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ULTRASOUND SPECKLE REDUCTION AND
IMAGE RECONSTRUCTION USING DEEP
LEARNING TECHNIQUES

CROSS-REFERENCE TO RELATED
APPLICATIONS

[0001] This application claims priority from U.S. Provi-
sional Patent Application 62/648,009 filed Mar. 26, 2018,
which is incorporated herein by reference.

STATEMENT REGARDING FEDERALLY
SPONSORED RESEARCH OR DEVELOPMENT

[0002] This invention was made with Government support
under contract EB015506 awarded by the National Institutes
of Health. The Government has certain rights in the inven-
tion.

FIELD OF THE INVENTION

[0003] The invention relates generally to ultrasound imag-
ing. More specifically, it relates to techniques for reducing
artifacts in ultrasound image reconstruction.

BACKGROUND OF THE INVENTION

[0004] In brightness mode (B-mode) ultrasound imaging,
the echoes from an ultrasonic pulse are used to reconstruct
images according to their magnitude (i.e. brightness). Thus,
B-mode images are a map of the echogenicity of the
insonified medium. The echo magnitudes are measured
using an array of sensors via a process referred to as
beamforming. The classical beamformer is delay-and-sum
(DAS), which forms a point-wise estimate of echogenicity
based on the magnitude of the summed array signals.
[0005] However, in medical ultrasound imaging, echoes
are generated by scattering sources that are smaller than the
resolution of the imaging system. These echoes from sub-
resolution scatterers interfere stochastically, producing a
strong multiplicative noise in the measured DAS output.
This noise is referred to as speckle. Speckle manifests as a
temporally stationary grainy texture in regions with homo-
geneous echogenicity. Speckle is commonly used to infer the
scattering properties of tissue and can be used for tracking
blood flow and tissue displacements. However, for the task
of echogenicity estimation, speckle reduces the perceived
resolution of the target and is largely treated as an undesir-
able noise that degrades diagnostic B-mode imaging.
[0006] Speckle reduction can be accomplished using
beamforming methods that operate on the radiofrequency
signals received by an array of transducer elements, or by
post-processing techniques that filter images after they are
reconstructed.

[0007] Common beamforming techniques for speckle
reduction are designed according to the underlying physics
and statistics of speckle. These techniques include spatial
and frequency compounding, in which the aperture or the
bandwidth are subdivided, respectively. These subdivisions
are used independently to reconstruct images that are sub-
sequently averaged. The overall speckle is reduced because
the speckle patterns observed by each subdivision are deco-
rrelated from one another.

[0008] Spatial compounding uses independently-beam-
formed subapertures to observe the target from multiple
angles, reducing speckle at the cost of lateral resolution.
However, improvements in speckle SNR are limited to VN
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when spatial compounding with N uncorrelated images,
with lesser improvements when the compounded images are
correlated.

[0009] In addition, beamforming has historically been
viewed as a method of suppressing off-axis noises or
improving resolution, rather than a means for speckle reduc-
tion. Examples of other beamformers include minimum
variance beamforming, in which the channels are weighted
to suppress off-axis noises, as well as a newly proposed
machine learning method in which deep fully connected
networks are used to filter signals arriving from outside of
the main lobe. In these cases, beamforming is used to
preserve speckle, rather than to remove it.

[0010] Speckle reduction has been studied far more exten-
sively in the context of post-processing filters, which are
applied to images that have already been beamformed.
Popular techniques include anisotropic diffusion and dis-
crete wavelet transforms. A stochastic iterative technique to
remove pixel outliers, called the squeeze box filter, has also
been proposed. More recently, non-local means methods
have demonstrated excellent speckle reduction capabilities.
These techniques selectively smooth pixels originating from
speckle while preserving other structures and details. How-
ever, a disadvantage to purely post-processing techniques is
that they rely entirely on fully-formed images of demodu-
lated and envelope detected data, and are thus unable to take
advantage of channel and phase information that are irre-
versibly lost in the summation and image formation process,
respectively.

[0011] OBNLM is a post-processing technique that excels
at preserving sharp discontinuities and point targets. How-
ever, OBNLM has problems maintaining resolution and
target structure for broader targets and gradual changes in
echogenicity. OBNLM also utilizes three parameters which
must be tuned precisely to achieve the desired speckle
reduction. The known parameters, however, are inadequate
for some in vivo imaging cases. Moreover, as a post-
processing method, OBNLM is fundamentally subject to
any noise artifacts that are present in the envelope-detected
DAS image.

BRIEF SUMMARY OF THE INVENTION

[0012] In one aspect, the present invention provides a
method for ultrasound image reconstruction using a neural
network. A method is provided for reconstructing speckle-
reduced B-mode images directly from real-time ultrasound
channel signals using a convolutional neural network. This
technique significantly outperforms delay-and-sum and
receive-only spatial compounding in speckle reduction
while preserving resolution and exhibited improved detail
preservation over a non-local means methods.

[0013] Ultrasound B-image reconstruction with neural
networks represents a fundamentally different paradigm for
speckle reduction as compared to traditional techniques. It is
an array processing technique that performs reconstruction
and speckle reduction in tandem using parameters that are
learned, nonlinearly transforming complex channel data into
echogenicity estimates.

[0014] A convolutional neural network (CNN) is trained
with simulated RF transducer array channel signals contain-
ing simulated speckle and corresponding ground-truth
speckle-free echogenicity images. The CNN then estimates
real-time B-mode (echogenicity) images from measured



US 2019/0295295 A1

real-time RF signals taken directly from ultrasound trans-
ducer array elements (prior to summation).

[0015] Supervised learning with neural networks is a class
of machine learning techniques in which a cascade of
transformations are applied to an input in order to eventually
produce a desired output. The parameters of the transfor-
mation are learned via a gradient descent algorithm designed
to minimize the error between the output of the network and
the known ground truth.

[0016] A neural networks in this invention is trained to
reconstruct speckle-reduced B-mode images by being pre-
sented with many instances of ultrasound transducer channel
data and corresponding ground truth speckle-free B-mode
images. Such training has been difficult to implement in the
past partly because ground truth echogenicity is virtually
unavailable in vivo. Ground truth can be obtained in simu-
lations, but it was not previously known whether a network
trained entirely in silico can generalize to real-world imag-
ing conditions such as in vivo, where ultrasound signals face
additional challenges via image degradation such as phase
aberration, acoustical noise, and electronic noise.

[0017] According to techniques of the present invention,
linear simulations of ultrasound imaging in conjunction with
deep convolutional neural networks are used to empirically
learn speckle-reducing B-mode image reconstruction. Neu-
ral networks can be trained to transform ultrasound trans-
ducer channel data, before summation, directly into B-mode
images. Deep neural networks are trained using simulated
ultrasound channel data that are co-registered with a refer-
ence ground truth map of echogenicity.

[0018] In addition to suppressing noise from outside the
intended focus, an ideal beamformer for B-mode imaging
according to the teachings of the present invention should be
an estimate of the average echogenicity of the scatterers. In
particular, the backscatter from a homogeneous region of
tissue of constant echogenicity should produce a uniform
response (as opposed to a speckle response) while preserv-
ing the structure and echogenicity of the medium.

[0019] Embodiments of the invention may include the use
of two ultrasound-appropriate modifications to the 1,, 1,, and
MS-SSIM loss functions. First, the loss functions are mea-
sured on logarithmically compressed images to account for
the large dynamic range of ultrasound signals and to match
the log-domain in which the images were displayed. Second,
a normalization-independent formulation of the loss func-
tion is used to compare two images with arbitrary units.
[0020] In one aspect, the invention provides a method for
ultrasound image reconstruction using a convolutional neu-
ral network (CNN). The method includes training the CNN
with a dataset comprising simulated transducer array chan-
nel signals containing simulated speckle as inputs, and
corresponding simulated speckle-free B-mode images as
outputs; measuring real-time RF signals taken directly from
ultrasound transducer array elements prior to summation;
inputting the measured real-time RF signals to the CNN; and
processing by the CNN the measured real-time RF signals to
produce as output an estimated real-time B-mode image
with reduced speckle. The estimated B-mode images are
estimated by the CNN from the simulated transducer array
channel signals. The training uses a loss function involving
a norm between estimated B-mode images and simulated
speckle-free B-mode images. For example, the loss function
may be a log-domain normalization-independent loss func-
tion, or a normalization-independent mixture of 1, and multi-
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scale structural similarity losses. The simulated transducer
array channel signals may be unfocused or focused channel
signals. The input signals may be modulated RF signals or
demodulated baseband signals. The CNN preferably has 8 to
16 convolution blocks, wherein each of the convolution
blocks has a 2D convolution, batch normalization, and a
rectified linear unit. Preferably, the CNN has 16 layers of
convolution blocks and 32 filters per layer. The CNN
preferably concatenates the original input data to an inter-
mediate hidden layer of the network. Preferably, the CNN
performs a multi-scale or multi-resolution processing of the
data via striding or pooling. The CNN in some embodiments
may include 3D convolutions. The method may also include
performing a conventional DAS envelope-detection recon-
struction to generate a conventional B-mode image from the
real-time RF signals, and concatenating the generated con-
ventional B-mode image to an output of a block of the CNN.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

[0021] FIG. 1A is a schematic diagram illustrating the
processing pipeline for image reconstruction, including
details of the architecture of a fully convolutional neural
network according to an embodiment of the invention,
where the network has a sequence of M convolution blocks,
each having a 2D convolution, batch normalization, and a
rectified linear unit.

[0022] FIG. 1B is a flow diagram illustrating an overview
of major components of an apparatus for image reconstruc-
tion according to an embodiment of the invention.

[0023] FIGS. 2A-C are graphs of validation losses versus
network training objectives for different loss functions,
according to an embodiment of the invention, where pet-
formance was measured using the (FIG. 2A) £*,, (FIG.
2B) L*,, and (FIG. 2C) L%,/ cop, losses after each
training epoch, as measured on the validation dataset.

[0024] FIGS. 3A-F are graphs of validation losses versus
network architecture, where FIGS. 3A, 3B, 3C show neural
networks with 2, 4, 8, or 16 layers of convolution blocks and
32 filters per layer, and FIGS. 3D, 3E, 3F show neural
networks with 16 layers of convolution blocks and 4, 8, 16,
or 32 filters per layer, according to an embodiment of the
invention.

[0025] FIGS. 4A-C are graphs of validation losses with (+)
and without (=) a concatenated B-mode (i.e., summed and
envelope detected) image after the M-th convolution block,
measured by (FIG. 4A) £*,, (FIG. 4B) £*;, and (FIG. 4C)
L, ¢ cons according to an embodiment of the invention.

[0026] FIG. 5is an image grid showing Field IT simulation
images of cysts reconstructed using DAS, spatial com-
pounding (SC), OBNLM, and the neural network (NN)
according to an embodiment of the present invention. The
top two rows show 1 mm and 3 mm -20 dB cysts, while the
bottom two rows show the same for =6 dB cysts. The ground
truth echogenicity reference is shown in the leftmost col-
umn, overlaid with the circular ROIs used for contrast
measurements and the square ROI used for SNR measure-
ment.

[0027] FIG. 6A-B show phantom images reconstructed
using DAS, spatial compounding, OBNLM, and the neural
network according to an embodiment of the invention. Each
image is normalized and displays 40 dB of dynamic range.
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FIG. 6A shows a 2 mm anechoic cyst and a 8 mm -12 dB
cyst. FIG. 6A shows a 8 mm+12 dB cyst and several bright
point targets.

[0028] FIGS. 7A-B are harmonic B-mode images of a
kidney (FIG. 7A) and a complex focal lesion surrounded by
an anechoic fluid (FIG. 7B). The center sectors (bounded
with black lines) were reconstructed using DAS, spatial
compounding, OBNLM, and the neural network according
to an embodiment of the invention, and are overlaid on the
full B-mode sector scan. The tick marks show 1 cm spacing.
Each image displays 50 dB of dynamic range.

[0029] FIGS. 7C-D are two additional views of the same
kidney and focal liver lesion of FIGS. 7A-B, with zoomed
insets showing closer detail. These figures show substantial
speckle reduction with the preservation of fine details and
structures according to an embodiment of the present inven-
tion.

DETAILED DESCRIPTION OF THE
INVENTION

Problem Formulation

[0030] Consider a vectorized grid of PxQ field points (also
referred to as “pixels”) with true echogenicities ye R €. Let
XeC??*¥ denote the demodulated analytic signals captured
by the N elements of a transducer array after applying the
appropriate time delays to focus the array at each of the field
points. In B-mode image reconstruction, y is estimated from
X using some function f(X)=y.

[0031] In the traditional delay-and-sum (DAS) technique,
y is estimated as the absolute value of the channel sum:

=5 pas(X)=1X11, M

where 1 is an N-vector of ones and I+l denotes an element-
wise absolute value. According to the present invention, y is
estimated by a convolutional neural network using a func-
tion f(X; 0), where 8 are the parameters of the network.
As illustrated in FIG. 1A, the estimate y=F\,(X; 0) is
computed by a convolutional neural network 100 that takes
the ultrasound transducer data 112 as its input X and
produces a speckle-reduced B-mode image 114 as its output
\a

[0032] Inorderto reconstruct desired B-mode images with
a neural network, the network 100 is first trained using
training data, i.e., a set of inputs and corresponding true
outputs that can be compared to the network output using a
loss function. The training process is designed to determine
the optimal parameters 6* that minimize the error between
an estimated image y output from the network and the true
image y, as quantified by some loss function L (y, §):

6" = argmin Ly, fyn (X; 0). 2
5

The minimization problem is typically solved using some
form of gradient descent, an approach in which each of the
parameters is iteratively updated to reduce the error:

a
0;:=0,—a— (X;8
Q/BG Ly, fan (X5 0),
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where o denotes the step size, also called the learning rate.
[0033] Standard Loss Functions The choice of loss func-
tion significantly affects the training process. The 1, and 1,
norms are often used to quantify the reconstruction error:

Po )
Loy (3. 9= 5=

12 ,%
Ly (. y):[@zlzyp—,vpr] :

where the p-th pixels of y and ¥ are respectively denoted as
¥, and §,. Alternative metrics such as structural similarity
(SSIM) and multi-scale structural similarity (MS-SSIM)
have also been proposed. The SSIM between pixels y, and
¥, is computed as

Zyyp/,cyp +Cy ][ Zpryp +0; ] ©)

2 2 2 2 >
“, +M5’p +C) 73, + O'j/p +C,

where C, and C, are empirically selected scalar parameters
to enhance numerlcal stability, H, and by, are the meal
values of aneighborhood around y,, andy respecmely,
and o, 2 5, are their variances, ando 1s thelr covariance. The
means, variances, and covariance are obtained using Gauss-
ian ﬁlters SSIM values range from -1 to 1, where 1
indicates perfect correspondence between the images.
Therefore, a loss function can be defined as

| P @)
L (3. 9)=1- P—Q; SSIM(y, - §,)-

The L, con, metric extends SSIM by combining £ .,
measurements using several neighborhood sizes in order to
compare the images at multiple resolution scales. The dif-
ferent scales can be achieved either by downsampling the
image or by changing the standard deviation parameter of
the Gaussian filter. In this work, we adopt the latter
approach.

Loss Functions for Ultrasound B-Mode Imaging

[0034] In B-mode imaging, it is important to accurately
reconstruct hypoechoic targets such as blood vessels and
heart chambers, whose signals can be more than 40 dB (100
times) weaker than the background tissue. B-mode images
are typically compressed prior to being viewed in order to
visualize the wide dynamic range. However, the large dis-
crepancy in signal strengths may cause standard loss func-
tions to over-emphasize errors in strongly echogenic targets
and to under-emphasize errors in hypoechoic targets. There-
fore, we propose to compute losses using logarithmically
compressed images, i.e., £L(log vy, log ). This allows the
errors to be measured in the same domain that the images are
viewed in.

[0035] Another challenge is that B-mode images and their
ground truth echogenicity maps are both defined in arbitrary
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units, making it unclear how to compare the two images.
One approach is to normalize each respective image, (e.g.,
by their maximum values). Unfortunately, the standard loss
functions are highly sensitive to the normalization, whereas
an ideal loss function for images with arbitrary units should
be independent of their normalization.

[0036] Preferred embodiments of the invention use a new
loss function that is intrinsically independent of normaliza-
tion and is suitable for comparing two images with arbitrary
units. Let £* define the minimum achievable loss .£ when
¥ is scaled by some positive weight parameter w:

L*(logy, logy) = nwg(r)l L(logy, logw3). ®)

These loss functions apply precise normalization to each
image such that the £,, £,, and L, oo, losses are
minimized, respectively, allowing the images to be com-
pared according to their relative contrasts and structures
rather than their absolute magnitudes.

[0037] Closed form expressions for the L%, L*;, and
L*, ¢ consloss functions are provided as follows:

The £*; Loss Function

[0038] The optimal weight for the 1,-norm is found as:

w;, = argminlly — will, ®
- v>0

= agminy’3"§ 20 y. o

w>0

The optimum value can be found by taking the derivative
with respect to w and solving for the minimum, giving

T an

>
<

.
We,

>
>

The L*; Loss Function

[0039] The optimal weight for the 1,-norm is obtained as:
P (12)
W . Jp
Wy, = argrng w— —
¥>0 }p
p=1

The minimum, where the derivative with respect to w is
zero, can be found by using the relation

3
—|w—u| = sign(w — u), (13

aw
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vielding an optimal solution that is the median value of
Y9y

14

P
. J
0= E mg,n[w; ——p]
Ly
Ip
p=1

. 4 {yp }P =
wp =mediang—p .

Yol e

The £*,,5 ¢ons Loss Function

[0040] The SSIM metric is the product of the differences
in luminance, contrast, and structure, which correspond to
differences in the mean, standard deviation, and the normal-
ized signals, respectively. When computed on log-images,
the optimal weight is additive. In the case of the SSIM, we
find that the derivative with respect to w for one pixel p is

ad . (16)
%SSIM(lcgyp, wlogy,) =

2 2
Hitogyy Ulzogyplogjip (f‘logyy =(w+ /‘log&pj ) a7

2 2 2 i 2,27
(o'log.v;; + o-logjvp)(ﬂlogyp + ‘.W + ﬂbg&p) )

where the stabilizing constants C, and C, are omitted. The
optimal weight is obtained by solving for w over all pixels:

L (18)
0= Z; 3551 (g, w + logd ).
=

Unfortunately, this equation is intractable for large P.

[0041] We instead utilize a (potentially suboptimal)
weight:

LR 1 R (19)
w :P—szz;logyp—P—Q;k)gyD.

This is equivalent to computing the SSIM without the
luminance term:

20’2 + (20)

logyplogj/p

ro

1
SSIM" (logy,, log&p) = —Z 5 5 .
PO = Tiogy, + U—logyp + &

Similarly, the multi-scale luminance-independent MS-SSIM
loss function is then defined as

Lygs ssi(logy. logh) = 1 = [ ] S51M; (logy, log), 2h
i

where j indexes the scales over which the SSIM* is com-
puted.
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Field 1T Simulation Training Dataset

[0042] The network 100 is preferably trained using simu-
lated ultrasound data. For example, in one embodiment, the
Field II Pro simulation package was used to simulate ultra-
sound channel data from 128 elements of a Verasonics
L12-3v linear array transducer. A full synthetic aperture data
set was simulated using single-element transmits at 8 MHz
with 60% bandwidth. Speckle was simulated with random
uniformly distributed scatterers in a 10 mmx10 mmx3 mm
phantom centered at the elevation focus of 2 cm. The
scatterer density was selected to be 60 scatterers per reso-
lution cell, and the scattering amplitudes were normally
distributed and weighted according to ground truth echoge-
nicity maps.

[0043] To provide the network with a wide range of
features and contrasts, real photographic images were used
as the ground truth echogenicity. The images were taken
from publicly available image databases: 512 images from a
Places?2 test set and 512 images from an ImageNet validation
set were selected for a total of 1024 images. These images
were used solely for their patterns and contrasts; their
corresponding classification labels were not used. The
images were converted to grayscale and cropped into a 224
pixelx224 pixel square patch. The patch was then mapped
onto the lateral and axial extent of the phantom (10 mmx10
mm) to serve as the ground truth echogenicity map, and the
pixel intensities were used to weight the scattering ampli-
tudes of the simulated scatterers according to their positions
via bilinear interpolation. This approach was chosen as a
convenient alternative to custom-designing a wide variety of
ground truth echogenicity maps.

[0044] For each of the 1024 images, an independent set of
random scatterers was weighted and used in a full synthetic
aperture simulation. For each simulation, the received
radiofrequency (RF) channel signals were demodulated and
focused into the same 224 pixelx224 pixel grid as the ground
truth echogenicity map, with dynamic focusing applied on
both transmit and receive. The dimensions of the resulting
data cube were 224 pixelsx224 pixelsx128 channels.

[0045] The set of 1024 simulations was then resampled to
generate an augmented training dataset comprised of 5000
co-registered pairs of focused channel data and reference
ground-truth echogenicity. The resampled data/reference
pairs were selected to have a smaller patch size of 64
pixelsx64 pixels and each was drawn randomly from one of
the 1024 simulations. While the number of pixels was held
constant, the lateral and axial positions and sizes of the
patches were allowed to vary independently of one another,
resulting in rectangular patches. The resulting 64x64 patches
were then treated as though they were square patches with
stretched speckle patterns, enabling the emulation of a wide
variety of imaging configurations from a limited number of
simulations. Each channel dataset was corrupted by a ran-
dom amount of white thermal noise and band-limited acous-
tical reverberation noise, specified in decibels (dB) relative
to the RMS of the channel signals. Each attribute was
selected randomly from a uniform distribution over the
range of values listed in Table 1.
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TABLE 1

Range of Parameters for Random Patches

Attribute Minimum Value Maximum Value
Simulation Index 1 1024
Lateral Position -1.9 mm (-10h) 1.9 mm (10A)
Axial Position 18.1 mm (94A) 21.9 mm (1143)
Lateral Size 0.4 mm (2h) 6.2 mm (32A)
Axial Size 0.4 mm (2h) 6.2 mm (32A)
Thermal Noise -40 dB +6 dB
Acoustical Noise -40 dB +6 dB

Image Reconstruction Quality Metrics

[0046] The quality of image reconstruction was measured
using several metrics. The L%, L* . and L¥5 p,
errors were computed between the reconstructed log-image
and the ground truth echogenicity log-image when available.
The L*, and L*; errors were obtained in units of dB,
whereas the £L*, . ., error was bounded from 0 to 2, with
0 being achieved when y=y. The reconstruction quality was
also measured using the contrast and contrast-to-noise ratio
(CNR) of cyst targets and using the signal-to-noise ratio
(SNR) of the tissue background:

e 22
Contrast =20 log,| —
lo(#b]
cnp=HTH (23)
ot +op
SNR = ﬂ_b7 (24)
Tb

where 1, and 1, denote the means and o, and o, the standard
deviations of the target and background, respectively. Con-
trast, CNR, and SNR were computed on the linear scale
images, prior to log-compression. The CNR essentially
combines the contrast and SNR metrics into a single mea-
sure of lesion detectability. In the simulations and the
phantomn, the cyst contrasts and CNRs were measured in
concentric regions of interest (ROIs). The target ROI was
selected as a circle with a radius of 0.8 times the cyst radius,
and the background ROI as a ring with inner and outer radii
of 1.1 and 1.5 times the cyst radius, respectively. The
background SNR was measured in a homogeneous region of
speckle. For DAS beamforming, the measured pixel values
in a region of homogeneous echogenicity are classically
expected to follow the Rayleigh distribution, resulting in an
SNR of 1.91.

[0047] Image resolution was measured using the follow-
ing methodology. First, the system response to a transition
between two regions of different echogenicities was mea-
sured, referred to as the edge spread function (ESF). Field 11
Pro was used to simulate a target wherein half the azimuthal
field of view was a speckle region of constant echogenicity
and the other half was an anechoic region. The resulting
images were averaged axially and over 16 independent
scatterer realizations to reduce noise. Next, the ESF was
differentiated in the azimuthal dimension to produce a line
spread function (LSF). Finally, the FWHM of the LSF was
measured to obtain the image resolution.
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Deep Convolutional Neural Networks

[0048] Convolutional neural networks were used to esti-
mate echogenicity from the focused and demodulated chan-
nel signals. Analysis was restricted to a maximum of 16
channels per pixel due to computational and memory con-
straints. To achieve this, the 128 element array was subdi-
vided into 16 equal subapertures of 8 elements each, and the
signals from each subaperture were beamformed into a
single signal, yielding a total of 16 complex signals per
pixel. The real and imaginary components were then con-
catenated in the channel dimension prior to being input into
the neural network, resulting in 32 distinct channels per
pixel, i.e., for a pixel grid of size PxQ, the resulting data was
PxQx32.

[0049] The network architecture 100 is shown in FIG. 1A.
The network 100 has a sequence of M repeated convolution
blocks 102, with each block 104, 106, 108 applying a 2D
convolution 122, batch normalization 124, and rectified
linear unit activation 126. This motif was repeated for all M
blocks in the sequence 102. Each 2D convolution layer 122
was composed of F machine-learned filters, and the size of
each filter was 7x7x32 for the first layer, Sx5xF for the
second layer, and 3x3xF for subsequent layers, with the
convolution occurring over the first two dimensions of each.
Each convolution was zero-padded in the first two dimen-
sions such that the input and output were the same size,
making the size of the output of each convolutional layer
PxQxF.

[0050] The input to the network was a 64x64x32 dataset,
where the last dimension corresponded to real and imaginary
components of 16 subaperture signals. A conventional DAS
envelope-detection reconstruction 116 generates a conven-
tional B-mode image 118, which was concatenated to the
output of the M-th block 108. The speckle-reduced B-mode
image output 114 was obtained by applying one final 2D
convolution 110 and squaring the result. As will be
explained further below in relation to FIGS. 4A-C, concat-
enating the B-mode image 118 after the M-th convolutional
block significantly enhances training. Although the input
channel data 112 theoretically contain all of the raw infor-
mation necessary to reconstruct a B-mode image 114, it
appears that the concatenated B-mode image 118 served as
a good initial estimate of echogenicity for the network to
improve upon, rather than learning the reconstruction from
scratch. The uncompressed B-mode image 118 is separately
formed from the input data 112 using equation (1) and
concatenated to the output of the M-th block 108, yielding
a data array of size PxQx(F+1). The final convolution filter
110 of size 1x1x(F+1) was used to produce the output image
114 of size PxQx1 that was subsequently squared on a
pixel-wise basis to yield positive values of echogenicity. The
fully convolutional nature of the network allowed echoge-
nicity estimation on a pixel-wise basis. Unless otherwise
specified, the default parameters for the networks were
M=16 convolution blocks with F=32 filters per layer. Pool-
ing layers and dropout were not utilized.

[0051] In an alternative configuration, the original input is
concatenated to the output of one or more of the intermediate
blocks instead of the B-mode image, yielding a data array
size of 1x1x2F instead of 1x1x(F+1). Any subsequent
convolution filters would have the appropriate size (i.e., 2F)
to accommodate the new data size. In a different configu-
ration, the network an encoding-decoding structure is used
to achieve multi-scale or multi-resolution processing, in
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which intermediate encoding layers apply pooling or strid-
ing, i.e., reduce the data dimensions in the first two dimen-
sions by some factor D, and subsequent intermediate decod-
ing layers increase the data dimensions in the first two
dimensions by the same factor D; intermediate layers may
be connected via concatenation. In another configuration,
the 2D convolution layers are replaced by 3D convolutions
that additionally convolve in the transducer channel dimen-
sion. In this configuration, the real and imaginary compo-
nents of the data are preserved as a separate dimension from
the channel signals, such that the data size is 64x64x16x2.
[0052] FIG. 1B provides an overview of major compo-
nents of an apparatus for image reconstruction according to
an embodiment of the invention. Transducer array channel
signals 150 output from an ultrasound transducer array are
provided to ultrasound acquisition hardware 152 which
sample, amplify, and digitize the radiofrequency channel
signals, which are then provided to signal pre-processing
component 154 which performs bandpass filtering, time
delays, and demodulation. The pre-processed signals are
then input to neural network beamformer 156. The neural
network beamformer 156 may be implemented using a
GPU, FPGA, ASIC, or other dedicated hardware (e.g.,
tensor processing unit) to perform the real-time computa-
tions associated with the neural network. In a prototype, the
neural networks were implemented in Python using Tensor-
Flow using the Adam optimizer with a single NVIDIA
GeForce GTX 1080 Ti GPU, which has 11 GB of memory.
The output from the neural network 156 is provided to an
image processing component 158 which performs compres-
sion and persistence, resulting in a final diagnostic image
which is presented to a medical professional on an image
display 160.

[0053] We performed hyperparameter tuning of the learn-
ing rates, batch size, and both 1, and 1, regularization of filter
weights to achieve optimal performance using an indepen-
dent validation dataset that was separate from all other
datasets. The final hyperparameters used are tabulated in
Table 2.

TABLE 2

Network Training Hvperparameters

Hyperparameter Value
Learning Rate 1x10*
Filter |, Regularization 1x1073
Filter |, Regularization 1x1073
Batch Size 128

Neural Network Training and Analysis

[0054] Neural network training performance was analyzed
as a function of training objective. A network with 16
convolution blocks and 32 filters per layer was trained to
minimize either £L*,, L%, L¥ ... oramixture of I,
and MS-SSIM, defined as:

£ B P)= L *ll H+p L *us-ssfP)s (25)

where [} was set heuristically to 200 to equalize the contri-
butions of each loss function. Speckle reduction was evalu-
ated on a validation dataset consisting of 32 new Field II Pro
simulations, also based on photographs. Performance was
quantified using the £*;, £*, and L*\5 s, loss func-
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tions. Similarly, speckle reduction performance was also
analyzed as a function of depth using networks with 2, 4, 8,
or 16 blocks and 32 filters per layer, as well as networks with
16 blocks and 4, 8, 16, or 32 filters per layer, where all of the
networks were trained to minimize £*,,, . Finally, perfor-
mance was compared with and without concatenating a
B-mode image after the M-th convolution block.

Testing of Speckle Reduction Methods

[0055] All testing was performed using a neural network
with a depth of 16 blocks, a width of 32 filters, and trained
to minimize the £*,,_loss function for 30 training epochs
unless otherwise indicated. The speckle reduction perfor-
mance of the network was compared against those of receive
spatial compounding and optimized Bayesian nonlocal
means (OBNLM). Spatial compounding was implemented
on receive by performing DAS beamforming and envelope
detection independently on four non-overlapping subapet-
tures and summing the result. The OBNLM algorithm was
applied to images that were beamformed according to equa-
tion (1) using the publicly available MATLAB implemen-
tation provided by the authors of this algorithm. The default
parameter values provided by the authors were used (M=7,
=3, h=0.7).

[0056] Simulation, phantom, and in vivo test datasets were
used to evaluate beamforming performance. A simulation
test dataset was obtained with Field II Pro with the same
imaging configuration as the training dataset. Hypoechoic
cylindrical cysts with diameters of 1 mm and 3 mm and
contrasts of —20 dB and -6 dB were centered at the elevation
focus of 2 cm depth. The full synthetic aperture set of
channel signals was retrospectively focused into a 1 cmx1
cm pixel region also centered at the elevation focus, and the
channels were delay-and-summed into 16 subaperture 1Q
signals. The simulated results were assessed using the £*,,
L, and L¥*, oo, loss functions, as well as contrast,
CNR, and SNR.

[0057] Generalizability from simulations to real-world
ultrasound data was tested on a CIRS Model 040GSE
calibrated phantom imaged using a Verasonics Vantage 256
research scanner with an 112-3v linear array transducer.
Single element transmissions at 6 MHz sampled at 24 MHz
were used to obtain a full synthetic transmit aperture for
dynamic focusing on both transmit and receive. The channel
data were focused into a pixel grid of 4 cm in depth and 2
cm in width, with a pixel spacing of A/2 in both dimensions.
Transmit and receive aperture growth were applied to
achieve an f-number of 2. The phantom images were
evaluated using contrast, CNR, and SNR.

[0058] Generalizability to clinical imaging conditions was
assessed in vivo in the kidney of a healthy 58-year-old male
volunteer and in the liver of a 68-year-old female who had
a focal lesion with a surrounding fluid capsule. Channel
datasets were acquired with a modified Siemens S2000
scanner using a Siemens 4Cl1 transducer. Pulse-inversion
harmonic imaging was performed using focused transmis-
sions at 1.82 MHz. Due to technical limitations, the channel
signals were obtained for only 64 (out of 192) elements in
a sector of 54 (out of 192) beams. The remaining beams
were acquired using the full aperture using conventional
DAS. The 64 receive channel signals were beamformed into
16 subaperture signals prior to being input into the neural
network. For this particular dataset only, a partially-trained
network (15 epochs rather than 30) was used to evaluate
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speckle reduction to avoid overfitting. Image quality was
assessed using contrast, CNR, and SNR of the liver lesion
vs. the surrounding fluid, with the ROIs selected to obtain a
large region of speckle while avoiding obvious and signifi-
cant changes in underlying echogenicity.

Neural Network Training and Analysis

[0059] FIGS. 2A-C plots the £L*;, L* and L¥,/ copp,
validation losses of neural networks over 50 training epochs
for several training objectives, as computed on the valida-
tion dataset. The neural network was trained to minimize
L*5 ssne (olid), L*, (dashed), L£*, (dot-dashed), or
L*,,, (dotted). Performance was measured using the £*,
(FIG.2A), £*, (FIG. 2B), and £*, ¢ copr (FIG. 2C) losses
after each training epoch, as measured on the validation
dataset. The losses of the DAS reconstruction (thin line) are
shown for reference. The networks trained to minimize £*;
and L*,,, were found to yield the lowest £*; losses. The
networks trained to minimize £*, 5 o, and £*, . vielded
the lowest £*,/¢ oo, and L%, losses. Minimizing £*;,
resulted in unstable performance, with erratic increases in all
three losses occurring partway through training. Minimizing
L*,, resulted in fast and smooth reduction in all three
losses.

[0060] FIGS. 3A-F shows the validation losses as a func-
tion of network depth and width for a network trained to
minimize L*,, on the validation dataset. Given a fixed
width of 32 filters, deeper networks converged to lower
L¥,, L*, and L*/ o, losses after 50 epochs, and
approached these values more rapidly as well. Similar
results were observed when fixing the network depth to 16
layers and increasing the width. With the exception of the
network with a width of 4 filters, all networks outperformed
DAS beamforming by the L*,, L*, . and L¥* ¢ o,
metrics. In general, it was observed that the deeper and
wider networks trained more quickly and resulted in lower
Lx,, L*, and L*q 5, losses, as measured on the
validation sef.

[0061] FIGS. 4A-C plots the same validation losses for
networks trained to minimize £¥*,,_ with and without a
concatenated B-mode image after the M-th convolutional
block. The network with B-mode concatenation (solid)
significantly outperformed the network without B-mode
(dotted) as measured by £*; (FIG.4A), £L*, (FIG. 4B), and
L*, ¢ sons (FIG. 4C). The network without B-mode out-
performed DAS beamforming in only £*,,¢ ¢oprre

[0062] Though not plotted here, the training errors closely
followed the trends of the validation errors in all cases in
FIGS. 2A-C, FIGS. 3A-F, and FIGS. 4A-C, indicating that
the networks were not overfitting to the training data.

Image Resolution

[0063] The FWHM of the LSF was used to measure the
azimuthal resolution of each imaging method. The resolu-
tions were found to be: DAS ;.. =0.132 mm: SCrp, ~0.
156 mm; OBNLM;7,,,/0.186 mm; and NNy, ~0.129
mm, where the neural network was evaluated after being
trained to minimize £ *,,_for 30 epochs.

Cyst Simulation Results

[0064] Images reconstructed using DAS, spatial com-
pounding, OBNLM, and the neural network are pictured in
FIG. 5, along with the reference images. Image quality
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metrics for each method in the test dataset of simulated cysts
are presented in Table 3. Overall, the £*; and L*, losses
in the relatively simple test set were lower than those found
in the more complex validation set used in FIGS. 2A-C and
FIGS. 3A-F, which was composed of photographic images.
DAS accurately reproduced contrast in the 3 mm lesions,
and was within 3 dB for the 1 mm lesions.

[0065] Qualitatively, spatial compounding exhibited mod-
erate speckle reduction while preserving

TABLE 3

Test Dataset 1: Cyst Simulation Reconstruction Metrics

Target Metric DAS SC OBNLM  NN*

All simulations _[; *(dB) 28.09 12.49 4.17 4.88
gl

All simulations L *(dB) 2.84 1.13 0.20 0.18
All simulations ° * 0108  0.050 0.005 0.005
15-SSIM
-20 dB 1 mm cyst Contrast -17 dB -15 dB -7dB  -13dB
-20 dB 3 mm cyst Contrast -20dB -19dB -18dB -20dB
-6 dB 1 mm cyst Contrast -7dB -7 dB -2 dB -3dB
-6 dB 3 mm cyst Contrast -6dB -6 dB -5dB -5dB
-20 dB 1 mm cyst CNR -1.8 =22 -3.6 -4.6
-20 dB 3 mm cyst CNR -1.6 =22 -6.5 -6.7
-6 dB 1 mm cyst CNR -1.0 -1.2 -24 -2.8
-6 dB 3 mm cyst CNR -0.8 -1.1 -3.1 =27
Background SNR 1.87 2.50 11.16 11.00

*Trained to minimize L;/[ir* for 30 epochs

contrast and resolution throughout the images. Spatial com-
pounding approximately halved the test loss values. The
contrast measurements of the -20 dB cyst were slightly
worse than DAS, but the SNR was improved by 34%,
resulting in overall improvements in CNR. OBNLM applied
considerable smoothing to the speckle (497% SNR increase)
and produced the lowest £*;, losses of all methods. How-
ever, OBNLM exhibited a visible loss in resolution, result-
ing in significantly degraded contrasts in the 1 mm cysts.
Note that speckle artifacts are still visible in the background
texture of the images, indicating that the smoothing param-
eter of OBNLM was set conservatively. We observed that
relaxing the smoothing parameter resulted in worsened
speckle texture without a gain in resolution, while more
aggressive smoothing eliminated these artifacts but led to a
further loss in resolution (not pictured). Both OBNLM and
the neural network resulted in a 20-fold reduction in L*,
ssor losses from DAS. The neural network additionally had
the lowest L*, loss of all methods, and increased the
speckle SNR by 488%. The neural network resulted in
higher CNR than DAS, SC, and OBNLM in all cysts except
for the -6 dB 3 mm cyst.

Phantom Imaging

[0066]
TABLE 4
Test Dataset 2: Phantom Reconstruction Metrics

Target Metric DAS SC OBNLM  NN*
-12 dB cyst Contrast  -10 dB -10dB -9dB  -11dB

-6 dB cyst Contrast -5dB -5dB -5dB -5dB

+6 dB cyst Contrast +2dB +2 dB +2 dB +2 dB
+12 dB cyst Contrast +5dB +5 dB +5 dB +6 dB

Sep. 26, 2019

TABLE 4-continued

Test Dataset 2: Phantom Reconstruction Metrics

Target Metric DAS SC OBNLM  NN*
-12 dB cyst CNR -1.2 -1.6 -2.9 -23
-6 dB cyst CNR -0.8 -1.1 -2.2 -1.6
+6 dB cyst CNR +0.2 +0.5 +0.7 +0.8
+12 dB cyst CNR +0.7 +1.2 +2.9 +2.2
Background SNR 1.90 257 11.60 7.73

*Trained to minimize ‘L;mx* for 30 epochs

[0067] Images of the tissue mimicking phantom are shown
in FIG. 6A-B. The images in FIG. 6A show a -12 dB
hypoechoic cyst and a smaller anechoic cyst, while the
images in FIG. 6B show a +12 dB hyperechoic cyst and
point targets at the top. Contrasts and CNRs for =12 dB, -6
dB (not pictured), +6 dB (not pictured), and +12 dB 8 mm
cysts are included in Table 4, along with the speckle SNR.
In the DAS images, some mild signal attenuation was visible
in the lower half of each image resulting in darker textures.
Additionally, both the +6 dB and +12 dB hyperechoic cysts
exhibited unexpectedly low contrasts of +1 dB and +5 dB in
the DAS image. The DAS speckle SNR of 1.90 matched the
classical prediction. Spatial compounding preserved cyst
contrasts while smoothing the speckle texture, improving
the SNR by 35%. Over the four cysts, spatial compounding
improved the CNR on average by 67%. The OBNLM
technique significantly smoothed the speckle and preserved
the point targets, though the lateral edges of the hypoechoic
and anechoic cysts were blurred. Overall, OBNLM
improved SNR by 511% and CNR by 211%.

[0068] The neural network demonstrated excellent speckle
reduction, improving the SNR by 306% over DAS. The
contrasts were also preserved, resulting in higher CNRs than
both DAS and spatial compounding in all cases. The neural
network images also presented sharp high-resolution out-
lines around the -12 dB and anechoic cysts, while the
outlines around the +12 dB cyst were less sharp. The images
were subject to similar attenuation effects as DAS. Some
dark textures and structures were visible around the deep
cysts, and appeared to correspond to the speckle textures in
the DAS image. The three point targets near the transducer
surface were also preserved, but were slightly enlarged.

In Vivo Imaging

[0069]
TABLE 5
Test Dataset 3: In Vivo Reconstruction Metrics
Target Metric DAS Ne OBNLM  NN*
Liver lesion SNR 1.63 2.62 1.83 3.09
Surrounding fluid Contrast -20dB  -18dB -19dB -22dB
Surrounding fluid CNR -15 =23 -1.6 -2.8

*Trained to minimize é,w* for 15 epochs

[0070] FIGS. 7A-B are In vivo harmonic B-mode images
of a kidney (FIG. 7A) and a complex focal liver lesion
surrounded by an anechoic fluid (FIG. 7B). Image quality
metrics are included in Table 5. Both spatial compounding
images exhibited significantly reduced speckle with mar-
ginal losses in resolution in both images. However, there
was a visible loss in contrast throughout. The effects com-
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bined for a net increase in SNR of 60% and CNR of 56%.
OBNLM preserved bright granular structures throughout the
brighter regions of tissue but applied aggressive smoothing
in darker image regions with gradual changes in echogenic-
ity. Overall, OBNLM increased SNR and CNR over DAS by
12% and by 10%, respectively. The neural network signifi-
cantly reduced speckle while improving contrast. The struc-
tures within the kidney and the lobes of the liver lesion were
well-preserved, and the clutter within the surrounding fluid
of the liver lesion was reduced. Shadowing effects visible in
DAS were preserved in the neural network images. Overall,
the SNR and CNR was increased by 90% and 93% over
DAS, respectively. FIGS. 7C-D are two additional views of
the same kidney and focal liver lesion, with zoomed insets
showing closer detail. These figures show substantial
speckle reduction with the preservation of fine details and
structures.

[0071] In conclusion, the neural network was able to
estimate the true echogenicity more accurately than DAS
and spatial compounding, as measured by the £*,, L*,,
and L*,,c <, losses. The neural network beamformer
outputted a homogeneous response in regions of constant
echogenicity while mostly preserving the shapes of the
Cysts.

[0072] The neural network is notably trained entirely in
silico and can generalize to real-world imaging, including in
vivo. The neural network reduced speckle more effectively
than receive-only spatial compounding in both the phantom
and in vivo. The in vivo results were particularly remarkable
considering that the training and test datasets were acquired
with a different transducer (L12-3v at 8 MHz vs. 4C1 at 3.6
MHz), imaging configuration (linear vs. curvilinear), and
transmit focusing scheme (full synthetic aperture vs. focused
transmits), and additionally contained reverberation clutter
and inhomogeneities in sound speed leading to focusing
errors. The robust performance may be attributed to the wide
variety of speckle patterns observed in the randomly gen-
erated training dataset. By randomly selecting the physical
width, height, and position of each 64x64 pixel training
patch, the networks were provided with diverse examples of
speckle shapes, which was effectively equivalent to provid-
ing the networks with diverse examples of point spread
functions. Although the emphasis of this work was placed on
the task of estimating echogenicity, the training dataset also
contained simulated examples of both white electronic and
band-limited acoustic noise, which may have further aided
the networks in generalizing to real data.

[0073] The resolution measurements show that the neural
network preserves resolution in speckle targets, unlike spa-
tial compounding and OBNLM. Consequently, the network
preferably should be trained with not only diffuse scatterers
but also sharp point targets. In addition, the training data
should be tailored to match the specific imaging parameters
(e.g., transducer geometry, frequency, imaging depth, and
focusing configuration) of the anticipated applications,
including using appropriate speckle-to-pixel size ratios and
pixel spacing. In some embodiments, performance may also
be improved by explicitly incorporating prior knowledge
about the physics of ultrasound beamforming. For example,
full spatial compounding on both transmit and receive is
known to improve the edge definition of specular targets by
interrogating the targets from multiple angles; a hybridized
approach with spatial compounding of neural network-
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beamformed images could potentially yield better visibility
of specular boundaries while reducing speckle.

[0074] Overall, the neural networks trained quickly and
robustly. All of the presented networks were trained in under
30 minutes on a workstation equipped with a single NVIDIA
GeForce GTX 1080 Ti GPU, and could process a single
image frame in under 30 ms. The networks converged to
nearly identically performing states for random filter weight
initializations, indicating good repeatability. The networks
were also observed to be insensitive to hyperparameters
such as convolution filter weight regularization, which was
set to values ranging from 107" to 107 with marginal
differences in output.

[0075] Deeper and wider networks can represent a broader
range of functions, a property called expressive power. The
benefits of expressive power were shown in FIGS. 3A-F,
where the deeper and wider networks were able to lower the
Lx,, L*,, and L£* s, losses in the validation dataset
more rapidly and to a lower overall value. However, expres-
sive networks are also more prone to overfitting the training
data and generalizing poorly to new data. Overfitting can be
detected by observing an increase in validation loss during
training, and is often caused by a dataset that is too small
relative to the expressive power of the network. This type of
overfitting was not exhibited in FIGS. 3A-F, which showed
stable improvements in validation loss with more training
epochs, suggesting that our training dataset was large
enough.

[0076] A second form of overfitting can occur when the
training dataset distribution differs from the testing dataset
distribution, as was the case in this study. The simulated
training dataset was obtained using significantly different
configurations and noise conditions from the phantom and in
vivo test data. Unfortunately, the validation loss could not be
used to observe this type of overfitting because the ground
truth was unavailable in the phantoms and in vivo. Instead,
we qualitatively observed that a network trained for 30
epochs led to less speckle reduction and an over-emphasis of
small speckle troughs in vivo as compared to a network
trained for just 15 epochs. This suggests that the second form
of overfitting occurred, with the network learning to recog-
nize features in the simulated environment that were not
present in the in vivo data. Accordingly, in some embodi-
ments, generalizability to in vivo imaging is improved by
training the network with more realistic simulations that
model full wave propagation to include the effects of phase
aberration, reverberation, and attenuation, as well as diffuse,
specular, and point reflectors.

[0077] In addition to using a new dataset and reducing the
number of training epochs, overfitting can be mitigated by
employing regularization. We used the 1,- and 1,-norms of
the filter weights to enforce smaller weights. Furthermore,
we utilized a priori knowledge that the backscatter from
diffuse scatterers has high correlation coeflicients between
neighboring array elements to reduce the full 128 element
array into 16 beamformed subapertures. Although motivated
by computational constraints, subaperture beamforming
effectively applied a regularization by reducing the expres-
sivity of the network. More sophisticated forms of regular-
ization, such as total variation, can be included to further
reduce the impact of overfitting.

1. A method for ultrasound image reconstruction using a
convolutional neural network (CNN), the method compris-
ing:
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(a) training the CNN with a dataset comprising simulated
transducer array channel signals containing simulated
speckle as inputs, and corresponding simulated
speckle-free B-mode images as outputs; wherein the
training uses a loss function involving a norm between
estimated B-mode images and simulated speckle-free
B-mode images; wherein the estimated B-mode images
are estimated by the CNN from the simulated trans-
ducer array channel signals;

(b) measuring real-time RF signals taken directly from
ultrasound transducer array elements prior to summa-
tion;

(c) inputting the measured real-time RF signals to the

3

(d) processing by the CNN the measured real-time RF
signals to produce as output an estimated real-time
B-mode image with reduced speckle.

2. The method of claim 1 wherein the loss function is a
log-domain normalization-independent loss function.

3. The method of claim 1 wherein the loss function is a
normalization-independent mixture of 1, and multi-scale
structural similarity losses.
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4. The method of claim 1 wherein the CNN has 8 to 16
convolution blocks, wherein each of the convolution blocks
has a 2D convolution, batch normalization, and a rectified
linear unit.

5. The method of claim 1 wherein the CNN has 16 layers
of convolution blocks and 32 filters per layer.

6. The method of claim 1 further comprising performing
a conventional DAS envelope-detection reconstruction to
generate a conventional B-mode image from the real-time
RF signals, and concatenating the generated conventional
B-mode image to an output of a block of the CNN.

7. The method of claim 1 wherein simulated transducer
array channel signals are unfocused or focused channel
signals.

8. The method of claim 1 wherein the input signals are
modulated RF signals or demodulated baseband signals.

9. The method of claim 1 wherein the CNN concatenates
the original input data to an intermediate hidden layer of the
network.

10. The method of claim 1 wherein the CNN performs a
multi-scale or multi-resolution processing of the data via
striding or pooling.

11. The method of claim 1 wherein the CNN utilizes 3D
convolutions.
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