current depends on the voltage amplitude, pulse width, pulse repetition rate, and the volume of tissue being treated. In one embodiment, the IRE generator 14 generates 20 ms pulses of 500 VDC amplitude between the electrodes 28. The embodiments, however, are not limited in this context.

When using the IRE generator 14 in monopolar mode with two or more electrical therapy electrodes 28, a grounding pad is not needed on the patient. Because a generator will typi-

cally be constructed to operate upon sensing connection of ground pad to the patient when in monopolar mode, it can be useful to provide an impedance circuit to simulate the connection of a ground pad to the patient. Accordingly, when the electrical ablation system 10 is used in monopolar mode without a grounding pad, an impedance circuit can be assembled by one skilled in the art, and electrically connected in series with one of the electrical therapy electrodes 28 that would otherwise be used with a grounding pad attached to a patient during monopolar electrosurgery. Use of an impedance circuit allows use of the IRE generator 14 in monopolar mode without use of a grounding pad attached to the patient.

FIG. 2 is an enlarged view of one embodiment of the therapeutic/diagnostic probe 20 of one embodiment of the endoscopic ablation system 10 shown in FIG. 1. The therapeutic/diagnostic probe 20 extends through the distal end of the flexible shaft 32. In one embodiment, the therapeutic/diagnostic probe 20 protrudes from the distal end of an internal lumen extending between the proximal and distal ends of the flexible endoscope 12. In one embodiment, the therapeutic/diagnostic probe 20 may comprise a biopsy device adapted and configured to remove sample tissue using an incisional, core, needle aspiration, or optical biopsy techniques. In one embodiment, the biopsy device comprises one or more diagnostic probes 26. As previously discussed, the 25 electrical therapy electrodes 28 may be joined or attached to the diagnostic probes 26 in any suitable manner.

As previously discussed, the electrical therapy electrodes 28 are connected to the diagnostic probes 26 in any known suitable manner and are located in a spaced-apart relationship 30 so as to define a distance D between the electrodes. The distance D is adjustable and can be increased or decreased by rotating one or both of the diagnostic probes 26. The therapeutic/diagnostic probe 20 are rotatable about a central axis 39. Thus, the diagnostic probes 26 and the electrodes 28 are 35 rotatable about the central axis 39. The electrodes 28 may be rotated to increase or decrease the relative distance D between the electrode 28 either to focus the energy in a smaller tissue region or to enlarge the tissue treatment region. In this manner, the operator can surround the diseased tissue such as a 40 cancerous lesion, a polyp, or a tumor. The electrodes 28 are energized with the electrical waveform generator 14 to treat the diseased tissue. The diagnostic probes 26 have a sharp tooth 33 at the distal end and are moveable from the distal end to the proximal end of the flexible shaft 32 capable of slicing 45 a thin section of the tissue to obtain a biopsy sample (shown in more detail below). The diagnostic probes 26 may comprise a bore 35 (FIGS. 3A, B) at the distal end extending from a proximal end to the distal end of the diagnostic probes 26. Suction may be applied at the proximal end of the probes to 50 remove a tissue sample before and/or after treatment through the bore 35 (FIGS. 3A, B) formed through the diagnostic probes 26.

The electrical therapy electrodes 28 may be positioned in any orientation relative to the diagnostic probes 26. The electrodes 28 and the diagnostic probes 26 may have any suitable shape. In the illustrated embodiment, the electrodes 28 may have a generally cuboidal shape and the diagnostic probes 26 may have an elongate cylindrical shape with a sharp tooth 33 and a bore 35 formed therein at the distal end. The electrical conductors 18 are electrically insulated from each other and surrounding structure except for the electrical connections the electrodes 28. The distal end of the flexible shaft 32 of the flexible endoscope 12 may comprise a light source 40, a viewing port 38, and one or more working channels 36. The 5 viewing port 38 transmits an image within its field of view to an optical device such as a charge coupled device (CCD)

8

camera within the flexible endoscope 12 so that an operator may view the image on a display monitor (not shown). In the embodiment shown in FIG. 2, the distal end of flexible shaft 32 is proximal to the electrodes 28 and is within the viewing field of the flexible endoscope 12 to enable the operator to see the diseased tissue to be treated between the electrodes 28.

FIG. 3A is a side view of the distal end of one embodiment of the therapeutic/diagnostic probe 20 comprising a biopsy probe 26 and an electrical therapy electrode 28 assembly. FIG. 3B is a sectional view of one embodiment of a therapeutic/diagnostic probe 20 taken along section line 3B-3B showing the geometric relationship between the electrodes 28 and the diagnostic probes 26. In the embodiment illustrated in FIGS. 3A, B, the cuboidal electrodes 28, each have a width "w," a length "l," and a thickness or height "h." The electrodes 28 have parallel, adjacent edges 8 separated by a distance "D." This geometry of the electrodes 28, the distance D between them, and the electrical waveform may be used to calculate an ablation index, which has particular significance to the location, size, shape, and depth of ablation achievable, as will be described later. The diagnostic probes 26 may be juxtaposed with the electrodes 28. In this embodiment, the two cylindrically elongate diagnostic probes 26 have a bore 35 for removing ablated tissue or taking biopsy samples of the tissue by way of suction. The length of the diagnostic probes 26 may extend through the entire length of the flexible endoscope 12. The conductors 18 are attached to the electrodes 28 in any suitable manner including welding, soldering, or brazing and may employ many different energy sources such as, for example, a gas flame, heat source, an electric arc, a laser, an electron beam, friction, and ultrasound. The electrodes 28 are attached to the diagnostic probes 26 and may be rotated about the central axis 39 in the directions indicated by arrows 31a and 31b.

FIG. 4 is a sectional view of the lower end of an esophagus 42 and the upper portion of a stomach 54 of a human being. The esophagus 42 has a mucosal layer 46, a muscular layer 44, and a region of diseased tissue 48. The boundary between the mucosal layer 46 of the esophagus 42 and a gastric mucosa 50 of the stomach 54 is a gastro-esophageal junction 52, which is approximately the location for the lower esophageal sphincter (LES). The LES allows food to enter the stomach 54 while preventing the contents of the stomach 54 from refluxing into the lower esophagus 42 and damaging the mucosal layer 46. The diseased tissue 48 can develop when chronic reflux is not treated. In one form, the diseased tissue 48 may be, for example, intestinal metaplasia, which is an early stage of Barrett's esophagus. As can be seen in FIG. 4, the esophagus 42 is relatively flaccid and contains numerous folds and irregularities on the interior lining.

FIG. 5 illustrates the use of one embodiment of the endoscopic ablation system 10 to treat the diseased tissue 48 in the lower esophagus 42. The operator positions the therapeutic/ diagnostic probe 20 using endoscopic visualization so that the diseased tissue 48 to be treated is within the field of view of the flexible endoscope 12. Once the operator positions the therapeutic/diagnostic probe 20 such that the electrical therapy electrodes 28 are located above the diseased tissue 48, the operator may energize the electrodes 28 with the electrical waveform generator 14 to destroy the diseased tissue 48 in the tissue treatment region. For example, the electrodes 28 may be energized with an electrical waveform having amplitude of approximately 500 VDC and a pulse width of approximately 20 ms at a frequency of approximately 10 Hz. In this manner, the diseased tissue 48 in the tissue treatment region may be destroyed. This procedure may take very little time and may be repeated to destroy relatively larger portions of the dis-

eased tissue **48**. Suction may be applied to remove the treated tissue sample through the bore **35** formed in the diagnostic probes **26**.

FIG. 6 illustrates the use of the endoscopic ablation system 10 to treat the diseased tissue 48 in the lower esophagus 42. As 5 shown in the illustrated embodiment, the electrical therapy electrodes 28 can be rotated about the central axis 39 in the direction indicated by arrows 31a and 31b. The treated tissue can be sucked into the bore 35 of the biopsy probe 26 by applying suction to thereto.

FIG. 7 illustrates one embodiment of a necrotic zone 70 defined by the geometry and placement of the electrical therapy electrodes 28. The energy delivered by the waveform to the electrodes 28 in terms of frequency, amplitude, and pulse width should be suitable to destroy the tissue in the 15 necrotic zone 70. Based on the location and geometry of the electrodes 28, and the energy delivered thereto, the necrotic zone 70 in the illustrated embodiment may be approximated generally as a volume of width "wnz," a thickness "tnz," and a length "Inz." Energizing the electrodes 28 destroys the 20 diseased tissue 48 within the necrotic zone 70. In one embodiment, electrodes 28 with a width "w=0.5 mm," a length "l=10 mm," and a thickness "h=0.5 mm" (as shown in FIGS. 3A, B) and a waveform of approximately 500 VDC, a pulse width of 20 ms, and a frequency of 10 Hz, would define a necrotic zone 25 70 with dimensions of approximately wnz=6 mm wide, lnz=10 mm long, and hnz=2 mm deep. If a biopsy indicates that the treatment region includes dysplastic or malignant cells, or if the treatment region is larger than the necrotic zone 70, the process may be repeated until all the diseased tissue 48 is destroyed in the treatment region and clean margins are recorded. In one embodiment, optical biopsy may be used as an alternative to the vacuum diagnostic probes 26 shown in the illustrated embodiments.

FIG. 8 is a sectional view taken along the longitudinal axis 35 of one embodiment of an endoscopic ablation system 10 shown in FIG. 1. The distal portion of the flexible shaft 32 is located inside a rotation tube 22 of the endoscopic ablation system 10. The pair of electrical conductors 18 pass through a strain relief 66 of a rotation knob 58. In the illustrated 40 embodiment an external tube 64 may be located over the flexible shaft 32 such that the conductors 18 pass between the external tube 64 and the rotation tube 22. Each of the conductors 18 connect electrically to the electrical therapy electrodes 28 in the therapeutic/diagnostic probe 20. The rotation tube 45 22 rotatably joins the rotation knob 58. The operator can rotatably orient the electrodes 28, even after insertion into the esophagus, by remotely rotating the diagnostic probes 26 about the central axis 39 of each of the therapeutic/diagnostic probe 20. The therapeutic/diagnostic probe 20 is within the 50 field of view of the flexible endoscope 12, thus enabling the operator to see on a display monitor the tissue that is located between the electrodes 28. Optionally, in one embodiment, a valve element (not shown) may extend from the distal end of therapeutic/diagnostic probe 20 to prevent tissue or fluids 55 from entering the therapeutic/diagnostic probe 20.

FIG. 9 is an end view taken along line 9-9 of one embodiment of the therapeutic/diagnostic probe 20 of the endoscopic ablation system 10 shown in FIG. 8. The electrical conductors 18 connect to the electrical therapy electrodes 28. The rotation tube 22 retains the flexible shaft 32. The inside diameter of the rotation tube 22 is larger than the outer diameter of the flexible endoscope 12 to allow rotation of the rotation tube 22 while holding the flexible endoscope 12 stationary, or vice versa. Each of the therapeutic/diagnostic probe 20 comprising the diagnostic probes 26 attached to the electrodes 28 extend outwardly from the distal end of the flexible shaft 32

10

through each of the working channels 36. In this embodiment, the operator may endoscopically view the tissue between the electrodes 28. The flexible endoscope 12 includes the light source 40, the viewing port 38, and the one or more working channels 36.

FIG. 10 is a sectional view taken along line 10-10 of the rotation tube 22 of the endoscopic ablation system 10 shown in FIG. 8. The external tube 64 and the rotation tube 22 assemble and retain the electrical conductors 18 as already described. The light source 40, the viewing port 38, and the one or more working channels 36 of the flexible endoscope 12 are shown.

FIG. 11 shows one embodiment of the distal portion of the endoscopic ablation system 10 shown in FIG. 1 partially inserted into the esophagus 42 of a patient. A tapered end cover 84 dilates the esophagus 42 as the operator gently inserts the therapeutic/diagnostic probe 20 for positioning near the diseased tissue 48 to be ablated. A flexible coupling 88 flexes as shown, reducing the required insertion force and minimizing trauma (and post-procedural pain).

The operator may treat the diseased tissue 48 using the embodiment of the endoscopic ablation system 10 comprising the therapeutic/diagnostic probe 20 shown in FIGS. 1-3 and 5-11 as follows. The operator inserts the flexible shaft 32 of the endoscope 12 into the lower esophagus 42 trans-orally. A rigid support member at the distal end of the endoscope 12 holds the lower esophagus 42 open as the operator uses endoscopic visualization through the therapeutic/diagnostic probe 20 to position the electrical therapy electrodes 28 next to the diseased tissue 48 to be treated. The rigid support member opens and supports a portion of the flaccid, lower esophagus 42 and helps to bring the diseased tissue 48 to be treated into intimate contact with the electrodes 28 and within the field of view of the flexible endoscope 12. While watching through the viewing port 38, the operator actuates the switch 62, electrically connecting the electrodes 28 to the electrical waveform generator 14 through the electrical conductors 18. Electric current then passes through the portion of the diseased tissue 48 positioned between the electrodes 28 and within the field of view. When the operator observes that the tissue in the field of view has been ablated sufficiently, the operator deactuates the switch 62 to stop the ablation. The operator may reposition the electrodes 28 for subsequent tissue treatment, or may withdraw the therapeutic/diagnostic probe 20 (together with the flexible endoscope 12).

FIG. 12 is a diagram of one embodiment of a control loop 80 for one embodiment of an IRE therapy procedure to treat diseased tissue as described herein. As previously discussed, the IRE therapy may be effective in quickly creating necrosis of live tissue and destroying diseased (e.g., cancerous) tissue in-vivo. Real time information feedback about the size in volume of a necrotic zone may be helpful during an IRE therapy procedure for focal treatment of diseased tissue 48.

Prior to an IRE therapy procedure, a patient 82 will have an image of the diseased tissue 48 taken for clinical purposes in an effort to reveal, diagnose, or examine the diseased tissue 48 and to identify its location more precisely. The image information 84 will generally include geometric information about the volume of the diseased tissue 48. The image information 84 is provided to an image processing module 86 to calculate the volume of the diseased tissue 48 and to display a virtual model of the diseased tissue 48 on a monitor. The image processing module 86 may comprise, for example, image processing software applications such as Comsol Multiphysics available by Comsol, Inc. to receive the image information 84, extract the geometric information, and determine (e.g., calculate) the voltage required to treat the proper volume and

outline of the necrotic zone required to treat the diseased tissue 48. The image processing module 86 creates a virtual model of a treatment zone necessary to treat the diseased tissue 48. The image processing module 86 then determines waveform parameters 88 of a suitable electrical waveform 5 necessary to destroy the diseased tissue 48. The waveform parameters 88 include the frequency, amplitude, and pulse width of the electrical waveform to be generated by the waveform generator 14. The waveform generator 14 would then generate the suitable electrical waveform to destroy the diseased tissue 48 based on the calculated waveform parameters 88

The image processing module 86 also comprises image processing software applications such as Matlab available by MathWorks, Inc. to receive the image information 84 and the 15 virtual model and display an image of the diseased tissue 48 overlaid with an image of the virtual model. The overlaid images enable the operator to determine whether the calculated electrical waveform parameters 88 are suitable for destroying the diseased tissue 48, whether too strong or too 20 weak. Thus, the IRE waveform parameters 88 may be adjusted such that the virtual model image substantially overlays the entire diseased tissue image. The calculated parameters 88 are provided to the waveform generator 14 and the diseased tissue may be treated with an electrical waveform 89 25 based on the calculated parameters 88 as discussed herein. After the diseased tissue 48 is treated with the electrical waveform 89, a new image of the diseased tissue 48 can be generated to determine the extent or effectiveness of the treatment. The cycle may be repeated as necessary to ablate the 30 diseased tissue 48 as much as possible.

FIG. 13 illustrates one embodiment of an electrical scalpel 90 for dissecting tissue 92. In one embodiment, the electrical scalpel 90 may be driven by an IRE waveform previously described. The scalpel 90 comprises a blade 98 that is formed 35 of metal such as hardened and tempered steel (and/or stainless in many applications). The blade 98 is connected to the electrical waveform generator 14 by multiple electrical conductors 96. The electrical waveform generator 14 may generate an IRE waveform (e.g., 10 Hz frequency, 500 VDC 40 amplitude, and 20 ms pulse). As the blade 98 dissects the tissue 92 along an incision 100, the electrical waveform generator 14 may be activated or pulsed to create a tissue destruction zone 94 surrounding the blade 98. Accordingly, as the blade 98 dissects the diseased tissue 92 it generates the tissue 45 destruction zone 94 beyond the incision 100. This may help to ensure the destruction of any diseased tissue cells left behind. The pulse repetition rate or frequency of the electrical waveform generated by the generator 14 may be selected to provide a continuous zone of tissue destruction 94 as the blade 98 50 moves through the diseased tissue 92. In one embodiment, a feedback signal (e.g., audio, visual, or cut-off of electrical power to the blade 98) may be provided to the operator to indicate that the scalpel 90 is moving too quickly.

FIG. 14 is a graphical representation 110 (graph) of electric field strength (along the y-axis) as a function of distance from an electrical therapy electrode 28 under various conductivity environments near the diseased tissue 48. FIG. 15 is a close up of the graph 110 shown in FIG. 14A. In electrical therapy of diseased tissue 48, the volume of tissue that can be destroyed by an electrical waveform (e.g., the necrotic zone) may be defined by a minimum electric field strength applied to the tissue treatment region. The electric field strength in the tissue treatment region varies throughout the tissue as a function of the applied electrical waveform parameters frequency, amplitude, and pulse width as well as the conductivity of the tissue in the treatment region. When a single electrical therapy

12

electrode 28 is located in a first position in the tissue treatment region of interest and a return pad is placed at a distance relatively far from the first position, an electric field is generated around the electrode 28 when it is energized with a particular electrical waveform. The magnitude of the electric field, however, diminishes rapidly in the radial direction away from the electrode 28. When two electrodes 28 are placed relatively close together, a larger pattern of tissue can be destroyed. Injecting a fluid having a higher conductivity than the tissue into the tissue treatment region extends the electric field of sufficient strength to destroy the tissue radially outwardly from the electrode 28. Thus, the addition of a fluid having higher conductivity than the tissue to be treated creates a larger tissue destruction zone by extending the electric field radially outwardly from the electrodes 28.

The graph 110 illustrates the electric field strength, along the y-axis, as a function of the radial distance from the electrical therapy electrode 28. The y-axis is labeled in units of volts/meter $(V/m \times e^5)$ and the x-axis is labeled in units of mm. The graph 110 illustrates a family of three functions with conductivity as a parameter. A first function 112 illustrates the electric field strength as a function of the radial distance from one of the electrodes 28 with no conductivity plug introduced into the tissue treatment region. A second function 114 illustrates the electric field strength as a function of the radial distance from one of the electrodes 28 with a conductivity plug of 0.2 S/m introduced in the tissue treatment region. A third function 116 illustrates the electric field strength as a function of the radial distance from one of the electrodes 28 with a conductivity plug of 0.5 S/m introduced in the tissue treatment region. As shown in the graph 110, the peak electric field strength of each of the functions 112, 114, 116 decreases with increased conductivity in the tissue treatment region in proximity to the electrode 28. However, the threshold 118 of each of the functions 112, 114, 116 where the electric field strength drops below the minimum threshold 118 of electric field strength required to destroy tissue becomes wider as the conductivity increases. In other words, increasing the conductivity of the tissue in the tissue treatment region extends the range of an effective electric field to destroy tissue or creates a larger necrotic zone. In one embodiment, the minimum electric field strength threshold 118 is approximately 30,000 V/m.

The devices disclosed herein can be designed to be disposed of after a single use, or they can be designed to be used multiple times. In either case, however, the device can be reconditioned for reuse after at least one use. Reconditioning can include any combination of the steps of disassembly of the device, followed by cleaning or replacement of particular pieces, and subsequent reassembly. In particular, the device can be disassembled, and any number of the particular pieces or parts of the device can be selectively replaced or removed in any combination. Upon cleaning and/or replacement of particular parts, the device can be reassembled for subsequent use either at a reconditioning facility, or by a surgical team immediately prior to a surgical procedure. Those skilled in the art will appreciate that reconditioning of a device can utilize a variety of techniques for disassembly, cleaning/replacement, and reassembly. Use of such techniques, and the resulting reconditioned device, are all within the scope of the present application.

Preferably, the various embodiments of the invention described herein will be processed before surgery. First, a new or used instrument is obtained and if necessary cleaned. The instrument can then be sterilized. In one sterilization technique, the instrument is placed in a closed and sealed container, such as a plastic or TYVEK bag. The container and

instrument are then placed in a field of radiation that can penetrate the container, such as gamma radiation, x-rays, or high-energy electrons. The radiation kills bacteria on the instrument and in the container. The sterilized instrument can then be stored in the sterile container. The sealed container 5 keeps the instrument sterile until it is opened in the medical facility.

It is preferred that the device is sterilized. This can be done by any number of ways known to those skilled in the art including beta or gamma radiation, ethylene oxide, steam.

Although the various embodiments of the invention have been described herein in connection with certain disclosed embodiments, many modifications and variations to those embodiments may be implemented. For example, different types of end effectors may be employed. Also, where materials are disclosed for certain components, other materials may be used. The foregoing description and following claims are intended to cover all such modification and variations.

Any patent, publication, or other disclosure material, in whole or in part, that is said to be incorporated by reference 20 herein is incorporated herein only to the extent that the incorporated materials does not conflict with existing definitions, statements, or other disclosure material set forth in this disclosure. As such, and to the extent necessary, the disclosure as explicitly set forth herein supersedes any conflicting material 25 incorporated herein by reference. Any material, or portion thereof, that is said to be incorporated by reference herein, but which conflicts with existing definitions, statements, or other disclosure material set forth herein will only be incorporated to the extent that no conflict arises between that incorporated 30 material and the existing disclosure material.

What is claimed is:

- 1. An apparatus, comprising:
- an elongate shaft;
- a first channel and a second channel defined in the elongate 35 shaft;
- a first probe positioned at least partially within the first channel, wherein the first probe comprises a first distalmost portion and defines a first longitudinal axis extending to the first distal-most portion, wherein the first 40 distal-most portion is laterally aligned with the first longitudinal axis, and wherein the first probe is rotatable within the first channel;
- a first electrode coupled to the first distal-most portion of the first probe and laterally offset from the first longitudinal axis, wherein the first electrode is structured to rotate about the first longitudinal axis via the first probe, and wherein the first electrode is configured to couple to a bipolar electrical waveform generator;
- a first conductor external to the first channel, wherein the 50 first conductor is electrically coupled to the first electrode, and wherein the first conductor extends from a positive pole of the bipolar electrical waveform generator to the first electrode;
- a second probe positioned at least partially within the second channel, wherein the second probe comprises a second distal-most portion and defines a second longitudinal axis extending to the second distal-most portion, and wherein the second distal-most portion is laterally aligned with the second longitudinal axis;
- a second electrode coupled to the second distal-most portion of the second probe and laterally offset from the second longitudinal axis, wherein the second electrode is configured to couple to the bipolar electrical waveform generator;
- a second conductor external to the second channel, wherein the second conductor is electrically coupled to the sec-

14

- ond electrode, and wherein the second conductor extends from a negative pole of the bipolar electrical waveform generator to the second electrode; and
- an adjustable ablation region defined between the first and second electrodes, wherein the ablation region is adjustable by rotating the first probe.
- 2. The apparatus of claim 1, further comprising a strain reliever, wherein the first and second conductors extend through the strain reliever.
- 3. The apparatus of claim 1, wherein the first and second electrodes are configured to receive an irreversible electroporation electrical waveform, and wherein the irreversible electroporation electrical waveform generates an electrical field of at least 30,000 V/cm in the adjustable ablation region.
- **4**. The apparatus of claim **1**, wherein the second probe is rotatable within the second channel and wherein the ablation region is adjustable by rotating the first and second electrodes.
- 5. The apparatus of claim 1, further comprising an endoscope, wherein the endoscope comprises the first channel and the second channel.
- **6**. The apparatus of claim **5**, further comprising: an illuminator positioned to illuminate tissue; and an image sensor positioned to image tissue therethrough.
- 7. The apparatus of claim 1, wherein the first and second electrodes are configured to access a tissue treatment region in a lung.
 - 8. An apparatus, comprising:

an elongate shaft;

- a first channel and a second channel defined in the elongate shaft;
- a first probe positioned at least partially within the first channel, wherein the first probe comprises a first distalmost portion and defines a first longitudinal axis, wherein the first distal-most portion is aligned with the first channel, and wherein the first probe is rotatable within the first channel;
- a first electrode extending from the first distal-most portion of the first probe and laterally offset from the first longitudinal axis, wherein the first electrode is structured to rotate about the first longitudinal axis via the first probe, and wherein the first electrode is configured to couple to a bipolar electrical waveform generator;
- a first conductor in electrical communication with the first electrode, wherein the first conductor is positioned outside the elongate shaft, and wherein the first conductor extends from one of a positive pole or a negative pole of the bipolar electrical waveform generator to the first electrode:
- a second probe positioned at least partially within the second channel, wherein the second probe comprises a second distal-most portion and defines a second longitudinal axis, and wherein the second distal-most portion is aligned with the second channel;
- a second electrode extending from the second distal-most portion of the second probe and laterally offset from the second longitudinal axis, wherein the second electrode is configured to couple to the bipolar electrical waveform generator;
- a second conductor in electrical communication with the second electrode, wherein the second conductor is positioned outside the elongate shaft, and wherein the second conductor extends from the other of the positive pole or the negative pole of the bipolar electrical waveform generator to the second electrode;

wherein the first and second electrodes are configured to receive an irreversible electroporation electrical waveform through the respective first and second conductors; and

an adjustable ablation region defined between the first and second electrodes, wherein the ablation region is adjustable by rotating the first probe.

9. The apparatus of claim 8, further comprising a strain reliever, wherein the first and second conductors extend through the strain reliever.

10. The apparatus of claim 8, wherein the irreversible electroporation electrical waveform generates an electric field of at least 30,000 V/m in the adjustable ablation region.

11. The apparatus of claim 8, comprising: an illuminator positioned to illuminate tissue; and an image sensor positioned to image tissue therethrough.

12. The apparatus of claim 8, wherein the second probe is rotatable within the second channel and wherein the ablation region is adjustable by rotating the first and second electrodes.

13. A method, comprising:

positioning an elongate member comprising first and second channels within a body cavity, wherein a first and a second probe are disposed within the respective first and second channels, wherein the first and second probes each define a central axis, wherein the first and second probes each comprise a distal-most end aligned with the respective central axis, wherein a first and a second electrode are coupled to the distal-most ends of the respective first and second probes, wherein the first and second electrodes are laterally offset from the central axes of the respective first and second probes, and wherein a first and a second conductor disposed external to the respective first and second channels are electrically coupled to the respective first and second electrodes; and

16

rotating at least one of the first and second probes within the respective first and second channels about the central axis of the respective at least one first and second probes to adjust an ablation region positioned between the first and second electrodes; and

applying an irreversible electroporation (IRE) electrical waveform sufficient to ablate tissue positioned within the ablation region with a bipolar electrical waveform generator electrically coupled to the first and second electrodes through the respective first and second conductors that extend from a respective positive and negative pole of the bipolar electrical waveform generator to the respective first and second electrodes.

14. The method of claim 13, wherein the IRE electrical waveform is suitable to destroy diseased tissue in the ablation region, and wherein the IRE electrical waveform parameters comprise amplitude, frequency, and pulse width.

15. The method of claim 13, further comprising generating an electric field of at least $30,000\,\mathrm{V/m}$ in the ablation region.

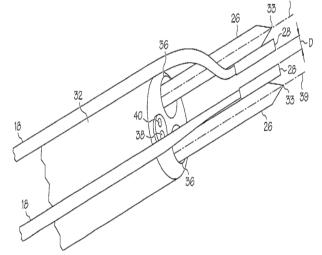
16. The method of claim 13, further comprising injecting a fluid into the ablation region, wherein the fluid has a higher conductivity than diseased tissue in the ablation region.

17. The method of claim 13, further comprising: illuminating the ablation region with at least one illuminator positioned to illuminate tissue; and

imaging the ablation region with an image sensor positioned to image tissue therethrough.

18. The method of claim 17, further comprising modifying the IRE electrical waveform based on the imaged tissue in the ablation region.

19. The method of claim 13, further comprising positioning the elongate member in a tissue treatment region located in a lung.


* * * * *

专利名称(译)	电穿孔消融装置,系统和方法				
公开(公告)号	US9375268	公开(公告)日	2016-06-28		
申请号	US13/890589	申请日	2013-05-09		
[标]申请(专利权)人(译)	伊西康内外科公司				
申请(专利权)人(译)	爱惜康内镜外科INC.				
当前申请(专利权)人(译)	≥) 爱惜康内镜手术,INC.				
[标]发明人	LONG GARY L				
发明人	LONG, GARY L.				
IPC分类号	A61B18/14 A61B1/04 A61B1/018 A61N1/32 A61B1/06 A61N1/30 A61B18/00				
CPC分类号	A61B18/1482 A61B1/018 A61B1/04 A61B1/06 A61B18/1492 A61N1/306 A61N1/327 A61B2018/00482 A61B2018/00577 A61B2018/00613				
优先权	11/706766 2010-02-02 US				
其他公开文献	US20130261389A1				
外部链接	Espacenet USPTO				

摘要(译)

诸如内窥镜或腹腔镜器械的手术器械包括消融装置。消融装置包括细长的相对柔性的构件,该构件具有近端和远端,柔性构件包括至少第一工作通道。第一和第二电极从柔性构件的远端处的工作通道延伸。第一和第二电极适于内窥镜定位在组织治疗区域中。第一和第二电极适于耦合到电波形发生器,以接收足以消融位于第一和第二电极之间的组织的不可逆电穿孔电波形。基于从组织治疗区域接收的图像信息确定不可逆电穿孔电波形的波形参数。

