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ULTRASOUND IMAGING SYSTEM WITH A
NEURAL NETWORK FOR DERIVING
IMAGING DATA AND TISSUE
INFORMATION

TECHNICAL FIELD

[0001] The present disclosure pertains to ultrasound sys-
tems and methods which utilize a neural network for deriv-
ing imaging data, tissue information and diagnostic infor-
mation from raw ultrasound echoes.

BACKGROUND

[0002] Ultrasound is a widely used imaging modality in
medical imaging as it can provide real-time non-invasive
imaging of organs and tissue for diagnosis, pre-operative
care and planning, and post-operative patient monitoring. In
a conventional ultrasound imaging system, a transducer
probe transmits ultrasound toward the tissue to be imaged
and detects echoes responsive to the ultrasound. Acquired
echo signals (also referred to as radio frequency or RF
signals) are passed through a series of signal processing
components, including for example a beamformer which
combines raw channel data (e.g., RF signals from multiple
transducer elements) or partially beam-formed signals of
patches of transducer elements into fully beamformed sig-
nals, a demodulator which extracts quadrature signals from
the beamformed signals, and one or more filters, to produce
image data (e.g., pixel information that may be used to
produce a 2D or 3D ultrasound image). In addition to
providing an ultrasound image of the anatomy, existing
ultrasound system may be configured to perform a variety of
other types of processing to extract additional information
from the echo signals. For examples, many ultrasound
systems are configured to process the beamformed signals,
typically in parallel with processing for anatomy image
formation, for extraction of Doppler data in order to provide
flow information. To do so, conventional systems may
utilize a particularly configured signal processor to derive
the Doppler frequency from a plurality of temporally spaced
samples of the echo signals. Other systems may be config-
ured to perform elastography, vector flow imaging, and other
types of imaging as may be desirable for a variety of clinical
applications. For these purposes, conventional systems may
include particularized hardware components (e.g., pre-pro-
grammed processors) which are designed to perform a
specific sequence of signal and image processing steps.

[0003] As such, conventional ultrasound system, while
providing a significant advancement in medical imaging,
may still benefit from further improvements. For example,
conventional signal processing components rely on and
implement model-based algorithms, some of which may be
imperfect and thus only provide approximations. Limita-
tions of pre-programmed algorithms, as well as hardware
limitations, may introduce image artifacts or other short-
comings in the output of a conventional system. The hard-
wiring or pre-programming of specific models or signal
processing paths into a system may render it less flexible for
future improvements and adaptation to the needs of a user.
Therefore, improvements in this area may be desirable.
Also, current ultrasound systems generally require the user
to carefully watch the ultrasound system display, coordinate
transducer movements and manipulate user controls to pre-
cisely record the desired anatomy or pathology of interest.
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After capturing the desired images the user will typically
review the images and manually annotate specific anatomy
or pathology. Techniques for simplifying operation of an
ultrasound imaging system without sacrificing image and/or
diagnostic information quality may thus also be desirable.

SUMMARY

[0004] The present disclosure pertains to ultrasound sys-
tems and methods which utilize a neural network (e.g., a
machine-trained algorithm or hardware implemented net-
work of artificial neurons or nodes) for deriving imaging
data and/or a variety of other tissue information, such as
tissue type characterization information, qualitative or quan-
titative diagnostic information, and other types of clinically
relevant information) from raw ultrasound echo signals or
from fully or partially beam-formed RF signals. In some
embodiments, the neural network may be a deep neural
network capable of analyzing patterns using a with a multi-
dimensional (2-or more dimensional) data set, which may
also be thought of as a localized data sets, and where the
location of data within the data set and the data values may
both contribute to the analyzed result.

[0005] An ultrasound system according to some embodi-
ments may include an ultrasound transducer configured to
transmit ultrasound pulses toward tissue and generate echo
signals responsive to the ultrasound pulses, a channel
memory configured to store the echo signals, a beamformer
configured to generated beamformed signals responsive to
the echo signals, a neural network configured to receive one
or more samples of the echo signals or the beamformed
signals and produce a first type of ultrasound imaging data,
and a processor configured to generate a second type of
ultrasound imaging data, wherein the one or more proces-
sors may be further configured to generate an ultrasound
image based on the first type of ultrasound imaging data and
the second type of ultrasound imaging data and to cause a
display communicatively coupled therewith to display the
ultrasound image.

[0006] Insome embodiments, the ultrasound imaging sys-
tem may be configured to produce B-mode imaging data as
the second type of imaging data, and to produce Doppler
imaging data, vector flow imaging data, elastography imag-
ing data, tissue type characterization data, wall shear stress
of an anatomical structure containing a fluid therein, tissue
composition data, ultrasound contrast agent information,
plaque characterization data, one or more diagnostic indi-
cators associated with the B-mode imaging data, or any
combinations thereof as the first type of imaging data.
[0007] In some embodiments, the neural network may
include a deep neural network (DNN) or a convolutional
neural network (CNN). In some embodiments, the neural
network may be implemented in hardware, software, or a
combination thereof. For example, the neural network may
be implemented, at least in part, in a computer-readable
medium comprising executable instructions, which when
executed by a neural network processor coupled to the
channel memory, the beamformer, or both, cause the neural
network processor to perform a machine-trained algorithm
to produce the first type of ultrasound imaging data respon-
sive to the one or more samples of the echo signals or the
beamformed signals.

[0008] In some embodiments, the neural network may
include a data selector configured to select samples of the
stored echo signals or the beamformed signals as input to the
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neural network. In some embodiments, the data selector may
be configured to selectively couple either samples of echo
signals or samples of beamformed signals to the neural
network responsive to a control signal received by the data
selector. In some embodiments, the control signal may be
generated responsive to user input such as to enable the user
to select the type of input provided and corresponding
operational mode of the neural network. In some embodi-
ments, the neural network may be configured to additionally
receive auxiliary data as input and the auxiliary data may
include ultrasound transducer configuration information,
beamformer configuration information, information about
the medium, or combinations thereof. In such embodiments,
the first type of imaging data may be estimated by the neural
network further based on the auxiliary data.

[0009] In some embodiments, the neural network may be
operatively associated with a training algorithm configured
to receive an array of training inputs and known outputs,
wherein the training inputs comprise echo signals, beam-
formed signals, or combinations thereof associated with a
region of imaged tissue and the known outputs comprise
known properties of the region of imaged tissue. In some
embodiments, the training algorithm may be configured to
utilize, with training inputs comprising ultrasound data,
known outputs obtained using an imaging modality other
than ultrasound. In some embodiments, the neural network
may be configured to process the input data in accordance
with one of a plurality of operational modes, which may be
selected responsive to user input or automatically set by the
ultrasound system based on an imaging mode of the ultra-
sound system during acquisition of the echo signals. In some
embodiments, the neural network may be configured to
predict a fat content of the tissue based on the input data
without use of the second type of imaging data. In some
embodiments, the neural network may be configured to
predict flow properties of a fluid contained in an anatomical
structure of the tissue based on temporally successive
samples of the input data without the use the quadrature
signals produced by the image processing circuit. In some
embodiments, the neural network may be configured to
produce predicted beamformed signals based on samples of
the echo signals, and to use the predicted beamformed
signals to generate the first type of imaging data.

[0010] A method of ultrasound imaging in accordance
with some embodiments may include generating echo sig-
nals responsive to ultrasound transmitted by a transducer
operatively coupled to an ultrasound system, storing the
echo signals in channel memory, beamforming a plurality of
the echo signals from the channel memory to produce
beamformed signals, coupling samples of the echo signals,
the beamformed signals, or a combination thereof, to a
neural network trained to output a first type of imaging data
responsive to the samples of the echo signals or the beam-
formed signals, coupling the beamformed signals to a pro-
cessor configured to generate a second type of imaging data
responsive to the beamformed signals, and generating an
ultrasound image based on the first type of imaging data and
the second type of imaging data. One or more frames of
ultrasound images generated responsive to both the first type
and second type of imaging data may be provided to a
display, to storage (e.g., persistent storage or a cineloop
memory), or another type of output device for real-time use
or subsequent use (e.g., in subsequent training of the neural
network). In some embodiments, the second type of imaging
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data may be B-mode imaging data and the first type of
imaging data may include flow imaging data, tissue stiffness
imaging data, wall shear stress of an anatomical structure
containing a fluid therein, tissue composition data, ultra-
sound contrast agent information, plaque characterization
data, one or more diagnostic indicators associated with the
B-mode imaging data, or combinations thereof.

[0011] In some embodiments, coupling samples of the
echo signals, the beamformed signals, or a combination
thereof to the neural network may include coupling an input
(e.g., an array) comprising samples of the echo signals or
samples of the beamformed signals corresponding to a
location within a region of imaged tissue to the neural
network and propagating the input through the neural net-
work to estimate pixel data associated with the location
within the region of imaged tissue. In some embodiments,
coupling samples of the echo signals, the beamformed
signals, or a combination thereof to the neural network may
include coupling to the neural network an input comprising
samples of echo signals or samples of beamformed signals
from temporally sequential transmit and receive cycles
received from a location within a region of imaged tissue
and propagating the input through the neural network to
estimate a velocity of flow at the location. In some embodi-
ments, the method may include selectively coupling, respon-
sive to user input, either samples of the echo signals or
samples of the beamformed signals as input data to the
neural network, and selecting a corresponding operational
mode of the neural network based on the input data. In some
embodiments, the method may further include training the
neural network. For example, the method may include
providing at least some of the second type of imaging data
to the neural network during a training mode of the neural
network. In some embodiments, the method may further
include training the neural network using imaging data
obtained by an imaging modality other than ultrasound.

[0012] Any of the methods described herein, or steps
thereof, may be embodied in non-transitory computer-read-
able medium comprising executable instructions, which
when executed may cause a processor of a medical imaging
system to perform method or steps embodied therein.

BRIEF DESCRIPTION OF THE DRAWINGS

[0013] FIG. 1 shows a block diagram of an ultrasound
system in accordance with principles of the present inven-
tions.

[0014] FIG. 2 shows a delay and sum beamforming tech-
nique.
[0015] FIG. 3 shows aspects of input data selection for a

neural network in accordance with principles of the present
inventions.

[0016] FIG. 4 shows a block diagram of an input data
selector in accordance with principles of the present inven-
tions.

[0017] FIG. 5 shows another block diagram of an input
data selector in accordance with further principles of the
present inventions.

[0018] FIG. 6 is a flow diagram of a process of producing
ultrasound images in accordance with the principles of the
present inventions.
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DESCRIPTION

[0019] The following description of certain exemplary
embodiments is merely exemplary in nature and is in no way
intended to limit the invention or its applications or uses. In
the following detailed description of embodiments of the
present systems and methods, reference is made to the
accompanying drawings which form a part hereof, and in
which are shown by way of illustration specific embodi-
ments in which the described systems and methods may be
practiced. These embodiments are described in sufficient
detail to enable those skilled in the art to practice the
presently disclosed systems and methods, and it is to be
understood that other embodiments may be utilized and that
structural and logical changes may be made without depart-
ing from the spirit and scope of the present system. More-
over, for the purpose of clarity, detailed descriptions of
certain features will not be discussed when they would be
apparent to those with skill in the art so as not to obscure the
description of the present system. The following detailed
description is therefore not to be taken in a limiting sense,
and the scope of the present system is defined only by the
appended claims.

[0020] An ultrasound system according to the present
disclosure may utilize a neural network, for example a deep
neural network (DNN), a convolutional neural network
(CNN) or the like, to bypass certain processing steps in
conventional ultrasound imaging. In some examples, the
neural network may be trained using any of a variety of
currently known or later developed machine learning tech-
niques to obtain a neural network (e.g., a machine-trained
algorithm or hardware-based system of nodes) that is able to
derive or calculate the characteristics of an image for display
from raw channel data (i.e., acquired radio frequency (RF)
echo signals) or in some cases, from partially- or fully-
beamformed signals. Neural networks may provide an
advantage over traditional forms of computer programming
algorithms in that they can be generalized and trained to
recognize data set features by analyzing data set samples
rather than by reliance of specialized computer code. By
presenting appropriate input and output data to a neural
network training algorithm, the neural network of an ultra-
sound system according to the present disclosure can be
trained to produce image data (e.g., flow imaging data) and
derive other types of tissue information (e.g., tissue content
or type, strain/stress data, identification of specific anatomi-
cal structures, within the imaged region, etc.) without the
need for a physically-derived model to guide system opera-
tion.

[0021] FIG. 1 shows an example ultrasound system in
accordance with principles of the present invention. The
system 100 may include or be operatively coupled to an
ultrasound transducer 113 configured to transmit ultrasound
pulses toward a medium and generate echo signals respon-
sive to the ultrasound pulses. The ultrasound system 100
may include channel memory 121 configured to store the
acquired echo signals (raw RF signals), and a beamformer
122, which may be configured to perform transmit and/or
receive beamforming and which may include a beamformer
memory 123 configured to store beamformed signals gen-
erated responsive to the acquired echo signals. In some
embodiments, the system 100 may include or be communi-
catively coupled to a display 138 for displaying ultrasound
images generated by the ultrasound system 100.
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[0022] The ultrasound transducer 113 may include an
ultrasound transducer array 114, which may be provided in
a probe 112, for example a hand-held probe or a probe
configured to be at least partially controlled by a computer
(e.g., a machine-actuated probe). In some examples, the
array 114 may be implemented using a plurality of patches,
each comprising a sub-array of transducer elements and the
array 114 may be configured to be conformably placed
against the subject to be imaged. The array 114 is operable
to transmit ultrasound toward a region of interest and to
receive echoes for imaging the region of interest (ROI). A
variety of transducer arrays may be used, e.g., linear arrays,
curved arrays, or phased arrays. The array 114 may include,
for example, a two dimensional array of transducer elements
capable of scanning in both elevation and azimuth dimen-
sions for 2D and/or 3D imaging.

[0023] The array 114 may be coupled to a microbeam-
former 116, which may be located in the probe 112 or in an
ultrasound system base (e.g., in a cart-based system such as
the SPARQ or EPIQ ultrasound system provided by Philips.
The microbeamformer 116 may control the transmission and
reception of signals by the array 114. The array 114 may be
coupled to the ultrasound system base via the microbeam-
former 116, which may be coupled (via a wired or wireless
connection) to a transmit/receive (T/R) switch 118 typically
located in the base. The T/R switch 118 may be configured
to switch between transmission and reception, e.g., to pro-
tect the main beamformer 122 from high energy transmit
signals. In some embodiments, the functionality of the T/R
switch 118 and other elements in the system may be incor-
porated within the probe, such as a probe operable to couple
to a portable system, such as the LUMIFY system provided
by PHILIPS. The probe 112 may be communicatively
coupled to the base using a wired or wireless connection.
The probe 412 may be communicatively coupled to the base
using a wired or wireless connection. In some embodiments,
the transducer, the channel memory, and hardware storing
the neural network can be located in the probe, and a display
for displaying images created by the neural network can be
communicatively coupled to the probe. For example, the
display can be coupled via a cable to the probe or via
wireless communication, in which the probe can include a
wireless transmitter to send the image data to the display. In
certain embodiments, the system can include a graphics
processing unit (GPU) to fully or partially train the neural
network in the system. For example, a GPU can be located
in a probe with the transducer, the channel memory and the
hardware storing the neural network. Alternatively, the GPU
can be located separately from the probe, such as being
located in a tablet or other computing device, such as a smart
phone.

[0024] The ultrasound transducer 113 may be configured
to acquire echo signals responsive to ultrasound signals
transmitted toward a medium to be imaged (e.g., tissue). As
described, the transducer 113 may include an array of
elements capable, under control from the transmit/receive
controller 120, to transmit pulses of ultrasound toward the
medium and detect echoes responsive to the transmit pulses.
The transmit/receive controller 120 controls the transmis-
sion of ultrasound signals by the transducer 113 and the
reception of ultrasound echo signals by individual elements
or groups of elements of the array (e.g., in the case of a
transducer including a microbeamformer (AF) 116). The
transmit/receive controller 120, in controlling the transmis-
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sion and reception of signals, may receive input from the
user’s operation of a user interface 124. The user interface
124 may include one or more input devices such as a control
panel 142, which may include one or more mechanical
controls (e.g., buttons, encoders, etc.), touch sensitive con-
trols (e.g., a trackpad, a touchscreen, or the like), and other
input devices. Another function which may be controlled by
the transmit/receive controller 120 is the direction in which
beams are steered. Beams may be steered straight ahead
from (orthogonal to) the transmission side of the array 114,
or at different angles for a wider field of view. Echo signals
received by the ultrasound transducer 113 may be coupled to
channel memory 110, which receives and stores the acquired
echo signals. The channel memory 110 may be configured to
store per-element or group (in the case of microbeamformed
signals) echo signals (also referred to as raw RF signals or
simply RF signals, or per-channel data). The pre-channel
data may be accumulated in memory over multiple transmit/
receive cycles.

[0025] The system 100 may further include a beamformer
122, which is configured to receive the acquired echo signals
and produce beamformed RF signals. The beamformer 122
may combine individual echo signals or partially beam-
formed signals from groups of transducer (e.g., in the case
of a transducer associated with a microbeamformer) into a
fully beamformed signal. For example, the beamformer 122
may perform delay and sum beamforming as shown in FIG.
2. As shown in FIG. 2, the beamformer (e.g., beamformer
122) may receive per-channel RF signals 206, which corre-
spond to echoes 211 from a reflector 210 as detected by
elements 205 of the array. The raw RF signals 206 are
delayed by an appropriate amount of time 207 to temporally
align them (as shown at 209) and then combined (as shown
at 215) into a beamformed signal 217, which may also be
referred to as beamformed RF signal or summed RF signal.
In some cases, the temporally aligned signals may be
multiplied by a factor (as shown at 208) before they are
summed In some cases, a microbeamformer may be
included, for example in the transducer probe, which per-
forms partial beamforming of signals received by patches of
elements (e.g., a subset of the elements detecting echoes in
any given transmit/receive cycle) and thereby reduces the
number of channel inputs into the main beamformer. In such
cases, the main beamformer (e.g., beamformer 122) may
produce fully beamformed signals corresponding to a scan
line within the field of view from the partially beamformed
signals. In some embodiments, the beamformer (and/or
microbeamformer, if included) may be configured to use,
alternatively or additionally, other techniques, including but
not limited to, dual apodization with cross-correlation, phase
coherence imaging, capon beamforming and minimum vari-
ance beamforming, all operating on the per-channel data to
combine the information from the echo signals and form an
image line of the backscattered ultrasound energy from
tissue.

[0026] Referring back to FIG. 1, the beamformed signals
produced by the beamformer may be coupled to further
downstream signal processing components (e.g., processor
150) for generating one or more types of ultrasound imaging
data, for example imaging data for producing a grayscale
image of the scanned anatomy (e.g., a B-mode image). The
processor 150 may be implemented in software and hard-
ware components including one or more CPUs, GPUs,
and/or ASICs specially configured to perform the functions
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described herein for generating ultrasound images and pro-
viding a user interface for display of the ultrasound images.
In some embodiments, samples of the beamformed signals
may, alternatively or additionally, be coupled to the neural
network 160, which may be trained to produce one or more
other types of imaging data such as flow imaging data, tissue
elasticity imaging data, and others. The imaging data pro-
duced by the processor 150 may be used to generate an
ultrasound image which also includes imaging data output
from the neural network 160, e.g., as described further
below. In some embodiments, the beamformed signals may
be stored in beamformer memory 123, over one or multiple
transmit/receive cycles, until they are used for image gen-
eration (e.g., by the neural network and/or by the one or
more image processors) or tissue characterization.

[0027] As shown in the example in FIG. 1, the system 100
may include one or more processing components, collec-
tively referred to as processor 150, which is configured to
receive beamformed signals and generate one or more types
of imaging data for producing an ultrasound image (e.g., a
B-mode image). For example, the beamformed signals may
be coupled to a signal processor 126, which is configured to
process the beamformed signals in various ways, such as by
bandpass filtering, decimation, I and Q component separa-
tion, and harmonic signal separation. The signal processor
126 may also perform additional signal enhancement such as
speckle reduction, signal compounding, and noise elimina-
tion. The processed signals may be coupled to a B-mode
processor 128 for producing B-mode imaging data. The
B-mode processor 128 can employ amplitude detection for
the imaging of structures in the body. The signals produced
by the B-mode processor 128 may be coupled to a scan
converter 130 and a multiplanar reformatter 132. The scan
converter 130 may be configured to arrange the signals in the
spatial relationship from which they were received in a
desired image format. For instance, the scan converter 130
may arrange the signals into a two dimensional (2D) sector-
shaped format, or a pyramidal or otherwise shaped three
dimensional (3D) format. The multiplanar reformatter 132
can convert echoes which are received from points in a
common plane in a volumetric region of the body into an
ultrasonic image (e.g., a B-mode image) of that plane, for
example as described in U.S. Pat. No. 6,443,896 (Detmer).
A volume renderer 134 may generate an image of the 3D
dataset as viewed from a given reference point, e.g.. as
described in U.S. Pat. No. 6,530,885 (Entrekin et al.).

[0028] Additionally and optionally, signals from the signal
processor 126 may be coupled to a Doppler processor 144,
which may be configured to estimate the Doppler shift and
generate Doppler image data. The Doppler image data may
include colorflow data which may be overlaid with B-mode
(or grayscale) image data for displaying a conventional
duplex B-mode/Doppler image. In some examples, the Dop-
pler processor 144 may include a Doppler estimator such as
an auto-correlator, in which velocity (Doppler frequency)
estimation is based on the argument of the lag-one autocor-
relation function and Doppler power estimation is based on
the magnitude of the lag-zero autocorrelation function.
Motion can also be estimated by known phase-domain (for
example, parametric frequency estimators such as MUSIC,
ESPRIT, etc.) or time-domain (for example, cross-correla-
tion) signal processing techniques. Other estimators related
to the temporal or spatial distributions of velocity such as
estimators of acceleration or temporal and/or spatial velocity
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derivatives can be used instead of or in addition to velocity
estimators. In some examples, the velocity and power esti-
mates may undergo threshold detection to reduce noise, as
well as segmentation and post-processing such as filling and
smoothing. The velocity and power estimates may then be
mapped to a desired range of display colors in accordance
with a color map. The color data, also referred to as Doppler
image data, may then be coupled the scan converter 130
where the Doppler image data is converted to the desired
image format and overlaid on the B-mode image of the
tissue structure containing the blood flow to form a color
Doppler image.

[0029] Additionally and optionally, the system 100 may
include a vector flow processor 146, which may be config-
ured to extract beam-angle-independent velocity informa-
tion from the signals generated responsive to the detected
echoes. For example, the vector flow processor 146 may be
configured to estimate the beam-angle-independent velocity
components of flow within an imaged bodily structure (e.g.,
a blood vessel) using the transverse oscillation method or
synthetic aperture method (e.g., as described by Jensen et al.,
in “Recent advances in blood flow vector velocity imaging,”
2011 IEEE International Ultrasonics Symposium, pp. 262-
271, the disclosure of which is incorporated herein by
reference in its entirety for any purpose), or any other
currently known or later developed vector flow estimation
and imaging technique.

[0030] Similar to the imaging data from the B-mode
processor, the imaging data produced by any of these
additional optional image data processors may be coupled to
the scan converter 130 for arranging the signals in the spatial
relationship from which they were received in a desired
image format (e.g., a two dimensional (2D) sector-shaped
format, or a pyramidal or otherwise shaped three dimen-
sional (3D) format) and to the multiplanar reformatter 132
for extracting a set of the signals received from points in a
common plane in a volumetric region of the body into an
ultrasonic image of that plane. In the case of 3D imaging, the
signals may additionally or alternatively be coupled to the
volume renderer 134 may generate an image of the 3D
dataset as viewed from a given reference point. Thus, it will
be understood that the processor 150 may include one or
more signal processing paths, circuits, or specifically pro-
grammed software components to produce B-mode imaging
data, Doppler imaging data, vector flow imaging (VFI) data,
etc. as may be desired, which data may be arranged in a
desired display format including combining the data for
duplex (e.g., an overlay of Doppler and B-mode data or of
B-mode and stress/strain data) or triplex displays (e.g., an
overlay of Doppler and B-mode in one image window
concurrently displayed with a second image window show-
ing a graphical display such as an M-mode image or a
spectral Doppler image).

[0031] In accordance with principles of the present inven-
tion, the system 100 may include a neural network 160. The
neural network 160 may be configured to receive one or
more samples of the echo signals, one or more samples of
the beamformed signals, or a combination thereof, as input
and produce another type of ultrasound imaging data respon-
sive to the input. The neural network 160 may be imple-
mented in hardware (e.g., using hard-wired circuitry for the
artificial nodes of the network) and/or software components
(e.g., using executable instructions which program one or
more processors to implement a machine-trained algorithm).
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The neural network 160 may be trained to propagate the
input (e.g.. samples of raw echo signals and/or samples of
beamformed signals) through the network of nodes to obtain
predicted or estimated imaging data, which may subse-
quently be further processed for display. In some cases the
network may be trained to operate in any one of a plurality
of operational modes and may produce, responsive to the
same input, a different type of imaging data or output other
tissue information depending on the operational mode of the
network. The mode may be selective (e.g., responsive to user
input, or automatically selected by the system).

[0032] As described, the neural network 160 may be
hardware- (e.g., neurons are represented by physical com-
ponents) or software-based (e.g., neurons and pathways
implemented in a software application), and can use a
variety of topologies and learning algorithms for training the
neural network to produce the desired output. For example,
a software-based neural network may be implemented using
a processor (e.g., single or multi-core CPU, a single GPU or
GPU cluster, or multiple processors arranged for parallel-
processing) configured to execute instructions, which may
be stored in computer-readable medium, and which when
executed cause the processor to perform a machine-trained
algorithm for producing ultrasound images and/or output-
ting tissue information from one or more of the above
identified inputs. The ultrasound system may include a
display or graphics processor, which is operable to arrange
the ultrasound image and/or additional graphical informa-
tion, which may include annotations, tissue information,
which may also be output by the neural network, and other
graphical components, in display window for display on the
display of the ultrasound system. In some embodiments, the
ultrasound images and tissue information may additionally
be provided to a storage device, such as a picture archiving
and communication system (PACS) or another local or
remote/networked storage device, for reporting purposes or
future machine training (e.g., to continue to enhance the
performance of the neural network). In yet further examples,
imaging data obtained from a variety of different imaging
modalities (e.g., magnetic resonance imaging (MRI), com-
puted tomography (CT), or another), which may be stored in
PACS, may alternatively or additionally be used to train the
neural network. As will be appreciated, systems according to
the present disclosure may include a two-way communica-
tion link coupling the system, and more specifically the
neural network to source(s) of training data (e.g., a storage
device) and/or to other machine-trained systems for ongoing
feedback and training.

[0033] Insome embodiments, the neural network 160 may
be configured specifically to produce imaging data and/or
any desired tissue information other than B-mode imaging
data. For example, the neural network may be trained to
provide flow imaging data (e.g., beam-angle dependent or
beam-angle independent velocity information) directly from
the echo signals and/or beamformed signals, while the
system produces an anatomy image for overlay therewith
using the pre-programmed or model-based processing com-
ponents in processor 150. The B-mode imaging data may
then be combined (in this case, overlaid) with the flow
imaging data to produce an ultrasound image similar to a
conventional Doppler image showing a color-coded flow
map (or in the case of VFI, showing a vector field) onto a
grayscale anatomy image. In other embodiments, the neural
network may be trained to provide elastography imaging
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data (e.g., tissue stiffness information) directly from the echo
signals and/or beamformed signals, while the system pro-
duces an anatomy image for overlay therewith using the
pre-programmed or model-based processing components in
processor 150. In conventional elastography, the tissue stiff-
ness information is color coded similar to how flow infor-
mation may be color coded for display. In the current
example, the elastography imaging data (e.g., tissue stiffness
information) may be coupled to the processor 150 (e.g., to
the scan converter and the multiplanar reformatter or volume
renderer) to arrange the tissue stiffness information in a
desired format for display with the anatomy image produced
based on B-mode data output by the B-mode processor.
Other types of imaging data and/or tissue information may
be estimated directly from the echo signals and/or beam-
formed signals by the neural network bypassing standard
image formation techniques and reliance on downstream
signal processing. In this manner, the imaging data and/or
tissue information output by the neural network may not be
negatively affected by image artefacts and may thus be more
accurate, especially with further training of the neural net-
work over time. The use of a neural network for generating
imaging data and tissue information in a variety of clinical
applications, some of which are described further below,
may be implemented in accordance with the examples
herein.

[0034] To train a neural network 160 according to the
present disclosure, training sets which include multiple
instances of input arrays and output classifications, {Xi,Yn},
may be presented to the training algorithm(s) of the neural
network 160 (e.g., an AlexNet training algorithm, as
described by Krizhevsky, A., Sutskever, 1. and Hinton, G. E.
“ImageNet Classification with Deep Convolutional Neural
Networks,” NIPS 2012 or its descendants). In the training
data set, the input data [Xi] may include per-channel echo
signals, e.g., as illustrated in FIG. 3, optionally together with
auxiliary data, described further below, and the output data
[Yi] may include any known properties of the tissue corre-
sponding to the sample of echo signals (e.g., known veloci-
ties in the case of blood flow or other tissue motion imaging,
known strain/stress values, or echo intensity data for pro-
ducing anatomy imaging information, etc.). The input [Xi]
and output [ Yi] data of the training data sets may be acquired
by an ultrasound imaging system which has components for
conventional ultrasound imaging or an imaging system
configured for another type of imaging modality (e.g., an
MRI scanner, CT scanner, and others). In some embodi-
ments the system 100 may also include conventional beam-
forming, signal and image processing components to acquire
input and output data sets for use in producing combined
images or for providing additional training sets to the
training algorithm associated with neural network 160. For
example, different types of tissue may be scanned (e.g.,
ultrasonically scanned) using a transducer which is opera-
tively associated with a spatial localization system (e.g., an
EM or ultrasonically tracked probe), which can spatially
correlate the point or region of interest of tissue being
scanned to the output data (e.g., the imaging data and/or
tissue characterization information to be used as the output
in the training set). In further examples, the neural network
160 may be trained using a suitable ultrasound simulation
such as the Field II program (as described by J. A. Jensen:
A Model for the Propagation and Scattering of Ultrasound
in Tissue, J. Acoust. Soc. Am. 89, pp. 182-191, 1991), which
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takes as input the spatial distribution of points representing
scatterers in an image field together with data about the
geometry of the ultrasound transducer and the transmitted
pulse and outputs computed ultrasonic data representing the
per-element echo signals (also referred to as simulated
echoes). The system 100 may use this type of data for
training purposes, e.g., by using the simulated echoes and
auxiliary data about the transducer and transmitted pulses
for one or more given points in space and present them to the
neural network as input training data [Xi] with the corre-
sponding output data [Yi] being the scatterer densities from
the simulation. Other algorithms or techniques may addi-
tionally or alternatively be used for training the neural
network 160. Also, as noted, in some cases, the output data
(e.g., imaging data and/or known properties of tissue) may
be obtained using an imaging modality different from ultra-
sound, for example MRI, CT or others or any combinations
thereof. The neural network 160 may thus be trained to
produce imaging data, and in some case images of higher
quality (e.g.. higher resolution) than may otherwise be
possible through conventional ultrasound image processing
directly from the RF signals.

[0035] A neural network training algorithm associated
may be presented with thousands or even millions training
data sets in order to train the neural network 160 to directly
estimate or output imaging data or a variety of tissue
properties based on the raw measurement data (i.e., raw echo
or beamformed RF signals) without reliance on an explicit
model of the input/output relationship (e.g., pre-pro-
grammed physics-based models typically implemented in
conventional beamformers, signal processors or imaging
data processors of existing ultrasound systems). That is,
hundreds, thousands, or millions of training data sets may be
presented to a machine learning algorithm to develop a
network of artificial neurons or nodes arranged in accor-
dance with any one of a variety of topographies or models.
The neurons of the neural network are typically connected in
layers and signals travel from the first (input) layer to the last
(output) layer. With advancements in modern neural net-
works and training algorithms, a neural network comprising
hundreds of thousands to millions of neurons or nodes and
connections therebetween may be developed. The signals
and state of the artificial neurons in a neural network 160
may typically be real numbers, typically between 0 and 1,
and a threshold function or limiting function may be asso-
ciated with each connection and/or node itself, such that the
signal must equal or exceed the threshold/limit before propa-
gating.

[0036] The output of the training process may be a set of
weights (also referred to as connection or node weights)
which may be used by the neural network 160 during
operation (e.g., to adjust the threshold or limiting functions
controlling propagation through the layers of the neural net).
Once trained, the neural network 160 may be configured to
operate on any input array, Xk, to produce one or more
output values that can be interpreted loosely as a probability
or confidence estimate that Xk is a member of the output set
Yn (e.g. that the sample of echo signals correspond to a set
of pixel image data). The output sets, Yn, can also represent
numerical value ranges. In this manner, a set of RF signals
may be provided as input to the neural network 160, the set
of RF signals corresponding to a subset of a given spatial
locations (e.g., a region of interest in the imaged tissue)
within the medium and the neural network may provide as
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output a set of corresponding pixel data for producing a
portion of the image at the given spatial location. In some
examples, by changing the weights of the neural network,
this system can be dynamically reconfigured to produce
images of a wide variety of different characteristics. In some
embodiments, the neural network 160 may be a deep-
learning or simply deep neural network (DNN) and/or an
adaptive neural network. In some embodiments, a deep
neural network (DNN), such as a deep convolutional neural
networks (deep CNN) also referred to as fully convolutional
network (FCN), may be used to localize objects within an
image on a pixel by pixel basis. In examples, the input
training arrays, Xi, may be formed from any desired type of
image data (e.g., flow image data, elastography image data)
surrounding point in a region of interest in an image. Each
training array may be classified into one or more output sets
or values based on the set membership of the output point or
pixel in question. As such, the ultrasound system 100 may be
configured to at least partially bypass certain conventional
signal processing to output imaging data for producing
ultrasound images, in some cases in combination with echo
intensity information derived through conventional signal
processing. Rather, the estimation or prediction of values
that form the imaging data output by the neural network
would be accomplished implicitly within the neural net-
work.

[0037] Inexamples of blood flow and/or contrast imaging,
temporal aspects may be accounted for in the training of the
neural network. Ifthe ultrasonic echoes, €1, as shown in FIG.
3, are selected to include data acquired over multiple ultra-
sonic transmit receive cycles, then a training process as
described herein may be used to distinguish different tissue
types on the basis of the spatial and temporal characteristics
of the echoes from multiple transmit events. In, such a
manner, the neural network may be trained to produce
imaging data associated with moving tissue (e.g., blood
flow) and/or contrast media. Further, in examples of intra-
vascular ultrasound (IVUS) imaging, such as when the
neural network operates on echoes acquired from an array
supported on an imaging catheter, the neural network may be
trained to identify and localize flowing flood from the 2D
echo image data by training the neural network with per-
channel echo data from multiple frames as training input (xi)
and the corresponding segmented (in some cases manually)
image data (tissue/blood) as training output (vi). Echo
signals and/or beamformed signals acquired over multiple
transmit/receive cycles may be used for other blood flow or
other moving tissue detection and imaging applications.

[0038] As described, the output of the neural network 160
may be coupled to the processor 150 for combining with
imaging data produced by conventional signal processing
techniques. For example, the output of the neural network
160 may be coupled to the scan converter 130 and multi-
planar reformatter 132 and/or volume renderer 134 for
arranging the subsets of pixel data received from the neural
network, based on their spatial attributes, and presenting the
imaging data in a desired format (e.g., a 2D or 3D ultrasound
image). In some examples, the imaging data (e.g., pixel data)
or tissue information provided by the neural network may be
buffered until sufficient amount of pixel data, for example,
enough to construct a full frame of a color flow, vector flow,
or an elastography image, has been output by the neural
network. In some examples, prior to passing the output data
to the processor 150, the output of the neural network may
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be passed through a data conditioner 164, which may be
configured to spatially and temporally process the output
data to highlight certain spatial and/or temporal character-
istics thereof. In some examples, the data conditioner 164
may be configured to perform multi-resolution image pro-
cessing.

[0039] Once combined the imaging data produced by the
neural network has been combined with that produced by
processor 150, the data may be additionally processed, in
conventional manner to enhance the final image and/or add
annotation, as previously described. The ultrasound image
(s) may be displayed in real-time, e.g., on a display unit of
the user interface 124, buffered into a cineloop memory for
displaying temporal sequences of images, and/or exported to
a storage device or a printing system. Stored ultrasound
images (or pre-formatted/pre-annotated imaging data) may
be retrieved for subsequent analysis and diagnosis, inclusion
in a report and/or for use as training data. The ultrasound
imaging data may be further processed using conventional
techniques to extract additional quantitative and/or qualita-
tive information about the anatomy or characteristics of the
tissue being scanned.

[0040] In some embodiments, the RF signals (e.g., from
channel memory 110 or the beamformer memory) may be
coupled to the neural network 160 via an input data selector
162. The input data selector 162 may be configured to select,
for each point or region of interest (ROI) in an imaging field
of view, a corresponding array of m RF signal samples (e.g,,
echo signal samples) from each or a subset of elements of
the transducer array. In some examples, the input data
selector 162 may be configured to select the samples such
that the centers of the samples of RF signals correspond
approximately to the round trip time delay and thus to the
depth of interest (see e.g., FIG. 3). As shown in the example
in FIG. 3, m samples of echo signals ¢, (i.e. per-channel data
represented by e, e,, e,, . . . e,) are shown to have been
selected based on having their centers corresponding to the
depth of interest. In some examples, as long as the data
segment lengths are long enough to include the information
from each echo surrounding the depth of interest, it may not
be strictly necessary to center the depth of interest within the
echo segments. In some embodiments, the data selector 162
may thus be configured to select a subset of echo signals
from the acquired echo signals, which are associated with
adjacent points within a region of imaged tissue. After
selection of the appropriate input data set, imaging and other
tissue data extraction would be performed implicitly by the
neural network 160 without the reliance on conventional
beamforming.

[0041] In some examples, the neural network 160 may be
trained to operate in a plurality of modes based, at least in
part, on the input data type (e.g., per-channel data, beam-
formed signals, quadrature data, imaging data, or a combi-
nation thereof). For example, when using beamformed RF
signals, select samples of the beamformed RF signals (over
single or multiple transmit/receive cycles) may be coupled
to the neural network 160, e.g., via an input data selector
162, which is configured to select the appropriate sample of
beamformed RF signals corresponding to the ROIL. In such
examples, instead of or in addition to per-channel signals,
the sample selector would select samples of RF signals
corresponding to scanlines from the region of interest and as
well as neighboring lines of sight, or they could may
represent beamformed RF signals corresponding to scan-
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lines generated from successive transmit events. Ultrasound
imaging data for the scanlines corresponding to the input
array of beamformed RF signals can thus be implicitly
estimated by the neural network directly from the beam-
formed RF signals.

[0042] The input data selector 162 may be further config-
ured to activate the appropriate operational mode of the
neural network 160, which may be responsive to user input
or which may be a pre-programmed default based on the
imaging mode during acquisition of the echo signals (e.g.,
flow imaging, elastography, etc.). FIGS. 4 and 5 show
examples of input data selectors 462 and 562 which may be
operatively associated with neural network 160 to select the
type and sample of input data and/or activate the appropriate
mode of the neural network. The input data selector 462 or
562 may be used to implement the data selector 162 of the
example system in FIG. 1.

[0043] For example, referring to FIG. 4, the input data
selector 462 may include an input type selector which may
selectively couple the type of data (e.g., echo signals or
beamformed signals) to the neural network responsive to a
control signal. The control signal may be generated based on
user input. The input data selector 462 may include a sample
selector which selects and couples the appropriate sample of
signals of the selected type as previously described. To that
end, and as shown in the example in FIG. 5, the input type
selector 564 may include a mode selector 565 and a switch
567. The mode selector 565 may receive the control signal
and send a select (Sel) signal to the switch to selectively
couple the samples of the appropriate type of input data to
the neural network 160. Additionally the input data selector
562 may be configured to activate the appropriate mode of
the neural network, for example by transmitting a mode
control signal (e.g., from the mode selector 565) to the
neural network 160.

[0044] In some embodiments, the neural network 160 may
be trained to operate in one or a plurality of different modes
further based on the type of imaging data or tissue infor-
mation that may be desired to be obtained. As described, the
neural network 160 may be configured to output different
types of imaging data responsive to the same input. For each
of these different types of imaging data or tissue informa-
tion, the network may be trained and thus include different
propagation paths (e.g., layers of nodes and connection
developed through appropriate training) and the propagation
path or mode may be selected by the user or automatically
invoked by the system depending on the imaging mode or
application (e.g., blood flow imaging, fetal ultrasound imag-
ing, etc.)

[0045] In some embodiments, the neural network of an
ultrasound system according to the present disclosure may
be configured to perform ultrasonic tissue characterization,
for example to characterize fat content, plaque, or for
ultrasonic contrast imagining, e.g., by presenting the neural
network during a training phase with appropriate training
data sets of inputs and known outputs, for example obtained
through conventional ultrasound imaging or through imag-
ing using a different modality.

[0046] Forexample, in ultrasonic liver imaging, ultrasonic
attenuation and back-scattering (i.e., tissue echogenicity)
increases in proportion to fat content while speed of ultra-
sound correspondingly reduces. By quantifying the ultra-
sound attenuation, echogenicity and/or speed from the
beamformed RF echoes and correlating this attenuation with
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fat content, estimates of the fat content of the liver (or other
tissue or organs, in other applications) may be performed
with ultrasound. The customer-facing output of such a
system may be quantitative (e.g., a single value representing
the fat fraction within the imaged tissue), which may be
displayed onto an image of the anatomy (e.g., for a specific
point or region of interest) or it may be graphically repre-
sented, with each quantitative value being color-coded and
overlaid on a 2D image or a 3D volume rendering of the liver
(or other organ or tissue) similar to conventional overlays of
blood flow or elastography information. As described, a
neural network

[0047] To train a neural network to extract tissue infor-
mation pertaining to tissue content (e.g., fat content), the
neural network may be presented with training data sets
including localized raw RF signals and/or beamformed RF
signals as inputs and the corresponding quantified tissue
parameter (e.g., fat content or other type of tissue content),
which may be obtained via the ultrasound quantification
method above or through other imaging or non-imaging
process capable of determining the tissue content of the
tissue being imaged, as the known output. Once appropri-
ately trained, the neural network may be opearable to
implicitly extract this information directly from the raw RF
signals and/or beamformed RF signals without reliance on
the ultrasound quantification method used to initially obtain
the training data.

[0048] In another example, plaque characterization may
be enhanced by a neural network appropriately trained to
replace existing vessel tissue classification models that are
preprogrammed in conventional ultrasound systems, such as
may be used by intravascular ultrasound (IVUS) catheters to
provide colorized tissue map of plaque composition with
lumen and vessel measurements. For example, the VH
algorithm provided by Philips Volcano can be said to gen-
erally utilize beamformed ultrasound RF signals from an
IVUS catheter and analyze the short-time windowed RF
spectral properties of these echo signals to classify the tissue
into one of several different categories such as fibrous tissue,
necrotic core, dense calcium and fibro-fatty tissue. An image
may then be provided showing the distribution of these
tissue types within a vessel wall. Thus, to train the neural
network of a system according to the present disclosure to
provide relevant vessel tissue classification information,
training data sets including IVUS-obtained RF signals may
be provided as input with corresponding known tissue
classifications (e.g., fibrous, necrotic core, dense calcium,
etc.) as known outputs during a training phase of the neural
network. Generally, raw RF signals and/or beamformed RF
signals and corresponding vascular pathology data obtained
using an existing IVUS system may be used to train an
ultrasonic imaging system with a neural network to estimate
vascular tissue composition directly from the detected
echoes and/or beamformed signals, without the need for
Fourier transforms and heuristic techniques that may cur-
rently be employed by conventional IVUS systems.

[0049] In yet further examples, the neural network may be
trained to characterize tissue with respect to the presence of
ultrasonic contrast agents. In ultrasonic contrast imaging,
per-channel data from multi-pulse sequences (e.g. power
modulation) are typically beamformed and then combined to
form an image representing the volume density of
microbubble contrast agents across the imaging field of
view. The same may be implicitly (without beamforming
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and/or explicitly calculating the volume density) be
achieved by a neural network which is trained with input
training data in the form of per-channel data and/or at least
partially beamformed data and corresponding known vol-
ume density of microbubble contrast agents.

[0050] In further examples, human hearts from multiple
test subjects could be scanned using 1D or 2D array trans-
ducers and the resulting images and/or 3D volumes could be
segmented (manually or automatically) into regions that are
either a) within a cardiac chamber; or b) comprising myo-
cardial tissue. These images may be used to train the neural
network 160 to perform cardiac chamber recognition. In
examples, the input data, [xi], may be per-channel data and
optionally auxiliary data as described herein, while the
output data would be a classification (i.e., either a) or b). In
examples, the neural network may include an appropriately
trained semantic classifier to perform this type of classifi-
cation. The so trained neural network may then be used to
segment and identify cardiac chambers directly from the raw
or beamformed data without having to first reconstruct an
image of the anatomy and without reliance on image pro-
cessing techniques. This segmentation information could be
used to suppress imaging artifacts, or it could be fed directly
into algorithms to quantify ejection fraction or other clinical
parameters. The system may be similarly trained to identify
other types of tissue or anatomical structures (e.g., walls of
vessels, lung/pleura interface) and quantify relevant clinical
parameters associated therewith (e.g., obtain a nuchal trans-
lucency measurement).

[0051] As shown in the examples in FIGS. 1 and 4, the
neural network may be configured to receive auxiliary data,
such as information about the programming of the beam-
former 122, properties of the transducer 113 (e.g., number,
arrangement, and/or spacing of elements of the array, type of
array, etc.), known information about the anatomy being
imaged, and/or the spatial location of the point or region of
interest (e.g., as may be obtained by a transducer tracking
system). Other types of information, for example in the case
of training sets from different imaging modalities, may also
be provided as auxiliary information to the training algo-
rithm. In some embodiments, the neural network may
receive auxiliary data may be used during the training
process to supplement the training data sets. Optionally,
auxiliary data may also be provided to the neural network
during an imaging session.

[0052] FIG. 6 shows a flow diagram of a process in
accordance with some examples of the present disclosure.
The process 600 may begin by storing the acquired echo RF
signals in channel memory, as shown in block 602. The RF
signals stored in channel memory correspond to the echoes
detected from the tissue being image response to ultrasound
transmitted by a transducer (e.g., transducer 113) operatively
coupled to an ultrasound system (e.g., system 100). In some
embodiments, the method may include generating beam-
formed RF signals based on the echo signals, as shown in
block 604. The beamformed signals may be generated by
conventional beamforming techniques, for example using
beamformer 122 of system 100. In some embodiments,
beamformed RF signals from one or multiple temporally
sequential transmit/receive cycles, may be stored in beam-
former memory. The beamformed signals may be coupled to
one or more signal and image processors (e.g., processor
150). For example, the beamformed signals may be coupled,
as shown in block 606, to a signal processor for extracting
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quadrature data (i.e., I/Q components of the signal) which
can be coupled, as shown in block 608 to a B-mode
processor for generating an anatomy image (see block 610).

[0053] Samples of the echo RF signals and/or beamformed
RF signals may be coupled to a neural network (e.g., neural
net 160), as shown in block 612, and may then propagate
through the layers of the network to produce imaging data or
any type of tissue information depending upon the training
and/or operation mode of the network. That is, in some
embodiments, one type of imaging data may be obtained
through conventional signal processing (e.g., sighal process-
ing path 601) and another type of imaging data may be
obtained through implicit or predictive analysis of the input
data (e.g., along neural network path 613) directly from the
raw RF signals or beamformed RF signals, as shown in
block 612. In some examples, the neural network may be
deep neural network (DNN) or a convolutional neural net-
work (CNN), which may be implemented in hardware (e.g.,
nodes corresponding to hardware components) or software
(e.g., where nodes are represented using computer code). In
some embodiments, the coupling of samples of raw or
beamformed RF signals may be selective, e.g., responsive to
user input or automatically controlled by the system based
on the imaging mode or clinical application. The neural
network may be trained to operate in a plurality of different
modes each associated with a type of input data (e.g., raw
channel data or beamformed data), and thus a corresponding
operational mode of the neural network may be selected
(automatically or responsive to user inputs) based on the
type of input data to the neural network. The imaging data
and/or tissue information output by the neural network may
include B-mode imaging data, Doppler imaging data, vector
flow imaging data, strain imaging data, wall As shown in
block 616, ultrasound images, which include both the first
type of imaging data and the second type of imaging data,
may be produce and displayed on a display unit operatively
associated with the ultrasound system.

[0054] In some embodiments, the neural network may also
receive auxiliary data for use in producing the imaging data.
During an operational mode, the neural network, which may
be associated with a training algorithm, may receive training
data sets, for example image data or other known informa-
tion produced by the system itself (e.g., obtained by pro-
cessing echo signals along path 601) or from other imaging
systems which may or may not utilize ultrasound as the
imaging modality.

[0055] In various embodiments where components, sys-
tems and/or methods are implemented using a program-
mable device, such as a computer-based system or program-
mable logic, it should be appreciated that the above-
described systems and methods can be implemented using
any of various known or later developed programming
languages, such as “C”, “C++”, “FORTRAN”, “Pascal”,
“VHDL” and the like. Accordingly, various storage media,
such as magnetic computer disks, optical disks, electronic
memories and the like, can be prepared that can contain
information that can direct a device, such as a computer, to
implement the above-described systems and/or methods.
Once an appropriate device has access to the information
and programs contained on the storage media, the storage
media can provide the information and programs to the
device, thus enabling the device to perform functions of the
systems and/or methods described herein. For example, if a
computer disk containing appropriate materials, such as a
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source file, an object file, an executable file or the like, were
provided to a computer, the computer could receive the
information, appropriately configure itself and perform the
functions of the various systems and methods outlined in the
diagrams and flowcharts above to implement the various
functions. That is, the computer could receive various por-
tions of information from the disk relating to different
elements of the above-described systems and/or methods,
implement the individual systems and/or methods and coor-
dinate the functions of the individual systems and/or meth-
ods described above.

[0056] Inview ofthis disclosure it is noted that the various
methods and devices described herein can be implemented
in hardware, software and firmware. Further, the various
methods and parameters are included by way of example
only and not in any limiting sense. In view of this disclosure,
those of ordinary skill in the art can implement the present
teachings in determining their own techniques and needed
equipment to affect these techniques, while remaining
within the scope of the invention. The functionality of one
or more of the processors described herein may be incor-
porated into a fewer number or a single processing unit (e.g.,
a CPU) and may be implemented using application specific
integrated circuits (ASICs) or general purpose processing
circuits which are programmed responsive to executable
instruction to perform the functions described herein.
[0057] Although the present system may have been
described with particular reference to an ultrasound imaging
system, it is also envisioned that the present system can be
extended to other medical imaging systems where one or
more images are obtained in a systematic manner. Accord-
ingly, the present system may be used to obtain and/or
record image information related to, but not limited to renal,
testicular, breast, ovarian, uterine, thyroid, hepatic, lung,
musculoskeletal, splenic, cardiac, arterial and vascular sys-
tems, as well as other imaging applications related to ultra-
sound-guided interventions. Further, the present system may
also include one or more programs which may be used with
conventional imaging systems so that they may provide
features and advantages of the present system. Certain
additional advantages and features of this disclosure may be
apparent to those skilled in the art upon studying the
disclosure, or may be experienced by persons employing the
novel system and method of the present disclosure. Another
advantage of the present systems and method may be that
conventional medical image systems can be easily upgraded
to incorporate the features and advantages of the present
systems, devices, and methods.

[0058] Of course, it is to be appreciated that any one of the
examples, embodiments or processes described herein may
be combined with one or more other examples, embodi-
ments and/or processes or be separated and/or performed
amongst separate devices or device portions in accordance
with the present systems, devices and methods.

[0059] Finally, the above-discussion is intended to be
merely illustrative of the present system and should not be
construed as limiting the appended claims to any particular
embodiment or group of embodiments. Thus, while the
present system has been described in particular detail with
reference to exemplary embodiments, it should also be
appreciated that numerous modifications and alternative
embodiments may be devised by those having ordinary skill
in the art without departing from the broader and intended
spirit and scope of the present system as set forth in the
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claims that follow. Accordingly, the specification and draw-
ings are to be regarded in an illustrative manner and are not
intended to limit the scope of the appended claims.

1. An ultrasound system comprising;

an ultrasound transducer configured to transmit ultra-
sound pulses toward tissue and generate echo signals
responsive to the ultrasound pulses;

a channel memory configured to store the echo signals;

a beamformer configured to generate beamformed RF
signals responsive to the echo signals;

a neural network configured to receive one or more
samples of the echo signals or the beamformed RF
signals and produce a first type of ultrasound imaging
data; and

a processor configured to generate a second type of
ultrasound imaging data based on the beamformed RF
signals, wherein the processor is further configured to
generate an ultrasound image based on the first type of
ultrasound imaging data and the second type of ultra-
sound imaging data.

2. The ultrasound imaging system of claim 1, wherein the
second type of ultrasound imaging data comprises B-mode
imaging data, and wherein the first type of ultrasound
imaging data comprises one of Doppler imaging data, vector
flow imaging data, elastography imaging data, tissue type
characterization data, wall shear stress of an anatomical
structure containing a fluid therein, tissue composition data,
ultrasound contrast agent information, plaque characteriza-
tion data, one or more diagnostic indicators associated with
the B-mode imaging data, or combinations thereof.

3. The ultrasound system of claim 1, wherein the neural
network includes a deep neural network (DNN) or a con-
volutional neural network (CNN).

4. The ultrasound imaging system of claim 1, wherein the
neural network is implemented, at least in part, in a com-
puter-readable medium comprising executable instructions,
which when executed by a neural network processor coupled
to the channel memory, the beamformer, or both, cause the
neural network processor to perform a machine-trained
algorithm to produce the first type of ultrasound imaging
data responsive to the one or more samples of the echo
signals or the beamformed signals.

5. The ultrasound imaging system of claim 1, further
comprising a data selector configured to select a subset of
the stored echo signals or the beamformed signals as the
sample for input to the neural network.

6. The ultrasound imaging system of claim 5, wherein the
data selector is configured to selectively couple one of the
sample of echo signals or the sample of the beamformed
signals to the neural network responsive to a control signal
received by the data selector.

7. The ultrasound imaging system of claim 1, wherein the
processor is further configured to cause a display to display
the ultrasound image.

8. The ultrasound imaging system of claim 1, wherein the
neural network is further configured to receive auxiliary data
as input, the auxiliary data including ultrasound transducer
configuration information, beamformer configuration infor-
mation, information about the medium, or combinations
thereof, and wherein the imaging data provided by the neural
network is further based on the auxiliary data.

9. The ultrasound imaging system of claim 1, wherein the
neural network is operatively associated with a training
algorithm configured to receive an array of training inputs
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and known outputs, wherein the training inputs comprise
echo signals, beamformed signals, or combinations thereof
associated with a region of imaged tissue and the known
outputs comprise known propetrties of the imaged tissue.

10. The ultrasound imaging system of claim 9, wherein
the known properties are obtained using an imaging modal-
ity other than ultrasound.

11. The ultrasound system of claim 1, wherein the neural
network is configured to process the input data in accor-
dance with one of a plurality of operational modes, which is
selected responsive to user input or automatically set by the
ultrasound system based on an imaging mode of the ultra-
sound system during acquisition of the echo signals.

12. The ultrasound system of claim 1, wherein the neural
network is configured to predict a fat content of the tissue
based on the input data without use of the second type of
imaging data.

13. The ultrasound system of claim 1, wherein neural
network is configured to predict flow properties of a fluid
contained in an anatomical structure of the tissue based on
temporally successive samples of the input data without the
use the quadrature signals produced by the image processing
circuit.

14. The ultrasound system of claim 1, wherein the neural
network is configured to produce predicted beamformed
signals based on samples of the echo signals, and to use the
predicted beamformed signals to generate the first type of
imaging data.

15. The ultrasound system of claim 7, wherein the display
is electrically or wirelessly coupled to the ultrasound sys-
tem.
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