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(57) ABSTRACT

Novel tools and techniques are provided for assessing,
predicting and/or estimating a probability that a patient is
bleeding, in some cases, noninvasively. In various embodi-
ments, tools and techniques are provided for implementing
rapid detection of bleeding of the patient or implementing
assessment, prediction, or estimation of a probability of
bleeding of the patient following injury, in some instances,
in real-time before, during, and after fluid resuscitation.
According to some embodiments, one or more sensors might
monitor physiological data of the patient before, during, and
after resuscitation following injury. A computer system
might receive and analyze the physiological data, and might
estimate a probability that the patient is bleeding, based at
least in part on the analyzed physiological data. An indica-
tion of at least one of an assessment, prediction, or estimate
of a probability that the patient is bleeding may then be
displayed on a display device.
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FIELD

[0012] The present disclosure relates, in general, tools and
techniques for medical monitoring, and more particularly, to
tools and techniques that can provide rapid detection of
bleeding following injury.

BACKGROUND

[0013] Hemorrhagic shock induced by traumatic injury is
a leading cause of mortality. The first hour following injury
has been termed the “golden hour,” because there is a short
interval of time during which recognition and proper man-
agement of a patient with significant, ongoing bleeding can
make the difference between life and death. Significant
bleeding is not always clinically evident. Many severely
injured patients have intracavitary bleeding, which means
that bleeding from a major organ or vessel is contained
within the thorax or abdomen. There is no external evidence
of bleeding and as a result, suspicion and clinical signs of
bleeding must be sought by the practitioner. In the field,
where imaging and laboratory tests are generally not avail-
able, a change in vital signs over time may be the only
indication that a patient is bleeding. Thus, during the
“golden hour” one must learn to recognize the signs and
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symptoms of acute blood loss, then initiate fluid resuscita-
tion and frequently estimate the patient’s fluid needs in an
ongoing fashion.

[0014] The problem is that humans are unable to recognize
subtle, beat-to-beat vital sign changes that are indicative of
bleeding. More importantly, humans are unable to detect
subtle vital sign changes that lead to and are characteristic of
impending hemodynamic decompensation or cardiovascular
collapse, which is heralded by hypotension with bradycar-
dia.

[0015] To further complicate matters, humans have an
innate ability to compensate for significant blood loss with
little change in traditional vital signs. Accordingly, blood
loss is difficult to detect using traditional vital sign moni-
toring techniques.

[0016] Thus, thereis a need for an automated, noninvasive
device for early diagnosis, real-time monitoring and tracking
of blood loss, especially following injury.

BRIEF DESCRIPTION OF THE DRAWINGS

[0017] A further understanding of the nature and advan-
tages of particular embodiments may be realized by refer-
ence to the remaining portions of the specification and the
drawings, in which like reference numerals are used to refer
to similar components. In some instances, a sub-label is
associated with a reference numeral to denote one of mul-
tiple similar components. When reference is made to a
reference numeral without specification to an existing sub-
label, it is intended to refer to all such multiple similar
components.

[0018] FIG. 1A is a schematic diagram illustrating a
system for estimating compensatory reserve, in accordance
with various embodiments.

[0019] FIG. 1B is a schematic diagram illustrating a
sensor system that can be worn on a patient’s body, in
accordance with various embodiments.

[0020] FIG. 2A is a process flow diagram illustrating a
method of assessing blood loss, in accordance with various
embodiments.

[0021] FIG. 2B illustrates a technique for assessing blood
loss, in accordance with various embodiments.

[0022] FIG. 3A is a process flow diagram illustrating a
method estimating a patient’s compensatory reserve and/or
dehydration state, in accordance with various embodiments.
[0023] FIG. 3B illustrates a technique for estimating and/
or predicting a patient’s compensatory reserve index, in
accordance with various embodiments.

[0024] FIG. 4 is a process flow diagram illustrating a
method of generating a model of a physiological state, in
accordance with various embodiments.

[0025] FIG. 5 is a process flow diagram illustrating a
method of implementing rapid detection of bleeding before,
during, and after fluid resuscitation, in accordance with
various embodiments.

[0026] FIGS. 6-8 are exemplary screen captures illustrat-
ing display features of a compensatory reserve monitor
showing assessments of blood loss before, during, and/or
after fluid resuscitation, in accordance with various tech-
niques.

[0027] FIGS. 9A-9H are graphical diagrams illustrating
rapid detection of bleeding before, during, and after fluid
resuscitation of patients in a multi-trauma clinical study at
Denver Health Medical Center, in accordance with various
embodiments.
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[0028] FIG. 10 is a schematic diagram illustrating Com-
pensatory Reserve (“CR”), in accordance with various
embodiments.

[0029] FIG. 11 is a graphical diagram illustrating receiver
operating characteristic (“ROC”) area under the curve
(“AUC”) for CRI and classification of actively bleeding
versus not actively bleeding, in accordance with various
embodiments.

[0030] FIG. 12 is a set of graphical diagrams illustrating
CRI response in bleeding patients and in non-bleeding
patients one hour after infusion of 1 liter of crystalloid or 1
unit of blood product, in accordance with various embodi-
ments.

[0031] FIGS. 13A and 13B are graphical diagrams illus-
trating CRI changes over time for two example gunshot
patients in response to varying resuscitation techniques.
[0032] FIGS. 14A and 14B are graphical diagrams illus-
trating Fluid Volume Requirements (“FVR”) estimation vs.
actual volume requirements for two patients in a clinical
trial.

[0033] FIG. 15 is a generalized schematic diagram illus-
trating a computer system, in accordance with various
embodiments.

DETAILED DESCRIPTION OF CERTAIN
EMBODIMENTS

[0034] Overview

[0035] Various embodiments can detect bleeding in
patients following injury, in some instances, in real-time
before, during, and after fluid resuscitation. In an aspect,
such detection can be performed noninvasively. In some
embodiments, the detection can be based on a calculation (or
estimation) of a patient’s compensatory reserve index
(“CRT,” also referred to herein and in the Related Applica-
tions as “cardiac reserve index” or “hemodynamic reserve
index” (“HDRI™)). In other cases, the assessments might be
based on raw waveform data (e.g., PPG waveform data)
captured by a sensor on the patient (such as the sensors
described in the Related Applications, for example). In
further cases, a combination of waveform data and calcu-
lated/estimated CRT can be used to calculate the effective-
ness of resuscitation and/or the amount of fluid needed for
effective resuscitation.

[0036] Inother aspects, such functionality can be provided
by and/or integrated with systems and devices (such as a
cardiac reserve monitor), tool, techniques, methods, and
software described in the Related Applications, including in
particular the *483 Application. For example, various opera-
tions described in accordance with the methods disclosed by
the Related Applications can be employed in a method of
assessing effectiveness of resuscitation and/or calculating an
amount of fluid needed for effective resuscitation. Similarly,
such techniques can be performed by the systems and/or
embodied by the software products described in the Related
Applications.

[0037] An embodiment can include a system that com-
prises one or more sensors placed on the patient and a
computer system (such as those described in the Related
Applications) that performs a method for using sensor data
for estimating and predicting (in real-time, after every
heartbeat, or as the information is needed) one or more of the
relevant parameters outlined above. Other embodiments can
comprise the computer system programmed to perform such
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a method, an apparatus comprising instructions to program
a computer to perform such a method, and/or such a method
itself.

[0038] A sensor may include, but is not limited to, any of
the following: a noninvasive blood pressure sensor such as
the Nexfin (BMEYE, B.V.) or Finometer (Finapres Medical
Systems B.V.); invasive arterial blood pressure, using an
arterial catheter; invasive central venous pressure; invasive
or noninvasive intracranial pressure monitor; electroen-
cephalograph (“EEG™); cardiac monitor (“EKG”); transcra-
nial Doppler sensor; transthoracic impedance plethysmog-
raphy; pulse oximetry; a sensor generating a
photoplethysmograph (“PPG”) waveform; near infrared
spectroscopy; electronic stethoscope; and/or the like.
[0039] The 809 Application describes several exemplary
embodiments, but various embodiments are not limited to
those described in the *809 Application. For example, FIG.
1 of the *809 Application illustrates an exemplary sensor that
can be used to collect waveform data for analysis, but other
sensors could be used as well. Similarly, the 809 Applica-
tion describes several techniques for estimating probability
of blood loss. Many such techniques depend on an estimate
of a patient’s CRI, which can be calculated using the
techniques described in the *483 Application. It should be
appreciated, however, that other embodiments of estimating
a probability of bleeding and/or of estimating CRI can be
employed in various embodiments.

[0040] Thus, in one aspect, a method can include receiving
data from such a sensor and analyzing such data using
techniques including, but not limited to, analyzing the data
using models described in the Related Applications. Merely
by way of example, a model might be constructed using test
subject data from a study, such as the LBNP study, which
can be used to predict or estimate a CRI (or HDRI) value,
as described in the Related Applications, and in particular in
the *483 Application. From this calculated value of CRI (or,
in some embodiments, from the waveform data itself, alone
or in combination with the CRI value), a probability that a
patient is bleeding internally before, during, and/or after
fluid resuscitation procedures, for example, using the tech-
niques described in the *809 Application.

[0041] For example, in one embodiment, a method might
comprise capturing waveform data from a patient with the
sensor before, during, and/or after fluid resuscitation and/or
calculating a CRI value for the patient at these times. In
some cases, the variation in CRI values obtained during the
procedure can be used to estimate a probability that the
patient is bleeding. For instance, the standard deviation of
the CRI values during the recording and/or the difference in
CRI values before, during, and/or after fluid resuscitation
can be used to estimate probability of bleeding, as described
more fully with regard to the clinical study detailed in the
*809 Application.

[0042] Some embodiments further comprise normalizing
an estimated probability of bleeding against a scaling. For
example, in some cases, an index from 0 to 1 could be used,
with 0 indicating that the patient is not bleeding, 1 indicating
that the patient is bleeding, and values between 0 and 1
indicating relative probabilities that the patient is bleeding,
based on the estimates calculated from the CRI values.
[0043] The following detailed description illustrates a few
exemplary embodiments in further detail to enable one of
skill in the art to practice such embodiments. The described
examples are provided for illustrative purposes and are not



US 2017/0281020 Al

intended to limit the scope of the invention. For the purposes
of this disclosure, it should be recognized that a node could
be “virtual” or supported on a hypervisor or Host system, or
could be a physical node or network device within a net-
work. In most cases, the figures illustrate bridging a virtual
path and possibly a node (virtual machine) across the path or
between two physical nodes. However, it should be under-
stood that the “swapping” of paths via orchestration can
occur in any combination of physical and/or virtual nodes,
physical and/or virtual links, or the like.

[0044] In the following description, for the purposes of
explanation, numerous specific details are set forth in order
to provide a thorough understanding of the described
embodiments. It will be apparent to one skilled in the art,
however, that other embodiments of the present invention
may be practiced without some of these specific details. In
other instances, certain structures and devices are shown in
block diagram form. Several embodiments are described
herein, and while various features are ascribed to different
embodiments, it should be appreciated that the features
described with respect to one embodiment may be incorpo-
rated with other embodiments as well. By the same token,
however, no single feature or features of any described
embodiment should be considered essential to every
embodiment of the invention, as other embodiments of the
invention may omit such features.

[0045] Unless otherwise indicated, all numbers used
herein to express quantities, dimensions, and so forth used
should be understood as being modified in all instances by
the term “about.” In this application, the use of the singular
includes the plural unless specifically stated otherwise, and
use of the terms “and” and “or” means “and/or” unless
otherwise indicated. Moreover, the use of the term “includ-
ing,” as well as other forms, such as “includes” and
“included,” should be considered non-exclusive. Also, terms
such as “element” or “‘component” encompass both elements
and components comprising one unit and elements and
components that comprise more than one unit, unless spe-
cifically stated otherwise.

[0046] The tools provided by various embodiments
include, without limitation, methods, systems, and/or soft-
ware products. Merely by way of example, a method might
comprise one or more procedures, any or all of which are
executed by a computer system. Correspondingly, an
embodiment might provide a computer system configured
with instructions to perform one or more procedures in
accordance with methods provided by various other embodi-
ments. Similarly, a computer program might comprise a set
of instructions that are executable by a computer system
(and/or a processor therein) to perform such operations. In
many cases, such software programs are encoded on physi-
cal, tangible, and/or non-transitory computer readable media
(such as, to name but a few examples, optical media,
magnetic media, and/or the like).

[0047] In an aspect, a system might be provided that
comprises one or more sensors to obtain physiological data
from a patient and a computer system in communication
with the one or more sensors. The computer system might
comprise one or more processors and a non-transitory com-
puter readable medium in communication with the one or
more processors. The computer readable medium might
have encoded thereon a set of instructions executable by the
one or more processors to cause the computer system to
receive the physiological data from the one or more sensors
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before, during, and after resuscitation following injury,
analyze the physiological data, estimate a probability that
the patient is bleeding, and display, on a display device, at
least one of an assessment, prediction, or estimate indicating
a probability that the patient is bleeding.

[0048] In another aspect, a method might be provided that
comprises monitoring, with one or more sensors, physi-
ological data of a patient before, during, and after resusci-
tation following injury, analyzing, with a computer system,
the physiological data, and estimating, with the computer
system, a probability that the patient is bleeding, based at
least in part on the analyzed physiological data. The method
might further comprise displaying, with the computer sys-
tem and on a display device, an indication of at least one of
an assessment, prediction, or estimate of a probability that
the patient is bleeding,

[0049] According to some embodiments, resuscitation
might comprise at least one of infusing crystalloid in the
patient, infusing blood products in the patient, or infusing
intravenous fluid in the patient, and/or the like. In some
instances, the intravenous fluid might comprise one or more
of saline solution or lactated ringer’s (“LR”) solution, and/or
the like. In some cases, the blood products might comprise
one or more of infusion of packed red blood cells (“PRBC”)
in the patient, infusion of fresh frozen plasma (“FFP”) in the
patient, infusion of platelets (“PLTs”) in the patient, or
infusion of cryoprecipitated antihaemophilic factor (“cryo™)
in the patient, and/or the like.

[0050] In some instances, one or more of monitoring the
physiological data, analyzing the physiological data, esti-
mating the probability that the patient is bleeding, or dis-
playing the indication of at least one of an assessment,
prediction, or estimate of the probability that the patient is
bleeding are performed in real-time. In some cases, estimat-
ing a probability that the patient is bleeding might comprise
estimating, with the computer system, a probability that the
patient is bleeding, based at least in part on one or more
values of compensatory reserve index (“CRT”) estimated
based on the received physiological data (i.e., the physi-
ological data that are received by the computer system from
the one or more sensors). According to some embodiments,
the one or more values of CRT are estimated based on
physiological data that are at least one of received before,
received during, or received after a fluid resuscitation pro-
cedure.

[0051] In some embodiments, the one or more values of
CRT might comprise a plurality of values of CRT. In some
cases, estimating a probability that the patient is bleeding
might comprise estimating, with the computer system, the
probability that the patient is bleeding based at least in part
on one or more of an average value of CRI over a particular
period of time, a standard deviation of at least some of the
plurality of values of CRI, a skewness of at least some of the
plurality of values of CRI, a rate of change of at least some
of the plurality of values of CRI, a rate of rate change of at
least some of the plurality of values of CRI, and/or a
difference between at least some of the plurality of values of
CRI. In some instances, the indication is a value between 0
and 1. According to some embodiments, a value of 1 might
indicate that the patient is not bleeding, while a value of 0
might indicate that the patient is bleeding.
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[0052] In some cases, estimating a CRI of the patient
comptises estimating a compensatory reserve index by com-
paring the physiological data to a model constructed using
the following formula:

BLV()

CRIf)=1 - ————
® BLVypp®

where CRI(t) is the compensatory reserve at time t, BLV(t)
is an intravascular volume loss of a test subject at time t, and
BLVy,p is an intravascular volume loss at a point of
hemodynamic decompensation of the test subject. In some
embodiments, the physiological data comprises waveform
data and wherein estimating the CRI comprises comparing,
with the computer system, the waveform data with one or
more sample waveforms generated by exposing one or more
test subjects to state of hemodynamic decompensation or
near hemodynamic decompensation, or a series of states
progressing towards hemodynamic decompensation, and
monitoring physiological data of the test subjects.

[0053] In some instances, the physiological data might
comprise waveform data, and estimating the CRI might
comptrise comparing, with the computer system, the wave-
form data with a plurality of sample waveforms, each of the
sample waveforms corresponding to a different value of the
CRI to produce a similarity coefficient expressing a simi-
larity between the waveform data and each of the sample
waveforms; normalizing, with the computer system, the
similarity coeflicients for each of the sample waveforms;
and summing, with the computer system, the normalized
similarity coeflicients to produce an estimated CRI value for
the patient.

[0054] According to some embodiments, estimating a
probability that the patient is bleeding is based at least in part
on a fixed time history of monitoring the physiological data
of the patient. Alternatively, estimating a probability that the
patient is bleeding is based at least in part on a dynamic time
history of monitoring the physiological data of the patient.
In some instances, at least one of the one or more sensors
each comprises at least one of a blood pressure sensor, an
intracranial pressure monitor, a central venous pressure
monitoring catheter, an arterial catheter, an electroencepha-
lograph, a cardiac monitor, a transcranial Doppler sensor, a
transthoracic impedance plethysmograph, a pulse oximeter,
a near infrared spectrometer, a ventilator, an accelerometer,
an electrooculogram, a transcutaneous glucometer, an elec-
trolyte sensor, or an electronic stethoscope, and/or the like.
[0055] Merely by way of example, in some embodiments,
physiological data might comprise at least one of blood
pressure waveform data, plethysmograph waveform data, or
photoplethysmograph (“PPG”) waveform data.

[0056] In some cases, analyzing the physiological data
might comprise analyzing, with the computer system, the
physiological data against a pre-existing model. [n some
embodiments, the method might further comprise generat-
ing, with the computer systemni, the pre-existing model prior
to analyzing the physiological data. In some instances,
generating the pre-existing model might comprise receiving,
with the computer system, data pertaining to one or more
physiological parameters of a test subject to obtain a plu-
rality of physiological data sets, directly measuring one or
more physiological states of the test subject with a reference
sensor to obtain a plurality of physiological state measure-
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ments, and correlating, with the computer system, the
received data with the physiological state measurements of
the test subject. According to some embodiments, the one or
more physiological states comprise reduced circulatory sys-
tem volume.

[0057] In some instances, the method might further com-
prise inducing the physiological state of reduced circulatory
system volume in the test subject. In some cases, inducing
the physiological state might comprise at least one of
subjecting the test subject to lower body negative pressure
(“LBNP”), subjecting the test subject to dehydration, and/or
the like. In some embodiments, the one or more physiologi-
cal states might comprise at least one of a state of cardio-
vascular collapse or near-cardiovascular collapse, a state of
euvolemia, a state of hypervolemia, a state of dehydration,
and/or the like.

[0058] According to some embodiments, correlating the
received data with the physiological state measurements of
the test subject might comprise identifying, with the com-
puter system, a most predictive set of signals S, out of a set
of signals s, s,, . . . , s, for each of one or more outcomes
0,, autonomously learning, with the computer system, a set
of probabilistic predictive models 6,=M,(S,), and repeating,
with the computer system, the operation of autonomously
learning incrementally from data that contains examples of
values of signals s, s, . . . , 55, and corresponding outcomes
0y, O, . . . , Oz Here, the most-predictive set of signals S,
corresponds to a first data set representing a first physiologi-
cal parameter, and each of the one or more outcomes o,
represents a physiological state measurement, while 0, is a
prediction of outcome o, derived from a model M, that uses
as inputs values obtained from the set of signals S,.

[0059] In yet another aspect, an apparatus might be pro-
vided that comprises a non-transitory computer readable
medium that has encoded thereon a set of instructions
executable by one or more computers to cause the apparatus
to receive physiological data from one or more sensors
before, during, and after resuscitation following injury,
analyze the physiological data, estimate a probability that
the patient is bleeding, and display, on a display device, at
least one of an assessment, prediction, or estimate indicating
a probability that the patient is bleeding.

[0060] Various modifications and additions can be made to
the embodiments discussed without departing from the
scope of the invention. For example, while the embodiments
described above refer to particular features, the scope of this
invention also includes embodiments having different com-
bination of features and embodiments that do not include all
of the above described features.

[0061] Compensatory Reserve Index (“CRT”)

[0062] Various embodiments can assess the effectiveness
of fluid intake hydration, where effectiveness can be defined
as, but not limited to, leading to a better hydration state or
maintain an optimal hydration state. In one aspect, optimal
hydration might be defined as a fluid state that maximized
some performance index/measure, perhaps indicated by the
patient’s compensatory reserve index (“CRT,” also referred
to herein and in the Related Applications as “cardiac reserve
index” or “hemodynamic reserve index” (“HDRI”), all of
which should be considered synonymous for purposes of
this disclosure). (While the term, “patient,” is used herein for
convenience, that descriptor should not be considered lim-
iting, because various embodiments can be employed both
in a clinical setting and outside any clinical setting,. such as
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by an athlete before, during, or after an athletic contest or
training, a person during daily activities, a soldier on the
battlefield, etc. Thus, the term, “patient,” as used herein,
should be interpreted broadly and should be considered to be
synonymous with “person.”) In other cases, the assessments
might be based on raw waveform data (e.g., PPG waveform
data) captured by a sensor on the patient (such as the sensors
described below and the Related Applications, for example).
In further cases, a combination of waveform data and
calculated/estimated CRT can be used to calculate the effec-
tiveness of hydration and/or the amount of fluid needed for
effective hydration. In other aspects, such functionality can
be provided by and/or integrated with systems, devices
(such as a cardiac reserve monitor and/or wrist-worn sensor
device, or the like), tools, techniques, methods, and software
described below and in the Related Applications.

[0063] For example, one set of embodiments provides
methods. An exemplary method might comprise monitoring,
with one or more sensors, physiological data of a patient.
The method might further comprise analyzing, with a com-
puter system, the physiological data. Many different types of
physiological data can be monitored and/or analyzed by
various embodiments, including, without limitation, blood
pressure waveform data, plethysmograph waveform data,
photoplethysmograph (“PPG”) waveform data (such as that
generated by a pulse oximeter), and/or the like. In an aspect
of some embodiments, analyzing the physiological data
might comprise analyzing the data against a pre-existing
model. In some cases, the method can further comprise
assessing the effectiveness of hydration efforts, and/or dis-
playing (e.g., on a display device) an assessment of the
effectiveness of the hydration efforts. Such an assessment
can include, without limitation, an estimate of the effective-
ness at a current time, a prediction of the effectiveness at
some point in the future, an estimate and/or prediction of a
volume of fluid necessary for effective hydration, an esti-
mate of the probability a patient requires fluids, etc.

[0064] An apparatus, in accordance with yet another set of
embodiments, might comprise a computer readable medium
having encoded thereon a set of instructions executable by
one or more computers to perform one or more operations.
In some embodiments, the set of instructions might com-
prise instructions for performing some or all of the opera-
tions of methods provided by certain embodiments.

[0065] A system, in accordance with yet another set of
embodiments, might comprise one or more processors and a
computer readable medium in communication with the one
or more processors. The computer readable medium might
have encoded thereon a set of instructions executable by the
computer system to perform one or more operations, such as
the set of instructions described above, to name one
example. In some embodiments, the system might further
comprise one or more sensors and/or a therapeutic device,
either or both of which might be in communication with the
processor and/or might be controlled by the processor. Such
sensors can include, but are not limited to, a blood pressure
sensor, an intracranial pressure monitor, a central venous
pressure monitoring catheter, an arterial catheter, an elec-
troencephalograph, a cardiac monitor, a transcranial Doppler
sensor, a transthoracic impedance plethysmograph, a pulse
oximeter, a near infrared spectrometer, a ventilator, an
accelerometer, an electrooculogram, a transcutaneous glu-
cometer, an electrolyte sensor, and/or an electronic stetho-
scope.
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[0066] CRI for Assessing Blood Loss

[0067] A set of embodiments provides methods, systems,
and software that can be used, in many cases noninvasively,
to quickly and accurately assess blood loss in a patient (e.g.,
before, during, and/or after fluid resuscitation). Such an
assessment can include, without limitation, an estimate of
the effectiveness at a current time, a prediction of the
effectiveness at some point in the future, an estimate and/or
prediction of a volume of fluid necessary for effective
hydration, an estimate of the probability a patient requires
fluids, an estimate and/or prediction of blood loss (e.g.,
before, during, and/or after fluid resuscitation), etc. In a
particular set of embodiments, a device, which can be worn
on the patient’s body, can include one or more sensors that
monitor a patient’s physiological parameters. The device (or
a computer in communication with the device) can analyze
the data captured by the sensors and compare such data with
a model (which can be generated in accordance with other
embodiments) to assess the effectiveness of hydration, as
described in further detail in the *426 Application, and/or to
assess blood loss (e.g., before, during, and/or after fluid
resuscitation).

[0068] Different embodiments can measure a number of
different physiological parameters from the patient, and the
analysis of those parameters can vary according to which
parameters are measured (and which, according to the
generated model, are found to be most predictive of the
effectiveness of hydration, including the probability of the
need for hydration and/or the volume of fluids needed, or
most predictive of blood loss). In some cases, the parameters
themselves (e.g., continuous waveform data captured by a
photoplethysmograph) can be analyzed against the model to
make assessments of hydration effectiveness or assessments
of blood loss (e.g., before, during, and/or after fluid resus-
citation). In other cases, physiological parameters can be
derived from the captured data, and these parameters can be
used Merely by way of example, as described further below
and the *483 Application (already incorporated by refer-
ence), direct physiological data (captured by sensors) can be
used to estimate a value of CRI, and this value of CRI can
be used to assess the effectiveness of hydration and/or to
assess blood loss (e.g., before, during, and/or after fluid
resuscitation). In yet other cases, the derived CRI values and
raw sensor data can be used together to perform such
assessments.

[0069] For example, the ’483 Application describes a
compensatory reserve monitor (also described as a cardiac
reserve monitor or hemodynamic reserve monitor) that is
able to estimate the compensatory reserve of a patient. In an
aspect, this monitor quickly, accurately, and/or in real-time
can determine the probability of whether a patient is bleed-
ing. In another aspect, the device can simultaneously moni-
tor the patient’s compensatory reserve by tracking the
patient’s CRI, to appropriately and effectively guide hydra-
tion and ongoing patient care. The same device (or a similar
device) can also include advanced functionality to assess the
effectiveness of hydration, based on the monitored CRI
values, as explained in further detail in the *426 Application,
and/or to rapidly assess blood loss (e.g., before, during,
and/or after fluid resuscitation).

[0070] CRI is a hemodynamic parameter that is indicative
of the individual-specific proportion of intravascular fluid
reserve remaining before the onset of hemodynamic dec-
ompensation. CRI has values that range from 1 to 0, where
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values near 1 are associated with normovolemia (normal
circulatory volume) and values near 0 are associated with
the individual specific circulatory volume at which hemo-
dynamic decompensation occurs.

[0071] The mathematical formula of CRI, at some time “t”
is given by the following equation:

BLY(1)
BLVann

CRI =1 - (Ea. D

where BLV(1) is the intravascular volume loss (“BLV,” also
referred to as “blood loss volume” in the Related Applica-
tions) of a person at time “t,” and BLV ,,, is the intravas-
cular volume loss of a person when they enter hemodynamic
decompensation (“HDD”). Hemodynamic decompensation
is generally defined as occurring when the systolic blood
pressure falls below 70 mmHg. This level of intravascular
volume loss is individual specific and will vary from subject
to subject.

[0072] Lower body negative pressure (“LBNP”) in some
linear or nonlinear relationship A with intravascular volume

loss:
BLV=)-LBNP (Eq. 2)

can be used in order to estimate the CRI for an individual
undergoing a LBNP experiment as follows:

BLV(D)
BLVypp

A-LBNP(D)
T A-LBNPypp

LBNP(1)
" LBNPypp

Fq.3
CRI=1- (Ba. 3)

where LBNP(t) is the LBNP level that the individual is
experiencing at time “t,” and, LBNP,,,, is the LNPB level
that the individual will enter hemodynamic decompensation.
[0073] Using either CRI data, raw (or otherwise pro-
cessed) sensor data, or both, various embodiments can
assess the effectiveness of hydration. In one embodiment,
the assessment of blood loss (“BL”) can be expressed as a
value between 0 and 1; when BL~=1, blood loss is certain,
when BL=0, there is no blood loss, and when BL is a value
between 1 and 0, the value is indicative of probability of
blood loss, perhaps due to ongoing bleeding before, during,
and/or after fluid resuscitation. (Of course, other embodi-
ments can scale the value of BL differently). In an aspect of
some embodiments, a general expression for the estimate of
blood loss is as follows:

BL=fp,(CRL,FV,S) (Eq. 4)

where BL is a measure or an estimate of blood loss,
F5(CRIFV,S) is an algorithm embodied by a model
generated empirically, e.g., using the techmques described
with respect to FIG. 4 below, and/or in the Related Appli-
cations, CRI, is a time history of CRI values (which can
range from a single CRI value to many hours of CRI values),
FV, is a time history of fluid volume being given to the
patient (which can range from a single value to many hours
of values), and S, is a time history of raw sensor values, such
as physiological data measured by the sensors, as described
elsewhere herein (which can range from one value to many
hours of values).

[0074] The functional form of Eq. 4 is similar to but not
limited to the form of the CRI model in the sense that time
histories of (CRI,, FV,, S,) data gathered from human
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subjects at various levels of BL are compared to time
histories of (CRI,, FV,, S,) for the current patient being
monitored. The estimated BL for the current patient is then
that which is the closest in (CRI, FV,, S)) space to the
previously gathered data.

[0075] While Eq. 4 is the general expression for BL,
various embodiments might use subsets of the parameters
considered in Eq. 4. For instance, in one embodiment, a
model might consider only the volume of fluid and CRI data,
without accounting for raw sensor input. In that case, BL can
be calculated as follows:

BL~f5,(CRLFV,).
[0076] Similarly, some models might estimate BL, based

on sensor data, rather than first estimating CRI, in which
case, BL can be expressed thusly:

(Eq. 5)

BL=f3(FV, S (Eq. 6)

[0077] The choice of parameters to use in modeling BL is
discretionary, and it can depend on what parameters are
shown (e.g., using the techniques of FIG. 4, below) to result
in the best prediction of BL.

[0078] In another aspect, the effectiveness of hydration
can be assessed by estimating or predicting the volume, V,
of fluid necessary for effective hydration of the patient. This
volume, V, can indicate a volume of fluid needed for full
hydration if therapy has not yet begun, and/or it can indicate
a volume remaining for fully effective hydration if therapy
is underway. Like BL, the value of V can be estimated/
predicted using the modeling techniques described herein
and in the Related Applications. In a general case, V can be
expressed as the following:

V=f{(CRI,FV,S,) (Eq. 7)

where V is an estimated volume of fluid needed by a patient
need to prevent over or under hydration, f,(CRI,FV S is
an algorithm embodied by a model generated empirically,
e.g., using the techniques described with respect to FIG. 4
below, and/or in the Related Applications, CRI, is a time
history of CRI values, FV, is a time history of fluid volume
being given to the patient, and S, is a time history of
physiological data received from the one or more sensors.
[0079] As with the estimate of BL, various embodiments
can employ subsets of the parameters used in the general
expression of Eq. 7. Thus, different embodiments might
calculate V as follows:

V=1 ACRLFV) (Eg. 8)

or

V=1 AFV,S,). (Eq. 9)
[0080] Yet another way of assessing effectiveness of

hydration (which can even include assessing the need for
hydration) is estimating the probability Py that the patient
requires fluids; this probability can estimate the likelihood
that the patient requires hydration if therapy has not been
initiated, and/or, if hydration therapy is underway, the prob-
ability can estimate the likelihood that further hydration is
necessary. The value of this probability, which can be
expressed, e.g., as a percentage, as a decimal value between
0 and 1, etc. can be estimated using the following expres-
sion:

Py=fp/CRLS,) (Eq. 10)
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where P is the estimated probability that the patient requires
fluid, £, (CRI,, S,) is a relationship derived based on empiri-
cal study, CRI, is a time history of CRI values, and §, is a
time history of physiological data received from the one or
more sensors. Once again, this general expression can be
employed, in various embodiments, using subsets of the
parameters in the general expression, such as the following:

Py=F2,(CRT) (Eq. 1)
or

Pi=f Pf(Sr)' (Eq. 12)

[0081] In the estimate of any of BL, V, or Py, the function
F expresses a relationship that is derived based on empirical
study. In a set of embodiments, for example, various sensor
data can be collected from test subjects before, during,
and/or after hydration efforts, during hemorrhaging, or under
other conditions that might simulate such situations. This
sensor data can be analyzed to develop models, using
techniques similar to those of FIG. 4 below, which can then
be used to estimate various assessments of hydration effec-
tiveness, using, e.g., the methods described below with
respect to FIGS. 2 and 3.

[0082] A measure of CRI, BL, V, and/or P; can be useful
in a variety of clinical settings, including, but not limited to:
1) acute blood loss volume due to injury or surgery; 2) acute
circulatory volume loss due to hemodialysis (also called
intradialytic hypotension); and 3) acute circulatory volume
loss due to various causes of dehydration (e.g., reduced fluid
intake, vomiting, dehydration, etc.). A change in CRI can
also herald other conditions, including, without limitation,
changes in blood pressure, general fatigue, overheating,
and/or certain types of illnesses. Accordingly, the tools and
techniques for estimating and/or predicting CRI can have a
variety of applications in a clinical setting, including, with-
out limitation, diagnosing such conditions.

[0083] Moreover, measures of CRI, BL, V, and/or P; can
have applicability outside the clinical setting. For example,
an athlete can be monitored (e.g., using a wrist-wearable
hydration monitor) before, during, or after competition or
training to ensure optimal performance (and overall health
and recovery). In other situations, a person concerned about
overall wellbeing can employ a similar hydration monitor to
ensure that he or she is getting enough (but not too much)
fluid, 11l infants or adults can be monitored while ill to ensure
that symptoms (e.g., vomiting, diarrhea, etc.) do not result in
dehydration, and the like. Similarly, soldiers in the field
(particularly in harsh conditions) can be monitored to ensure
optimal operational readiness.

[0084] Invarious embodiments, a hydration monitor, com-
pensatory reserve monitor, a wrist-wearable sensor device,
and/or another integrated system can include, but is not
limited to, some or all of the following functionality, as
described in further detail herein and in the Related Appli-
cations:

[0085] A. Estimating and/or displaying intravascular vol-
ume loss to hemodynamic decompensation (or cardiovas-
cular collapse).

[0086] B. Estimating, predicting, and/or displaying a
patient’s compensatory reserve as an index that is propor-
tional to an approximate measure of intravascular volume
loss to CV collapse, recognizing that each patient has a
unique reserve capacity.
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[0087] C. Estimating, predicting, and/or displaying a
patient’s compensatory reserve as an index with a normative
value at euvolemia (for example, CRI=1), representing a
state in which the patient is normovolemic; a minimum
value (for example, CRI=0) which implies no circulatory
reserve and that the patient is experiencing CV collapse;
and/or an excess value (for example, CRI>1) representing a
state in which the patient is hypervolemic; the patient’s
normalized compensatory reserve can be displayed on a
continuum between the minimum and maximum values
(perhaps labeled by different symbols and/or colors depend-
ing on where the patient falls on the continuum).

[0088] D.Determining and/or displaying a probability that
bleeding or intravascular volume loss has occurred.

[0089] E. Displaying an indicator that intravascular vol-
ume loss has occurred and/or is ongoing; as well as other
measures of reserve, such as trend lines.

[0090] F. Estimating a patient’s current blood pressure
and/or predicting a patient’s future blood pressure.

[0091] G. Estimating the current effectiveness of fluid
resuscitation efforts.

[0092] H. Predicting the future effectiveness of fluid resus-
citation efforts.
[0093] 1. Estimating and/or predicting a volume of fluid

necessary for effective resuscitation.

[0094] J. Estimating a probability that a patient needs
fluids.

[0095] K. Estimating a hydration state of a patient or user.
[0096] L. Predicting a future hydration state of a patient or
user.

[0097] M. Estimating and/or predicting a volume of fluid

intake necessary for adequate hydration of a patient or user.

[0098] N. Estimating a probability that a patient is dehy-
drated.

[0099] In various embodiments, CRI, BL, V, and/or P;
estimates can be (1) based on a fixed time history of patient
monitoring (for example a 30 second or 30 heart beat
window); (i) based on a dynamic time history of patient
monitoring (for example monitoring for 200 minutes, the
system may use all sensor information gathered during that
time to refine and improve CRI estimates, hydration effec-
tiveness assessments, etc.); (iii) based on either establishing
baseline estimates when the patient is normovolemic (no
volume loss has occurred); and/or (iv) based on NO base-
lines estimates when patient is normovolemic.

[0100] Certain embodiments can also recommend treat-
ment options, based on the analysis of the patient’s condition
(including the estimated/predicted blood pressure, probabil-
ity of bleeding, state of dehydration, and/or the patient’s
estimated and/or predicted CRI). Treatment options can
include, without limitation, such things as optimizing hemo-
dynamics, ventilator adjustments, IV fluid adjustments (e.g.,
controlling the flow rate of an IV pump or the drip rate of an
IV drip), transfusion of blood or blood products, infusion of
volume expanders, medication changes, changes in patient
position, and/or surgical therapy, or the like.

[0101] As one example, certain embodiments can be used
to control an IV drip, IV pump, or rapid infuser. For instance,
an embodiment might estimate the probability that a patient
requires fluids and might activate such a device in response
to that estimate (or instruct a clinician to attach such a device
to the patient and activate the device). The system might
then monitor the progress of the hydration effort (through
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continual or periodic assessment of the effectiveness of
hydration) and increase/decrease drip or flow rates accord-
ingly.

[0102] As another example. certain embodiments can be
used as an input for a hemodialysis procedure. For example,
certain embodiments can predict how much intravascular
(blood) volume can be safely removed from a patient during
a hemodialysis process. For example, an embodiment might
provide instructions to a human operator of a hemodialysis
machine, based on estimates or predictions of the patient’s
CRI. Additionally and/or alternatively, such embodiments
can be used to continuously self-adjust the ultra-filtration
rate of the hemodialysis equipment, thereby completely
avoiding intradialytic hypotension and its associated mor-
bidity.

[0103] As yet another example, certain embodiments can
be used to estimate and/or predict a dehydration state (and/or
the amount of dehydration) in an individual (e.g., a trauma
patient, an athlete, an elder living at home, etc.) and/or to
provide treatment (either by providing recommendations to
treating personnel or by directly controlling appropriate
therapeutic equipment). For instance, if an analytical model
indicates a relationship between CRI (and/or any other
physiological phenomena that can be measured and/or esti-
mated using the techniques described herein and in the
Related Applications) and dehydration state, an embodiment
can apply that model, using the techniques described herein,
to estimate a dehydration state of the patient.

Specific Exemplary Embodiments

[0104] We now turn to the embodiments as illustrated by
the drawings. FIGS. 1-15 illustrate some of the features of
the method, system, and apparatus for implementing rapid
detection of bleeding of a patient following injury, in some
cases, before, during, and after fluid resuscitation, as
referred to above. FIGS. 1-8 illustrate some of the specific
(although non-limiting) exemplary features of the method,
system, and apparatus for implementing rapid detection of
bleeding before, during, and after fluid resuscitation, while
FIGS. 9A-9H illustrate implementing rapid detection of
bleeding before, during, and after fluid resuscitation of
patients in a clinical trial, and FIGS. 10-14B illustrate
implementing rapid detection of bleeding of patients fol-
lowing injury in another clinical trial. FIG. 15 illustrates
exemplary system and hardware implementation. The meth-
ods, systems, and apparatuses illustrated by FIGS. 1-15 refer
to examples of different embodiments that include various
components and steps, which can be considered alternatives
or which can be used in conjunction with one another in the
various embodiments. The description of the illustrated
methods, systems, and apparatuses shown in FIGS. 1-15 is
provided for purposes of illustration and should not be
considered to limit the scope of the different embodiments.
[0105] With reference to the figures, FIG. 1A provides a
general overview of a system 100 provided by certain
embodiments. The system includes a computer system or
computational device 105 in communication with one or
more sensors 110 (which might include sensors 110a, 1105,
and 110¢, or the like), each of which is configured to obtain
physiological data from the subject (e.g., animal or human
test subject or patient) 120. In one embodiment, the com-
puter system 105 comprises a Lenovo THINKPAD X200, 4
GB of RAM with Microsoft WINDOWS 7 operating system
and is programmed with software to execute the computa-
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tional methods outlined herein. The computational methods
can be implemented in MATTLAB 2009b and C++ program-
ming languages. A more general example of a computer
system 105 that can be used in some embodiments is
described in further detail below. Even more generally,
however, the computer system 105 can be any system of one
or more computers that are capable of performing the
techniques described herein. In a particular embodiment, for
example, the computer system 105 is capable of reading
values from the physiological sensors 110; generating mod-
els of physiological state from those sensors; employing
such models to make individual-specific estimations, pre-
dictions, or other diagnoses; displaying the results; recom-
mending and/or implementing a therapeutic treatment as a
result of the analysis; and/or archiving (learning) these
results for use in future, model building and predictions; or
the like.

[0106] The sensors 110 can be any of a variety of sensors
(including without limitation those described herein) for
obtaining physiological data from the subject. An exemplary
sensor suite might include a Finometer sensor for obtaining
a noninvasive continuous blood pressure waveform, a pulse
oximeter sensor, an Analog to Digital Board (National
Instruments USB-9215A 16-Bit, 4 channel) for connecting
the sensors (either the pulse oximeter and/or the finometer)
to the computer system 105. More generally, in an embodi-
ment, one or more sensors 110 might obtain, e.g., using one
or more of the techniques described herein, continuous
physiological waveform data, such as continuous blood
pressure. Input from the sensors 110 can constitute continu-
ous data signals and/or outcomes that can be used to
generate, and/or can be applied to, a predictive model as
described below.

[0107] In some cases, the structure or system might
include a therapeutic device 115 (also referred to herein as
a “physiological assistive device”), which can be controlled
by the computer system 105 to administer therapeutic treat-
ment, in accordance with the recommendations developed
by analysis of a patient’s physiological data. In a particular
embodiment, the therapeutic device might comprise hemo-
dialysis equipment (also referred to as a hemodialysis
machine), which can be controlled by the computer system
105 based on the estimated CRI of the patient, as described
in further detail below. Further examples of therapeutic
devices in other embodiments can include a cardiac assist
device, a ventilator, an automatic implantable cardioverter
defibrillator (“AICD”), pacemakers, an extracorporeal mem-
brane oxygenation circuit, a positive airway pressure
(“PAP”) device (including, without limitation, a continuous
positive airway pressure (“cPAP”) device, or the like), an
anesthesia machine, an integrated critical care system, a
medical robot, intravenous and/or intra-arterial pumps that
can provide fluids and/or therapeutic compounds (e.g.,
through intravenous injection), intravenous drips, a rapid
infuser, a heating/cooling blanket, and/or the like.

[0108] FIG. 1B illustrates in more detail an exemplary
sensor device 110, which can be used in the system 100
described above. (It should be noted, of course, that the
depicted sensor device 110 of FIG. 1B is not intended to be
limiting, and different embodiments can employ any sensor
that captures suitable data, including, without limitation,
sensors described elsewhere in this disclosure and in the
Related Applications.) The illustrated sensor device 110 is
designed to be worn on a patient’s wrist and therefore can be
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used both in clinical settings and in the field (e.g., on any
person for whom monitoring might be beneficial, for a
variety of reasons, including, without limitation, assessment
of blood pressure and/or hydration during athletic competi-
tion or training, daily activities, military training or action,
etc.). In one aspect, the sensor device 110 can serve as an
integrated hydration monitor, which can assess hydration as
described herein, display an indication of the assessment,
recommend therapeutic action based on the assessment, or
the like, in a form factor that can be worn during athletic
events and/or daily activities.

[0109] Hence, the exemplary sensor 110 device (e.g.,
hydration monitor or the like) includes a finger cuff 125 and
a wrist unit 130. The finger cuff 125 includes a fingertip
sensor 135 (in this case, a PPG sensor) that captures data
based on physiological conditions of the patient, such as
PPG waveform data. The sensor 135 communicates with an
input/output unit 140 of the wrist unit 130 to provide output
from the sensor 135 to a processing unit 145 of the wrist unit
130. Such communication can be wired (e.g., via a stan-
dard—such as USB—or proprietary connector on the wrist
unit 130) and/or wireless (e.g., via Bluetooth, such as
Bluetooth Low Energy (“BTLE”), near field connection
(“NFC”), WiF1i, or any other suitable radio technology).
[0110] In different embodiments, the processing unit 145
can have different types of functionality. For example, in
some cases, the processing unit 145 might simply act to store
and/or organize data prior to transmitting the data through
the I/O unit 140 to a monitoring computer 105, which might
perform data analysis, to control a therapeutic device 115,
etc. In other cases, however, the processing unit 145 might
act as a specialized computer (e.g., with some or all of the
components described in connection with FIG. 10, below
and/or some or all of the functionality ascribed to the
computer 105 of FIGS. 1A and 1B), such that the processing
unit 145 can perform data analysis onboard, e.g., to estimate
and/or predict a patient’s current and/or future blood pres-
sure. As such, the wrist unit 130 might include a display 150,
which can display any output described herein, including,
without limitation, estimated and/or predicted values (e.g.,
of CRI, blood pressure, hydration status, etc.), data captured
by the sensor (e.g., heart rate, pulse oximetry data, etc.),
and/or the like.

[0111] In some cases, the wrist unit 130 might include a
wrist strap 155 that allows the unit to be worn on the wrist,
similar to a wrist watch. Of course, other options are
available to facilitate transportation of the sensor device 110
with a patient. More generally, the sensor device 110 might
not include all of the components described above, and/or
various comporents might be combined and/or reorganized,
once again, the embodiment illustrated by FIG. 1B should be
considered only illustrative, and not limiting, in nature.
[0112] FIGS. 24, 2B, 3A, 3B, 4, and 5 illustrate methods
in accordance with various embodiments. While the meth-
ods of FIGS. 2A, 2B, 3A, 3B, 4, and 5 are illustrated, for
ease of description, as different methods, it should be
appreciated that the various techniques and procedures of
these methods can be combined in any suitable fashion, and
that, in some embodiments, the methods depicted by FIGS.
2A, 2B, 3A, 3B, 4, and 5 can be considered interoperable
and/or as portions of a single method. Similarly, while the
techniques and procedures are depicted and/or described in
a certain order for purposes of illustration, it should be
appreciated that certain procedures may be reordered and/or
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omitted within the scope of various embodiments. More-
over, while the methods illustrated by FIGS. 2A, 2B, 3A,
3B, 4, and 5 can be implemented by (and, in some cases, are
described below with respect to) the system 100 of FIG. 1
(including computational device or monitoring computer
105, or other components of the system, such as the sensor
110 of FIGS. 1A and 1B), these methods may also be
implemented using any suitable hardware implementation.
Similarly, while the system 100 of FIG. 1 (and/or other
components of such a system) can operate according to the
methods illustrated by FIGS. 2A, 2B, 3A, 3B, 4, and 5 (e.g,,
by executing instructions embodied on a computer readable
medium), the system 100 of FIG. 1 can also operate accord-
ing to other modes of operation and/or perform other suit-
able procedures.

[0113] Merely by way of example, a method might com-
prise one or more procedures, any or all of which are
executed by a computer system. Correspondingly, an
embodiment might provide a computer system configured
with instructions to perform one or more procedures in
accordance with methods provided by various other embodi-
ments. Similarly, a computer program might comprise a set
of instructions that are executable by a computer system
(and/or a processor therein) to perform such operations. In
many cases, such software programs are encoded on physi-
cal, tangible and/or non-transitory computer readable media
(such as, to name but a few examples, optical media,
magnetic media, and/or the like).

[0114] By way of non-limiting example, various embodi-
ments can comprise a method for using sensor data to assess
blood loss in a patient. FIG. 2 illustrates an exemplary
method 200 in accordance with various embodiments. The
method 200 might comprise generating a model, e.g., with
a computer system, against which patient data can be
analyzed to estimate and/or predict various physiological
states (block 205). In a general sense, generating the model
can comprise receiving data pertaining to a plurality of more
physiological parameters of a test subject to obtain a plu-
rality of physiological data sets. Such data can include PPG
waveform data to name one example, and/or any other type
of sensor data including, without limitation, data captured by
other sensors described herein and in the Related Applica-
tions.

[0115] Generating a model can further comprise directly
measuring one or more physiological states of the test
subject with a reference sensor to obtain a plurality of
physiological state measurements. The one or more physi-
ological states can include, without limitation, states of
various volumes of blood loss and/or fluid resuscitation,
and/or various states of hydration and/or dehydration. (In
other embodiments, different states can include a state of
hypervolemia, a state of euvolemia, and/or a state of car-
diovascular collapse (or near-cardiovascular collapse), and/
or can include states that have been simulated, e.g., through
use of an LBNP apparatus). Other physiological states that
can be used to generate a model are described elsewhere
herein and in the Related Applications.

[0116] Generating the model can further comprise corre-
lating the physiological state(s) with the measured physi-
ological parameters. There are a variety of techniques for
generating a model in accordance with different embodi-
ments, using these general functions. One exemplary tech-
nique for generating a model of a generic physiological state
is described below with respect to FIG. 4, below, which
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provides a technique using a machine-learning algorithm to
optimize the correlation between measured physiological
parameters (such as PPG waveform data, to name one
example) and physical states (e.g., various blood volume
states, including states where a known volume of blood loss
has occurred and/or a known volume of fluid resuscitation
has been administered, various states of hydration and/or
dehydration, etc.). It should be appreciated, however, that
any suitable technique or model may be employed in accor-
dance with various embodiments.

[0117] A number of physiological states can be modeled,
and a number of different conditions can be imposed on test
subjects as part of the model generation. For example,
physiological states that can be induced (or monitored when
naturally occurring) in test subjects include, without limita-
tion, reduced circulatory system volume, known volume of
blood loss, specified amounts of fluids added to blood
volume, dehydration, cardiovascular collapse or near-car-
diovascular collapse, euvolemia, hypervolemia, low blood
pressure, high blood pressure, normal blood pressure, and/or
the like.

[0118] Merely by way of example, in one set of embodi-
ments, a number of physiological parameters of a plurality
of test subjects might be measured. In some cases, a subject
might undergo varying, measured levels of blood loss (either
real or simulated) or intravenous fluid addition. Using the
method described below with respect to FIG. 4 (or other,
similar techniques, many of which are described in the
Related Applications), the system can determine which
sensor information most effectively differentiates between
subjects at different blood loss/addition volume levels.
[0119] Additional and/or alternative to using direct (e.g.,
raw) sensor data to build such models, some embodiments
might construct a model based on data that is derived from
sensor data. Merely by way of example, one such model
might use, as input values, CRI values of test subjects in
different blood loss and/or volume addition conditions.
Accordingly, the process of generating a model might first
comprise building a model of CRI, and then, from that
model, building a model of hydration effectiveness. (In other
cases, a hybrid model might consider both raw sensor data
and CRI data.)

[0120] A CRI model can be generated in different ways.
For example, in some cases, one or more test subjects might
be subjected to LBNP. In an exemplary case, LBNP data is
collected from human subjects being exposed to progres-
sively lower levels of LBNP, until hemodynamic decom-
pensation, at which time LBNP is released and the subject
recovers. Fach level of LBNP represents an additional
amount of blood loss. During these tests, physiological data
(including, without limitation, waveform data, such as con-
tinuous non-invasive blood pressure data) can be collected
before, during, and/or after the application of the LBNP. As
noted above, a relationship (as expressed by Equation 2) can
be identified between LBNP and intravascular volume loss,
and this relationship can be used to estimate CRI. Hence,
LBNP studies form a framework (methodology) for the
development of the hemodynamic parameter referred to
herein as CRI and can be used to generate models of this
parameter.

[0121] More generally, several different techniques that
induce a physiological state of reduced volume in the
circulatory system, e.g., to a point of cardiovascular collapse
(hemodynamic decompensation) or to a point near cardio-
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vascular collapse, can be used to generate such a model.
LBNP can be used to induce this condition, as noted above.
In some cases, such as in a study described below, dehy-
dration can be used to induce this condition as well. Other
techniques are possible as well. Similarly, data collected
from a subject in a state of euvolemia, dehydration, hyper-
volemia, and/or other states might be used to generate a CRI
model in different embodiments.

[0122] At block 210, the method 200 comprises monitor-
ing, with one or more sensors, physiological data of a
patient. As noted above, a variety of physical parameters can
be monitored, invasively and/or non-invasively, depending
on the nature of the anticipated physiological state of the
patient. In an aspect, monitoring the one or more physical
parameters might comprise receiving, e.g., from a physi-
ological sensor, continuous waveform data, which can be
sampled as necessary. Such data can include, without limi-
tation, plethysmograph waveform data, PPG waveform data
(such as that generated by a pulse oximeter), and/or the like.
[0123] The method 200 might further comprise analyzing,
with a computer system (e.g., a monitoring computer 105
and/or a processing unit 135 of a sensor unit, as described
above), the physiological data (block 215). In some cases,
the physiological data is analyzed against a pre-existing
mode] (which might be generated as described above and
which in turn, can be updated based on the analysis, as
described in further detail below and in the Related Appli-
cations).

[0124] Merely by way of example, in some cases, sensor
data can be analyzed directly against a generated model to
assess the effectiveness of hydration (which can include
estimating current values, and/or predicting future values for
any or all of BL, V, and/or P;, as expressed above. For
example, the sensor data can be compared to determine
similarities with models that estimate and/or predict any of
these values. Merely by way of example, an input waveform
captured by a sensor from a patient might be compared with
sample waveforms generated by models for each of these
values.

[0125] For example, the technique 200' of FIG. 2B pro-
vides one method for deriving an estimate of BL in accor-
dance with some embodiments. It should be noted that the
technique 200' is presented as an example only, and that
while this technique 200" estimates BL from raw sensor data,
similar techniques can be used to estimate or predict BL, V,
and/or P; from raw sensor data, CRI data, and/or a combi-
nation of these. For example, one model might produce a
first estimate of BL from raw sensor data, produce a second
estimate of BL from estimated CRI values, and then com-
bine those estimates (in either weighted or unweighted
fashion) to produce a hybrid BL estimate.

[0126] The illustrated technique 200" comprises sampling
waveform data (e.g., any of the data described herein and in
the Related Applications, including, without limitation, arte-
rial waveform data, such as continuous PPG waveforms
and/or continuous noninvasive blood pressure waveforms)
for a specified period, such as 32 heartbeats (block 270).
That sample is compared with a plurality of waveforms of
reference data corresponding to BL values (block 275),
which in this case range from 0 to 1 using the scale described
above (but alternatively might use any appropriate scale).
These reference waveforms are derived as part of the model
developed using the algorithms described in this and the
Related Applications, might be the result of experimental
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data, and/or the like. In effect, these reference waveforms
reflect the relationship f from Eq. 6, above.

[0127] According to the technique 200, the sample might
be compared with waveforms corresponding to a BL=1
(block 275a), BL=0.5 (block 275b), and BL=0 (block 275¢),
as illustrated. (As illustrated by the ellipses in FIG. 2B, any
number of sample waveforms can be used for the compari-
son, for example, if there is a nonlinear relationship between
the measured sensor data and the BL values, more sample
waveforms might provide for a better comparison.) From the
comparison, a similarity coeficient is calculated (e.g., using
a least squares or similar analysis) to express the similarity
between the sampled waveform and each of the reference
waveforms (block 280). These similarity coefficients can be
normalized (if appropriate) (block 285), and the normalized
coeflicients can be summed (block 290) to produce an
estimated BL value of the patient (block 295).

[0128] In other cases, similar techniques can be used to
analyze data against a model based on parameters derived
from direct sensor measurements. In one aspect, such opera-
tions can be iterative in nature, by generating the derived
parameters—such as CRI, to name one example—by ana-
lyzing the sensor data against a first model, and then
analyzing the derived parameters against a second model.
[0129] For example, FIG. 3A illustrates a method 300 of
calculating a patient’s CRI, which can be used (in some
embodiments) as a parameter that can be analyzed to assess
the effectiveness of hydration (including the probability that
fluids are needed and/or the estimated volume of fluid
necessary for effective hydration) and/or to assess blood loss
(e.g., before, during, and/or after fluid resuscitation). The
method 300 includes generating a model of CRI (block 305),
monitoring physiological parameters (block 310) and ana-
lyzing the monitored physical parameters or data (block
315), using techniques such as those described above and/or
in the *483 Application, for example.

[0130] Based on this analysis, the method 300, in an
exemplary embodiment, includes estimating, with the com-
puter system, a compensatory reserve (or CRI value) of the
patient, based on analysis of the physiological data (block
320). In some cases, the method might further comprise
predicting, with the computer system, the compensatory
reserve (or CRI value) of the patient at one or more time
points in the future, based on analysis of the physiological
data (block 325). The operations to predict a future value of
a parameter can be similar to those for estimating a current
value; in the prediction context, however, the applied model
might correlate measured data in a test subject with subse-
quent values of the diagnostic parameter, rather than con-
temporaneous values. It is worth noting, of course, that in
some embodiments, the same model can be used to both
estimate a current value and predict future values of a
physiological parameter.

[0131] The estimated and/or predicted compensatory
reserve of the patient can be based on several factors. Merely
by way of example, in some cases, the estimated/predicted
compensatory reserve can be based on a fixed time history
of monitoring the physiological data of the patient and/or a
dynamic time history of monitoring the physiological data of
the patient. In other cases, the estimated/predicted compen-
satory reserve can be based on a baseline estimate of the
patient’s compensatory reserve established when the patient
is euvolemic. In still other cases, the estimate and/or pre-
diction might not be based on a baseline estimate of the
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patient’s compensatory reserve established when the patient
1s euvolemic, but rather based on a baseline estimate of the
patient’s compensatory reserve established when the patient
is in another physiological state or condition.

[0132] Merely by way of example, FIG. 3B illustrates one
technique 300" for deriving an estimate of CRI in accordance
with some embodiments, similar to the technique 200’
described above with respect to FIG. 2B for deriving an
assessment of hydration effectiveness and/or deriving an
assessment of blood loss (e.g., before, during, and/or after
fluid resuscitation) directly from sensor data (and, in fact,
CRI can be derived as described herein, and that derived
value can be used, alone or with raw sensor data, to assess
such effectiveness). The illustrated technique comprises
sampling waveform data (e.g., any of the data described
herein and in the Related Applications, including, without
limitation, arterial waveform data, such as continuous PPG
waveforms and/or continuous noninvasive blood pressure
waveforms, or the like) for a specified period, such as 32
heartbeats (block 370). That sample is compared with a
plurality of waveforms of reference data corresponding to
different CRI values (block 375). (These reference wave-
forms, which might be derived using the algorithms
described in the Related Applications, might be the result of
experimental data, and/or the like). Merely by way of
example, the sample might be compared with waveforms
corresponding to a CRI of 1 (block 375a), a CRI of 0.5
(block 375b), and a CRI of 0 (block 375c¢), as illustrated. (As
illustrated by the ellipses in FIG. 3B, any number of sample
waveforms can be used for the comparison; for example, if
there is a nonlinear relationship between the measured
sensor data and the CRI estimates, more sample waveforms
might provide for a better comparison.) From the compari-
son, a similarity coefficient is calculated (e.g., using a least
squares or similar analysis) to express the similarity between
the sampled waveform and each of the reference waveforms
(block 380). These similarity coeflicients can be normalized
(if appropriate) (block 385), and the normalized coeflicients
can be summed (block 390) to produce an estimated value
of the patient’s CRI (block 395).

[0133] Returning to FIG. 3A, the method 300 can com-
prise estimating and/or predicting a patient’s dehydration
state (block 330). The patient’s state of dehydration can be
expressed in a number of ways. For instance, the state of
dehydration might be expressed as a normalized value (for
example, with 1.0 corresponding to a fully hydrated state
and 0.0 corresponding to a state of morbid dehydration). In
other cases, the state of dehydration might be expressed as
a missing volume of fluid or as a volume of fluid present in
the patient’s system, or expressed using any other appropri-
ate metric.

[0134] A number of techniques can be used to model
dehydration state. Merely by way of example, as noted
above (and as described in further detail below), the rela-
tionship between a patient’s compensatory reserve and level
of dehydration can be modeled. Accordingly, in some
embodiments, estimating a dehydration state of the patient
might comprise estimating the compensatory reserve (e.g.,
CRI) of the patient, and then, based on that estimate and the
known relationship, estimating the dehydration state. Simi-
larly, a predicted value of compensatory reserve at some
point in the future can be used to derive a predicted
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dehydration state at that point in the future. Other techniques
might use a parameter other than CRI to model dehydration
state.

[0135] The method 300 might further comprise normaliz-
ing the results of the analysis (block 335), such as the
compensatory reserve, dehydration state, and/or probability
of bleeding, to name a few examples. Merely by way of
example, the estimated/predicted compensatory reserve of
the patient can be normalized relative to a normative normal
blood volume value corresponding to euvolemia, a norma-
tive excess blood volume value corresponding to circulatory
overload, and a normative minimum blood volume value
corresponding to cardiovascular collapse. Any values can be
selected as the normative values. Merely by way of example,
in some embodiments, the normative excess blood volume
value is >1, the normative normal blood volume value is 1,
and the normative minimum blood volume value is 0. As an
alternative, in other embodiments, the normative excess
blood volume value might be defined as 1, the normative
normal blood volume value might be defined as 0, and the
normative minimum blood volume value at the point of
cardiovascular collapse might be defined as —1. As can be
seen from these examples, different embodiments might use
a number of different scales to normalize CRI and other
estimated parameters.

[0136] In an aspect, normalizing the data can provide
benefits in a clinical setting, because it can allow the
clinician to quickly make a qualitative judgment of the
patient’s condition, while interpretation of the raw esti-
mates/predictions might require additional analysis. Merely
by way of example, with regard to the estimate of the
compensatory reserve of the patient, that estimate might be
normalized relative to a normative normal blood volume
value corresponding to euvolemia and a normative mini-
mum blood volume value corresponding to cardiovascular
collapse. Once again, any values can be selected as the
normative values. For example, if the normative normal
blood volume is defined as 1, and the normative minimum
blood volume value is defined as 0, the normalized value,
falling between 0.0 and 1.0 can quickly apprise a clinician
of the patient’s location on a continuum between euvolemia
and cardiovascular collapse. Similar normalizing procedures
can be implemented for other estimated data (such as
probability of bleeding, dehydration, and/or the like).

[0137] The method 300 might further comprise displaying
data with a display device (block 340). Such data might
include an estimate and/or prediction of the compensatory
reserve of the patient, an estimate and/or prediction of the
patient’s dehydration state, and/or the like. A variety of
techniques can be used to display such data. Merely by way
of example, in some cases, displaying the estimate of the
compensatory reserve of the patient might comprise display-
ing the normalized estimate of the compensatory reserve of
the patient. Alternatively and/or additionally, displaying the
normalized estimate of the compensatory reserve of the
patient might comprise displaying a graphical plot showing
the normalized excess blood volume value, the normalized
normal blood volume value, the normalized minimum blood
volume value, and the normalized estimate of the compen-
satory reserve (e.g., relative to the normalized excess blood
volume value, the normalized normal blood volume value,
the normalized minimum blood volume value), and/or the
like.
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[0138] In some cases, the method 300 might comprise
repeating the operations of monitoring physiological data of
the patient, analyzing the physiological data, and estimating
(and/or predicting) the compensatory reserve of the patient,
to produce a new estimated (and/or predicted) compensatory
reserve of the patient. Thus, displaying the estimate (and/or
prediction) of the compensatory reserve of the patient might
comprise updating a display of the estimate of the compen-
satory reserve to show the new estimate (and/or prediction)
of the compensatory reserve, in order to display a plot of the
estimated compensatory reserve over time. Hence, the
patient’s compensatory reserve can be repeatedly estimated
and/or predicted on any desired interval (e.g., after every
heartbeat, every n number of seconds, etc.), on demand,
before fluid resuscitation, during fluid resuscitation, after
fluid resuscitation, etc., or a combination of one or more of
these.

[0139] In further embodiments, the method 300 can com-
prise determining a probability that the patient is bleeding,
and/or displaying, with the display device, an indication of
the probability that the patient is bleeding (block 345). For
example, some embodiments might generate a model based
on data that removes fluid from the circulatory system (such
as LBNP, dehydration, etc.). Another embodiment might
generate a model based on fluid removed from a subject
voluntarily, e.g., during a blood donation, based on the
known volume (e.g., 500 cc) of the donation. Based on this
model, using techniques similar to those described above, a
patient’s physiological data can be monitored and analyzed
to estimate a probability that the patient is bleeding (e.g.,
internally, or the like).

[0140] In some cases, the probability that the patient is
bleeding can be used to adjust the patient’s estimated CRI.
Specifically, given a probability of bleeding expressed as
Pr_Bleed at a time t, the adjusted value of CRI can be
expressed as:

CRL grusr0al®)=1-((1-CRI(#))xPr_Bleed(?)). (Eq. 13)

[0141] Given this relationship, the estimated CRI can be
adjusted to produce a more accurate diagnosis of the
patient’s condition at a given point in time (block 350).

[0142] The method 300 might comprise selecting, with the
computer system, a recommended treatment option for the
patient, and/or displaying, with the display device, the
recommended treatment option (block 355). The recom-
mended treatment option can be any of a number of treat-
ment options, including, without limitation, optimization of
hemodynamics of the patient, a ventilator adjustment, an
intravenous fluid adjustment, transfusion of blood or blood
products to the patient, infusion of volume expanders to the
patient, a change in medication administered to the patient,
achange in patient position, surgical therapy, and/or the like.

[0143] In a specific, non-limiting, example, the method
300 might comprise controlling operation of hemodialysis
equipment (block 360), based at least in part on the estimate
of the patient’s compensatory reserve. Merely by way of
example, a computer system that performs the monitoring
and estimating functions might also be configured to adjust
an ultra-filtration rate of the hemodialysis equipment in
response to the estimated CRI values of the patient. In other
embodiments, the computer system might provide instruc-
tions or suggestions to a human operator of the hemodialysis
equipment, such as instructions to manually adjust an ultra-
filtration rate, etc.
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[0144] In some embodiments, the method 300 might
include assessing the tolerance of an individual to blood
loss, general volume loss, and/or dehydration (block 365).
For example, such embodiments might include estimating a
patient’s CRI based on the change in a patient’s position
(e.g., from lying prone to standing, from standing to lying
prone, from lying prone to sitting, from sitting to lying
prone, from standing to sitting, and/or from sitting to stand-
ing, or the like). Based on changes to the patient’s CRI in
response to these maneuvers, the patient’s sensitivity to
blood loss, volume loss, and/or dehydration can be mea-
sured. In an aspect, this measurement can be performed
using a CRI model generated as described above; the patient
can be monitored using one or more of the sensors described
above, and the changes in the sensor output when the subject
changes position can be analyzed according to the model (as
described above, for example) to assess the tolerance of the
individual to volume loss. Such monitoring and/or analysis,
in some embodiments, can be performed in real time.

[0145] Returning to FIG. 2, based on the analysis of the
data (whether data collected directly by sensors or derived
data, such as CRI, or both) against a model (which might
include multiple sub-models, such as a model of BL against
raw data and a model of BL against CRI, or the like), the
method 200 can include assessing the blood loss of the
patient (block 220), based on analysis of the patient’s
physiological data against the model. As noted above,
assessing blood loss can include estimating or predicting a
number of values, such as the estimated effectiveness, BL,
of the hydration effort, the volume, V, of fluid necessary for
effective hydration, the probability, P, that the patient needs
fluids, and/or the like.

[0146] Insome cases, the assessment of the blood loss will
be based on the analysis of a plurality of measured (or
derived) values of a particular physiological parameter (or
plurality of parameters). Hence, in some cases, the analysis
of the data might be performed on a continuous waveform,
either during or after measurement of the waveform with a
sensor (or both), and the assessment of the blood loss can be
updated as hydration efforts and/or fluid resuscitation efforts
continue. Further, the amount of fluids added to the patient’s
blood volume can be measured directly, and these direct
measurements can be fed back into the model to update the
model (at block 225) and thereby improve performance of
the algorithms in the model (e.g., by refining the weights
given to different parameters in terms of estimative or
predictive value). The updated model can then be used to
continue assessing the treatment (in the instant patient
and/or in a future patient), as shown by the broken lines on
FIG. 2A.

[0147] In some cases, the method 200 comprises display-
ing data (block 230) indicating the assessment of the effec-
tiveness of hydration. In some cases, the data might be
displayed on a display of a sensor device (such as the device
110 illustrated by FIG. 1B). Alternatively and/or addition-
ally, the data might be displayed on a dedicated machine,
such as a compensatory reserve monitor, or on a monitor of
a generic computer system. The data might be displayed
alphanumerically, graphically, or both. FIGS. 6-8, described
below, illustrate several possible exemplary displays of
assessments of blood loss and/or CRI. There are many
different ways that the data can be displayed, and any
assessments, estimates or predictions generated by the
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method 200 can be displayed in any desired way, in accor-
dance with various embodiments.

[0148] In certain embodiments, the method 200 can
include selecting and/or displaying treatment options for the
patient (block 235) and/or controlling a therapeutic device
(block 240), based on the assessment of the blood loss of the
patient. For example, a display might indicate to a clinician
or the patient himself or herself that the patient is losing (or
has lost) blood; that fluid resuscitation therapy should be
initiated or continued; an estimated volume of fluid to drink,
infuse, or otherwise consume; a drip rate for an IV drip; a
flow rate for an IV pump or infuser; or the like. Similarly, the
system might be configured to control operation of a thera-
peutic device, such as dispensing a fluid to drink from an
automated dispenser, activating or adjusting the flow rate of
an IV pump or infuser, adjusting the drip rate of an IV drip,
and/or the like, based on the assessment of the effectiveness
of hydration. As another example, certain embodiments
might include a water bladder (e.g., a backpack-based hydra-
tion pack, such as those available from Camelbak Products
LLC) or a water bottle, and the hydration monitor could
communicate with and/or control operation of such a dis-
pensing device (e.g., to cause the device to dispense a certain
amount of fluid, to cause the device to trigger an audible
alarm, etc.).

[0149] Further, in certain embodiments, the method 200
can include functionality to help a clinician (or other entity)
to monitor hydration, fluid resuscitation, and/or blood vol-
ume status. For example, in some cases, any measure of
effectiveness outside of the normal range (such as a value of
P; higher than a certain threshold value, a value of BL lower
than a threshold value, etc.) would set off various alarm
conditions, such as an audible alarm, a message to a phy-
sician, a message to the patient, an update written automati-
cally to a patient’s chart, etc. Such messaging could be
accomplished by electronic mail, text message, etc., and a
sensor device or monitoring computer could be configured
with, e.g., an SMTP client, text messaging client, or the like
to perform such messaging.

[0150] In some cases, feedback and/or notifications might
be sent to a third party, regardless of whether any alarm
condition were triggered. For example, a hydration monitor
might be configured to send monitoring results (e.g., any of
the assessments, estimates and/or predictions described
herein) to another device or computer, either for personal
monitoring by the patient or for monitoring by another.
Examples could include transmitting such alarms or data
(e.g., by Bluetooth, NFC, WiF1i, etc.) to a wireless phone,
wearable device (e.g., smart watch or glasses) or other
personal device of the patient, e.g., for inclusion in a health
monitoring application. Additionally and/or alternatively,
such information could be sent to a specified device or
computer (e.g., via any available IP connection), for
example to allow a parent to monitor a child’s (or a child to
monitor an elderly parent’s) hydration remotely, to allow a
coach to monitor a player’s hydration remotely, and/or to
allow a superior officer to monitor a soldier’s hydration
remotely, or the like. In some cases (e.g., for a coach or
superior officer), an application might aggregate results from
a plurality of hydration monitors, to allow the supervisor to
view (e.g., in a dashboard-type configuration), hydration
effectiveness and/or blood loss (and/or any other data, such
as CRI, blood pressure, etc.) for a group of people. Such a
display might employ, for example, a plurality of “fuel
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gauge” displays, one (or more) for each person in the group,
allowing the supervisor to quickly ascertain any unusual
results (e.g., based on the color of the gauge, etc.).

[0151] Similarly, if an alarm condition were met for
another physiological parameter (such as blood pressure,
which can be estimated as described in the *171 Application,
for example), that alarm could trigger an assessment of
hydration effectiveness via the method 200, to determine
whether the first alarm condition has merit or not. If not,
perhaps there could be an automated silencing of the original
alarm condition, since all is well at present. More generally,
the assessment techniques could be added to an ecosystem
of monitoring algorithms (including, without limitation,
those described in the Related Applications), which would
inform one another or work in combination, to inform one
another about how to maintain optimal physiological stabil-
ity.

[0152] FIG. 4 illustrates a method 400 of employing a
self-learning predictive model (or machine learning) tech-
nique, according to some embodiments. In particular, the
method 400 can be used to correlate physiological data
received from a subject sensor with a measured physiologi-
cal state. More specifically, with regard to various embodi-
ments, the method 400 can be used to generate a model for
assessing, predicting, and/or estimating various physiologi-
cal parameters, such as blood loss volume, effectiveness of
hydration or fluid resuscitation efforts, estimated and/or
predicted blood pressure, CR1, the probability that a patient
is bleeding, a patient’s dehydration state, and/or the like,
from one or more of a number of different physiological
parameters, including, without limitation, those described
above and in the Related Applications.

[0153] The method 400 begins at block 405 by collecting
raw data measurements that may be used to derive a set of
D data signals s,, . . ., sp, as indicated at block 410 (each
of the data signals s being, in a particular case, input from
one or many different physiological sensors). Embodiments
are not constrained by the type of measurements that are
made at block 405 and may generally operate on any data
set. For example, data signals can be retrieved from a
computer memory and/or can be provided from a sensor or
other input device. As a specific example, the data signals
might correspond to the output of the sensors described
above (which measure the types of waveform data described
above, such as continuous, non-invasive PPG data and/or
blood pressure waveform data, or the like).

[0154] A set of K current or future outcomes 6=(0,, . . . ,
0x) is hypothesized at block 415 (the outcomes o being, in
this case, past and/or future physiological states, such as
probability that fluids are needed, volume of fluid needed for
effective hydration or fluid resuscitation, BL, CRI, dehydra-
tion state, probability of bleeding, etc.). The method autono-
mously generates a predictive model M that relates the

derived data signals s with the outcomes 0 . As used herein,
“autonomous” means “without human intervention.”

[0155] As indicated at block 420, this is achieved by
identifying the most predictive set of signals S,, where S,
contains at least some (and perhaps all) of the derived
signals s, . .., s, for each outcome o, where ke{1, .. .,
K}. A probabilistic predictive model 6,~M, (S,) is learned at
block 425, where gy is the prediction of outcome o,, derived
from the model M,, that uses as inputs values obtained from
the set of signals S,, for all ke{1, . . ., K}. The method 400
can learn the predictive models 0,=M,(S,) incrementally
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(block 430) from data that contains example values of
signals s,, . . ., s, and the corresponding outcomes o, . . .
, Og. As the data become available, the method 400 loops so
that the data are added incrementally to the model for the
same or different sets of signals S, for all ke{1, .. ., K}.
[0156] While the description above outlines the general
characteristics of the methods, additional features are noted.
A linear model framework may be used to identify predic-
tive variables for each new increment of data. In a specific
embodiment, given a finite set of data of signals and

outcomes {(5,, 0,), (5, 0,). ... }, a linear model may be
constructed that has the form, for all ke{1, . .., K},

0T rlagtEe as) (Eq. 14)

where f, is any mapping from one input to one output, and
a, a, ..., a, are the linear model coefficients. The
framework used to derive the linear model coeflicients may
estimate which signals s, s,, . . ., s, are not predictive and
accordingly sets the corresponding coefficients ay, a,, . . .,
a, to zero. Using only the predictive variables, the model
builds a predictive density model of the data, {(?1, 31), (

-

$5, 05), ... }. For each new increment of data, a new
predictive density model(s) can be constructed.

[0157] In some embodiments, a prediction system can be
implemented that can predict future results from previously
analyzed data using a predictive model and/or modify the
predictive model when data does not fit the predictive
model. In some embodiments, the prediction system can
make predictions and/or adapt the predictive model in
real-time. Moreover, in some embodiments, a prediction
system can use large data sets not only to create the
predictive model, but also to predict future results as well as
to adapt the predictive model.

[0158] In some embodiments, a self-learning, prediction
device can include a data input, a processor, and an output.
Memory can include application software that when
executed can direct the processor to make a prediction from
input data based on a predictive model. Any type of predic-
tive model can be used that operates on any type of data. In
some embodiments, the predictive model can be imple-
mented for a specific type of data. According to some
embodiments, when data is received the predictive model
can determine whether it understands the data according to
the predictive model. If the data is understood, a prediction
is made and the appropriate output is provided based on the
predictive model. If the data is not understood when
received, then the data can be added to the predictive model
to modify the model. In some embodiments, the device can
wait to determine the result of the specified data and can then
modify the predictive model accordingly. In some embodi-
ments, if the data is understood by the predictive model and
the output that is generated using the predictive model is not
accurate, then the data and the outcome can be used to
modify the predictive model. According to some embodi-
ments, modification of the predictive model can occur in
real-time.

[0159] Particular embodiments can employ the tools and
techniques described in the Related Applications in accor-
dance with the methodology described herein perform the
functions of a cardiac reserve monitor, a wrist-wearable
sensor device, and/or a monitoring computer, as described
herein (the functionality of any or all of which can be
combined in a single, integrated device, in some embodi-
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ments). These functions include, but are not limited to,
assessing fluid resuscitation of a patient; assessing hydration
of a patient; monitoring, estimating, and/or predicting a
subject’s (including, without limitation, a patient’s) current
or future blood pressure and/or compensatory reserve; esti-
mating and/or determining the probability that a patient is
bleeding (e.g., internally) and/or has been bleeding; recom-
mending treatment options for such conditions; and/or the
like. Such tools and techniques include, in particular, the
systems (e.g., computer systems, sensors, therapeutic
devices, etc.) described in the Related Applications, the
methods (e.g., the analytical methods for generating and/or
employing analytical models, the diagnostic methods, etc.),
and the software programs described herein and in the
Related Applications, which are incorporated herein by
reference.

[0160] FIG. 5 illustrates a method 500 of implementing
rapid detection of bleeding before, during, and after fluid
resuscitation, in accordance with various embodiments. In
the embodiment of FIG. 5, method 500, at block 505,
comprises estimating a patient’s CRI before, during, and/or
after resuscitation (e.g., fluid resuscitation, or the like).
Estimation of the patient’s CRT may be performed, for
example, using the techniques described above with respect
to FIGS. 3A and 3B, or using other techniques described
above and/or in the Related Applications.

[0161] At block 510, method 500 might comprise record-
ing the patient’s CRT, before, during, and/or after resusci-
tation. In some instances, the CRT may be recorded or stored
on one or more of a data storage device that is part of
processing unit 145 and/or a memory device that is part of
the monitoring computer 105 of FIG. 1, or the like. Method
500 might further comprise calculating an average CRT over
a period of K seconds (where K>1), before, during, and/or
after resuscitation (block 515), calculating a standard devia-
tion or variance of CRT over a period of K seconds (where
K>1), before, during, and/or after resuscitation (block 520),
calculating Pearson’s moment coeflicient of skewness of
CRT over a period of K seconds (where K>1), before,
during, and/or after resuscitation (block 525), calculating a
rate of change of CRT over a period of K seconds (where
K>1), before, during, and/or after resuscitation (block 530),
calculating a rate of rate change (or a rate of change of rate
change) of CRT (also referred to herein as “acceleration of
CRT”) over a period of K seconds (where K>1), before,
during, and/or after resuscitation (block 535).

[0162] According to some embodiments, method 500
might further comprise, at block 540, determining probabil-
ity of bleeding, based on one or more of the calculations in
blocks 515-535 (which may be referred to herein as “varia-
tion results”). In other words, the variation results might be
used to estimate one or more states of bleeding—namely, a
(certain) non-bleeding state (perhaps designated by a sym-
bol, “0”), a (certain) bleeding state (perhaps designated by a
symbol, “17”), and some probability of bleeding state (per-
haps designated by a symbol between “0” and “17).

[0163] In some embodiments, the following definitions
might be used for (i) CRT value sample, (ii) a set of values
of CRIT, (ii1) average CRT, (iv) median CRT, (v) standard
deviation of CRT, (vi) rate of change of CRT, (vii) rate of
change of rate change of CRT, and (viii) skewness of CRT:
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[0164] (i) A specific CRT value at time t:
CRIz) (Eq. 15)
[0165] (ii) A set of CRI values at times {t;, t, . . . , tx}:
CRI={CRI(),CRI(%,), . . . CRI(tx)}; (Eq. 16)
[0166] (iii) Average CRI value over a specific set of times

{t,ty, o e
CRIg=5;- "CRI(1); (Eq. 17)
[0167] (iv) Median CRI value over a specific set of times
{t, to, ooy e
CRIM4=Median{CRI(z,),CRI(z,), . . .
[0168] (v) A measure of deviation of CRI over a specific

set of times {t,, t,, . . . , t}, perhaps variance, or standard
deviation defined by:

CRI(x)}; (Eq. 18)

(Eq. 19)

[0169] (vi) Rate of change of CRI, denoted by my, over a
set of CRI values {CRI(t,), CRI(t,), . . . , CRI(t)}, where
the rate of change measures some increase or decrease of
CRI over a specific period of time, and, for example, may be
calculated as a slope of the line:

CRI(1y) (Eg. 20)
mg a1t
[ L |=earta
CRI(ix)
where A 1s a matrix defined by:
(Eq.21)

[0170] (vii) Rate of change of rate change of CRI, denoted
by rg, over a set of CRI values {CRI(t,), CRI(t,), . . .,
CRI(t,)}, where the rate of change of rate change measures
some rate of change of increase or decrease of CRI over a
specific period of time, and, for example, may be calculated
as a second order increase or decrease of a curve:

7k CRIty) (Eq.22)
\mk = B8BB
b CRI(L)
where B is a matrix defined by:
(Eq.23)

@? n 1

w? w1
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[0171] (viii)) Some measure of skewness, denoted by S,
(not to be confused with set of signals, S,, as described
above with respect to FIG. 4), over a set of CRI values
{CRI(t)), CRI(L,), . . . , CRI(tz)}, where S is possibly a
variant of the Fisher-Pearson coeflicient of skewness:

k o (Eq. 29
Z (CRI(t,) - CRIy)
1 =l

(SD(CRI))

Sk =

K

and/or S, is some other measure of skewness, possibly
Galton skewness (or Bowley’s skewness), as defined by:

g o Qi+ 20, (Eq.25)
P

0501
[0172] A method for estimating a (certain) non-bleeding

state might include, but is not limited to, one of the follow-
ing calculations or a combination of two or more such
calculations, perhaps within a statistical and/or machine
learning framework, or the like: (1) Average of CRI before
resuscitation (“CRI;;”)>NBI1; (2) Average of CRI during
resuscitation (“CRI,;”)>NB2; (3) Average of CRI after
resuscitation (“CRI,,”)>NB3; (4) CR1 ,~CRI,,>NB4; (5)
CRI,,z~CRI;,>NB35; (6) CRI z,~CRI;>NB6; (7) standard
deviation or variance of CRI before resuscitation (“[SD
(CRD)] 5" )<NBT7; (8) standard deviation or variance of CRI
during resuscitation (“[SD(CRI)],z”)<NB8; (9) standard
deviation or variance of CRI after resuscitation (“| SD(CRI)]
4r")NBY; (10) [SD(CRD]-[SD(CRD];,<NB10; (11)
moment coefficient of skewness of CRI (positive or nega-
tive) before resuscitation (“Szz”)<NB11; (12) moment coef-
ficient of skewness of CRI (positive or negative) during
resuscitation (“Spz”")<NB12; (13) moment coeflicient of
skewness of CRI (positive or negative) after resuscitation
(“Sz")<NB13; (14) rate of change of CRI before resusci-
tation (“mgg")>NB14; (15) rate of change of CRI during
resuscitation (“mp,”")>NB15; (16) rate of change of CRI
after resuscitation (“m;”)>NB16; (17) m,z-mz.>NB17,
(18) mpp-myz,>NB18; (19) rate of rate change of CRI
before resuscitation (“rzz”)>NB19; (20) rate of rate change
of CRI during resuscitation (“rpg”")>NB20; (21) rate of rate
change of CRI after resuscitation (“r,z”)>NB21; (22) r, .-
rr>"NB22; (23) rpp—15x>NB23; and/or the like. In some
cases, each of, or one or more of, NB1 through NB23 might
either be estimated experimentally or set by the user. Herein,
the number K>0 may be different in each instance of the
calculations (1) through (23), may be chosen by the user, or
may be experimentally determined.

[0173] With reference to (1), the average CRI before
resuscitation, CRI,.={CRI(t,), CRI(t,), . . . , CRI(tx)} may
be any set of points sampled at times before resuscitation,
and CRI;; may be the average value of those points.
Accordingly, for example, a classification of no bleeding
may be made by choosing a threshold, either experimentally
or user set, denoted by *?CRI,, (e.g., NB1 above), and
classifying non-bleeding may be determined if:

CRIzz>"CR1. (Eq. 26)
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[0174] Referring to (2), the average CRI during resusci-
tation, CRI,,z={CRI(t,), CRI(t,), . . ., CRI(tx)} may be any
set of points sampled at times during resuscitation, and
CRI,,, may be the average value of those points. Accord-
ingly, a classification of no bleeding may be made by
choosing a threshold, either experimentally or user set,
denoted by ¥*CRI,; (e.g., NB2 above), and classifying
non-bleeding may be determined if:

CRIpz>"*CRIpg. (Eq. 27)
[0175] Regarding (3), the average CRI after resuscitation,

CRI,,={CRI(t,), CRI(t,), . . . , CRI(tx)} may be any set of
points sampled at times after resuscitation, and CRI ,, may
be the average value of those points. Accordingly, a classi-
fication of no bleeding may be made by choosing a thresh-
old, either experimentally or user set, denoted by ¥ CRI,,
(e.g., NB3 above), and classifying non-bleeding may be
determined if:

CRLz>"*CRL. (Eq. 28)

[0176] With reference to (4), CRI; and CRI,  may be as
defined above. Accordingly, a classification of no bleeding
may be made by choosing a threshold, either experimentally
or user set, denoted by ,"*CRI,, (e.g., NB4 above), and
classifying non-bleeding may be determined if:

CRL;-CRIpg> 1z P CRIpg. (Eq. 29)

[0177] Referring to (5), CRIgz; and CRI,; may be as
defined above. Accordingly, a classification of no bleeding
may be made by choosing a threshold, either experimentally
or user set, denoted by .,z °CRl;, (e.g., NB3 above), and
classifying non-bleeding may be determined if:

CRIp-CRIggopr “CRl. (Eq. 30)

[0178] Regarding (6), CRI,, and CRI,, may be as defined
above. Accordingly, a classification of no bleeding may be
made by choosing a threshold, either experimentally or user
set, denoted by ,,"*CRI,, (e.g., NB6 above), and classify-
ing non-bleeding may be determined if:

CRL;z-CRIzp> 45 "CRIgg.

[0179] With reference to (7), the variance of CRI before
resuscitation, CRI;z={CRI(t,), CRI(t,), . . . , CRI(tz)} may
be any set of points sampled at times before resuscitation,
and [SD(CRI)],z may be the variation of those values
(perhaps the standard deviation as defined above). Accord-
ingly, for example, a classification of no bleeding may be
made by choosing a threshold, either experimentally or user
set, denoted by *? [SD(CRI)|;x (e.g., NB7 above), and
classifying non-bleeding may be determined if:

(Eq. 31)

[SD(CRI}]3z<"P[SD(CRD)] 3.

[0180] Referring to (8), the variance of CRI during resus-
citation, CRI,z={CRI(t,), CRI(t,), . . . , CRI(tz)} may be
any set of points sampled at times during resuscitation, and
[SD(CRI)];z may be the variation of those values (perhaps
the standard deviation as defined above). Accordingly, a
classification of no bleeding may be made by choosing a
threshold, either experimentally or user set, denoted by
MSD(CRI)],5; (e.g., NBS above), and classifying non-
bleeding may be determined if:

(Eq. 32)

[SD(CRI)] pg<"®[SD(CRD) |y

[0181] Regarding (9), the variance of CRI after resuscita-
tion, CRI z={CRI(t,), CRI(t,), . . . , CRI(tx)} may be any

(Eq. 33)
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set of points sampled at times after resuscitation, and [SD
(CRI)] 4z may be the variation of those values (perhaps the
standard deviation as defined above). Accordingly, a classi-
fication of no bleeding may be made by choosing a thresh-
old, either experimentally or user set, denoted by ™% [SD
(CRD)] 4z (e.g., NB9 above), and classifying non-bleeding
may be determined if:

[SD(CRD)]4z<"*[SD(CRI)] 45-

[0182] Referring to (10), [SD(CRI)]zz and [SD(CRI)] ,z
may be as defined above. Accordingly, a classification of no
bleeding may be made by choosing a threshold, either
experimentally or user set, denoted by ,,"*[SD(CRI)]zz
(e.g., NB10 above), and classifying non-bleeding may be
determined if:

(Eq. 34)

[SD(CRD)] 4z~ [SDICRD |pz<.1z"? [SDCRD) -

[0183] With reference to (11), the skewness of CRI before
resuscitation, CRI;={CRI(t,), CRI(t,), . . . , CRI(tz)} may
be any set of points sampled at times before resuscitation,
and Sz, may be a measure of skewness of those points
(perhaps as defined above). Accordingly, for example, a
classification of no bleeding may be made by choosing a
threshold, either experimentally or user set, denoted by
MBS, . (e.g., NB11 above), and classifying non-bleeding may
be determined if:

(Eq. 35)

NB
Sprl<"“Spg.

[0184] Referring to (12), the skewness of CRI during
resuscitation, CRIz={CRI(t;), CRI(t,), . . . , CRI(tz)} may
be any set of points sampled at times during resuscitation,
and S,; may be a measure of skewness of those points
(perhaps as defined above). Accordingly, a classification of
no bleeding may be made by choosing a threshold, either
experimentally or user set, denoted by *? S,,,, (e.g., NB12
above), and classifying non-bleeding may be determined if:

(Eq. 36)

NBg
Sprl<Spp

[0185] Regarding (13), the skewness of CRI after resus-
citation, CRL,={CRI(t;), CRI(t,), . . ., CRI{tx)} may be
any set of points sampled at times after resuscitation, and
S,z may be a measure of skewness of those points (perhaps
as defined above). Accordingly, a classification of no bleed-
ing may be made by choosing a threshold, either experi-
mentally or user set, denoted by *2S _, (e.g., NB13 above),
and classifying non-bleeding may be determined if:

(Eq. 37)

NB
SrI<ES 4

[0186] With reference to (14), the rate of change of CRI
before resuscitation, CRI,,={CRI(t,), CRI(t,), . . . , CRI
(1)} may be any set of points sampled at times before
resuscitation, and mg, may be a measure of rate of change
of those points (perhaps as defined above). Accordingly, for
example, a classification of no bleeding may be made by
choosing a threshold, either experimentally or user set,
denoted by “m,, (e.g, NB14 above), and classifying
non-bleeding may be determined if:

(Eq. 38)

> Py (Eq. 39)

[0187] Referring to (15), the rate of change of CRI during
resuscitation, CRI,,,={CRI(t,), CRI(t,), . . . , CRI(tz)} may
be any set of points sampled at times during resuscitation,
and my,; may be a measure of rate of change of those points
(perhaps as defined above). Accordingly, a classification of
no bleeding may be made by choosing a threshold, either
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experimentally or user set, denoted by *?m,, (e.g., NB15
above), and classifying non-bleeding may be determined if:

Mpe™ Pitpg. (Eq. 40)

[0188] Regarding (16), the rate of change of CRI after
resuscitation, CRL, ,={CRI(t,), CRI(L,), . . . , CRI(t,)} may
be any set of points sampled at times after resuscitation, and
m,, may be a measure of rate of change of those points
(perhaps as defined above). Accordingly, a classification of
no bleeding may be made by choosing a threshold, either
experimentally or user set, denoted by “m,,, (e.g., NB16
above), and classifying non-bleeding may be determined if:

(Eq. 41)

NB
M4p> M 4R

[0189] With reference to (17), my; and m,, may be as
defined above. Accordingly, a classification of no bleeding
may be made by choosing a threshold, either experimentally
or user set, denoted by ,-*®m,, (e.g., NB17 above), and
classifying non-bleeding may be determined if:

NB
M4r=Mpr7ar  MpR-

[0190] Referring to (18), m, and m,, may be as defined
above. Accordingly, a classification of no bleeding may be
made by choosing a threshold, either experimentally or user
set, denoted by ,,."?m, (e.g., NB18 above), and classifying
non-bleeding may be determined if:

(Eq. 42)

>

NB q
Mpr=Mpr~DR  ™MpR- (Eq. 43)

[0191] With reference to (19), the rate of rate change of
CRI before resuscitation, CRIz,={CRI(t,), CRI(t,), . . . ,
CRI(t,)} may be any set of points sampled at times before
resuscitation, and rgz; may be a measure of rate of rate
change of those points (perhaps as defined above). Accord-
ingly, for example, a classification of no bleeding may be
made by choosing a threshold, either experimentally or user
set, denoted by “Pr,, (e.g, NB19 above), and classifying
non-bleeding may be determined if:

B
ra” P rap.

[0192] Referring to (20), the rate of rate change of CRI
during resuscitation, CRI,,,={CRI(t,), CRI(t,), . . . , CRI
(tz)} may be any set of points sampled at times during
resuscitation, and r,, may be a measure of rate of rate
change of those points (perhaps as defined above). Accord-
ingly, a classification of no bleeding may be made by
choosing a threshold, either experimentally or user set,
denoted by *®r, (e.g., NB20 above), and classifying non-
bleeding may be determined if:

(Eq. 44)

r. DR>NBr DR (Eq. 45)

[0193] Regarding (21), the rate of rate change of CRI after
resuscitation, CRI, .={CRI(t,), CRI(1,), . . . , CRI(ty)} may
be any set of points sampled at times after resuscitation, and
r,z may be a measure of rate of rate change of those points
(perhaps as defined above). Accordingly, a classification of
no bleeding may be made by choosing a threshold, either
experimentally or user set, denoted by “?r, (e.g., NB21
above), and classifying non-bleeding may be determined if:

B
ra .

[0194] With reference to (22), rz, and r,, may be as
defined above. Accordingly, a classification of no bleeding
may be made by choosing a threshold, either experimentally
or user set, denoted by ,"%ry. (e.g., NB22 above), and
classifying non-bleeding may be determined if:

(Eq. 46)
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NB -
T4R"YBR™AR TBR (Eg. 47)

[0195] Referring to (23), myz and my,, may be as defined
above. Accordingly, a classification of no bleeding may be
made by choosing a threshold, either experimentally or user
set, denoted by ;" °my, (e.g., NB23 above), and classifying
non-bleeding may be determined if:

>

DRNB’ BR (Eq. 48)

"DR=TBR

[0196] Similarly, in some instances, a method for estimat-
ing a (certain) bleeding state might include, but is not limited
to, one of the following calculations or a combination of two
or more such calculations, perhaps within a statistical and/or
machine learning framework, or the like: (1) Average of CRI
before resuscitation (“CRI,,")<BL1; (2) Average of CRI
during resuscitation (“CRIp,")<BL2; (3) Average of CRI
after  resuscitation  (“CRL,;”)<BL3; (4) CRI -
CRIpx<BL4;  (5) CRIpg-CRIz<BLS; (6) CRILz-
CRI,;z<BLS6; (7) standard deviation of CRI before resusci-
tation (“[SD(CRI)] 3" >BL7; (8) standard deviation of CRI
during resuscitation (“[SD(CRD],x”)>BLS8; (9) standard
deviation of CRI after resuscitation (“[SD(CRI)],z")>BL9Y;
(10) [SD(CRD],z-[SD(CRD)]zz>BL10; (11) moment coef-
ficient of skewness of CRI (positive or negative) before
resuscitation (“Sz,”)>BL11; (12) moment coefficient of
skewness of CRI (positive or negative) during resuscitation
(“Spzr”)>BL12; (13) moment coeflicient of skewness of CRI
(positive or negative) after resuscitation (“S ;z”)>BL13; (14)
rate of change of CRI before resuscitation (“mg;")<BL14;
(15) rate of change of CRI during resuscitation (“mpz”)
<BL1S5; (16) rate of change of CRI after resuscitation
“m,z")<BL16; (17) m p—mge<BL17; (18) mpg—
m;,<BL18; (19) rate of rate change of CRI before resusci-
tation (“rz,”)<BL19; (20) rate of rate change of CRI during
resuscitation (“rz”")<BL20; (21) rate of rate change of CRI
after resuscitation (“r,;”)<BL21: (22) r,,-15,<BL22; (23)
rpr—1zr<BL23; and/or the like. In some cases, each of, or
one or more of, BL1 through BL20 might either be estimated
experimentally or set by the user.

[0197] With reference to (1), the average CRI before
resuscitation, CRI;z={CRI(t,), CRI(t,), . . . , CRI(t)} may
be any set of points sampled at times before resuscitation,
and CRI;, may be the average value of those points.
Accordingly, for example, a classification of bleeding may
be made by choosing a threshold, either experimentally or
user set, denoted by CRI,, (e.g., BL1 above), and classi-
fying certain bleeding may be determined if:

CRI<*CRlgy. (Eq. 49)
[0198] Referring to (2), the average CRI during resusci-
tation, CRI,z={CRI(t,), CRI(t,), . . . , CRI(tz)} may be any
set of points sampled at times during resuscitation, and
CRI,,; may be the average value of those points. Accord-
ingly, a classification of bleeding may be made by choosing
a threshold, either experimentally or user set, denoted by ©
CRI,; (e.g., BL2 above), and classifying certain bleeding
may be determined if:

CRIpx<"CRIpz. (Eq. 50)
[0199] Regarding (3), the average CRI after resuscitation,

CRI,,={CRI(t,), CRI(t,), . . . , CRI(tx)} may be any set of
points sampled at times after resuscitation, and CRI,, may
be the average value of those points. Accordingly, a classi-
fication of bleeding may be made by choosing a threshold,
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either experimentally or user set, denoted by “CRI,, (e.g.,
BL3 above), and classifying certain bleeding may be detet-
mined if:

CRIz<"CRI . (Eq. 51)
[0200] With reference to (4), CRI, and CRI,, may be as
defined above. Accordingly, a classification of bleeding may
be made by choosing a threshold, either experimentally or
user set, denoted by ,°CRI,. (e.g, BI4 above), and
classifying certain bleeding may be determined if:

CRLyzCRIpp<x " CRIpz: (Eq. 52)
[0201] Referring to (5), CRI,z; and CRI,, may be as
defined above. Accordingly, a classification of bleeding may
be made by choosing a threshold, either experimentally or
user set, denoted by ,,,"CRl;, (e.g, BLS above), and
classifying certain bleeding may be determined if:

(E{)IDR_(T{)IBR<DRBWBR' (Eq. 53)
[0202] Regarding (6), CRI, and CRI, . may be as defined
above. Accordingly, a classification of bleeding may be
made by choosing a threshold, either experimentally or user
set, denoted by ,,°CRI, (e.g., BL6 above), and classifying
certain bleeding may be determined if:

CRI 4z~ CRIz< 4% CRlgg. (Eq. 54)
[0203] With reference to (7), the variance of CRI before
resuscitation, CRI,.={CRI(t,), CRI(t,), . . . , CRI(t,)} may
be any set of points sampled at times before resuscitation,
and [SD(CRI)]zz may be the variation of those values
(perhaps the standard deviation as defined above). Accord-
ingly, for example, a classification of bleeding may be made
by choosing a threshold, either experimentally or user set,
denoted by Z[SD(CRI)] 5z (e.g., BL7 above), and classifying
certain bleeding may be determined if:

[SD(CR152>*[SD(CR) ] - (Eq. 55)

[0204] Referring to (8), the variance of CRI during resus-
citation, CRI,z={CRI(t,), CRI(t,), . . . , CRI(tz)} may be
any set of points sampled at times during resuscitation, and
[SD(CRI)],z may be the variation of those values (perhaps
the standard deviation as defined above). Accordingly, a
classification of bleeding may be made by choosing a
threshold, either experimentally or user set, denoted by
BISD(CRD)] pz (e.g., BL8 above), and classifying certain
bleeding may be determined if:

[SD(CRD)]pe>*[SD(CRD - (Eq. 56)
[0205] Regarding (9), the variance of CRI after resuscita-
tion, CRL,,={CRI(t,), CRI(t,), . . . , CRI(tx)} may be any
set of points sampled at times after resuscitation, and [SD
(CRI)],z may be the variation of those values (perhaps the
standard deviation as defined above). Accordingly, a classi-
fication of bleeding may be made by choosing a threshold,
either experimentally or user set, denoted by Z[SD(CRI)] ,»
(e.g., BL9 above), and classifying certain bleeding may be
determined if:

[SD(CRI)]4z>*[SD(CRD) iz. (Eq. 57)

[0206] Referring to (10), [SD(CRI)]zz and [SD(CRI)] ,x
may be as defined above. Accordingly, a classification of
bleeding may be made by choosing a threshold, either
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experimentally or user set, denoted by _Z[SD(CRI)];z
(e.g., BL10 above), and classifying certain bleeding may be
determined if:

[SD(CRI)]AR_ [S D(CRI)]BR>ARB

[0207] With reference to (11), the skewness of CRI before
resuscitation, CRI;z={CRI(t,), CRI(t,), . . . , CRI(tz)} may
be any set of points sampled at times before resuscitation,
and Sz may be a measure of skewness of those points
(perhaps as defined above). Accordingly, for example, a
classification of bleeding may be made by choosing a
threshold, either experimentally or user set, denoted by ZS .
(e.g., BL11 above), and classifying certain bleeding may be
determined if:

[SD(CRI)] 3z (Eq. 58)

Szr>2Sga.

[0208] Referring to (12), the skewness of CRI during
resuscitation, CRI;z={CRI(t,), CRI(t,), . . . , CRI(tz)} may
be any set of points sampled at times during resuscitation,
and S, may be a measure of skewness of those points
(perhaps as defined above). Accordingly, a classification of
bleeding may be made by choosing a threshold, either
experimentally or user set, denoted by °S,, (e.g., BL12
above), and classifying certain bleeding may be determined
if:

(Eq. 59)

Sprl>ZSpr-

[0209] Regarding (13), the skewness of CRI after resus-
citation, CRL,,={CRI(t,), CRI(L,), . . . , CRI(tx)} may be
any set of points sampled at times after resuscitation, and
S,z may be a measure of skewness of those points (perhaps
as defined above). Accordingly, a classification of bleeding
may be made by choosing a threshold, either experimentally
or user set, denoted by © S,, (e.g., BL13 above), and
classifying certain bleeding may be determined if:

(Eq. 60)

B
S4r>"S g

[0210] With reference to (14), the rate of change of CRI
before resuscitation, CRI;,={CRI(t,), CRI(t,), . . . , CRI
(1)} may be any set of points sampled at times before
resuscitation, and my, may be a measure of rate of change
of those points (perhaps as defined above). Accordingly, for
example, a classification of bleeding may be made by
choosing a threshold, either experimentally or user set,
denoted by ’m,, (e.g., BL14 above), and classifying certain
bleeding may be determined if:

(Eq. 61)

B
Mpr<"Mpg.

[0211] Referring to (15), the rate of change of CRI during
resuscitation, CRI,,,={CRI(t,), CRI(t,), . . ., CRI(t)} may
be any set of points sampled at times during resuscitation,
and m,,, may be a measure of rate of change of those points
(perhaps as defined above). Accordingly, a classification of
bleeding may be made by choosing a threshold, either
experimentally or user set, denoted by “my,; (e.g., BL15
above), and classifying certain bleeding may be determined
if:

(Eq. 62)

B
Mpr< Mpp-

[0212] Regarding (16), the rate of change of CRI after
resuscitation, CRI, z={CRI(t,), CRI(t,), . . . , CRI(tz)} may
be any set of points sampled at times after resuscitation, and
m,, may be a measure of rate of change of those points
(perhaps as defined above). Accordingly, a classification of
bleeding may be made by choosing a threshold, either

(Eq. 63)
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experimentally or user set, denoted by ®m,, (e.g., BL16
above), and classifying certain bleeding may be determined
if:

max<"m .

[0213] With reference to (17), myz and m,, may be as
defined above. Accordingly, a classification of bleeding may
be made by choosing a threshold, either experimentally or
user set, denoted by ,z°m,, (e.g., BL17 above), and clas-
sifying certain bleeding may be determined if:

(Eq. 64)

B
<4r MBR-

(Eq. 65)

Mm4r=MaR

[0214] Referring to (18), my, and m,,, may be as defined
above. Accordingly, a classification of bleeding may be
made by choosing a threshold, either experimentally or user
set, denoted by ,,,°myp (e.g., BL18 above), and classifying
certain bleeding may be determined if:

(Eq. 66)

B
Mpr=Mpr<pr MpR:

[0215] With reference to (19), the rate of rate change of
CRI before resuscitation, CRIz,={CRI(t,), CRI(t,), . . . ,
CRI(ty)} may be any set of points sampled at times before
resuscitation, and rz; may be a measure of rate of rate
change of those points (perhaps as defined above). Accord-
ingly, for example, a classification of bleeding may be made
by choosing a threshold, either experimentally or user set,
denoted by Zr, (e.g., BL19 above), and classifying certain
bleeding may be determined if:

rarraR. (Eq. 67)

[0216] Referring to (20), the rate of rate change of CRI
during resuscitation, CRI;={CRI(t,), CRI(t,), . . ., CRI
(tz)} may be any set of points sampled at times during
resuscitation, and rp,, may be a measure of rate of rate
change of those points (perhaps as defined above). Accord-
ingly, a classification of bleeding may be made by choosing
a threshold, either experimentally or user set, denoted by
Bt (e.g., BL20 above), and classifying certain bleeding
may be determined if:

rDR<BrDR- (Eq. 68)

[0217] Regarding (21), the rate of rate change of CRI after
resuscitation, CRI,={CRI(t,), CRI(1,), . . . , CRI(tx)} may
be any set of points sampled at times after resuscitation, and
1, may be a measure of rate of rate change of those points
(perhaps as defined above). Accordingly, a classification of
bleeding may be made by choosing a threshold, either
experimentally or user set, denoted by © r,; (e.g., BL21
above), and classifying certain bleeding may be determined
if:

ragrap

[0218] With reference to (22), ry, and r,, may be as
defined above. Accordingly, a classification of bleeding may
be made by choosing a threshold, either experimentally or
user set, denoted by ,.rz» P (e.g., BL22 above), and
classifying certain bleeding may be determined if:

(Eq. 69)

<

r4R7TBR ARB’ BR- (Eq. 70)

[0219] Referring to (23), m, and m,, may be as defined
above. Accordingly, a classification of bleeding may be
made by choosing a threshold, either experimentally or user
set, denoted by ,,,°myp (e.g., BL23 above), and classifying
may be determined if:

(Eq. 71)

B
'DR=YBR DR "BR
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[0220] Likewise, in some instances, a method for estimat-
ing a probability of bleeding (e.g., designated by a symbol
or value between 0 and 1) might include, but is not limited
to, one of the above calculations or a combination of two or
more such calculations, perhaps within a statistical and/or
machine learning framework, or the like, to estimate the
probability of bleeding. In some cases, the method might
include, without limitation, empirical estimations of prob-
ability density functions, cumulative distribution functions
using graphical and/or nonparametric models, and/or the
like. Other methods might include, but are not limited to: (i)
probability of bleeding being proportional to the number of
times the bleeding threshold is achieved; (ii) probability of
no bleeding being proportional to the number of times the no
bleeding threshold is achieved; (iii) probability of bleeding
being proportional to the number of times the bleeding
threshold is achieved minus the number of times the no
bleeding threshold is achieved; (iv) probability of bleeding
being expressed as
Pr(bleeding)=F(CRIz,CR1 5z,
TR, [SD(CRI)] 5, [SD(CRI) ]

[SD(CRD)]4z.SprSpRS dm MBR DR MR BR:

FDR:TAR)> (Eq. 72)

where f is some empirical estimation of the probability
density function and/or cumulative distribution functions
using graphical and/or nonparametric models.

[0221] Insome embodiments, estimated CRI values might
include, but are not limited to, one or more of CRI values
estimated or measured after every heartbeat, CRI values
averaged over the preceding or last N seconds (where N>1),
and/or the median value of CRI over the preceding or last N
seconds (where N>1), or the like. According to some
embodiments, the calculations described above with respect
to blocks 515-535 might utilize these estimated CRI values.
According to some embodiments, instead of using CRI
measurements, a method might use all or some of the
calculations above that replace CRI values with values
corresponding to measurements related to any measure of
compensatory reserve, or derivative thereof, using one or
more of the sensor types described above.

[0222] FIGS. 6-8 illustrate exemplary screen captures
from a display device of a compensatory reserve monitor,
showing various features that can be provided by one or
more embodiments. Similar screens could be shown by
other monitoring devices, such as a display of a wrist-
wearable sensor device, a display of a monitoring computer,
and/or the like. While FIGS. 6-8 use BL or CRI as an
example condition for illustrative purposes, other embodi-
ments might also display values for the volume, V, the
volume of fluid necessary for effective hydration, or the
probability, Py, that the patient needs fluid (including addi-
tional fluid, if hydration efforts already are underway).

[0223] FIG. 6 illustrates an exemplary display 600 of a
compensatory reserve monitor implementation where a nor-
malized CRI estimate of “0” implies that blood loss is
certain, and “1” implies that there is no blood loss. Values in
between “0” and “1” imply a continuum of a probability of
no blood loss. Alternatively, although not shown, the nor-
malized CRI estimates can be reversed, whereby a normal-
ized CRI estimate of “1” implies that blood loss is certain,
and “0” implies that there is no blood loss. Values in between
“0” and “1” imply a continuum of a probability of blood
loss.
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[0224] FIG. 7A illustrates four screen captures 700 of a
display of a compensatory reserve monitor implementation
that displays BL as a “fuel gauge” type bar graph for a
person undergoing central volume blood loss and subse-
quent hydration efforts, or for a person who is about to, is
undergoing, or has undergone fluid resuscitation. While FIG.
6 illustrates a trace of CRI over time, the bar graphs of FIG.
7A provide snapshots of BL at the time of each screen
capture corresponding to the CRI of FIG. 6. (In the illus-
trated implementation, the bar graphs are continuously and/
or periodically updated, such that each bar graph could
correspond to a particular position on the X-axis of FIG. 6.)
The fuel gauge can be configured to show probability of no
blood loss (in which a value of “1” implies no blood loss, a
value of “0” implies certain blood loss, and a value between
“0” and “1” implies a continuum of a probability of no blood
loss), similar to FIG. 6. Alternatively, the fuel gauge can be
configured to show probability of blood loss (in which a
value of “0” implies no blood loss, a value of “1” implies
certain blood loss, and a value between “0” and “1” implies
a continuum of a probability of blood loss).

[0225] A variety of additional features are possible.
Merely by way of example FIG. 7B illustrates similar “fuel
gauge” type displays, but the displays feature bars of dif-
ferent colors—for example, green (illustrated by diagonal
cross-hatching), yellow (illustrated by a checked pattern)
and red (illustrated by gray shading) corresponding to dif-
ferent levels of CRI, along with arrows 710 indicating
trending in the CRI values (e.g., rising, declining, or remain-
ing stable), the CRI values and trends being indicative of
blood loss occurring and/or resuscitation efforts being
active.

[0226] In some embodiments, such a “fuel gauge” display
(or other indicator of BL or CRI and/or different physiologi-
cal parameters) can be incorporated in a more comprehen-
sive user interface. Merely by way of example, FIG. 8
illustrates an exemplary display 800 of a monitoring system.
The display 800 includes a graphical, color-coded “fuel
gauge” type display 805 of the current estimated BL (similar
to the displays illustrated by FIG. 7B), along with a histori-
cal display 810 of recent CRI estimates; in this example,
each bar on the historical display 810 might correspond to an
estimate performed every minute, but different estimate
frequencies or time intervals are possible, and in some
embodiments, the operator can be given the option to specify
a different frequency or time interval. In the illustrated
embodiment, the display 800 also includes numerical dis-
play 815 of the current BL as well as a trend indicator 820
(similar to that indicated above).

[0227] In particular embodiments, the display 800 can
include additional information (and, in some cases, the types
of information displayed and/or the type of display can be
configured by the operator). For instance, the exemplary
display 800 includes an indicator 825 of the patient’s current
heart rate and an indicator 830 of the patient’s blood oxygen
saturation level (SpO2). The exemplary display 800 also
includes an indicator of the estimated volume, V, necessary
for effective hydration, as well as an numerical indicator
840, a trend indicator 845, and a similar color coded “fuel
gauge” display 850 of the current CRI. Other monitored
parameters (although not shown) might be displayed as well,
such as an ECG tracing, blood pressure, probability of
bleeding estimates, and/or the like.

[0228] Exemplary Clinical Studies

[0229] FIGS. 9A-9H (collectively, “FIG. 9”) are graphical
diagrams 900 illustrating rapid detection of bleeding before,
during, and after fluid resuscitation of patients in a multi-
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trauma clinical study at Denver Health Medical Center
(“DHMC”), in accordance with various embodiments. In
one exemplary multi-trauma clinical study at DHMC, 50
patients were enrolled, of which 45 patients met required
criteria while 5 were excluded (as having incomplete data
and/or device). Of the 45 patients, 12 were bleeding (with
initial CRI values of 0.17+0.07 and mean injury severity
score (“ISS”) 0f 27+12.7), 30 non-bleeding (with initial CRI
values of 0.56+0.17 and mean ISS of 7.5+8.7), and 3
indeterminate.

[0230] With reference to FIG. 9, FIG. 9A illustrates a
receiver operating characteristic (“ROC”) curve that is used
for classification of bleeding using compensatory reserve.
The sensitivity is 0.93, with specificity of 0.92, and area
under the curve (“AUC”) of 0.97.

[0231] FIG. 9B illustrates the CRI for the non-bleeding
patients (indicated in the graph as “Trauma No Hemor-
rhage”) and for the bleeding patients (indicated in the graph
as “Trauma+Hemorrhage”). As shown in FIG. 9B, CRI
values are low during bleeding.

[0232] FIGS. 9C-9E illustrate line tracings of actual CRI
curves for three representative patients among the non-
bleeding group. The average CRI value for the non-bleeding
patients before infusing of intravenous fluid (“IVF”) is
0.56+0.17. FIG. 9C depicts the CRI curves for non-bleeding
trauma patient 003, who had a CRI of >0.3 before infusion
of TVF, and with TVF containing 2 L of saline solution. There
was no sustained drop in CRI in this patient during or after
infusion of IVF. FIG. 9D depicts the CRI curves for non-
bleeding trauma patient 042, who had a CRI of 0.4 before
infusion of IVF, and with TVF containing 1 L of saline
solution. There was no wound exploration and no sustained
drop in CRI in this patient during or after infusion of TVF.
FIG. 9E depicts the CRI curves for non-bleeding trauma
patient 018, who had a CRI of 0.65 before infusion of IVF,
and with IVF containing 2 [ of saline solution, 1 L of
lactated ringer’s (“LR”) solution, and 2 packets of packed
red blood cells (“PRBC”). There was no sustained drop in
CRI in this patient during or after infusion of IVF. As shown
in FIGS. 9C-9E, CRI is high or generally increasing during
and after fluid resuscitation for each patient in the non-
bleeding group.

[0233] FIGS. 9F-9H illustrate line tracings of actual CRI
curves for three representative patients among the bleeding
group. The average CRI value for the non-bleeding patients
before infusing of intravenous fluid (“IVF”) is 0.170.07.
FIG. 9F depicts the CRI curves for bleeding trauma patient
019, who had a CRI of 0.15 before infusion of IVF (at time
905), and with an infusion of a first IVF (at time 910), the
first IVF containing 7 L of saline solution, 3 packets of
PRBC, 1 packet of platelets (“PLTs”), and 3 packets of fresh
frozen plasma (“FFP”). The CRI dropped after initial
increase (as shown at time 915). At time 920, a second IVF
was infused, the second IVF containing 4 [ of saline
solution, 3 packets of PRBC, and 3 packets of fresh frozen
plasma (“FFP”). FIG. 9G depicts the CRI curves for bleed-
ing trauma patient 006, who had a CRI of 0.15 before
infusion of IVF (at time 925), and with an infusion of a first
IVF (at time 930), the first IVF containing 2 L of saline
solution. The CRI dropped after initial increase (as shown at
time 935). At time 940, a second IVF was infused, the
second IVF containing 1 L of saline solution. Again, the CRI
dropped after initial increase (as shown at time 945). FIG.
9H depicts the CRI curves for bleeding trauma patient 012,
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who had a CRI 0of 0.15 before infusion of IVF, with infusions
of a first IVF (at time 950) and a second IVF (at time 955),
the first TVF containing 1 T of saline solution and the second
IVF containing 2.25 L of saline solution. As shown in FIGS.
9F-9H, CRI drops after an initial increase (during and after
fluid resuscitation) for each patient in the bleeding group.
[0234] In a different exemplary clinical study, another 50
patients were enrolled, of which 3 had incomplete data, 3
had indeterminate bleeding, 12 were actively bleeding, and
32 were not bleeding. For simplicity of comparison, the 3
patients who had incomplete data and the 3 patients who had
indeterminate bleeding were excluded from further analysis.
The mean initial CRI of bleeding patients was significantly
lower compared to the non-bleeding patients (CRI of 0.17,
95% CI of 0.13-0.22 versus CRI of 0.56, 95% CI of
0.49-0.62, p<0.001). Using a cut-off of 0.21 had a sensitivity
of 0.97 and specificity of 0.83 for identifying bleeding
patients. CRI had a higher sensitivity than heart rate (9%),
systolic blood pressure (36%), base deficit (29%), hemoglo-
bin (50%), and hematocrit (50%). During ongoing bleeding,
CRI on average decreased following fluid resuscitation,
while on average increased for patients that did not have
ongoing bleeding. As described below, the novel CRI com-
putational algorithm that recognizes subtle changes in PPG
waveforms can quickly and non-invasively discern which
patients are actively bleeding and continuing to bleed with
high sensitivity and specificity in acutely injured patients.
[0235] FIGS. 10-13B are results obtained from this dif-
ferent clinical study that evaluated CRI as a basis for rapid
detection of bleeding in patients following injuries. FIG. 10
is a schematic diagram illustrating Compensatory Reserve
(“CR”), while FIG. 11 is a graphical diagram illustrating
receiver operating characteristic (“ROC”) area under the
curve (“AUC”) for CRI and classification of actively bleed-
ing versus not actively bleeding, and FIG. 12 is a set of
graphical diagrams illustrating CRI response in bleeding
patients and in non-bleeding patients one hour after infusion
of 1 liter of crystalloid or 1 unit of blood product. FIGS. 13A
and 13B (collectively, “FIG. 13”) are graphical diagrams
illustrating CRI changes over time for two gunshot patients
in response to varying resuscitation techniques. Specifically,
FIG. 13A is a graphical diagram illustrating CRI change
over time for a patient with a negative laparotomy after a
gunshot wound to the abdomen, while FIG. 13B is a
graphical diagram illustrating CRI change over time for a
patient with substantial blood loss and solid organ injury
after a gunshot wound to the abdomen.

[0236] One of the most difficult tasks in clinical medicine
is the assessment of intravascular volume status. This assess-
ment is usually made by evaluating the patient’s traditional
vital signs, including heart rate (“HR”), blood pressure
(“BP”), respiratory rate (“RR”), and oxygen saturation
(“SpQ2™), along with physical examination and laboratory
studies. Unfortunately, traditional vital signs are notoriously
unreliable due to the body’s many compensatory mecha-
nisms, which serve to maintain these vital signs during loss
of up to 30-40% of total blood volume. As a result, unrec-
ognized volume loss during the compensatory phase of
hemorrhage can quickly lead to poor tissue perfusion, pro-
gressive acidosis and sudden, unexpected hemodynamic
decompensation.

[0237] Individual-specific changes in vital sign wave-
forms are introduced by the body’s many compensatory
mechanisms. These mechanisms work together during the
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early stages of hemorrhage to maintain hemodynamic sta-
bility, but unfortunately, cannot be seen or trended by
physicians. The total volume of blood loss an individual can
tolerate before collapse varies depending on each person’s
unique ability to compensate. The CRI algorithm is designed
to estimate an individual’s current proportion of total toler-
able volume loss, as defined by the following quantity:

CRIGy =1 - 2LV (Eq. 73)
BLVanp
[0238] BLV represents the current blood loss volume of

the subject and BLV ,p, is the blood loss volume at which
the subject will experience hemodynamic decompensation
(defined in LBNP experiments as a systolic blood pres-
sure<80 mmHg, loss of vision, or discomfort resulting in
subject termination). CRI estimates this value by analyzing
waveform features within a sliding 30-heartbeat window,
and compares them to a library of waveform features origi-
nally obtained in the above LBNP experiments. By matching
waveform features in the current subject to subjects from the
LBNP experiments, CR1 is able to determine when a patient
will experience hemodynamic collapse in near real-time.
With beat-to-beat re-calculation of CRI, this value can be
trended over time. CRI values range from 1 to 0, and can be
thought of as a percentage (100%-0%) of physiologic
reserve remaining, where “1” represents supine normov-
olemia and “0” implies hemodynamic decompensation (as
shown in FIG. 10). Values between “1” and “0” indicate the
proportion of reserve available to compensate for further
volume loss.

[0239] The CRI algorithm had subsequently been vali-
dated in healthy volunteers donating one unit of blood, and
undergoing stepwise removal and replacement of up to 1.3
liters of blood. In these previous studies, the inventors had
shown that CRI could quickly, reliably, and non-invasively
detect relatively small to moderate volumes of blood loss in
healthy adults, whereas other vital sign parameters, includ-
ing HR, systolic BP (“SBP”), cardiac output, and stroke
volume were unable to reliably detect the same volumes of
blood loss. Further, when withdrawn blood was re-infused in
study subjects, CRI increased and returned to baseline.
These results prompted a prospective clinical trial to exam-
ine performance of the CRI algorithm in traumatically
injured adolescent and adult patients. The goal was to
determine whether or not the CRI algorithm could reliably
detect acute blood loss and continued blood loss in the
setting of trauma. Doing so would validate that the CRI
algorithm effectively monitors volume loss in patient popu-
lations subject to sympathetic stimuli including those expe-
riencing injury and pain. The following describes the results
of the study to validate the CRI algorithm in detecting blood
loss due to injury.

[0240] In this study, continuous non-invasive PPG wave-
form data were collected from 50 acutely injured, possibly
bleeding patients. Investigators were present in the Denver
Health Emergency Department Thursday-Sunday from 7
PMto 5 AM to enroll consecutive eligible patients from Oct.
17,2013 to Feb. 2, 2014. Eligible patients were 15-89 years
of age admitted to the emergency department with evidence
of blunt or penetrating trauma, and remained eligible if
treated in the operating room or surgical intensive care unit.
All enrolled patients were categorized as either an “alert” or
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“activation” according to established Denver Health Emer-
gency Department criteria (as shown in Table 1 below).

TABLE 1

Definitions of “alerts” and “activations™ at Denver
Health Medical Center during the study period.

Glasgow coma scale <8 with presumed thoracic, abdominal or pelvic
injury, and/or respiratory compromise

Obstruction and/or intubation with presumed thoracic, abdominal or
pelvic injury

Blunt trauma with SBP <90 mmHg

Mechanically unstable pelvic injury

Penetrating injury to the neck and/or torso with SBP <90 mmHg
Gunshot wound(s) to the torso

Stab wound(s) to the torso

Amputation(s) proximal to the wrist or ankle

Transfer from another facility, receiving blood to maintain vital
signs

The emergency department attending physician or chief surgical
resident suspects need for urgent operative intervention

[0241] Patients were considered ineligible if they were
pregnant, objected to participation at any time, were or
became incarcerated, or were transferred from the emer-
gency department to the ward. Once a patient was deter-
mined eligible, an adhesive pulse-oximeter finger sensor
(Nonin Medical, Inc., Plymouth, Minn.) was placed on the
patient’s index, middle, or ring finger, on the side opposite
the blood pressure cufl. The finger sensor was attached to a
DataOx™ monitor (Flashback Technologies Inc., Boulder,
Colo.). These small, lightweight data collection devices are
composed of a Nonin OEM III pulse oximeter, processor,
memory, Bluetooth radio and battery. DataOx™ devices
continuously recorded and time stamped each patient’s PPG
waveforms. Due to the limited number of devices, patients
were enrolled each night until all devices were in use; at that
point no more patients could be enrolled until the next
evening.

[0242] Data collection was carried out over a 24-hour
period, unless the patient was incarcerated or transferred out
of the emergency department to the ward, at which point it
was stopped. Demographic, clinical, and treatment informa-
tion were prospectively collected in parallel with waveform
data collection. Once waveform data collection was com-
plete for each patient, the waveform data were off-loaded
from each DataOx™ for later analysis. Recordings were
retrospectively analyzed to generate CRI estimates using the
CipherOx CRI™ system (V2.0.2, Flashback Technologies,
Boulder Colo.). Demographic, clinical, and treatment infor-
mation were entered into a RedCap database by hour of
treatment. All data were available for each patient except
where noted otherwise.

[0243] For data analysis purposes, patients were catego-
rized into three groups based on their estimated blood loss
(“EBL”): (1) active bleeding, defined as EBL>500 mL
(known femur or pelvic fracture, known solid organ
injury>grade 3, and/or intraoperative EBL of >500 mL); (2)
indeterminate bleeding (known fractures other than femur or
pelvis, grade 1-2 solid organ injuries, intraoperative
EBL<500 mL); or (3) not actively bleeding (no evidence of
bleeding, or minor bleeding<100 ml). Values between
bleeding and non-bleeding patients were compared using
two-tailed Student’s t-test and Chi square analysis. Receiver
operating characteristic (“ROC”) area under the curve analy-
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sis was performed with identification of cut-off values that
maximized the sensitivity and specificity for the identifica-
tion of bleeding.

[0244] As indicated above, there were 50 patients pro-
spectively enrolled, 3 who were excluded from data analysis
due to incomplete data collection/device malfunction. Of the
remaining 47 patients, there were 12 patients who were
categorized as actively bleeding (estimated blood loss>500
mL), 3 who were indeterminate for bleeding (estimated
blood loss between 100 mL and 500 mL), and 32 who were
not actively bleeding (estimated blood 1oss<100 mL). For
simplicity of comparison, the 3 patients who were classified
as indeterminate were also excluded from further analysis.
All further analysis is on the 44 patients who were classified
as either bleeding or not bleeding. Demographics and clini-
cal characteristics of these patients are detailed in Table 2
below.

TABLE 2
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[0245] Actively bleeding patients tended to be younger
than non-bleeding patients (27.5+7 years versus 35.9x£12
years, p=0.03), had more long bone and pelvic fractures
(33.3% versus 0%, p=0.001), more often had a positive
focused assessment with sonography in trauma (“FAST”)
examination (41.7% versus 3.1%, p=0.001), more often had
emergent operative intervention (91.7% versus 15.6%, p<0.
001), more often required mechanical ventilation (75%
versus 15.6%, p<0.001), more often were admitted to the
intensive care unit (100% versus 15.6%, p<0.001), and had
longer length of stay in the intensive care unit (median
length of stay 5.5 days versus O days, p<0.001). Actively
bleeding patients were also more likely to receive blood
products in the first hour of treatment (25% versus 3.1%,
p=0.03), and received a larger volume of crystalloid resus-
citation (2.3 L versus 1.3 L, p=0.007) (as shown in Table 3
below).

Demographics and clinical characteristics. Significant
values are bolded with an asterisk.

All Actively Not Actively

patients bleeding Bleeding

(n=44) (n=12) (n=32) P-value
Age (avg vears = SD) 33.6 (11.4) 275 (7.0) 35.9 (12.0) 0.03*
Gender (% Male) 39 (88.6) 12 (100) 27 (84.4) 0.5
Race (%
Cancasian 17 (38.6) 4(333) 12 37.5) 0.8
Hispanic 19 (43.2) 7 (583) 12 37.5 021
African American 7 (15.9) 1 (83) 6 (18.8) 0.40
Other 123) 0 () 131 053
Mechanism
Penetrating 22 (50) 6 (50) 16 (50) 1.0
Blunt 22 (50) 6 (50) 16 (50) 1.0
ISS {avg + SD) 13 (13) 27 (13) 71 8.6)  0.60
ETOH+ 12 (27.3) 4 (33.3) 8 (25) 0.58
Urine toxicology 5 (11.4) 2 (16.7) 394 0.50
positive adrenergic
agonist
Gunshot wound (%) 12 (27.3) 4 (33.3) 8 (25) 0.58
Stab wound (%) 10 (22.7) 2 (16.7) 8 (29) 0.56
Long bone/pelvic 4 9.1) 4 (33.3) 0 (0) 0.001%
fractures (%)
Intracranial injuries (%) 4 (9.1) 2 (16.7) 2 (6.3) 0.28
Positive FAST exam (%) 6 (13.6) 5(41.7) 131 0.001*
Surgical treatment in 16 (36.4) 11 (91.7) 5 (15.6)  <0.001%
first 24 hours (%)
Admitted to ICU in 19 (43.2) 12 (100) 5(15.6)  <0.001*
first 24 hours (%)
Need for mechanical 14 (31.8)
ventilation (%)
ICU length of stay 0, 0-15
(median, range in days)
Hospital length of stay 2, 0-53
(median, range in days)
Survival at 24 hours (%) 43 (97.7) 12 (100) 31 (96.9) 0.54
Survival to discharge (%) 42 (95.5)
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TABLE 3

Fluid administration in the first hour of treatment.
Significant values are bolded with an asterisk.

All Actively Not Actively
patients bleeding Bleeding P-value
Received blood 4 (9.1) 3(25) 1(G.1) 0.03%
products (%)
Crystalloid (L) 1.6 (1.1) 23 (1.6 1.3 (0.5) 0.007%

[0246] The average initial CRI was calculated over the
first 5 minutes of data collection and was compared to the
pre-hospital HR and SBP (since these values are used to
triage patients), the initial HR and SBP in the trauma bay, the
initial shock index (“SI”), and labs obtained within the first
hour of admission including base deficit, lactate, hemoglo-
bin, and hematocrit (as shown in Table 4 below).

TABLE 4

Oct. 5, 2017

including pre-hospital HR, pre-hospital SBP, initial SBP,
initial SI, base deficit, hemoglobin, and hematocrit all had
specificity>90%, but all had lower sensitivity compared to
CRL

TABLE 5

Receiver operating characteristic area under the curve
(“ROC AUC”) analysis for metrics of volume status.
The threshold value is the optimal value for discriminating
between bleeding and non-bleeding patients. HR = heart
rate, SBP = systolic blood pressure, SI = shock
index, CRI = compensatory reserve index.

Metric Threshold ~ Sensitivity  Specificity ROC AUC
Pre-hospital HR 122 0.09 0.92 0.64
Pre-hospital SBP 90 0.36 0.96 0.81
Initial HR 65 0.75 0.06 0.53

Initial measures of volume status. Laboratory values were obtained within the
first hour of treatment. Significant values are bolded with an asterisk. HR =
heart rate, SBP = systolic blood pressure, CRI = compensatory reserve index.

All Actively Not Actively

patients bleeding Bleeding P-value
Pre-hospital HR 99 (21) 102 (28) 98 (18) 0.60
(avg = SD)
Pre-hospital SBP 124 (34) 101 (23) 134 (33) 0.005%
(avg = SD)
Initial HR 100 (21) 98 (27) 102 (18) 0.60
(avg = 8D
Initial SBP 128 (32) 99 (24) 137 (29) <0.001%
(avg = SD)
Initial Shock Index 0.83 (0.27) 1.05 (0.34) 0.77 (0.20) 0.002
(avg = SD)
Initial CRI 045 (0.23) 0.17 (0.07) 0.56 (0.18) <0.001%
(avg, SD)
Initial 14.6 (1.9) 13.2 (2.0) 15.2 (1.6) 0.002%
Hemoglobin (g/dL)
Initial 45.0 (5.35) 41.9 (6.6) 46.3 (4.6) 0.02%
hematocrit (%)
Initial Base -8 (-3 -10 (-5) -6 (-4) 0.11
deficit (mEq/L)
Initial Lactate 5.2 (22) 59 24) 4.1 (1.6) 0.30

[0247] The average initial CRI for bleeding patients was
0.17 (95% CI 0.13-0.22), which was significantly lower
compared to non-bleeding patients (for whom the average
initial CRI was 0.56, 95% CI 0.49-0.62, p<0.001). The
pre-hospital SBP, initial SBP, initial shock index, hemoglo-
bin, and hematocrit were also significantly different between
actively bleeding and non-bleeding patients (as shown in
Table 4 above).

[0248] Receiver operating characteristic area under the
curve (“ROC AUC”) analysis was performed on each met-
ric, using a cut-off value that maximized sensitivity and
specificity for identifying actively bleeding patients. Using
a threshold value of 0.21, the receiver operating character-
istic area under the curve for CRI was 0.97, yielding a
sensitivity of 0.83 and a specificity of 0.97 for identifying
acutely bleeding patients (as shown in FIG. 11). Alterna-
tively, a threshold value of 0.37 had a sensitivity of 1.00, but
a specificity of 0.81. CRI had the highest AUC of all metrics
examined (as shown in Table 5 below). Metrics including
lactate and initial heart rate also had relatively high sensi-
tivity but had lower specificity compared to CRI. Metrics

TABLE 5-continued

Receiver operating characteristic area under the curve
(“ROC AUC”) analysis for metrics of volume status.
The threshold value is the optimal value for discriminating
between bleeding and non-bleeding patients. HR = heart
rate, SBP = systolic blood pressure, SI = shock
index, CRI = compensatory reserve index.

Metric Threshold  Sensitivity — Specificity ROC AUC
Initial SBP 96 0.63 0.97 0.86
Initial ST 137 0.27 1.00 0.74
CRI 021 0.83 0.97 097
Base deficit -12 0.29 1.00 0.72
Lactate 43 0.80 0.67 0.73
Hemoglobin 12.6 0.5 1.0 0.76
Hematocrit 37.8 0.5 1.0 0.69
[0249] To test the ability of CRI to identify ongoing blood

loss under fluid administration, the rate of change of CRI
over the hour following fluid delivery of crystalloid and
blood products was calculated for bleeding and non-bleed-
ing patients. In actively bleeding patients, CRI on average
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decreased the hour after administration of each liter of
crystalloid (with CRI of -0.02, 95% CI—0.05-0.01), and
with each unit of blood product (with CRI of -0.04, 95%
CI—0.08--0.01). In non-bleeding patients, CRI on average
increased the hour after each liter of crystalloid (with CRI of
0.05, 95% CI—0.05-0.14), and after each unit of blood
product (with CRT of 0.003, 95% CI—0.26-0.26). There was
no statistically significant difference in CRI between bleed-
ing and non-bleeding patients the hour after infusion of 1
liter of crystalloid (p=0.60). This value did, however,
approach significance for the change in CRI the hour after
infusion of 1 unit of blood product (p=0.06). These data are
graphically represented in FIG. 12, demonstrating that the
average change in CRI after fluid and blood administration
had a narrower range in bleeding patients compared to
non-bleeding patients.

[0250] To examine these trends over longer periods of
time, the inventors visually compared trends in CRI to fluid
and blood product administration. In spite of multiple fac-
tors that can alter the patient’s compensatory factors (includ-
ing, but not limited to, basal tone, heart rate, sedation, pain,
etc.), it graphically appeared that CRI accurately reflected
the patient’s clinical volume status. Some examples of this
are shown in FIGS. 13A and 13B.

[0251] The patient, whose CRI was measured and shown
in FIG. 13A, was taken to the operating room emergently for
an anterior abdominal gunshot wound. After laparotomy, he
was found to have no injuries and did not have more than
minimal bleeding. CRI reflected his fluid responsiveness,
increasing to normal values after 3 liters of crystalloid. The
patient’s low initial CRI was likely a reflection of ethanol
intoxication and dehydration.

[0252] The patient, whose CRI was measured and shown
in FIG. 13B, presented with a gunshot wound to the left
upper quadrant of the abdomen, and was also emergently
taken to the operating room. The patient was found to have
large volume hemoperitoneum, a left kidney injury requiring
nephrectomy, and several enterotomies requiring bowel
resection. The estimated blood loss from this procedure was
5 liters. CRI increased significantly once the source of
bleeding was identified and treated.

[0253] Humans have a number of survival compensatory
mechanisms, which allow them to tolerate up to 30-40% of
circulating blood volume loss before changes in traditional
vital signs become frankly apparent. There is also substantial
variation in the response to blood loss from patient to patient
and from study to study, making it difficult to establish
cut-off values. Traditional vital signs are also not specific to
volume loss and can be abnormal for a variety of reasons.
Thus, discrimination between bleeding and non-bleeding
patients is difficult using these metrics alone. Physical exam
findings, such as changes in skin turgor and capillary refill
are late findings and offer little to no diagnostic value in the
assessment of acutely injured adults. Laboratory values,
such as hemoglobin, hematocrit, lactate, and base deficit,
can also be used as surrogates to assess circulating blood
volume. The accuracy of hemoglobin and hematocrit are
limited in patients who have received significant crystalloid
resuscitation. While techniques have been described to dis-
criminate between true anemia and hemodilution, they
require additional tests using specific equipment. Base defi-
cit is a rapidly and widely available serum laboratory marker
of systemic acidosis that increases with hypoxemia and/or
shock. In trauma settings, the degree of base deficit corre-
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lates with blood transfusion requirement, risk of multi-organ
failure, and mortality. Unfortunately, base deficit is non-
specific and can rise due to any derangement causing
metabolic acidosis, including, but not limited to, intravas-
cular volume loss, or the like. Serum lactate has similarly
been used as a marker of acute blood loss, but is also
non-specific. Furthermore, intoxication and chronic alcohol
abuse, which are relatively common amongst the traumati-
cally injured, are known causes of lactic acidosis. These
facts underscore the importance of identifying new physi-
ological metrics that can reliably detect volume loss in
traumatically injured patients.

[0254] In this clinical study, the inventors collected con-
tinuous PPG waveform data from trauma patients from the
time of arrival through resuscitation and/or operative inter-
vention, and used this data to calculate a novel metric of
hemodynamic reserve called CRI. CRI was then compared
to traditional vital signs and the laboratory measures of
volume loss referenced above. The change in CRI after fluid
and blood administration was also examined. Results from
this study support the primary hypothesis that CRI provides
increased sensitivity and excellent specificity for the detec-
tion of acute blood loss. CRI decreased despite fluid and
blood administration in patients who were actively bleeding,
and increased in those who were not. CRI also increased
with appropriate volume resuscitation once the source of
bleeding was identified and stopped. Consistent with our
previous observations and the observations of others, tradi-
tional vital signs and laboratory studies had limited utility
during initial evaluation. Our secondary hypothesis, that
injury and pain do not alter the fundamental features of the
waveforms that were used to build the CRI algorithm, is also
supported by our results. These findings are important,
because the physiological response of an injured patient who
experiences blood loss could arguably differ from that of the
research subjects on which the algorithms were built.

[0255] Many new and sophisticated parameters have
recently been developed for the evaluation of fluid status and
fluid responsiveness. Static parameters have not performed
well, and while dynamic parameters are better at predicting
fluid responsiveness, their clinical use has not been widely
accepted possibly because of difficulty in application and/or
interpretation. Parameters such as stroke volume variation
(“SVV”) and pulse pressure variation (“PPV”) are limited to
the evaluation of mechanically ventilated patients and often
require an invasive monitoring device. Ideal parameters for
monitoring fluid status and responsiveness to fluids are
non-invasive and can function in spontaneously breathing
patients. Another example of one such parameter is near-
infrared spectroscopy (“NIRS”), which utilizes the near-
infrared light spectrum to penetrate several centimeters into
human tissue. NIRS demonstrates decreased muscle oxy-
genation in central hypovolemia and can discriminate
between patients at various levels of shock, but may still be
inferior to traditional SBP.

[0256] A number of metrics for monitoring volume loss
using the PPG signal have been proposed. Its ability to
demonstrate the interaction between cardiac pulsation, arte-
rial/venous pressure and peripheral vascular tone has led
many to attempt to characterize subtle changes in the
circulation, which are not otherwise apparent. Most studies
have focused on the beat-to-beat variation of PPG wave-
forms. Various types of analysis of PPG waveform variabil-
ity can detect small volume blood loss in spontaneously
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breathing patients without appreciable changes in HR or BP.
The pleth variability index (“PVI”) has been shown to
predict fluid responsiveness in mechanically ventilated adult
patients. Unfortunately, PVI shows a considerable degree of
inter-subject variability, limiting its use for distinguishing
between hypovolemic and non-hypovolemic subjects based
on a single measurement. Thus, like many other parameters
used to detect hypovolemia, PVI must be trended over time
to give meaningful information.

[0257] The inventors believe that measuring the magni-
tude of the reserve to compensate for blood loss using our
algorithm was more sensitive than other metrics likely
because it reflected the integrated capacity of regulatory
mechanisms to maintain adequate perfusion and oxygen
delivery to the tissue. By discovering associations and
understanding patterns within vital sign waveforms, current
and future analytical tools will have the potential to improve
care, save lives and lower health care costs. These algo-
rithms in turn will become the foundation for the next
generation of algorithms, which will enable powerful com-
pact models for estimation, prediction and control of medi-
cal care. This study does have limitations, including the lack
of pre-hospital waveform data, small sample size, and
estimation of blood loss volumes. In spite of these limita-
tions, it did, however, demonstrate superior sensitivity when
compared to traditional vital sign and laboratory values in
predicting clinically significant blood loss. It also suggested
that CRI could identify continued blood loss in the face of
fluid resuscitation. These results support a growing body of
literature suggesting that the CRI has promise as a clinically
meaningful indicator of hemorrhage and a non-invasive
method to monitor fluid resuscitation.

[0258] In yet another clinical trial, accurate guidance of
resuscitation volume needs in trauma patients. As noted
above, hemorrhage is the second leading cause of trauma-
related death and the most common cause of preventable
death on the battlefield. Accurate guidance for fluid resus-
citation of injured warfighters is critical to improving patient
outcomes. In this study, three new algorithms for guiding
fluid resuscitation are evaluated. The first is estimating Fluid
Volume Requirements (“FVR” or “FVR Algorithm™), which
monitors the patient’s photoplethysmogram (“PPG™) signal
as fluid is administered, and directly estimates amount of
whole blood (in milliliters (mL)) needed. A simple monitor
that can accurately estimate volume needs can prevent under
resuscitation—which poses the risk of hypotension and end
organ damage—and over-resuscitation—which may dis-
lodge clots from vascular injuries, resulting in further blood
loss, hemodilution, and/or possibly death. The second is
Detection of Ongoing Fluid Loss (“DOFL”; “OFL”; “DOFL
Algorithm”; or “OFL Algorithm”), which monitors patient’s
PPG signal and directly identifies whether the patient is
experiencing ongoing blood loss. A simple monitor (e.g.,
standalone hand held monitor, or a monitor that is integrated
into existing monitors, or the like) that can automatically and
accurately detect ongoing bleeding can save lives and
improve patient outcomes. The third is Rapid Estimation (or
Determination) of Immediate Fluid Requirements (“RE-
IFR”; “RDIFR”; “IFR™;, “REIFR Algorithm™;, “RDIFR
Algorithm”; or “IFR Algorithm”), which monitors the
patient’s PPG signal and flags the need for additional fluid
(this classification is made within one minute of the start of
monitoring, and gives real-time indication of over- and
under-resuscitation). A monitor that can quickly detect when
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a patient does not immediately require fluids can prevent
over-resuscitation, which can save lives and improve patient
outcomes, as aggressive fluid resuscitation may dislodge
clots from vascular injuries, resulting in further blood loss,
hemodilution, and/or possibly death.

[0259] In this study, 42 healthy volunteers (ages 19 to 36,
18 females and 24 males) underwent stepwise removal and
replacement of approximately 20% of total blood volume
(15 mL/Kg male; 13 ml/Kg female) while in the supine
position at rest. A large bore IV was placed for blood
removal and replacement. The blood was removed in 2-6
steps (with total blood removal of 578 mL to 1470 mL).
Resuscitation was immediately given if the subject experi-
enced symptoms due to blood loss, defined as a systolic
blood pressure<80 mmHg or MAP 30% below baseline.
After blood removal was complete, the removed volume
was reinfused. Subjects were monitored continuously with
the Nonin 9560 fingertip pulse oximeter. PPG signals were
recorded and synchronized with blood draws and reinfusion.
The FVR algorithm was applied to 5-minute moving time
windows during the resuscitation (blood reinfusion) part of
the study, and provided real-time estimates of additional
volume required (in mL) to fully replace the fluid removed.
Ongoing fluid loss was the blood draw period in the study.
The FVR monitor receives as inputs CRI estimates and fluid
administration history for a patient, and outputs the real-time
estimates of patient fluid requirements (in mL). The DOFL
or OFL algorithm was applied to 5-minute moving time
windows during the study and gave real-time classification
of ongoing bleeding or non-bleeding. The OFL, monitor
receives as input CRI estimates for a patient, and outputs an
indication of whether the patient is bleeding or not bleeding
(in some cases, in a real-time manner, or after every heart-
beat, or after a predetermined interval, or the like). Finally,
the subject was classified as needing fluid once 5% volume
loss was achieved. The REIFR or IFR Algorithm was
applied to 1-minute moving time windows and gave real-
time classification of (yes/no determinations of) needing
fluids. The IFR monitor receives as input CRI estimates for
a patient, and outputs an indication of whether the patient
needs more fluids or does not need any more fluids (in some
cases, in a real-time manner, or after every heartbeat, or after
a predetermined interval, or the like).

[0260] Regarding the results, the FVR Algorithm achieved
a RMS error of <50 mL in estimated blood volume require-
ments. FIGS. 14A and 14B illustrate the correspondence
between Fluid Volume Requirements (“FVR”) estimation
and actual volume requirements for two patients in the
clinical trial. Both the DOFL and REIFR Algorithms
achieved ROC area under the curve of better than 0.9
(sensitivity and specificity of >0.9) in identifying ongoing
bleeding and flagging when no additional fluids were
needed. In sum, the three algorithms for monitoring fluid
resuscitation were evaluated on subjects undergoing 20%
blood volume loss. These algorithms showed accurate
results in estimation of blood volume requirements, classi-
fying ongoing bleeding, and classifying when no additional
whole blood was needed. These algorithms can be imple-
mented on standard medical monitors ranging from the
Nonin 9550 used by medics, to monitors used in hospitals.

[0261] Exemplary System and Hardware Implementation

[0262] FIG. 15 is a block diagram illustrating an exem-
plary computer or system hardware architecture, in accor-
dance with various embodiments. FIG. 15 provides a sche-
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matic illustration of one embodiment of a computer system
1500 that can perform the methods provided by various
other embodiments, as described herein, and/or can function
as a monitoring computer, a CRI monitor, a processing unit
of a sensor device, and/or the like, as described above. It
should be noted that FIG. 15 is meant only to provide a
generalized illustration of various components, of which one
or more (or none) of each may be utilized as appropriate.
FIG. 15, therefore, broadly illustrates how individual system
elements may be implemented in a relatively separated or
relatively more integrated manner.

[0263] The computer or hardware system 1500 is shown
comprising hardware elements that can be electrically
coupled via a bus 1505 (or may otherwise be in communi-
cation, as appropriate). The hardware elements may include
one or more processors 1510, including, without limitation,
one or more general-purpose processors and/or one or more
special-purpose processors (such as digital signal processing
chips, graphics acceleration processors, and/or the like); one
or more input devices 1515, which can include, without
limitation, a mouse, a keyboard and/or the like; and one or
more output devices 1520, which can include, without
limitation, a display device, a printer, and/or the like.
[0264] The computer or hardware system 1500 may fur-
ther include (and/or be in communication with) one or more
storage devices 1525, which can comprise, without limita-
tion, local and/or network accessible storage, and/or can
include, without limitation, a disk drive, a drive array, an
optical storage device, solid-state storage device such as a
random access memory (“RAM”) and/or a read-only
memory (“ROM”), which can be programmable, flash-
updateable, and/or the like. Such storage devices may be
configured to implement any appropriate data stores, includ-
ing, without limitation, various file systems, database struc-
tures, and/or the like.

[0265] The computer or hardware system 1500 might also
include a communications subsystem 1530, which can
include, without limitation, a modem, a network card (wire-
less or wired), an infra-red communication device, a wire-
less communication device and/or chipset (such as a Blu-
etooth™ device, an 802.11 device, a WiFi device, a WiMax
device, a WWAN device, cellular communication facilities,
etc.), and/or the like. The communications subsystem 1530
may permit data to be exchanged with a network (such as the
network described below, to name one example), with other
computer or hardware systems, and/or with any other
devices described herein. In many embodiments, the com-
puter or hardware system 1500 will further comprise a
working memory 1535, which can include a RAM or ROM
device, as described above.

[0266] The computer or hardware system 1500 also may
comprise software elements, shown as being currently
located within the working memory 1535, including an
operating system 1540, device drivers, executable libraries,
and/or other code, such as one or more application programs
1545, which may comprise computer programs provided by
various embodiments (including, without limitation, hyper-
visors, VMs, and the like), and/or may be designed to
implement methods, and/or configure systems, provided by
other embodiments, as described herein. Merely by way of
example, one or more procedures described with respect to
the method(s) discussed above might be implemented as
code and/or instructions executable by a computer (and/or a
processor within a computer); in an aspect, then, such code
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and/or instructions can be used to configure and/or adapt a
general purpose computer (or other device) to perform one
or more operations in accordance with the described meth-
ods.

[0267] A set of these instructions and/or code might be
encoded and/or stored on a non-transitory computer readable
storage medium, such as the storage device(s) 1525
described above. In some cases, the storage medium might
be incorporated within a computer system, such as the
system 1500. In other embodiments, the storage medium
might be separate from a computer system (i.e., a removable
medium, such as a compact disc, etc.), and/or provided in an
installation package, such that the storage medium can be
used to program, configure, and/or adapt a general purpose
computer with the instructions/code stored thereon. These
instructions might take the form of executable code, which
is executable by the computer or hardware system 1500
and/or might take the form of source and/or installable code,
which, upon compilation and/or installation on the computer
or hardware system 1500 (e.g., using any of a variety of
generally available compilers, installation programs, com-
pression/decompression utilities, etc.) then takes the form of
executable code.

[0268] It will be apparent to those skilled in the art that
substantial variations may be made in accordance with
specific requirements. For example, customized hardware
(such as programmable logic controllers, field-program-
mable gate arrays, application-specific integrated circuits,
and/or the like) might also be used, and/or particular ele-
ments might be implemented in hardware, software (includ-
ing portable software, such as applets, etc.), or both. Further,
connection to other computing devices such as network
input/output devices may be employed.

[0269] As mentioned above, in one aspect, some embodi-
ments may employ a computer or hardware system (such as
the computer or hardware system 1500) to perform methods
in accordance with various embodiments of the invention.
According to a set of embodiments, some or all of the
procedures of such methods are performed by the computer
or hardware system 1500 in response to processor 1510
executing one or more sequences of one or more instructions
(which might be incorporated into the operating system
1540 and/or other code, such as an application program
1545) contained in the working memory 1535. Such instruc-
tions may be read into the working memory 1535 from
another computer readable medium, such as one or more of
the storage device(s) 1525. Merely by way of example,
execution of the sequences of instructions contained in the
working memory 1535 might cause the processor(s) 1510 to
perform one or more procedures of the methods described
herein.

[0270] The terms “machine readable medium” and “com-
puter readable medium,” as used herein, refer to any
medium that participates in providing data that causes a
machine to operate in a specific fashion. In an embodiment
implemented using the computer or hardware system 1500,
various computer readable media might be involved in
providing instructions/code to processor(s) 1510 for execu-
tion and/or might be used to store and/or carry such instruc-
tions/code (e.g., as signals). In many implementations, a
computer readable medium is a non-transitory, physical,
and/or tangible storage medium. In some embodiments, a
computer readable medium may take many forms, includ-
ing, but not limited to, non-volatile media, volatile media, or
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the like. Non-volatile media includes, for example, optical
and/or magnetic disks, such as the storage device(s) 1525.
Volatile media includes, without limitation, dynamic
memory, such as the working memory 1535. In some
alternative embodiments, a computer readable medium may
take the form of transmission media, which includes, with-
out limitation, coaxial cables, copper wire and fiber optics,
including the wires that comprise the bus 1505, as well as the
various components of the communication subsystem 1530
(and/or the media by which the communications subsystem
1530 provides communication with other devices). In an
alternative set of embodiments, transmission media can also
take the form of waves (including, without limitation, radio,
acoustic and/or light waves, such as those generated during
radio-wave and infra-red data communications).

[0271] Common forms of physical and/or tangible com-
puter readable media include, for example, a floppy disk, a
flexible disk, a hard disk, magnetic tape, or any other
magnetic medium, a CD-ROM, any other optical medium,
punch cards, paper tape, any other physical medium with
patterns of holes, a RAM, a PROM, and EPROM, a FLASH-
EPROM, any other memory chip or cartridge, a carrier wave
as described hereinafter, or any other medium from which a
computer can read instructions and/or code.

[0272] Various forms of computer readable media may be
involved in carrying one or more sequences of one or more
instructions to the processor(s) 1510 for execution. Merely
by way of example, the instructions may initially be carried
on a magnetic disk and/or optical disc of a remote computer.
A remote computer might load the instructions into its
dynamic memory and send the instructions as signals over a
transmission medium to be received and/or executed by the
computer or hardware system 1500. These signals, which
might be in the form of electromagnetic signals, acoustic
signals, optical signals, and/or the like, are all examples of
carrier waves on which instructions can be encoded, in
accordance with various embodiments of the invention.
[0273] The communications subsystem 1530 (and/or com-
ponents thereof) generally will receive the signals, and the
bus 1505 then might carry the signals (and/or the data,
instructions, etc. carried by the signals) to the working
memory 1535, from which the processor(s) 1505 retrieves
and executes the instructions. The instructions received by
the working memory 1535 may optionally be stored on a
storage device 1525 either before or after execution by the
processor(s) 1510.

CONCLUSION

[0274] This document discloses novel tools and tech-
niques for blood loss in patients (e.g., before, during, and/or
after fluid resuscitation), compensatory reserve, and similar
physiological states. While certain features and aspects have
been described with respect to exemplary embodiments, one
skilled in the art will recognize that numerous modifications
are possible. For example, the methods and processes
described herein may be implemented using hardware com-
ponents, software components, and/or any combination
thereof. Further, while various methods and processes
described herein may be described with respect to particular
structural and/or functional components for ease of descrip-
tion, methods provided by various embodiments are not
limited to any particular structural and/or functional archi-
tecture but instead can be implemented on any suitable
hardware, firmware and/or software configuration. Simi-
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larly, while certain functionality is ascribed to certain system
components, unless the context dictates otherwise, this func-
tionality can be distributed among various other system
components in accordance with the several embodiments.
[0275] Moreover, while the procedures of the methods and
processes described herein are described in a particular order
for ease of description, unless the context dictates otherwise,
various procedures may be reordered, added, and/or omitted
in accordance with various embodiments. Moreover, the
procedures described with respect to one method or process
may be incorporated within other described methods or
processes; likewise, system components described accord-
ing to a particular structural architecture and/or with respect
to one system may be organized in alternative structural
architectures and/or incorporated within other described
systems. Hence, while various embodiments are described
with—or without—certain features for ease of description
and to illustrate exemplary aspects of those embodiments,
the various components and/or features described herein
with respect to a particular embodiment can be substituted,
added and/or subtracted from among other described
embodiments, unless the context dictates otherwise. Conse-
quently, although several exemplary embodiments are
described above, it will be appreciated that the invention is
intended to cover all modifications and equivalents within
the scope of the following claims.

What is claimed is:

1. A system, comprising:

one or more sensors to obtain physiological data from a
patient; and

a computer system in communication with the one or
more sensors, the computer system comprising:
one or more processors; and

a non-transitory computer readable medium in com-
munication with the one or more processors, the
computer readable medium having encoded thereon
a set of instructions executable by the one or more
processors to cause the computer system to:
receive the physiological data from the one or more

sensors before, during, and after resuscitation fol-
lowing injury;
analyze the physiological data;
estimate a probability that the patient is bleeding;
and
display, on a display device, at least one of an
assessment,
prediction, or estimate indicating a probability that
the patient is bleeding.
2. A method, comprising:
monitoring, with one or more sensors, physiological data
of a patient before, during, and after resuscitation
following injury;
analyzing, with a computer system, the physiological
data;
estimating, with the computer system, a probability that
the patient is bleeding, based at least in part on the
analyzed physiological data; and
displaying, with the computer system and on a display
device, an indication of at least one of an assessment,
prediction, or estimate of a probability that the patient
is bleeding.
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3. The method of claim 2, wherein resuscitation com-
prises at least one of infusing crystalloid in the patient,
infusing blood products in the patient, or infusing intrave-
nous fluid in the patient.

4. The method of claim 3, wherein the intravenous fluid
comprises one or more of saline solution or lactated ringer’s
(“LR”) solution.

5. The method of claim 3, wherein the blood products
comprise one or more of infusion of packed red blood cells
(“PRBC”) in the patient, infusion of fresh frozen plasma
(“FFP”) in the patient, infusion of platelets (“PLTs”) in the
patient, or infusion of cryoprecipitated antihaemophilic fac-
tor (“cryo”) in the patient.

6. The method of claim 2, wherein one or more of
monitoring the physiological data, analyzing the physiologi-
cal data, estimating the probability that the patient is bleed-
ing, or displaying the indication of at least one of an
assessment, prediction, or estimate of the probability that the
patient is bleeding are performed in real-time.

7. The method of claim 2, wherein estimating a probabil-
ity that the patient is bleeding comprises estimating, with the
computer system, a probability that the patient is bleeding,
based at least in part on one or more values of compensatory
reserve index (“CRI”) estimated based on the physiological
data that are received by the computer system from the one
Or more sensors.

8. The method of claim 7, wherein the one or more values
of CRI are estimated based on physiological data that are at
least one of received before, received during, or received
after a fluid resuscitation procedure.

9. The method of claim 7, wherein the one or more values
of CRI comprise a plurality of values of CRI, and wherein
estimating a probability that the patient is bleeding com-
prises estimating, with the computer system, a probability
that the patient is bleeding based at least in part on an
average value of CRI over a particular period of time.

10. The method of claim 7, wherein the one or more
values of CRI comprise a plurality of values of CRI, and
wherein estimating a probability that the patient is bleeding
comprises estimating, with the computer system, a probabil-
ity that the patient is bleeding based at least in part on a
standard deviation of at least some of the plurality of values
of CRL

11. The method of claim 7, wherein the one or more
values of CRI comprise a plurality of values of CRI, and
wherein estimating a probability that the patient is bleeding
comprises estimating, with the computer system, a probabil-
ity that the patient is bleeding based at least in part on a
skewness of at least some of the plurality of values of CRI.

12. The method of claim 7, wherein the one or more
values of CRI comprise a plurality of values of CRI, and
wherein estimating a probability that the patient is bleeding
comprises estimating, with the computer system, a probabil-
ity that the patient is bleeding based at least in part on a rate
of change of at least some of the plurality of values of CRI.

13. The method of claim 7, wherein the one or more
values of CRI comprise a plurality of values of CRI, and
wherein estimating a probability that the patient is bleeding
comprises estimating, with the computer system, a probabil-
ity that the patient is bleeding based at least in part on a rate
of rate change of at least some of the plurality of values of
CRL

14. The method of claim 7, wherein the one or more
values of CRI comprises a plurality of values of CRI, and
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wherein and wherein estimating a probability that the patient
is bleeding comprises estimating, with the computer system,
a probability that the patient is bleeding based at least in part
on a difference between at least some of the plurality of
values of CRI.

15. The method of claim 7, wherein the indication is a
value between 0 and 1.

16. The method of claim 15, wherein a value of 1 indicates
that the patient is not bleeding, and wherein a value of 0
indicates that the patient is bleeding.

17. The method of claim 7, wherein estimating a CRI of
the patient comprises estimating a compensatory reserve
index by comparing the physiological data to a model
constructed using the following formula:

BLV(D)

CRIN) =1 -
BLVypp

where CRI(t) is the compensatory reserve at time t,
BLV(1) is an intravascular volume loss of a test subject
at time t, and BLV,,,, is an intravascular volume loss
at a point of hemodynamic decompensation of the test
subject.

18. The method of claim 7, wherein the physiological data
comprises waveform data and wherein estimating the CRI
comprises comparing, with the computer system, the wave-
form data with one or more sample waveforms generated by
exposing one or more test subjects to a state of hemody-
namic decompensation or near hemodynamic decompensa-
tion, or a series of states progressing towards hemodynamic
decompensation, and monitoring physiological data of the
test subjects.

19. The method of claim 7, wherein the physiological data
comprises waveform data, and wherein estimating the CRI
comprises:

comparing, with the computer system, the waveform data
with a plurality of sample waveforms, each of the
sample waveforms corresponding to a different value of
the CRIto produce a similarity coeflicient expressing a
similarity between the waveform data and each of the
sample waveforms;

normalizing, with the computer system, the similarity
coeflicients for each of the sample waveforms; and

summing, with the computer system, the normalized
similarity coeflicients to produce an estimated CRI
value for the patient.

20. The method of claim 2, wherein estimating a prob-
ability that the patient is bleeding is based at least in part on
a fixed time history of monitoring the physiological data of
the patient.

21. The method of claim 2, wherein estimating a prob-
ability that the patient is bleeding is based at least in part on
a dynamic time history of monitoring the physiological data
of the patient.

22. The method of claim 2, wherein at least one of the one
or more sensors each comprises at least one of a blood
pressure sensor, an intracranial pressure monitor, a central
venous pressure monitoring catheter, an arterial catheter, an
electroencephalograph, a cardiac monitor, a transcranial
Doppler sensor, a transthoracic impedance plethysmograph,
a pulse oximeter, a near infrared spectrometer, a ventilator,
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an accelerometer, an electrooculogram, a transcutaneous
glucometer, an electrolyte sensor, or an electronic stetho-
scope.

23. The method of claim 2, wherein the physiological data
comprises blood pressure waveform data.

24. The method of claim 2, wherein the physiological data
comprises plethysmograph waveform data.

25. The method of claim 2, wherein the physiological data
comprises photoplethysmograph (“PPG”) waveform data.

26. The method of claim 2, wherein analyzing the physi-
ological data comprises:

analyzing, with the computer system, the physiological

data against a pre-existing model.

27. The method of claim 26, further comprising:

generating, with the computer system, the pre-existing

model prior to analyzing the physiological data.
28. The method of claim 27, wherein generating the
pre-existing model comprises:
receiving, with the computer system, data pertaining to
one or more physiological parameters of a test subject
to obtain a plurality of physiological data sets;

directly measuring one or more physiological states of the
test subject with a reference sensor to obtain a plurality
of physiological state measurements; and

correlating, with the computer system, the received data

with the physiological state measurements of the test
subject.

29. The method of claim 28, wherein the one or more
physiological states comprise reduced circulatory system
volume.

30. The method of claim 29, further comprising:

inducing the physiological state of reduced circulatory

system volume in the test subject.

31. The method of claim 30, wherein inducing the physi-
ological state comprises subjecting the test subject to lower
body negative pressure (“LBNP”).

32. The method of claim 30, wherein inducing the physi-
ological state comprises subjecting the test subject to dehy-
dration.

Oct. 5, 2017

33. The method of claim 28, wherein the one or more
physiological states comprise a state of cardiovascular col-
lapse or near-cardiovascular collapse.
34. The method of claim 28, wherein the one or more
physiological states comprise a state of euvolemia.
35. The method of claim 28, wherein the one or more
physiological states comprise a state of hypervolemia.
36. The method of claim 28, wherein the one or more
physiological states comprise a state of dehydration.
37. The method of claim 28, wherein correlating the
received data with the physiological state measurements of
the test subject comprises:
identifying, with the computer system, a most predictive
set of signals S, out of a set of signals s,, s,, . . ., sp
for each of one or more outcomes o,, wherein the
most-predictive set of signals S, corresponds to a first
data set representing a first physiological parameter,
and wherein each of the one or more outcomes o,
represents a physiological state measurement;
autonomously learning, with the computer system, a set of
probabilistic predictive models 6,=M,(S,), where 0, is
a prediction of outcome o, derived from a model M,
that uses as inputs values obtained from the set of
signals S;; and
repeating, with the computer system, the operation of
autonomously learning incrementally from data that
contains examples of values of signals s,, s,, . . ., sp,
and corresponding outcomes 0,, 0, . . . , O
38. An apparatus, comprising;
a non-transitory computer readable medium having
encoded thereon a set of instructions executable by one
or more computers to cause the apparatus to:
receive physiological data from one or more sensors
before, during, and after resuscitation following
injury;

analyze the physiological data;

estimate a probability that the patient is bleeding; and

display, on a display device, at least one of an assess-
ment, prediction, or estimate indicating a probability
that the patient is bleeding.
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