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(57) ABSTRACT

There is provided a method and apparatus for real-time
discriminative ocular artefact removal from EEG signals.
This is facilitated by integrating inter-class dissimilarity and
within-class similarity in a regularized framework based on
oscillatory ~ correlation.  Correspondingly, components
related to ocular movements are extracted from the raw data
as pseudo-artefact channels so that it is applicable to single-
channel EEG data without a dedicated EOG or eye-tracker.
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Algorithm 1: Optimization of the ocular artifact correction coefficients

Input: Training set Q,

Cutput: Artifact correction parameter 6

Begin

01%;

initiate 8 = 1,0, ...

Caleulate I,(f, c);

Initiate k= 1;

While k < ny do

Optimize 8 using {21) with A ;
Calculate  I{f,c);
Normalize 0 as &

if]6, ~

=1

so that 8

[
4,

, 1y, then

=2,..

gl <1j

¢) then

’

ifI(f, c)> I(f,

update §

=8

update Iy;

end
end
k

=k+1.

end

end

FIG 6
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METHOD AND APPARATUS FOR
REAL-TIME DISCRIMINATIVE OCULAR
ARTEFACT REMOVAL FROM EEG SIGNALS

CROSS REFERENCE TO RELATED
APPLICATIONS

[0001] This application claims priority to U.S. Provisional
Application No. 62/480,146, filed Mar. 31, 2017, the con-
tents of which is hereby incorporated by reference in its
entirety.

FIELD OF INVENTION

[0002] The present invention relates to ocular artefact
removal from EEG signals.

[0003] BACKGROUND

[0004] EEG-based inventions are experiencing rapid
growth over a broad range of applications, such as, for
example, brain computer interfaces (BCls) for motor reha-
bilitation/cognitive training, monitoring of mental condi-
tions and so forth.

[0005] The EEG is configured to record cerebral activities,
but unfortunately, it also records electrical activities which
do not originate from brain activity. These non-cerebral
activities are known as artefacts, and can originate physi-
ologically (generated by the patient body or muscle other
than the brain) or extra-physiologically (generated from the
environment). Artefact removal is critical for better accuracy
and is especially important with dry EEG sensors which
have shown great potential for use in home-based EEG
applications. This is because dry sensors are more suscep-
tible to signal contamination compared to wet sensors.
[0006] Algorithms derived for recovering artefact-free
signals have been subject to extensive research. Amongst
various possible artefacts, electrooculogram (EOG) artefacts
induced by ocular movements such as the blinking of eyes
are perceived in a unique manner, the ocular movements
typically carries useful information stemming from cerebral
activities.

[0007] Some methods for ocular artefact removal from
EEG signals which are currently available are:

[0008] Methods with Extract Management

[0009] To capture eye movement information, eye move-
ment correction procedure (EMCP) uses EOG recorded
along with EEG, and subsequently, subtracts the EOG
components from EEG after scaling based on regression.
However, as the EOG may typically also contain compo-
nents from brain activities, such subtraction based on regres-
sion generally causes a loss of relevant EEG signals. In
addition to an EOG, a combination eye tracker and a frontal
EEG are also used to capture ocular movements.

[0010] Methods Requiring Multiple Channels

[0011] For high-dimensional EEG data, independent com-
ponent analysis (ICA) has been employed for eliminating
ocular artefact components in EEG. By assuming that the
observed EEG signal is a mixture of multiple unknown and
mutually statistically independent sources, ICA solves the
inverse problem and estimates the sources. Then, the source
components corresponding to eye movement are identified
and removed either manually or automatically using prior
knowledge about the spatial pattern of the ocular artifacts. In
ICA-based analysis, EOG is not necessary, while it is
desirable to record sufficient EEG channels to capture as
many sources as possible. Usually, ICA is applied to data
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sets recorded from at least ten EEG channels. And it is found
that as few as thirty five channels are needed for source
estimation in the study of concurrent locomotor and cogni-
tive tasks. Although the requirement of the minimum num-
ber of channels may vary in different experiment tasks, the
source separation would be less suitable when only a few
EEG channels are available.

[0012] Methods Based on a Single Channel

[0013] In practical BCI systems, the number of available
channels can be limited for the comfort and convenience of
subjects/patients, and in some instances, there is only one
channel of EEG in certain BCI systems. Thus, methods
recovering artefact-free signals for a single-channel signal
have been proposed. A multi-channel signal is obtained
using time-delayed coordinates of the single-channel signal,
and a standard ICA-based artefact correction follows. Sig-
nals with different time delays are also used in conventional
approach, and a local singular spectrum analysis based on
principal component analysis (PCA) is applied to the data
matrix for artefact removal. In the ensemble empirical-mode
decomposition ICA, intrinsic-mode functions (IMFs) of
single-channel signal are obtained by empirical mode
decomposition (EMD), and used as multi-channel data.
Similarly, there are methods decomposing a single-channel
signal into multiple components using wavelet decomposi-
tion, followed by standard source separation methods such
as ICA.

[0014] Issues with Current Methods

[0015] For ocular artefact removal in BCI, the most chal-
lenging issue is to remove the artefacts with the minimal loss
of the cerebral information. For instance, discriminative
information of different motor imagery classes should
remain intact after ocular artefact removal for the sake of
classification. However, the aforementioned artefact
removal algorithms are designed to be a pre-processing
procedures, which is independent of the following classifi-
cation or detection in BCI. The issue of accuracy drop
caused by the loss of discriminative information in EEG
signals pre-processing step has not been addressed.

SUMMARY

[0016] In a first aspect, there is provided a system for
real-time discriminate ocular artefact removal from EEG
signals, the system including at least one data processor
configured to:

[0017] smoothen, at a signal smoothener, raw EEG
signals;
[0018] calculate, at a peak amplitude calculator, peak

amplitudes of smoothened EEG signals;
[0019] select, at a peak range selector, a peak range of
the smoothened EEG signals;
[0020] form, at an artefact channel former, a pseudo
artefact channel;
[0021] enable, at a discriminative learner, discrimina-
tive learning; and
[0022] remove, at an artefact remover, ocular artefacts
from the raw EEG signals.
[0023] In a second aspect, there is provided a data pro-
cessor implemented method for real-time discriminate ocu-
lar artefact removal from EEG signals, the method compris-
ing:
[0024] smoothening, at a signal smoothener, raw EEG
signals;
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[0025] calculating, at a peak amplitude calculator, peak
amplitudes of smoothened EEG signals;

[0026] selecting, at a peak range selector, a peak range
of the smoothened EEG signals;

[0027] forming, at an artefact channel former, a pseudo
artefact channel;

[0028] enabling, at a discriminative learner, discrimina-
tive learning; and

[0029] removing, at an artefact remover, ocular arte-
facts from the raw EEG signals.

[0030] 1In a final aspect, there is provided a non-transitory
computer readable storage medium embodying thereon a
program of computer readable instructions which, when
executed by one or more processors of a signal processing
device, cause the signal processing device to carry out a
method for real-time discriminate ocular artefact removal
from EEG signals, the method embodying the steps of:

[0031] smoothening, at a signal smoothener of the sig-
nal processing device, raw EEG signals;

[0032] calculating, at a peak amplitude calculator of the
signal processing device, peak amplitudes of smooth-
ened EEG signals;

[0033] selecting, at a peak range selector of the signal
processing device, a peak range of the smoothened
EEG signals;

[0034] forming, at an artefact channel former of the
signal processing device, a pseudo artefact channel;

[0035] enabling, at a discriminative learner of the signal
processing device, discriminative learning; and

[0036] removing, at an artefact remover of the signal
processing device, ocular artefacts from the raw EEG
signals.

[0037] It will be appreciated that the broad forms of the
invention and their respective features can be used in
conjunction, interchangeably and/or independently, and ref-
erence to separate broad forms is not intended to be limiting.

DESCRIPTION OF FIGURES

[0038] A non-limiting example of the present invention
will now be described with reference to the accompanying
drawings, in which:

[0039] FIG. 1 is a flow chart of a first example for a
method for real-time discriminative ocular artefact removal
from EEG signals;

[0040] FIG.2 is a schematic diagram showing a system for
executing a method for real-time discriminative ocular arte-
fact removal from EEG signals;

[0041] FIG. 3 is a schematic diagram of a computing
system for implementing the method of FIG. 1 and for
providing computing resources for the system of FIG. 2;
[0042] FIG. 4 is a flow chart of a second example for a
method for real-time discriminative ocular artefact removal
from EEG signals;

[0043] FIG. 5 shows examples of constructed artefact
signals;
[0044] FIG. 6 shows an example of an algorithm for

optimization of ocular artefact correction coefficients;

[0045] FIG. 7 shows examples of training data and test
data; and
[0046] FIG. 8 is a table showing test classification results.
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DETAILED DESCRIPTION

[0047] Embodiments of the present invention provide a
method and apparatus for real-time discriminative ocular
artefact removal from EEG signals. This is facilitated by
integrating inter-class dissimilarity and within-class similar-
ity in a regularized framework based on oscillatory corre-
lation. Correspondingly, components related to ocular
movements are extracted from the raw data as pseudo-
artefact channels so that it is applicable to single-channel
EEG data without a dedicated EOG or eye-tracker. Typi-
cally, ocular artefacts are more sporadic and irregular than
oscillatory modulation caused by mental activities, resulting
in lower correlations between instances.

[0048] Referring to FIG. 1, there is shown a first example
for a method 100 for real-time discriminative ocular artefact
removal from EEG signals. In the first example, the method
100 shows a general overview of the method 100, and
detailed breakdowns of the respective steps are provided in
subsequent portions of the description. In addition, reference
is also made to FIG. 2, which shows a system 200 for
executing the method 100.

[0049] After a subject is set-up with the system 200 in a
manner whereby the subject’s EEG signals are able to be
captured by an EEG device 195, at step 105, extraction of
ocular artefacts is carried out. This can be carried out using
an ocular artefact extraction module 205 of the system 200.
It should be noted that the artefact extraction module 205
includes sub components which will be described in greater
detail in a subsequent portion of the description.

[0050] At step 110, a regularization based optimisation is
carried out. This can be carried out using a regularization
optimisation module 210 of the system 200. It should be
noted that the regularization optimisation module 210
includes sub components which will be described in greater
detail in a subsequent portion of the description.

[0051] At step 115, a signal correction is carried out, and
this can be carried out using a signal correction module 215
of the system 200. Processes carried out by the signal
correction module 215 will also be described in a subsequent
portion of the description.

[0052] The method 100 describes general broad steps
which enables the real-time discriminative ocular artefact
removal from EEG signals, which correspondingly provides
EEG signals with minimal cerebral information loss.

[0053] Referring to FIG. 2, the ocular artefact extraction
module 205 includes components such as, a signal smooth-
ener 220, a peak amplitude calculator 225, a peak range
selector 230, and an artefact channel former 235. It should
be appreciated while the components 220, 225, 230, 235 are
shown to be discrete components, the components can be a
single or combined sub-modules configured to carry out
respective tasks of the various components of the ocular
artefact detection module 205. The EEG device 195 can
include an EEG amplifier to amplify, and convert EEG
signals.

[0054] The ocular artefact extraction is carried out on raw
EEG data X,(t) € R " where n, is the number of channels
and n, is the number of time samples. Given the analysis of
the morphology characteristic of the eye movements related
potentials, the moving average filter is applied to the raw
EEG data to obtain the smoothed signal x(t) at the signal
smoothener 220 for further artefact extraction, as follows:
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[0055] where m is the number of the neighboring points
used in the moving average filter, and x,(t) ER " is the EEG
signal from one arbitrary channel, or in other words, one
arbitrary row of X,(t).

[0056]
h(t=max(lx(H)-x,(t=DI, lx,(t+1)-x,(5)]) 2)

[0057] One ocular artefact could include both positive and
negative peaks. In other words, a peak could consist of an
ocular artefact together with either the peak before it or the
peak after it. To construct the artefact as completely as
possible, in (2), a maximum relative amplitude is used as the
measurement of the peak. This is determined at the peak
amplitude calculator 225. By defining the peak amplitude
range parameter h, as

The relative amplitude of the peaks is calculated as

h,=h,, h,] @)

[0058] Then, find the set F, containing time indexes of
those peaks with amplitude in the range h, as

P,:{[;:§<[;<n, and bh<h(t;)<hu} @
[0059] Foreachelementt, € F, i=1,2, ..., |7, lett?

and t; be the nearest zero points before and after t,, i.e,

rfb —argmax 7 si. (<f and x(0)=0 ®
t
¢ —argmint s.. 1<y and x,(0) =0 (6)
1
[0060] It is not likely to obtain a true zero point for real

discrete signal. Thus, in practical implementation we set a
small threshold, and signal points with absolute values
below the threshold are regarded as zero points. This is
carried out in the peak range selector 230. With the time
period [t7, t7“] obtained for each peak point t, € F,, the
artefact signal x (t) is constructed as

{xx(t),te[r,-”’, £ withi=1,2, ..., [P ]; M
Xa() =

0, clse.

[0061] An example of constructing x () from x(t) is

illustrated in FIG. 5. As shown by FIGS. 5(a) and 5(b), x,,(t)
is zero except those points belonging to/associated with
peaks whose amplitudes are within a certain range. In this
way, EEG data that is not contaminated with the ocular
artefacts is not diminished after artefact correction.

[0062] Moreover, with different amplitude ranges h/=[h/,
h/1%, 1,2, ..., n,,x/(t) can be extracted correspondingly,
where n, is the number of peak amplitude ranges.

[0063] At the artefact channel former 235, define x () as
the matrix containing all artefact signals x/(t), as follows:
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xzh (0

[0064] X,(t) in (8) can be regarded as the pseudo artefact
channel. Using X (1) for artefact correction is even more
advantageous than using the real EOG signal. As it is zero
at most of the time points, it would cause less information
loss when carrying out the artefact removal. Moreover, by
separating the artefacts by using amplitudes of the peaks,
artefacts corresponding to different ocular movements could
be separated with different filtering parameters assigned. Tt
is more flexible to maintain the discriminative information
in EEG signals than a conventional Eye Movement Correc-
tion Procedure (EMCP), where one propagation factor is
estimated for one EEG-EOG pair.

[0065] Similarly, the regularization optimization module
210 includes components such as, a discriminative learner
240, and an artefact remover 250. In some embodiments, the
artefact remover 250 acts as a filter to remove pseudo
artefact channels from raw EEG signals. The artefact
remover 250 can include parameters defined in the discrimi-
native learner 240. As noted earlier, while the components
240, 250 are shown to be discrete components, the compo-
nents can be a single or combined sub-modules configured
to carry out respective tasks of the various components of
the regularization optimization module 210. The compo-
nents can be implemented entirely by software to be
executed on standard computing device hardware, which
may comprise one hardware unit or different computer
hardware units distributed over various locations.

[0066] In the regularization optimization module 210, let
i be the trial index, and we define the signal afier correction
in the ocular artefact extraction module 205 as x_ (1), i.e.,

X A0, (0)-6,7X, ) ©

[0067] where 8,7 €R™ is the artefact correction coeffi-
cient or filtering coeflicient, scaling the artefacts in EEG to
be removed and similar to the propagation factor in the
conventional EMCP.

[0068] As the oscillatory correlation is effective for source
separation, the correction coeflicient 6,is optimised using
the oscillatory correlations between EEG trials, as ocular
artefacts should be more sporadic and irregular compared to
the oscillatory modulation caused by mental activities.

[0069] By rewriting (9) as
X {0-07X(1) (10)
where
) [xo,s(l) } (10
Xi(n =
Xa,i(
1 12
o= [ ] 42
ba
[0070] Define the instantaneous power of x_(t) as ¢,(t),
1.e.,
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9=V @K (D) HO H ) {13

[0071] where H,(t) is the Hilbert transform of X,(t). To
obtain an average oscillatory correlation between multiple
trials, for each trial i, the average instantaneous power for all
trials except i is defined as (1), i.e.,

1
Uil = o3 > N @ X0 + @ H(0)

JFi

(14)

[0072] Thus, the objective function maximizing the cross-
trial oscillatory correlation is

. 1 15
0= m;ixﬁZﬂ(pi @, ¢;(0) "

where

L (16)
n—flﬁl(l)llll(l)dl

p¢x(r),¢'j(’) = T
— [0t [ 0k
1

With

— o1 . (17
¢ =i - P f ¢it)dr

_ 1 (18)
Y=g - n_f/i([)d[

[0073] Optimizing 8 using (15) could maximize the aver-
age cross trial oscillatory correlation so that sporadic ocular
artefacts could be subdued, but it is not enough to maintain
the discriminative information. To ensure that the artefact
correction could benefit the classification in a Brain Control
Interface (BCT), 6 should be learnt in a discriminative
manner, which is different from the regressive coefficient
estimation or source separation. This is carried out in the
discriminative learner 240.

[0074] Thus, the interclass oscillatory correlation, r,, is
taken into consideration, which can be calculated as

1 . 19
Uy P P45
ey 2,k

icg

[0075] where Q° is the set of trial index belonging to class
¢, and 1Q°! is the number of the elements in Q° with the class
label ¢ € {+,-}. Similarly, the within-class oscillatory
correlation for class c, r,,°, can be calculated as

s tw oo

1

(20)
r,= 1] Z Payiy ifo)
ieQf

[0076] For joint artefact correction and discriminative
feature learning, a regularized oscillatory correlation objec-
tive function is carried out as
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= arg max(L =) Acrt =, with Y 2 =1 2n

[0077] where A is the weight given to the within-class
oscillatory correlation for class ¢, and A controls the weights
of within-class and inter-class oscillatory correlation. The
regularization method has been widely used in the compu-
tational model development in BCI to address within-class
similarity and inter-class dissimilarity simultaneously. With
(21), 8 is optimized so that the within-class oscillatory
correlation could be maximized while the inter-class oscil-
latory is minimized.

[0078] At the artefact remover 250, given the discrimina-
tive oscillatory correlation, two kinds of features are
extracted, namely, the correlation feature and the power
feature. The oscillatory correlation feature f,.° can be
obtained as

. 1 7]
fhi=——r .\ p‘ﬁi(n,@c“)d{

[0079] where ®°(t) is the average instantaneous power of
class ¢, i.e.,

23)

(OER !
j

=gV OTX,0F + 6T H )

[0080] Thus, for each trial and each time window, a pair of
correlation features is extracted. The power feature f,, for
trial 1 could be extracted as

fim f el 9
1

n-n

[0081] where [t,, t,] is the time window for the power
calculation. With (21), for a certain time window, if the
power of the signals from one class is high, that from the
other class would be low, and vice versa. Therefore, the band
power feature T, is consistent with the objective function.
This can be carried out at the artefact remover 250.

[0082] Regarding selection of the regularization parameter
in (21), mutual information between the feature f and class
label c, i.e., I(f,c) is used, instead of cross validation to
reduce the computational complexity. The mutual informa-
tion has been widely used for feature optimization in BCI,
and details of the calculation can be found in documents [1],
and [2] as indicated in the references section of the present
document.

[0083] Let A=[h, A, A1, k€ {L,2,...,n}, which
contains all n, combinations of regularization parameters,
e.g., /\=0,0.5,0.5], N\,=[0.1,0.5,0.5], etc. With different
/s, using (21), followed by the calculation of feature f and
the mutual information I(f,c). Given I(f,c) calculated based
on different /\,, a 8 which yields the highest mutual infor-
mation I(fc) is selected. By introducing (fic), a desired
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combination of the regularization term /\, is obtained.
Furthermore, feature discrimination is enhanced during the
optimization.

[0084] To ensure that the artefacts are not enhanced, an

additional constraint for the optimization of 6, which is
0,-0<1,j-2,.. ., n, (25)
Q1=1 (26)

[0085] where 0, is the j-th element of 0. 0, is the weight
corresponding the raw EEG signal, x, (t), which is con-
sirained to be 1. With (25), 0, can’t be positive, and subse-
quently, the detected artefact will not be enhanced.

[0086] By maximizing the inter-class oscillatory differ-
ences, the artefact correction parameter could also be driven
toward increasing the amplitude of the ocular artefacts if the
artefacts contribute to the discrimination between two
classes. Although it could also be addressed by adding extra
constraint terms accepting the solutions that suppress the
ocular artefacts. The suppression of the ocular artefacts is
carried out by the signal correction module 215.

[0087] Referring to FIG. 6, further details of the optimi-
zation process in the regularization optimization module 210
are described in Algorithm 1. It should be noted that
Algorithm 1 is merely illustrative.

[0088] Referring to FIG. 3, there is shown a computing
system 300 which can be configured to carry out the method
100, and can be used to provide the computing resources for
the system 200.

[0089] The computing system 300 is able to communicate
with other processing devices, as required, over a commu-
nications network 350 using standard communication pro-
tocols.

[0090] Components of the computing system 300 can be
configured in a variety of ways. The components can be
implemented entirely by software to be executed on standard
computer server hardware, which may comprise one hard-
ware unit or different computer hardware units distributed
over various locations, some of which may require the
communications network 350 for communication. A number
of the components or parts thereof may also be implemented
by application specific integrated circuits (ASICs) or field
programmable gate arrays.

[0091] In the example shown in FIG. 3, the computing
system 300 is a commercially available computer system
based on a 32 bit or a 64 bit Intel architecture, and the
processes and/or methods executed or performed by the
computing system 300 are implemented in the form of
programming instructions of one or more software compo-
nents or modules 302 stored on non-volatile (e.g., hard disk)
computer-readable storage 303 associated with the comput-
ing system 300. At least parts of the software modules 302
could alternatively be implemented as one or more dedicated
hardware components, such as application-specific inte-
grated circuits (ASICs) and/or field programmable gate
arrays (FPGAs).

[0092] The computing system 300 includes at least one or
more of the following standard, commercially available,
computer comporents, all interconnected by a bus 305:

[0093]
[0094]
[0095]

1. random access memory (RAM) 306;
2. at least one computer processor 307, and
3. external computer interfaces 308:
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[0096] a. universal serial bus (USB) interfaces 308.1 (at
least one of which is connected to one or more user-interface
devices, such as a keyboard, a pointing device (e.g., a mouse
309 or touchpad),

[0097] b. a network interface connector (NIC) 308.2
which connects the computing system 300 to a data com-
munications network 350; and

[0098] c. a display adapter 308.3, which is connected to a
display device 310 such as a liquid-crystal display (LCD)
panel device.

[0099] The computing system 300 can also include a
plurality of standard software modules, including:

[0100] 1. an operating system (OS) 311 (e.g., Linux or
Microsoft Windows);

[0101] 2. web server software 312 (e.g., Apache, available
at http://www.apache.org);

[0102] 3. scripting language modules 313 (e.g., personal
home page or PHP, available at http://www.php.net, or
Microsoft ASP); and

[0103] 4. structured query language (SQL) modules 314
(e.g., MySQL. available from http://www.mysql.com),
which allow data to be stored in and retrieved/accessed from
an SQL database.

[0104] Together, the web server 312, scripting language
313, and SQL modules 314 provide the computing system
300 with the general ability to allow users of the network
350 with standard computing devices equipped with stan-
dard web browser software to access the computing system
300 and in particular to provide data to and receive data from
the database 301. It will be understood by those skilled in the
art that the specific functionality provided by the computing
system 300 to such users is provided by scripts accessible by
the web server 312, including the one or more software
modules 302 implementing the processes performed by the
computing system 300, and also any other scripts and
supporting data 315, including markup language (e.g.,
HTML, XML) scripts, PHP (or ASP), and/or CGI scripts,
image files, style sheets, and the like.

[0105] The boundaries between the modules and compo-
nents in the software modules 302 are exemplary, and
alternative embodiments may merge modules or impose an
alternative decomposition of functionality of modules. For
example, the modules discussed herein may be decomposed
into submodules to be executed as multiple computer pro-
cesses, and, optionally, on multiple computers. Moreover,
alternative embodiments may combine multiple instances of
a particular module or submodule. Furthermore, the opera-
tions may be combined or the functionality of the operations
may be distributed in additional operations in accordance
with the invention. Alternatively, such actions may be
embodied in the structure of circuitry that implements such
functionality, such as the micro-code of a complex instruc-
tion set computer (CISC), firmware programmed into pro-
grammable or erasable/programmable devices, the configu-
ration of a field-programmable gate array (FPGA), the
design of a gate array or full-custom application-specific
integrated circuit (ASIC), or the like.

[0106] Each of the steps of processes (for example, the
method 100) performed by the computing system 300 may
be executed by a module (of software modules 302) or a
portion of a module. The processes may be embodied in a
non-transient machine-readable and/or computer-readable
medium for configuring a computer system to execute the
method. The software modules 302 may be stored within
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and/or transmitted to a computer system memory to config-
ure the computer system to perform the functions of the
module.

[0107] The computing system 300 normally processes
information according to a program (a list of internally
stored instructions such as a particular application program
and/or an operating system) and produces resultant output
information via input/output (I/O) devices 308. A computer
process typically includes an executing (running) program
or portion of a program, current program values and state
information, and the resources used by the operating system
to manage the execution of the process. A parent process
may spawn other, child processes to help perform the overall
functionality of the parent process. Because the parent
process specifically spawns the child processes to perform a
portion of the overall functionality of the parent process, the
functions performed by child processes (and grandchild
processes, etc.) may sometimes be described as being per-
formed by the parent process.

[0108]

[0109] Some embodiments of the method were tested
using an experimental setup which will be described in the
following paragraphs.

[0110] EEG data from a subject were obtained using a
Neurosky dry EEG headband with one bipolar channel,
which was positioned at a frontal site Fp1. The sampling rate
was 256 Hz. Sixty eight subjects participated in the experi-
ment, and for each subject, three sessions of a Color Stroop
test were recorded. In each session, there were forty Stroop
trials, during which each subject was assumed to be con-
centrating on the test. Each Stroop trial was followed by an
idle period when the subject could relax. The Stroop trial
lasted around ten seconds while the idle period between two
Stroop trials was around fifteen seconds. To increase the
number of trials, a four second window with a window-shift
of two seconds was applied to segment EEG data recorded
during Stroop trials, which yielded data of the attention
class.

[0111] The same segmentation was also applied to EEG
recorded during idle periods, which vielded data of the idle
class. Only the segments at the beginning of the idle periods
were used so that the final data set is balanced between the
two classes, i.e., the attention class and idle class. Moreover,
the first and second half of the original Stroop and idle trials
were truncated into training trials and test trials, respec-
tively. In this way, the test set was totally independent of the
training set. For each subject, the number of total truncated
trials was around two hundred and forty.

[0112] The experiment was focussed on the ocular arte-
facts during attention detection as ocular movements are
closely related to attentive states. Thus, whether a subject is
attentive or concentrating is typically reflected by the sub-
ject’s ocular movements. In FIG. 7, the number of peaks in
different h, (peak amplitude ranges) are compared between
attentive and idle states. Seventeen peak amplitude bins
ranging from 10 to 170 are investigated with the width of
each bin as 10. The x-axis in FIG. 7 represents the beginning
of each bin while the y-axis represents the sum of the
number of peaks in the amplitude range averaging across all
the subjects for three sessions. It can be observed that for
both training and test sets, the peaks of idle state are
consistently more than that of the attentive state in the
amplitude range of around 30-80.

Experiment Setup
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[0113] In the experiment, raw EEG data is smoothened
with m=10 in (1). and the number of the amplitude ranges
is 2,i.e.n,=2, yielding X ()& R*** in (8). For each trial, the
threshold to find the zero points % and ** is twice of the
minimal absolute value of x (1) for the trial. The regulariza-
tion parameters A and A° are pre-set to be in the range [0,0.1,
... 0.5], yielding a total of thirty six combinations contained
in /\ with n,=36. (21) is optimized by limited-memory
Broyden-Fletcher-Goldfarb-Shanno  (L-BFGS)  (imple-
mented using MATLAB’s minFunc). After the ocular arte-
fact correction, a filter-bank containing 9 frequency bands
(2-6 Hz, 6-10 Hz, . . ., 34-38 Hz) is applied on x_(t). For
each frequency band, we calculate the features for every 2
s window with 1 s window overlapping. Mutual information
is applied to select the best four features, and, subsequently,
the selected features are classified into the attention class or
the idle class by a linear discriminant analysis (LDA)
classifier [6].

[0114] FIG. 8 summarizes the classification results of the
proposed ocular artefact correction method (OAC) com-
pared with the baseline method (BL) for which no artefact
correction is applied. Results of Session 1, Session 2 and
Session 3 are indicated by “SS17, “SS2” and “SS3”, respec-
tively. As shown in FIG. 8, for all three sessions the
proposed method improves both the median and average
classification accuracies, the significance of which is vali-
dated by paired t-test with almost all p-values below 0.05.

[0115] When evaluation is cartied out on a real world EEG
data set comprising sixty eight subjects performing cogni-
tive tasks, the results show that the approach is capable of
suppressing the artefact components but also improving the
discriminative power of a classifier with statistical signifi-
cance. Thus, the compounding issues induced by ocular
movements in cognitive EEG study are minimised.

[0116] Referring to FIG. 4, there is shown a second
example for a method 400 for real-time discriminative
ocular artefact removal from EEG signals. In addition,
reference is also made to FIG. 2, which shows the system
200 for executing the method 400. Generally, steps of the
method 400 are shown to be carried out using components
or sub-modules of the system 200, although it should be
appreciated that the respective components or sub-modules
need not be separate with each other.

[0117] At step 405, a subject’s raw EEG signal is received.
The subject’s raw EEG signal can be obtained using the
EEG device 195 used by the subject.

[0118] At step 410, the raw EEG signal undergoes smooth-
ening, and this can be carried out at the signal smoothener
220 of the ocular artefact extraction module 205. Subse-
quently, peak amplitudes of the smoothened EEG signal are
determined at step 415, and this can be carried out at the
peak amplitude calculator 225.

[0119] At step 420, a peak range of the smoothened EEG
signal is selected using the peak range selector 230. Once the
peak range is selected, at step 425, a pseudo artefact channel
is formed at the artefact channel former 235.

[0120] Subsequently. discriminative learning is enabled at
step 430, and this is done at the discriminative learner 240
of the regularization optimization module 210. At the regu-
larization optimization module 210, and ocular artefact
removal from the raw EEG signals is carried out at step 440,
at the artefact remover 250. In some embodiments, the
artefact remover 250 acts as a filter to remove pseudo



US 2018/0279960 A1

artefact channels from raw EEG signals. The artefact
remover 250 can include parameters defined in the discrimi-
native learner 240.

[0121] Finally, the signal correction for the raw EEG
signals is initiated at step 445 using the signal correction
module 215.

[0122] Thus, the method 400 describes steps which enable
the real-time discriminative ocular artefact removal from
EEG signals, which correspondingly provides EEG signals
with minimal cerebral information loss as ocular artefacts
are suppressed and not enhanced.

[0123] Throughout this specification and claims which
follow, unless the context requires otherwise, the word
“comprise”, and variations such as “comprises” or “com-
prising”, will be understood to imply the inclusion of a
stated integer or group of integers or steps but not the
exclusion of any other integer or group of integers.

[0124] Persons skilled in the art will appreciate that
numerous variations and modifications will become appar-
ent. All such variations and modifications which become
apparent to persons skilled in the art, should be considered
to fall within the spirit and scope of the invention.
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1. A system for real-time discriminate ocular artefact
removal from EEG signals, the system including at least one
data processor configured to:

smoothen, at a signal smoothener, raw EEG signals;

calculate, at a peak amplitude calculator, peak amplitudes

of smoothened EEG signals;

select, at a peak range selector, a peak range of the

smoothened EEG signals;

form, at an artefact channel former, a pseudo artefact

channel;

enable, at a discriminative learner, discriminative learn-

ing; and

remove, at an artefact remover, ocular artefacts from the

raw EEG signals.

2. The system of claim 1, the at least one data processor
further configured to:

initiate, at a signal correction module, signal correction of

the raw EEG signals.

3. The system of claim 1, wherein the signal smoothener,
the peak amplitude calculator, the peak range selector and
the artefact channel former are integrated in an ocular
artefact extraction module.

4. The system of claim 1, wherein the discriminative
learner, and the artefact remover are integrated in a regu-
larization optimization module.

5. The system of claim 1, wherein the signal smoothener
relies on a moving average filter.

6. The system of claim 1, wherein the peak amplitude
calculator determines a maximum relative amplitude of
peaks of the smoothened EEG signal.
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7. The system of claim 6, wherein separation of the ocular
artefacts using the maximum relative amplitude of peaks
enables separation of different ocular movements.

8. The system of claim 1, wherein the discriminative
learner uses oscillatory correlation.

9. A data processor implemented method for real-time
discriminate ocular artefact removal from EEG signals, the
method comprising:

smoothening, at a signal smoothener, raw EEG signals;

calculating, at a peak amplitude calculator, peak ampli-

tudes of smoothened EEG signals;

selecting, at a peak range selector, a peak range of the

smoothened EEG signals;

forming, at an artefact channel former, a pseudo artefact

channel;

enabling, at a discriminative learner, discriminative learn-

ing; and

removing, at an artefact remover, ocular artefacts from the

raw EEG signals.

10. The method of claim 9, further including:

initiating, at a signal correction module, signal correction

of the raw EEG signals.

11. The method of claim 9, wherein the signal smooth-
ener, the peak amplitude calculator, the peak range selector
and the artefact channel former are integrated in an ocular
artefact extraction module.

12. The method of claim 9, wherein the discriminative
learner, and the artefact remover are integrated in a regu-
larization optimization module.

13. The method of claim 9, wherein the signal smoothener
relies on a moving average filter.

14. The method of claim 9, wherein the peak amplitude
calculator determines a maximum relative amplitude of
peaks of the smoothened EEG signal.

15. The method of claim 14, wherein separation of the
ocular artefacts using the maximum relative amplitude of
peaks enables separation of different ocular movements.

16. The method of claim 9, wherein the discriminative
learner uses oscillatory correlation.

17. A non-transitory computer readable storage medium
embodying thereon a program of computer readable instruc-
tions which, when executed by one or more processors of a
signal processing device, cause the signal processing device
to carry out a method for real-time discriminate ocular
artefact removal from EEG signals, the method embodying
the steps of:

smoothening, at a signal smoothener of the signal pro-

cessing device, raw EEG signals;

calculating, at a peak amplitude calculator of the signal

processing device, peak amplitudes of smoothened
EEG signals;
selecting, at a peak range selector of the signal processing
device, a peak range of the smoothened EEG signals;
forming, at an artefact channel former of the signal
processing device, a pseudo artefact channel,
enabling, at a discriminative learner of the signal process-
ing device, discriminative learning; and

removing, at an artefact remover of the signal processing

device, ocular artefacts from the raw EEG signals.

18. The storage medium of claim 17, the method further
embodying the step:



US 2018/0279960 A1 Oct. 4,2018

initiating, at a signal correction module of the signal
processing device, signal correction of the raw EEG
signals.
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