

US007909219B2

(12) United States Patent

Cole et al.

(10) Patent No.: US 7,909,219 B2

(45) **Date of Patent:** Mar. 22, 2011

(54) ENDOSCOPIC STAPLING DEVICES AND METHODS

(75) Inventors: **David Cole**, San Mateo, CA (US);

Andrew Smith, San Francisco, CA (US)

(73) Assignee: Barosense, Inc., Durham, NC (US)

(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35

U.S.C. 154(b) by 193 days.

(21) Appl. No.: 12/053,027

(22) Filed: Mar. 21, 2008

(65) Prior Publication Data

US 2009/0236397 A1 Sep. 24, 2009

Related U.S. Application Data

(62) Division of application No. 12/050,169, filed on Mar. 18, 2008.

(51) **Int. Cl.**

A65B 17/068 (2006.01)

(2006.01)

606/153, 151, 219

See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

A	3/1922	Cowell
A	5/1972	Lee et al.
A	1/1979	Smit
A	6/1980	Mamajek et al
A	1/1981	Berson
A	2/1982	Smit
	A A A A	A 5/1972 A 1/1979 A 6/1980 A 1/1981

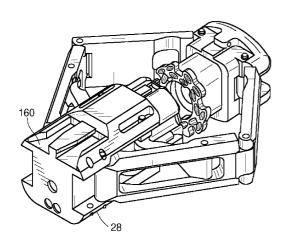
4,331,277 A 4,403,604 A 4,416,267 A 4,417,360 A	11/1983	Green Wilkinson et al. Garren et al. Moasser
4,441,215 A	4/1984	
	(Con	tinued)

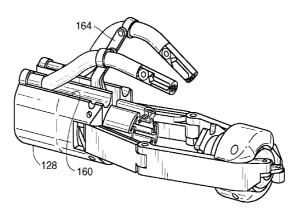
FOREIGN PATENT DOCUMENTS

CH 680263 A5 7/1992 (Continued)

OTHER PUBLICATIONS

U.S. Appl. No. 12/050,169, Cole et al., Not Published.


(Continued)


Primary Examiner — Scott A Smith (74) Attorney, Agent, or Firm — King & Spalding LLP; Peter J. Dehlinger; Kathleen A. Frost

(57) ABSTRACT

Described herein are endoscopic staplers used to apply one or more fasteners to body tissue. In one embodiment, a fastenerapplying device, which is preferably a stapler, is passed transorally into the stomach and used to plicate stomach tissue by engaging tissue from inside of the stomach and drawing it inwardly. In the disclosed embodiments, the tissue is drawn inwardly into a vacuum chamber, causing sections of serosal tissue on the exterior of the stomach to be positioned facing one another. The disclosed staplers allow the opposed sections of tissue to be moved into contact with one another, and preferably deliver staples for maintaining contact between the tissue sections at least until serosal bonds form between them. Each of these steps may be performed wholly from the inside of the stomach and thus can eliminate the need for any surgical or laparoscopic intervention. After one or more plications are formed, medical devices may optionally be coupled to the plication(s) for retention within the stomach.

23 Claims, 22 Drawing Sheets

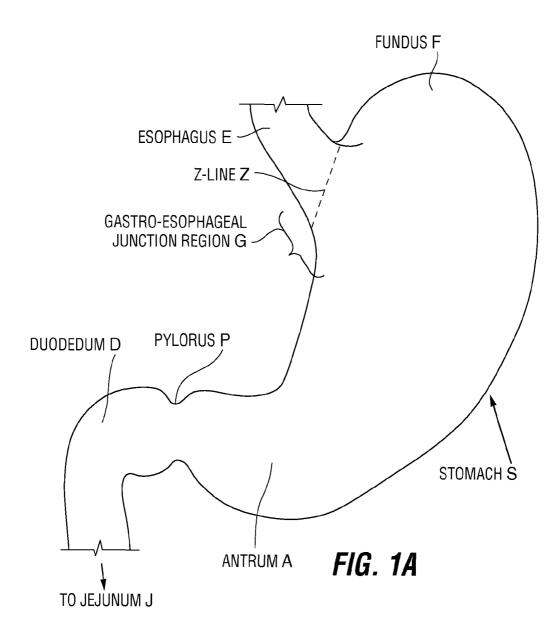
US 7,909,219 B2 Page 2

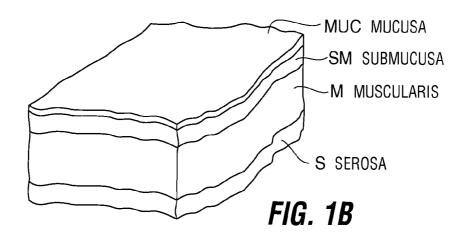
U.S. PATENT	DOCUMENTS	6,016,848 A	1/2000	Egres, Jr.
		6,051,015 A	4/2000	Maahs
	Hardy et al. Foster, Jr.	6,086,600 A		Kortenbach
	Rockey	6,098,629 A 6,102,922 A	8/2000 8/2000	Johnson et al. Jakobsson et al.
	Angelchik	6,113,609 A	9/2000	Adams
	Rockey	6,120,534 A	9/2000	
	Angelchik Weiner et al.	6,146,416 A		Andersen et al.
	Kullas et al.	6,159,146 A	12/2000	El Gazayerli
	Galtier	6,159,238 A 6,197,022 B1	12/2000 3/2001	Killion et al.
4,846,836 A 7/1989		6,206,930 B1		Burg et al.
	Avant et al. Garren et al.	6,245,088 B1	6/2001	Lowery
	Garay et al.	6,251,132 B1	6/2001	Ravenscroft et al.
4,946,440 A 8/1990		6,254,642 B1 6,258,120 B1	7/2001 7/2001	Taylor McKenzie et al.
4,969,896 A 11/1990		6,264,700 B1		Kilcoyne et al.
	Opie et al.	6,287,334 B1	9/2001	Moll et al.
	Angelchik Mills et al.	6,302,917 B1		Dua et al.
	Wallsten et al.	6,358,197 B1	3/2002 7/2002	Silverman Strecker
	Gau et al.	6,416,522 B1 6,425,916 B1		Garrison et al.
	Filipi et al.	6,454,785 B2		De Hoyos Garza
5,163,952 A 11/1992 5,211,658 A 5/1993	Clouse	6,460,543 B1	10/2002	Forsell
5,234,454 A 8/1993		6,461,366 B1	10/2002	Seguin
	Wilkinson	6,494,888 B1 6,494,895 B2	12/2002	Laufer et al.
5,259,399 A 11/1993		6,503,264 B1	1/2003	
	Trumbull et al.	6,506,196 B1	1/2003	Laufer et al.
5,290,217 A 3/1994 5,306,300 A 4/1994	Campos	6,527,784 B2		Adams et al.
	Godin	6,540,789 B1	4/2003	Silverman et al.
	Shlain	6,544,291 B2 6,547,801 B1	4/2003 4/2003	Taylor Dargent et al.
5,345,949 A 9/1994		6,558,400 B2		Deem et al.
	Pietrafitta et al. Delany	6,558,429 B2	5/2003	Taylor et al.
	Harrison et al.	6,572,627 B2		Gabbay
5,405,377 A 4/1995		6,572,629 B2 6,575,896 B2	6/2003 6/2003	Kalloo Silverman
	Summers et al.	6,592,596 B1	7/2003	
	Lelental et al. Schneck	6,596,023 B1		Nunez et al.
	Bosley, Jr.	6,607,555 B2		Patterson et al.
	Vidal et al.	6,627,206 B2 6,632,227 B2	9/2003 10/2003	
5,542,949 A 8/1996		6,663,639 B1		Laufer et al.
	Boiarski et al.	6,675,809 B2		Stack et al.
5,571,116 A 11/1996 5,577,654 A 11/1996	Bolanos et al.	6,740,098 B2		Abrams et al.
	Williams	6,740,121 B2	5/2004	Geitz Gannoe et al.
	Knodel et al.	6,746,460 B2 6,755,869 B2	6/2004	
5,609,624 A 3/1997		6,764,518 B2	7/2004	
, ,	Banas et al. Plyley et al.	6,773,440 B2	8/2004	Gannoe et al.
	Green et al.	6,773,441 B1		Laufer et al.
5,653,743 A 8/1997	Martin	6,790,214 B2 6,790,237 B2	9/2004	Kraemer et al. Stinson
	Andersen et al.	6,821,285 B2		Laufer et al.
	Schulze et al. Bley et al.	6,835,200 B2		Laufer et al.
	Plyley et al.	6,845,776 B2	1/2005	Stack et al.
5,709,657 A 1/1998	Zimmon	6,916,332 B2 6,932,838 B2	7/2005 8/2005	Adams Schwartz et al.
	Chuter et al.	6,960,233 B1	11/2005	Berg et al.
	Hogendijk et al. Chrisman et al.	6,966,875 B1	11/2005	Longobardi
	Jakobsson	6,981,978 B2	1/2006	Gannoe
	Zimmon	6,981,980 B2 6,994,715 B2	1/2006 2/2006	Sampson et al. Gannoe et al.
5,792,119 A 8/1998		7,011,094 B2	3/2006	Rapacki et al.
5,820,584 A 10/1998 5,839,639 A 11/1998	Crabb Sauer et al.	7,020,531 B1	3/2006	Colliou et al.
	Samuels	7,025,791 B2		Levine et al.
	Hamblin et al.	7,033,373 B2	4/2006	de la Torre et al.
5,855,601 A 1/1999	Bessler et al.	7,033,384 B2 7,037,344 B2	4/2006 5/2006	
	Korsmeyer	7,056,305 B2	6/2006	
5,861,036 A 1/1999 5,868,141 A 2/1999	Godin Filias	7,066,945 B2	6/2006	Hashiba et al.
	LoCicero, III	7,083,629 B2	8/2006	Weller et al.
5,897,562 A 4/1999	Bolanos et al.	7,090,699 B2	8/2006	Geitz
	Hayashi	7,097,650 B2	8/2006	Weller et al.
	Hankh et al. Solar et al.	7,097,665 B2 7,111,627 B2	8/2006 9/2006	Stack et al. Stack et al.
	Chan et al.	7,111,027 B2 7,112,186 B2	9/2006	Shah
	Gianotti	7,120,498 B2		Imran et al.

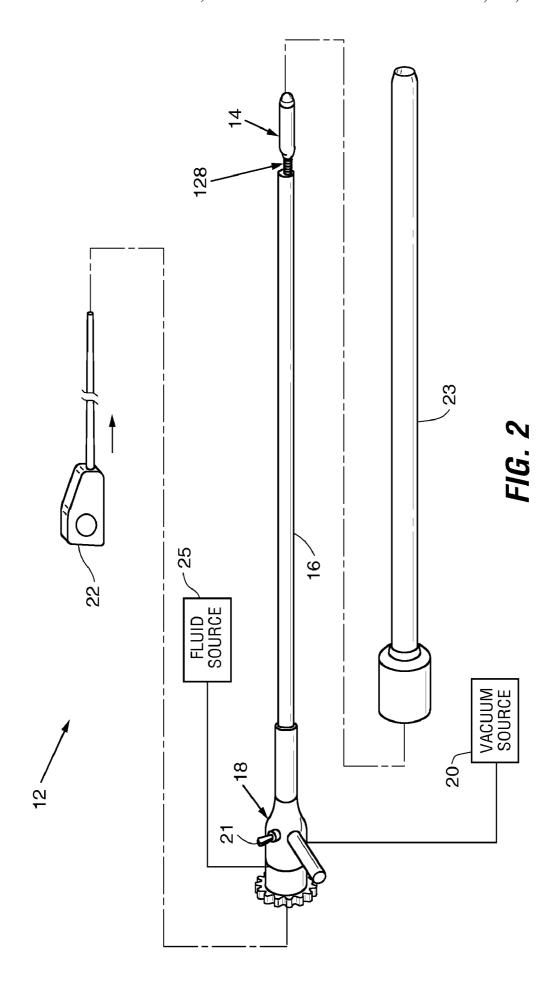
US 7,909,219 B2

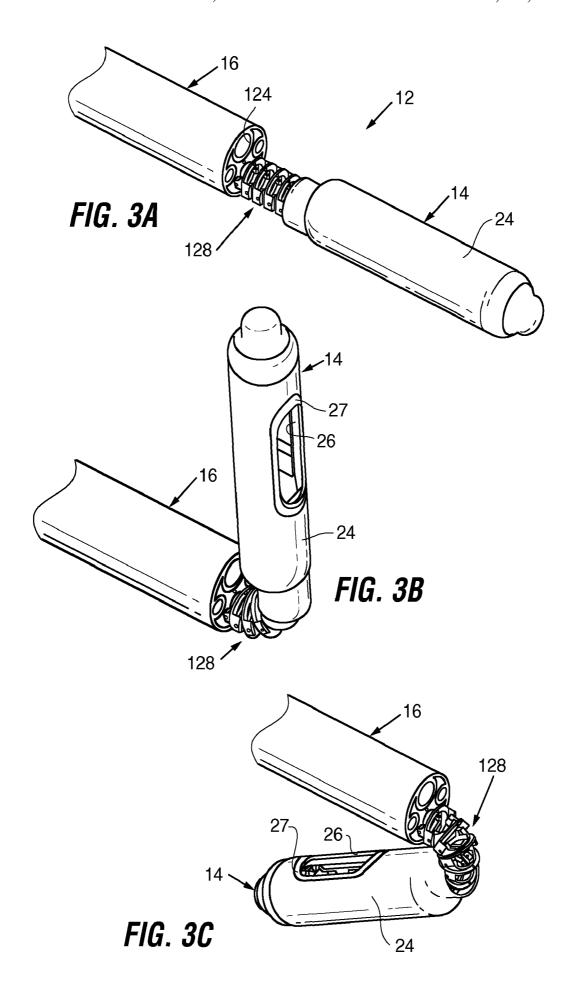
Page 3

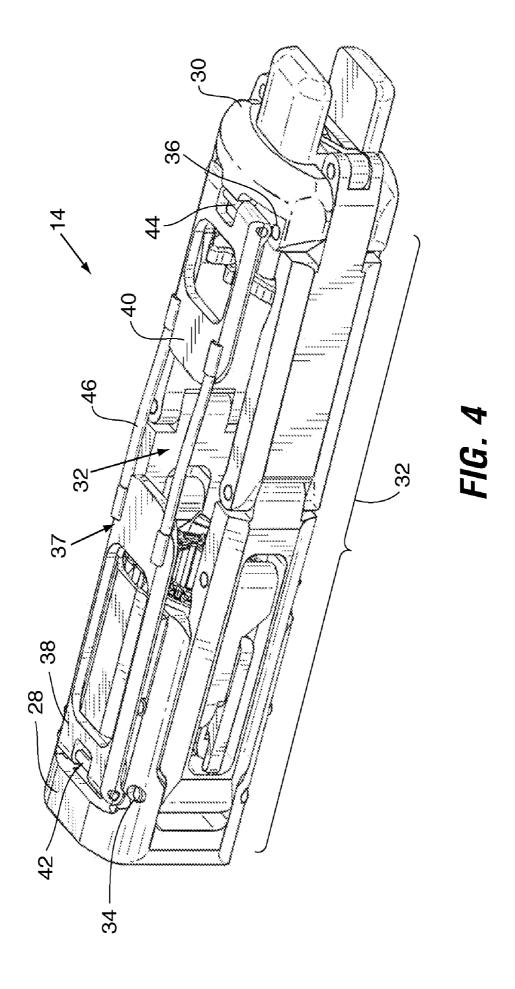
7,121,283 B2	10/2006	Stack et al.	2004/0186502 A1	9/2004	Sampson et al.
7,146,984 B2	12/2006	Stack et al.	2004/0210243 A1	10/2004	Gannoe et al.
7,147,140 B2	12/2006	Wukusick et al.	2004/0215216 A1	10/2004	Gannoe et al.
7,152,607 B2	12/2006	Stack et al.	2004/0220682 A1		Levine et al.
7,160,312 B2	1/2007		2004/0225183 A1		Michlitsch et al.
7,172,613 B2		Wazne	2004/0225305 A1		Ewers et al.
7,175,638 B2		Gannoe et al.	2004/0236419 A1	11/2004	
					Taylor et al.
7,175,660 B2		Cartledge et al.	2004/0243152 A1		
7,211,114 B2	5/2007		2004/0243223 A1		Kraemer et al.
7,214,233 B2		Gannoe et al.	2004/0267378 A1	12/2004	
7,220,237 B2		Gannoe et al.	2005/0004430 A1		Lee et al.
7,220,284 B2		Kagan et al.	2005/0004681 A1	1/2005	
7,223,277 B2		DeLegge	2005/0033326 A1		Briganti et al.
7,229,428 B2		Gannoe et al.	2005/0033345 A1		DeLegge
7,229,453 B2	6/2007	Anderson et al.	2005/0049718 A1		Dann et al.
7,255,675 B2		Gertner et al.	2005/0075654 A1		Kelleher
7,261,722 B2	8/2007	McGuckin, Jr. et al.	2005/0080444 A1	4/2005	Kraemer et al.
7,288,101 B2	10/2007	Deem et al.	2005/0085787 A1	4/2005	Laufer et al.
7,306,614 B2	12/2007	Weller et al.	2005/0096673 A1	5/2005	Stack et al.
7,315,509 B2	1/2008	Jeong et al.	2005/0096750 A1	5/2005	Kagan et al.
7,316,716 B2	1/2008	Egan	2005/0149114 A1	7/2005	Cartledge et al.
7,320,696 B2		Gazi et al.	2005/0159769 A1	7/2005	Alverdy
7,326,207 B2		Edwards	2005/0177181 A1	8/2005	
7,335,210 B2	2/2008		2005/0183732 A1		Edwards
7,354,454 B2		Stack et al.	2005/0192599 A1		Demarais
7,431,725 B2		Stack et al.	2005/0192615 A1	9/2005	Torre et al.
7,461,767 B2		Viola et al.	2005/0216040 A1		Gertner et al.
7,552,853 B2*		Mas et al 227/175.1	2005/0216040 A1 2005/0216042 A1		Gertner et al.
7,575,144 B2 * 7,588,174 B2 *		Ortiz et al	2005/0240279 A1 2005/0247320 A1		Kagan et al. Stack et al.
2001/0011543 A1		Forsell	2005/0250980 A1		Swanstrom et al.
2001/0020189 A1	9/2001	,	2005/0251158 A1	11/2005	Sadat et al.
2001/0020190 A1	9/2001	,	2005/0251162 A1		Rothe et al.
2001/0021796 A1	9/2001	Silverman et al.	2005/0256533 A1		Roth et al.
2001/0044595 A1		Reydel et al.	2005/0256587 A1	11/2005	-
2002/0022851 A1		Kalloo et al.	2005/0261712 A1	11/2005	Balbierz et al.
2002/0055757 A1		Torre et al.	2005/0267405 A1	12/2005	Shah
2002/0072761 A1	6/2002	Abrams et al.	2005/0267499 A1	12/2005	Stack et al.
2002/0082621 A1	6/2002	Schurr et al.	2005/0267595 A1	12/2005	Chen et al.
2002/0099439 A1	7/2002	Schwartz et al.	2005/0267596 A1		Chen et al.
2002/0183767 A1	12/2002	Adams et al.	2005/0273060 A1		Levy et al.
2002/0183768 A1	12/2002	Deem et al.	2006/0015006 A1		Laurence et al.
2003/0009236 A1	1/2003	Godin			
2003/0040804 A1	2/2003	Stack et al.	2006/0020278 A1		Burnett et al.
2003/0040808 A1	2/2003	Stack et al.	2006/0058829 A1	3/2006	Sampson et al.
2003/0065359 A1	4/2003	Weller et al.	2006/0129094 A1	6/2006	Shah
2003/0093117 A1	5/2003	Saadat	2006/0151568 A1		Weller et al.
2003/0109892 A1	6/2003	Deem et al.	2006/0155259 A1	7/2006	MacLay
2003/0120289 A1		McGuckin, Jr. et al.	2006/0155311 A1	7/2006	Hashiba et al.
2003/0158569 A1		Wazne	2006/0178560 A1	8/2006	Saadat et al.
2003/0191476 A1	10/2003		2006/0178691 A1	8/2006	Binmoeller
2003/0199989 A1		Stack et al.	2006/0195139 A1		Gertner
2003/0199990 A1		Stack et al.	2006/0253142 A1	11/2006	
2003/0199991 A1	10/2003	Stack et al.	2006/0271076 A1		Weller et al.
2003/0208209 A1		Gambale et al.	2006/0282095 A1		Stokes et al.
2003/0220660 A1	11/2003				
2004/0006351 A1		Gannoe et al.	2006/0287734 A1		Stack et al.
2004/0004386 A1	2/2004		2007/0010864 A1		Dann et al.
2004/0024380 A1 2004/0030347 A1		Gannoe et al.	2007/0032800 A1		Oritz et al.
2004/0030347 A1 2004/0044353 A1		Gannoe et al.	2007/0043384 A1		Oritz et al.
2004/0044354 A1		Gannoe et al.	2007/0055292 A1	3/2007	Oritz et al.
			2007/0060932 A1	3/2007	Stack et al.
2004/0044357 A1		Gannoe et al.	2007/0149994 A1	6/2007	Sosnowski et al.
2004/0044364 A1		DeVries et al.	2007/0175488 A1		Cox et al.
2004/0082963 A1		Gannoe et al.	2007/0191870 A1		Baker et al.
2004/0088023 A1	5/2004	Imran et al.	2007/0191871 A1		Baker et al.
2004/0092892 A1	5/2004	Kagan et al.	2007/0191871 A1 2007/0198074 A1		Dann et al.
2004/0092974 A1	5/2004	Gannoe et al.			
2004/0093091 A1	5/2004	Gannoe et al.	2007/0219571 A1		Balbierz et al.
2004/0098043 A1	5/2004	Trout	2007/0239284 A1	10/2007	Skerven et al.
2004/0107004 A1		Levine et al.	2007/0260327 A1	11/2007	
2004/0117031 A1	6/2004		2007/0276432 A1	11/2007	Stack et al.
2004/0138761 A1	7/2004	Stack et al.	2008/0033574 A1	2/2008	Bessler et al.
2004/0143342 A1	7/2004		2008/0065122 A1	3/2008	Stack et al.
2004/0148034 A1		Kagan et al.	2008/0190989 A1		Crews et al.
2004/0153167 A1	8/2004	Stack et al.	2008/0208355 A1		Stack et al.
2004/0158331 A1	8/2004	Stack et al.	2008/0294179 A1		Balbierz et al.
2004/0162568 A1	8/2004	Saadat et al.	2009/0024143 A1		Crews et al.
2004/0172141 A1	9/2004	Stack et al.	2009/0024143 A1 2009/0030284 A1		Cole et al.
2004/0172142 A1	31ZUU4	Stack et al.	2009/0125040 A1	3/2009	Hambly et al.

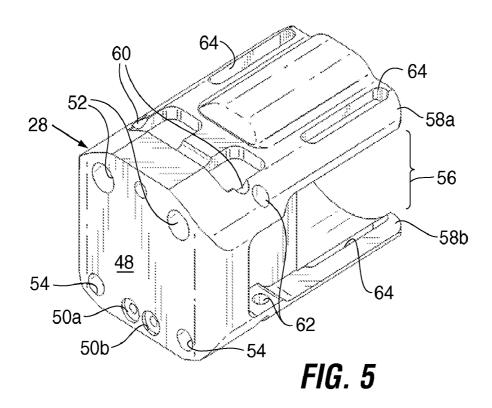

FOREIGN PATENT DOCUMENTS OTHER PUBLICATIONS EP 0 775 471 A1 5/1997 The International Search report and Written Opinion for PCT appli-EΡ 1492478 1/2005 cation PCT/US2008/008726, Oct. 16, 2008, 13 pages (2008). EP 1 602 336 A2 12/2005 The International Search report and Written Opinion for PCT appli-FR2768324 A1 3/1999 cation PCT/US2007/019833, Dec. 9, 2007, 11 pages (2007) 09-168597 JΡ 6/1997 The International Search report for PCT application PCT/US2008/ WO WO 91/01117 A1 2/1991 063440, search report dated Aug. 1, 2008, 11 pages (2007). WO WO 97/47231 A2 12/1997 The International Search report and Written Opinion for PCT appli-WO WO 00/12027 A1 3/2000 WO WO 00/32137 A1 6/2000 cation PCT/US2007/019940, Mar. 20, 2008, 12 pages (2008). WO WO 00/78227 A1 12/2000 Stecco, K. et al., "Trans-Oral Plication Formation and Gastric 6/2001 WO WO 01/41671 Implant Placement in a Canine Model", Stecco Group, San Jose and WO 01/45485 A2 6/2001 7/2001 WO Barosnese, Inc., Redwood City, California (2004). WO WO 01/49359 A1 Stecco, K. et al., "Safety of A Gastric Restrictive Implant in A Canine WO WO 01/66018 A1 9/2001 Model", Stecco Group, San Jose and Barosnese, Inc., Redwood City, WO WO 01/85034 A1 11/2001 California (2004). WO WO 01/89393 11/2001 International Search Report from PCT Patent Application No. PCT/ WO WO 02/060328 A1 8/2002 US2002/027177 mailed Feb. 14, 2003. WO WO 03/017882 3/2003 International Search Report from PCT Patent Application No. PCT/ WO WO 03/086246 10/2003 US2003/004378 mailed Aug. 13, 2003. WO WO 03/086247 10/2003 International Search Report from PCT Patent Application No. PCT/ WO WO 03/090633 11/2003 WO US2003/033605 mailed Mar. 29, 2004. WO 03/094784 A2 11/2003 WO WO 03/094785 11/2003 International Search Report from PCT Patent Application No. PCT/ WO WO 03/099137 12/2003 US2003/033606 mailed Mar. 29, 2004. WO WO 2004/019765 3/2004 International Search Report from PCT Patent Application No. PCT/ WO WO 2004/019787 3/2004 US2003/004449 mailed Aug. 13, 2003. WO WO 2004/032760 A2 4/2004 International Search Report from PCT Patent Application No. PCT/ WO WO 2004/037064 5/2004 US2004/006695 mailed Sep. 8, 2004. WO WO 2004/041133 5/2004 International Search Report from PCT Patent Application No. PCT/ WO WO 2004/064680 8/2004 US2004/033007 mailed Feb. 9, 2005. WO WO WO 2004/064685 8/2004 International Search Report from PCT Patent Application No. PCT/ WO 2004/080336 9/2004 US2005/014372 mailed Jul. 28, 2005. WO WO 2004/110285 A1 12/2004 International Search Report from PCT Patent Application No. PCT/ WO WO 2005/037152 A1 4/2005 WO WO 2005/079673 A2 9/2005 US2006/019727 mailed Apr. 19, 2007. WO WO 2005/096991 A1 10/2005 International Search Report from PCT Patent Application No. PCT/ WO WO 2005/105003 11/2005 US2006/038684 mailed Feb. 14, 2007. WO WO 2006/016894 A1 2/2006 International Search Report from PCT Patent Application No. PCT/ WO WO 2006/055365 A2 5/2006 US2007/019227 mailed Feb. 20, 2008. WO WO 2006/127593 11/2006 International Search Report from PCT Patent Application No. PCT/ WO WO 2007/041598 A1 4/2007 US2008/008729 mailed Aug. 18, 2009. WO WO 2008/030403 3/2008 Felsher, et al., "Mucosal apposition in endoscopic suturing", WO WO 2008/033409 3/2008 Gastrointestinal Endoscopy, vol. 58, No. 6, pp. 867-870, (2003). WO WO 2008/033474 3/2008

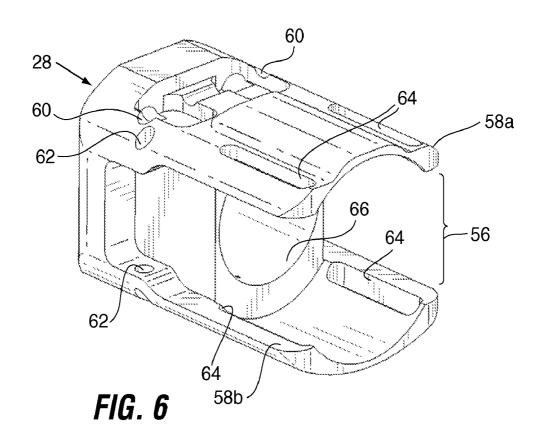

* cited by examiner

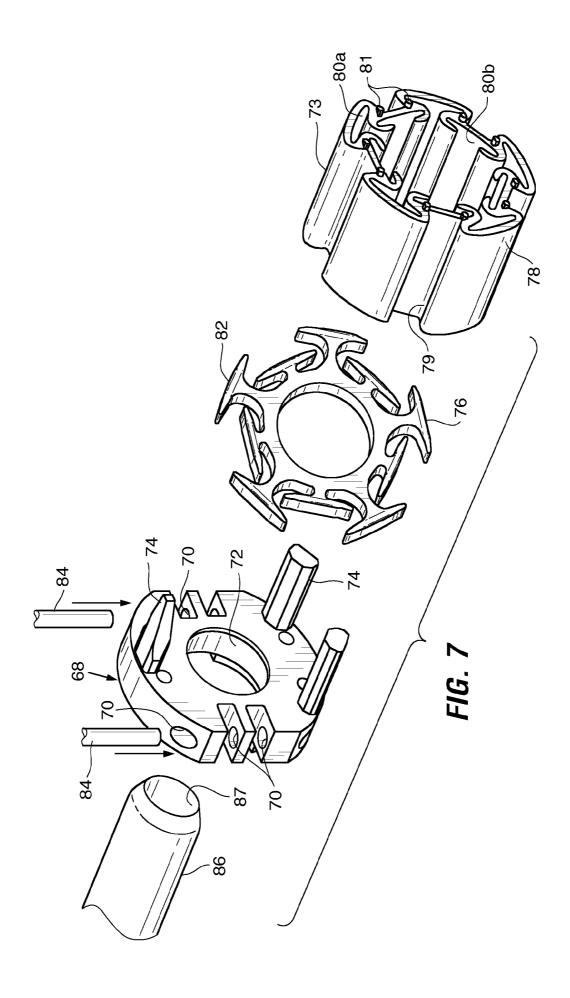

WO

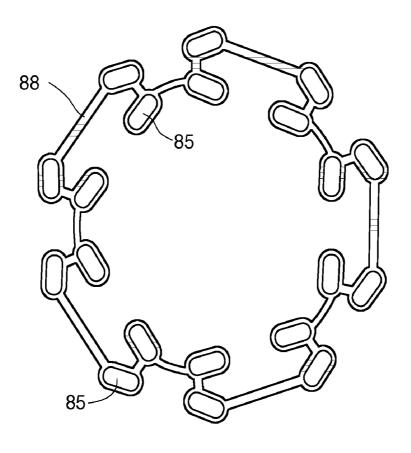
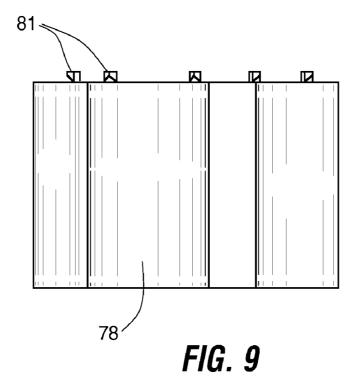
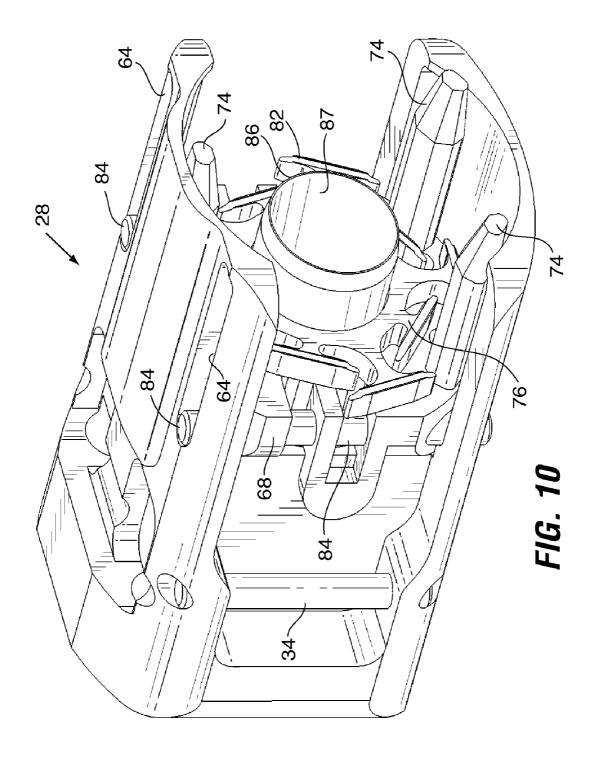
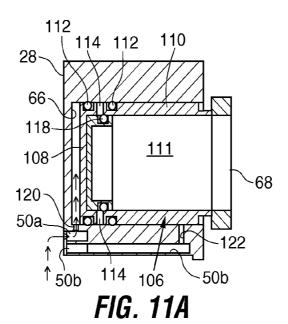

WO2008/141288 A1

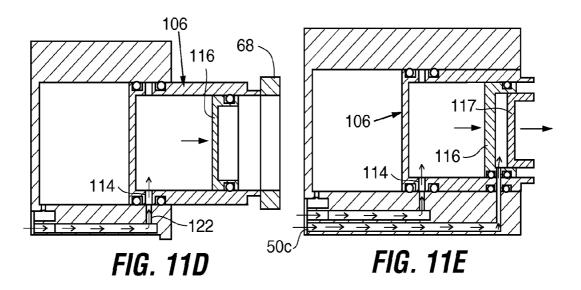

11/2008

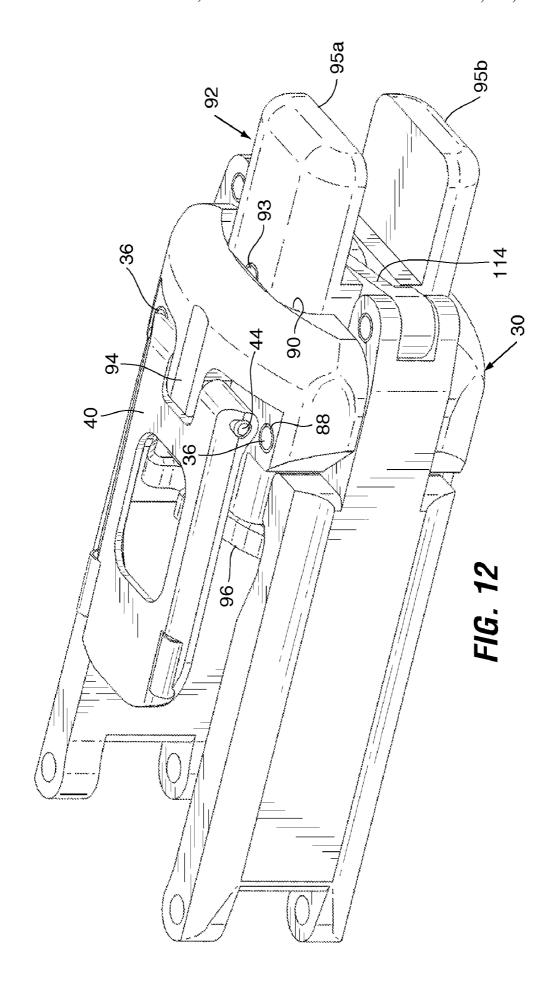


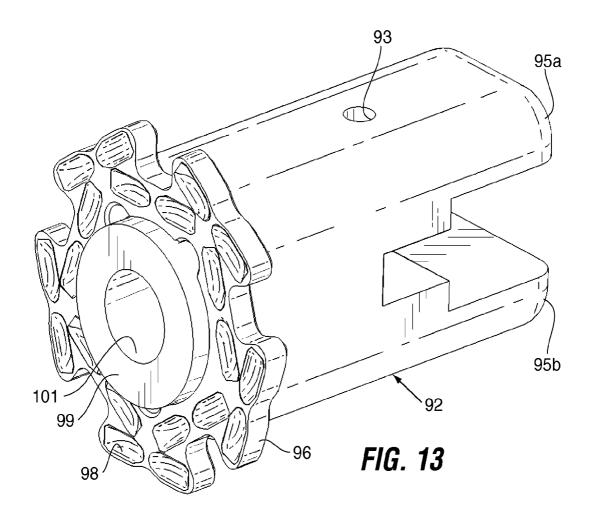


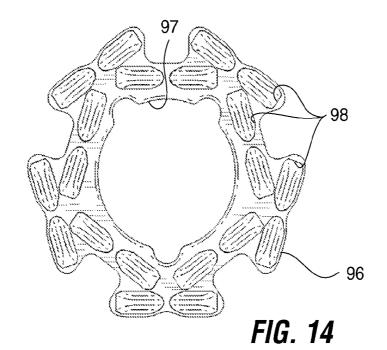


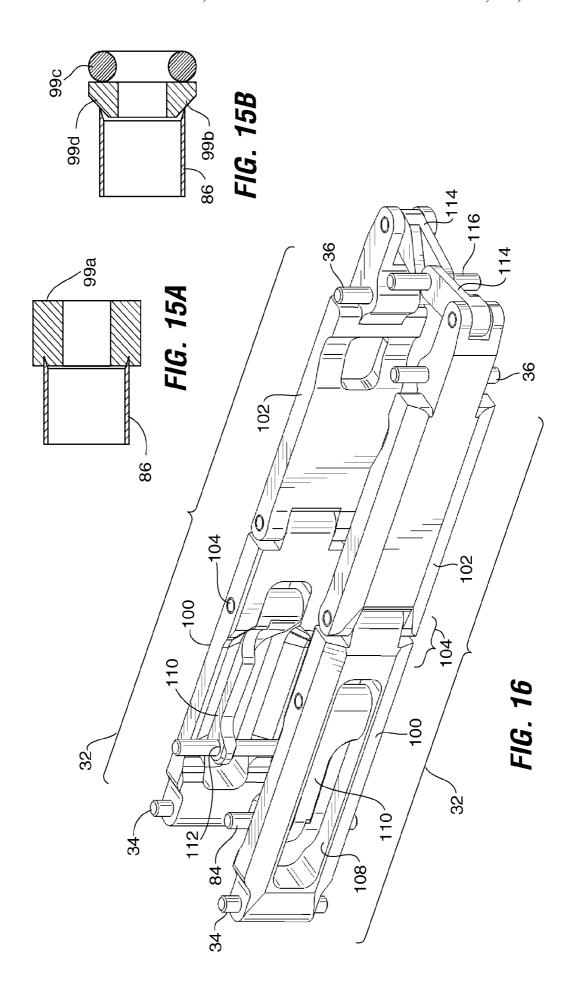





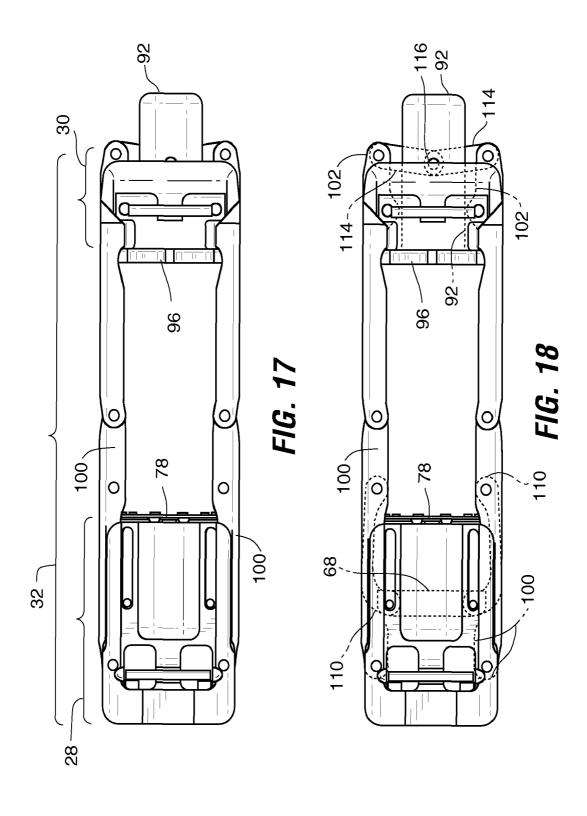

FIG. 8

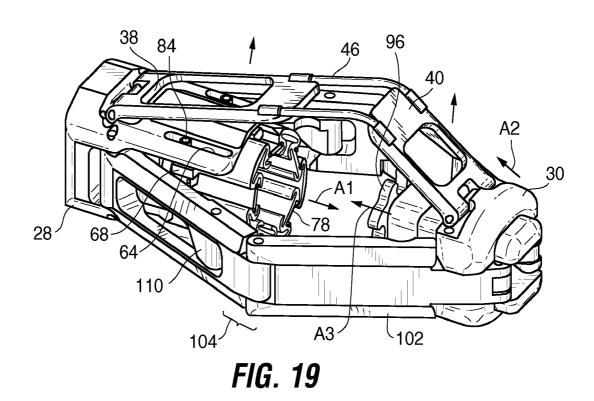


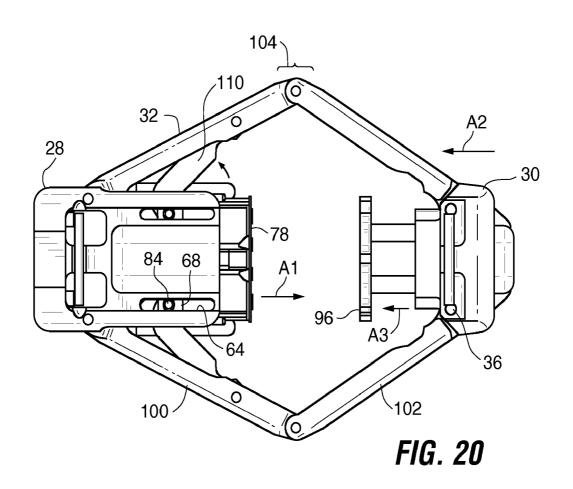


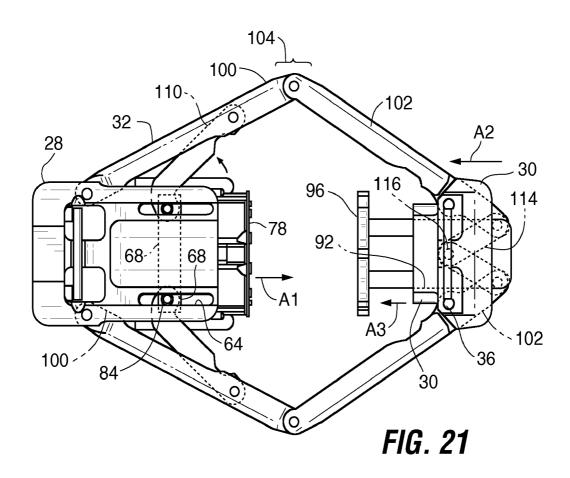


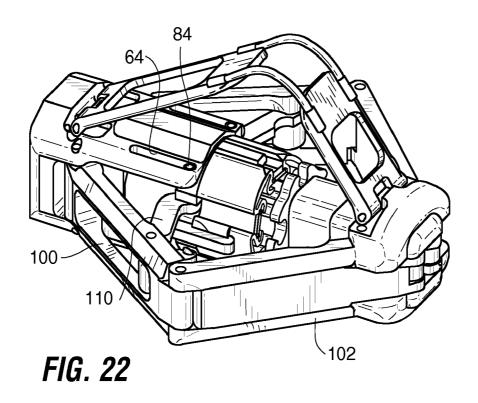

28) 66 114 106 106 68 68 --116 118 114 FIG. 11B FIG. 11C

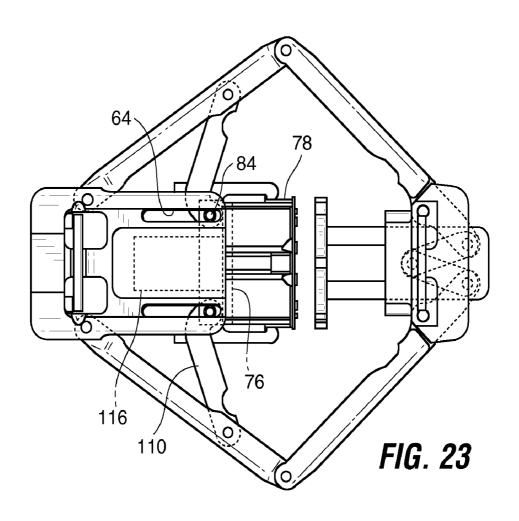


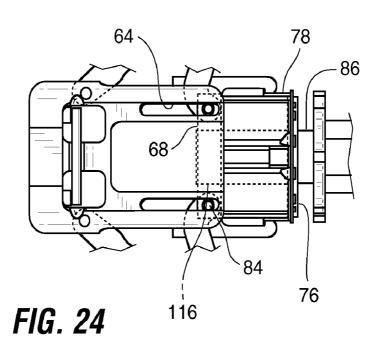


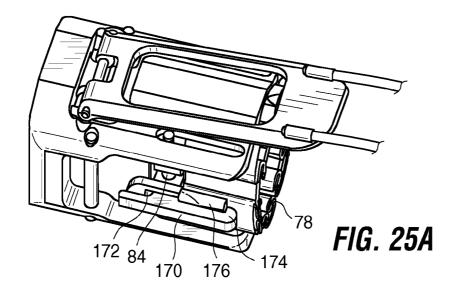


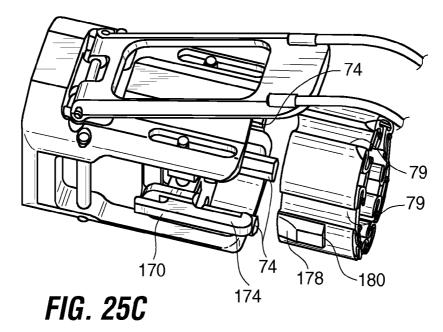


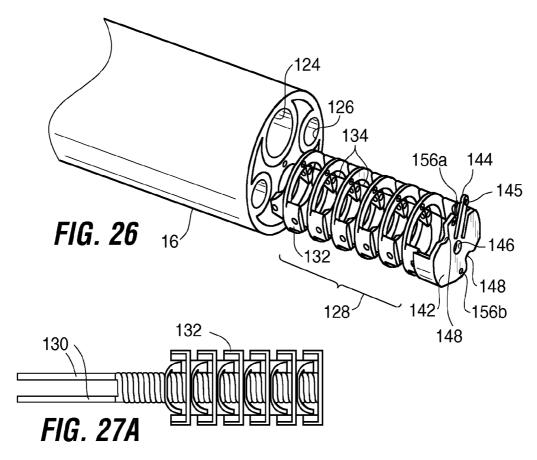


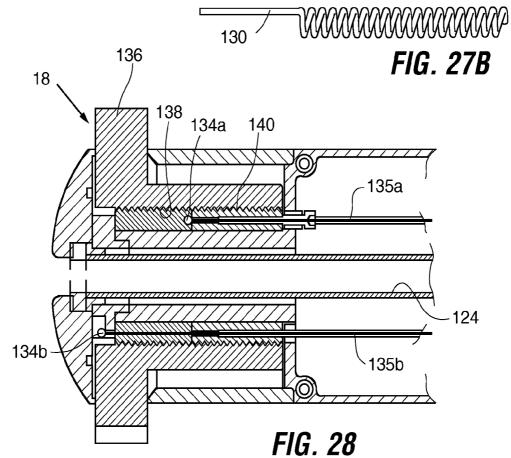


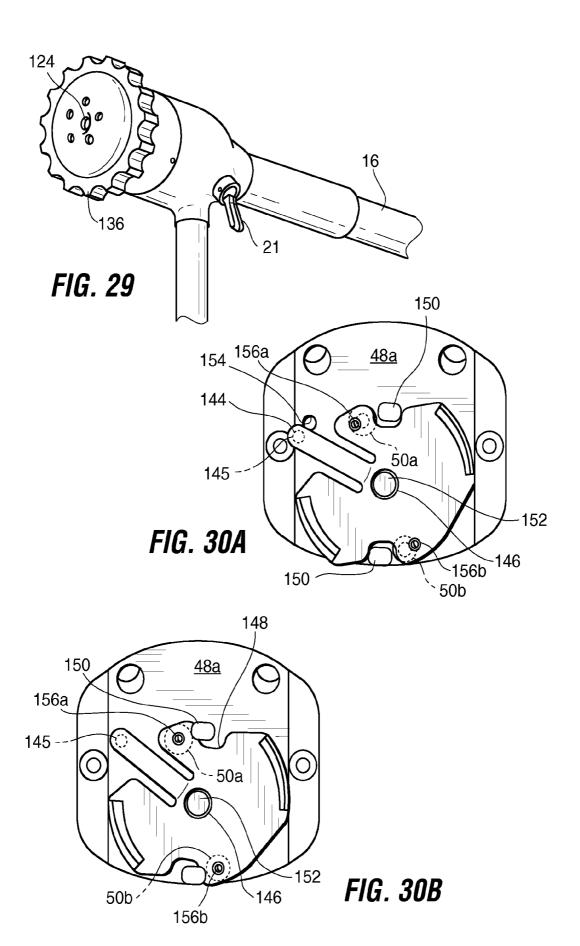


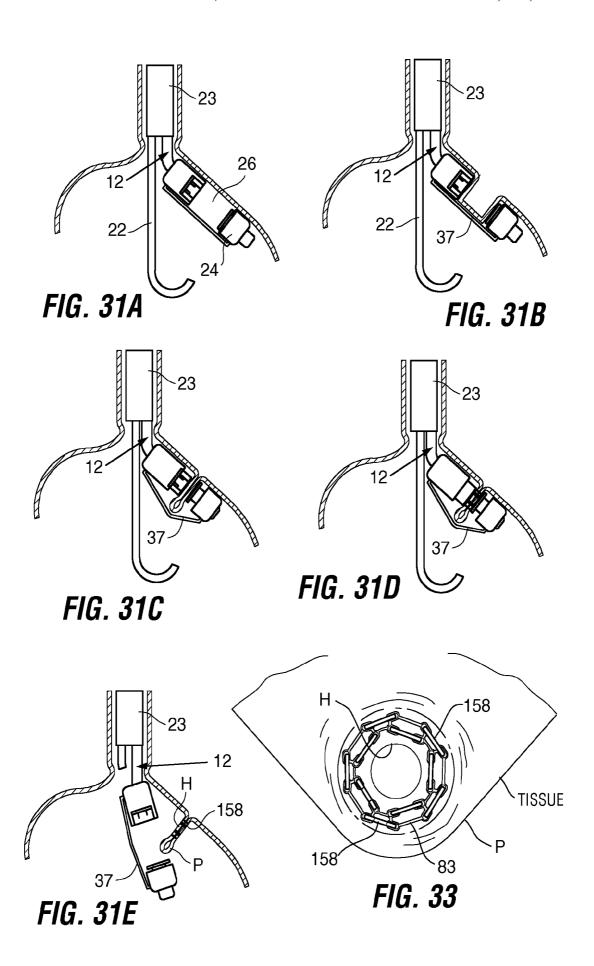


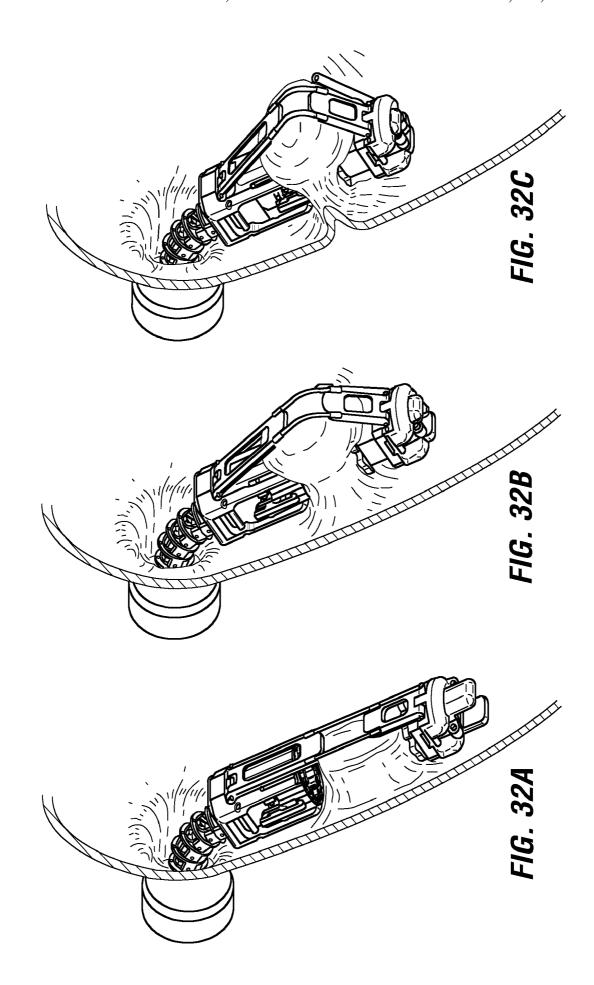


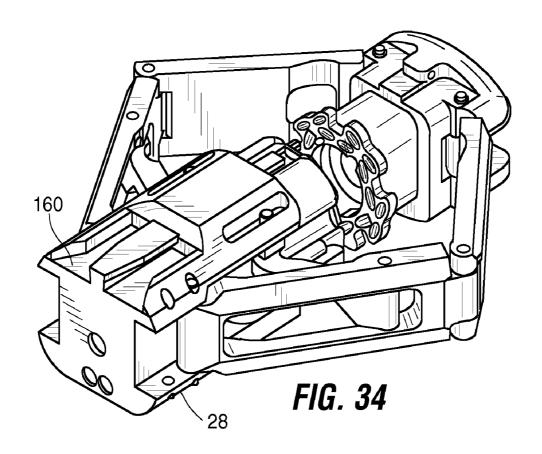


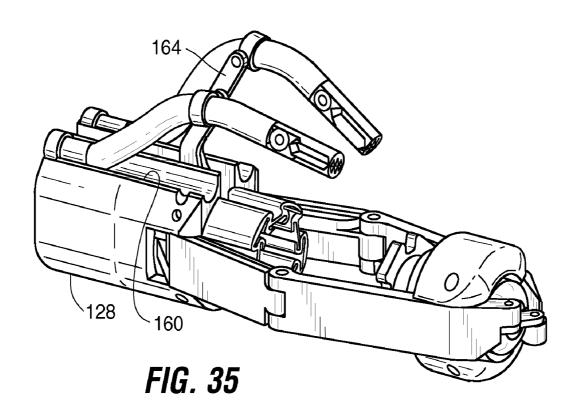












ENDOSCOPIC STAPLING DEVICES AND **METHODS**

PRIORITY

This application is a divisional of U.S. patent application Ser. No. 12/050,169, filed Mar. 18, 2008, pending, entitled ENDOSCOPIC STAPLING DEVICES AND METHODS, and is incorporated herein by reference.

FIELD OF THE INVENTION

The present invention relates generally to the field of systems and methods for performing endoscopic surgery, and specifically to systems and methods for endoscopic stapling 15 of tissue within body cavities.

BACKGROUND OF THE INVENTION

An anatomical view of a human stomach S and associated 20 features is shown in FIG. 1A. The esophagus E delivers food from the mouth to the proximal portion of the stomach S. The z-line or gastro-esophageal junction Z is the irregularlyshaped border between the thin tissue of the esophagus and the thicker tissue of the stomach wall. The gastro-esophageal 25 junction region G is the region encompassing the distal portion of the esophagus E, the z-line, and the proximal portion of the stomach S.

Stomach S includes a fundus F at its proximal end and an antrum A at its distal end. Antrum A feeds into the pylorus P 30 which attaches to the duodenum D, the proximal region of the small intestine. Within the pylorus P is a sphincter that prevents backflow of food from the duodenum D into the stomach. The middle region of the small intestine, positioned distally of the duodenum D, is the jejunum J.

FIG. 1B illustrates the tissue layers forming the stomach wall. The outermost layer is the serosal layer or "serosa" S and the innermost layer, lining the stomach interior, is the mucosal layer or "mucosa" MUC. The submucosa SM and the multi-layer muscularis M lie between the mucosa and the 40

There are a number of applications for endoscopic application of fasteners such as staples to tissue within a body cavity. Some of those applications involve forming tissue structures such as plications or folds in tissue of the body 45

Several prior applications, including International Application No. WO 2005/037152 having an international filing date of Oct. 8, 2004 and U.S. application Ser. No. 11/439,461, filed May 23, 2006 (both incorporated herein by reference) 50 describe methods according to which medical implants are coupled to tissue structures formed within the stomach. According to these applications, devices for inducing weight loss (e.g. by restricting and/or obstructing flow of food into volume) may be coupled to tissue tunnels or plications formed from stomach tissue.

For example, U.S. application Ser. No. 11/439,461 describes a restrictive and/or obstructive implant system for inducing weight loss. In one embodiment, flexible loops are 60 coupled to tissue plications formed in the gastroesophageal junction region of the stomach. An implant, such as a flow restrictive and/or obstructive implant, is passed through the loops 2 and thus retained in the stomach.

In other instances, tissue plications may themselves be 65 and stapling operations. sufficient to provide the necessary treatment. For example, the plications may be used to reduce stomach volume or form

a flow restriction within the stomach as disclosed in WO 2005/037152 and in Applicants' co-pending application Ser. No. 11/542,457, filed Oct. 3, 2006, U.S. Publication No. 2007-0219571, which is incorporated herein by reference.

Other types of implants may be coupled to such plications or other tissue structures for a variety of purposes. These implants include, but are not limited to prosthetic valves for the treatment of gastro-esophageal reflux disease, gastric stimulators, pH monitors and drug eluting devices that release drugs, biologics or cells into the stomach or elsewhere in the GI tract. Such drug eluting devices might include those which release leptin (a hormone which creates feelings of satiety), Ghrelin (a hormone which creates feelings of hunger), octreotide (which reduces Ghrelin levels and thus reduces hunger), Insulin, chemotherapeutic agents, natural biologics (e.g. growth factor, cytokines) which aid in post surgery trauma, ulcers, lacerations etc. Still other implants might be of a type which might provide a platform to which specific cell types can adhere, grow and provide biologically-active gene products to the GI tract, and/or a platform for radiation sources that can provide a local source of radiation for therapeutic purposes, or provide a platform whereby diagnostic ligands are immobilized and used to sample the GI tract for evidence of specific normal or pathological conditions, or provide an anchor point for imaging the GI tract via cameras and other image collecting devices.

The prior applications listed above, address the desirability of forming tissue plications, pockets or tunnels in a way that regions of serosal tissue (i.e. the tissue on the exterior surface of the stomach) are retained in contact with one another. Over time, adhesions formed between the opposed serosal layers create strong bonds that can facilitate retention of the plication/pocket/tissue over extended durations, despite the forces 35 imparted on them by stomach movement and implanted

Regardless of the application for which a plication is being formed, it is highly desirable to form that plication using steps carried out from within the stomach using instruments passed down the esophagus, rather than using more invasive surgical or laparoscopic methods. The present application describes endoscopic staplers which may be passed transorally into the stomach and used to form serosal-to-serosal plications in a stomach wall.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1A is a schematic illustration of a human stomach and a portion of the small intestine.

FIG. 1B is a cross-sectional perspective view of a portion of a stomach wall, illustrating the layers of tissue forming the wall.

FIG. 2 illustrates an endoscopic stapling system.

FIGS. 3A-3C are perspective views showing the stapler the stomach, and/or by occupying a portion of the stomach 55 head of the stapling system of FIG. 2 in three different positions.

> FIG. 4 is a perspective view of the stapler head, with the membrane removed.

FIG. 5 is a perspective view of the proximal end of the staple housing of the stapler head of FIG. 4.

FIG. 6 is a perspective view of the distal end of the staple housing of the stapler head of FIG. 4.

FIG. 7 is an exploded perspective view showing elements advanceable within the staple housing during compression

FIG. 8 is a plan view of a staple reinforcement device.

FIG. 9 is a side elevation view of a staple cartridge.

FIG. 10 is a perspective view of the staple housing similar to FIG. 6, but showing some of the elements of FIG. 7 within the housing.

FIGS. 11A-11D are a series of schematic representations of the hydraulic chamber and pistons, illustrating operation of an exemplary hydraulic system during tissue compression and stapling.

FIG. 11E is similar to FIG. 11D and shows an alternative piston configuration.

FIG. 12 is a perspective view of the anvil housing of the 10 stapler head of FIG. 4.

FIG. 13 is a perspective view of the anvil support.

FIG. 14 is a plan view of the anvil.

device and a first embodiment of a cutting board.

FIG. 15B is a cross-sectional side view of the cutting device and a second embodiment of a cutting board.

FIG. 16 is a perspective view of the hinged arm assemblies of the stapler head of FIG. 4.

FIG. 17 is a top plan view of the stapler head of FIG. 4 in the streamlined position for introduction into the body. Both the membrane and the membrane raiser are not shown for purposes of clarity.

FIG. 18 is similar to FIG. 17 and illustrates hidden features 25

FIG. 19 is a perspective view of the stapler head in an intermediate, partially expanded, position.

FIG. 20 is a plan view similar to FIG. 17 but showing the stapler head in the intermediate position.

FIG. 21 is similar to FIG. 20 and illustrates hidden features of FIG. 20.

FIG. 22 is a perspective view of the stapler head in a fully expanded, full compression position.

FIG. 23 is a plan view similar to FIG. 20 but showing the stapler head in the full compression position.

FIG. 24 is similar to FIG. 23 and illustrates hidden features of FIG. 24.

FIGS. 25A-25C are perspective views showing the staple $_{40}$ housing, cartridge and a portion of the membrane raiser. These figures illustrate the steps of detaching a staple cartridge from the staple housing.

FIG. 26 is a perspective view of the stapler of FIG. 2, with the staple head removed.

FIG. 27A is a plan view of the articulating section of the stapler of FIG. 2, showing the drive fluid lines.

FIG. 27B shows a drive fluid line having an alternate longitudinally expandable shape.

FIG. 28 is a cross-sectional side view of the handle of the 50 stapler of FIG. 2.

FIG. 29 is a perspective view of the handle of the stapler of

FIGS. 30A and 30B are plan views of the proximal face of the staple housing, showing a method for attaching the end 55 plate of the stapler handle to the staple housing.

FIGS. 31A-31E are a series of drawings schematically illustrating use of the system of FIG. 2 to form a plication in a stomach.

FIGS. 32A-32C are a series of perspective views illustrat- 60 ing use of the stapler of FIG. 2 to acquire, compress, and then staple stomach wall tissue to form a plication in the stomach. The membrane is not shown in these drawings.

FIG. 33 is a top plan view of a plication formed in body tissue

FIGS. 34 and 35 are perspective views of an alternative stapler head equipped to carry additional tools.

DETAILED DESCRIPTION OF THE DRAWINGS

The present application describes endoscopic fastener-applying devices which in preferred embodiments may be passed transorally into the stomach and used to plicate stom-

In the disclosed embodiments, tissue is drawn inwardly into a vacuum chamber, although tissue may be drawn inwardly using other components (e.g. graspers) that do not involve the use of a vacuum. When a portion the interior stomach wall is drawn inwardly, sections of serosal tissue on the exterior of the stomach are positioned facing one another. The disclosed fastener applying device allows the opposed sections of tissue to be moved into contact with one another, FIG. 15A is a cross-sectional side view of the cutting 15 and delivers fasteners that will hold the tissue sections together until at least such time as serosal bonds form between them. Each of these steps may be performed wholly from the inside of the stomach and thus can eliminate the need for any surgical or laparoscopic intervention. After one or 20 more plications is formed, medical devices (including, but not limited to any of the types listed above) may be coupled to the plication(s) for retention within the stomach.

The disclosed embodiments include an optional feature that forms a hole or cut in a plication using the fastenerapplying device. This hole or cut might be formed so that a portion of a medical implant may be passed through or linked to the hole/cut, or it may be formed so as to provoke a healing response that will contribute to the strength of the resulting tissue bond.

In the description of the embodiments given below, the fastener-applying devices are described as being staplers, and exemplary methods are given with respect to the formation of plications in stomach tissue. It should be understood, however, that the embodiments described herein include features 35 having equal applicability for applying other types of fasteners, and for applying staples or other fasteners for purposes other than formation of plications. The disclosed embodiments and methods will also find use in parts of the body outside the GI system. Additionally, although the disclosed embodiment features circular stapling and cutting of a concentric hole, modifications are conceivable in which linear stapling can be accomplished, as well as circular or linear stapling without cutting.

FIG. 2 illustrates one embodiment of a system 10 for tissue 45 stapling that is suitable for endoscopic use, as well as surgical or laparoscopic use if desired.

Generally speaking, system 10 includes a stapler 12 having a stapler head 14 positioned on a distal portion of a shaft 16. A handle 18 on the shaft 16 controls articulation of the stapler head 14 and actuation of the tissue acquisition, tissue compression, and stapling functions of the stapler head 14. Vacuum and fluid sources 20, 25 are fluidly coupled to the handle 18 for use in tissue acquisition, compression and stapling as discussed below. The vacuum source 20 may be the "house vacuum" accessible through a coupling on the wall of the operating room, or an auxiliary suction pump. The stapler may include a switch 21 allowing the user to control airflow between the vacuum source and stapler.

The fluid source 25 may be a single source of drive fluid (e.g. water, saline, oil, gas) or multiple sources, but in each case the fluid source preferably includes two actuators separately used to control flow into each of two hydraulic lines (one for tissue compression and one for stapling). An endoscope 22 insertable through a lumen in the shaft 16 permits visualization of the plication procedure. The system may optionally include an overtube, such an endoscopic guide tube 23, having a lumen for receiving the stapler 12.

Referring to FIG. 3A, a covering or membrane 24 encloses the stapler head 14 to form a vacuum chamber within the stapler head 14. The side exposed to the tissue to be plicated remains uncovered by the membrane 24 to allow tissue to be drawn into the chamber during use. For example, the membrane 24 may include a side opening 26 as shown in FIG. 3B. Membrane 24 is preferably formed of silicone, elastomeric material, or any other inelastic or elastic flexible or deformable biocompatible material capable of forming a vacuum chamber that will expand in volume to accommodate tissue 10 drawn into the chamber.

At least a portion of the membrane is at least partially transparent. In being at least partially transparent, the membrane is formed of a material, or includes sections of material, that will allow the user to see through the membrane well 15 enough to confirm (via endoscopic observation) that an appropriate volume of tissue has been acquired into the stapler head prior to staple application. The opening 26 may be surrounded by a reinforced section 27 formed of material that will strengthen the area around the opening 26. Reinforced section 27 may be formed of a thicker section of the membrane material, and/or a higher durometer material. Alternatively, reinforcing ribs or other structures or elements may be formed into or onto the membrane material, or embedded in the membrane material.

Stapler Head

The stapler head 14 is designed to have a minimum profile during insertion to the plication site, and to then transform into a much larger profile device having a large internal volume. For example, in one embodiment the vacuum chamber 30 might have an initial internal volume of 0.2 cubic inches, and an expanded volume of 0.6 cubic inches (i.e. the internal chamber volume after subtracting the volume occupied by the stapler head components positioned within the vacuum chamber). This large internal volume allows a large volume of 35 tissue to be drawn into the vacuum chamber and stapled. In this way, the stapler head creates a large plication without requiring invasive techniques for insertion. The unique features of the stapler head allow in situ volumetric expansion of the stapler head using a minimum of motion and force input. 40

Features of the stapler head are shown in FIGS. **4-10**. For clarity, the membrane is not shown in these figures. Referring to FIG. **4**, stapler head **14** generally includes a first member comprising a proximal staple housing **28**, a second member comprising a distal anvil housing **30**, and at least one elongate 45 member but preferably a pair of hinged arm assemblies **32**.

The staple housing and anvil housing are arranged to allow tissue to be compressed between contact surfaces on each of the staple housing and the anvil housing. In the disclosed embodiment, the contact surfaces are on a staple holding 50 portion of the staple housing and an anvil on the anvil housing.

The arm assemblies 32 extend between the staple housing 28 and anvil housing 30 on opposite sides of the stapler head 14. Proximal and distal pins 34, 36 pivotally couple each arm 55 assembly 32 to the staple housing 28 and the anvil housing 30. An expansion member comprising a membrane raiser 37 also extends between the staple housing 28 and the anvil housing 30. Although the membrane 24 is not shown in FIG. 4, it should be understood that the membrane raiser 37 is positioned opposite the opening 26 (FIG. 3B) in the membrane. In the illustrated embodiment, membrane raiser 37 includes a link 38 pivotally mounted to the staple housing by a pin 42, a corresponding link 40 pivotally mounted to the anvil housing by pin 44, and spring wires 46 coupling the links 38, 40 to one 65 another.

Staple Housing

6

Turning to a more detailed discussion of the stapler head components, the staple housing 28 can be seen separated from other components in FIGS. 5 and 6. As shown in FIG. 5, proximal face 48 of the staple housing includes input ports 50a, 50b through which fluid is directed for hydraulic actuation of the tissue compression, stapling, and optional cutting operations of the stapler head. Seals 51 surround the ports 50a, 50b to minimize fluid leakage.

Vacuum ports 52 are fluidly coupled to a vacuum source 20 (FIG. 2) that is selectively activated to create negative pressure in the vacuum chamber for tissue acquisition. The vacuum ports 52 are connected to the vacuum source 20 by flexible tubing (not shown) in the stapler shaft 16 (FIG. 2). Mounting holes 54 are used to mount the stapler head 14 to the shaft 16

The staple housing 28 includes upper and lower sections 58a, 58b above and below open side sections 56. The upper section 58a includes a recess 60 within which the pivot pin 42 for link 38 (FIG. 4) is mounted. As best shown in FIG. 6, bores 62 are positioned in the upper and lower sections 58a, 58b to receive pins 34 (FIG. 4) that serve as the proximal pivot points for arm assemblies 32. Guide slots 64 extend longitudinally through the upper and lower sections 58a, 58b.

Referring to FIG. **6**, a hydraulic chamber **66** is disposed within the staple housing **28**. Within the hydraulic chamber **66** (FIG. **6**) is a dedicated hydraulic circuit for driving the tissue compression and stapling functions of the stapler. Chamber **66** is fluidly coupled to the fluid input ports **50***a*, **50***b* (FIG. **5**). As will be discussed in detail in connection with FIGS. **11A-11D**, fluid driven into the hydraulic chamber **66** via input ports **50***a*, **50***b* sequentially advances a system of hydraulic pistons (not shown) that act on other components to compress the tissue, and that drive the staples and cutting element through the compressed tissue.

FIG. 7 illustrates components of the stapler head that are driven by the hydraulic system for compression, stapling, and cutting. For clarity, these components are shown separated from the staple housing and from each other. In this discussion, the components that are driven by the hydraulic system will be described. The hydraulic system itself is described in a later section in connection with FIGS. 11A-11D.

In particular, FIG. 7 illustrates a drive member which takes the form of a disk 68 in the staple housing. In the assembled housing, disk 68 is positioned such that it will be pushed distally by a hydraulic compression piston (not shown). The drive member is coupled to the arm assemblies 32, anvil housing, and staple housing so that advancing the drive member distally effects tissue compression by bringing the contact surfaces of the staple housing and anvil housing relatively towards one another.

Disk 68 includes mounting bores 70, a central opening 72, and alignment posts 74. Referring briefly to FIG. 10, in the assembled stapler head, disk 68 is coupled to the stapler housing 28 using pins 84 that extend through the housing's guide slots 64 and through mounting bores 70 in the disk 68.

A portion of the staple housing 28 contains staples to be fired into the tissue. The staples are contained within a staple holder on the staple housing. The staple holder may have a number of different configurations. For example, it may be an integral portion of the staple housing, or a separate part mounted or attached to the staple housing, and/or it may be moveable relative to the body of the staple housing to effect tissue compression prior to stapling. In any of these examples, the staple holder may be a removeable/replaceable cartridge, and/or it may be refillable by inserting additional staples into it. In other embodiments, the staple holder may be neither replaceable nor refillable.

In the disclosed embodiment, the staple holder is a removeable staple cartridge 78 that can be replaced with another cartridge after staple filing. In this embodiment, the staple cartridge is moveable relative to the body of the staple housing to compress the tissue prior to staple firing.

Referring again to FIG. 7, staple cartridge 78 is positionable within the staple housing, distal to the disk 68, such that distal advancement of the disk by the compression piston pushes the cartridge distally to compress tissue disposed between the cartridge and anvil. Grooves 79 on the exterior of the cartridge slide over corresponding ones of the alignment posts 74 during insertion of the cartridge into the stapler head. FIG. 10 shows the alignment posts prior to loading of a cartridge into the staple housing. As shown, the alignment cartridge over the posts.

Again referring to FIG. 7, cartridge 78 includes a number of staple locations 80, each housing a staple. The staple cartridge is equipped with bosses 81 to retain a staple line reinforcement device 83 of the type shown in FIG. 8 and disclosed 20 in detail in commonly-owned U.S. application Ser. No. 11/542,457, entitled **ENDOSCOPIC PLICATION** DEVICES AND METHODS, filed Oct. 3, 2006, and published Sep. 20, 2007 as US 2007-0219571. To summarize briefly, this type of reinforcement device 83 may be a ring or 25 other element positionable against the distal face of the staple cartridge. When the ring is placed on the cartridge, openings 85 in the ring align with prongs of some of the staples in the cartridge. When staples are driven from the cartridge, these prongs pass through associated ones of the openings 85 and 30 capture the ring 83 against the adjacent body tissue.

Referring to FIGS. 7 and 9, a number of undercut bosses 81 on the anvil-facing side of the cartridge may be used to lock the reinforcement device 83 in place on the face of the staple cartridge. Other positive shapes, such as mushrooms, hooks, 35 and tilted bosses could be used to accomplish the same end. Negative shapes, such as pockets or grooves formed into the surface of the cartridge, may also be employed to engage corresponding features on the reinforcement device 83. As another alternative, the reinforcement device may be held in 40 place on the cartridge using adhesives.

A cutter element 86 extends through the central opening 72 (FIG. 7) of the disk 68. The cutter element is shown as a tubular punch having a sharpened wall and a lumen 87, but may be provided in alternative forms. A staple pusher 76 is 45 mounted to the cutter element, distally of the disk as can be seen in the assembled view of FIG. 10. Staple pusher 76 includes pusher elements 82 proportioned to slide into the cartridge's staple locations 80 as the staple pusher 76 is advanced into the staple cartridge **78**, thus driving the staples 50 from the cartridge. A hydraulically-driven staple piston (not shown in FIG. 7) in the hydraulic chamber 66 is coupled to the cutter element 86 such that advancement of the stapler piston advances the staple pusher 76 and cutter element 86 in a distal

Fluid Drive System

The fluid drive system used to actuate compression, stapling and cutting may be configured in various ways. The following paragraphs describe one exemplary configuration for the fluid drive system, which in this embodiment is a 60 hydraulic system. FIGS. 11A and 11B schematically show the fluid flow in the hydraulic chamber 66 of the staple housing 28 during both compression and stapling stages of actuation. Referring to FIG. 11A, compression piston 106 is disposed within hydraulic chamber 66. Disk 68 (also shown in 65 FIGS. 7 and 10) is positioned in contact with or slightly distal to piston 106. Compression piston 106 is generally cup-

shaped, having a rear wall 108 and a side wall 110 enclosing an interior 111. O-ring seals 112 are spaced-apart on a proximal portion of the side wall 110. Channels 114 are formed through the side wall 110, between the o-ring seals 112.

A second piston, referred to as the staple piston 116, is positioned in the interior 111 of compression piston 106, against the rear wall 108. Although not shown in FIGS. 11A-11D, cutting element 86 (FIG. 7), with the staple pusher 76 thereon, is positioned in contact with or slightly distal to the staple piston 116. An o-ring seal 118 surrounds a portion of the staple piston 116 that is distal to the channels 114 in the compression piston.

A first fluid channel 120 extends from fluid port 50a in the stapler housing 28 to a proximal section of the hydraulic posts 74 may have tapered ends to facilitate loading of the 15 chamber 66. A second fluid channel 122 extends from fluid port 50b in the stapler housing to a more distal section of the hydraulic chamber 66. Fluid flow from port 50a and fluid channel 120 against the compression piston cylinder is shown in FIG. 11A. Fluid pressure within the hydraulic chamber 66 advances the compression piston 106, with the stapler piston 116 within in it, in a distal direction. FIG. 11B shows the compression piston 106 approaching the end of its travel. Once the compression piston reaches the end of its travel as shown in FIG. 11C, channel 114 in the compression piston 106 aligns with channel 122 in the housing, allowing fluid introduced through fluid port 50b to enter the interior of the compression piston 106 via channel 122. The fluid entering the interior of the compression piston drives the staple piston distally as shown in FIG. 11D. In an alternative embodiment shown in FIG. 11E, a third piston 117 is provided for separately driving the cutting element 86. In this embodiment, fluid introduced into a third drive fluid port 50c causes advancement of the third piston 117. The pistons 106, 116 and 117 and associated fluid paths may be arranged so that fluid cannot enter the interior of the stapler piston to advance the cutting piston 117 until compression piston 106 has traveled to the tissue-compression position and stapler piston 116 has in turn traveled to the stapling position.

The anvil housing (identified by numeral 30 in FIG. 4) will next be described with reference to FIG. 12. The anvil housing 30 includes mounting bores 88 for receiving pivot pins 36 at the distal end of the hinged arm assemblies 32. The upper section of the anvil housing 30 includes a section 94 through which the pivot pin 44 for link 40 (FIG. 4) is mounted.

A central bore 90 extends longitudinally through the anvil housing 30. An anvil support 92 is longitudinally slidable within the bore. Both the bore 90 and the anvil support 92 are preferably formed to have non-circular cross-sections (such as the illustrated rectangular cross-section) with flat bearing surfaces to prevent rotation of the piston within the bore.

FIG. 13 shows the anvil support 92 separated from the anvil housing 30. The distal portion of the anvil support 92 is split into upper and lower plates 95a, b. Plate 95a has a bore 93 axially aligned with a similar bore in plate 95b. The proximal portion of the anvil support 92 carries the anvil 96. As shown in FIG. 14, anvil 96 includes a plurality of indentations 98 positioned such when staples are driven from the staple cartridge, each staple leg engages one of the indentations, which causes the staple leg to fold. A central opening 97 extends through the anvil 96 and is contiguous with a lumen in the anvil support 92.

The anvil 96 and the staple cartridge 78 (FIG. 7) are the two parts of the stapler head which exert force on the tissue to be stapled. As shown in FIGS. 9 and 14, the preferred anvil and cartridge are designed to use a minimal amount of material surrounding the indentations 98 of the anvil 96 and the staple locations 80 of the cartridge 78—so that the amount of anvil/

cartridge surface area contacting the tissue is as small as possible. When subjected to a constant force, a smaller footprint will damage less tissue than would a larger footprint, since a smaller area of tissue is squeezed between the anvil and cartridge. However, the tissue that does get squeezed 5 experiences more pressure from the given force because the force is distributed over a smaller area. In other words, the minimized footprint creates more pressure on the tissue with less force. This is advantageous from a mechanical standpoint because the stapler head need not supply or withstand as 10 much force as would be needed with a larger-footprint cartridge and anvil.

Referring to FIG. 7, in the illustrated embodiments, the staple cartridge 78 has an outer wall that tracks the contours of the staples housed within it, thus forming a number of pedals 15 73 surrounding the outer staple positions or slots 80a, with the grooves 79 disposed between the pedals, adjacent to the inner staple positions 80b. Rather than providing each staple position to be fully surrounded by cartridge material, the staple positions 80a, 80b preferably each include a back wall 71a 20 and a retaining element attached to the wall and positioned to retain a staple between the retaining element and the back wall. In FIG. 7, the retaining element comprises a pair of wings 71b that curve inwardly from the back wall 71 to define a slot that is sufficiently bounded to retain a staple within the 25 staple position, but that is preferably not bounded around its full circumference. The anvil has a similar pedal arrangement, as shown in FIG. 13.

Referring again to FIG. 13, a plate 99 is positioned on the anvil 96 such that the distally-advancing cutting element 86 30 will advance into contact with the plate 99 during tissue cutting. In one embodiment, the plate 99 may be seated within the opening 97 in the anvil. The plate 99, which will also be referred to as the "cutting board", has a hole 101 in it which relieves the pressure of the captured tissue and prevents 35 hydraulic locking, a condition in which the punch and plate create a closed volume. If it is desired to move the cutting element 86 after contact is made, pressure will increase inside this closed volume and it will resist further motion. This may prevent or adversely affect tissue cutting.

The cutting board is preferably designed so as to not serve as a hard stop against advancement of the cutting element **86**. If the cutting element **86** is stopped by the cutting board, the stapling piston will also be stopped and incomplete staple formation may result. Therefore, it is preferred that the cutting element **86** is allowed to penetrate or displace the cutting board during and after the tissue is cut.

FIGS. 15A and 15B illustrate the cutting element 86 advanced into contact with two different embodiments of cutting boards. In the FIG. 15A embodiment, the material of 50 cutting board 99a is a relatively soft material, such as an elastomeric silicone, which is cut by the advancing cutting element as shown. This material allows the sharp distal end of the cutting element to move into the cutting board during the final stage of staple formation. In the FIG. 15B embodiment, 55 the cutting board 99b can be made of a harder material positioned with a compressible object such as an elastomeric spring 99c behind it. In the figure, this spring is an o-ring. Advancement of the cutting element 86 against the cutting board 99b causes the cutting board to be displaced distally 60 against the spring 99c. The advancing cutting element 86 experiences increasing resistance as the o-ring is compressed. Other spring shapes and materials, such as coiled wire, spring washers and leaf springs can be used to achieve the same result. The chamfer 99d on the surface of the cutting board 65 99b may help to align the cutting element 86 as it is forced into contact with the cutting board.

10

Arm Assemblies

Following is a discussion of the features of the arm assemblies 32. FIG. 16 shows the arm assemblies 32 separated from the other elements of the stapler head. In general, each arm assembly has a first arm section pivotally coupled to the staple housing and a second arm section pivotally coupled between the first arm section and the anvil housing. While not present in the illustrated embodiment, additional arm sections may be positioned between the first and second arm sections.

Each arm assembly includes a proximal arm 100 and a distal arm 102 joined to one another to form a hinge 104. Each of the proximal arms 100 has a longitudinal cutout 108 and a spreader arm 110 pivotally mounted within the cutout 108. The distal end of each spreader arm 110 includes a bore 112. Pin 84 is positioned within the bore 112. As disclosed in connection with FIG. 10, this pin 84 extends through the disk 68 and has ends that ride within the slots 64 (FIG. 6) on the lower and upper sections of the stapler housing. Longitudinal movement of the disk 68 within the stapler housing will thus advance the pins 84 within their corresponding slots 64, causing the spreader arms 110 to pivot relative to the pins 84 and to thus drive the arm assemblies 32 outwardly. Additional specifics concerning movement of the arm assemblies 32 is set forth in the section entitled Stapler Head Operation.

Distal arms 102 of the arm assemblies include pins 36 which, as discussed, are pivotally mounted to the anvil housing 30 (FIG. 4). A pair of drive links 114 are provided, each of which has a first end pivotally attached to a corresponding one the distal arms 102 and a second end pivotally coupled to a common pin 116. In the assembled stapler head, pin 116 is positioned in the bores 93 of the upper and lower plates 95a, 95b of the anvil support (see plates 95a, b in FIG. 12). As detailed in the Stapler Head Operation section below, when the spreader arms 110 drove the arm assemblies 32 outwardly, drive links 114 act on the pin 116 to push the anvil support in a proximal direction, causing the anvil to advance proximally towards the staple cartridge.

Stapler Head Operation

The following discussion centers on the manner in which
the arm assemblies function to expand the vacuum chamber
and to compress tissue that has been drawn into the chamber
using suction. As an initial step preceding chamber expansion, the stapler head is positioned with the opening 26 in the
membrane 24 in contact with tissue at the location at which
plication creation is desired. Vacuum source 20 (FIG. 2) is
activated to apply vacuum to the inside of the vacuum chamber defined by the membrane. Tissue in contact with the
opening 26 (FIG. 3B) will be drawn into the vacuum chamber
between the staple housing 28 and the anvil housing 30. After
the tissue is drawn in, the stapler profile is changed, expanding the volume of the chamber within the membrane.

The streamlined position of the stapler head 28 prior to expansion is shown in FIGS. 4, 17 and 18. In particular, the hinged arm assemblies 32 and membrane raisers 37 are in generally straight orientations. The proximal arms 100 serve as the drive arms for chamber expansion and tissue compression. Motion of these arms is initiated when water under pressure is forced into the hydraulic circuit of the staple housing. Referring to FIG. 19, the fluid pressure advances disk 68 (by action of the compression piston 106, not shown in FIG. 19). Disk 68 in turn pushes the staple cartridge 78 toward the anvil 96 as shown in FIGS. 19-21, causing the staple cartridge 78 to extend further from the staple housing 28.

Both the disk 68 and the arm spreaders 110 are coupled to the pins 84. For this reason, the longitudinal movement of the disk 68 within the stapler housing 28 will carry the pins 84

distally within their corresponding slots 64. The arm spreaders 110 will consequently pivot relative to the pins 84, driving the proximal arms 100 outwardly. Outward movement of proximal arms 100 at hinge 104 causes the distal arms 102 to also pivot outwardly at hinge 104, forming an angle between the proximal and distal arms 100, 102. Naturally, formation of the angle between the arms 100, 102 shortens the effective length between the remote ends of the arms, causing the distal pins 36 of the distal arms 102 to carry the anvil housing 30 towards the staple cartridge. The pivoting movement of the distal arms 102 further causes drive links 114 to act on pin 116 to push the anvil support in a proximal direction. This moves the anvil support relative to the anvil housing in a proximal direction at the same time the anvil housing is also moving proximally.

In essence, one motion, that of the hydraulically driven compression piston, creates at least three motions, illustrated by arrows A1, A2 and A3 in FIGS. 19-21. These three motions include: the staple cartridge 78 moving relative to the staple 20 housing in a direction towards the anvil 96 (arrow A1), the anvil housing 30 moving toward the staple housing 28 (arrow A2) and the anvil 96 itself moving relative to the anvil housing 30 in a direction towards the cartridge (arrow A3). This compound motion of the anvil toward the staple cartridge enables a small displacement of the compression piston to quickly compress tissue in the grip of stapler. The multiplication of motion also enhances force transmission between the two housings by keeping the angle at hinge 104, between the proximal (driven) arm and the distal (drive) arm, as large as 30 possible.

The relative motion of the two housings 28, 30 toward each other also drives upward links 38, 40 and their interconnecting spring wires 46 on the top of the stapler head 14. Together, the links and spring wires raise the top of the membrane, 35 creating more volume to accommodate expansion of the tissue during compression.

Compression of the tissue is halted when the pins **84** traveling in slots **64** in the staple housing **28** reach the limit of travel, as shown in FIGS. **22-24**. Thus, the slots and associated components are dimensioned to set the desired separation distance between the tissue contact surfaces on the stapler side and the anvil side of the stapler head. Exemplary separation distances for use in stomach wall plications might include approximately 0.06-0.07 inches (e.g. for use with 45 staples having legs of 5.5 mm length) or 0.109 inches for 6.5 mm leg length staples. Application of additional pressure into the hydraulic circuit will not compress the tissue any further.

Moreover, because of the piston arrangement, the stapling function is effectively locked out until tissue compression is 50 complete. With this arrangement, fluid introduced via the fluid port 50*b* (FIG. 11A) into the staple fluid channel 122 prior to completion of tissue compression will leak until the two O-rings 112 of the compression piston 106 are straddling the inlet 114. This design prevents premature staple firing.

At the fully compressed position, the arm spreaders 110 are nearly perpendicular to the longitudinal centerline of the stapler head. Once tissue is compressed between cartridge 78 and anvil 96, the tissue is ready for stapling.

Stapling is initiated by introducing hydraulic fluid through 60 port 50b (FIG. 5). The staple piston advances, pushing cutting element 86 (FIGS. 7 and 10) towards the anvil 96. Because the staple pusher 76 is mounted to the cutter 86, this action carries the staple pusher 76 through the cartridge 78 where it simultaneously pushes all staples through the tissue. Staple piston 65 travel is limited by internal stops, and is preset to yield optimal staple formation.

12

During compression, as the angle at the hinge 104 of arm assemblies 32 reaches its minimum, the force required to resist separation of the staple and anvil housings increases. These forces increase further when the forces of staple crushing are exerted on the anvil by the staple piston. To compensate, the arm spreaders 110 serve as displacement struts to channel at least a portion of these forces into the disk 68. These forces, if not reacted by the pusher disk, would pull in the arms 100, 102 and potentially release the compression on the tissue, causing incomplete staple formation or tissue cutting. In this way, a truss-like structure is created for force displacement.

the anvil support relative to the anvil housing in a proximal direction at the same time the anvil housing is also moving proximally.

In essence, one motion, that of the hydraulically driven compression piston, creates at least three motions, illustrated by arrows A1, A2 and A3 in FIGS. 19-21. These three motions

When staples have been formed, staple pressure is released and a spring (not shown) returns the staple pusher 72 to its base position. Releasing fluid pressure will allow the deflected spring wires 46 on membrane raiser 37 to return the staple head to its minimum profile configuration and release the plication from the stapler. Once outside the patient, the used staple cartridge can be ejected and a new one installed.

FIGS. 25A-25C illustrate one method for retaining a removable staple cartridge 78 within the staple housing. The cartridge is spring-loaded into the staple housing and retained by two latches 170 (one visible), each pivotable relative to a fulcrum 172. As shown, the fulcrum 172 may be coupled to the disk 68 by pin 84. Each latch 170 includes a catch 174 which engages a corresponding catch 176 on the cartridge. The latch 170 is preferably spring biased to urge the catch 174 inwardly towards the cartridge.

Depressing the proximal end 175 of each latch 170 as shown by arrow P in FIG. 25B pivots the latch against this bias, causing ejection of the staple cartridge. A new staple cartridge may then be positioned with its grooves 79 aligned with alignment posts 74 as shown in FIG. 25C and then pushed towards the staple housing. As the new cartridge slides into position, catch 174 rides over the tapered proximal portion 178 of the catch 176. Once catch 174 passes over the distal end 180 of the catch 176, it drops inwardly towards the cartridge due to its spring bias, thus engaging the cartridge. When the cartridge is properly seated, a click will be felt or heard as the latches engage the new cartridge.

Stapler Shaft and Handle

Referring again to FIG. 2, the stapler shaft 16 connecting the handle 18 and the stapler head 14 is flexible enough to conform to the curvature of the upper digestive tract, yet maintains the ability to transmit enough torque to rotate the stapler head. The shaft is formed with sufficient stiffness to allow it to be pushed down esophageal guide tube 23. Suitable materials include

FIG. 26 shows a distal portion of the shaft 16, with the stapler head removed from the shaft. As shown, shaft 16 includes an endoscope lumen 124 through which an endoscope is advanced to allow visualization of a stapling operation. Side lumens 126 may also be provided for receiving other instruments useful during the procedure.

An articulating section 128 is positioned at the distal end of the shaft 16, between the shaft 16 and the stapler head 14 so as to allow the stapler head to be articulated relative to the shaft. Tubing coupled to the vacuum source and the source of hydraulic fluid extends from the handle and through the shaft 16 and the articulating section 128.

FIG. 27A shows one configuration that may be used for the hydraulic fluid lines 130. During use, the hydraulic fluid lines are subjected to significant deflection and elongation in the articulating section of the stapler. They are also subjected at times to fluid pressure which may be in excess of 1000 psi. Typically, hydraulic lines in industrial applications are flexible and have a working loop of extra tubing that accommo-

dates length changes during use. The illustrated configuration for the hydraulic lines is a lower profile solution particularly suitable for an endoscopic device having space constraints. A preferred hydraulic line is a tube 130 having a portion that is shaped into a longitudinally expandable shape so that it can accommodate effective length changes during bending. The longitudinally expandable portion of the tube is preferably disposed within the articulating section 128 of the stapler 12. In a preferred design, the longitudinally expandable shape is a coil shape as shown in FIG. 27A. In alternate embodiments, 10 the tube 130 may be formed into other longitudinally expandable shapes, such as regular or irregular undulating shapes (FIG. 27B).

The preferred material for the tubes 130 is stainless steel hypotube, although other materials may instead be used. In 15 the preferred stapler configuration, two drive fluid lines are provided, one for actuating tissue compression, and the other for staple application (and cutting when used). In the present embodiment, the tubes are coiled together as shown in FIG. 27A. In alternate embodiments, two or more coiled tubes may 20 be nested one inside the other. As the articulating section bends, it forces the coiled tubes 130 to bend and to change length in response to bending. The coiled tubes behave just as coiled wires would during these motions and are thus able to change length, deflect, and follow the contour of the articulating section without compromising flow through the lumens of the tubes or imparting undue stress to the connections at either end of the hydraulic system.

The longitudinally expandable shapes for the fluid lines may be suitable for use in allowing delivery of fluid to the 30 operative ends of other types of articulating medical devices, such as catheters or endoscopic devices for delivering therapeutic agents or irrigation fluids past an articulating or bendable section of the device.

Referring again to FIG. 26, articulating section 128 is 35 comprised of a spine formed of a plurality of links 132 strung over a pair of pull cables 134 (only one shown in FIG. 26). In one embodiment, engagement of the pull cables allows the stapler head 14 to be articulated in two directions through a range of motion of approximately 90 degrees in one direction (see FIG. 3B) to 175 degrees in the opposite direction (see FIG. 3C). Each pull cable is anchored at or near the stapler head, such as at the distalmost link 132 of the stapler housing

The more proximal portions of the pull cables 134 extend 45 the length of the shaft 16 and terminate in the handle 18. Referring to FIG. 28, the handle 18 includes a rotating knob 136 that may be selectively rotated in a clockwise or counterclockwise to articulate the stapler head up or down. Rotation in one direction applies tension to one of the pull cables 50 to cause the stapler head to bend downwardly, whereas rotation in the opposite direction puts tension on the other cable, causing the head to bend upwardly.

In a preferred handle configuration, the knob 136 includes an internal threaded bore 138. Knob 136 is partially restrained 55 within the handle 18 so that it remains fixed within the handle but can rotate freely. A carriage 140 having a threaded exterior surface is positioned within the threaded bore 128 of the knob. The threads within the bore 138 are engaged with the threads on the carriage 140 so that rotation of the knob causes 60 the carriage 140 to translate, but not rotate, within the handle.

Each of the two pull cables, identified in FIG. 28 as cables 134a and 134b, is terminated on a different member in the handle. Cable 134a is mounted on the sliding carriage and cable 134b is mounted to a stationary part of the handle 18. 65 Each cable extends through a corresponding sheath. Cable 134a extends through a sheath 135a having a proximal end

14

fixed to a stationary part of the handle 18. Cable 134b extends through a sheath 135b having a proximal end mounted to the sliding carriage.

The cables 134a, b and sheaths 135a, b are arranged such that translation of the carriage in one direction will cause deflection of the stapler head in one direction, and translation of the carriage on the other direction will deflect the stapler head in another direction.

Referring to FIG. 28, if knob 136 is rotated to causes the carriage 140 to translate to the left of the page, cable 134a will be tensioned and cable 134b will slacken, causing the stapler head to articulate in a first direction (e.g. upwardly). Rotation of the knob 136 in the opposite direction will advance the carriage to the right of the page, releasing tension on cable 134a and pushing sheath 135b over the cable 134b towards the distal end of the staple head, causing articulation in the second direction (e.g. downwardly) as the sheath 135b is advanced against a distal portion of the shaft 16. The proximal portion of sheath 135b is provided with sufficient working length prevent it from being placed under tension when the carriage moves distally. The positioning of the knob is advantageous in that the hand movement required for stapler articulation is always the same, regardless of the rotational orientation of the stapler. Also, the use of the threaded knob can prevent unintentional relaxation of the deflection angle, even if the knob is provided without a lock to retain its rotational position.

Referring to FIGS. 28 and 29, the endoscope lumen 124 extends along the center axis of the stapler. The positioning of the lumen and the coaxial relationship of the articulation knob in relative to the endoscope 124 allows the endoscope and stapler to be rotated independently without one interfering with one another. Thus, if the user chooses to change the rotational orientation of the stapler head 14 within the body, s/he may rotate the handle 18 and shaft 16 while maintaining the rotational position of the endoscope.

For cost efficiency, the stapler 12 may be designed to permit the stapler head 14 to be discarded while allowing the shaft 16 and handle 18 to be sterilized and re-used. One mechanism for removably coupling the stapler head to the shaft 16 is illustrated, although others are readily conceivable (e.g. a slip coupling type arrangement). Referring to FIG. 26, an end plate 142 is mounted to the distalmost one of the links 132. Each of the end plate 142 and the corresponding rear surface of the stapler head are provided with latch features that allow the end plate and stapler head to be engaged to one another.

End plate 142 includes a cantilevered pin 144 having a peg 145 (which may be a spring pin), a central opening 146, and a pair of u-shaped catches 148 along its edges. Hydraulic feed holes 156a, b are formed through the end plate 142. The hydraulic tubes that deliver hydraulic fluid to the stapler head (see tubes 130 of FIG. 27) are preferably welded to the end plate to allow fluid from the tubes to be directed through the feed holes 156a, b.

FIGS. **30**A and **30**B show the rear surface **48***a* of the staple housing, which has been somewhat modified relative to FIG. **5**. In this variation of the rear surface **48***a*, the hydraulic input ports **50***a*, **50***b* are repositioned as shown. Additionally, the rear surface **48***a* has been modified to include a pair of catches in the form of undercut bosses **150**, plus an aligning pin **152**, and a hole **154**.

FIGS. **30**A and **30**B show the end plate **142** positioned against the rear surface **48***a* of the staple housing. The other features of the articulating section **128** are not shown in FIGS. **30**A and **30**B for clarity. To attach the stapler head to the shaft **16**, the plate **142**, attached to the handle assembly, is pressed

against the rear surface 48a of the staple housing as shown in FIG. 30A. As the plate is pushed, it is rotated in a clockwise direction, causing the peg 145 (FIG. 26) of the cantilevered pin 144 to engage hole 154 in the rear surface of the staple housing. When this latch is engaged, hydraulic feed holes **156***a*, *b* of the end plate **142** are lined up with the hydraulic inlets 50a, 50b on the staple head as shown in FIG. 30B. At the same time, portions of the end plate surrounding u-shaped catches 148 slide beneath the undercut bosses 152. Pressing the plate compresses the face-sealing o-rings surrounding the hydraulic input ports 50a, 50b. Compression on the o-rings is maintained by engagement of the catches and the undercut bosses overhanging the end plate. To remove the stapler head from the housing, the stapler housing is twisted in a counterclockwise direction to disengage the end plate 142 from the rear surface 48a. The stapler shaft and handle may then be sterilized in preparation for mounting of a fresh stapler head.

Exemplary Procedure

One example of a method for using the system 10 will next $\ _{20}$ be described in the context of formation of plications in stomach wall tissue.

As an initial step (FIG. 2), endoscopic guide tube 23 is advanced into the stomach via the mouth and esophagus. The endoscope 22 is inserted into the endoscope channel in the 25 stapler handle (not shown) and advanced down the lumen of the stapler handle. The stapler/endoscope are simultaneously passed through the endoscopic guide tube towards the stomach. Once the stapler and endoscope reach the gastroesophageal junction region of the stomach, the position of the stapler is maintained while the endoscope is advance further into the stomach.

The stapler head 14 is advanced to the desired depth and location in the stomach. Using the articulation controls on the stapler handle, the angular orientation of the stapler head is 35 adjusted to allow positioning of the stapler head 12 at the pre-identified target tissue as shown in FIG. 31A. The opening 26 in the membrane 24 is positioned against the target tissue. The endoscope 22 is placed in a retroflexed position as shown.

The vacuum source 20 (FIG. 2) is coupled to the vacuum port on the handle external to the body, and vacuum pressure is applied to draw tissue through the opening 26 and into the vacuum chamber defined by membrane 24 as shown in FIGS. 31B and 32A. Acquisition of the target tissue will be readily 45 identified endscopically through the wall of transparent membrane 24 on the stapler head.

The fluid source (is shown) is coupled to the handle. Once it has been visually confirmed that a sufficient amount of tissue has been acquired, fluid is introduced to cause compression of the tissue and expansion of the arm assemblies 32 and membrane raiser 37 as shown in FIGS. 32B and 31C. As can been seen, the expansion of the arm assemblies and the membrane allows a large volume of tissue to be acquired into the vacuum chamber and displaced further into the chamber 55 during tissue compression.

Once the tissue has been compressed, additional hydraulic fluid is introduced to cause stapling and cutting of the tissue as shown in FIGS. 31D and 32C, forming a plication P. The compression and stapling hydraulic sources are then deactivated to release fluid pressure within the hydraulic circuit. With the hydraulic pressure relieved, the spring wires of the membrane raiser 37 help to restore the stapler head 14 to its original streamlined configuration, allowing the stapler head to be withdrawn from the tissue as shown in FIG. 31E. The 65 stapler head may be articulated relative to the shaft to assist in moving the stapler head away from the plication P.

16

In a preferred plication configuration shown in FIG. 33 the staples 158 are arranged in two concentric rings of five staples, with the staple reinforcement device 83 retained by the staples and distributing forces around the staple pattern as shown. The plication P includes a hole H formed by the cutting element, through which various implants or anchors for various implants can be placed.

If multiple plications are needed, the stapler 12 is briefly withdrawn from the endoscopic guide tube and the staple cartridge is replaced in the manner described in connection with FIGS. 25A-25C. The procedure is repeated until all desired plications have been formed.

The system may be packaged with instructions for use instructing the user to use the various disclosed features to perform a stapling procedure using methods disclosed herein.

ALTERNATE EMBODIMENTS

The basic architecture of the stapler disclosed above can be used as a foundation for other stapling tools. FIGS. 34-35 show a modified stapler in which the membrane and membrane raiser have been removed, and in which the staple housing 28 has been modified for the attachment of tools. As shown in FIG. 34, the staple housing 28 includes a pair of grooves 160 proportioned to receive tools 162. Tools 162 may be seated in these grooves 160 and mounted to the staple housing as shown in FIG. 35. This attachment will provide for a stable base from which to actuate the tools. The tools may be self-articulating, or the staple housing 28 may be equipped with devices 164 for moving the tools between streamlined positions for insertion of the assembly into a body cavity, and a deployed position such as that shown in FIG. 35. Tools similar to those in FIG. 35 might be used for tissue acquisition, by reaching between the cartridge and anvil and used to engage tissue and pull the tissue into position between the cartridge and anvil so that it may be stapled, or otherwise affected by various features added to or in place of the anvil and cartridge. Procedures which may benefit from adaptation of the stapler include, but are not limited to gastroplasty, stoma adjustment, polyectomy, lead placement, bleeding control, perforation or hole closure, biopsy and tumor removal.

The disclosed systems provide convenient embodiments for carrying out the disclosed compression and stapling functions. However, there are many other widely varying instruments or systems may alternatively be used within the scope of the present invention. Moreover, features of the disclosed embodiments may be combined with one another and with other features in varying ways to produce additional embodiments. Thus, the embodiments described herein should be treated as representative examples of systems useful for forming endoscopic tissue plications, and should not be used to limit the scope of the claimed invention.

Any and all patents, patent applications and printed publications referred to above, including those relied upon for purposes of priority, are incorporated herein by reference.

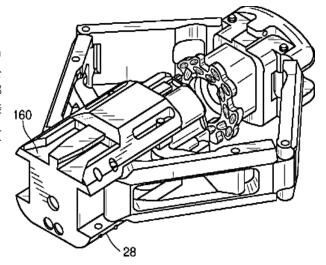
We claim:

- 1. A tissue fastening system comprising:
- a shaft having a proximal-end handle and a distal end;
- a staple device including a staple member having a staple housing and a staple holder that is independently moveable with respect to the staple housing,
- an anvil member having an anvil housing and an anvil carried on the anvil housing,

- a drive assembly including a drive member operatively connected to the staple holder for movement within the staple housing from a retracted position to an extended position, and
- an arm assembly operatively coupled to the staple and anvil 5 members, such that movement of the drive member from its retracted to its extended position is effective to (i) move the staple holder with respect to the staple housing toward the anvil, and (ii) move the anvil member toward the staple member, the distal end of the shaft being 10 operatively coupled to the staple member;
- a flexible covering at least partially enclosing the staple device to define a vacuum chamber between the staple holder and the anvil, wherein the flexible covering includes an opening positionable in contact with tissue 15 to be fastened; and
- a vacuum port coupled to the vacuum chamber such that application of vacuum pressure to the vacuum port draws tissue through the opening into the vacuum chamber
- 2. The fastening system of claim 1, further including an endoscope positionable in proximity to the vacuum chamber, the covering having a wall that is sufficiently transparent to permit observation of acquired tissue through the wall using the endoscope.
- 3. The fastening system of claim 1, wherein the covering is formed of silicone.
- 4. The fastening system of claim 1, wherein the covering includes a reinforced section surrounding the opening.
- 5. The fastening system of claim 4, wherein the covering 30 has a wall and wherein the reinforced section includes a plurality of ribs positioned on the wall.
- 6. The fastening system of claim 5, wherein the wall and the ribs are formed of silicone.
- 7. The fastening system of claim 1, wherein at least one of 35 the staple and anvil members is moveable towards the other to compress acquired tissue between them.
- 8. The fastening system of claim 1, wherein the anvil is independently moveable in the anvil housing, and the arm assembly is operatively coupled to the anvil, such that movement of the drive member from its retracted to its extended position is effective to (i) move the staple holder with respect to the staple housing toward the anvil, (ii) move the anvil member toward the staple member, and (iii) move the anvil with respect to the anvil housing toward the staple holder.
- 9. The fastening system of claim 8, wherein the anvil member includes drive links operatively connected to the arm assembly for moving the anvil toward the staple holder as the drive assembly is moved from its retracted to its extended position.
- 10. The fastening system of claim 1, wherein the drive member includes a disc that travels within the staple housing, and carries at least one pin that moves within a slot in the staple housing, thereby limiting the extent of travel of the drive member toward its extended position to the extent of 55 travel allowed for the pin within the slot.
 - 11. The fastening system of claim 10, further comprising: at least one arm spreader pivotally connecting the disc to the arm assembly for spreading the arm assembly outwardly as the disc travels from its retracted to its 60 extended position.

18

- 12. The fastening system of claim 10, wherein the drive member includes a drive piston connected to the disc, and which further includes a staple piston carried for movement within the drive piston between retracted and extended positions; and
 - a staple pusher adapted to engage one or more staples in the staple holder and eject the one or more staples from the holder against the anvil when the staple pusher is moved with the staple piston from a retracted to an extended position.
- 13. The fastening system of claim 12, wherein the staple holder is designed to hold an annular array of staples, and wherein the staple pusher is adapted to engage and eject the array of staples simultaneously.
 - 14. The fastening system of claim 12, further comprising: a tissue cutter mounted on the staple driver, the cutter being adapted to cut a hole in a tissue fold held between the staple holder and anvil as the tissue fold is being stapled by movement of the staple piston from its retracted to its extended position.
- 15. The fastening system of claim 14, wherein the anvil member includes a compressible cutting board which allows the cutter to be advanced by movement of the staple driver beyond the cutter's point of initial contact with the cutting board.
 - 16. The fastening system of claim 15, wherein the cutting board is formed of a material that can be penetrated by the cutter.
 - 17. The fastening system of claim 15, wherein the cutting board is spring biased in the direction opposing movement of the cutter.
 - 18. The fastening system of claim 15, wherein the cutting board is formed of silicone.
 - 19. The fastening system of claim 10, wherein the staple holder is a replaceable staple cartridge adapted to be inserted into the staple housing to travel therein with the drive member between retracted and extended positions.
 - 20. The fastening system of claim 19, wherein the disc has at least one axially extending post adapted to engage the staple and prevent angular movement of the cartridge within the staple housing.
 - 21. The fastening system of claim 19, further comprising: a cartridge-side reinforcing ring disposed against the cartridge and having openings for receiving staples therethrough for attaching the reinforcing ring to the side of stapled tissue facing the cartridge.
 - 22. The fastening system of claim 1, further comprising: an alignment pin carried on one of the staple or anvil members; and
 - an opening on the other of the staple or anvil members, said pin and opening being positioned such that movement of the staple driver toward its extended position causes the pin to mate with the opening, thus to engage the two members.
 - 23. The fastening system of claim 1, further comprising: an articulating section connecting the distal end of the shaft to the staple member; and
 - at least one hydraulic line contained within the shaft effective for carrying hydraulic fluid to the staple device.


* * * * *

专利名称(译)	内窥镜缝合装置和方法		
公开(公告)号	<u>US7909219</u>	公开(公告)日	2011-03-22
申请号	US12/053027	申请日	2008-03-21
[标]申请(专利权)人(译)	COLE DAVID ANDREW SMITH		
申请(专利权)人(译)	COLE DAVID ANDREW SMITH		
当前申请(专利权)人(译)	BOSTON SCIENTIFIC SCIMED , INC.		
[标]发明人	COLE DAVID SMITH ANDREW		
发明人	COLE, DAVID SMITH, ANDREW		
IPC分类号	A61B17/068		
CPC分类号	A61B17/072 A61B17/115 A61F5/0083 A61B2017/00818 A61B2017/306 A61B2017/07271 A61B17 /32053 A61B17/064 A61B2017/00539 A61F5/0013		
其他公开文献	US20090236397A1		
外部链接	<u>USPTO</u>		

摘要(译)

本文描述了用于将一个或多个紧固件施加到身体组织的内窥镜缝合器。在一个实施例中,紧固件施加装置(优选地是订书机)经口部通入胃中并用于通过从胃内部接合组织并将其向内拉入而使胃组织复位。在所公开的实施例中,组织被向内抽入真空室,使得胃外部上的浆膜组织的部分彼此面对地定位。所公开的订书机允许组织的相对部分移动成彼此接触,并且优选地递送钉以维持组织部分之间的接触,至少直到在它们之间形成浆膜结合。这些步骤中的每一个可以完全从胃内部进行,因此可以消除对任何手术或腹腔镜介入的需要。在形成一个或多个褶皱之后,可任选地将医疗装置连接到褶皱以保留在胃内。

