(19) 中华人民共和国国家知识产权局

(12) 发明专利申请

(10)申请公布号 CN 101925333 A (43)申请公布日 2010.12.22

(21)申请号 200880125528.4

(22)申请日 2008.11.25

(30) 优先权数据

60/990, 242 2007. 11. 26 US

61/045, 944 2008. 04. 17 US

61/091, 233 2008. 08. 22 US

61/095, 451 2008. 09. 09 US

61/095, 921 2008. 09. 10 US

(85) PCT申请进入国家阶段日

2010.07.26

(86) PCT申请的申请数据

PCT/US2008/084751 2008, 11, 25

(87) PCT申请的公布数据

W02009/070616 EN 2009.06.04

(71)申请人 C•R•巴德股份有限公司

地址 美国新泽西州

(72) 发明人 S・梅瑟利 J・B・考克斯

A·K·米森纳 C·C·布莱特

R • R • 莱蒙 C • K • 克鲁克

M • W • 包恩 E • K • 伯恩赛德

K•J•克里斯琴 A•欧罗密

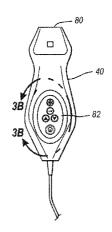
J•R•斯塔斯

(74) 专利代理机构 北京嘉和天工知识产权代理 事务所 11269

代理人 严慎

(51) Int. CI.

A61B 8/00 (2006, 01)


权利要求书 4 页 说明书 13 页 附图 15 页

(54) 发明名称

用于脉管系统内的导管放置的集成系统

(57) 摘要

公开了一种用于在患者的脉管系统中准确地放置导管的集成导管放置系统。在一个实施方案中,所述集成的系统包括系统控制台,用于临时放置在患者的胸部的末端定位传感器以及超声探测器。所述末端定位传感器在所述导管被设置在脉管系统中时探测设置在所述导管的内腔中的探针的磁场。在脉管系统内的所述导管导入之前,所述超声探测器以超声方式成像脉管系统的一部分。所述超声探测器包括使用者输入控制装置,所述使用者输入控制装置用于控制在超声模式中所述超声探测器的使用以及在末端定位模式中所述末端定位传感器的使用。在另一实施方案中,基于ECG信号的导管末端引导被包括在所述集成系统中,以使能所述导管末端的引导至一相对于患者的心脏结的期望位置。

N 101925333 A

1. 一种用于在患者的脉管系统中放置导管的集成导管放置系统,所述系统包括:系统控制台;

末端定位传感器,所述末端定位传感器被用来临时放置在所述患者本体的一部分上, 所述末端定位传感器被用来在所述导管的远侧部分被设置在所述脉管系统中时探测设置 在所述导管的内腔中的探针的磁场,所述末端定位传感器被可操作地连接到所述系统控制 台;以及

超声探测器,所述超声探测器被用来在所述导管导入所述脉管系统之前以超声方式成像所述患者的内部部分,所述超声探测器被可操作地连接到所述控制台,所述超声探测器包括使用者输入控制装置,所述使用者输入控制装置被用来控制在超声模式中所述超声探测器的使用以及在末端定位模式中所述末端定位传感器的使用。

- 2. 如权利要求 1 所述的系统,还包括用来描述与所述超声模式和所述末端定位模式有 关的信息的显示器。
- 3. 如权利要求 2 所述的系统,其中所述显示器被集成在所述控制台中,并且其中所述控制台包括至少一个控制处理器。
- 4. 如权利要求 1 所述的系统,其中所述使用者输入控制装置是包括在所述超声探测器上的按钮。
- 5. 如权利要求 1 所述的系统,其中所述超声探测器的所述使用者输入控制装置使能在与所述超声模式有关的信息的描述和与所述末端定位模式有关的信息的描述之间的所述显示器的切换。
- 6. 如权利要求 5 所述的系统,其中所述控制台包括使能所述显示器的所述切换的按钮界面。
- 7. 如权利要求 1 所述的系统,其中所述探针的磁场是由包括在邻近所述探针的远侧端的至少一个磁元件提供的,所述探针的所述远侧端与所述导管的远侧端基本上是共端头的。
- 8. 如权利要求 1 所述的系统,其中所述探针在所述导管放置完成后是从所述导管的所述内腔可移除的。
- 9. 如权利要求1所述的系统,其中在所述系统的使用期间所述探测器被定位在一无菌区域中,并且其中所述探测器使能临床医生对所述系统的使用而不需要所述临床医生进入到所述无菌区域之外。
- 10. 如权利要求 1 所述的系统,其中所述探针的磁场是由包括以下之一的部件产生:永久磁体,电磁体以及前述两者的任何组合。
- 11. 如权利要求 1 所述的系统,还包括 ECG 末端确认部件,所述 ECG 末端确认部件用来确定所述导管的远侧末端对所述患者心脏的窦房结的接近度,所述 ECG 末端确认部件包括:

ECG 传感器组件,所述 ECG 传感器组件被包括在所述探针上,用来检测所述窦房结的电活动;以及

参考电极和接地电极,所述参考电极和接地电极被用来放置在所述患者的外部部分上,所述 ECG 传感器组件、参考电极和接地电极经由所述末端定位传感器被可操作地连接到所述系统控制台。

12. 一种用于在患者的脉管系统中放置导管的集成导管放置系统,所述系统包括: 控制台,所述控制台包括显示器:

超声探测器,所述超声探测器被可操作地连接到所述控制台,所述超声探测器被用来以超声方式成像所述脉管系统的一部分,以在所述显示器上描述;

磁组件,所述磁组件与所述导管相关联;以及

末端定位传感器,所述末端定位传感器被可操作地连接到所述控制台,所述末端定位 传感器被用来在所述显示器上描述与由所述末端定位传感器进行的所述磁组件的磁场检 测有关的信息,从而在所述导管在所述脉管系统中推进的过程中相对于所述末端定位传感 器确定所述导管的位置。

- 13. 如权利要求 12 所述的系统,其中在所述导管的放置过程中,所述末端定位传感器被安置在所述患者的胸部,并且其中所述磁组件与探针一起被包括,所述探针以可移除的方式插入所述导管的内腔,所述探针包括至少一个磁元件。
 - 14. 如权利要求 13 所述的系统,其中所述至少一个磁元件包括多个铁磁元件。
- 15. 如权利要求 14 所述的系统,其中所述至少一个磁元件被包括在所述探针中,从而 所述探针与所述导管的远侧末端基本上是共端头的。
- 16. 如权利要求 12 所述的系统,其中所述超声探测器包括至少一个使用者输入控制装置以控制所述系统的功能。
 - 17. 一种用于在患者的脉管系统中放置导管的方法,所述方法包括:

以超声方式成像所述脉管系统的一部分,以在控制台的显示器上描述;

将所述导管导入所述患者的所述脉管系统,所述导管包括与所述导管相关联的磁组件;以及

当所述导管在所述患者的所述脉管系统中时,检测所述磁组件的磁场以在所述控制台的所述显示器上描述。

18. 如权利要求 17 所述的用于放置的方法,还包括:

控制以超声方式成像并且检测磁场的步骤而不用到所述患者的无菌区域之外。

19. 如权利要求 18 所述的用于放置的方法,还包括:

当所述导管在所述患者的所述脉管系统中时,通过与所述导管相关联的 ECG 传感器组件检测所述患者心脏结的 ECG 信号,以在所述控制台的所述显示器上描述。

20. 如权利要求 19 所述的用于放置的方法,还包括:

控制检测所述 ECG 信号的步骤而不用到所述患者的无菌区域之外。

21. 如权利要求 20 所述的用于放置的方法,还包括:

选择性地显示经由被可操作地连接到所述控制台的超声探测器通过使用者输入进行的与以超声方式成像、检测磁场以及检测所述 ECG 信号的所述步骤有关的信息。

22. 一种用于将导管插入患者的脉管系统的导管放置系统,所述系统包括: 控制台:

探针,所述探针以可移除的方式可安置在所述导管的内腔中,所述探针包括:磁组件,所述磁组件用于产生磁场;

ECG 传感器组件,所述 ECG 传感器组件用于检测所述患者心脏结的 ECG 信号;以及第一连接器,所述第一连接器与所述 ECG 传感器组件连通;

末端定位传感器,所述末端定位传感器可安置在患者胸部,所述末端定位传感器被配置来当所述导管被设置在所述患者的所述脉管系统中时检测所述磁组件的磁场:

第二连接器,所述第二连接器与所述末端定位传感器和所述控制台中的一个一起被包括,所述第二连接器用于可操作地连接到所述探针的所述第一连接器,以使由所述 ECG 传感器组件检测的所述 ECG 信号能够被发送到所述末端定位传感器和所述控制台中的至少一个;以及

显示器,所述显示器用于显示与由所述 ECG 传感器组件检测的所述 ECG 信号中的至少一个方面有关的信息。

- 23. 如权利要求 22 所述的系统,其中当所述导管的远侧末端被安置在一相对于心脏结的预先确定的位置时,所述控制台显示器使临床医生能够确定。
- 24. 如权利要求 22 所述的系统,其中所述第二连接器与所述末端定位传感器一起被包括,并且其中所述第一和第二连接器经由被限定在布单上的穿孔被物理连接,所述布单被放置在所述探针和安置在所述患者胸部上的所述末端定位传感器之间,所述第一和第二连接器的所述物理连接在所述布单中产生所述穿孔并且限制所述穿孔,从而防止损害所述患者的无菌区域。
- 25. 如权利要求 24 所述的系统,其中所述 ECG 传感器组件包括所述探针的导电性芯线, 所述芯线与所述第一连接器可操作地连通。
- 26. 如权利要求 25 所述的系统,其中所述芯线包括向远侧渐缩的部分,所述芯线延伸至所述探针的远侧端。
- 27. 如权利要求 25 所述的系统,其中所述第一连接器包括与所述芯线可操作地连通的针触头,所述针触头设置在被限定在所述第一连接器内的凹槽中。
- 28. 如权利要求 27 所述的系统,其中所述第二连接器为与所述末端定位传感器一起被包括的鳍状连接器,所述第一连接器是以可滑动的方式可附接到所述第二连接器,以致所述第一连接器的所述针触头被放置来与所述第二连接器的触头可操作地连通,以使 ECG 信号能够从所述 ECG 传感器组件传输至所述末端定位传感器。
- 29. 如权利要求 28 所述的系统,其中所述第二连接器为选择性地从所述末端定位传感器可移除的鳍状传感器。
- 30. 如权利要求 29 所述的系统,其中所述末端定位传感器包括以可滑动的方式接纳所述鳍状连接器的筒形部分的凹槽,以致所述末端定位传感器的至少一个电气触头被放置来与所述鳍状连接器的至少一个电气触头连通。
- 31. 如权利要求 22 所述的系统,其中所述磁组件包括多个被邻近所述探针的远端安置的磁元件,所述探针被设置在所述导管的所述内腔中,以致所述多个磁元件基本上是邻近所述导管的远侧末端的。
- 32. 如权利要求 22 所述的系统,还包括超声探测器,所述超声探测器可操作地与所述控制台连接,用于在所述导管导入所述脉管系统之前以超声方式成像所述脉管系统的一部分,以在所述显示器上描述。
- 33. 如权利要求 32 所述的系统,其中所述显示器在第一模式中描述与由所述超声探测器以超声方式成像有关的各方面,其中所述显示器在第二模式中描述与由所述末端定位传感器进行的所述磁组件的磁场的探测有关的各方面,其中所述显示器在第三模式中描述与

由所述 ECG 的所述 ECG 传感器组件进行的探测有关的各方面,并且其中所述临床医生不用到所述患者的无菌区域之外即可对由所述显示器所描述的所述模式进行选择。

- 34. 如权利要求 33 所述的系统,其中所述显示器在所述第三模式中显示所述患者的所述心脏结的当前 ECG 迹线。
- 35. 如权利要求 22 所述的系统,其中所述显示器在所述第二模式中描绘第一图标以指示所述磁组件对所述末端定位传感器的第一接近度,以及第二图标以指示所述磁组件对所述末端定位传感器的第二接近度。
- 36. 如权利要求 22 所述的系统,其中所述探针和所述第二连接器在一次使用后是可抛弃的。

用于脉管系统内的导管放置的集成系统

[0001] 对相关申请的交叉引用:本申请要求下述申请的优先权:2008年11月25日提交的题目为"用于脉管系统内的导管放置的集成系统 (Integrated System for Intravascular Placement of a Catheter)"的美国申请 No. 12/323, 273,以及如下的美国临时专利申请:2007年11月26日提交的题目为"用于脉管系统内的导管放置的集成超声和末端定位系统 (Integrated Ultrasound and Tip Location System for Intravascular Placement of a Catheter)"的申请 No. 60/990, 242, 2008年9月10日提交的题目为"用于在患者的脉管系统中放置导管的系统和方法 (System and Method for Placing a Catheter Within a Vasculature of a Patient)"的申请 No. 61/095, 921, 2008年8月22日提交的题目为"包括预装可操纵探针的导管 (Catheter Including Preloaded Steerable Stylet)"的申请 No. 61/091, 233, 2008年9月9日提交的题目为"包括 ECG 和基于磁传感器的探针的导管组件 (Catheter Assembly Including ECG andMagnetic-Based Sensor Stylet)"的申请 No. 61/095, 451, 以及 2008年4月17日提交的题目为"穿过布单的电气连接器 (Drape-Breaching Electrical Connector)"的申请 No. 61/045, 944, 本文通过引用将每一个的全部内容并入本申请。

发明内容

[0002] 简要概述,本发明的实施方案涉及集成导管放置系统,所述系统被配置来在患者的脉管系统中准确地放置导管。所述集成系统采用至少两种形式来改善导管放置的准确性:1)用于将导管导入患者的脉管系统的超声辅助引导;以及2)末端定位系统("TLS"),或在导管通过脉管系统的推进过程中对导管末端的基于磁方式的(例如永久磁体或电磁体)追踪,以在这样的推进过程中探测并便利对任何末端错位的纠正。

[0003] 在一个实施方案中,集成系统包括具有控制处理器的系统控制台,用于临时放置在患者的本体的一部分上的末端定位传感器,以及超声探测器。所述末端定位传感器在导管被设置在脉管系统中时探测设置在导管内腔中的探针的磁场。在导管导入脉管系统之前,超声探测器以超声方式成像脉管系统的一部分。此外,超声探测器包括使用者输入控制装置,所述使用者输入控制装置用于控制在超声模式中的超声探测器的使用以及在末端定位模式中的末端定位传感器的使用。

[0004] 在另一实施方案中,第三种方式,即,基于 ECG 信号的导管末端引导被包括在所述系统中,以使能导管末端的引导至一相对于产生 ECG 信号的患者的心脏结 (a node of the patient's heart)的期望位置。

[0005] 本发明实施方案的这些和其他特征将从下面的说明和所附的权利要求书中变得更加完整清晰,或者可以通过对由下文所阐明的本发明实施方案的实践来获悉。

附图说明

[0006] 将通过参考本发明的具体的实施方案提供对本发明的更加具体的描述,所述的具体实施方案在所附的附图中被图示说明。可以理解,这些附图仅描绘本发明的典型实施方

案,因而不能被认为是对本发明范围的限制。将通过使用说明书附图来以附加的特征和细节对本发明的示例性实施方案进行描述和解释,其中:

[0007] 图 1 为根据本发明的一个示例性实施方案,描绘用于脉管系统内的导管放置的集成系统的各种元件的框图;

[0008] 图 2 为患者和借助于图 1 的所述集成系统被插入患者的导管的简化视图;

[0009] 图 3A 和 3B 为图 1 的所述集成系统的探测器的视图;

[0010] 图 4 为如被描绘在图 1 的所述集成系统的显示器上的超声成像的屏幕截图;

[0011] 图 5 为在患者脉管系统中放置导管时被用来与图 1 的所述系统一起使用的探针的 立体视图;

[0012] 图 6 为如被描绘在图 1 的所述集成系统的显示器上的图标 (icon),指示在导管末端的放置过程中图 5 的所述探针的远侧端的位置;

[0013] 图 7A-7E 描绘在导管末端的放置过程中可以被描绘在图 1 的所述集成系统的所述显示器上的各种示例性图标;

[0014] 图 8A-8C 为在导管末端的放置过程中被描绘在图 1 的所述集成系统的显示器上的图像的屏幕截图:

[0015] 图 9 为根据本发明的另一示例性实施方案,描述用于脉管系统内的导管放置的集成系统的各种元件的框图;

[0016] 图 10 为患者和借助于图 9 的所述集成系统被插入患者的导管的简化视图;

[0017] 图 11 为在患者脉管系统中放置导管时被用来与图 9 的所述集成系统一起使用的探针的立体视图:

[0018] 图 12A-12E 为图 11 的所述探针的各部分的各种视图;

[0019] 图 13A-13D 为用于与图 9 的所述集成系统一起使用的鳍状连接器组件的各种视图;

[0020] 图 14A-14C 为示出探针绳缆(tether)与鳍状连接器(fin connector)以及图 9 的所述集成系统的传感器的连接的视图:

[0021] 图 15 为图 14C 所示出的所述探针绳缆、鳍状连接器以及传感器的连接的剖视图;

[0022] 图 16 为患者的 ECG 迹线的简化视图 ;以及

[0023] 图 17 为在导管末端的放置过程中被描绘在图 9 的所述集成系统的显示器上的图像的屏幕截图。

具体实施方式

[0024] 现在将参考附图,其中相似的结构将被提供以相似的参考编号。可以理解,附图为本发明的示例性实施方案的图解的和示意的表征,并且所述附图为非限制性的,也无须按比例绘制。

[0025] 图 1-17 描绘本发明实施方案的各种特征,本发明总地涉及被配置来在患者的脉管系统中准确地放置导管的导管放置系统。在一个实施方案中,所述导管放置系统采用至少两种方式来改善导管放置的准确性:1) 用于将导管导入患者的脉管系统的超声辅助引导;以及 2) 末端定位 / 导引系统 ("TLS"),或在导管通过弯曲的脉管系统路径的推进过程中对导管末端的基于磁方式的追踪,以在这样的推进过程中探测并便利对任何末端错位的

纠正。根据一个实施方案,本系统的超声引导和末端定位的特征是被集成到单一设备中的,以供临床医生使用来放置导管。这两种方式被集成到单一设备中简化了导管放置过程,并得到相对更快的导管放置方式。例如,所述集成导管放置系统使超声和 TLS 的活动能够从所述集成系统的单一的显示器上被观察到。再者,位于所述集成设备的超声探测器(所述探测器在导管放置的过程中被保持在患者的无菌区域内)上的控制装置可以被用来控制所述系统的功能,从而消除对临床医生到所述无菌区域之外以控制所述系统的需要。

[0026] 在另一实施方案中,第三种方式,即,基于 ECG 信号的导管末端引导被包括在所述系统中,以使能导管末端的引导至一相对于产生 ECG 信号的患者的心脏结的期望位置。本文也将这样的基于 ECG 的安置辅助称为"末端确认"。

[0027] 根据一个实施方案,上述这三种方式的组合使所述导管放置系统能够以一相对较高水平的准确性便利在患者的脉管系统中的导管放置,即导管的远侧末端在预先确定的且期望的位置的放置。另外,由于所述导管末端的所述基于 ECG 的引导,对末端的放置进行的纠正可以无需起确认作用的 X 射线而被确认。这又减少了患者受到 X 射线的潜在害处、将患者送往 X 射线部门和从 X 射线部门送回所耗费的成本和时间、昂贵而不便的导管再安置 (reposition) 过程等等。

[0028] 首先参考描绘根据本发明的一个示例性实施方案配置的导管放置系统("系统")的各种部件的图 1 和 2, 所述系统一般地被标明为 10。如所示的, 系统 10 一般地包括控制台 20、显示器 30、探测器 40 以及传感器 50, 其中每一个均将在下面进一步详细描述。

[0029] 图 2 示出相对患者 70,在通过皮肤插入部位 73 将导管 72 放入患者脉管系统的过程中,这些部件的一般关系。图 2 示出导管 72 一般地包括留在患者外部的近侧部分 74 以及在放置完成后留在患者脉管系统中的远侧部分 76。系统 10 被用来将导管 72 的远侧末端 76A 最终安置 (position) 在患者脉管系统中的期望位置。在一个实施方案中,对导管远侧末端 76A 而言,所述期望位置是临近患者的心脏,例如在上腔静脉("SVC")的下三分之一(1/3)部分内。当然,系统 10 可以被用来将所述导管远侧末端放置在其他位置。导管近侧部分 74 还包括毂(hub) 74A,毂 74A 提供导管 72 的一个或更多个内腔与从所述毂向近侧延伸的一个或更多个延伸腿 74B 之间的流体连通。

[0030] 控制台 20 的示例性实施方式被示于图 8C 中,然而,理解到的是,所述控制台可以采用各种形式中的一种。包括非易失性存储器(例如 EEPROM)的处理器 22 被包括在控制台 20 中,用于在系统 10 的操作期间控制系统的功能,从而起到控制处理器的作用。与控制台 20 一起,还包括数字控制器/模拟界面 24,并且所述数字控制器/模拟界面 24 同时与处理器 22 和其他系统部件通信,以控制探测器 40、传感器 50 以及其他系统部件之间的接口连接(interfacing)。

[0031] 系统 10 还包括用于与传感器 50 连接的端口 52 以及可选的部件 54,包括打印机、储存介质、键盘等待。在一个实施方案中所述端口为 USB 端口,然而其他端口类型或端口类型的组合可以被用于这一端口和本文所描述的其他接口连接。与控制台 20 一起,包括有电源连接装置 56,以使能与外部电源供应装置 58 的可操作连接。也可以采用内部电池 60 与外部电源供应装置一起使用,或单独使用内部电池 60。与所述控制台 20 的数字控制器/模拟界面 24 一起,包括有电源管理电路 59,以调节电源的使用及分配。

[0032] 在本实施方案中,显示器 30 被集成到控制台 20 中,并且在导管放置过程中被用来

向临床医生显示信息。在另一实施方案中,所述显示器可以是与所述控制台分离的。如将了解到的,由显示器 30 所描述的内容根据所述导管放置系统所在的模式 (US、TLS 或在其他实施方案中的 ECG 末端确认)而变化。在一个实施方案中,控制台按钮界面 32 (见图 1、8C)和被包括在探测器 40 上的按钮可以被用来直接由所述临床医生调用 (call up)期望的模式至向显示器 30,以在放置过程中起到辅助作用。在一个实施方案中,例如在图 17 中,来自多种模式 (例如 TLS 和 ECG)的信息可以被同时显示。因而,系统控制台 20 的单一显示器 30 可以被用于在进入患者的脉管系统中时进行的超声引导,在通过脉管系统的导管推进过程中的 TLS 引导,以及 (如在稍后的实施方案中的)相对于患者的心脏结的导管远侧末端放置的基于 ECG 的确认。在一个实施方案中,所述显示器 30 为一 LCD 设备。

[0033] 图 3A 和 3B 根据一个实施方案描绘探测器 40 的特征。探测器 40 被用来与上面提到的所述第一方式一起使用,即,脉管(例如,静脉)的基于超声("US")的可视化,为导管 72 插入脉管系统做准备。这样的可视化为将导管导入患者的脉管系统提供实时的超声引导,并且有助于减少与这样的导入相关联的典型并发症,包括意外动脉穿孔、血肿、气胸等等。

[0034] 手持探测器 40 包括容纳有压电阵列的头部 80,当所述头部以抵住患者皮肤的方式邻近预期的插入部位 73(图 2)被放置时,所述压电阵列用来产生超声脉冲并接纳由患者本体反射后的所述超声脉冲的反射波。探测器 40 还包括可以被包括在按钮板 (pad) 82 上的多个控制按钮 84。在本实施方案中,系统 10 的方式可以是由控制按钮 84 控制的,因而,排除了临床医生到所述无菌区域(是在导管放置之前围绕患者插入部位形成的)之外的需要,以经由控制台按钮界面 32 的使用来改变模式。

[0035] 这样,在一个实施方案中,临床医生采用所述第一(US)方式来确定适当的插入部位并形成脉管进入,例如利用针或导引装置,然后利用导管。然后,所述临床医生可以经由推按探测器按钮控制板82上的按钮无缝地切换到所述第二(TLS)方式,而无需到所述无菌区域之外。然后,可以使用所述TLS模式来帮助导管72通过脉管系统朝所意图的目的地推进。

[0036] 图1示出探测器 40 还包括按钮和存储控制器 42,用来控制按钮和探针的操作。在一个实施方案中,按钮和存储控制器 42 可以包括非易失性存储器,例如 EEPROM。按钮和存储控制器 42 与控制台 20 的探测器接口 44 是可操作地通信的,探测器接口 44 包括用于与所述探测器压电阵列接口连接的压电输入/输出部件 44A,以及用于与按钮和存储控制器 42 接口连接的按钮和存储器输入/输出部件 44B。

[0037] 图 4 示出当系统 10 在其第一超声方式时,如在显示器 30 上所描绘的示例性屏幕截图 88。示出患者 70 的皮下区域的图像 90,描绘静脉 92 的截面。由探测器 40 的所述压电阵列的操作生成图像 90。同样被包括在显示器屏幕截图 88 上的是测深标尺指示器 94、内腔尺寸比例 96 以及其他指示标记 98,测深标尺指示器 94 提供关于在患者皮肤下图像 90 的深度的信息,内腔尺寸比例 96 提供关于相对标准导管内腔尺寸的静脉 92 的尺寸的信息,其他指示标记 98 提供关于系统 10 的状态或可能采取的动作的信息,例如,定格画面、图像模板、保存数据、图像打印、电源状态、图像亮度等等。

[0038] 请注意,在其他实施方案中,当静脉被描绘在图像 90 中时,其他本体内腔或部分可以被成像。注意到的是,如果期望的话,在图 4 中所示出的所述 US 模式可以同时与其他

模式(例如,所述 TLS 模式)一起被描绘在显示器 30 上。在导管放置期间,除可视的显示器 30 以外,系统 10 还可以采用听觉信息(例如,嘟嘟声、音调等等)来辅助临床医生。另外,包括在探测器 40 上的所述按钮和控制台按钮界面 32 可以以各种方式来配置,包括除了按钮以外使用例如滑动开关、切换开关、电子或触控感应式板等等的使用者输入控制装置。附加地,在系统 10 的使用期间, US 和 TLS 二者的活动可以同时发生或单独发生。

[0039] 如刚刚所描述的,手持超声探测器 40 被用来作为集成导管放置系统 10 的一部分,以使能患者的脉管系统外周的 US 可视化,为导管的经皮导入做准备。然而,在本示例性实施方案中,如下面所描述的,当在脉管系统中导引所述导管朝向其期望的目的地前进时,所述探测器还被用来控制系统 10 的所述 TLS 部分或第二方式的功能。再者,因为探测器 40 被用于所述患者的所述无菌区域中,这一特征使得能够完全从所述无菌区域中对 TLS 的功能进行控制。因而,探测器 40 为双重用途的设备,使能从所述无菌区域对系统 10 的 US 和 TLS 功能的方便控制。在一个实施方案中,如下面将进一步描述的,所述探测器还可以被用来控制与 ECG 相关的或导管放置系统 10 的第三方式的一些或全部功能。

[0040] 导管放置系统 10 还包括上面提到的所述第二方式,即,基于磁方式的导管 TLS 或末端定位系统。在初始放入并通过患者 70 的脉管系统推进的过程中,所述 TLS 使临床医生能够快速定位并确认导管 72 的位置和/或定向,所述导管 72 例如为外周静脉穿刺中心静脉导管("PICC")、中心静脉导管("CVC")或其他适合的导管。具体地,所述 TLS 方式检测由装配有磁元件的末端定位探针激发的磁场,在一个实施方案中,所述末端定位探针被预装入被以纵向方式限定的导管 72 的内腔中,从而使所述临床医生能够确定在患者本体内所述导管末端的大体位置及定向。在一个实施方案中,可以使用如下的美国专利中的一种或更多种教导对所述磁组件进行追踪:5,775,332;5,879,297;6,129,668;6,216,028以及 6,263,230。本文通过引用将前面提到的美国专利的全部内容并入本申请。所述 TLS 还显示所述导管末端所指向的方向,从而进一步辅助导管的准确放置。所述 TLS 还显示所述导管末端的错位是何时发生的,例如在所述末端已经偏离所期望的静脉路径进入另一静脉的情况时。

[0041] 如所提到的,所述 TLS 利用探针来使导管 72 的所述远侧端在其通过脉管系统的推进过程中能够被追踪。图 5 给出了这样的探针 100 的一实施例,探针 100 包括近侧端 100A 和远侧端 100B。在探针近侧端 100A 包括有手柄,以及从所述手柄中向远侧延伸的芯线 104。磁组件被设置在芯线 104 远侧。所述磁组件包括一个或更多个邻近探针远侧端 100B 被彼此相邻设置且由管 108 封装的磁元件 106。在本实施方案中,包括有多个磁元件 106,每一个元件包括与其他磁元件以端对端的方式堆叠的固体圆柱状铁磁体。粘合剂末端 110 可以在磁元件 106 远侧塞堵管 108 的所述远侧末端。

[0042] 请注意的是,在其他实施方案中,所述磁元件不仅仅在形状方面,在组成、数目、尺寸、磁性类型以及在所述探针远侧段中的位置等方面的设计上也可以变化。例如,在一个实施方案中,所述多个铁磁元件由电磁组件替代,例如产生用于由所述传感器检测的磁场的电磁线圈。在此可用的组件的另一实施例可以从题目为"医疗器械定位装置(Medical Instrument Location Means)"的美国专利 No. 5, 099, 845 中得到,本文通过引用将其全部内容并入本申请。此外,包括可以与所述 TSL 方式一起使用的磁元件的探针的其他实施例可以在 2006 年 8 月 23 日提交的题目为"探针仪器及制造方法(Stylet Apparatuses and

Methods of Manufacture)"的美国申请 No. 11/466,602 中得到,本文通过引用将其全部内容并入本申请。因此,本发明的实施方案意图包括这些和其他变体。在此应当理解的是,如本文所使用的"探针 (stylet)"可以包括被配置来在所述导管的内腔中以可移除的方式放置以帮助将所述导管的远侧端放置在患者的脉管系统中期望位置的各种设备中的任一种。[0043] 图 2 示出探针 100 的设置情况,探针 100 基本上是在导管 72 的内腔中,以致探针100 的所述近侧部分从所述导管内腔向近侧延伸,通过载 74A 并通过延伸腿 74B 中选定的一个伸出。这样设置在所述导管内腔中,探针 100 的远侧端 100B 与远侧导管端 76A 基本上是共端头的,以致由所述探针远侧端的所述 TLS 所进行的相对应的探测指示所述导管远侧端的位置。

[0044] 在TLS操作期间,系统 10 采用TLS 传感器 50 以检测由探针 100 的磁元件 106 产生的磁场。如图 2 中所示的,在导管插入期间,TLS 传感器 50 被放置在患者的胸部。将T1S 传感器 50 放置在患者胸部的预先确定的位置(如通过使用外部本体标志(landmark)),以使能如上面所描述的被设置在导管 72 中的探针磁元件 106 的磁场,来使其在导管通行经过患者脉管系统期间被检测到。再者,因为探针磁组件的磁元件 106 与导管 72 的远侧端76A(图 2)是共端头的,由TLS 传感器 50 所进行的所述磁元件的磁场的检测向临床医生提供关于所述导管远侧端在其通行期间的位置和定向的信息。

[0045] 更具体地,如图 1 所示的,TLS 传感器 50 经由端口 52 中的一个或更多个可操作地连接到系统 10 的控制台 20。请注意的是,在所述 TLS 传感器和所述系统控制台之间还可以使用其他连接方案而不受限制。正如所描述的,磁元件 106 被用在探针 100 中以使导管远侧端 76A(图 2) 相对被放置在患者的胸部的 TLS 传感器 50 的位置能够是可观察到的。在TLS 模式期间,由 TLS 传感器 50 所进行的探针磁元件 106 的检测以图形化的方式被显示在控制台 20 的显示器 30 上。以这种方式,放置所述导管的临床医生能够大体确定在患者脉管系统中导管远侧端 76A 相对 TLS 传感器 50 的位置,并且检测导管错位(例如,所述导管沿非期望的静脉所进行的推进)是何时发生的。

[0046] 图 6 和 7A-7E 示出图标的实施例,所述图标可以被控制台显示器 30 使用以描绘由 TLS 传感器 50 所进行的探针磁元件 106 检测。特殊地,图 6 示出当所述磁元件被安置在所述 TLS 传感器下方时,描绘探针 100 的所述远侧部分(包括如被 TLS 传感器 50 所检测的磁元件 106) 的图标 114。因为探针远侧端 100B 与导管 72 的远侧端 76A 基本上是共端头的,所述图标指示所述导管远侧端的位置和定向。图 7A-7E 示出当探针 100 的磁元件 106 没有被安置在 TLS 传感器 50 的正下方(但在仍能被检测到的附近)时,可以被描绘在控制台显示器 30 上的各种图标。所述图标可以包括根据所述探针磁组件的位置(即,在本实施方案中,磁元件 106 相对 TLS 传感器 50 的位置)而被显示的半图标 114A 和四分之一图标 114B。[0047] 图 8A-8C 描绘在 TLS 模式中取自系统 10 的显示器 30 的屏幕截图,示出探针 100 的所述磁组件是如何被描述的。图 8A 的屏幕截图 118 示出 TLS 传感器 50 的表征性图像 120。被提供在显示器屏幕截图 118 上的其他信息包括测深标尺指示器 124、状态 / 动作指示标记 126 以及与被包括在控制台 20 上的按钮界面 32 (图 8C) 相对应的图标 128。尽管在本实施方案中,图标 128 是简单的指示器以引导使用者辨识按钮界面 32 相对应的按钮的用途,在另一实施方案中,所述显示器可以被制成触控感应式的,从而所述图标自身可以起到按钮界面的作用并且可以根据所述系统所在的模式而改变。

[0048] 在插入患者的脉管系统后导管通过脉管系统推进的初始阶段期间,与探针远侧端 100B 基本上具有共端头的导管 72 的远侧端 76A 是相对距 TLS 传感器 50 较远的。这样,所述显示器屏幕截图将提示"无信号",指示来自所述探针磁组件的磁场未被检测到。在图 8B 中,邻近探针远侧端 100B 的所述磁组件,尽管其没有在所述传感器的正下方,已经推进到足够接近 TLS 传感器 50 而能被检测到。这由被示出在传感器图像 120 的左侧的半图标 114A 所指示,表征所述探针的磁组件从患者的视角来看是被安置在 TLS 传感器 50 的右侧的。

[0049] 在图 8C 中,邻近探针远侧端 100B 的所述磁组件已经在 TLS 传感器 50 的下方推进,以致其相对的位置和定向能被所述 TLS 传感器检测到。这由在传感器图像 120 上的图标 114 指示。请注意的是,按钮图标 128 提供可以通过按压控制台按钮界面 32 中相对应的按钮来实现的动作的提示。这样,按钮图标 128 可以根据系统 10 所在的方式而改变,从而为按钮界面 32 提供使用上的灵活性。请进一步注意的是,因为探测器 40 的按钮控制板82(图 3A、3B)包括可以模仿按钮界面 32 中的多个按钮的按钮 84,在保持于所述无菌区域中的同时,显示器 30 上的按钮图标 128 向临床医生提供引导以利用探测器按钮 84 控制系统 10。例如,如果临床医生需要离开 TLS 模式并返回 US(超声)模式,在探测器按钮控制板82 上的适当控制按钮 84 可以被按压,并且所述 US 模式可以立即被调用,同时显示器 30 刷新到适应 US 功能所需的所述可视信息,如图 4 中所示。这无需临床医生到所述无菌区域之外即可实现。

[0050] 现在参考图 9 和 10,根据另一示例性实施方案描述集成导管放置系统 10。同上,如上面所描述的,集成系统 10 包括控制台 20、显示器 30,用于 US 功能的探测器 40,以及用于末端定位功能的 TLS 传感器 50。请注意的是,图 9 和 10 中所描绘的系统 10 在诸多方面与图 1 和 2 所示的系统是相似的。由此,下面仅对选出的不同之处进行讨论。图 9 和 10 的系统 10 包括附加的功能,其中导管远侧末端 76A 相对窦房("SA")或患者 70 的心脏的其他电脉冲发出结的接近度的确定可以被确认,从而提供增强的能力来准确地将所述导管远侧末端放置在邻近所述结的期望位置。另外,本文称之为"ECG"或"基于 ECG 的末端确认",系统 10 的这一第三方式使能来自所述 SA 结的 ECG 信号的检测,以将所述导管远侧末端放置在所述患者脉管系统中期望位置。请注意的是,所述 US、TLS 以及 ECG 方式在本系统 10中被无缝地组合,并且可以被一同使用或单独使用来帮助放置导管。

[0051] 图 9 和 10 示出根据本实施方案另外被配置有探针 130 的系统 10。就整体而言,导管探针 130 被以可移除的方式预先设置在经由插入部位 73 被插入到患者 70 的导管 72 的所述内腔中。探针 130,除了包括用于基于磁方式的 TLS 方式的磁组件之外,包括邻近其远侧端的 ECG 传感器组件,并且包括与所述导管末端的所述远侧端共端头的一部分,用于探测由所述 SA 结产生的 ECG 信号。与先前的实施方案相比之下,探针 130 包括从其近侧端延伸的绳缆 134,绳缆 134 可操作地连接到 TLS 传感器 50。如将被进一步以细节描述的,在作为所述基于 ECG 信号的末端确认方式的一部分的所述导管末端位置的确认过程中,探针绳缆 134 允许由被包括在探针 130 的远侧部分上的所述 ECG 传感器组件所检测到的 ECG 信号被传送到 TLS 传感器 50。参考和接地 ECG 芯/电极对 158 附接到患者 70 的本体,并且被可操作地附接到 TLS 传感器 50 以使能所述系统来滤掉与心脏的 SA 结的电活动无关的高电平电活动,从而使能所述基于 ECG 的末端确认功能。接收自被放置在患者皮肤上的 ECG 芯/电极对 158 的参考信号和接地信号,与由所述探针 ECG 传感器组件探测的所述 ECG 信号一电极对 158 的参考信号和接地信号,与由所述探针 ECG 传感器组件探测的所述 ECG 信号一

起被安置在患者胸部的 TLS 传感器 50(图 10)接收。如将要描述的,TLS 传感器 50和/或控制台处理器 22可以处理所述 ECG 信号数据以在显示器 30上产生心电图波形。在 TLS 传感器 50处理所述 ECG 信号数据的情况下,处理器被包括在其中以实现意图的功能。如果控制台 20处理所述 ECG 信号数据,处理器 22、控制器 24或其他处理器可以在所述控制台中被应用,以处理所述数据。

[0052] 因此,随着其推进通过患者脉管系统,如上面所描述的,装配有探针 130 的导管 72 可以在安置在患者的胸部上的 TLS 传感器 50 (如图 10 所示)下推进。这使 TLS 传感器 50 能够检测探针 130 的所述磁组件的位置,探针 130 的所述磁组件与定位在患者的脉管系统中的所述导管的远侧末端 76A 基本上是共端头的。在 ECG 模式期间,由 TLS 传感器 50 进行的所述探针磁组件的检测被描绘在显示器 30 上。在 ECG 模式期间,显示器 30 还描绘由探针130 的所述 ECG 传感器组件所检测到的患者心脏电活动的结果所产生的 ECG 心电图波形。更具体地,包括 P-波波形的所述 SA 结的所述 ECG 电活动由所述探针的所述 ECG 传感器组件(下面描述)检测,并且被传送至 TLS 传感器 50 和控制台 20。然后,所述 ECG 电活动被处理以在显示器 30 上进行描述。随后,放置所述导管的临床医生可以观察所述 ECG 数据来确定导管 72 的远侧末端 76A 的最佳放置,例如在一个实施方案中是邻近所述 SA 结。在一个实施方案中,控制台 20 包括接收并处理由所述探针 ECG 传感器组件所检测的所述信号的必要的电子部件(例如处理器 22(图 9))。在另一实施方案中,TLS 传感器 50 可以包括处理所述 ECG 信号的必要的电子部件。

[0053] 如已经讨论过的,在所述导管的放置过程中,显示器 30 被用来向临床医生显示信息。显示器 30 的内容根据所述导管放置系统所在的模式 (US、TLS或 ECG) 而改变。临床医生可以立即调用这三种模式中的任一种到显示器 30,并且在一些情况下,来自多种模式 (例如 TLS和 ECG) 的信息可以同时被显示。在一个实施方案中,和前面一样的,所述系统所在的模式可以由包括在手持探测器 40 上的控制按钮 84 控制,从而排除了临床医生到所述无菌区域之外 (例如,触控控制台 20 的按钮界面 32) 以改变模式的需要。因而,在本实施方案中,探测器 40 还被用来控制系统 10 的与 ECG 相关的一些或全部功能。请注意的是,按钮界面 32 或其他输入结构也可以被用来控制系统功能。同样,在导管放置期间,除了使用可视的显示器 30 以外,所述系统还可以采用听觉信息 (例如,嘟嘟声、音调等等)来辅助临床医生。

[0054] 现在参考图 11-12E,描述探针 130 的一个实施方案的各种细节,探针 130 以可移除的方式被装入导管 72 中并且在插入期间被用来将所述导管的远侧末端 76A 安置在患者脉管系统中的期望位置。如所示出的,当从所述导管移出时,探针 130 限定近侧端 130A 和远侧端 130B。连接器 132 被包括在近侧探针端 130A,并且绳缆 134 从所述连接器向远侧延伸并附接到手柄 136。芯线 138 从手柄 136 向远侧延伸。在一个实施方案中,探针 130 被预装入导管 72 的内腔中,以致远侧端 130B 在所述导管远侧端 76A 处(图 10)与所述导管开口基本上是齐平或共端头的,并且以致芯线 138 的近侧部分、手柄 136 以及绳缆 134 从延伸管 74B 中选定的一个向近侧延伸。注意到的是,尽管本文以探针进行描述,在其他实施方案中,导丝或其他导管引导器械可以被包括在本文所描述的实施方案的原理中。

[0055] 芯线 138 限定细长的形状并且是由适合的探针材料构成,包括不锈钢或记忆材料,例如在一个实施方案中的包含镍和钛的合金(通常公知的缩写为镍钛诺

("nitino1"))。尽管未在本文中示出,在一个实施方案中,芯线 138 由镍钛诺来制造使所述芯线与所述探针的远侧段相对应的所述部分能够具有预成形的弯曲结构,从而促使导管72 的所述远侧部分形成相似的弯曲结构。在其他实施方案中,所述芯线不包含预成形。进一步地,所述镍钛诺结构增强芯线 138 的扭转能力,以使当被设置在导管72 的所述内腔中时探针130 的远侧段能够被操控,这又使所述导管的所述远侧部分在导管插入期间能够被导引通过脉管系统。

[0056] 提供手柄 136 来使能所述探针对导管 72 的插入 / 移除。在探针芯线 138 是可扭转的实施方案中,手柄 136 进一步使所述芯线在导管 72 的所述内腔中能够被旋转,以帮助导引所述导管远侧部分通过患者 70 的脉管系统。

[0057] 手柄 136 附接到绳缆 134 的远侧端。在本实施方案中,绳缆 134 是具有弹性、受屏蔽的线缆,绳缆 134 包容一条或更多条电气连接到芯线 138(起到上面所涉及的所述 ECG 传感器组件的作用)以及绳缆连接器 132 的导线。这样,绳缆 134 提供从芯线 138 的所述远侧部分通过绳缆连接器 132 至探针 130 的近侧端 130A 的导电通路。如将要解释的,绳缆连接器 132 被配置来可操作地连接到在患者胸部上的 TLS 传感器 50,用来帮助将导管远侧末端 76A 导引至患者脉管系统中的期望位置。

[0058] 如在图 12B-12D 所见的, 芯线 138 的远侧部分从接合点 142 向远侧是逐渐变细的或在直径上是减少的。套管 140 在所述减少直径的芯线部分上滑动。尽管在此具有相对较大的直径, 在另一实施方案中, 所述套管可以被选择尺寸来基本上匹配所述探针芯线的所述近侧部分的直径。探针 130 还包括被邻近其远侧端 130B 设置的用于在 TLS 模式期间使用的磁组件。在所述图示说明的实施方案中, 所述磁组件包括被设置在减少直径的芯线 138 的外表面和套管 140 邻近探针远侧端 130B 的内表面之间的多个磁元件 144。在本实施方案中, 磁组件 144 包括 20 个固体圆柱状的以类似于图 2 的探针 100 的方式被端对端地堆叠的铁磁体。然而, 在其他实施方案中, 所述磁元件可以不仅仅在形状方面, 而且在组成、数目、尺寸、磁性类型以及在所述探针中的位置等方面的设计上也可以变化。例如, 在一个实施方案中, 所述磁组件的所述多个磁体由产生用于由所述 TLS 传感器检测的磁场的电磁线圈替代。因此, 本发明的实施方案包括这些和其他变体。

[0059] 磁元件 144 被用于探针 130 的远侧部分中以使探针远侧端 130B 相对被放置在患者胸部上的 TLS 传感器 50 的位置能够是可观察到的。如已经提及的,随着具有所述探针的导管 72 推进通过患者脉管系统, TLS 传感器 50 被配置来检测磁元件 144 的磁场。以这种方式,放置导管 72 的临床医生能够大体确定导管远侧端 76A 在患者脉管系统中的位置并且检测导管错位(例如,所述导管沿非期望的静脉的推进)是何时发生的。

[0060] 根据一个实施方案,探针 130 还包括前面提到的 ECG 传感器组件。在插入期间,所述 ECG 传感器组件使设置在导管 72 的内腔中的探针 130 能够被用来检测由 SA 或其他患者心脏结所产生的心房内 ECG 信号,由此允许将导管 72 的远侧末端 76A 导引至在脉管系统中邻近患者心脏的预先确定的位置。因此,所述 ECG 传感器组件在确认导管远侧末端 76A 的合适放置位置中起辅助作用。

[0061] 在图 11-12E 中所图示说明的实施方案中,所述 ECG 传感器组件包括邻近探针远侧端 130B 设置的芯线 138 的远侧部分。芯线 138 是具有导电性的,使 ECG 信号能够被其所述远侧端检测并且能够被沿所述芯线向近侧传输。导电材料 146 (例如,导电性环氧树脂) 填

充邻近芯线 138 的所述远侧终端的套管 140 远侧部分,从而与所述芯线的所述远侧端是以导电方式连通的。这又增加了探针 130 的远侧端 130B 的所述导电表面,从而改善了其检测 ECG 信号的能力。

[0062] 在放置导管之前,探针 130 被装入导管 72 的内腔中。请注意的是,可以由制造商将探针 130 预装入所述导管内腔,或在插入导管之前由临床医生装入所述导管。探针 130 被放置在所述导管内腔中,以致探针 130 的远侧端 130B 与导管 72 的远侧末端 76A 基本上是共端头的,从而使所述探针和所述导管二者的所述远侧末端基本上是彼此对齐放置的。如已经描述过的,导管 72 和探针 130 的所述共端头使所述磁组件能够在 TLS 模式中与 TLS 传感器 50 一起起到这样的作用,即随着导管远侧末端 76A 在患者脉管系统中所进行的推进来追踪其位置。然而,请注意的是,就系统 10 的所述末端确认功能而言,探针 130 的远侧端 130B 无需与导管远侧端 76A 共端头。相反,所需的仅是在脉管系统和所述 ECG 传感器组件之间的导电路径,在这种情况下就是芯线 138,以致所述 SA 结或其他患者心脏结的电脉冲可以被检测到。在一个实施方案中,这一导电路径可以包括各种成分,包括,盐溶液、血液等等。

[0063] 在一个实施方案中,一旦导管 72 已经经由插入部位 73 (图 10)被导入患者脉管系统,可以采用如已经描述过的系统 10 的所述 TLS 模式来朝向导管远侧末端 76A 邻近所述 SA 结的所意图的目的地推进导管远侧末端 76A。靠近心脏区域后,系统 10 可以被切换到 ECG 模式以使由所述 SA 结发出的 ECG 信号能够被检测到。随着所述装有探针的导管朝向患者的心脏被推进,包括芯线 138 的所述远侧端和导电材料 146 的所述导电性 ECG 传感器组件开始检测由所述 SA 结所产生的电脉冲。这样,所述 ECG 传感器组件起到检测所述 ECG 信号的电极的作用。邻近所述芯线远侧端的细长的芯线 138 作为导电通路来将由所述 SA 结所产生的且由所述 ECG 传感器组件所接收到的电脉冲传送到绳缆 134。

[0064] 绳缆 134 将所述 ECG 信号传递到被临时放置在患者胸部上的 TLS 传感器 50。绳缆 134 被可操作地经由绳缆连接器 132 或其他适合的直接或间接的起连接作用的结构连接到 TLS 传感器 50。如所描述的,然后所述 ECG 信号可以被处理并且被描绘在系统显示器 30 上(图 9、10)。对由 TLS 传感器 50 接收并由显示器 30 显示的所述 ECG 信号进行的监控,使临床医生能够随着导管远侧末端 76A 朝向所述 SA 结的推进,观察并分析在所述信号中发生的变化。当所接收到的 ECG 信号匹配一期望的轮廓 (profile) 时,临床医生可以确定导管远侧末端 76A 已到达一相对于所述 SA 结的期望位置。如所提到的,在一个实施方案中,这一期望位置位于所述 SVC 的下三分之一 (1/3) 部分内。

[0065] 所述 ECG 传感器组件以及磁组件可以合作来辅助临床医生在脉管系统中放置导管。一般地,探针 130 的所述磁组件在从初始的导管插入开始的总的脉管系统引导中辅助临床医生,以将导管 72 的远侧端 76A 放置在患者心脏的总的区域内。然后,随着所述探针 ECG 传感器组件靠近所述 SA 结,通过使临床医生能够观察到由心脏所产生的所述 ECG 信号中所发生的变化,所述 ECG 传感器组件可以被用来在所述 SVC 中将导管远侧端 76A 引导至期望位置。再有,一旦观察到适合的 ECG 信号轮廓,临床医生可以确定探针 130 和导管 72 二者的远侧端已经抵达相对于患者心脏的所述期望位置。一旦导管 72 已经如所期望地被安置,导管 72 可以被固定在适当位置,并且探针 130 从所述导管内腔移除。在此,请注意的是,所述探针可以包括除文本已经明确描述过的以外的各种结构中的一种。在一个实施方

案中,所述探针可以被直接地附接到所述控制台而不是间接地经由所述 TLS 传感器进行附接。在另一实施方案中,使能其 TLS 和与 ECG 相关的功能的探针 130 的结构可以被集成到所述导管结构自身中。例如,在一个实施方案中,所述磁组件和/或 ECG 传感器组件可以被并入所述导管的壁。

[0066] 图 13A-15 根据本实施方案,描述关于从探针绳缆 134 到被安置在患者胸部上的 TLS 传感器 50 的 ECG 信号数据通路的各种细节。具体地,这一实施方案涉及自围绕导管 72 和插入部位 73 的无菌区域的 ECG 信号数据的通路 (包括探针 130 和绳缆 134),以及非无菌区域,例如其上被安置有所述 TLS 传感器的患者胸部。这样的通路应当不会破坏所述无菌区域而使其无菌性受损害。在所述导管的插入过程中被安置在患者 70 上的无菌布单限定所述无菌区域的大部分:在所述布单之上的区域是无菌的,而在其下方的(不包括所述插入部位和紧紧围绕的区域)是非无菌的。如将可见的,下面所进行的讨论包括与探针 130 相关联的至少一第一连通节点,以及与 TLS 传感器 50 相关联的第二连通节点,彼此可操作地进行连接以使 ECG 信号数据能够在二者间传输。

图 13A-15 中所描绘的是这样的一个实施方案,即解决从所述无菌区域到 所述非无菌区域而不影响前者无菌性的 ECG 信号数据的通路问题,描绘"穿过布单 (through-drape)"的实施方式,也被称为"鲨鱼鳍(shark fin)"的实现方式。具体地,如上 面所描述的,图 14A 示出在导管的插入过程中用于放置在患者胸部上的 TLS 传感器 50。TLS 传感器 50 包括在其顶部表面的限定凹槽 152A 的连接器底部 152, 在凹槽 152A 中设置有三 个电气底部触头 154。同样在图 13A-13D 中示出的鳍状连接器 156 被选择尺寸,来如图 14B 和 15 中所示出的以滑动的方式被连接器底部 152 的凹槽 152A 所接纳。两个 ECG 芯 / 电极 对 158 从鳍状连接器 156 延伸,用于放置在肩部和躯干或患者本体上的其他适合的外部位 置。布单-穿过绳缆连接器 132 被配置来以滑动的方式配接鳍状连接器 156 的一部分,以 实现如将在下面进一步描述的从探针 120 通过所述无菌区域到 TLS 传感器 50 的导电通路。 图 13A-13D 示出鳍状连接器 156 的其他各方面。具体地,鳍状连接器 156 限定被 选择尺寸来被连接器底部 152 的凹槽 152A 接纳(图 14B、15)的下筒形部分 160。由中心锥 面 164 所围绕的孔 162 被包括在上筒形部分 166 的后端上。上筒形部分 166 被选择尺寸来 接纳探针 130 的绳缆连接器 132(图 14C、15),以致延伸进入绳缆连接器 132的凹槽 172(图 15) 的针触头 170 被所述中心孔引导,直到其就位于鳍状连接器 156 的孔 162 中,从而使所 述绳缆连接器与所述鳍状连接器互相连接。接合件(如在图 13C 和 13D 中所示出的接合件 169) 可以被包括在鳍状连接器 156 上,以与在绳缆连接器 132 上的相对应的接合件接合,来 帮助保持在这两个部件之间的配接(mating)。

[0069] 图 13D 示出鳍状连接器 156 包括多个电气触头 168。在本实施方案中,三个触头 168 以这样的形式被包括:两个最前面的触头的每一个电气连接 ECG 芯 158 中的一个的终端,并且后面的触头延伸进入孔 162 的轴向邻近区域,从而当绳缆连接器 132 的针触头 170 配接鳍状连接器 156 时(图 15),电气连接绳缆连接器 132 的针触头 170。鳍状连接器 156 的每一个触头 168 的底部分被安置来电气连接 TLS 传感器连接器底部 152 的底部触头 154 中相对应的一个。

[0070] 图 14B 示出第一连接阶段,其中通过所述鳍状连接器的下筒形部分 160 与连接器 底部凹槽 152A 的滑动接合,使鳍状连接器 156 以可移除的方式配接 TLS 传感器连接器底部

152。这一接合使连接器底部触头 154 和相对应的鳍状触头 168 电气连接。

[0071] 图 14C 示出第二连接阶段,其中通过绳缆连接器凹槽 172 与所述鳍状连接器的上筒形部分 166 之间的滑动接合,使绳缆连接器 132 以可移除的方式配接鳍状连接器 156。如在图 15 中最佳可见的,这一接合使绳缆连接器针触头 170 和鳍状连接器 156 的后触头 168 电气连接。在本实施方案中,绳缆连接器 132 相对于鳍状连接器 156 的水平滑动运动与当所述鳍状连接器被以可滑动的方式配接到所述传感器连接器底部凹槽 152A 时(图 14B)的滑动运动是在相同的接合方向上。在一个实施方案中,探针 130/绳缆连接器 132 中的一个或两个以及鳍状连接器 156 是一次性的。同样,在一个实施方案中,所述绳缆连接器在所述鳍状连接器已经被配接到所述 TLS 传感器之后,可以被配接到所述鳍状连接器,而在另一实施方案中,所述绳缆连接器可以在所述鳍状连接器被配接到所述 TLS 传感器之前,先通过外科手术布单被配接到所述鳍状连接器。

[0072] 在图 14C 所示的连接方案中,探针 130 经由绳缆连接器 132 被可操作地连接到 TLS 传感器 150,因而使所述探针的所述 ECG 传感器组件能够将 ECG 信号传送到所述 TLS 传感器。另外,ECG 芯/电极对 158 被可操作地连接到 TLS 传感器 50。然而,在一个实施方案中,绳缆连接器 132 被称为用于探针 130 的第一连通节点,而鳍状连接器 156 被称为用于 TLS 传感器 50 的第二连通节点。

[0073] 请注意的是,各种其他起到连接作用的方案和结构可以被用来在所述探针和所述 TLS 传感器之间实现可操作的连通。例如,所述绳缆连接器可以使用片触头而不是针触头来 刺穿所述布单。或者,所述鳍状连接器可以是与所述 TLS 传感器一体地形成的。因此,这些和其他结构被包含在本发明的实施方案的范围内。

[0074] 如在图 15 中所见的,在导管的放置期间被用来形成无菌区域的无菌布单 174 被放置在绳缆连接器 132 和鳍状连接器 156 的相互连接之间。正如所描述的,绳缆连接器 132 包括被配置来在所述两个部件相配接的时候刺穿布单 174 的针触头 170。这样的刺穿在由针触头 170 占据的无菌布单 174 中形成小洞或穿孔 175,从而将由所述针触头形成的所述布单穿孔的尺寸最小化。另外,绳缆连接器 132 和鳍状连接器 156 之间的配合是这样的,以致在无菌布单中由针触头 170 的穿过形成的所述穿孔由绳缆连接器凹槽 172 包围,因而保持所述布单的所述无菌性并且防止所述布单中的裂口可能损害由此形成的所述无菌区域。绳缆连接器凹槽 172 被这样配置,以在被针触头 170 刺穿之前将无菌布单 174 向下折,以致所述针触头在被设置为邻近鳍状连接器 156 的孔 162 之前不会刺穿所述布单。在此,请注意的是,绳缆连接器 132 和鳍状连接器 156 被这样配置,以便利其间通过不透明的无菌布单 174 的以不可见的方式的 (blindly) 对准,即,经由临床医生在不可见的情况下对两个部件所进行的触摸检查。

[0075] 请进一步注意的是,如在图 15 中所示的鳍状连接器 156 的鳍状触头 168 被配置来以这样的方式配接传感器底部触头 154,即帮助保持所述鳍状连接器与传感器底部凹槽 152A 的接合。这又减少对将鳍状连接器 156 固定到 TLS 传感器 50 的附加器械的需求。

[0076] 图 16 示出包括 P- 波和 QRS 波群的典型的 ECG 波形 176。一般地,所述 P- 波的幅度根据所述 ECG 传感器组件离产生波形 176 的所述 SA 结的距离而变化。临床医生可以在确定所述导管末端何时被恰当地邻近心脏安置时使用这一关系。例如,在一个实施方式中,如已经讨论过的,所述导管末端以期望的方式被放置在所述上腔静脉的下三分之一(1/3)

内。由探针 130 的所述 ECG 传感器组件所检测的所述 ECG 数据被用来再现波形 (例如,波形 176),用于在 ECG 模式期间在系统 10 的显示器 30 上进行描述。

[0077] 现在参考图 17,根据一个实施方案,描述当系统 10 在 ECG 模式(将在下面进一步描述的所述第三方式)中时,在显示器 30 上所显示的 ECG 信号数据的各方面。显示器 30 的屏幕截图 178 包括所述 TLS 方式的多个要素,包括 TLS 传感器 50 的表征图像 120 以及在通行穿过患者脉管系统期间可以对应于探针 130 的所述远侧端的位置的图标 114。屏幕截图 178 还包括窗口 180,由探针 130 的所述 ECG 传感器组件捕获并由系统 10 处理的当前 ECG 波形被显示在窗口 180 中。随着新波形被检测到,窗口 180 不断地被刷新。

[0078] 窗口 182 包括对最新被检测到的 ECG 波形所进行的连续描绘,并且包括刷新条 182A,随着所述波形被检测到,刷新条 182A 横向地移动以刷新所述波形。窗口 184A 被用来显示在所述 ECG 传感器组件被放到所述 SA 结的邻近范围之内以前所捕获到的基线 ECG 波形,用于比较的用途以帮助临床医生确定是何时抵达的所述期望的导管末端位置。当使用者按压在探测器 40 或控制台按钮界面 32 上的预先确定的按钮时,窗口 184B 和 184C 可以呈现由使用者所选出的检测到的 ECG 波形。在窗口 184B 和 184C 中的所述波形被保留直到由使用者经由按压按钮或利用其他输入装置所进行的选择而引发的新波形所覆盖。如在先前的模式中,测深标尺 124、状态 / 动作指示标记 126 以及按钮图标 128 被包括在显示器 30上。完整性指示器 186 也被包括在显示器 30上,来给出所述 ECG 芯 / 电极对 158 是否被可操作地连接到 TLS 传感器 50 的提示。

[0079] 因而,如上面所见的,在一个实施方案中显示器 30 在单一屏幕上同时描绘所述 TLS 方式和 ECG 方式二者的各要素,从而为临床医生提供丰富的数据以帮助将所述导管远侧末端放置在期望位置。请进一步注意的是,在一个实施方案中,所述屏幕截图的打印输出或所选出的 ECG 或 TLS 数据可以被保存、打印,或者由系统 10 保留以使能恰当的导管放置的文件记录。

[0080] 尽管本文所描述的实施方案涉及特别结构的导管,例如 PICC 或 CVC,这样的实施方案仅仅为示例性的。因此,本发明的原理可以被扩展到大量不同结构和设计的导管。

[0081] 本发明的实施方案可以以其他具体的形式实施,而不偏离本发明的精神。所述已描述的实施方案应被认为是在各方面都仅是作为图示说明性的而非限制性的。因而,本发明实施方案的范围由所附的权利要求书而非前述说明书所示出。在权利要求书的含义和等同范围内的所有变化都应被包含在本发明的范围内。

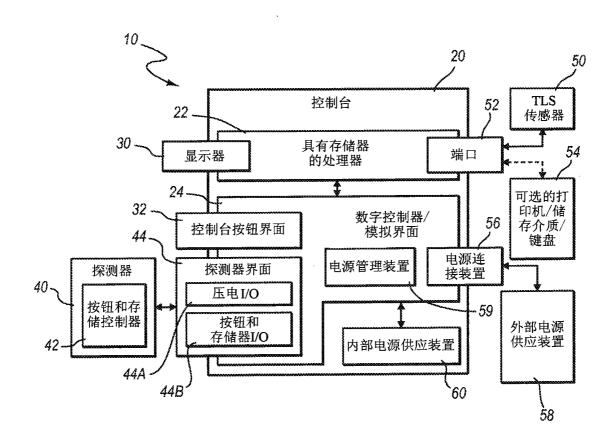


图 1

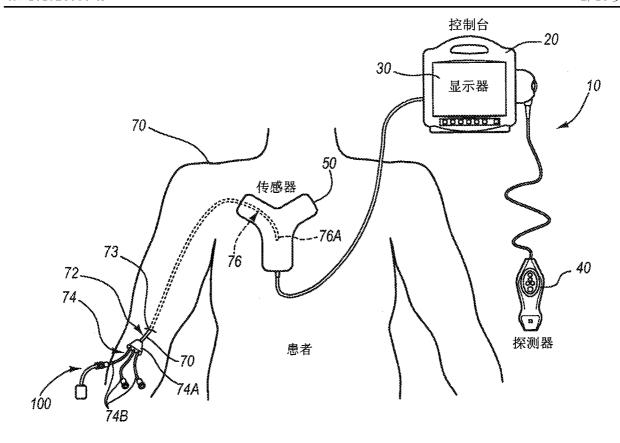
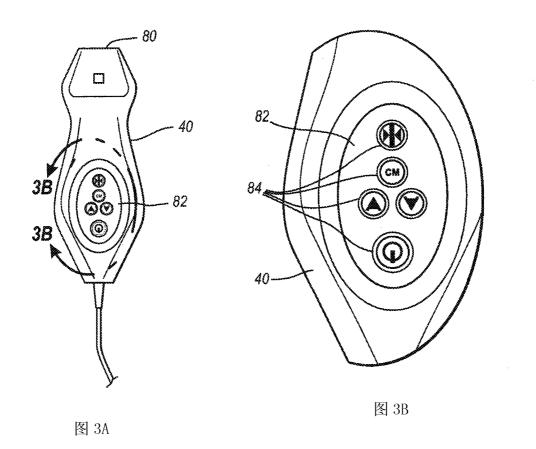



图 2

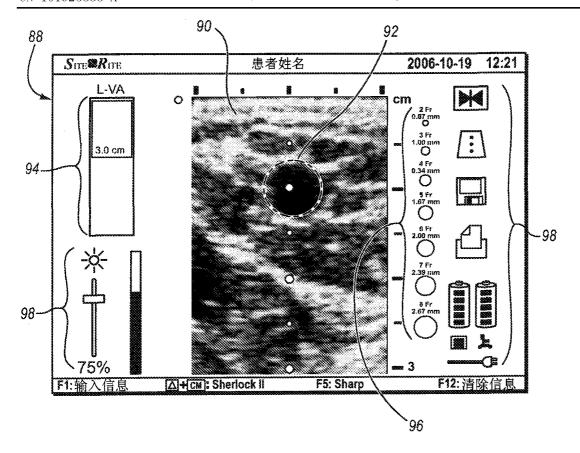


图 4

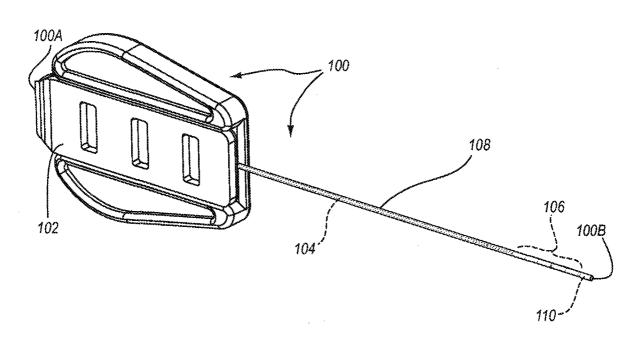


图 5

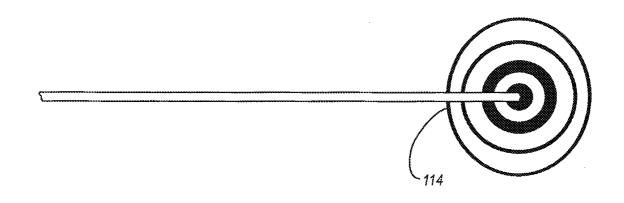
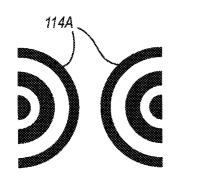



图 6

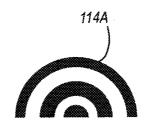
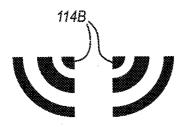



图 7B

图 7C

图 7A

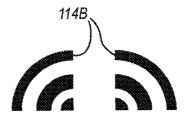


图 7D

图 7E

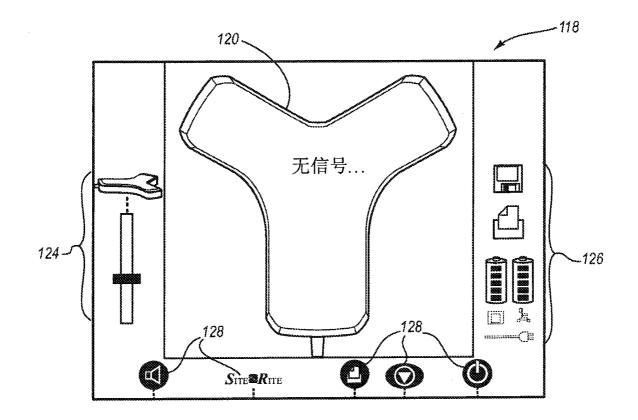


图 8A

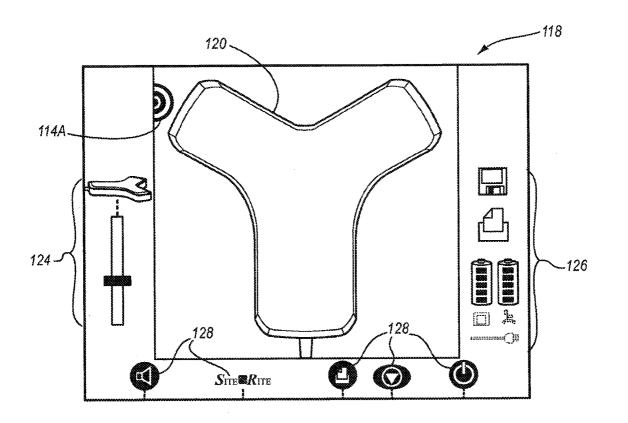


图 8B

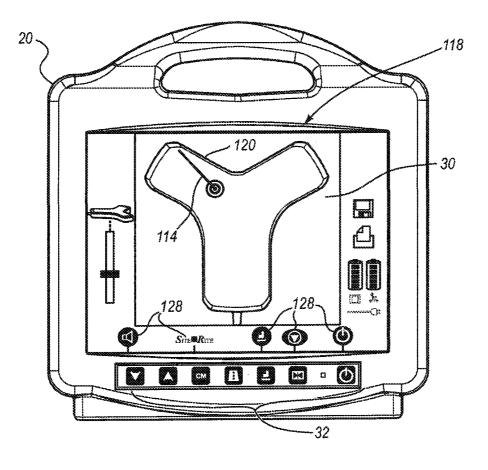


图 8C

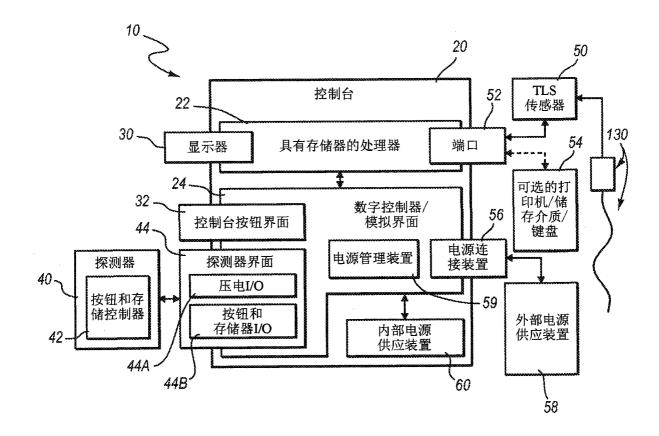


图 9

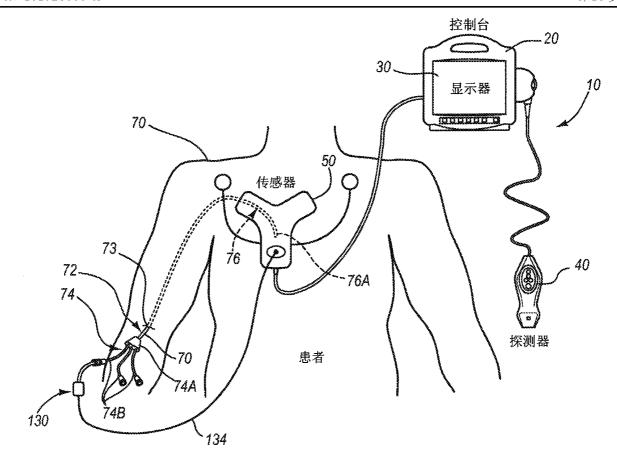


图 10

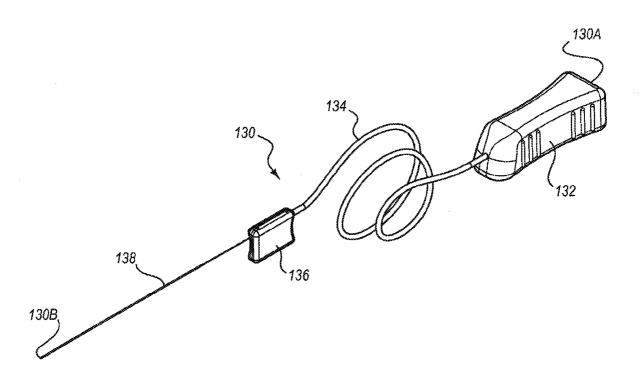


图 11

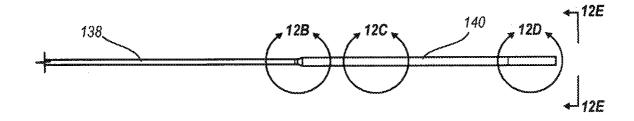


图 12A

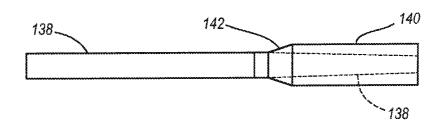


图 12B

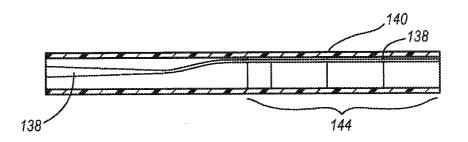


图 12C

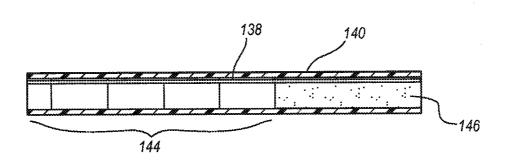


图 12D

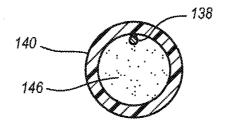


图 12E

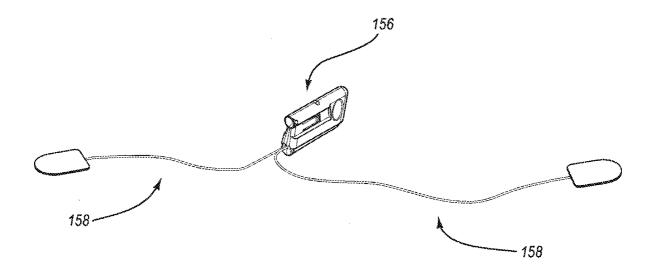


图 13A

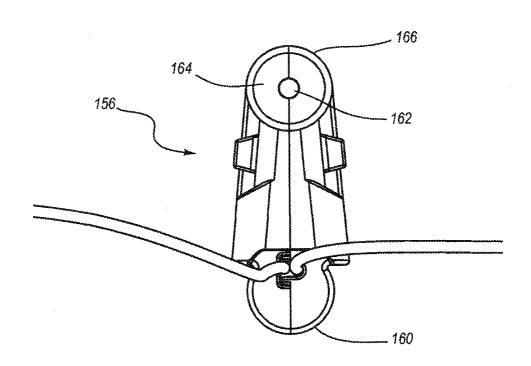


图 13B

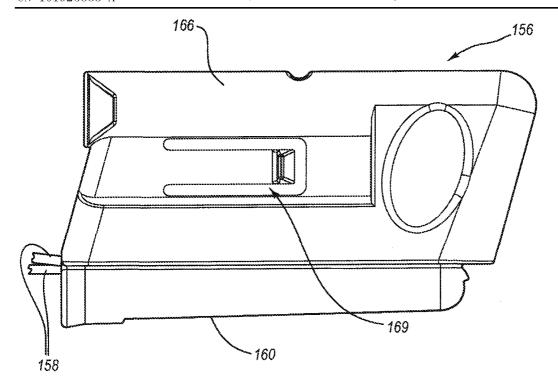


图 13C

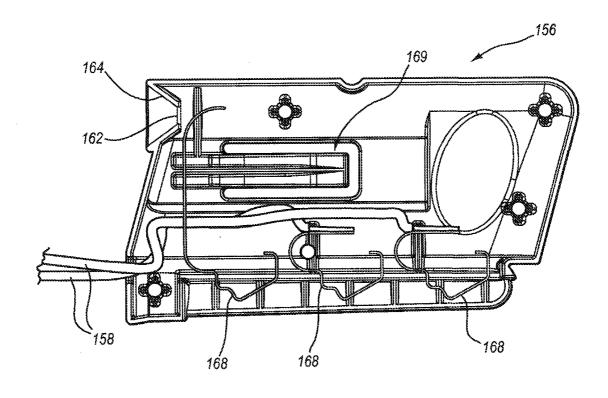


图 13D

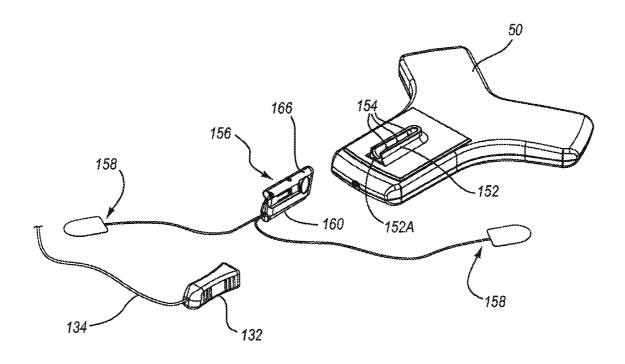


图 14A

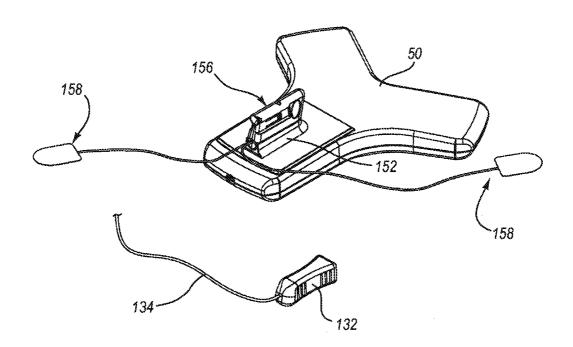


图 14B

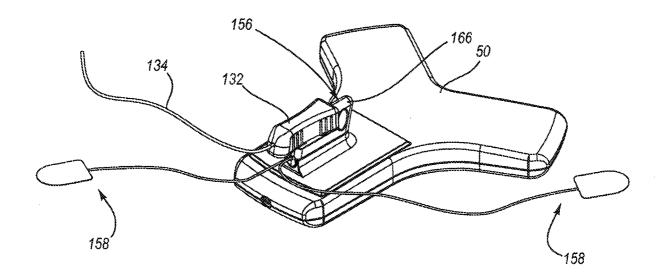


图 14C

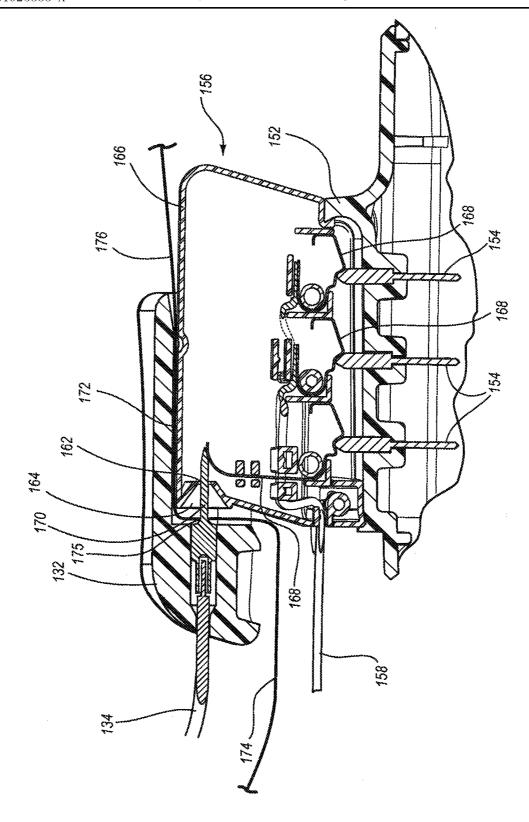


图 15

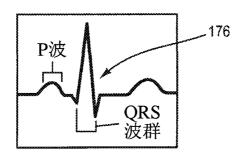


图 16

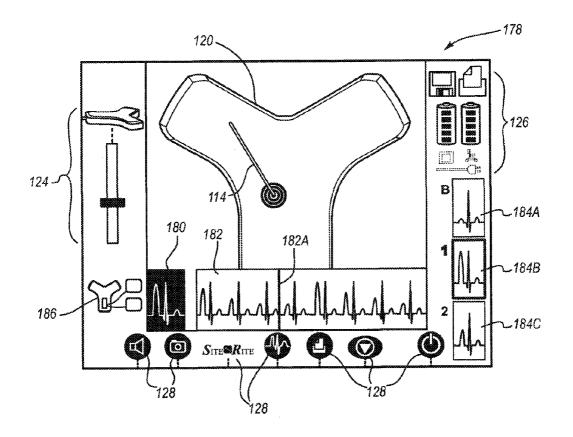
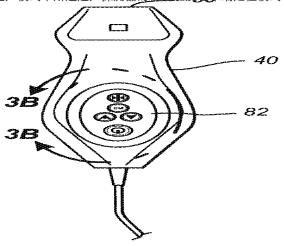


图 17


专利名称(译)	用于脉管系统内的导管放置的集成	系统	
公开(公告)号	CN101925333A	公开(公告)日	2010-12-22
申请号	CN200880125528.4	申请日	2008-11-25
申请(专利权)人(译)	C·R·巴德股份有限公司		
当前申请(专利权)人(译)	C·R·巴德股份有限公司		
[标]发明人	S梅瑟利 JB考克斯 AK米森纳 CC布莱特 RR莱蒙 CK克鲁克 MW包恩 EK伯恩赛德 KJ克里斯琴 A欧罗密 JR斯塔斯		
发明人	S·梅瑟利 J·B·考克斯 A·K·米森纳 C·C·布莱特 R·R·莱蒙 C·K·克鲁克 M·W·包恩 E·K·伯恩赛德 K·J·克里斯琴 A·欧罗密 J·R·斯塔斯		
IPC分类号	A61B8/00		
CPC分类号	A61B2019/5251 A61B2019/5276 A61B19/5244 A61B5/062 A61B19/08 A61B2019/5454 A61B8/0833 A61B8/0891 A61B5/042 A61B34/20 A61B46/00 A61B46/10 A61B2034/2051 A61B2090/378 A61B2090 /3954		
优先权	61/095921 2008-09-10 US 61/045944 2008-04-17 US 61/091233 2008-08-22 US 60/990242 2007-11-26 US 61/095451 2008-09-09 US		
其他公开文献	CN101925333B		
外部链接	Espacenet SIPO		

摘要(译)

公开了一种用于在患者的脉管系统中准确地放置导管的集成导管放置系统。在一个实施方案中,所述集成的系统包括系统控制台,用于临时放置在患者的胸部的末端定位传感器以及超声探测器。所述末端定位传感器在所述导管被设置在脉管系统中时探测设置在所述导管的内腔中的探针的磁场。在脉管系统内的所述导管导入之前,所述超声探测器以超声方式成像脉管系统的一部分。所述超

声探测器包括使用者输入控制装置,所述使用者输入控制装置用于控制在超声模式中所述超声探测器<u>的使用以及</u>变末端定位模式中

所述末端定位传感器的使用。在另一实施方案中,基于ECG信号的导管末端引导被包括在所述集成系统中,以使能所述导管末端的引导至一相对于患者的心脏结的期望位置。

