(19)中华人民共和国国家知识产权局

(12)发明专利申请

(10)申请公布号 CN 110353726 A (43)申请公布日 2019.10.22

(21)申请号 201810311253.9

(22)申请日 2018.04.09

(71)申请人 中国科学院声学研究所 地址 100190 北京市海淀区北四环西路21 号

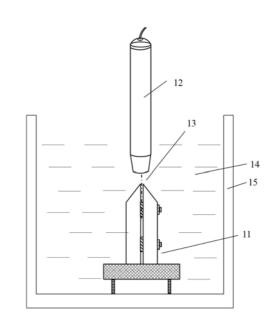
(72)发明人 牛凤岐 朱承纲 程洋 张迪

(74)专利代理机构 北京方安思达知识产权代理 有限公司 11472

代理人 陈琳琳 王蔚

(51) Int.CI.

A61B 8/00(2006.01)


权利要求书1页 说明书5页 附图4页

(54)发明名称

一种用于检测高频超声仪器侧向分辨力的 成套试件

(57)摘要

本发明涉及一种用于检测高频超声仪器侧向分辨力的成套试件,包括:第一塑料垫块(2)、第二塑料垫块(3)、第一塑料薄膜(4)、第二塑料薄膜(5)、若干第一固定装置(6)、若干第二固定装置(7)、基板(8)、第一试件支柱(9)和第二试件支柱(10);所述基板(8)的一侧固定第一试件支柱(9)和第二试件支柱(10);其另一侧放置第一塑料垫块(2)和第二塑料垫块(3),二者相对放置;第一塑料垫块(2)与第二塑料垫块(3)之间夹有第一塑料薄膜(4)和第二塑料薄膜(5);第一固定装置(6)与第二固定装置(7)均安装在第一塑料垫块(2)的外侧或第二塑料垫块(3)的外侧。

- 1.一种用于检测高频超声仪器侧向分辨力的成套试件,其特征在于,其包括:第一塑料垫块(2)、第二塑料垫块(3)、第一塑料薄膜(4)、第二塑料薄膜(5)、若干第一固定装置(6)、若干第二固定装置(7)、基板(8)、第一试件支柱(9)和第二试件支柱(10);所述基板(8)的一侧对称地固定第一试件支柱(9)和第二试件支柱(10),用于支撑基板(8);基板(8)的另一侧上对称地放置第一塑料垫块(2)和第二塑料垫块(3),且二者相对放置;第一塑料垫块(2)与第二塑料垫块(3)之间夹有第一塑料薄膜(4)和第二塑料薄膜(5),第一塑料薄膜(4)与第二塑料薄膜(5)位于同一纵向竖直线上,且二者上下放置;第一固定装置(6)将第一塑料垫块(2)、第一塑料薄膜(4)、第二塑料垫块(3)进行固定;第二固定装置(7)将第一塑料垫块(2)、第二塑料薄膜(5)、第二塑料垫块(3)进行固定;第一固定装置(6)与第二固定装置(7)均安装在第一塑料垫块(2)的外侧或第二塑料垫块(3)的外侧。
- 2.根据权利要求1所述的成套试件,其特征在于,所述第一塑料垫块(2)的截面与第二塑料垫块(3)的截面均呈直角梯形状结构,该直角梯形状结构侧立于基板上,其斜面为顶部,其垂直侧面为底部,并固定在基板(8)上;其中,第一塑料垫块(2)的斜面与第二塑料垫块(3)的斜面呈对称关系。
- 3.根据权利要求1所述的成套试件,其特征在于,所述第一塑料薄膜(4)与第二塑料薄膜(5)均采用不被水溶解或溶胀的硬质塑料制成。
- 4.根据权利要求1所述的成套试件,其特征在于,所述第一塑料垫块(2)与第二塑料垫块(3)之间留有测量间隙(1),且该测量间隙(1)的大小取决于第一塑料薄膜(4)的厚度和第二塑料薄膜(5)的厚度。
- 5.根据权利要求4所述的成套试件,其特征在于,所述测量间隙(1)、第一塑料薄膜(4)的厚度、第二塑料薄膜(5)的厚度三者相同,均为50μm至900μm。
- 6.根据权利要求4所述的成套试件,其特征在于,所述测量间隙(1)内填充水媒质;所述 水媒质为蒸馏水或去离子水。
- 7.根据权利要求1所述的成套试件,其特征在于,所述第一固定装置(6)和第二固定装置(7)均为由不锈金属螺栓和螺母组成的固定装置。
- 8.根据权利要求1所述的成套试件,其特征在于,所述第一塑料垫块(2)、第二塑料垫块(3)、基板(8)均采用不被水溶解或溶胀的硬质塑料制成,其厚度不小于10mm。
- 9.根据权利要求1所述的成套试件,其特征在于,所述基板(8)上分布若干试件(11),且每个试件(11)的测量间隙(1)为相同或不相同。

一种用于检测高频超声仪器侧向分辨力的成套试件

技术领域

[0001] 本发明属于医疗器械和质量检测技术领域,具体涉及一种用于检测高频超声仪器侧向分辨力的成套试件。

背景技术

[0002] 超声成像是利用超声声束扫描人体,通过对反射信号的接收、处理,以获得体内组织和器官的图像。其使用超声换能器探头对人体发射和接收超声声束,基于超声声场在人体组织中的传播特性,超声诊断仪器的工作频率越高,空间分辨力越好,越能分辨出小的间隔,进而发现小的病变。常规超声诊断仪器是应用于腹部、心脏等部位,工作频率在10MHz以下的B超仪器,侧向分辨力普遍大于1mm,系利用尼龙靶线的侧向间隙进行检测,所用尼龙单丝的直径有0.3mm和0.1mm两种。

[0003] 目前,眼科等专用高频超声成像仪器的侧向分辨力在数十至数百μm量级,所用靶线的直径应在10μm至20μm量级,所能找到的商品只有原本用于灯泡的钨丝。但是,利用钨丝靶线制作的"线隙式"分辨力试件,需要由使用者临时安装,借助读数显微镜调节间距,牵拉力度难以掌控,使用过程中难免松弛,从而导致检测结果失准,质量评价失去意义。

发明内容

[0004] 本发明的目的在于,为解决现有的用于检测高频超声仪器侧向分辨力的试件存在的上述缺陷,本发明提出了一种用于检测高频超声仪器侧向分辨力的成套试件,该成套试件是与钨丝靶线试件在物理学上等效,且无需临时安装,结构牢固,间隙准确、稳定的无源装置,该侧向分辨力成套试件将高频超声仪器的质量评价建立在更加可靠、可信的基础上。[0005] 为了实现上述目的,本发明提供了一种用于检测高频超声仪器侧向分辨力的成套试件,其适用于工作范围在10-25MHz的高频超声成像仪器,所述试件包括:第一塑料垫块、第二塑料垫块、第一塑料薄膜、第二塑料薄膜、若干第一固定装置、若干第二固定装置、基板、第一试件支柱和第二试件支柱;所述基板的一侧对称地固定第一试件支柱和第二试件支柱,用于支撑基板;基板的另一侧上对称地放置第一塑料垫块和第二塑料垫块,且二者相对放置;第一塑料垫块与第二塑料垫块之间夹有第一塑料薄膜和第二塑料薄膜,第一塑料薄膜与第二塑料薄膜位于同一纵向竖直线上,且二者上下放置;第一固定装置将第一塑料垫块、第二塑料均膜、第二塑料均,第二塑料垫块进行固定;第二固定装置均安装在第一塑料垫块的外侧或第二塑料垫块的外侧。

[0006] 在上述技术方案中,第一塑料垫块的截面和第二塑料垫块的截面均呈直角梯形状结构,该直角梯形状结构侧立于基板上,其斜面为顶部,其垂直侧面为底部,并固定在基板上,其中,第一塑料垫块的斜面与第二塑料垫块的斜面呈对称关系,

[0007] 在上述技术方案中,直角三角形结构的斜面与竖直方向呈45度夹角,用于消除原路超声回波。

[0008] 在上述技术方案中,第一塑料薄膜与第二塑料薄膜均采用不被水溶解或溶胀的硬质塑料制成。

[0009] 在上述技术方案中,第一塑料垫块与第二塑料垫块之间留有测量间隙,且该测量间隙的大小取决于第一塑料薄膜的厚度和第二塑料薄膜的厚度。

[0010] 在上述技术方案中,测量间隙、第一塑料薄膜的厚度、第二塑料薄膜的厚度三者相同,均为50µm至900µm。

[0011] 在上述技术方案中,测量间隙内填充水媒质;所述水媒质为蒸馏水或去离子水。

[0012] 在上述技术方案中,第一固定装置和第二固定装置均为由不锈金属螺栓和螺母组成的固定装置。

[0013] 在上述技术方案中,第一塑料垫块、第二塑料垫块、基板均采用不被水溶解或溶胀的硬质塑料制成,其厚度不小于10mm。

[0014] 在上述技术方案中,所述基板上分布若干成套试件,且每个成套试件的测量间隙为相同或不相同。

在对高频超声成像仪器的侧向分辨力进行测量前,所述基板上分布若干成套试 件,且每个所述成套试件的测量间隙均不相同,将固定有若干试件的基板浸没入装有蒸馏 水或去离子水的水槽中,使测量间隙被蒸馏水或去离子水充满,同时需要将高频超声成像 仪器探头垂直向下并浸没于装有蒸馏水或去离子水的水槽中,其中,水槽是采用有机玻璃 相互粘接制成,并保证蒸馏水或去离子水充满测量间隙,消除气泡;然后,使用该试件对高 频超声成像仪器的侧向分辨力进行测量,需要将高频超声成像仪器探头方向垂直向下并浸 没于水面之下,调节其固定位置,使得高频超声成像仪器探头在测量过程中保持位置稳定, 保持探头以及超声波束轴线方向与试件的测量间隙方向相同,并使测量间隙处于超声波束 焦点所在深度附近。首先将高频超声成像仪器探头置于具有最大测量间隙的侧向分辨力试 件的正上方,打开高频超声成像仪器探头,调节超声成像仪器的行程机构,使高频超声成像 仪器探头前端几乎接触到所述试件的第一塑料块和第二塑料块的测量间隙(透过水槽壁观 察),将此时的探头与测量间隙的距离记为"0mm",发射出超声波束,并垂直于基板入射,并 沿与测量间隙垂直的方向扫描,按照测量间隙由大到小的顺序,陆续将所述探头置于各个 所述试件的正上方依次测量,并分别观察测量间隙的左、右平面的影像显示,当超声波束的 脉冲宽度小于充有蒸馏水的测量间隙时,测量间隙的左、右平面将显示为两个彼此分离的 反射影像。然后逐步加大所述探头与测量间隙的距离,依序观察各单个试件影像显示的分 辨情况,以测量间隙的左、右平面在屏幕上可以分辨作为判断标准,并予记录,直至在某一 距离处获得所能分辨的最小测量间隙,并予以记录,即为被检超声成像仪器的侧向分辨力。 [0016] 本发明的优点在干:

[0017] 本发明的目的是解决现有高频超声仪器侧向分辨力检测所用钨丝靶线试件的缺陷。按照本发明设计、制造的"层隙式"侧向分辨力试件,结构牢固,间隙尺寸量值准确、稳定,无松弛失准之虞,既能大大提高工作效率,又可减少乃至消除因检测手段失准导致的检验误差,远优于将直径10μm或20μm钨丝成对牵拉在金属或塑料框架上,由使用者临时安装,依赖读数显微镜作间隙调试,既繁琐耗时,又容易松弛失准的"线隙式"分辨力试件。

附图说明

[0018] 图1是本发明的一种用于检测高频超声仪器侧向分辨力的试件的结构示意图:

[0019] 图2是本发明的一种用于检测高频超声仪器侧向分辨力的试件浸没入水槽对高频超声成像仪器成像侧向分辨力进行检测的装置结构示意图:

[0020] 图3是本发明的一种用于检测高频超声仪器侧向分辨力的成套试件安装基板上组成层隙式试件的结构示意图:

[0021] 图4是本发明的一种用于检测高频超声仪器侧向分辨力的成套试件置于水槽中的组合状态示意图。

[0022] 附图标记:

[0023] 1、测量间隙

[0024] 3、第二塑料块

[0025] 5、第二塑料薄膜

[0026] 7、第二固定装置

[0027] 9、第一试件支柱

[0028] 11、试件

[0029] 13、超声波束轴线

[0030] 15、水槽

2、第一塑料块

4、第一塑料薄膜

6、第一固定装置

8、基板

10、第二试件支柱

12、高频超声成像仪器探头

14、蒸馏水

具体实施方式

[0031] 如图1和2所示,本发明提供了一种用于检测高频超声仪器侧向分辨力的成套试件 11,其适用于工作范围在10-25MHz的高频超声成像仪器,所述试件11包括:第一塑料垫块2、第二塑料垫块3、第一塑料薄膜4、第二塑料薄膜5、两个第一固定装置6、两个第二固定装置 7、基板8、第一试件支柱9和第二试件支柱10;如图1所示,所述基板8的下侧对称地固定第一试件支柱9和第二试件支柱10,用于支撑基板8;基板的上侧对称地放置第一塑料垫块2和第二塑料垫块3,且二者相对放置;第一塑料垫块2与第二塑料垫块3之间夹有第一塑料薄膜4和第二塑料薄膜5,第一塑料薄膜4与第二塑料薄膜5位于同一纵向竖直线上,且二者上下放置,即第一塑料薄膜4位于第二塑料薄膜5之上;如图3和4所示,两个第一固定装置并排6将第一塑料垫块2、第一塑料薄膜4、第二塑料垫块3进行固定;两个第二固定装置7将第一塑料垫块2、第二塑料薄膜5、第二塑料垫块3进行固定;两个第一固定装置6与两个第二固定装置7均安装在第二塑料垫块3的外侧。

[0032] 在上述技术方案中,如图1所示,第一塑料垫块2的截面和第二塑料垫块3的截面均呈直角梯形状结构,该直角梯形状结构侧立于基板8上,其斜面为顶部,其垂直侧面为底部,并固定在基板8上。其中,第一塑料垫块2的斜面与第二塑料垫块3的斜面呈镜像对称关系。

[0033] 在上述技术方案中,直角三角形结构的斜面与竖直方向呈45度夹角,用于消除超声原路回波。

[0034] 在上述技术方案中,第一塑料薄膜4与第二塑料薄膜5均采用不被水溶解或溶胀的硬质塑料制成。

[0035] 在上述技术方案中,第一塑料垫块2与第二塑料垫块3之间留有测量间隙1,且该测量间隙1的大小取决于第一塑料薄膜4的厚度和第二塑料薄膜5的厚度。

[0036] 在上述技术方案中,测量间隙1、第一塑料薄膜4的厚度、第二塑料薄膜5的厚度三

者相同,均为50µm至900µm。

[0037] 在上述技术方案中,测量间隙1内填充水媒质;所述水媒质为蒸馏水14。

[0038] 在上述技术方案中,第一固定装置6和第二固定装置7均为由不锈金属螺栓和螺母组成的固定装置。

[0039] 在上述技术方案中,第一塑料垫块2、第二塑料垫块3、基板8均采用不被水溶解或溶胀的硬质塑料制成,其厚度不小于10mm。

[0040] 在上述技术方案中,所述基板8上分布若干成套试件11,且每个成套试件11的测量间隙1为相同或不相同。

如图2所示,在对高频超声成像仪器的侧向分辨力进行测量前,所述基板8上分布 [0041] 若干成套试件11,且每个所述成套试件11的测量间隙1均不相同,将固定有若干试件1的基 板8浸没入装有蒸馏水14的水槽15中,使测量间隙1被蒸馏水14充满,同时需要将高频超声 成像仪器探头12垂直向下并浸没于装有蒸馏水14的水槽15中,其中,水槽15是采用有机玻 璃相互粘接制成,并保证蒸馏水14充满测量间隙1,消除气泡;然后,使用该试件对高频超声 成像仪器的侧向分辨力进行测量,需要将高频超声成像仪器探头12垂直向下并浸没于蒸馏 水面之下,调节其固定位置,使得高频超声成像仪器探头12在测量过程中保持位置稳定,保 持探头12以及超声波束轴线13方向与试件11的测量间隙1方向相同,并使测量间隙1处于超 声波束焦点所在深度附近。首先将高频超声成像仪器探头12置于具有最大测量间隙1的侧 向分辨力试件的正上方,打开高频超声成像仪器探头12,调节超声成像仪器的行程机构,使 高频超声成像仪器探头12前端几乎接触到所述试件的第一塑料垫块2和第二塑料垫块之间 的测量间隙1(透过水槽壁观察),将此时的探头12与测量间隙1的距离记为"0mm",发射出超 声波束,并垂直于基板8入射,并沿与测量间隙1垂直的方向扫描,按照测量间隙1由大到小 的顺序,陆续将所述探头12置于各个所述试件11的正上方依次测量,并分别观察测量间隙1 的左、右平面的影像显示,当超声波束的脉冲宽度小于充有蒸馏水14的测量间隙1时,测量 间隙1的左、右平面将显示为两个彼此分离的反射影像。然后逐步加大所述探头12与测量间 隙1的距离,依序观察各单个试件影像显示的分辨情况,以测量间隙的左、右平面在屏幕上 可以分辨作为判断标准,并予记录,直至在某一距离处获得所能分辨的最小测量间隙(图3 中具有一系列间隙宽度的试件套装),并予记录,即为被检超声成像仪器的侧向分辨力 (mm) .

[0042] 图3为本发明实施例提供的成套的层隙式侧向分辨力成套试件示意图。如图3所示,本发明实施例的成套的层隙式侧向分辨力成套试件由8个试件11组成,其中,每4个试件11安装在基板8上,每个试件11最重要的指标是第一塑料薄膜的厚度和第二塑料薄膜的厚度,第一塑料薄膜的厚度和第二塑料薄膜的厚度决定了测量间隙1的大小,而该测量间隙1为供被检高频成像仪器所发射超声波束分辨的间隙尺寸。

[0043] 图4为本发明实施例提供的成套的层隙式侧向分辨力成套试件组合状态示意图。如图4所示,成套试件分为上、下并排的两行,均放入有机玻璃粘接的水槽中。在检测前,确保整个成套试件完全浸入到蒸馏水中,测量间隙中充满蒸馏水,且无残留气泡。如经常使用,最好将成套的层隙式侧向分辨力成套试件常年浸泡在蒸馏水中。

[0044] 在其他具体实施例中,所述水媒质被替换为去离子水。

[0045] 最后所应说明的是,以上实施例仅用以说明本发明的技术方案而非限制。尽管参

照实施例对本发明进行了详细说明,本领域的普通技术人员应当理解,对本发明的技术方案进行修改或者等同替换,都不脱离本发明技术方案的精神和范围,其均应涵盖在本发明的权利要求范围当中。

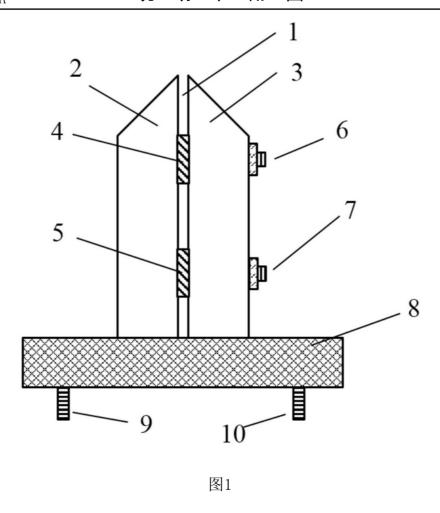


图2

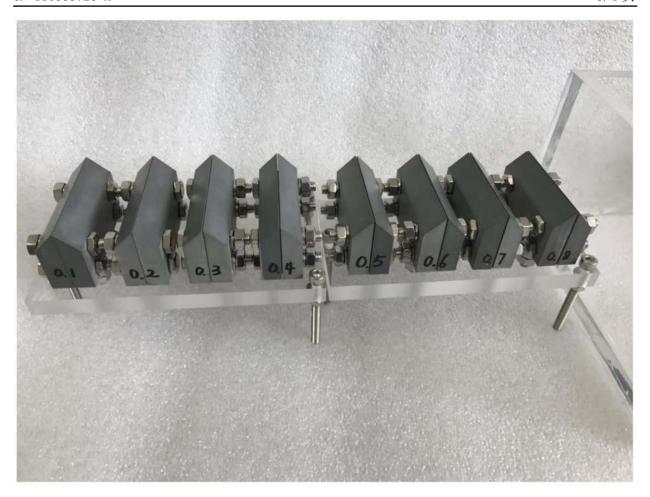
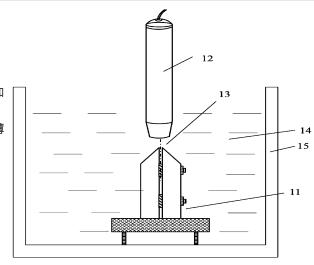


图3


图4

专利名称(译)	一种用于检测高频超声仪器侧向分辨力的成套试件			
公开(公告)号	CN110353726A	公开(公告)日	2019-10-22	
申请号	CN201810311253.9	申请日	2018-04-09	
[标]申请(专利权)人(译)	中国科学院声学研究所			
申请(专利权)人(译)	中国科学院声学研究所			
当前申请(专利权)人(译)	中国科学院声学研究所			
[标]发明人	牛凤岐 朱承纲 程洋 张迪			
发明人	牛凤岐 朱承纲 程洋 张迪			
IPC分类号	A61B8/00			
CPC分类号	A61B8/58			
代理人(译)	陈琳琳 王蔚			
外部链接	Espacenet SIPO			

摘要(译)

本发明涉及一种用于检测高频超声仪器侧向分辨力的成套试件,包括:第一塑料垫块(2)、第二塑料垫块(3)、第一塑料薄膜(4)、第二塑料薄膜(5)、若干第一固定装置(6)、若干第二固定装置(7)、基板(8)、第一试件支柱(9)和第二试件支柱(10);所述基板(8)的一侧固定第一试件支柱(9)和第二试件支柱(10);其另一侧放置第一塑料垫块(2)和第二塑料垫块(3),二者相对放置;第一塑料垫块(2)与第二塑料垫块(3)之间夹有第一塑料薄膜(4)和第二塑料薄膜(5);第一固定装置(6)与第二固定装置(7)均安装在第一塑料垫块(2)的外侧或第二塑料垫块(3)的外侧。

