a2 United States Patent

Tzvieli et al,

US010638938B1

US 10,638,938 B1
*May 5, 2020

(10) Patent No.:
(45) Date of Patent:

(54)

(71)
(72)

(73)

*)

@21)
(22)

(63)

(31)

(52)

EYEGLASSES TO DETECT ABNORMAL
MEDICAL EVENTS INCLUDING STROKE
AND MIGRAINE

Applicant: Facense Ltd., Kiryat Tivon (IL)

Inventors: Ori Tzvieli, Berkeley, CA (US); Ari M
Frank, Haifa (IL); Arie Tzvieli,
Berkeley, CA (US); Gil Thieberger,
Kiryat Tivon (IL)

Assignee: Facense Ltd., Kiryat Tivon (IL)

Notice:  Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.

This patent is subject to a terminal dis-
claimer.

Appl. No.: 16/551,654

Filed: Aug. 26, 2019

Related U.S. Application Data

Continuation-in-part of application No. 16/453,993,
filed on Jun. 26, 2019, which is a continuation-in-part

(Continued)
Int. CL
G017 5/12 (2006.01)
A6IB 5/01 (2006.01)
(Continued)
US. Cl.
CPC ... A61B 5/015 (2013.01); A61B 5/0075

(2013.01); A61B 5/165 (2013.01); A61B
5/6803 (2013.01);

(Continued)

(58) Field of Classification Search
CPC ... A61B 5/0075; A61B 5/0077; A61B 5/024;
A61B 5/0816; AG1B 2576/00; A61B
5/6814; A61B 5/02438; GO1J 5/0265
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

5,757,002 A
6,819,950 B2

5/1998 Yamasaki et al.
11/2004 Mills

(Continued)

OTHER PUBLICATIONS

Constant, N., Douglas-Prawl, O., Johnson, S., & Mankodiya, K.
(Jun. 2015). Pulse-Glasses: An unobtrusive, wearable HR monitor
with Internet-of-Things functionality. In 2015 IEEE 12th Interna-
tional Conference on Wearable and Implantable Body Sensor Net-
works (BSN) (pp. 1-5). IEEE.

(Continued)

Primary Examiner — David P Porta
Assistant Examiner — Fani Boosalis
(74) Attorney, Agent, or Firm — Active Knowledge Ltd.

(57) ABSTRACT

System and Method to detect an abnormal medical event
based on an asymmetrical change to blood flow. The system
includes right-side and left-side head-mounted devices to
measure signals indicative of photoplethysmographic sig-
nals (PPG signals) on the right and left sides of a user’s head,
and a computer that detects the abnormal medical event
based on an asymmetrical change to blood flow recognizable
in the PPG signals. Optionally, the asymmetrical change to
the blood flow corresponds to a deviation of the PPG signals
compared to a baseline that is based on previous measure-
ments of PPG signals of the user, taken before the abnormal
medical event.

20 Claims, 20 Drawing Sheets




US 10,638,938 B1
Page 2

(60)

(1)

(52)

Related U.S. Application Data

of application No. 16/375,841, filed on Apr. 4, 2019,
now Pat. No. 10,376,163, which is a continuation-in-
part of application No. 16/156,493, filed on Oct. 10,
2018, which is a continuation-in-part of application
No. 15/635,178, filed on Jun. 27, 2017, now Pat. No.
10,136,856, and a continuation-in-part of application
No. 15/231,276, filed on Aug. 8, 2016, and a con-
tinuation-in-part of application No. 15/832,855, filed
on Dec. 6, 2017, now Pat. No. 10,130,308, which is
a continuation-in-part of application No. 15/182,592,
filed on Jun. 14, 2016, now Pat. No. 10,165,949, and
a continuation-in-part of application No. 15/231,276,
filed on Aug. 8, 2016, and a continuation-in-part of
application No. 15/284,528, filed on Oct. 3, 2016,
now Pat. No. 10,113,913, and a continuation-in-part
of application No. 15/635,178, filed on Jun. 27,2017,
now Pat. No. 10,136,856, and a continuation-in-part
of application No. 15/722,434, filed on Oct. 2, 2017,
and a continuation-in-part of application No. 15/182,
566, filed on Jun. 14, 2016, now Pat. No. 9,867,546,
said application No. 16/156,493 is a continuation-in-
part of application No. 15/833,115, filed on Dec. 6,
2017, now Pat. No. 10,130,261, which is a continu-
ation-in-part of application No. 15/182,592, filed on
Jun. 14, 2016, now Pat. No. 10,165,949, and a con-
tinuation-in-part of application No. 15/231,276, filed
on Aug. 8, 2016, and a continuation-in-part of appli-
cation No. 15/284,528, filed on Oct. 3, 2016, now Pat.
No. 10,113,913, and a continuation-in-part of appli-
cation No. 15/635,178, filed on Jun. 27, 2017, now
Pat. No. 10,136,856, and a continuation-in-part of
application No. 15/722,434, filed on Oct. 2, 2017,
said application No. 16/453,993 is a continuation-in-
part of application No. 16/147,695, filed on Sep. 29,
2018, now Pat. No. 10,376,153, which is a continu-
ation of application No. 15/182,592, filed on Jun. 14,
2016, now Pat. No. 10,165,949,

Provisional application No. 62/874,430, filed on Jul.
15, 2019, provisional application No. 62/722,655,
filed on Aug. 24, 2018, provisional application No.
62/354,833, filed on Jun. 27, 2016, provisional
application No. 62/372,063, filed on Aug. 8, 2016,
provisional application No. 62/652.348, filed on Apr.
4,2018, provisional application No. 62/667,453, filed
on May 5, 2018, provisional application No.
62/202,808, filed on Aug. 8, 2015, provisional
application No. 62/236,868, filed on Oct. 3, 2015,
provisional application No. 62/456,105, filed on Feb.
7,2017, provisional application No. 62/480,496, filed
on Apr. 2, 2017, provisional application No.
62/566,572, filed on Oct. 2, 2017, provisional
application No. 62/175,319, filed on Jun. 14, 2015.

Int. Cl.

A61B 5/00 (2006.01)

GO01J 5/02 (2006.01)

A61B 5/16 (2006.01)

G01J 5/00 (2006.01)

U.S. Cl

CpPC ... AG6IB 5/6814 (2013.01); A61B 5/7282

(2013.01); A61B 5/748 (2013.01); GO1J
5/0265 (2013.01); G01J 5/12 (2013.01); 4618
3/0077 (2013.01); A61B 2562/0271 (2013.01);

(56)

7,384,395
8,175,670
8,251,903
8,512,253
8,617,081
8,768,438
8,855,384
8,977,347
9,020,185
9,044,180
9,220,856
9,414,769
9,610,035
9,805,475
9,808,204
9,848.780
9,940,710

2007/0276632
2010/0168589 :
2010/0241011
2012/0022349
2012/0029320
2013/0215244
2014/0213917 /
2015/0005646
2015/0112606
2015/0297126 !
2016/0022157 !
2016/0098592
2016/0120411 :
2016/0235324
2016/0302677
2017/0007167 !
2017/0011210
2017/0112376
2017/0202505

2017/0231490

2017/0367590
2018/0031372 !
2018/0143458 !
2018/0146870 !
2018/0177416 !
2018/0192950 /
2018/0199870 !
2018/0206733
2018/0206735
2018/0214079 :
2018/0314879 :

2019/0174039
2019/0216340

A6IB 2562/0276 (2013.01); A61B 2576/00
(2013.01); GO1J 2005/0077 (2013.01); GO1J

2005/0085 (2013.01)

References Cited

U.S. PATENT DOCUMENTS

B2 6/2008 Hatlestsad et al.

B2 5/2012 Baker, Jr. et al.

B2 8/2012 LeBoeuf et al.

B2 8/2013 Reichman et al.

B2 12/2013 Mestha et al.

B2 7/2014 Mestha et al.

B2 10/2014 Kyal et al.

B2 3/2015 Mestha et al.

B2 4/2015 Mestha et al.

B2 6/2015 LeBoeuf et al.

B2 12/2015 Martin et al.

B2 8/2016 Karst et al.

B2 4/2017 Aarts et al.

B2 10/2017 Rubinstein et al.

B2 11/2017 LeBoeuf et al.

Bl  12/2017 DeBusschere et al.

B2 4/2018 Watanabe

Al  11/2007 Banet et al.

Al 7/2010 Banet et al.

Al 9/2010 McCombie et al.
Al 1/2012  Poupko et al.

Al 2/2012 Watson et al.

Al 8/2013 Mestha et al.

Al 7/2014 Hobeika et al.

Al 1/2015 Balakrishnan et al.
Al 4/2015 He et al.

Al 10/2015 Atsumori et al.

Al 1/2016 Melker et al.

Al 4/2016 Lee et al.

Al 5/2016 Hadley et al.

Al* 82016 Mershin ... A61B 5/0482

Al 10/2016 He

Al 1/2017 Kostic et al.

Al 1/2017 Cheong et al.

Al 4/2017 Gill et al.

Al 7/2017 Kirenko et al.

Al* 82017 Toth .o A61B 5/40

600/558

Al 12/2017 Sebe et al.

Al 2/2018 Gill

Al* 52018 Blum ......coooove.. G02C 11/10

Al 5/2018 Shemesh et al.

Al 6/2018 Church et al.

Al 7/2018 LeBoeuf et al.

Al 7/2018 Lee et al.

Al 7/2018 Kasan et al.

Al 7/2018 Holz et al.

Al 8/2018 Banet et al.

Al 11/2018 Khwaja et al.

Al 6/2019 Jung et al.

Al 7/2019 Holz et al.
OTHER PUBLICATIONS

Saadatzi, M. N., Tafazzoli, F., Welch, K. C., & Graham, J. H. (Aug.
2016). Emotigo: Bluetooth-enabled eyewear for unobtrusive physiology-
based emotion recognition. In 2016 IEEE International Conference
on Automation Science and Engineering (CASE) (pp. 903-909).

IEEE.

Alghoul, K., Alharthi, S., Al Osman, H., & El Saddik, A. (2017).
Heart rate variability extraction from videos signals: ICA vs. EVM
comparison. IEEE Access, 5, 4711-4719.

Allen, J. (2007). Photoplethysmography and its application in
clinical physiological measurement. Physiological measurement,

28(3), R1.

Al-Naji, A., Gibson, K., Lee, S. H., & Chahl, J. (2017). Monitoring
of cardiorespiratory signal: Principles of remote measurements and
review of methods. IEEE Access, 5, 15776-15790.



US 10,638,938 B1
Page 3

(56) References Cited
OTHER PUBLICATIONS

Alzahrani, A., Hu, S., Azorin-Peris, V., Barrett, L., Esliger, D.,
Hayes, M., . .. & Kuoch, S. (2015). A multi-channel opto-electronic
sensor to accurately monitor heart rate against motion artefact
during exercise. Sensors, 15(10), 25681-25702.

Avolio, A. P, Butlin, M., & Walsh, A. (2009). Arterial blood
pressure measurement and pulse wave analysis—their role in enhanc-
ing cardiovascular assessment. Physiological measurement, 31(1),
RI.

Ballinger, B., Hsieh, J., Singh, A, Sohoni, N., Wang, J., Tison, G.
H., ... & Pletcher, M. J. (Apr. 2018). DeepHeart: semi-supervised
sequence learning for cardiovascular risk prediction. In Thirty-
Second AAAI Conference on Artificial Intelligence.

Birrenkott, D. A., Pimentel, M. A., Watkinson, P. J., & Clifton, D.
A. (Aug. 2016). Robust estimation of respiratory rate via ECG- and
PPG-derived respiratory quality indices. In 2016 38th Annual
International Conference of the IEEE Engineering in Medicine and
Biology Society (EMBC) (pp. 676-679). IEEE.

Buxi, D., Redoute, J. M., & Yuce, M. R. (2015). A survey on signals
and systems in ambulatory blood pressure monitoring using pulse
transit time. Physiological measurement, 36(3), R1.

Callego, E. C., & de Haan, G. (Mar. 2015). Automatic ROI for
remote photoplethysmography using PPG and color features. In
10th International Conference on Computer Vision Theory and
Applications VISAPP-2015.

Castaneda, D., Esparza, A., Ghamari, M., Soltanpur, C., & Nazeran,
H. (2018). A review on wearable photoplethysmography sensors
and their potential future applications in health care. International
journal of biosensors & bioelectronics, 4(4), 195.

Corral, F., Paez, G., & Strojnik, M. (2014). A photoplethysmographic
imaging system with supplementary capabilities. Optica Applicata,
44(2).

Ding, X. R., Zhao, N., Yang, G. Z., Pettigrew, R. I, Lo, B., Miao,
F, ... & Zhang, Y. T. (2016). Continuous blood pressure measure-
ment from invasive to unobtrusive: celebration of 200th birth
anniversary of Carl Ludwig. IEEE journal of biomedical and health
informatics, 20(6), 1455-1465.

Elgendi, M. (2012). On the analysis of fingertip photoplethysmogram
signals. Current cardiology reviews, 8(1), 14-25.

Escobar Restrepo, B., Tones Villa, R., & Kyriacou, P. (2018).
Evaluation of the Linear Relationship Between Pulse Arrival Time
and Blood Pressure in ICU Patients: Potential and Limitations.
Frontiers in physiology, 9, 1848.

Fallet, S., Schoenenberger, Y., Martin, L., Braun, F., Moser, V., &
Vesin, J. M. (Sep. 2017). Imaging photoplethysmography: A real-
time signal quality index. In 2017 Computing in Cardiology (CinC)
(pp. 1-4). IEEE.

Feng, L., Po, L. M., Xu, X, Li, Y., Cheung, C. H., Cheung, K. W.,
& Yuan, F. (Apr. 2015). Dynamic ROI based on K-means for remote
photoplethysmography. In 2015 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP) (pp. 1310-
1314). IEEE.

Flament, F., Francois, G., Qiu, H., Ye, C., Hanaya, T., Batisse, D.,
... & Bazin, R. (2015). Facial skin pores: a multiethnic study.
Clinical, cosmetic and investigational dermatology, 8, 85.

Fung, P., Dumont, G., Ries, C., Mott, C., & Ansermino, M. (Sep.
2004). Continuous noninvasive blood pressure measurement by
pulse transit time. In the 26th annual international conference of the
IEEE engineering in medicine and biology society (vol. 1, pp.
738-741). IEEE.

Holz, C., & Wang, E. J. (2017). Glabella: Continuously sensing
blood pressure behavior using an unobtrusive wearable device.
Proceedings of the ACM on Interactive, Mobile, Wearable and
Ubiquitous Technologies, 1(3). 58.

Huang, P. W, Lin, C. H., Chung, M. L., Lin, T. M., & Wu, B. F.
(Nov. 2017). Image based contactless blood pressure assessment
using Pulse Transit Time. In 2017 International Automatic Control
Conference (CACS) (pp. 1-6). IEEE.

Huang, S. C., Hung, P. H., Hong, C. H., & Wang, H. M. (2014). A
new image blood pressure sensor based on PPG, RRT, BPTT, and
harmonic balancing. IEEE sensors Journal, 14(10), 3685-3692.
Ishikawa, T., Hyodo, Y., Miyashita, K., Yoshifuji, K., Komoriya, Y.,
& Imai, Y. (Feb. 2017). Wearable Motion Tolerant PPG Sensor for
Instant Heart Rate in Daily Activity. In Biosignals (pp. 126-133).
Jain, M., Deb, S., & Subramanyam, A. V. (Sep. 2016). Face video
based touchless blood pressure and heart rate estimation. In 2016
IEEE 18th International Workshop on Multimedia Signal Process-
ing (MMSP) (pp. 1-5). IEEE.

Jarchi, D., Salvi, D., Tarassenko, L., & Clifton, D. (2018). Valida-
tion of Instantaneous Respiratory Rate Using Reflectance PPG from
Different Body Positions. Sensors, 18(11), 3705.

Kachuee, M., Kiani, M. M., Mohammadzade, H., & Shabany, M.
(2016). Cuflless blood pressure estimation algorithms for continu-
ous health-care monitoring. IEEE Transactions on Biomedical Engi-
neering, 64(4), 859-869.

Kamshilin, A. A., Miridonov, S., Teplov, V., Saarenheimo, R., &
Nippolainen, E. (2011). Photoplethysmographic imaging of high
spatial resolution. Biomedical optics express, 2(4), 996-1006.
Kamshilin, A. A, Sidorov, I. S., Babayan, L., Volynsky, M. A.,
Giniatullin, R., & Mamontov, O. V. (2016). Accurate measurement
of the pulse wave delay with imaging photoplethysmography.
Biomedical optics express, 7 (12), 5138-5147.

Kamshilin, A. A., Teplov, V., Nippolainen, E., Miridonov, S., &
Giniatullin, R. (2013). Variability of microcirculation detected by
blood pulsation imaging PloS one, 8(2), e57117.

Kong, L., Zhao, Y., Dong, L., Jian, Y., Jin, X, L1, B., . .. & Wu, H.
(2013). Non-contact detection of oxygen saturation based on visible
light imaging device using ambient light. Optics express, 21(15),
17464-17471.

Lin, S. T, Chen, W. H., & Lin, Y. H. (2017). A pulse rate detection
method for mouse application based on multi-PPG sensors. Sensors,
17(7), 1628.

Liu, J., Yan, B. P. Y., Dai, W. X,, Ding, X. R., Zhang, Y. T., & Zhao,
N. (2016). Multi-wavelength photoplethysmography method for
skin arterial pulse extraction. Biomedical optics express, 7(10),
4313-4326.

McDuff, D. J., Estepp, J. R., Piasecki, A. M., & Blackford, E. B.
(Aug. 2015). A survey of remote optical photoplethysmographic
imaging methods. In 2015 37th annual international conference of
the IEEE engineering in medicine and biology society (EMBC) (pp.
6398-6404). IEEE.

McDuff, D., Gontarek, S., & Picard, R. W. (2014). Improvements in
remote cardiopulmonary measurement using a five band digital
camera. [EEE Transactions on Biomedical Engineering, 61(10),
2593-2601.

McDuff, D., Gontarek, S., & Picard, R. W. (2014). Remote detection
of photoplethysmographic systolic and diastolic peaks using a
digital camera. IEEE Transactions on Biomedical Engineering,
61(12), 2948-2954.

Mcduff, D., Hurter, C., & Gonzalez-Franco, M. (Nov. 2017). Pulse
and vital sign measurement in mixed reality using a HoloLens. In
Proceedings of the 23rd ACM Symposium on Virtual Reality
Software and Technology (p. 34). ACM.

Meredith, D. J., Clifton, D., Charlton, P., Brooks, J., Pugh, C. W,,
& Tarassenko. L. (2012). Photoplethysmographic derivation of
respiratory rate: a review of relevant physiology. Journal of medical
engineering & technology, 36(1), 1-7.

Moco, A. V., Stuijk, S., & De Haan, G. (2016). Bal-
listocardiographic artifacts in PPG imaging. IEEE Transactions on
Biomedical Engineering, 63(9), 1804-1811.

Mogo, A., Stuijk, S., & de Haan, G. (2019). Posture effects on the
calibratability of remote pulse oximetry in visible light. Physiologi-
cal measurement, 40(3), 035005.

Mogo, A., Stuijk, S., van Gastel, M., & de Haan, G. (2018).
Impairing Factors in Remote-PPG Pulse Transit Time Measure-
ments on the Face. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition Workshops (pp. 1358-
1366).

Po, L. M, Feng, L., Li, Y, Xu, X,, Cheung, T. C. H., & Cheung, K.
W. (2018). Block-based adaptive ROI for remote photoplethysmography.
Multimedia Tools and Applications, 77(6), 6503-6529.



US 10,638,938 B1
Page 4

(56) References Cited
OTHER PUBLICATIONS

Poh, M. Z., McDuff, D. J., & Picard, R. W. (2010). Non-contact,
automated cardiac pulse measurements using video imaging and
blind source separation. Optics express, 18(10), 10762-10774.
Proenca, J., Muehlsteff, J., Aubert, X., & Carvalho, P. (Aug. 2010).
Is pulse transit time a good indicator of blood pressure changes
during short physical exercise in a young population?. In 2010
Annual International Conference of the IEEE Engineering in Medi-
cine and Biology (pp. 598-601). IEEE.

Ramirez, G. A., Fuentes, O., Crites Jr, S. L., Jimenez, M,, &
Ordonez, J. (2014). Color analysis of facial skin: Detection of
emotional state. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition Workshops (pp. 468-473).
Rouast, P. V., Adam, M. T,, Chiong, R., Cornforth, D., & Lux, E.
(2018). Remote heart rate measurement using low-cost RGB face
video: a technical literature review. Frontiers of Computer Science,
12(5), 858-872.

Rundo, F,, Conoci, S., Ortis, A., & Battiato, S. (2018). An advanced
bio-inspired photoplethysmography (PPG) and ECG pattern recog-
nition system for medical assessment. Sensors, 18(2), 405.
Samria, R., Jain, R., Jha, A, Saini, S., & Chowdhury, S. R. (Apr.
2014). Noninvasive cuff’less estimation of blood pressure using
Photoplethysmography without electrocardiograph measurement.
In 2014 IEEE Region 10 Symposium (pp. 254-257). IEEE.

Shao, D., Tsow, F.,, Liu, C., Yang, Y., & Tao, N. (2017). Simulta-
neous monitoring of ballistocardiogram and photoplethysmogram
using a camera. IEEE Transactions on Biomedical Engineering,
64(5), 1003-1010.

Sharma, M., Barbosa, K., Ho, V., Griggs, D., Ghirmai, T Krishnan,
S., ... & Cao, H. (2017). Cuff-less and continuous blood pressure
monitoring: A methodological review. Technologies, 5(2), 21.
Shirbani, F., Blackmore, C., Kazzi, C., Tan, I, Butlin, M., & Avolio,
A. P. (Jul. 2018). Sensitivity of Video-Based Pulse Arrival Time to
Dynamic Blood Pressure Changes. In 2018 40th Annual Interna-
tional Conference of the IEEE Engineering in Medicine and Biol-
ogy Society (EMBC) (pp. 3639-3641). IEEE.

Sola, J., Proenga, M., Braun, F., Pierrel, N., Degiorgis, Y., Verjus,
C., ... & Schoettker, P. (2016). Continuous non-invasive monitor-
ing of blood pressure in the operating room: a cuffless optical
technology at the fingertip. Current Directions in Biomedical Engi-
neering, 2(1), 267-271.

Song, S. H., Cho, J. S., Oh, H. S, Lee, J. S., & Kim, L. Y. (Sep.
2009). Estimation of blood pressure using photoplethysmography
on the wrist. In 2009 36th Annual Computers in Cardiology
Conference (CinC) (pp. 741-744). IEEE.

Sun, Y., & Thakor, N. (2016). Photoplethysmography revisited:
from contact to noncontact, from point to imaging. IEEE Transac-
tions on Biomedical Engineering, 63(3), 463-477.

Trumpp, A., Rasche, S., Wedekind, D., Rudolf, M., Malberg, H.,
Matschke, K., & Zaunseder, S. (2017). Relation between pulse
pressure and the pulsation strength in camera-based
photoplethysmograms. Current Directions in Biomedical Engineer-
ing, 3(2), 489-492.

Vuksanovi¢, V., Sheppard, L. W., & Stefanovska, A. (2008). Non-
linear relationship between level of blood flow and skin temperature
for different dynamics of temperature change. Biophysical journal,
94(10), L78-L80.

Warren, K., Harvey, J., Chon, K., & Mendelson, Y. (2016). Improv-
ing pulse rate measurements during random motion using a wear-
able multichannel reflectance photoplethysmograph. Sensors, 16(3),
342.

Wu, B. F, Huang, P. W,, Lin, C. H,, Chung, M. L., Tsou, T Y., &
Wu, Y. L. (2018). Motion resistant image-photoplethysmography
based on spectral peak tracking algorithm. IEEE Access, 6, 21621-
21634,

Zaunseder, S., Trumpp, A., Wedekind, D., & Malberg, H. (2018).
Cardiovascular assessment by imaging photoplethysmography—a
review. Biomedical Engineering/Biomedizinische Technik, 63(5),
617-634.

Zhang, G., Shan, C., Kirenko, I, Long, X., & Aarts, R. (2017).
Hybrid optical unobtrusive blood pressure measurements. Sensors,
17(7), 1541.

* cited by examiner



U.S. Patent May 5, 2020 Sheet 1 of 20 US 10,638,938 B1

674




U.S. Patent May 5, 2020 Sheet 2 of 20 US 10,638,938 B1

1- 5454

1544

546a

547a

FIG. 2



U.S. Patent May 5, 2020 Sheet 3 of 20 US 10,638,938 B1

Sy R JLower
ey il \ ~|temperature

FIG. 3



US 10,638,938 B1

Sheet 4 of 20

May 5, 2020

U.S. Patent

FIG. 4



U.S. Patent May 5, 2020 Sheet 5 of 20 US 10,638,938 B1

N

S A1

\

§ "f( P Y N \ N

I (Y s NN IR

154 | {‘15:,@;» 1 NN
VAL N N

el NI

.»/i b
=

Reduced
/*”"”“”“*:;j*\ blood flow
gl BN
v




U.S. Patent May 5, 2020 Sheet 6 of 20 US 10,638,938 B1

Droopiness
of one side
of the face




U.S. Patent May 5, 2020 Sheet 7 of 20 US 10,638,938 B1

FIG. 10



U.S. Patent May 5, 2020 Sheet 8 of 20 US 10,638,938 B1

'l

[ To be, or not to be,

\tl'jt is the question...

AR

e,

FIG. 11




US 10,638,938 B1

Sheet 9 of 20

May 5, 2020

U.S. Patent

, T 2 iﬂ.m
\\ mmu i e !
T am %
A B R, |
figz \ e
11z 1 ==
g e S
{22 | ' v i
\ \ bl § [ 3 .wn\\\
/i L=
m:‘{kw _n.r
/. i
| ] \
,, i Fa! ™ \l!. f i ,, x,
Vi O D00 )
.M H i ! ;
R T a— AR
N I 2
P T . & M T
Vi S~ = 1l
16].0..0| } e i“f
VT = |
VT e L‘. !
o o apo | N
3

Two months later

FIG. 13



U.S. Patent May 5, 2020 Sheet 10 of 20 US 10,638,938 B1

- e B I

Lo TT T e
ﬁ L T L ARl e
A e

| S
{ y
o rananasnnn,

I b

1

i

T I;

I

I
G
S
!”5; s{w;’[

I ﬁ\ A o ‘}g f[’\\}'
L MBLJ\MC& L:] g . i {E\\g
P 1 3 ';::(/4 »\\:‘\ «4;(‘: \L’J}E
S e f {f \! 3 ‘gt&.:&"f"’ = \'\i"«/
— U
i o TR st ;':__.:._‘«;.—5'—,2»'* /g

Lt ]‘\ijzl




U.S. Patent May 5, 2020 Sheet 11 of 20 US 10,638,938 B1

FIG. 15b FIG. 15¢



US 10,638,938 B1

Sheet 12 of 20

May 5, 2020

U.S. Patent

FIG. 16b

FIG. 16a




U.S. Patent May 5, 2020 Sheet 13 of 20 US 10,638,938 B1

FIG. 17b



U.S. Patent May 5, 2020 Sheet 14 of 20 US 10,638,938 B1

FIG. 18 FIG. 19

FIG. 20 FIG. 21



US 10,638,938 B1

Sheet 15 of 20

May 5, 2020

U.S. Patent

FIG. 25

FIG. 24



US 10,638,938 B1

Sheet 16 of 20

May 5, 2020

U.S. Patent

FIG. 27

FIG. 26

FIG. 29

FIG. 28



U.S. Patent May 5, 2020

Sheet 17 of 20 US 10,638,938 B1

-
R

FIG. 30c FIG. 30b

e et N \‘\
A e O N
hi L0k e\
Sy § N 5 o -
= N



U.S. Patent May 5, 2020 Sheet 18 of 20 US 10,638,938 B1

n 3
i ,-p'»*":""

e ST

FIG. 32a
FI1G. 32b

oy,

s

\,\‘/j

167
FIG. 33a
F1G. 33b




US 10,638,938 B1

Sheet 19 of 20

May 5, 2020

U.S. Patent

\\ -
7

rd

I

i

;e

§ % .
i P
) ko)
H R
4
H
a\\\x\w
h o
2 ,\
3

Lob 7
3

L

5, by

" 5

N
/‘
/x//

I*r\/:ﬂz

FIG. 35b

313

FIG. 35a

311

314



U.S. Patent

May 5, 2020

Processor
401

Memory
402

Computer-

Readable Medium

403

/A

400

Sheet 20 of 20

US 10,638,938 B1

User Interface
404

©
5

Communication
interface
405

Network
408

Processor
411

Memory
412

413

Communication
interface

FIG. 36b



US 10,638,938 Bl

1
EYEGLASSES TO DETECT ABNORMAL
MEDICAL EVENTS INCLUDING STROKE
AND MIGRAINE
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BACKGROUND

There are many medical illnesses that can benefit greatly
from early intervention. For example in ischemic stroke,
time reduction from onset of the initial event to administra-
tion of antithrombotic medication or interventional radiol-
ogy can leave an individual with greatly enhanced neuro-
logic function. Similarly, early treatment of migraine or
infection can lead to reduced convalescence time, enhanced
well-being and increased productivity.

The need for early intervention necessitates early diag-
nosis of the medical condition. Despite advances in wear-
ables, currently the vast majority of individuals do not have
access to technology that can measure significant physi-
ologic changes in real time and help with diagnosis of
migraine, headache, stroke, infection and other significant
medical conditions. As a result, many people encounter
delays in diagnosis and treatment, which results in increased
morbidity and mortality. Existing wearables often offer
limited sensors, poor signals, and suffer from significant
artifacts.

SUMMARY

Some embodiments described herein utilize head-
mounted sensors to obtain multiple photoplethysmogram
signals at various regions on a user’s head. A photoplethys-
mogram signal (PPG signal) is an optically obtained plethys-
mogram that is indicative of blood volume changes in the
microvascular bed of tissue. A PPG signal is often obtained
by using a pulse oximeter, which illuminates the skin and
measures changes in light absorption. Another possibility for
obtaining a PPG signal is using an imaging photoplethys-
mography (iPPG) device. As opposed to typical PPG
devices, which usually come in contact with the skin, iPPG
usually does not require contact with the skin and is obtained
by a non-contact sensor, such as a video camera. Other terms
that may be used to refer to iPPG include multi-site pho-
toplethysmography (MPPG) or remote photoplethysmogra-
phy (rPPG).

The multiple PPG signals can be indicative of blood flow
and/or changes thereto, which may be indicative of an onset
and/or occurrence of an abnormal medical event. Some
examples of medical events that are considered an “abnor-
mal medical event” herein include an Ischemic stroke, a
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migraine, a headache, cellulitis (soft tissue infection), der-
matitis (skin infection), and an ear infection.

One aspect of this disclosure includes a system configured
to detect an abnormal medical event. The system includes at
least one right-side head-mounted device configured to
measure at least two signals indicative of photoplethysmo-
graphic signals (PPGgg, and PPGgg,, respectively) at first
and second regions of interest (ROI,, and ROI,,, respec-
tively) on the right side of a user’s head, where ROI,, and
ROIl,, are located at least 2 cm apart. The system also
includes at least one left-side head-mounted device config-
ured to measure at least two signals indicative of photopl-
ethysmographic signals (PPGg;, and PPGg;,, respectively)
at first and second regions of interest (ROI,, and ROI,,,
respectively) on the left side of the user’s head, where ROI,
and ROI,, are located at least 2 cm apart. The system also
includes a computer configured to detect the abnormal
medical event based on an asymmetrical change to blood
flow recognizable in PPG, , PPGy,, PPG; |, and PPGy,,.
Optionally, the asymmetrical change to the blood flow
corresponds to a deviation of PPG¢y,, PPGy,, PPG;,, and
PPGg;, compared to a baseline that is based on previous
measurements of PPGg,, PPGp,, PPG; |, and PPG;, of
the user, taken before the abnormal medical event. Option-
ally, the computer utilizes a machine learning based
approach in which it is configured to generate feature values
based on data that includes: (i) PPGgz;, PPGggs, PPGg 1,
and PPGy,, of the user, and (ii) the previous measurements
of PPG¢g,, PPGy,, PPGy;,, and PPGg;, of the user. The
computer then utilizes a model to calculate, based on the
feature values, a value indicative of whether the user is
experiencing the abnormal medical event.

Having the computer base its detection of the abnormal
medical event on multiple PPG signals (at least four in some
embodiments described herein), may confer several advan-
tages. In particular, having the PPG signals measured on
different sides of the head can help identify cases in which
changes in blood flow are localized to a certain body region
(e.g., a certain side of the head). Identifying such occur-
rences is not possible with a single PPG signal, and/or with
PPG signals that are measured on a single side of the head.
Having a single PPG signal, or multiple PPG signals from
the same side, does not provide comparative information
that can help identify that the change to blood flow is
asymmetrical (i.e., not the same on both sides of the head),
since measurements from both sides of the head are needed
to reach such a conclusion. Thus, systems that rely on a
single PPG signal, or multiple PPG signals from the same
side of the head, cannot provide the data required in order to
detect abnormal medical event characterized by an asym-
metrical change to blood flow, as embodiments described
herein are capable of detecting.

BRIEF DESCRIPTION OF THE DRAWINGS

The embodiments are herein described by way of example
only, with reference to the following drawings:

FIG. 1a illustrates smartglasses which include contact
photoplethysmographic devices;

FIG. 15 illustrates smartglasses that include first and
second inward-facing cameras;

FIG. 2 illustrates smartglasses that include four inward-
facing cameras;

FIG. 3 illustrates an embodiment of a system that includes
a single head-mounted thermal camera that may be used to
detect a stroke;
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FIG. 4 illustrates a scenario in which an alert regarding a
possible stroke is issued;

FIG. 5, FIG. 6, FIG. 7, and FIG. 8 illustrate physiological
and behavioral changes that may occur following a stroke;

FIG. 9, FIG. 10, FIG. 11, and FIG. 12 illustrates various
activities that a person may be requested to perform in order
to determine whether the person has suffered from a stroke;

FIG. 13 and FIG. 14 illustrate the difference between a
timely intervention in the event of a stroke and intervention
that comes too late;

FIG. 15a illustrates one embodiment of a system that
includes multiple pairs of right and left cameras and loca-
tions on the face that they may be used to measure;

FIG. 155 illustrates a stroke sign that involves decreased
blood flow in the forehead:;

FIG. 15c¢ illustrates a stroke sign that involves decreased
blood flow in a periorbital region;

FIG. 164 and FIG. 164 illustrate embodiments of a system
with a head-mounted camera located behind the ear;

FIG. 16c illustrates an ischemic stroke that restricts the
blood flow to the side of the head, which may be detected by
embodiments described herein;

FIG. 17a and FIG. 176 illustrate various inward-facing
head-mounted cameras coupled to an eyeglasses frame;

FIG. 18 illustrates inward-facing head-mounted cameras
coupled to an augmented reality device;

FIG. 19 illustrates head-mounted cameras coupled to a
virtual reality device;

FIG. 20 illustrates a side view of head-mounted cameras
coupled to an augmented reality device;

FIG. 21 illustrates a side view of head-mounted cameras
coupled to a sunglasses frame;

FIG. 22, FIG. 23, FIG. 24, and FIG. 25 illustrate head-
mounted systems (HMSs) configured to measure various
ROIs relevant to some of the embodiments describes herein;

FIG. 26, FIG. 27, FIG. 28, and FIG. 29 illustrate various
embodiments of systems that include inward-facing head-
mounted cameras having multi-pixel sensors (FPA sensors);

FIG. 304, F1G. 305, and FIG. 30c illustrate embodiments
of two right and left clip-on devices that are configured to be
attached/detached from an eyeglasses frame;

FIG. 31a and FIG. 315 illustrate an embodiment of a
clip-on device that includes inward-facing head-mounted
cameras pointed at the lower part of the face and the
forehead;

FIG. 32a and FIG. 325 illustrate an embodiment of a
single-unit clip-on device that is configured to be attached
behind an eyeglasses frame;

FIG. 33q and FIG. 335 illustrate embodiments of right
and left clip-on devices that are configured to be attached
behind an eyeglasses frame;

FIG. 34 illustrates embodiments of right and left clip-on
devices, which are configured to be attached/detached from
an eyeglasses frame, and have protruding arms to hold
inward-facing head-mounted cameras;

FIG. 35a is a schematic illustration of an inward-facing
head-mounted camera embedded in an eyeglasses frame,
which utilizes the Scheimpflug principle;

FIG. 3554 is a schematic illustration of a camera that is able
to change the relative tilt between its lens and sensor planes
according to the Scheimpflug principle; and

FIG. 36a and FIG. 365 are schematic illustrations of
possible embodiments for computers.

DETAILED DESCRIPTION

In some embodiments, a system configured to detect an
abnormal medical event includes a computer and several
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head-mounted devices that are used to measure photopl-
ethysmographic signals (PPG signals) indicative of blood
flow at various regions on a user’s head. Optionally, the
system may include additional components, such as addi-
tional sensors that may be used to measure the user and/or
the environment. Additionally or alternatively, the system
may include a frame configured to be worn on the user’s
head (e.g., a frame of eyeglasses or smartglasses) and to
which at least some of the head-mounted devices and
sensors are physically coupled. Having sensors, such as the
devices that are used to measure photoplethysmographic
signals, physically coupled to the frame may convey certain
advantages, such as having the sensors remain at the same
positions with respect to the head, even when the user’s head
makes angular movements. Some examples of abnormal
medical events that may be detected by embodiments
described herein include an ischemic stroke, a migraine, a
headache, cellulitis (soft tissue infection), dermatitis (skin
infection), and an ear infection.

In one embodiment, the system includes at least one
right-side head-mounted device, configured to measure at
least two signals indicative of photoplethysmographic sig-
nals (PPGg, and PPGg,, respectively) at first and second
regions of interest (ROI;, and ROI,, respectively) on the
right side of a user’s head. Optionally, ROI, and ROI,, are
located at least 2 cm apart (where cm denotes centimeters).
Optionally, each device, from among the at least one right-
side head-mounted device(s), is located to the right of the
vertical symmetry axis that divides the user’s face.

Additionally, the system includes at least one left-side
head-mounted device configured to measure at least two
signals indicative of photoplethysmographic —signals
(PPGg;, and PPGg;,, respectively) at first and second
regions of interest (ROI;, and ROI,,, respectively) on the
left side of the user’s head. Optionally, each device, from
among the at least one right-side head-mounted device(s), is
located to the left of the vertical symmetry axis that divides
the user’s face.

In some embodiments, ROI,, and ROI;, may be sym-
metrical regions on the right and left sides of the head,
respectively (with respect to a symmetry axis that splits the
face to right and left sides). Additionally or alternatively,
ROI,, and RO], , may be symmetrical regions on the right
and left sides of the head, respectively. In other embodi-
ments, ROI,, and ROI, | may not be symmetrical regions on
the right and left side of the head, and/or ROI,, and ROIL,,
may not be symmetrical regions on the right and left side of
the head. Optionally, two regions are considered to be in
symmetrical locations if one region is within 1 cm of the
symmetrical region on the head.

Various types of devices may be utilized in order to obtain
PPGgg,, PPGgg,, PPGg;,, and/or PPGg;,. In one embodi-
ment, the at least one right-side head-mounted device
includes first and second contact photoplethysmographic
devices (PPG,, PPG,, respectively). Additionally or alter-
natively, the at least one left-side head-mounted device may
include third and fourth contact photoplethysmographic
devices (PPG;, PPG,, respectively). Herein, a “contact
photoplethysmographic device” is a photoplethysmographic
device that comes in contact with the user’s skin, and
typically occludes the area being measured. An example of
a contact photoplethysmographic device is the well-known
pulse oximeter.

In one example, PPG |, PPG,, PPG,, and PPG, are physi-
cally coupled to an eyeglasses frame, PPG, and PPG; are in
contact with the nose, and PPG, and PPG, are in contact
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with regions in the vicinities of the ears (e.g., within a
distance of less than 5 cm from the center of the concha),
respectively.

FIG. 1a illustrates smartglasses that include contact pho-
toplethysmographic devices that may be used to obtain PPG
signals, as described above. The contact PPG devices are
coupled to a frame 674. The contact PPG devices may be
coupled at various locations on the frame 674 and thus may
come in contact with various regions on the user’s head. For
example, contact PPG device 671a is located on the right
temple tip, which brings it to contact with a region behind
the user’s ear (when the user wears the smartglasses).
Contact PPG device 6715 is located on the right temple of
the frame 674, which puts it in contact with a region on the
user’s right temple (when wearing the smartglasses). It is to
be noted that in some embodiments, in order to bring the
contact PPG device close such that it touches the skin,
various apparatuses may be utilized, such as spacers (e.g.,
made from rubber or plastic), and/or adjustable inserts that
can help bridge a possible gap between a frame’s temple and
the user’s face. Such an apparatus is spacer 672 which brings
contact PPG device 6715 in contact with the user’s temple
when the user wears the smartglasses.

Another possible location for a contact PPG device is the
nose bridge, as contact PPG device 671c is illustrated in the
figure. It is to be noted the contact PPG device 671¢ may be
embedded in the nose bridge (or one of its components),
and/or physically coupled to a part of the nose bridge. The
figure also illustrates computer 673, which may be utilized
in some embodiments, to perform processing of PPG signals
and/or detection of the abnormal medical event, as described
further below.

It is to be noted that FIG. 1a illustrates but a few of the
possible locations for contact PPG devices on a frame. Any
pair of contact PPG devices 671a, 6715, and 671¢ may be
the aforementioned PPG; and PPG,. Additionally, some
embodiments may include additional contact PPG devices
on each side of the frames. Furthermore, it is to be noted that
while contact PPG devices on the left side were not illus-
trated in the figure, additional PPG devices may be located
in similar locations to the ones of PPG devices 671a to 671¢
are located, but on the left side of the frame.

In another embodiment, one or more video cameras may
be utilized to obtain PPGgg,, PPGeg,, PPGg;;, and/or
PPGg;, utilizing imaging photoplethysmography. Using
video cameras can be advantageous in some scenarios, such
as stroke, where it is unknown in advanced where the
physiological response associated with the abnormal medi-
cal event will appear on the user’s head. Thus, in some
embodiments involving these scenarios, using video cam-
eras may provide a great advantage over contact PPG
devices, because the video cameras cover larger areas,
which increase the chance to capture on time the physiologi-
cal response associated with the abnormal medical event.

In one embodiment, the at least one right-side head-
mounted device includes a first inward-facing camera
located more than 0.5 cm away from RO, and ROl,,, and
PPGgyz, and PPGgy, are recognizable from color changes in
regions in images taken by the first camera. Additionally or
alternatively, the at least one lefi-side head-mounted device
may include a second inward-facing camera located more
than 0.5 cm away from ROI;, and ROI,,, and PPGg; and
PPGg;, are recognizable from color changes in regions in
images taken by the second camera. In one embodiment, the
system includes both at least one contact PPG device and at
least one video camera.
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In one embodiment, each of the first and second inward-
facing cameras utilizes a sensor having more than 30 pixels,
and each of ROI,, and ROI, | covers a skin area greater than
6 ¢cm'2, which is illuminated by ambient light. In another
embodiment, each of the first and second inward-facing
cameras utilizes a sensor having more than 20 pixels, and
each of ROI,, and ROI,, covers a skin area greater than 2
cm’2, which is illuminated by ambient light. In still another
embodiment, each of the first and second inward-facing
cameras utilizes a sensor comprising at least 3x3 pixels
configured to detect electromagnetic radiation having wave-
lengths in at least a portion of the range of 200 nm to 1200
nm. Optionally, the system includes first and second active
light sources configured to illuminate portions of the right
side of the face (which include ROI,, and ROIL,) and
portions of the left side of the face (which include ROI, | and
ROI,,), respectively. In one example, the first and second
active light sources are head-mounted light sources config-
ured to illuminate their respective portions of the face with
electromagnetic radiation having wavelengths in at least a
portion of the range of 750 nm to 1200 nm.

In one embodiment, due to the angle between the optical
axis of a certain inward-facing camera (from among the first
and second inward-facing cameras) and its RO, the Sche-
impflug principle may be employed in order to capture
sharper images with the certain inward-facing camera. For
example, when the user wears a frame to which the certain
inward-facing camera is coupled, the certain inward-facing
camera may have a certain tilt greater than 20 between its
sensor and lens planes, in order to capture the sharper
images.

FIG. 15 illustrates smartglasses that include first and
second inward-facing cameras, such as the ones described
above. The figure illustrates a frame 677 to which a first
inward-facing camera 675a is coupled above the lens that is
in front of the right eye, and a second inward-facing camera
675b that is coupled to the frame 677 above the lens that is
in front of the left eye. The figure also illustrates a computer
676 that is coupled to the frame 677, and may be utilized to
process images obtained by the first inward-facing camera
675a and/or the second inward-facing camera 67554, and/or
perform the detection of the abnormal medical event based
on PPG signals recognizable in images captured by those
cameras.

Various regions on the face may be measured in embodi-
ments that utilize imaging photoplethysmography. In one
example, ROl,, and ROI,, are located on the user’s right
and left cheeks, respectively. In another example, ROl and
ROI;, are located on the right and left sides of the user’s
nose, respectively. In yet another example, ROl and ROI,
are located on the right and left sides of the user’s forehead,
respectively. In still another example, RO, and ROI, , are
located on the user’s right and left temples, respectively.

A configuration consistent with some of the examples
described above is illustrated in FIG. 2. In this figure, four
inward-facing cameras are coupled to a frame 540 worn on
a user’s head: (i) Inward-facing camera 544a is coupled to
the top-left side of the frame and captures images of ROI
5454, which is on the left side of the user’s forehead; (i)
Inward-facing camera 5445 is coupled to the top-right side
of the frame and captures images of ROI 5455, which is on
the right side of the user’s forehead; (iii) Inward-facing
camera 546a is coupled to the bottom-left side of the frame
and captures images of ROI 5474, which is on the user’s left
cheek; And (iv) Inward-facing camera 5464 is coupled to the
bottom-right side of the frame and captures images of ROI
547h, which is on the user’s right cheek.
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Herein, sentences of the form “a PPG signal is recogniz-
able from color changes in a region in images” refer to
effects of blood volume changes due to pulse waves that may
be extracted from a series of images of the region. These
changes may be identified and/or utilized by a computer
(e.g., in order to generate a signal indicative of the blood
volume at the region), but need not necessarily be recog-
nizable to the naked eye (e.g., because of their subtlety, the
short duration in which they occur, or involvement of light
outside of the visible spectrum). For example, blood flow
may cause facial skin color changes (FSCC) that corre-
sponds to different concentrations of oxidized hemoglobin
due to varying volume of blood at a certain region due to
different stages of a cardiac pulse, and/or the different
magnitudes of cardiac output. Similar blood flow dependent
effects may be viewed with other types of signals (e.g., slight
changes in cutaneous temperatures due to the flow of blood).

In some embodiments, the system configured to detect the
abnormal medical event may further include first and second
outward-facing head-mounted cameras for taking images of
the environment to the right and to the left of the user’s head,
respectively. Images taken by these cameras, which are
indicative of illumination towards the face, may be utilized
to improve the accuracy of detecting the abnormal medical
event.

In one example, the first and second outward-facing
head-mounted cameras may be thermal cameras that take
thermal measurements of the environment. Heat from the
environment may affect the surface blood flow, and thus
reduce the accuracy of detecting the abnormal medical
event. By taking the thermal measurements of the environ-
ment into account, the computer is able to detect, and maybe
even compensate, for temperature interferences from the
environment. Examples of outward-facing head-mounted
thermal cameras include thermopile-based and/or microbo-
lometer-based cameras having one or more pixels.

In another example, the first and second outward-facing
head-mounted cameras may be visible-light cameras (such
as CMOS cameras), and/or light intensity sensors (such as
photodiodes, photoresistors, and/or phototransistor). Illumi-
nation from the environment may affect the surface blood
flow (especially when heating the skin), and/or interfere
with the photoplethysmographic signals to be measured, and
thus reduce the accuracy of detecting the abnormal medical
event. By taking the illumination from the environment into
account, the computer is able to detect, and maybe even
compensate, for the interferences from the environment.

In one embodiment, the at least one right-side head-
mounted device and/or the at least one left-side head-
mounted device are coupled to a clip-on, and the clip-on
comprises a body configured to be attached and detached,
multiple times, from a frame configured to be worn on the
user’s head. FIG. 30a to FIG. 34 illustrate various examples
of embodiments of systems that include a clip-on which may
have the aforementioned head-mounted devices coupled
thereto.

Various embodiments described herein include a com-
puter configured to detect the abnormal medical event based
on an asymmetrical change to blood flow recognizable in at
least PPG g, PPGgy,, PPG; |, and PPGg; ,. Optionally, the
asymmetrical change to the blood flow corresponds to a
deviation of PPGgy,, PPGg,, PPGg; |, and PPG,, com-
pared to a baseline based on previous measurements of
PPGgz,, PPGgy,, PPGg;,, and PPGg;, of the user, taken
before the abnormal medical event (e.g., minutes, hours, and
even days before the abnormal medical event). In one
example, “a baseline based on the previous measurements”
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is one or more values that are calculated based on the
previous measurements (e.g., one or more values represent-
ing a normal, baseline blood flow of the user). In another
example, “a baseline based on the previous measurements”
may be some, or even all, the previous measurements
themselves, which may be provided as an input used in
calculations involved in the detection of the abnormal medi-
cal event (without necessarily calculating an explicit value
that is considered a “baseline” value of the user’s blood
flow).

Examples of computers that may be utilized to perform
calculations involved in the detection of the abnormal medi-
cal event are computers modeled according to computer 400
or computer 410 illustrated in FIG. 36a and FIG. 365,
respectively. Additional examples are the computers 673 and
676 illustrated in FIG. 1¢ and FIG. 15, respectively. It is to
be noted that the use of the singular term “computer” is
intended to imply one or more computers, which jointly
perform the functions attributed to “the computer” herein. In
particular, in some embodiments, some functions attributed
to the computer, such as preprocessing PPGgz,, PPGgp,,
PPG;,, and PPG,; ,, may be performed by a processor on
a wearable device (e.g., smartglasses) and/or a computing
device of the user (e.g., smartphone), while other functions,
such as the analysis of sensor data and determining whether
the user is experiencing the abnormal medical event, may be
performed on a remote processor, such as a cloud-based
server. In other embodiments, essentially all functions attrib-
uted to the computer herein may be performed by a proces-
sor on a wearable device (e.g., smartglasses to which the
head-mounted devices are coupled) and/or some other
device carried by the user, such as a smartwatch or smart-
phone.

Herein, detecting the abnormal medical event may mean
detecting that the user is suffering from the abnormal medi-
cal event, and/or that there is an onset of the abnormal
medical event. Additionally, an “abnormal” medical event
may be a medical event that the user has yet to experience,
or does not experience most of the time.

In some embodiments, detecting the abnormal medical
event may involve calculating one or more of the following
values: an indication of whether or not the user is experi-
encing the abnormal medical event, a value indicative of an
extent to which the user is experiencing the abnormal
medical event, a duration since the onset of the abnormal
medical event, and a duration until an onset of the abnormal
medical event.

When the blood flow on both sides of the head and/or
body are monitored, asymmetric changes may be recog-
nized. These changes are typically different from symmetric
changes that can be caused by factors such as physical
activity (which typically affects the blood flow on both sides
in the same way). An asymmetric change to the blood flow
can mean that one side has been affected by an event, such
as a stroke, which does not influence the other side. In one
example, the asymmetric change to blood flow involves a
change in blood flow velocity on left side of the head that is
at least 10% greater or 10% lower than a change in blood
flow velocity on one right side of the head. In another
example, the asymmetric change to blood flow involves a
change in the volume of blood the flows during a certain
period in the left side of the head that is at least 10% greater
or 10% lower than the volume of blood that flows during the
certain period in the right side of the head. In yet another
example, the asymmetric change to blood flow involves a
change in the direction of the blood flow on one side of the
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head (e.g., as a result of a stroke), which is not necessarily
observed at the symmetric location on the other side of the
head.

Referring to an asymmetrical change to blood flow as
being “recognizable in PPGgy,, PPGg, PPGy;,, and
PPGyg;,” means that values extracted from PPGz,, PPG .,
PPG,,, and PPGy,, provide an indication that an asym-
metric change to the blood flow has occurred. That is, a
difference that has emerged in the PPG . PPG,., PPGy, |,
and PPGg,;, may reflect a change in blood flow velocity on
one side of the head, a change in blood flow volume, and/or
a change in blood flow direction, as described in the
examples above. It is to be noted, that the change in blood
flow does not need to be directly quantified from the values
PPGgg,, PPGg,, PPGg;,, and PPGy;, in order for it to be
“recognizable in PPG g, PPGgy,, PPG;,, and PPG;,”.
Rather, in some embodiments, feature values generated
based on PPG gy, PPGz,, PPG; . and PPGg; , may be used
by a machine learning-based predictor to detect a phenom-
enon, such as the abnormal medical event, which is associ-
ated with the asymmetrical change in blood flow.

Having multiple PPG signals, measured at different sides
of the head, can assist in detecting an asymmetric change to
blood flow in different ways. In one example, an asymmetric
change in blood flow may be characterized in an increase in
volume at a certain region and/or side of the head, compared
to other regions and/or the other side of the head. In this
example, the amplitude of the PPG signal at the certain
region may show a greater increase compared to increases
observed with PPG signals at other regions and/or on the
other side of the head. In another example, an asymmetric
change in blood flow may be characterized by a decrease in
blood velocity at a certain region and/or side of the head,
compared to other regions and/or the other side of the head.
In this example, a pulse arrival time (PAT) at the certain
region may exhibit a larger delay compared to the delay of
PATs at other regions and/or at the other side of the head. In
still another example, an asymmetric change in blood flow
may be characterized by a change in a direction of blood
flow at a certain region, compared to other regions and/or the
symmetric region on the other side of the head. In this
example, an order at which pulse waves arrive at different
regions (as evident by PPG signals at the different regions)
may be indicative of the direction of blood flow. Thus, a
change in the arrival order of pulse waves on one side of the
head, which does not occur at regions on the other side of the
head, may indicate an asymmetrical change of a direction of
blood flow.

In some embodiments, the computer detects the abnormal
medical event by utilizing previously taken PPG signals of
the user (i.e., previously taken PPGgg,, PPGggs, PPGg;,
and PPGy;, ), from a period that precedes the current abnor-
mal medical event being detected at that time. This enables
an asymmetrical change to be observed, since it provides a
baseline according to which it is possible to compare current
PPG ., PPG,, PPGy; |, and PPGg; ,, such that it may be
determined that a change to blood flow on one side of the
head is not the same as a change on the other side of the
head. In some embodiments, previously taken PPGgg,,
PPGg,, PPGg;,, and PPGg;, are utilized to calculate a
baseline blood flow, such as values representing the extent
of blood flow at the different sides of the head, and/or at
different regions (e.g., ROl,,, ROIL,,, ROI;, and ROIL,,).
Optionally, calculating the baseline blood flow may be done
based on previously taken PPGgg,, PPGgg,, PPGg, . and
PPGg;, that were measured at least an hour before the
abnormal medical event is detected. Optionally, the previ-
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ously taken PPGg,, PPGg,, PPGy;,, and PPGg;, include
PPG signals measured at least a day before the abnormal
medical event is detected. Optionally, the previously taken
PPGgg,, PPGgg,, PPG; , and PPGg; 5 include PPG signals
measured more than a week before the abnormal medical
event is detected.

A baseline for the blood flow may be calculated in various
ways. In a first example, the baseline is a function of the
average measurements of the user (which include previously
taken PPGgg,, PPGgg,, PPGg;,, and PPGy;,), which were
taken before the occurrence of the abnormal medical event.
In a second example, the baseline may be a function of the
situation the user is in, such that previous measurements
taken during similar situations are weighted higher than
previous measurements taken during less similar situations.
A PPG signal may show different characteristics in different
situations because of the different mental and/or physiologi-
cal states of the user in the different situations. As a result,
a situation-dependent baseline can improve the accuracy of
detecting the abnormal medical event. In a third example,
the baseline may be a function of an intake of some
substance, such that previous measurements taken after
consuming similar substances are weighted higher than
previous measurements taken after not consuming the simi-
lar substances and/or after consuming less similar sub-
stances. A PPG signal may show different characteristics
after the user consumes different substances because of the
different mental and/or physiological states the user may be
in after consuming the substances, especially when the
substances include things such as medications, drugs, alco-
hol, and/or certain types of food. As a result, a substance-
dependent baseline can improve the accuracy of detecting
the abnormal medical event.

There are various types of abnormal medical events that
may be detected based on PPG signals that reflect an
asymmetrical change to blood flow, which is recognizable in
PPGgg;, PPGegs, PPGy;;, and PPGy, , of the user.

In some embodiments, the abnormal medical event may
involve the user having a cerebrovascular accident, which is
also known as having a stroke. An occurrence of a stroke
often has the following effect on a person. A blood clot (in
the case of ischemic stroke) or the raptured artery (in the
case of a hemorrhagic stroke) changes the blood flow to
certain regions of the brain. One or more of several mecha-
nisms may be the cause of changes to blood flow that are
observed following an onset of a stroke. Blood flow may
change due to a stroke because of flaccid muscles (on one
side of the face) that use less oxygen and demand less blood.
In such an event, local regulation mechanisms may generate
signals to the smooth muscles that decrease the diameter of
the arteries (which can reduce blood flow). Additionally or
alternatively, blood flow may change due to a stroke because
of nerve control changes that occur due to reduced blood
flow to the brain (a neurogenic mechanism); the same nerves
that control the muscles can also be involved in the control
of the constriction/dilation of blood vessels. Another pos-
sible cause of changes to blood flow involves obstruction-
related passive changes. Blood that flows through the major
vessels (in the base of the brain it is either the carotid (front)
or vertebral (back) arteries, must flow out through one of the
branches. When one pathway 1s blocked or restricted (due to
the stroke), more blood has to go through collateral path-
ways (which may change the blood flow). Thus, changes to
the blood flow in the face (and other areas of the head),
especially if they are asymmetric, can be early indicators of
a stroke. An event of a stroke may be detected in various
ways, some which are described in the following examples.
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In one embodiment, the abnormal medical event is an
ischemic stroke, and the deviation (of PPGgy,, PPGps,
PPGy;,, and PPGg,, compared to a baseline based on the
previous measurements of PPGgz,, PPGgg,, PPGy; , and
PPGg;, of the user) involves an increase in asymmetry
between blood flow on the left side of the head and blood
flow on the right side of the head, with respect to a baseline
asymmetry level between blood flow on the left side of the
head and blood flow on the right side of the head (as
determined based on the previous measurements). In some
embodiments, the term “ischemic stroke” may also include
Transient Ischemic Attack (TTA), known as “mini stroke”.

In another embodiment, the abnormal medical event is an
ischemic stroke, and the deviation (of PPGgg,, PPGg,,
PPGy;,, and PPGg;, compared to a baseline based on the
previous measurements of PPGgz,, PPGgg,, PPG;;, and
PPGy;, of the user) involves a monotonic increase in asym-
metry between blood flow at ROl,, and ROI,,, with respect
to a baseline asymmetry of the user (between blood flow at
ROI,, and ROI,,) during a period longer than 10 minutes.
Optionally, ROI,, is located in proximity of the mastoid
process behind the right ear, and ROI,, is located before of
the right ear.

In yet another embodiment, the abnormal medical event is
an ischemic stroke, and the deviation involves an increase in
variation between blood flow at ROI,, and ROI,,, with
respect to a baseline variation of the user between blood flow
at ROI, and ROI,,. Optionally, the computer suggests the
user to take images of at least one of the retinas, responsive
to detecting the increase in variation. The computer may
then compare the images of the retinas with previously taken
images of the user’s retinas, and utilize such a comparison
to improve the accuracy of detecting whether the user has
suffered the ischemic stroke. Optionally, the comparison of
the images of the retinas may take into account parameters
such as the diameter of retinal arteries, swelling of the
boundaries of the optic disk, and/or blurring of the bound-
aries of the optic disk. The images of the retinas may be
taken by any known and/or to be invented appropriate
device.

In some embodiments, the abnormal medical event may
involve the user having a migraine or another form of
headache. With migraines and other headaches, vasocon-
striction of facial or cranial blood vessels may lead to
asymmetric changes in blood flow between the left and right
sides of the head. Compensatory mechanisms may change
smooth muscle constriction around blood vessels, further
exacerbating this asymmetry. This vasoconstriction can lead
to differential surface blood flow, muscle contraction, and
facial temperature changes, leading to asymmetric blood
flow. As each individual’s particular patterns of vasocon-
striction would be unique to the individual, the asymmetric
phenomena may be different for different users. Thus, mea-
suring deviation from the user’s baseline blood flow patterns
may increase the accuracy of detecting these asymmetric
phenomena, in some embodiments. Additionally, the time
course of migraine or headache usually involves an occur-
rence over the course of minutes to hours (from the onset of
changes to blood flow), and usually occurs with a charac-
teristic pattern, allowing it to be differentiated from signs of
other medical, artificial or external causes, which manifest
different patterns of blood flow and/or time courses.

In one embodiment, the abnormal medical event is a
migraine attack, and the deviation (of PPGgg,, PPGg,,
PPGg;,, and PPGg;, compared to a baseline based on the
previous measurements of PPGgg,, PPGgz,, PPGy,, and
PPGyg;, of the user) is indicative of a pattern of a certain



US 10,638,938 Bl

13

change to facial blood flow, which is associated with a
pattern of a change to facial blood flow of at least one
previous migraine attack, determined based on data com-
prising previous PPGgg,, PPGeg,, PPGgr,, and PPGg,;.,,
which were measured starting from at least 5 minutes before
the previous migraine attack. In this embodiment, the time
of the beginning of the previous migraine attack corresponds
to the time at which the user became aware of the migraine
attack.

In another embodiment, the abnormal medical event is
headache, and the deviation is indicative of at least one of:
a change in directionality of facial blood flow, and an
asymmetrical reduction in blood flow to one side of the face
(for a period lasting more than one minute). For some
people, a migraine attack and/or a headache may cause a
change in directionality of facial blood flow because the
pulse propagation across the face arrives at one side before
it arrives to the other side. In one example, the changes in
directionality of facial blood flow are calculated from phase
variations between PPGy,, PPGr,, PPG4,, and PPGy,,
relative to a baseline for the user. For some people, vaso-
constriction caused by a migraine attack and/or a headache
may affect the amplitude of the PPG signals, such as
decreasing of amplitudes of the PPG signals in a certain
region. In one example, the reduction in blood flow to one
side of the face is calculated from changes between ampli-
tudes of PPGgy,, PPGg,, PPG;,, and PPGy;, relative to
the baseline.

In some embodiments, the abnormal medical event may
involve the user suffering from an infection. Inflammatory
conditions, such as cellulitis, dermatitis and ear infection,
originate in infection or inflammation in one particular
region of the face, causing vasodilation leading to a facial
asymmetry originating from phenomena such as increase in
swelling, redness and warmth, which are detectable only in
the vicinity of the infection. As each individual’s baseline
facial blood flow and coloration is different, comparing
current measurements with the baseline may allow accurate
identification of vasodilation resulting from an inflammatory
condition. The time course of such inflammatory conditions
would usually occur over the course of hours to days,
allowing it to be differentiated from other medical or arti-
ficial phenomena, which may have similar signs but over a
different time course.

Since inflammation often causes temperatures at the
infected region to rise, accuracy of detection of some
abnormal medical events may increase by measuring the
temperature at different regions on the head. In one embodi-
ment, the system configured to detect an abnormal medical
event includes right and left head-mounted thermometers,
located at least 2 cm to the right and to the left of a vertical
symmetry axis that divides the face, respectively. The head-
mounted thermometers may be contact thermometers, such
as thermistors, and/or non-contact thermal cameras. Option-
ally, the head-mounted thermometers measure ROIs on one
or more of the following regions: the forehead, the temples,
behind the ear, the cheeks, the nose, and the mouth. The right
and left head-mounted thermometers take right and left
temperature measurements, respectively. Optionally, the
computer detects the abnormal medical event also based on
a deviation of the right and left temperature measurements
from a baseline temperature for the user, where the baseline
temperature for the user is calculated based on data com-
prising previous right and left temperature measurements of
the user, taken more than a day before the abnormal medical
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event. Optionally, the abnormal medical event detected in
this embodiment is selected from a set comprising cellulitis
and dermatitis.

In one embodiments, the system configured to detect an
abnormal medical event may optionally include right and
left head-mounted thermometers, located less than 4 cm
from the right and left earlobes, respectively, which provide
right and left temperature measurements, respectively.
Optionally, the computer detects the abnormal medical event
also based on a deviation of the right and left temperature
measurements from a baseline temperature for the user,
where the baseline temperature for the user is calculated
based on data comprising previous right and left temperature
measurements of the user, taken more than a day before the
abnormal medical event. In one example, the abnormal
medical event is ear infection. In another example, the
abnormal medical event is cerebrovascular accident. In still
another example, the abnormal medical event is mastoiditis.

Obtaining the PPG signals PPG s ,, PPG¢g,, PPGg;, and
PPGyg;, from measurements taken by the at least one right-
side head-mounted device and the at least one left-side
head-mounted device may involve, in some embodiments,
performing various preprocessing operations in order to
assist in calculations and/or in extraction of the PPG signals.
Optionally, the measurements may undergo various prepro-
cessing steps prior to being used by the computer to detect
the abnormal medical event, and/or as part of the process of
the detection of the abnormal medical event. Some non-
limiting examples of the preprocessing include: normaliza-
tion of pixel intensities (e.g., to obtain a zero-mean unit
variance time series signal), and conditioning a time series
signal by constructing a square wave, a sine wave, or a user
defined shape, such as that obtained from an ECG signal or
a PPG signal as described in U.S. Pat. No. 8,617,081.

In some embodiments, in which the at least one right-side
head-mounted device and/or at least one left-side head-
mounted device are cameras, images taken by the cameras
may undergo various preprocessing to improve the signal,
such as color space transformation (e.g., transforming RGB
images into a monochromatic color or images in a different
color space), blind source separation using algorithms such
as independent component analysis (ICA) or principal com-
ponent analysis (PCA), and various filtering techniques,
such as detrending, bandpass filtering, and/or continuous
wavelet transform (CWT). Various preprocessing techniques
known in the art that may assist in extracting an PPG signals
from images are discussed in Zaunseder et al. (2018),
“Cardiovascular assessment by imaging photoplethysmog-
raphy-a review”, Biomedical Engineering 63(5), 617-634.
An example of preprocessing that may be used in some
embodiments is given in U.S. Pat. No. 9,020,185, titled
“Systems and methods for non-contact heart rate sensing”,
which describes how a times-series signals obtained from
video of a user can be filtered and processed to separate an
underlying pulsing signal by, for example, using an ICA
algorithm.

In some embodiments, detection of the abnormal medical
event may involve calculation of pulse arrival times (PATs)
at one or more of the regions ROI,,, ROI,,, ROI;, and
ROI,,. Optionally, a PAT calculated from an PPG signal
represents a time at which the value representing blood
volume (in the waveform represented in the PPG) begins to
rise (signaling the arrival of the pulse). Alternatively, the
PAT may be calculated as a different time, with respect to the
pulse waveform, such as the time at which a value repre-
senting blood volume reaches a maximum or a certain
threshold, or the PAT may be the average of the time the
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blood volume is above a certain threshold. Another approach
that may be utilized to calculate a PAT from an iPPG signal
is described in Sola et al. “Parametric estimation of pulse
arrival time: a robust approach to pulse wave velocity”,
Physiological measurement 30.7 (2009): 603, which
describe a family of PAT estimators based on the parametric
modeling of the anacrotic phase of a pressure pulse.

Detection of the abnormal medical event may involve the
computer utilizing an approach that may be characterized as
involving machine learning. In some embodiments, such a
detection approach may involve the computer generating
feature values based on data that includes PPG signals (i.e.,
PPGgg,, PPGgy,, PPGg;,, and PPGg,, of the user) and
optionally other data, and then utilizing a previously trained
model to calculate one or more values indicative of whether
the user is experiencing the abnormal medical event (which
may be any one of the examples of values mentioned further
above as being calculated by the computer for this purpose).
It is to be noted that when the computer calculates a value
that is indicative of the user having the abnormal medical
event, at least some of the feature values may reflect the fact
that an asymmetrical change to blood flow had occurred.
Optionally, the additional data used to generate at least some
of the feature values includes previous measurements of
PPGgz,, PPGg,, PPGg;,, and PPGy,, of the user, and/or
measurements from additional sensors and/or data sources
as discussed below.

Feature values generated based on PPG signals may
include various types of values, which may be indicative of
dynamics of the blood flow at the respective regions to
which the PPG signals correspond. Optionally, these feature
values may relate to properties of a pulse waveform, which
may be a specific pulse waveform (which corresponds to a
certain beat of the heart), or a window of pulse waveforms
(e.g., an average property of pulse waveforms in a certain
window of time). Some examples of feature values that may
be generated based on a pulse waveform include: the area
under the pulse waveform, the amplitude of the pulse
waveform, a derivative and/or second derivative of the pulse
waveform, a pulse waveform shape, pulse waveform energy,
and pulse transit time (to the respective ROI). Some addi-
tional examples of features may be indicative one or more of
the following: a magnitude of a systolic peak, a magnitude
of a diastolic peak, duration of the systolic phase, and
duration of the diastolic phase. Additional examples of
feature values may include properties of the cardiac activity,
such as the heart rate and heart rate variability (as deter-
mined from the PPG signal). Additionally, some feature
values may include values of other physiological signals that
may be calculated based on PPG signals, such as blood
pressure and cardiac output.

It is to be noted that the aforementioned feature values
may be calculated in various ways. In one example, some
feature values are calculated for each PPG signal individu-
ally. In another example, some feature values are calculated
after normalizing a PPG signal with respect to previous
measurements from the corresponding PPG device used to
measure the PPG signal. In other examples, at least some of
the feature values may be calculated based on an aggrega-
tion of multiple PPG signals (e.g., different pixels/regions in
images captured by an iPPG device), or by aggregating
values from multiple contact PPG devices.

In some embodiments, at least some of the feature values
may represent comparative values, which provide an indi-
cation of the difference in blood flow, and/or in some other
property that may be derived from a PPG signal, between
various regions on the head. Optionally, such feature values
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may assist in detecting asymmetrical blood flow (and/or
changes thereto). In one example, the feature values include
a certain feature value indicative of a difference in maximal
amplitudes of one or more of the following pairs of PPG
signals: (i) PPGgg, and PPGg,, (ii) PPGg, and PPGg, ,,
and (iii) PPG g, and PPGy; ,. In another example, the feature
values include a certain feature value indicative of a differ-
ence in a pulse arrival time between the following pairs of
regions of interest: (i) ROL,, and ROI,,, (ii) ROI,, and
ROI, |, and (iii) ROI, and ROI, ,.

In some embodiments, at least some of the feature values
describe properties of pulse waveforms (e.g., various types
of feature values mentioned above), which are derived from
the previous measurements of PPGg,, PPGg,, PPGy;,
and PPGg; , of the user. Optionally, these feature values may
include various blood flow baselines for the user, which
correspond to a certain situation the user was in when the
previous measurements were taken.

In some embodiments, at least some of the feature values
may be “raw” or minimally processed measurements of the
at least one right-side head-mounted device and/or at least
one left-side head-mounted device. In one example, at least
some of the feature values may be values obtained from
contact PPG devices. In another example, at least some of
the feature values may be pixel values obtained by inward-
facing head-mounted cameras. Optionally, the pixel values
may be provided as input to functions in order to generate at
feature values that are low-level image-based features. Some
examples of low-level features, which may be derived from
images, include feature generated using Gabor filters, local
binary patterns (LBP) and their derivatives, algorithms such
as SIFT and/or SURF (and their derivatives), image key-
points, histograms of oriented gradients (HOG) descriptors,
and products of statistical procedures such independent
component analysis (ICA), principal component analysis
(PCA), or linear discriminant analysis (LDA). Optionally,
one or more of the feature values may be derived from
multiple images taken at different times, such as volume
local binary patterns (VLBP), cuboids, and/or optical strain-
based features. In one example, one or more of the feature
values may represent a difference between values of pixels
at one time t and values of other pixels at a different region
at some other time t+x (which, for example, can help detect
different arrival times of a pulse wave).

In some embodiments, at least some feature values may
be generated based on other data sources (in addition to PPG
signals). In some examples, at least some feature values may
be generated based on other sensors, such as movement
sensors (which may be head-mounted, wrist-worn, or carried
by the user some other way), head-mounted thermal cameras
(e.g., as mentioned above), or other sensors used to measure
the user. In other examples, at least some feature values may
be indicative of environmental conditions, such as the tem-
perature, humidity, and/or extent of illumination (e.g., as
obtained utilizing an outward-facing head-mounted cam-
era). Additionally, some feature values may be indicative of
physical characteristics of the user, such as age, sex, weight,
Body Mass Index (BMI), skin tone, and other characteristics
and/or situations the user may be in (e.g., level of tiredness,
consumptions of various substances, etc.)

Stress 1s a factor that can influence the diameter of the
arteries, and thus influence calculated values that relate to
the PPG signals and/or blood flow. In one embodiment, the
computer receives a value indicative of a stress level of the
user, and generates at least one of the feature values based
on the received value. Optionally, the value indicative of the
stress level is obtained using a thermal camera. In one
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example, the system may include an inward-facing head-
mounted thermal camera that takes measurements of a
periorbital region of the user, where the measurements of a
periorbital region of the user are indicative of the stress level
of the user. In another example, the system includes an
inward-facing head-mounted thermal camera that takes
measurements of a region on the forehead of the user, where
the measurements of the region on the forehead of the user
are indicative of the stress level of the user. In still another
example, the system includes an inward-facing head-
mounted thermal camera that takes measurements of a
region on the nose of the user, where the measurements of
the region on the nose of the user are indicative of the stress
level of the user.

Hydration is a factor that affects blood viscosity, which
can affect the speed at which the blood flows in the body. In
one embodiment, the computer receives a value indicative of
a hydration level of the user, and generates at least one of the
feature values based on the received value. Optionally, the
system includes an additional camera that detects intensity
of radiation that is reflected from a region of exposed skin
of the user, where the radiation is in spectral wavelengths
chosen to be preferentially absorbed by tissue water. In one
example, said wavelengths are chosen from three primary
bands of wavelengths of approximately 1100-1350 nm,
approximately 1500-1800 nm, and approximately 2000-
2300 nm. Optionally, measurements of the additional cam-
era are utilized by the computer as values indicative of the
hydration level of the user.

The following are examples of embodiments that utilize
additional inputs to generate feature values used to detect the
abnormal medical event. In one embodiment, the computer
receives a value indicative of a temperature of the user’s
body, and generates at least one of the feature values based
on the received value. In another embodiment, the computer
receives a value indicative of a movement of the user’s body,
and generates at least one of the feature values based on the
received value. For example, the computer may receive the
input form a head-mounted Inertial Measurement Unit
(IMU) that includes a combination of accelerometers, gyro-
scopes, and optionally magnetometers, and/or an IMU in a
mobile device carried by the user. In yet another embodi-
ment, the computer receives a value indicative of an orien-
tation of the user’s head, and generates at least one of the
feature values based on the received value. For example, the
computer may receive the values indicative of the head’s
orientation from an outward-facing head-mounted camera,
and/or from a nearby non-wearable video camera. In still
another embodiment, the computer receives a value indica-
tive of consumption of a substance by the user, and generates
at least one of the feature values based on the received value.
Optionally, the substance comprises a vasodilator and/or a
vasoconstrictor.

The model utilized to detect the abnormal medical event
may be generated, in some embodiments, based on data
obtained from one or more users, corresponding to times in
which the one or more users were not affected by the
abnormal medical event, and additional data obtained while
the abnormal medical event occurred and/or following that
time. Thus, this training data may reflect PPG signals and/or
blood flow both at normal times, and changes to PPG signals
and/or blood flow that may ensue due to the abnormal
medical event. This data may be used to generate samples,
each sample including feature values generated based on
PPG signals of a user and optionally additional data (as
described above), and a label. The PPG signals include
PPGgg,, PPGers, PPGg;;, and PPGg;, of the user at a
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certain time, and optionally previous PPGgg,, PPG.,,
PPGg;,, and PPG,, of the user, taken before the certain
time. The label is a value related to the status of the
abnormal medical event. For example, the label may be
indicative of whether the user, at the certain time, experi-
enced the abnormal medical event. In another example, the
label may be indicative of the extent or severity of the
abnormal medical event at the certain time. In yet another
example, the label may be indicative of the duration until an
onset of the abnormal medical event. In still another
example, the label may be indicative of the duration that has
elapsed since the onset of the abnormal medical event.

In some embodiments, the model used by the computer to
detect the abnormal medical event from measurements of a
certain user may be generated, at least in part, based on data
that includes previous measurements of the certain user (and
as such, may be considered personalized to some extent for
the certain user). Additionally or alternatively, in some
embodiments, the model may be generated based on data of
other users. Optionally, the data used to train the model may
include data obtained from a diverse set of users (e.g., users
of different ages, weights, sexes, preexisting medical con-
ditions, etc.). Optionally, the data used to train the model
which is used to detect the abnormal medical event with a
certain user includes data of other users with similar char-
acteristics to the certain user (e.g., similar weight, age, sex,
height, and/or preexisting condition).

In order to achieve a robust model, which may be useful
for detecting the abnormal medical event for a diverse set of
conditions, in some embodiments, the samples used for the
training of the model may include samples based on data
collected when users were in different conditions. Option-
ally, the samples are generated based on data collected on
different days, while indoors and outdoors, and while dif-
ferent environmental conditions persisted. In one example,
the model is trained on samples generated from a first set of
training data taken during daytime, and is also trained on
other samples generated from a second set of training data
taken during nighttime. In a second example, the model is
trained on samples generated from a first set of training data
taken while users were exercising and moving, and is also
trained on other samples generated from a second set of data
taken while users were sitting and not exercising.

Utilizing the model to detect the abnormal medical event
may involve the computer performing various operations,
depending on the type of model. The following are some
examples of various possibilities for the model and the type
of calculations that may be accordingly performed by the
computer, in some embodiments, in order to calculate a
value indicative of whether the user was experiencing the
abnormal medical event: (a) the model comprises param-
eters of a decision tree. Optionally, the computer simulates
a traversal along a path in the decision tree, determining
which branches to take based on the feature values. A value
indicative of whether the user was experiencing the abnor-
mal medical event may be obtained at the leaf node and/or
based on calculations involving values on nodes and/or
edges along the path; (b) the model comprises parameters of
a regression model (e.g., regression coeflicients in a linear
regression model or a logistic regression model). Optionally,
the computer multiplies the feature values (which may be
considered a regressor) with the parameters of the regression
model in order to obtain the value indicative of whether the
user was experiencing the abnormal medical event; and/or
(¢) the model comprises parameters of a neural network. For
example, the parameters may include values defining at least
the following: (i) an interconnection pattern between differ-
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ent layers of neurons, (ii) weights of the interconnections,
and (iii) activation functions that convert each neuron’s
weighted input to its output activation. Optionally, the
computer provides the feature values as inputs to the neural
network, computes the values of the various activation
functions and propagates values between layers, and obtains
an output from the network, which is the value indicative of
whether the user was experiencing the abnormal medical
event.

In some embodiments, a machine learning approach that
may be applied to calculating a value indicative of whether
the user is experiencing an abnormal medical event may be
characterized as “deep learning”. In one embodiment, the
model may include parameters describing multiple hidden
layers of a neural network. Optionally, the model may
include a convolution neural network (CNN). In one
example, the CNN may be utilized to identify certain
patterns in video images, such as the patterns of correspond-
ing to blood volume effects and ballistocardiographic effects
of the cardiac pulse. Due to the fact that calculating a value
indicative of whether the user is experiencing the abnormal
medical event may be based on multiple, possibly succes-
sive, images that display a certain pattern of change over
time (i.e., across multiple frames), these calculations may
involve retaining state information that is based on previous
images. Optionally, the model may include parameters that
describe an architecture that supports such a capability. In
one example, the model may include parameters of a recur-
rent neural network (RNN), which is a connectionist model
that captures the dynamics of sequences of samples via
cycles in the network’s nodes. This enables RNNs to retain
a state that can represent information from an arbitrarily
long context window. In one example, the RNN may be
implemented using a long short-term memory (LSTM)
architecture. In another example, the RNN may be imple-
mented using a bidirectional recurrent neural network archi-
tecture (BRNN).

The following method for detecting an abnormal medical
event may be used by systems modeled according to FIG. 1a
or F1G. 1. The steps described below may be performed by
running a computer program having instructions for imple-
menting the method. Optionally, the instructions may be
stored on a computer-readable medium, which may option-
ally be a non-transitory computer-readable medium. In
response to execution by a system including a processor and
memory, the instructions cause the system to perform the
following steps:

In Step 1, measuring, utilizing at least one right-side
head-mounted device, at least two signals indicative of
photoplethysmographic signals (PPGg;, and PPGygg,,
respectively) at first and second regions of interest (ROl
and ROl,,, respectively) on the right side of a user’s head.
RO, and ROI,, are located at least 2 cm apart.

In Step 2, measuring, utilizing at least one left-side
head-mounted device, at least two signals indicative of
photoplethysmographic signals (PPGg;, and PPGg,,
respectively) at first and second regions of interest (ROI,,
and ROI,,, respectively) on the left side of the user’s head.
ROI,, and ROI;, are located at least 2 cm apart.

And in Step 3, detecting the abnormal medical event
based on an asymmetrical change to blood flow recognizable
in PPGgy, PPGer,, PPGg, and PPGg;,, relative to a
baseline based on previous measurements of PPGgg,
PPG ., PPGg;,, and PPGy;, of the user, taken before the
abnormal medical event.

In some embodiments, detecting the abnormal medical
event is done utilizing a machine learning-based approach.
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Optionally, the method includes the following steps: genet-
ating feature values based on data comprising: (1) PPG,
PPGg,, PPGg,,, and PPGg, of the user, and (ii) the
previous measurements of PPGgz,, PPGgg,, PPGy; , and
PPGy;, of the user; and utilizing a model to calculate, based
on the feature values, a value indicative of whether the user
is experiencing the abnormal medical event.

The following is description of additional aspects of
embodiments of systems configured to detect an abnormal
medical event, as well as additional embodiments for vari-
ous systems that may detect physiological responses based
on thermal measurements and/or other sources of data.

“Visible-light camera” refers to a non-contact device
designed to detect at least some of the visible spectrum, such
as a video camera with optical lenses and CMOS or CCD
sensor. A “thermal camera” refers herein to a non-contact
device that measures electromagnetic radiation having
wavelengths longer than 2500 nanometer (nm) and does not
touch its region of interest (ROI). A thermal camera may
include one sensing element (pixel), or multiple sensing
elements that are also referred to herein as “sensing pixels”,
“pixels”, and/or focal-plane array (FPA). A thermal camera
may be based on an uncooled thermal sensor, such as a
thermopile sensor, a microbolometer sensor (where
microbolometer refers to any type of a bolometer sensor and
its equivalents), a pyroelectric sensor, or a ferroelectric
Sensor.

A reference to a “camera” herein may relate to various
types of devices. In one example, a camera may be a
visible-light camera. In another example, a camera may
capture light in the ultra-violet range. In another example, a
camera may capture near infrared radiation (e.g., wave-
lengths between 750 and 2000 nm). And in still another
example, a camera may be a thermal camera.

In some embodiments, a device, such as a camera, may be
positioned such that it occludes an ROI on the user’s face,
while in other embodiments, the device may be positioned
such that it does not occlude the ROI. Sentences in the form
of “the system/camera does not occlude the ROI” indicate
that the ROI can be observed by a third person located in
front of the user and looking at the ROI, such as illustrated
by all the ROIs in FIG. 23 and FIG. 27. Sentences in the
form of “the system/camera occludes the ROI” indicate that
some of the ROIs cannot be observed directly by that third
person, such as ROIs 19 and 37 that are occluded by the
lenses in FIG. 17a, and ROIs 97 and 102 that are occluded
by cameras 91 and 96, respectively, in FIG. 25. Additionally,
when the context is clear, an ROI (region of interest) may be
referred to as a “region” (which is on the body or face of the
user).

Although many of the disclosed embodiments can use
occluding cameras (with or without a light source) success-
fully, in certain scenarios, such as when using an HMS on a
daily basis and/or in a normal day-to-day setting, using
cameras that do not occlude their ROIs on the face may
provide one or more advantages to the user, to the HMS,
and/or to the cameras, which may relate to one or more of
the following: esthetics, better ventilation of the face,
reduced weight, simplicity to wear, and reduced likelihood
to being tarnished.

The term “inward-facing head-mounted camera” refers to
a camera configured to be worn on a user’s head and to
remain pointed at its ROI, which is on the user’s face, also
when the user’s head makes angular and lateral movements
(such as movements with an angular velocity above 0.1
rad/sec, above 0.5 rad/sec, and/or above 1 rad/sec). A
head-mounted camera (which may be inward-facing and/or
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outward-facing) may be physically coupled to a frame worn
on the user’s head, may be attached to eyeglass using a
clip-on mechanism (configured to be attached to and
detached from the eyeglasses), may be physically coupled to
ahat or a helmet, or may be mounted to the user’s head using
any other known device that keeps the camera in a fixed
position relative to the user’s head also when the head
moves. Sentences in the form of “camera physically coupled
to the frame” mean that the camera moves with the frame,
such as when the camera is fixed to (or integrated into) the
frame, or when the camera is fixed to (or integrated into) an
element that is physically coupled to the frame.

Sentences in the form of “a frame configured to be worn
on a user’s head” or “a frame worn on a user’s head” refer
to a mechanical structure that loads more than 50% of its
weight on the user’s head. For example, an eyeglasses frame
may include two temples connected to two rims connected
by a bridge; the frame in Oculus Rift™ includes the foam
placed on the user’s face and the straps; and the frames in
Google Glass™ and Spectacles by Snap Inc. are similar to
eyeglasses frames. Additionally or alternatively, the frame
may connect to, be affixed within, and/or be integrated with,
a helmet (e.g., sports, motorcycle, bicycle, and/or combat
helmets) and/or a brainwave-measuring headset.

When a camera is inward-facing and head-mounted, chal-
lenges faced by systems known in the art that are used to
acquire images, which include non-head-mounted cameras,
may be simplified and even eliminated with some of the
embodiments described herein. Some of these challenges
may involve dealing with complications caused by move-
ments of the user, image registration, ROI alignment, track-
ing based on hot spots or markers, and motion compensa-
tion.

In various embodiments, cameras are located close to a
user’s face, such as at most 2 ¢cm, 5 cm, 10 ¢cm, 15 ¢m, or
20 cm from the face. The distance from the face/head in
sentences such as “a camera located less than 10 cm from the
face/head” refers to the shortest possible distance between
the camera and the face/head. The head-mounted cameras
used in various embodiments may be lightweight, such that
each camera weighs below 10 g, 5 g, 1 g, and/or 0.5 g.

The following figures show various examples of HMSs
equipped with head-mounted cameras. FIG. 17a illustrates
various inward-facing head-mounted cameras coupled to an
eyeglasses frame 15. Cameras 10 and 12 capture regions 11
and 13 on the forehead, respectively. Cameras 18 and 36
capture regions on the periorbital areas 19 and 37, respec-
tively. The HMS further includes an optional computer 16,
which may include a processor, memory, a battery and/or a
communication module. FIG. 175 illustrates a similar HMS
in which inward-facing head-mounted cameras 48 and 49
capture regions 41 and 41, respectively. Cameras 22 and 24
capture regions 23 and 25, respectively. Camera 28 captures
region 29. And cameras 26 and 43 capture regions 38 and 39,
respectively.

FIG. 18 illustrates inward-facing head-mounted cameras
coupled to an augmented reality device such as Microsoft
HoloLens™. FIG. 19 illustrates head-mounted cameras
coupled to a virtual reality device such as Facebook’s
Oculus Rift™. FIG. 20 is a side view illustration of head-
mounted cameras coupled to an augmented reality device
such as Google Glass™. FIG. 21 is another side view
illustration of head-mounted cameras coupled to a sun-
glasses frame.

FIG. 22 to FIG. 25 illustrate HMSs configured to capture
various ROIs relevant to some of the embodiments describes
herein. FIG. 22 illustrates a frame 35 that mounts inward-
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facing head-mounted cameras 30 and 31 that capture regions
32 and 33 on the forehead, respectively. FIG. 23 illustrates
a frame 75 that mounts inward-facing head-mounted cam-
eras 70 and 71 that capture regions 72 and 73 on the
forehead, respectively, and inward-facing head-mounted
cameras 76 and 77 that capture regions 78 and 79 on the
upper lip, respectively. FIG. 24 illustrates a frame 84 that
mounts inward-facing head-mounted cameras 80 and 81 that
capture regions 82 and 83 on the sides of the nose, respec-
tively. And FIG. 25 illustrates a frame 90 that includes (i)
inward-facing head-mounted cameras 91 and 92 that are
mounted to protruding arms, and capture regions 97 and 98
on the forehead, respectively, (ii) inward-facing head-
mounted cameras 95 and 96, which are also mounted to
protruding arms, which capture regions 101 and 102 on the
lower part of the face, respectively, and (iii) head-mounted
cameras 93 and 94 that capture regions on the periorbital
areas 99 and 100, respectively.

FIG. 26 to FIG. 29 illustrate various inward-facing head-
mounted cameras having multi-pixel sensors (FPA sensors),
configured to capture various ROIs relevant to some of the
embodiments describes herein. FIG. 26 illustrates head-
mounted cameras 120 and 122 that capture regions 121 and
123 on the forehead, respectively, and head-mounted camera
124 that captures region 125 on the nose. FIG. 27 illustrates
head-mounted cameras 126 and 128 that capture regions 127
and 129 on the upper lip, respectively, in addition to the
head-mounted cameras already described in FIG. 26. FIG.
28 illustrates head-mounted cameras 130 and 132 that
capture larger regions 131 and 133 on the upper lip and the
sides of the nose, respectively. And FIG. 29 illustrates
head-mounted cameras 134 and 137 that capture regions 135
and 138 on the right and left cheeks and right and left sides
of the mouth, respectively, in addition to the head-mounted
cameras already described in FIG. 28.

In some embodiments, the head-mounted cameras may be
physically coupled to the frame using a clip-on device
configured to be attached/detached from a pair of eyeglasses
in order to secure/release the device to/from the eyeglasses,
multiple times. The clip-on device holds at least an inward-
facing camera, a processor, a battery, and a wireless com-
munication module. Most of the clip-on device may be
located in front of the frame (as illustrated in FIG. 304, FIG.
315, and FIG. 34), or alternatively, most of the clip-on
device may be located behind the frame, as illustrated in
FIG. 33b and FIG. 325.

FIG. 30a, FIG. 305, and FIG. 30¢ illustrate two right and
left clip-on devices 141 and 142, respectively, configured to
attached/detached from an eyeglasses frame 140. The clip-
on device 142 includes an inward-facing head-mounted
camera 143 pointed at a region on the lower part of the face
(such as the upper lip, mouth, nose, and/or cheek), an
inward-facing head-mounted camera 144 pointed at the
forehead, and other electronics 145 (such as a processor, a
battery, and/or a wireless communication module). The
clip-on devices 141 and 142 may include additional cameras
illustrated in the drawings as black circles.

FIG. 316 and FIG. 315 illustrate a clip-on device 147 that
includes an inward-facing head-mounted camera 148
pointed at a region on the lower part of the face (such as the
nose), and an inward-facing head-mounted camera 149
pointed at the forehead. The other electronics (such as a
processor, a battery, and/or a wireless communication mod-
ule) is located inside the box 150, which also holds the
cameras 148 and 149.

FIG. 33a and FIG. 335 illustrate two right and left clip-on
devices 160 and 161, respectively, configured to be attached
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behind an eyeglasses frame 165. The clip-on device 160
includes an inward-facing head-mounted camera 162
pointed at a region on the lower part of the face (such as the
upper lip, mouth, nose, and/or cheek), an inward-facing
head-mounted camera 163 pointed at the forehead, and other
electronics 164 (such as a processor, a battery, and/or a
wireless communication module). The clip-on devices 160
and 161 may include additional cameras illustrated in the
drawings as black circles.

FIG. 32¢ and FIG. 324 illustrate a single-unit clip-on
device 170, configured to be attached behind an eyeglasses
frame 176. The single-unit clip-on device 170 includes
inward-facing head-mounted cameras 171 and 172 pointed
at regions on the lower part of the face (such as the upper lip,
mouth, nose, and/or cheek), inward-facing head-mounted
cameras 173 and 174 pointed at the forehead, a spring 175
configured to apply force that holds the clip-on device 170
to the frame 176, and other electronics 177 (such as a
processor, a battery, and/or a wireless communication mod-
ule). The clip-on device 170 may include additional cameras
illustrated in the drawings as black circles.

FIG. 34 illustrates two right and left clip-on devices 153
and 154, respectively, configured to attached/detached from
an eyeglasses frame, and having protruding arms to hold the
inward-facing head-mounted cameras. Head-mounted cam-
era 155 captures a region on the lower part of the face,
head-mounted camera 156 captures a region on the forehead,
and the left clip-on device 154 further includes other elec-
tronics 157 (such as a processor, a battery, and/or a wireless
communication module). The clip-on devices 153 and 154
may include additional cameras illustrated in the drawings
as black circles.

Tt is noted that the elliptic and other shapes of the ROIs in
some of the drawings are just for illustration purposes, and
the actual shapes of the ROIs are usually not as illustrated.
It is possible to calculate the accurate shape of an ROI using
various methods, such as a computerized simulation using a
3D model of the face and a model of a head-mounted system
(HMS) to which a camera is physically coupled, or by
placing a LED instead of the sensor, while maintaining the
same field of view (FOV) and observing the illumination
pattern on the face. Furthermore, illustrations and discus-
sions of a camera represent one or more cameras, where
each camera may have the same FOV and/or different FOVs.
Unless indicated to the contrary, the cameras may include
one or more sensing elements (pixels), even when multiple
sensing elements do not explicitly appear in the figures;
when a camera includes multiple sensing elements then the
illustrated ROT usually refers to the total ROI captured by
the camera, which is made of multiple regions that are
respectively captured by the different sensing elements. The
positions of the cameras in the figures are just for illustra-
tion, and the cameras may be placed at other positions on the
HMS.

Sentences in the form of an “ROI on an area”, such as ROI
on the forehead or an ROI on the nose, refer to at least a
portion of the area. Depending on the context, and especially
when using a camera having a small number of pixels, the
ROI may cover another area (in addition to the area). For
example, a sentence in the form of “an ROI on the nose”
may refer to either: 100% of the RO is on the nose, or some
of the ROl is on the nose and some of the ROI is on the upper
lip.

Various embodiments described herein involve detections
of physiological responses based on user measurements.
Some examples of physiological responses include stress, an
allergic reaction, an asthma attack, a stroke, congestive heart
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failure, dehydration, intoxication (including drunkenness), a
headache (which includes a migraine), and/or fatigue. Other
examples of physiological responses include manifestations
of fear, startle, sexual arousal, anxiety, joy, pain or guilt. Still
other examples of physiological responses include physi-
ological signals such as cardiovascular parameters (such as
heart rate, blood pressure, and/or cardiac output), tempera-
ture, values of eye-related parameters (such as eye move-
ments and/or pupil diameter), values of speech related
parameters (such as frequencies and/or tempo), and/or val-
ues of respiratory related parameters (such as respiration
rate, tidal volume, and/or exhale duration) of the user.
Optionally, detecting a physiological response may involve
one or more of the following: determining whether the user
has/had the physiological response, identifying an imminent
attack associated with the physiological response, and/or
calculating the extent of the physiological response.

In some embodiments, detection of the physiological
response is done by processing measurements that fall
within a certain window of time that characterizes the
physiological response. For example, depending on the
physiological response, the window may be five seconds
long, thirty seconds long, two minutes long, five minutes
long, fifteen minutes long, or one hour long. Detecting the
physiological response may involve analysis of measure-
ments taken during multiple of the above-described win-
dows, such as measurements taken during different days. In
some embodiments, a computer may receive a stream of
measurements, taken while the user wears an HMS with
coupled cameras and/or other sensors during the day, and
periodically evaluate measurements that fall within a sliding
window of a certain size.

In some embodiments, models are generated based on
measurements taken over long periods. Sentences of the
form of “measurements taken during different days” or
“measurements taken over more than a week” are not
limited to continuous measurements spanning the different
days or over the week, respectively. For example, “mea-
surements taken over more than a week” may be taken by
eyeglasses equipped with cameras and/or other sensors,
which are worn for more than a week, 8 hours a day. In this
example, the user is not required to wear the eyeglasses
while sleeping in order to take measurements over more than
a week. Similarly, sentences of the form of “measurements
taken over more than 5 days, at least 2 hours a day” refer to
a set comprising at least 10 measurements taken over 5
different days, where at least two measurements are taken
each day at times separated by at least two hours.

Utilizing measurements taken over a long period (e.g.,
measurements taken on “different days”) may have an
advantage, in some embodiments, of contributing to the
generalizability of a trained model. Measurements taken
over the long period likely include measurements taken in
different environments, and/or measurements taken while
the measured user was in various physiological and/or
mental states (e.g., before/after meals, and/or while the
measured user was sleepy/energetic/happy/depressed, etc.).
Training a model on such data can improve the performance
of systems that utilize the model in the diverse settings often
encountered in real-world use (as opposed to controlled
laboratory-like settings). Additionally, taking the measure-
ments over the long period may have the advantage of
enabling collection of a large amount of training data that is
required for some machine learning approaches (e.g., “deep
learning”).

Detecting the physiological response may involve per-
forming various types of calculations by a computer.
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Optionally, detecting the physiological response may
involve performing one or more of the following operations:
comparing measurements to a threshold (when the threshold
is reached that may be indicative of an occurrence of the
physiological response), comparing measurements to a ref-
erence time series, and/or by performing calculations that
involve a model trained using machine learning methods.
Optionally, the measurements upon which the one or more
operations are performed are taken during a window of time
of a certain length, which may optionally depend on the type
of physiological response being detected. In one example,
the window may be shorter than one or more of the follow-
ing durations: five seconds, fifteen seconds, one minute, five
minutes, thirty minutes, one hour, four hours, one day, or one
week. In another example, the window may be longer than
one or more of the aforementioned durations. Thus, when
measurements are taken over a long period, such as mea-
surements taken over a period of more than a week, detec-
tion of the physiological response at a certain time may be
done based on a subset of the measurements that falls within
a certain window near the certain time; the detection at the
certain time does not necessarily involve utilizing all values
collected throughout the long period.

In some embodiments, detecting the physiological
response of a user may involve utilizing baseline measure-
ment values, most of which were taken when the user was
not experiencing the physiological response. Optionally,
detecting the physiological response may rely on observing
a change to typical measurement value at one or more ROIs
(the baseline), where different users might have different
typical measurement values at the ROIs (i.e., different
baselines). Optionally, detecting the physiological response
may rely on observing a change to a baseline level, which is
determined based on previous measurements taken during
the preceding minutes and/or hours.

In some embodiments, detecting a physiological response
involves determining the extent of the physiological
response, which may be expressed in various ways that are
indicative of the extent of the physiological response, such
as: (1) a binary value indicative of whether the user experi-
enced, and/or is experiencing, the physiological response,
(ii) a numerical value indicative of the magnitude of the
physiological response, (iii) a categorial value indicative of
the severity/extent of the physiological response, (iv) an
expected change in measurements of an ROI, and/or (v) rate
of change in measurements of an ROI. Optionally, when the
physiological response corresponds to a physiological signal
(e.g., a heart rate, a breathing rate, or an extent of frontal
lobe brain activity), the extent of the physiological response
may be interpreted as the value of the physiological signal.

One approach for detecting a physiological response,
which may be utilized in some embodiments, involves
comparing measurements of one or more ROIs to a thresh-
old. In these embodiments, the computer may detect the
physiological response by comparing the measurements,
and/or values derived therefrom (e.g., a statistic of the
measurements and/or a function of the measurements), to
the threshold to determine whether it is reached. Optionally,
the threshold may include a threshold in the time domain, a
threshold in the frequency domain, an upper threshold,
and/or a lower threshold. When a threshold involves a
certain change to a value (such as temperature or heart rate),
the certain change may be positive or negative. Different
physiological responses described herein may involve dif-
ferent types of thresholds, which may be an upper threshold

10

15

20

25

30

35

40

45

50

55

60

65

26

(where reaching the threshold meanszthe threshold) or a
lower threshold (where reaching the threshold meanssthe
threshold).

Another approach for detecting a physiological response,
which may be utilized in some embodiments, may be
applicable when the measurements of a user are treated as
time series data. In some embodiments, the computer may
compare measurements (represented as a time series) to one
or more reference time series that correspond to periods of
time in which the physiological response occurred. Addi-
tionally or alternatively, the computer may compare the
measurements to other reference time series corresponding
to times in which the physiological response did not occur.
Optionally, if the similarity between the measurements and
a reference time series corresponding to a physiological
response reaches a threshold, this is indicative of the fact
that the measurements correspond to a period of time during
which the user had the physiological response. Optionally, if
the similarity between the measurements and a reference
time series that does not correspond to a physiological
response reaches another threshold, this is indicative of the
fact that the measurements correspond to a period of time in
which the user did not have the physiological response. Time
series analysis may involve various forms of processing
involving segmenting data, aligning data, clustering, time
warping, and various functions for determining similarity
between sequences of time series data. Some of the tech-
niques that may be utilized in various embodiments are
described in Ding, Hui, et al. “Querying and mining of time
series data: experimental comparison of representations and
distance measures.” Proceedings of the VLDB Endowment
1.2 (2008): 1542-1552, and in Wang, Xiaoyue, et al.
“Experimental comparison of representation methods and
distance measures for time series data.” Data Mining and
Knowledge Discovery 26.2 (2013): 275-309.

Herein, “machine learning” methods refers to learning
from examples using one or more approaches. Optionally,
the approaches may be considered supervised, semi-super-
vised, and/or unsupervised methods. Examples of machine
learning approaches include: decision tree learning, asso-
ciation rule learning, regression models, nearest neighbors
classifiers, artificial neural networks, deep learning, induc-
tive logic programming, support vector machines, cluster-
ing, Bayesian networks, reinforcement learning, representa-
tion learning, similarity and metric learning, sparse
dictionary learning, genetic algorithms, rule-based machine
learning, and/or learning classifier systems.

Herein, a “machine learning-based model” is a model
trained using machine learning methods. For brevity’s sake,
at times, a “machine learning-based model” may simply be
called a “model”. Referring to a model as being “machine
learning-based” is intended to indicate that the model is
trained using machine learning methods (otherwise,
“model” may also refer to a model generated by methods
other than machine learning).

In some embodiments, which involve utilizing a machine
learning-based model, a computer is configured to detect the
physiological response by generating feature values based
on the measurements (and possibly other values), and/or
based on values derived therefrom (e.g., statistics of the
measurements). The computer then utilizes the machine
learning-based model to calculate, based on the feature
values, a value that is indicative of whether, and/or to what
extent, the user is experiencing (and/or is about to experi-
ence) the physiological response. Optionally, calculating
said value is considered “detecting the physiological
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response”. Optionally, the value calculated by the computer
is indicative of the probability that the user has/had the
physiological response.

Herein, feature values may be considered input to a
computer that utilizes a model to perform the calculation of
a value, such as the value indicative of the extent of the
physiological response mentioned above. It is to be noted
that the terms “feature” and “feature value” may be used
interchangeably when the context of their use is clear.
However, a “feature” typically refers to a certain type of
value, and represents a property, while “feature value” is the
value of the property with a certain instance (sample). For
example, a feature may be temperature at a certain ROI,
while the feature value corresponding to that feature may be
36.9° C. in one instance and 37.3° C. in another instance.

In some embodiments, a machine learning-based model
used to detect a physiological response is trained based on
data that includes samples. Each sample includes feature
values and a label. The feature values may include various
types of values. At least some of the feature values of a
sample are generated based on measurements of a user taken
during a certain period of time. Optionally, some of the
feature values may be based on various other sources of
information described herein. The label is indicative of a
physiological response of the user corresponding to the
certain period of time. Optionally, the label may be indica-
tive of whether the physiological response occurred during
the certain period, and/or the extent of the physiological
response during the certain period. Additionally or alterna-
tively, the label may be indicative of how long the physi-
ological response lasted. Labels of samples may be gener-
ated using various approaches, such as self-report by users,
annotation by experts that analyze the training data, auto-
matic annotation by a computer that analyzes the training
data and/or analyzes additional data related to the training
data, and/or utilizing additional sensors that provide data
useful for generating the labels. It is to be noted that herein
when it is stated that a model is trained based on certain
measurements, it means that the model was trained on
samples comprising feature values generated based on the
certain measurements and labels corresponding to the cer-
tain measurements. Optionally, a label corresponding to a
measurement is indicative of the physiological response at
the time the measurement was taken.

Various types of feature values may be generated based on
measurements and/or changes to the measurements. In order
to better detect physiological responses that take some time
to manifest, in some embodiments, some feature values may
describe measurements at a certain ROI at different points of
time. Optionally, these feature values may include various
functions and/or statistics of the measurements such as
minimunm/maximum measurement values and/or average
values during certain windows of time.

It is to be noted that when it is stated that feature values
are generated based on data comprising multiple sources, it
means that for each source, there is at least one feature value
that is generated based on that source (and possibly other
data). Optionally, a sample is considered generated based on
measurements of a user when it includes feature values
generated based on the measurements of the user.

In addition to feature values that are generated based on
measurements, in some embodiments, at least some feature
values utilized by a computer (e.g., to detect a physiological
response or train a mode) may be generated based on
additional sources of data that may affect the user’s mea-
surements. Some examples of the additional sources
include: (i) measurements of the environment such as tem-
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perature, humidity level, noise level, elevation, air quality, a
wind speed, precipitation, and infrared radiation; (ii) con-
textual information such as the time of day (e.g., to account
for effects of the circadian rhythm), day of month (e.g., to
account for effects of the lunar rhythm), day in the year (e.g,,
to account for seasonal effects), and/or stage in a menstrual
cycle; and/or (iii) information about the user being measured
such as sex, age, weight, height, and/or body build. It is
noted that the feature values may be generated based on
physiological signals of the user obtained by one or more
sensors, such as a visible-light camera, a thermal camera, a
microphone, a head-mounted accelerometer, an eye-tracker,
a photoplethysmogram (PPG) sensor, an electrocardiogram
(ECG) sensor, an electroencephalography (EEG) sensor, a
galvanic skin response (GSR) sensor, and/or a thermistor.

The machine learning-based model used to detect a physi-
ological response may be trained, in some embodiments,
based on data collected in day-to-day, real world scenarios.
As such, the data may be collected at different times of the
day, while users perform various activities, and in various
environmental conditions. Utilizing such diverse training
data may enable a trained model to be more resilient to the
various effects different conditions can have on the values of
the user measurements, and consequently, be able to achieve
better detection of the physiological response in real world
day-to-day scenarios.

Since real world day-to-day conditions are not the same
all the time, sometimes detection of the physiological
response may be hampered by what is referred to herein as
“confounding factors”. Some examples of confounding fac-
tors include: (i) environmental phenomena such as direct
sunlight, air conditioning, and/or wind; (ii) things that are on
the user’s face, which are not typically there and/or do not
characterize the faces of most users (e.g., cosmetics, oint-
ments, sweat, hair, facial hair, skin blemishes, acne, inflam-
mation, piercings, body paint, and food leftovers); (iii)
physical activity that may affect the user’s heart rate, blood
circulation, and/or blood distribution (e.g., walking, run-
ning, jumping, and/or bending over); (iv) consumption of
substances to which the body has a physiological response,
such as various medications, alcohol, caffeine, tobacco,
and/or certain types of food; and/or (v) disruptive facial
movements (e.g., frowning, talking, eating, drinking, sneez-
ing, and coughing).

Occurrences of confounding factors may not always be
easily identified in the measurements. Thus, in some
embodiments, systems may incorporate measures designed
to accommodate for the confounding factors. In some
embodiments, these measures may involve generating fea-
ture values that are based on additional sensors, other than
the sensor affected gy the confounding factors. In some
embodiments, these measures may involve refraining from
detecting the physiological response, which should be inter-
preted as refraining from providing an indication that the
user has the physiological response.

Training data used to train a model for detecting a
physiological response may include, in some embodiments,
adiverse set of samples corresponding to various conditions,
some of which involve occurrence of confounding factors
(when there is no physiological response, and/or when there
is a physiological response). Having samples in which a
confounding factor occurs can lead to a model that is less
susceptible to wrongfully detect the physiological response
(which may be considered an occurrence of a false positive)
in real world situations.

When a model is trained with training data comprising
samples generated from measurements of multiple users, the
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model may be considered a general model. When a model is
trained with training data comprising at least a certain
proportion of samples generated from measurements of a
certain user, and/or when the samples generated from the
measurements of the certain user are associated with at least
a certain proportion of weight in the training data, the model
may be considered a personalized model for the certain user.
Optionally, the personalized model for the certain user
provides better results for the certain user, compared to a
general model that was not personalized for the certain user.
Optionally, personalized model may be trained based on
measurements of the certain user, which were taken while
the certain user was in different situations; for example, train
the model based on measurements taken while the certain
user had a headache/epilepsy/stress/anger attack, and while
the certain user did not have said attack. Additionally or
alternatively, the personalized model may be trained based
on measurements of the certain user, which were taken over
a duration long enough to span different situations; examples
of such long enough durations may include: a week, a
month, six months, a year, and three years.

Training a model that is personalized for a certain user
may require collecting a sufficient number of training
samples that are generated based on measurements of the
certain user. Thus, initially detecting the physiological
response with the certain user may be done utilizing a
general model, which may be replaced by a personalized
model for the certain user, as a sufficiently large number of
samples are generated based on measurements of the certain
user. Another approach involves gradually modifying a
general model based on samples of the certain user in order
to obtain the personalized model.

After a model is trained, the model may be provided for
use by a system that detects the physiological response.
Providing the model may involve performing different
operations. In one embodiment, providing the model to the
system involves forwarding the model to the system via a
computer network and/or a shared computer storage medium
(e.g., writing the model to a memory that may be accessed
by the system that detects the physiological response). In
another embodiment, providing the model to the system
involves storing the model in a location from which the
system can retrieve the model, such as a database and/or a
cloud-based storage from which the system may retrieve the
model. In still another embodiment, providing the model
involves notifying the system regarding the existence of the
model and/or regarding an update to the model. Optionally,
this notification includes information needed in order for the
system to obtain the model.

A model for detecting a physiological response may
include different types of parameters. Following are some
examples of various possibilities for the model and the type
of calculations that may be accordingly performed by a
computer in order to detect the physiological response: (a)
the model comprises parameters of a decision tree. Option-
ally, the computer simulates a traversal along a path in the
decision tree, determining which branches to take based on
the feature values. A value indicative of the physiological
response may be obtained at the leaf node and/or based on
calculations involving values on nodes and/or edges along
the path; (b) the model comprises parameters of a regression
model (e.g., regression coeflicients in a linear regression
model or a logistic regression model). Optionally, the com-
puter multiplies the feature values (which may be considered
a regressor) with the parameters of the regression model in
order to obtain the value indicative of the physiological
response; and/or (c) the model comprises parameters of a
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neural network. For example, the parameters may include
values defining at least the following: (i) an interconnection
pattern between different layers of neurons, (i) weights of
the interconnections, and (iii) activation functions that con-
vert each neuron’s weighted input to its output activation.
Optionally, the computer provides the feature values as
inputs to the neural network, computes the values of the
various activation functions and propagates values between
layers, and obtains an output from the network, which is the
value indicative of the physiological response.

A user interface (UI) may be utilized, in some embodi-
ments, to notify the user and/or some other entity, such as a
caregiver, about the physiological response, and/or present
an alert responsive to an indication that the extent of the
physiological response reaches a threshold. The Ul may
include a screen to display the notification and/or alert, a
speaker to play an audio notification, a tactile UI, and/or a
vibrating UL In some embodiments, “alerting” about a
physiological response of a user refers to informing about
one or more of the following non-limiting examples: the
occurrence of a physiological response that the user does not
usually have (e.g., a stroke, intoxication, and/or dehydra-
tion), an imminent physiological response (e.g., an allergic
reaction, an epilepsy attack, and/or a migraine), and an
extent of the physiological response reaching a threshold
(e.g., stress and/or blood pressure reaching a predetermined
level).

Due to the mostly symmetric nature of the human body,
when the face undergoes temperature changes, e.g., due to
external factors such as the temperature in the environment
or internal factors such as an activity-related rise in body
temperature, the changes to the face are generally symmet-
ric. That is, the temperature changes at a region of interest
(ROI) on the left side of the face (e.g., the left side of the
forehead) are usually similar to the temperature changes at
the symmetric ROI on the right side of the face (e.g., the
right side of the forehead). However, when the temperature
on the face changes in an asymmetric way, this can be
indicative of various physiological responses and/or unde-
sirable phenomena. Some examples of phenomena that may
be identified by detecting asymmetric thermal patterns
(“thermal asymmetry”) on a user’s face include some types
of strokes. In the case of stroke, often the decreased blood
flow in certain regions of the head (due to the stroke) can
cause a decrease in the cutaneous temperatures near those
certain regions.

Some embodiments utilize head-mounted sensors in order
to detect stroke signs that involve detectable changes in
temperature and/or blood flow due to a stroke event.

In some embodiments, “stroke symptoms” refers to
changes to function/sensation reported by the patient. In
some embodiments, “stroke signs” refers to objective
changes observable by a human individual and/or a sensor.
Detecting stroke symptoms and/or stroke signs may also be
referred to herein as detecting “whether the user has suffered
from a stroke”. It is to be noted that a detection that the user
has suffered from a stroke may be interpreted, in some cases,
as indicating that there is a higher than normal risk that the
user has suffered from a stroke, and that certain actions
should be taken (such as further investigation of the user’s
state by other means or seeking medical attention). Thus, in
some embodiments, detection by the computer that the user
has suffered from a stroke may serve as an initial step that
triggers further steps for diagnosing the user’s condition and
not a definitive final step in diagnosing the user’s state.

In some embodiments, a system configured to detect a
stroke based on thermal measurements includes at least one
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inward-facing head-mounted thermal camera (CAM) and
computer. The at least one CAM is/are configured to take
thermal measurements of at least first and second regions on
the right and left sides of the head (THg, and TH,,,
respectively) of a user. Optionally, the at least one CAM is
located below the first and second regions, and does not
occlude the first and second regions. The computer is
configured to detect, based on THy, and TH, ;, whether the
user has suffered a stroke. Optionally, detecting whether the
user has suffered from a stroke refers to a recent stroke
event, such as an ischemic or hemorrhagic stroke event that
started a short while before THy, and TH, were taken, where
“a short while” may be a period between minutes and several
hours before THy, and TH,, were taken. In this scenario,
detection that the user has suffered from a stroke may enable
an intervention that can reduce the permanent damage of the
stroke. Additionally detecting whether the user has suffered
from a stroke may also refer, in some embodiments, to
earlier stroke events, which occurred more than six hours
before THy, and TH;, were taken.

The first and second regions of which measurements are
taken may include portions of various parts of the head. For
example, in different embodiments, the first and second
regions may cover a portion of at least one of the following
pairs of regions: the right and left sides of the forehead, the
right and left temples, the right and left cheeks, the right and
left earlobes, behind the right and left ears, periorbital areas
around the right and left eyes, the area of the right and left
mastoid processes.

In one embodiment, each of the at least one CAM is
physically coupled to a frame worn on a user’s head, and is
located less than 15 cm, 5 cm, or 2 cm from the user’s face.
In another embodiment, the at least one CAM is physically
coupled to a clip-on, and the clip-on comprises a body
configured to be attached and detached, multiple times, from
a frame configured to be worn on the user’s head. FIG. 30a
to FIG. 34 illustrate various examples of embodiments of
systems that include a clip-on which may have the at least
one CAM coupled thereto.

In one embodiment, due to the angle between the optical
axis of a certain CAM from among the at least one CAM and
the Frankfort horizontal plane, the Scheimpflug principle
may be employed in order to capture sharper images with the
certain CAM. For example, when the user wears a frame to
which the certain CAM is coupled, the certain CAM has a
certain tilt greater than 20 between its sensor and lens
planes, in order to capture the sharper images. Additional
details regarding application of the Scheimpflug are pro-
vided herein further below.

The at least one CAM may be a single CAM, in one
embodiment, such as a single FPA that captures images that
include a portion of both sides of the forehead. In this
embodiment, TH, and TH;, include measurements that
cover portions of the left side and right side of user’s
forehead, respectively. Optionally, THy, and TH;, may be
measured by different subsets of pixels of the FPA. An
example of a single thermal camera that may be utilized to
measure TH,, and TH,, is camera 149 illustrated in FIG.
31a, which in this example, is an inward-facing head-
mounted thermal camera. Another example, of a system that
includes a single thermal camera is illustrated in FIG. 3,
which illustrates a user wearing glasses with a single thermal
sensor 605 that measures ROIs 606a and 6065 on the right
and left of the forehead, respectively. The user in the figure
has already been affected by a stroke, as is evident by the
lower temperature detected on the left side of the forehead
and the drooping of the left side of the face.
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In other embodiments, the at least one CAM may include
two or more CAMs. Optionally, the at least one CAM
includes two CAMs, denoted CAM1 and CAM2. Option-
ally, CAMI and CAM2 are located at least 0.5 cm to the
right and to the left of the vertical symmetry axis that divides
the face, respectively. Optionally, each of CAM1 and CAM2
weighs below 10 g, 5g,or 1 g.

FIG. 4 illustrates one example of a system for detecting a
stroke that includes at least CAM1 and CAM2 described
above. The figure illustrates a user wearing a frame with
CAM1 and CAM2 (562 and 563, respectively) coupled
thereto, which measure ROIs on the right and left cheeks
(ROIs 560 and 561, respectively). The measurements indi-
cate that the left side of the face is colder than the right side
of the face. Based on these measurements, and possibly
additional data, the system detects the stroke and issues an
alert. Optionally, the user’s facial expression is slightly
distorted and asymmetric, and a video camera provides
additional data in the form of images that may help in
detecting the stroke.

FIG. 22 to FIG. 25 illustrate HMSs that may be used to
detect a stroke that include two or more CAMSs. FIG. 22
illustrates inward-facing head-mounted cameras 30 and 31
that measure regions 32 and 33 on the forehead, respectively.
FIG. 25 illustrates (i) inward-facing head-mounted cameras
91 and 92 that are mounted to protruding arms and measure
regions 97 and 98 on the forehead, respectively, (ii) inward-
facing head-mounted cameras 95 and 96, which are also
mounted to protruding arms, which measure regions 101 and
102 on the lower part of the face, respectively, and (iii)
head-mounted cameras 93 and 94 that measure regions on
the periorbital areas 99 and 100, respectively.

Depending on the locations the at least first and second
regions on the right and left sides of the head, CAM1 and
CAM2 mentioned above may be located in specific locations
with respect to the face. In one example, CAM1 and CAM2
are located outside the exhale stream of the mouth and/or the
exhale streams of the nostrils. In another example, each of
CAM1 and CAM2 is located less than 10 cm from the face
and there are angles greater than 200 between the Frankfort
horizontal plane and the optical axes of CAM1 and CAM2.

Measurements of additional regions on the head may be
used to detect whether the user suffered from a stroke. In one
embodiment, the at least one CAM is further configured to
take thermal measurements of at least third and fourth
regions on the right and left sides of the head (TH, and
TH, ,, respectively), and the computer is further configured
to detect whether the user has suffered a stroke also based on
THj, and TH;, (in addition to THg, and TH;, ;). Optionally,
the middles of the first and second regions are at least 1 cm
above the middles of the third and fourth regions, respec-
tively. Optionally, the third and fourth regions cover at least
a portion of one of the following pairs of regions (which is
not covered by the first and second regions): the right and
left sides of the forehead, the right and left temples, the right
and left cheeks, the right and left earlobes, behind the right
and left ears, periorbital areas around the right and left eyes,
the area of the right and left mastoid processes.

In one embodiment, the system optionally includes at
least one outward-facing head-mounted thermal camera
(CAM,_,,), which is configured to take thermal measure-
ments of the environment (THg,,,). Optionally, the com-
puter is further configured to also utilize TH,,V (in addition
to THg, and TH,,) to detect whether the user has suffered a
stroke.

There are various approaches that may be used by the
computer, in different embodiments, to detect based on TH,
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and TH,, whether the user has suffered a stroke. In some
embodiments, detecting whether the user has suffered a
stroke involves comparing THy, and TH,, (referred to as
current measurements) to previously taken thermal measure-
ments (previous measurements), such as previously taken
TH, and TH;, of the user. Optionally, the previous mea-
surements are taken at least fifteen minutes before the
current measurements. Optionally, the previous measure-
ments are taken at least one hour before the current mea-
surements. Optionally, the previous measurements are taken
at least one six hours before the current measurements.
Optionally, the previous measurements are taken at least one
day before the current measurements.

In some embodiments, the previous measurements are
taken over a long period and are used to calculate baseline
thermal values of regions of the face, and/or used to generate
various models, which are used to detect a stroke, as
discussed below. It is to be noted that discussion below
regarding detection of the stroke based on THy, and TH,,
can be generalized to involve thermal measurements of other
regions (such as TH,, and TH,, discussed above).

In one embodiment, the computer calculates a magnitude
of thermal asymmetry of the head of the user based on a
difference between THy, and TH, |, and compares the mag-
nitude to a threshold. Responsive to the magnitude reaching
the threshold, the computer detects that the user has suffered
a stroke. Optionally, the difference between TH, and TH,,
needs to have reached the threshold (i.e., equal the threshold
value or exceed it) for at least a predetermined minimal
duration, such as at least one minute, at least five minutes,
at least fifteen minutes, or at least some other period that is
greater than 30 minutes. Optionally, the threshold is calcu-
lated based on previous magnitudes of thermal asymmetry
of the head of the user, which were calculated based on
previously taken THy, and TH;, of the user. Thus, this
threshold may be set according to a baseline thermal asym-
metry that represents the typical difference in the tempera-
tures of the first and second regions; a stroke may be
detected when the thermal asymmetry becomes significantly
different from this baseline.

In another embodiment, the computer calculates feature
values and utilizes a model to calculate, based on the feature
values, a value indicative of whether the user has suffered a
stroke. At least some of the feature values are generated
based on TH, and TH;, of the user; examples of feature
values that may be generated are given in the discussion
regarding feature values that may be generated to detect a
physiological response (herein suffering from a stroke is
considered a type of physiological response). Optionally, at
least some feature values are generated based on additional
sources of information (other than the at least one CAM),
such as additional thermal cameras, additional sensors that
measure physiological signals of the user (e.g., heart rate or
galvanic skin response), and/or additional sensors that mea-
sure the environment. Optionally, one or more of the feature
values are indicative of the extent of difference between
THp, and TH;, of the user and previous THy, and TH;, of
the user, taken at least a certain period earlier (such as at
least fifteen minutes earlier, one hour earlier, a day earlier, or
more than a day earlier). Thus, these one or more feature
values may represent a difference between the current ther-
mal measurements and baseline thermal values for the first
and second regions. Optionally, the model is generated
based on data that includes previously taken TH, and TH;
of the user and/or other users. Optionally, when data
includes previously taken TH, and TH;, of other users, at
least some of the measurements of the other users were taken

20

25

40

45

60

65

34

while they did not suffer from a stroke, and at least some of
the measurements of the other users were taken while they
did suffer from a stroke.

In another embodiment, the computer calculates a value
indicative of a joint probability of TH, and TH,, based on
a model that includes distribution parameters calculated
based on previously taken TH,,, and TH, , of the user. Thus,
the model describes a typical distribution of thermal mea-
surements on regions of the user’s head (when the user did
not suffer from a stroke). The computer may compare the
value indicative of the joint probability to a threshold, and
responsive to the value being below the threshold, the
computer detects that the user has suffered a stroke. The
threshold may represent an atypical thermal asymmetry,
with very low probability to normally occur, which warrants
an alert of the possibility that the user has had a stroke.

In some embodiments described herein, detecting whether
the user has suffered a stroke may involve calculating a
change to thermal asymmetry on the head based on a change
between thermal measurements taken at different times. This
calculation can be performed in different ways, as described
below.

In one embodiment, the computer calculates the change
between the thermal measurements as follows: calculate a
temperature difference between the first and second regions
at time X (AT,) based on [THg, and TH;, ] taken at time X,
calculate a temperature difference between the first and
second regions at time y (AT,) based on [THy, and TH ]
taken at time y, and calculate the output indicative of the
change in the thermal asymmetry on the face based on a
difference between AT, and AT,.

The embodiment described above may optionally be
implemented using a differential amplifier that receives
THg, and TH;, as inputs, and outputs the temperature
difference between the first and second regions. Optionally,
the at least one CAM is/are based on thermopile sensors.
Alternatively, the at least one CAM is/are based on pyro-
electric sensors. In one example, pairs of thermal sensor
elements are wired as opposite inputs to a differential
amplifier in order for the thermal measurements to cancel
each other and thereby remove the average temperature of
the field of view from the electrical signal. This allows the
at least one CAM to be less prone to providing false
indications of temperature changes in the event of being
exposed to brief flashes of radiation or field-wide illumina-
tion. This embodiment may also minimize common-mode
interference, and as a result improve the accuracy of the
thermal cameras.

In another embodiment, the computer calculates the
change between the thermal measurements as follows: the
computer calculates a temperature change between THy,
taken at times t; and t, (ATHg,), calculates a temperature
change between TH;, taken at times t; and t, (ATH;, ), and
then calculates the output indicative of the thermal asym-
metry on the face based on a difference between ATHy, and
ATH,,.

It is noted that sentences such as “calculate a difference
between X and Y” or “detect a difference between X and Y”
may be achieved by any function that is proportional to the
difference between X and Y.

The detection of a stroke based on TH, on TH;,, and
optionally other inputs, such as additional thermal measure-
ments or additional physiological signals, may be sufficient,
in some embodiments, to prompt the computer to take an
action such as alerting the user, a caregiver, and/or emer-
gency services. In other embodiments, the detection may be
considered an indication that there is a risk that the user has
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suffered a stroke, and the computer may encourage the user
to take atest (e.g., the FAST test described below or portions
thereof), in order to validate the detection. Optionally,
measurements and/or results taken during the test may be
used in addition to THy, and TH,, and the optional addi-
tional inputs, or instead of that data, in order to make a
second, more accurate detection of whether the user has
suffered from a stroke.

Upon detecting that the user has suffered from a stroke, in
some embodiments, the computer may prompt the user to
take a test to validate and/or increase the confidence in the
detection. This test may involve performing one or more
steps of a FAST test. Herein, FAST is an acronym used as
a mnemonic to help detect and enhance responsiveness to
the needs of a person having a stroke. The acronym stands
for Facial drooping, Arm weakness, Speech difficulties and
Time to call emergency services. Facial drooping involves a
section of the face, usually only on one side, that is drooping
and hard to move (often recognized by a crooked smile).
Arm weakness typically involves an inability to raise one’s
arm fully. Speech difficulties typically involve an inability or
difficulty to understand or produce speech.

FIG. 5 to FIG. 8 illustrate physiological and behavioral
changes that may occur following a stroke, which may be
detected using embodiments described herein. FIG. 5 illus-
trates a person at time zero, at the very beginning of the
onset of the stroke. At this time there may be no detectable
signs of the stroke. FIG. 6 illustrates the person’s state after
5 minutes since the beginning of the stroke. By this time,
certain changes to the blood flow in the head, which were
caused by the stroke, may be detectable. For example, the
blood flow on one side of the face may decrease. FIG. 7
illustrates the person’s state 15 minutes after the beginning
of the stroke. At this time, temperature changes to regions of
the face, which are due to the changes in blood flow, may be
detectable. FIG. 8 illustrates the person’s state 45 minutes
after the beginning of the stroke. At this time, droopiness of
one side of the face (e.g., due to reduced blood flow and
impaired neurologic control) may be observable.

The following are some examples of steps that may be
taken to further diagnose whether the user has suffered from
a stroke (e.g., steps from a FAST test). Optionally, results of
these steps may be used to further strengthen the computer’s
detection (e.g., to increase confidence in the detection) or
change the detection (e.g., and decide the detection was a
false alarm). Optionally, upon determining, based on one or
more of the steps, that the user may have a suffered a stroke,
the computer performs at least one of the following steps: (i)
instruct the user to seek emergency medical assistance, (ii)
connect the user through live video chat with a medical
specialist, and (iii) automatically alert a predetermined per-
son and/or entity about the user’s condition.

In one embodiment, a camera (e.g.. a cellphone camera or
an inward-facing camera coupled to a frame worn by the
user) takes images of at least a portion of the user’s face.
Optionally, the computer is further configured to (i) instruct
the user, via a user interface, to smile and/or stick out the
tongue, and (ii) detect, based on analysis of the images taken
by the camera, whether a portion of one side of the user’s
face droops and/or whether the user was able to stick out the
tongue. Detecting that the portion of the one side of the
user’s face droops may be done based on a comparison of
the images of at least a portion of the user’s face to
previously taken images of at least the portion of the user’s
face, which were taken at least one hour before. Optionally,
the computer utilizes a machine learning based model to
determine whether the comparison indicates that the face
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droops. In this case, the model may be trained based on sets
of images that include before and after images of people who
suffered a stroke. Additionally or alternatively, detecting that
the portion of the one side of the user’s face droops is done
using a machine learning-based model trained on examples
of images of faces of people with a portion of one side of the
face drooping. Optionally, detecting whether the tongue is
sticking out may be done using image analysis and/or
machine learning approaches (e.g., utilizing a model trained
on previous images of the user and/or other users sticking
out their tongue). FIG. 9 illustrates a user who is requested
by a smartphone app to smile. Images of the user may be
taken by the smartphone and analyzed in order to determine
whether the user has smiled and/or to what extent the smile
is considered “normal”. Similarly, FIG. 10 illustrates a user
who 1s requested by a smartphone app to stick out his
tongue.

In another embodiment, a microphone is used to record
the user’s speech. The computer is configured to (i) instruct
the user, via a user interface, to speak (e.g., say a predeter-
mined phrased), and (ii) detect, based on analysis of a
recording of the user taken by the microphone, whether the
user’s speech is slurred, and/or whether a difference between
the recording and previous recordings of the user exceeds a
threshold that indicates excessively slurred or difficult.
Optionally, the computer uses a model trained based on
examples of peoples’ normal and incoherent speech (e.g.,
recordings of people before and after they had a stroke).
FIG. 11 illustrates a user who is requested by a smartphone
app to say a sentence. The user’s speech can be recorded by
the smartphone and analyzed to detect slurry and/or unchar-
acteristic speech.

In yet another embodiment, a sensor is used to take
measurements indicative of at least one of movement and
position, of at least one of the user’s arms. Optionally, the
computer is further configured to (i) instruct the user, via a
user interface, to raise at least one the arms, and (ii) detect,
based on analysis of the measurements taken by the sensor,
whether an arm of the user drifts downward. In one example,
the sensor is in a cellphone held by the user. In another
example, the sensor is in a smartwatch or bracelet on the
user’s wrist. In still another example, the sensor is embedded
in a garment worn by the user. FIG. 12 illustrates a user who
is requested by a smartphone app to raise his arms. The
user’s movements can be detected by the smartphone in
order to determine whether one arm falls. In the illustrated
example, the user may be requested to raise the arms at least
twice, each time holding the phone in a different hand. Such
measurements can serve as a baseline to compare the rate of
ascent and descent of each of the arms.

In still another embodiment, a sensor is used to take
measurements indicative of how the user walks. Optionally,
the computer is further configured to (i) instruct the user, via
a user interface, to walk, and (ii) detect, based on analysis of
the measurements taken by the sensor, whether a difference
between the measurements taken by the sensor and previous
measurements of the user taken by the sensor exceeds a
threshold. Optionally, exceeding the threshold is indicative
of a sudden loss of balance or coordination. In one example,
the sensor is coupled to a frame worn on the user’s head
(e.g., a glasses frame). In another example, the sensor is in
a cellphone, smartwatch, bracelet, garment, or shoe worn by
the user.

Early detection of a stroke, e.g., using one or more of the
approaches described above, can be essential for minimizing
the stroke-related damage. With strokes, it is certainly the
case that time is of the essence. Early administration of
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treatment (e.g., within a few hours) can in many cases lead
to minimal long term stroke-related damage. However,
following a certain window of time (e.g., six hours since the
start of the stroke), severe and irreversible long term damage
may occur; impacting both quality of life and cost of care.
FIG. 13 and FIG. 14 illustrate the difference between a
timely intervention and intervention that comes too late. In
FIG. 13, a patient arrives a short while (about an hour and
fifteen minutes) after beginning of a stroke. This patient has
moderate stroke damage (denoted by reference numeral
655). Intervention at this early stage is mostly successful,
and after two months the patient has only slight long term
damage (denoted by reference numeral 656), which involves
a relatively small impact on the quality of life and a
relatively low cost in terms of future medical expenses. FIG.
14 illustrates a case in which the patient arrives too late (e.g.,
six hours after the start of the stroke). In this scenario, the
patient already has more severe stroke damage (denoted by
reference numeral 657). Intervention at this late stage is
mostly unsuccessful. Two months later, there is severe long
term stroke-related damage, which involves a relatively
large impact on the quality of life and a relatively high cost
in terms of future medical expenses.

In addition to detecting a stroke, some embodiments may
be used to detect an occurrence of a migraine attack. In one
embodiment, the first and second regions are located above
the user’s eye level, and the computer is further configured
to detect occurrence of a migraine attack based on asym-
metry between THy, and TH; ;. In another embodiment, the
first and second regions are located above the user’s eye
level. The computer is further configured to generate feature
values based on TH,, and TH; , and to utilize a model to
calculate, based on the feature values, a value indicative of
whether the user is experiencing a migraine attack or
whether a migraine attack is imminent. Optionally, the
model if generated based on previous THy, and TH; of the
user taken while the user had a migraine attack or taken 30
minutes or less before the user had a migraine attack.

In some embodiments, a system configured to detect a
stroke based on asymmetric changes to blood flow includes
at least first and second devices and a computer. The first and
second devices are located to the right and to the left of the
vertical symmetry axis that divides the face of a user,
respectively; the first and second devices are configured to
measure first and second signals (Sgz, and Sz, respec-
tively) indicative of blood flow in regions to right and to the
left of the vertical symmetry axis. The computer detects
whether the user has suffered a stroke based on an asym-
metric change to blood flow, which is recognizable in S,
and Sj.. Optionally, the system includes a frame config-
ured to be worn on a user’s head, and the first and second
devices are head-mounted devices that are physically
coupled to the right and left sides of the frame, respectively.

The first and second devices may be devices of various
types. Optionally, the first and second devices are the same
type of device. Alternatively, the first and second devices
may be different types of devices. The following are some
examples of various types of devices that can be used in
embodiments described herein in order to measure a signal
indicative of blood flow in a region of the body of the user.

In one embodiment, the first and second devices comprise
first and second cameras, respectively. The first and second
cameras are based on sensors comprising at least 3x3 pixels
configured to detect electromagnetic radiation having wave-
lengths in at least a portion of the range of 200 nm to 1200
nm. Optionally, the asymmetric changes to blood flow lead
to asymmetric facial skin color changes to the face of the
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user. Optionally, the system includes first and second active
light sources configured to illuminate the first and second
regions, respectively. In one example, the first and second
devices and first and second active light sources are head-
mounted, and the first and second active light sources are
configured to illuminate the first and second regions with
electromagnetic radiation having wavelengths in at least a
portion of the range of 800 nm to 1200 nm.

In addition to the first and second cameras mentioned
above, some embodiments may include first and second
outward-facing cameras that take images of the environment
to the right and left of the user’s head, respectively. Option-
ally, the computer utilizes the images to detect whether the
user has suffered a stroke. Optionally, the images of the
environment are indicative of illumination towards the face,
images taken by the inward-facing cameras are indicative of
reflections from the face. Thus, the images of the environ-
ment may be used to account, at least in part, for variations
in ambient light that may cause errors in detections of blood
flow.

In another embodiment, the first and second devices
function as imaging photoplethysmography devices, and/or
the first and second devices function as pulse oximeters.

There are various types of devices that may be used in
embodiments described herein, and ways in which the
devices may be attached to the user and/or located the user’s
proximity. In one example, the first and second device may
be head-mounted devices, such as devices physically
coupled to a frame worn on the user’s head (e.g., a frame of
smartglasses, such as augmented reality glasses, virtual
reality glasses, or mixed reality glasses). In another example,
the first and second devices are embedded in a garment worn
by the user (e.g., a smart shirt) or some other wearable
accessory (e.g., a necklace, bracelets, etc.). In yet another,
the first and second devices may be located in headrests of
a chair in which the user sits. In still another example, the
first and second devices are attached to walls (e.g., of a
vehicle cabin in which the user sits or a room in which the
user spends time). In yet another example, the first and
second devices may be coupled to robotic arms. Optionally,
the robotic arms may be used to move and/or orient the
devices in order to account for the user’s movements, which
may enable the first and second devices to measure the same
regions on the user’s head despite the user’s movement.

The first and second devices may be utilized to measure
various regions on the right and left sides of the user’s head.
In one embodiment, the regions on the right and left sides
include portions of the right and left temples, respectively. In
another embodiment, the regions on the right and left sides
include portions of the right and left sides of the forehead,
respectively. Optionally, the center of the region on the right
is at least 3 cm from the center of the region on the left. In
still another embodiment, the regions on the right and left
sides include portions of the right and left cheeks, respec-
tively. In still another embodiment, the regions on the right
and left sides include areas behind the right and left ears,
respectively. Optionally, the areas behind the right and left
ears are below the hairline and cover at least a portion of the
mastoid process in their respective sides of the head.

FIG. 13q illustrates an embodiment of a system that
includes multiple pairs of right and left cameras, and loca-
tions on the face that they may be used to measure. The
cameras illustrated in the figure are coupled to a frame worn
by the user, which may be, for example, any of the cameras
mentioned herein. The illustrated example include: (i) cam-
eras 641a and 6415 that are coupled to the right and left sides
of the top of the frame, respectively, which measure ROIs
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64da and 644b on the right and left of the forehead,
respectively; (ii) cameras 642a and 6425 that are coupled to
the right and left sides of the bottom of the frame, respec-
tively, which measure ROIs 6454 and 6455 on the right and
left cheeks, respectively; and (iii) cameras 643a and 6435
that are coupled to the frame near the right and left sides of
the nose, respectively, which measure ROIs 6464 and 6465
in the right and left periorbital regions, respectively.

FIG. 155 illustrates a stroke sign 647, which involves
decreased blood flow in the forehead, and may be detected
using the system illustrated in FIG. 15a. Another stroke sign
that may be detected by the system illustrated in FIG. 15¢ is
stroke sign 648, which involves decreased temperature in
the periorbital region.

FIG. 164 illustrates a system in which the first and second
devices are head-mounted cameras that are located behind
the ears. The figure illustrates cameras 651, which may be a
downward-facing video camera that takes images that
include portions of the side of the neck. FIG. 164 illustrates
a variant of the system illustrated in FIG. 164 in which
camera 652 is a downward-facing camera that includes an
extender body which enables the camera to move beyond the
hairline in order to obtain unobstructed images of the side of
the neck.

FIG. 16c¢ illustrates ischemic stroke 650, which restricts
the blood flow to the side of the head (illustrated as patch
653), which may be detected based on measurements of
device 652 in order to alert about the user having suffered
from a stroke.

Various types of values, which are indicative of blood
flow (and taken by the first or second devices), can be
determined based on a signal, which is denoted S in the
discussion below. S, may be, for example, aforementioned
Sgr1 Of Sprn. Propagation of a cardiac pulse wave can lead
to changes in the blood flow, with increased blood flow as
a result of blood pumped during the systole, and lower blood
flow at other times (e.g., during diastole). The changes in
blood flow often manifest as changes to values in Sz For
example, higher blood flow may correspond to increased
intensity of certain colors of pixels (when Sz includes
images), temperatures of pixels (when Sy includes thermal
images), or increased absorption of certain wavelengths
(when S includes measurements of a photoplethysmogra-
phy device).

In some embodiments, calculating a statistic of Sz may
provide an indication of the extent of the blood flow. For
example, the statistic may be an average value (e.g., average
pixel values), which is a calculated over a period, such as ten
seconds, thirty seconds, or a minute. For example, in an
embodiment in which the devices are cameras and Sg.
includes images, the average hue of pixels in the images can
be indicative of the blood flow (e.g., a redder hue may
correspond to more intense blood flow). In an embodiment
in which the devices are thermal sensors and Sz includes
thermal images, the average temperature of pixels in the
thermal images can be indicative of the blood flow (e.g., a
higher average temperature may correspond to more intense
blood flow).

In other embodiments, analysis of propagation of cardiac
pulse waves, as manifested in the values of Sz, can be used
to provide indications of the extent of blood flow. When S,
includes multiple pixels values (e.g., images or thermal
images), propagation of a pulse wave typically involves an
increase in pixel values that correspond to a period of a high
blood flow during the pulse wave (e.g., when blood flow is
driven by a systole) followed by a decrease in pixel values
that correspond to a period of a lower blood flow during the
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pulse wave (e.g., decreasing towards a diastolic trough). The
speed at which the pulse wave propagates along a segment
of the images of S, is indicative of the speed of blood flow
in the segment depicted in the images. For example, the
speed at which a peak (e.g., corresponding to the systole) is
seen to propagate in the images is directly correlated with
the blood flow.

Another parameter indicative of blood flow that can be
derived from analysis of a propagation of a pulse wave, as
it is manifested in values of Sy, is the amplitude of the
signal. For example, signals that display a periodic increase
and decrease in values of Sy, which corresponds to the
heart rate, can be analyzed to determine the difference in
values (e.g., difference in color, temperature, or intensity)
between the peak and the trough observed in the values of
Sz during the transition of a pulse wave. In some embodi-
ments, the amplitude of the signal (e.g., the difference
between the value at the peak and the value at the trough) is
correlated with the blood flow. In one example, the higher
the amplitude of the signal, the higher the blood flow.

Another parameter indicative of blood flow that can be
derived from analysis of a propagation of a pulse wave, as
it is manifested in values of S 5, is the extent to which pixels
in images (or thermal images) display a periodic change to
their values that reaches a certain threshold. For example,
the area on the face in which the periodic facial skin color
changes (which correspond to the cardiac pulse) reach a
certain threshold is correlated with the blood flow. The
higher the blood flow, the larger the area.

The extent of Blood flow (e.g., the speed at which the
blood flows) is correlated with the times at which a pulse
wave is detected at different locations of the body. Typically,
the farther a location from the heart, the later the pulse wave
is detected (e.g., detection of a pulse wave may correspond
to the time at which a systolic peak is observed). This
phenomenon can be utilized, in some embodiments, to
calculate values indicative of blood flow based on the
difference in times at which pulse waves are detected at
different locations. For example, analysis of one or more Sz
signals, which include values that are indicative of propa-
gation of a pulse wave at various locations, can determine
the difference in time (At) between detection of a pulse wave
at different locations. The value of At is typically correlated
with the blood flow: the higher the blood flow, the smaller
At is expected to be.

The computer is configured, in some embodiments, to
detect whether the user has suffered a stroke based on an
asymmetric change to blood flow, which is recognizable in
Sppy and Sgp,.

Herein, sentences of the form “asymmetric change to
blood flow recognizable in S, and Szy,” refer to effects of
blood flow that may be identified and/or utilized by the
computer, which are usually not recognized by the naked eye
(in the case of images), but are recognizable algorithmically
when the signal values are analyzed. For example, blood
flow may cause facial skin color changes (FSCC) that
corresponds to different concentrations of oxidized hemo-
globin due to varying blood pressure caused by the cardiac
pulse. Similar blood flow dependent effects may be viewed
with other types of signals (e.g., slight changes in cutaneous
temperatures due to the flow of blood.

When the blood flow on both sides of the head and/or
body are monitored, asymmetric changes may be recog-
nized. These changes are typically different from symmetric
changes that can be caused by factors such as physical
activity (which typically effects the blood flow on both sides
in the same way). An asymmetric change to the blood flow
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can mean that one side has been affected by an event, such
as a stroke, which does not influence the other side. In one
example, the asymmetric change to blood flow comprises a
change in blood flow velocity on left side of the face that is
10% greater or 10% lower than a change in blood flow
velocity on one right side of the face. In another example,
the asymmetric change to blood flow comprises a change in
the volume of blood the flows during a certain period in the
left side of the face that is 10% greater or 10% lower than
the volume of blood that flows during the certain period in
the right side of the face. In yet another example, the
asymmetric change to blood flow comprises a change in the
direction of the blood flow on one side of the face (e.g., as
a result of a stroke), which is not observed at the symmetric
location on the other side of the face.

In some embodiments, the computer detects whether the
user has suffered a stroke based on a comparison between
values belonging to a current set of Sz, and Sz, and values
belonging to a previous set of Sz, and Sz, of the user.
Optionally, the previous set was measured at least fifteen
minutes before the current set, at least one hour before the
current set, or at least one day before the current set.
Optionally, the previous set serves to establish baseline
blood flow values for both regions when the user was
assumed not to be effected by a stroke.

In one embodiment, the computer uses a machine learning
model to detect whether the user has suffered a stroke.
Optionally, the computer is configured to: generate feature
values based on data comprising a current set of Sy, and
Sz and a previous set of Sy, and Sz, of the user, and
utilize the model to calculate, based on the feature values, a
value indicative of whether the user has suffered a stroke.
Optionally, the previous set was measured at least one hour
before the current set. Optionally, at least some of the feature
values are indicative of changes to the blood flow in each of
the first and second regions between the time the current set
was measured and when the previous set was measured.

In one embodiment, the model was generated based on
data comprising “after” sets of Sy, and Sy, of other users
and corresponding “before” sets of Sz, and Sy, of the
other users. In these embodiments, the “after” sets were
measured after the other users had suffered from a stroke
(and the “before” sets were measured before they suffered
from the stroke). Thus, training samples generated based on
this data can reflect some of the types of asymmetric changes
to blood flow that characterize suffering from a stroke.

In the event that a stroke is detected, the computer may
prompt the user to take a FAST test (or portions thereof), as
described above. In another example, the computer may
suggest to the user to take images of the retinas. In this
example, the computer is further configured to compare the
images of the retinas with previously taken images of the
retinas of the user, and to detect whether the user has
suffered a stroke based on the comparison. Optionally, the
comparison can take into account diameter of retinal arter-
ies, swelling and blurring of the boundaries of the optic disk.

Blood flow usually exhibits typical patterns in the user’s
body. When a blood flow pattern changes, this usually
happens in a predictable way (e.g., increase in blood flow
due to physical activity, certain emotional responses, etc.).
When a person’s blood flow changes in an atypical way, this
may indicate an occurrence of a certain medical incident,
such as a stroke. Therefore, atypical blood flow patterns
should be detected in order to investigate their cause.

In some embodiments, a system configured to detect an
atypical blood flow pattern in the head of a user includes one
or more head-mounted devices and a computer. The one or

10

15

20

25

30

40

45

50

55

60

65

42

more head-mounted devices are configured to measure at
least three signals (Sgpy, Sz and Sz, respectively),
indicative of blood flow in at least three corresponding
regions of interest on the head (ROI,, ROI,, and ROIL,
respectively) of a user. Optionally, the centers of ROI,, ROI,
and ROI; are at least 1 cm away from each other. Optionally,
the one or more head-mounted devices do not occlude ROI,,
ROL, and ROL,.

There are various types of devices the one or more
head-mounted devices may be. Optionally, each of the one
or more head-mounted devices are the same type of device.
Alternatively, when the one or more head-mounted devices
are a plurality of devices, the plurality of devices may be of
different types of devices. The following are some examples
of various types of devices that can be used in embodiments
described herein in order to measure a signal indicative of
blood flow in a region of the body of the user.

In one embodiment, the one or more head-mounted
devices include a camera that is based on a sensor compris-
ing at least 3x3 pixels configured to detect electromagnetic
radiation having wavelengths in at least a portion of the
range of 200 nm to 1200 nm. Optionally, the system includes
one or more light sources configured to ROI,, ROL, and
ROI;. Optionally, the one or more light sources are config-
ured to illuminate ROI,, ROI, and ROI; with electromag-
netic radiation having wavelengths in at least a portion of the
range of 800 nm to 1200 nm.

In another embodiment, the one or more head-mounted
devices include a device that functions as an imaging
photoplethysmography device and/or a device that functions
as a pulse oximeter.

The computer is configured, in one embodiment, to gen-
erate a blood flow pattern based on a current set of S;,,,
Sgr and Sz 5. The computer is also configured to calculate,
based on a set of previous blood flow patterns of the user, a
value indicative of the extent to which the blood flow pattern
is atypical. Optionally, the set of previous blood flow pat-
terns were generated based on sets of Sz, Sy and Syp4
measured at least one day prior to when the current set was
measured. That is, the previous sets of blood flow patterns
were generated based on data the comprises Sgr,, Sz and
Szrs measured at least one day before S|, S;-, and Sz 5
in the current set. Optionally, the previous sets of blood flow
patterns were generated based on data that was measured
when the user was not known to be in an atypical condition
(e.g., the user was considered healthy at the time).

In some embodiments, the value indicative of the extent
to which the blood flow patter is atypical is compared to a
threshold. If the value reaches the threshold, the computer
may take different actions. In one embodiment, responsive
to the value reaching the threshold, the computer issues an
alert. For example, the computer may send a message to a
predetermined recipient (e.g., emergency services or a care-
giver). In another example, the computer may command a
user interface to generate an alert (e.g., a beeping sound, a
text message, or vibrations. In another embodiment, respon-
sive to the value reaching the threshold, the computer may
prompt the user to perform a test, using an electronic device,
to determine whether the user has suffered a stroke. For
example, the user may be prompted to perform a FAST test
(or portions thereof), as described elsewhere in this disclo-
sure.

There are various ways in which a blood flow pattern may
be generated based on Sz, Sz, and Sgp5. In one embodi-
ment, Sz, Sgry and Sy, themselves may constitute the
pattern. Optionally, the blood flow pattern comprises a time
series that is indicative of blood flow at each of ROI,, ROI,,
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and ROI;. In one example, the blood flow pattern may be a
time series of the raw (unprocessed) values of S, Sgr,
and Sy, (e.g., a time series of values measured by the one
or more head-mounted devices). In another example, blood
flow pattern may be a time series of processed values, such
as various statistics of Sz, Sz, and Sy .4 at different points
of time (e.g., average pixel intensity for images taken by a
camera at different points of time).

In another embodiment, the blood flow pattern may
include statistics of the values of S;r,, Sz and Sz, such
as values representing the average blood flow during the
period Sgr, Sz and Sy were measured. Values in a
blood flow pattern, such as the statistics of the values of
Sgr1s Sprs and Sy . may be of various types of values. The
following are some examples of types of values that may be
used in a “blood flow pattern”. In one example, the blood
flow pattern includes one or more values that describe the
intensity of blood flow at each of ROI,, ROI,, and/or ROI;.
In another example, the blood flow pattern includes one or
more values that describe the amplitude of changes to
measurement values at ROI , ROL,, and/or RO, such as the
amplitude of periodic changes (which correspond to the
heart rate) to color, temperature, and/or absorbance at certain
wavelengths. In yet another example, the blood flow pattern
includes one or more values that describe the speed at which
a pulse wave propagates through ROI,, ROI,, and/or ROI;.
In still another example, the blood flow pattern includes one
or more values that describe the direction at which a pulse
wave propagates in ROI,, ROI,, and/or ROI,.

There are various ways in which the computer may utilize
the previous blood flow patterns in order to determine the
extent to which the blood flow pattern is atypical.

In one embodiment, the computer calculates the value
indicative of the extent to which the blood flow pattern is
atypical by calculating distances between the blood flow
pattern and each of the previous blood flow patterns, and
determining a minimal value among the distances. The
larger this minimal value, the more atypical the blood flow
pattern may be considered (due to its difference from all
previous blood flow patterns considered). In one example, in
which blood flow patterns include time series data, the
distances may be calculated by finding the extent of simi-
larity between the blood flow pattern and each of the
previous blood flow patterns (e.g., using methods described
in in Wang, Xiaoyue, et al. “Experimental comparison of
representation methods and distance measures for time
series data”, Data Mining and Knowledge Discovery 26.2
(2013): 275-309). In another example, distances between
blood flow patterns that include dimensional data, such as
blood flow patterns that may be represented as vectors of
values, may be calculated using various similarity metrics
known in the art such as Euclidean distances or vector dot
products.

In another embodiment, the computer calculates, based on
the previous sets of Sgr, Sgm and Sz, parameters of a
probability density function (pdf) for blood flow patterns.
For example, each blood flow pattern may be represented as
a vector of values and the pdf may be a multivariate
distribution (e.g., a multivariate Gaussian) whose param-
eters are calculated based on vectors of values representing
the previous blood flow patterns. Given a vector of values
representing the blood flow pattern, the probability of the
vector of values is calculated based on the parameters of the
pdf. Optionally, if the probability is below a threshold, the
blood flow pattern may be considered atypical. Optionally,
the threshold is determined based on probabilities calculated
for the vectors of values representing the previous blood
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flow patterns, such the at least a certain proportion of the
vectors have a probability that reaches the threshold. For
example, the certain proportion may be at least 75%, at least
90%, at least 99%, or 100%.

In yet another embodiment, the computer calculates the
value indicative of the extent to which the blood flow pattern
is atypical using a model of a one-class classifier generated
based on the set of previous blood flow patterns.

In still another embodiment, the computer calculates
feature values and utilizes a model to calculate, based on the
feature values, the value indicative of the extent to which the
blood flow pattern is atypical. Optionally, one or more of the
feature values are generated based on the blood flow pattern,
and at least one of the feature values is generated based on
the previous blood flow patterns. Optionally, feature values
generated based on a blood flow pattern include one or more
of the values described in examples given above as
examples of values in a blood flow pattern. Optionally, one
or more of the feature values describe differences between
values representing the blood flow pattern, and values rep-
resenting the previous blood flow patterns. The model is
generated based on samples, with each sample comprising:
(1) feature values calculated based on a blood flow pattern of
a certain user, from among a plurality of users, and previous
blood flow patterns of the certain user, and (i) a label
indicative of an extent to which the blood flow pattern of the
certain user is atypical. Additional details regarding gener-
ating the model can be found herein in the discussion
regarding machine learning approaches that may be used to
detect a physiological response.

In some embodiments, the computer may use additional
inputs to determine whether the blood flow pattern is an
atypical blood flow pattern. In one example, the computer
may receive measurements of various physiological signals
(e.g., heart rate, respiration, or brain activity) and use these
measurements to generate at least some of the feature values.
In another example, the computer may receive an indication
of a state of the user and to generate one or more of the
feature values based on the indication. Optionally, the state
of the user is indicative of at least one of the following: an
extent of physical activity of the user, and consuming a
certain substance by the user (e.g., alcohol or a drug).

The physiological and emotional state of a person can
often be associated with certain cortical activity. Various
phenomena, which may be considered abnormal states, such
as anger or displaying symptomatic behavior of Attention
Deficit Disorder (ADD) or Attention Deficit Hyperactivity
Disorder (ADHD), are often associated with certain atypical
cortical activity. This atypical cortical activity can change
the blood flow patterns on the face, and especially on the
forehead area. Thus, there is a need for a way to detect such
changes in blood flow in real world day-to-day situations.
Preferably, in order to be comfortable and more aesthetically
acceptable, these measurements should be taken without
involving direct physical contact with the forehead or
occluding it.

In some embodiments, a system configured to detect an
attack characterized by an atypical blood flow pattern
includes the one or more head-mounted devices (described
above) and a computer. The one or more head-mounted
devices are configured to measure at least three signals
(Szr1> Spr and Sz, respectively), indicative of blood flow
in at least three corresponding regions of interest on the head
(ROI,, ROLI,, and ROI, respectively) of a user. Optionally,
the centers of ROI,, ROL, and ROI; are at least 1 cm away
from each other. Optionally, the one or more head-mounted
devices do not occlude ROI;, ROI, and ROI;. Optionally,
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ROI,, ROI, and ROI, are on the same side of the face.
Alternatively, ROI,, ROL, and ROI; are on all on the same
side of the face. For example, ROI, may be on the left side
of the face, and ROI, on the right side of the face.

The computer is configured, in one embodiment, to cal-
culate a value, based on Sgz;, Sgrn, and Sz, indicative of
whether the user is in a normal or abnormal state.

In one embodiment, the state of the user is determined by
comparing a blood flow pattern generated based on S,,.,,
Sgr, and Sy to reference blood flow patterns of the user
that include at least one reference blood flow pattern that
corresponds to the normal state and at least one reference
blood flow pattern that corresponds to the abnormal state.
Optionally, a reference blood flow pattern is determined
from previous Sz, Sz, and Sy 5 of the user, taken while
the user was in a certain state corresponding to the reference
blood flow pattern (e.g., normal or abnormal states). Option-
ally, if the similarity reaches a threshold, the user is con-
sidered to be in the state to which the reference blood flow
pattern corresponds.

In another embodiment, the computer determines that the
user is in a certain state (e.g., normal or abnormal) by
generating feature values (at least some of which are gen-
erated based on Sy, Szp0, and S;-) and utilizing a model
to calculate, based on the feature values, the value indicative
of whether the user is in a normal or abnormal state.
Optionally, the model is trained based on samples, each
comprising feature values generated based on previous Sz,
Spr, and Szry of the user, taken while the user was in the
certain state.

In yet another embodiment, Sz, Szzs, and Szpy com-
prise time series data, and the computer calculates the value
indicative of whether the user is in a normal or abnormal
state based on comparing the time series to at least first and
second reference time series, each generated based on pre-
viously taken Szri, Sgm, and Sz, of the user; the first
reference time series is based on previous Sz, Sgr, and
Sgrs taken while the user was in a normal state, and the
second reference time series is based on previous Sz,
Sz, and Sp.. taken while the user was in an abnormal
state. Optionally, the time series data and/or the first and
second reference time series includes data taken over at least
a certain period of time (e.g., at least ten seconds, at least one
minute, or at least ten minutes).

Being in a normal/abnormal state may correspond to
different behavioral and/or physiological responses. In one
embodiment, the abnormal state involves the user displaying
symptoms of one or more of the following: an anger attack,
Attention Deficit Disorder (ADD), and Attention Deficit
Hyperactivity Disorder (ADHD). In this embodiment, being
in the normal state refers to usual behavior of the user that
does not involve displaying said symptoms. In another
embodiment, when the user is in the abnormal state, the user
will display within a predetermined duration (e.g., shorter
than an hour), with a probability above a predetermined
threshold, symptoms of one or more of the following: anger,
ADD, and ADHD. In this embodiment, when the user is in
the normal state, the user will display the symptoms within
the predetermined duration with a probability below the
predetermined threshold. In yet another embodiment, when
the user is in the abnormal state the user suffers from a
headache and/or migraine (or an onset of a migraine attack
will occur is a short time such as less than one hour), and
when the user is in the normal state, the user does not suffer
from a headache and/or a migraine. In still another embodi-
ment, the abnormal state refers to times in which the user has
a higher level of concentration compared to the normal state
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that refers to time in which the user has a usual level of
concentration. Although the blood flow patterns of the
forehead are usually specific to the user, they are usually
repetitive, and thus the system may able to learn some blood
flow patterns of the user that correspond to various states.

Determining the user’s state based on Szz;, Sz, and
Sz (and optionally other sources of data) may be done
using a machine learning-based model. Optionally, the
model is trained based on samples comprising feature values
generated based on previous Szz, Sgrs, and Sy taken
when the user was in a known state (e.g., for different times
it was known whether the user was in the normal or
abnormal state). Optionally, the user may provide indica-
tions about his’her state at the time, such as by entering
values via an app when having a headache, migraine, or an
anger attack. Additionally or alternatively, an observer of the
user, which may be another person or a software agent, may
provide the indications about the user’s state. For example,
a parent may determine that certain behavior patterns of a
child correspond to displaying symptomatic behavior of
ADHD. In another example, indications of the state of the
user may be determined based on measurements of physi-
ological signals of the user, such as measurements of the
heart rate, heart rate variability, breathing rate, galvanic skin
response, and/or brain activity (e.g., using EEG). Optionally,
the various indications described above are used to generate
labels for the samples generated based on the previous Sz,
Sppay and Syps.

In some embodiments, one or more of the feature values
in the samples may be based on other sources of data
(different from Syr, Sgr, and Sgz3). These may include
additional physiological measurements of the user and/or
measurements of the environment in which the user was
while Sz, Sgr, and Sz were taken. In one example, at
least some of the feature values used in samples include
additional physiological measurements indicative of one or
more of the following signals of the user: heart rate, heart
rate variability, brainwave activity, galvanic skin response,
muscle activity, and extent of movement. In another
example, at least some of the feature values used in samples
include measurements of the environment that are indicative
of one or more of the following values of the environment
in which the user was in: temperature, humidity level, noise
level, air quality, wind speed, and infrared radiation level.

Given a set of samples comprising feature values gener-
ated based on Sz, Sgrn, and Sz (and optionally the other
sources of data) and labels generated based on the indica-
tions, the model can be trained using various machine
learning-based training algorithms. Optionally, the model is
utilized by a classifier that classifies the user’s state (e.g,,
normal/abnormal) based on feature values generated based
on Sz, S, and S5 (and optionally the other sources).

The model may include various types of parameters,
depending on the type of training algorithm utilized to
generate the model. For example, the model may include
parameters of one or more of the following: a regression
model, a support vector machine, a neural network, a
graphical model, a decision tree, a random forest, and other
models of other types of machine learning classification
and/or prediction approaches.

In some embodiments, the model is trained utilizing deep
learning algorithms. Optionally, the model includes param-
eters describing multiple hidden layers of a neural network.
Optionally, the model includes a convolution neural network
(CNN), which is useful for identifying certain patterns in
images, such as patterns of color changes on the forehead.
Optionally, the model may be utilized to identify a progres-



US 10,638,938 Bl

47

sion of a state of the user (e.g., a gradual forming of a certain
blood flow pattern on the forehead). In such cases, the model
may include parameters that describe an architecture that
supports a capability of retaining state information. In one
example, the model may include parameters of a recurrent
neural network (RNN), which is a connectionist model that
captures the dynamics of sequences of samples via cycles in
the network’s nodes. This enables RNNs to retain a state that
can represent information from an arbitrarily long context
window. In one example, the RNN may be implemented
using a long short-term memory (LSTM) architecture. In
another example, the RNN may be implemented using a
bidirectional recurrent neural network architecture (BRNN).

In order to generate a model suitable for identifying the
state of the user in real-world day-to-day situations, in some
embodiments, the samples used to train the model are based
on Sz, Sz, and S, (and optionally the other sources of
data) taken while the user was in different sitvations, loca-
tions, and/or conducting different activities. In a first
example, the model may be trained based on a first set of
previous Szpi, Sgrs, and Sgoy taken while the user was
indoors and in the normal state, a second set of previous
Szr1s Spr, and Sz taken while the user was indoors and
in the abnormal state, a third set of previous Sy, Sz, and
Sz taken while the user was outdoors and in the normal
state, and a fourth set of previous Sz, Sprn, and Sy taken
while the user was outdoors and in the abnormal state. In a
second example, the model may be trained based on a first
set of previous S, Sz 10, and Sy -5 taken while the user was
sitting and in the normal state, a second set of previous Sz,
Sprs and Sy, taken while the user was sitting and in the
abnormal state, a third set of previous Sz, Sz, and Sy 14
taken while the user was standing and/or moving around and
in the normal state, and a fourth set of previous Szz,, Sz,
and Sz, taken while the user was standing and/or moving
around and in the abnormal state. Usually the movements
while standing and/or moving around, and especially when
walking or running, are greater compared to the movement
while sitting; therefore, a model trained on samples taken
during both sitting and standing and/or moving around is
expected to perform better compared to a model trained on
samples taken only while sitting.

Having the ability to determine the state of the user can be
advantageous when it comes to scheduling tasks for the user
and/or making recommendations for the user, which suits
the user’s state. In one embodiment, responsive to deter-
mining that the user is in the normal state, the computer
prioritizes a first activity over a second activity, and respon-
sive to determining that the user is in the abnormal state, the
computer prioritizes the second activity over the first activ-
ity. Optionally, accomplishing each of the first and second
activities requires at least a minute of the user’s attention,
and the second activity is more suitable for the abnormal
state than the first activity. Optionally, and the first activity
is more suitable for the normal state than the second activity.
Optionally, prioritizing the first and second activities is
performed by a calendar management program, a project
management program, and/or a “to do” list program. Option-
ally, prioritizing a certain activity over another means one or
more of the following: suggesting the certain activity before
suggesting the other activity, suggesting the certain activity
more frequently than the other activity (in the context of the
specific state), allotting more time for the certain activity
than for the other activity, and giving a more prominent
reminder for the certain activity than for the other activity
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(e.g., an auditory indication vs. a mention in a calendar
program that is visible only if the calendar program is
opened).

Such state-dependent prioritization may be implemented
in various scenarios. In one example, the normal state refers
to a normal concentration level, the abnormal state refers to
alower than normal concentration level, and the first activity
requires a high attention level from the user compared to the
second activity. For instance, the first and second activities
may relate to different topics of a self-learning program for
school; when identifying that the user is in the normal
concentration state, a math class is prioritized higher than a
sports lesson; and when identifying that the user is in the
lower concentration state, the math class is prioritized lower
than the sports lesson. In another example, the normal state
refers to a normal anger level, the abnormal state refers to a
higher than normal anger level, and the first activity involves
more interactions of the user with other humans compared to
the second activity. In still another example, the normal state
refers to a normal fear level, the abnormal state refers to a
panic attack, and the second activity is expected to have a
more relaxing effect on the user compared to the first
activity.

Passively taken sensor based measurements may be used,
in some embodiments, in order to detect whether a user
exhibits stroke signs. However, in some scenarios, sensors
that may be used to detect stroke signs may provide inac-
curate signals that can lead to a high rate of false alarms.
Detecting whether a user exhibits stroke signs can also be
done by an app that prompts the user to perform one or more
activities involved in a FAST test, and analyzing the user’s
actions while performing the one or more activities. How-
ever, apps for detecting stroke signs are often not used
because the person suffering from a stroke is not aware of
the incident (and thus does not initiate a test). Thus, the
combination of the two approaches can increase the rate at
which stroke signs may be detected based on possibly
inaccurate measurements, by having the sensor measure-
ments serve as a trigger to activate an app to prompt the user
to perform the one or more activities involved in the FAST
test.

In one embodiment, a system configured detect stroke
signs includes at least first, second, and third sensors, and a
computer.

The first and second sensors configured to take first and
second measurements (M and M, respectively) of regions
belonging to the right and left sides of a user’s body.
Optionally, M, and M; are indicative of blood flow in the
regions on the right and left sides of the user’s body,
respectively. The following are examples of various types of
sensors that may be used, in some embodiments, as the first
and second sensors.

In one example, the first and second sensors are electro-
encephalography (EEG) electrodes that measure brain activ-
ity and are positioned on the right and left sides of the head,
respectively. Optionally, the first and second sensors are
EEG electrodes implanted under the user’s scalp.

In another example, the first and second sensors are
electromyography (EMQ) sensors implanted in the left and
right sides of the user’s body, respectively. Alternatively, the
first and second sensors may be EMG sensors attached to the
surface of the user’s body.

In yet another example, the first and second sensors may
be ultrasound sensors. Optionally, the ultrasound sensors are
positioned such that they are in contact with the surface of
the right and left sides of the user’s body respectively.
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In still another example, the first and second sensors are
photoplethysmogram (PPG) sensors that provide measure-
ments indicative of the blood flow on the right and left sides
of the user’s body, respectively.

In yet another example, the first and second sensors
comptrise cameras based on a sensor comprising at least 3x3
pixels configured to detect electromagnetic radiation having
wavelengths in at least a portion of the range of 200 nm to
1200 nm.

In yet another example, the first and second sensors are
thermistors in contact with the right and left sides of the
user’s body. For example, the first and second sensors may
be embedded in one or more of the following: a clothing
item worn by the user. gloves, or a scarf.

And in still another example, the first and second sensors
are thermal cameras each comprising at least 3x3 pixels
configured to detect electromagnetic radiation having wave-
lengths above 2500 nm.

The computer calculates, based on Mz and M,, a value
indicative of a risk that the user has suffered from a stroke.
Responsive to determining that the value reaches a thresh-
old, the computer may instruct the user, via a user interface,
to perform the predetermined activity. The computer may
then detect whether the user exhibits stroke signs based on
measurements (M) of a third sensor, which were taken
while the user performed the predetermined activity. Option-
ally, the computer utilizes Mg and M, along with M, in
order to make a more accurate detection of stroke signs.
Optionally, detection based on Mg, M,, and M, is more
accurate than detection based on M alone M, .

Calculating the value indicative of the risk that the user
has suffered from a stroke may be done in different ways in
different embodiments. In one embodiment, the value
indicative of the risk is indicative difference between of
extents of physiological changes in the right and left sides of
the body, which are calculated based on My and M,
respectively. For example, the value may be indicative of a
difference in blood flow between the right and left sides of
the body, a difference in the temperature between the right
and left sides, and/or a difference in skin color and/or extent
of changes to skin color between the right and left sides.
Optionally, when the difference reaches the threshold, this
means that the user is at a risk of having suffered a stroke
that is sufficiently high to warrant an additional test that
involves performing the predetermined activity and measur-
ing the user with the third sensor.

In another embodiment, the computer generates feature
values based on M, and M; and utilizes a model to calculate,
based on the feature values, the value indicative of the risk
that the user has suffered from a stroke. Optionally, the
model is generated based on previous Mz and M; of multiple
users. For example, the model may be generated based on
data that comprises My and M; of users who were healthy
at the time the measurements were taken, and also based on
M and M, of users who suffered from a stroke while the
measurements were taken.

There are various predetermined activities the computer
may prompt the user to perform in order to detect whether
the user exhibits stroke signs. These activities may be
measured using different sensors. The following are
examples of combinations of activities, and sensors that may
be used to take the measurements M, of the user while the
user performs the activities.

In one embodiment, performing the predetermined activ-
ity comprises smiling. Optionally, in this embodiment, the
third sensor is a camera. For example, the camera may be a
camera embedded in a cell phone (or some other device)
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held by the user or some other person. In another example,
the camera may be coupled to a frame worn on the user’s
head. In this embodiment, M, include images of the user’s
face that capture the user’s facial expressions while the user
was instructed to smile. The computer may detect the stroke
signs based on analysis of images of the user which are
indicative of one side of the face drooping. Optionally, the
analysis involves comparing M, to previously taken images
of the user’s face.

In another embodiment, performing the predetermined
activity comprises raising both arms. Optionally, in this
embodiment, the third sensor is an inertial measurement unit
(IMU). For example, the IMU may be embedded in a cell
phone, a smart watch, or another device on worn or held by
the user (e.g., on the hand, wrist, or arm). In this embodi-
ment, the computer detects the stroke signs based on analy-
sis of measurements of movements of the user (taken by the
IMU) which are indicative of one arm drifting downward.

In yet another embodiment, performing the predetermined
activity comprises walking. Optionally, in this embodiment,
the third sensor is an inertial measurement unit (IMU). For
example, the IMU may be coupled to a frame worn on the
user’s head or in a device carried by the user (e.g., a
smartphone or a smartwatch). In this embodiment, computer
detects the stroke signs based on analysis measurements of
movements of the user (taken by the IMU) which are
indicative of imbalance of the user.

In still another embodiment, performing the predeter-
mined activity comprises repeating a phrase. Optionally, in
this embodiment, the third sensor is a microphone. For
example, the microphone may belong to a device carried or
worn by the user (e.g., a smartphone, a smartwatch, or
microphone embedded in a head-mounted display). In this
embodiment, computer detects the stroke signs based on
analysis of a recording of voice of the user which is
indicative of the user’s speech being slurry. Optionally, the
analysis of the recording of the user’s voice is done based on
a comparison with previous recordings of the user’s voice.

In some embodiments, the computer may conduct tests to
determine whether the user’s brain function has been
affected. For example, the computer may prompt the user to
perform various tasks using an app that can test for memory
and cognitive skills, such as answering trivia questions,
solving puzzles, etc.

In some embodiments, following the user’s performance
of the predetermined activity and analysis of M, results of
the analysis may be used to improve the accuracy of the
calculation of the risk. For example, responsive to deter-
mining, based on specific M. that the user does not exhibit
stroke signs after measuring specific M, and M, values
(which indicated that there is sufficient risk), the computer is
configured to adjust the threshold based on the specific M,
and M, values. In another example, the computer may
utilize the specific M, and M; to retrain a model used to
calculate the risk. In this example, the specific My and M,
can constitute an exaniple of a false positive that is used to
adjust the model parameters.

One of the signs to having a stroke is sudden loss of
balance or coordination. It is easier to identify loss of
balance or coordination from measurements taken by a
head-mounted IMU compared to measurements taken by an
IMU inside a wrist band or a phone in the hand. The reason
is that the movements of the head include much less noise
compared to movements of a hand that is used to manipulate
items. Therefore, a head-mounted IMU can be more ben-
eficial for identifying loss of balance or coordination than a
wrist-mounted IMU.
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In one embodiment, a system configured to detect a
medical condition, which involves a loss of at least one of
balance and coordination, includes at least a head-mounted
inertial measurement unit (IMU) and a computer. Some
examples of medical conditions that involve loss of balance
and/or coordination include a stroke and a spell of dizziness.

The IMU is configured to measure movements of the head
of a user wearing the IMU, and a computer. Optionally, the
IMU comprises at least one of the following elements: an
accelerometer, a gyroscope, and a magnetometer. Option-
ally, the IMU is coupled to a frame worn on the user’s head.

The computer is configured to detect the medical condi-
tion based on measurements of the IMU (M_,,,.,.) and
previous measurements of movements of the head of the

user wearing the IMU (M,..,.....,). Optionally, at least some
of M0 Were taken while the user did not have the

medical condition. Optionally, the computer is further con-
figured to alert a predetermined recipient (e.g., a caregiver or
emergency services) responsive to detecting the medical
condition.

There are various ways in which the medical condition
may be detected based on M,,,,,,, and M., In one
embodiment, the computer is configured to detect the medi-
cal condition by calculating a difference between movement
characteristics determined based on M_,,.,, and typical
movement characteristics of the user calculated based on
M,,,., 0.5+ Optionally, if the difference reaches a threshold,
the user is considered to have the medical condition.

In another embodiment, the computer is configured to
detect the medical condition by generating feature values
and utilizing a model to calculate a value, based on the
feature values, which is indicative of whether the user has
the medical condition. Optionally, one or more of the feature
values are calculated based on M_,,,,.,, and the model is
generated based M,,,..,,,,., of the user.

In yet another embodiment, the computer is configured to
detect the medical condition by generating feature values
and utilizing a model to calculate a value, based on the
feature values, which is indicative of whether the user has
the medical condition. Optionally, one or more of the feature
values are calculated based on movements of the head of one
or more other users wearing an IMU.

The user’s movement characteristics may be affected by
various factors, as discussed below. Thus, receiving an
indication of such factors that influence movement and
balance can help improve accuracy of detecting the medical
condition based on M., and M,....,.... In some embodi-
ments, the computer is further configured to receive an
indication of a situation in which the user is in whileM_, .
are taken, and to utilize the indication to detect the medical
condition.

In one embodiment, the situation comprises being under
influence of a medication, and the indication of the situation
is received from at least one of: a pill dispenser, a sensor-
enabled pill, and a user tracking application. Examples of
user tracking applications include: (i) software that requires
a user to log events, such as consumption of a certain item,
usage of a certain item, having a certain experience, and/or
being in a certain situation, (i) an image analysis software
that receives images taken by the user or a third party nearby
the user, and infers the situation from the images using
image processing techniques. Examples of sources for the
image include: smart-glasses with outfacing camera, aug-
mented reality devices, mobile phones, and webcams.

In another one embodiment, the situation comprises being
under influence of at least one of alcohol and caffeine, and
the indication of the situation is received from at least one
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of: a refrigerator, a pantry, a serving robot, and a user
tracking application; and wherein the indication indicates
that the user took an alcoholic beverage.

In yet another embodiment, the situation comprises being
under a certain stress level, and the indication of the situa-
tion is received from a sensor that measures a physiological
signal of the user, such as a thermal sensor, a heart rate
sensor, a sensor of galvanic skin response, or an EEG sensor.

In still another embodiment, the situation is selected from
a group comprising: being inside a moving vehicle, and
being on a static floor; and the indication of the situation is
received from a positioning system. Examples of positioning
systems include: GPS, wireless positioning systems, image
processing to infer position.

Typically having a stroke will influence brain activity,
which can be detected through electroencephalography
(EEG). However, this signal may at times be noisy and
insufficient to reliably detect a stroke. Thus, additional tests
may be needed.

In one embodiment, a system configured to detect stroke
signs based on electroencephalography (FEG) includes at
least a sensor configured to take measurements (M) of the
user, and a computer.

The computer is configured to: receive EEG signals of the
user, and to utilize a model to calculate, based on the EEG
signals, a value indicative of a risk that the user has suffered
from a stroke. The value indicative of the risk is compared
by the computer to a threshold, and responsive to determin-
ing that the value reaches a threshold, the computer instructs
the user, via a user interface, to perform a predetermined
activity. The computer then detects whether the user has
stroke signs based on M, taken while the user performed the
predetermined activity. Optionally, the computer utilizes the
EEG signals along with M, in order to make a more accurate
detection of stroke signs. Optionally, detection based on the
EEG signals and M, is more accurate than detection based
on the EEG signals alone.

Calculating the value indicative of the risk that the user
has suffered from a stroke may be done in different ways in
different embodiments. In one embodiment, the value
indicative of the risk is indicative difference between of
extents of electrical potential changes in the right and left
sides of the brain, which are calculated based on EEG
signals from electrodes on the right and left sides of the
head. Optionally, when the difference reaches the threshold,
this means that the user is at a risk of having suffered a stroke
that is sufficiently high to warrant an additional test that
involves performing the predetermined activity and measur-
ing the user with the third sensor.

In another embodiment, the computer generates feature
values based on the EEG signals and utilizes a model to
calculate, based on the feature values, the value indicative of
the risk that the user has suffered from a stroke. Optionally,
the model is generated based on previous EEG signals of
multiple users. For example, the model may be generated
based on data that comprises EEG signals of users who were
healthy at the time the measurements were taken, and also
based on EEG signals of users who suffered from a stroke
while the measurements were taken.

There are various predetermined activities the computer
may prompt the user to perform in order to detect whether
the user exhibits stroke signs. These activities may be
measured using different sensors. Examples of combinations
of activities, and sensors that may be used to take the
measurements M, of the user while the user performs the
activities are given above (e.g., smiling, raising hands,
walking, and speaking a phrase).
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In some embodiments, following the user’s performance
of the predetermined activity and analysis of M, results of
the analysis may be used to improve the accuracy of the
calculation of the risk. For example, responsive to deter-
mining, based on specific M, that the user does not exhibit
stroke signs after measuring specific EEG signals values
(which indicated that there is sufficient risk), the computer is
configured to adjust the threshold based on the specific EEG
signals. In another example, the computer may utilize the
specific EEG signals to retrain a model used to calculate the
risk. In this example, the specific EEG signals can constitute
an example of a false positive that is used to adjust the model
parameters.

Normally, the lens plane and the sensor plane of a camera
are parallel, and the plane of focus (PoF) is parallel to the
lens and sensor planes. If a planar object is also parallel to
the sensor plane, it can coincide with the PoF, and the entire
object can be captured sharply. If the lens plane is tilted (not
parallel) relative to the sensor plane, it will be in focus along
a line where it intersects the PoF. The Scheimpflug principle
is a known geometric rule that describes the orientation of
the plane of focus of a camera when the lens plane is tilted
relative to the sensor plane.

FIG. 35a is a schematic illustration of an inward-facing
head-mounted camera 550 embedded in an eyeglasses frame
551, which utilizes the Scheimpflug principle to improve the
sharpness of the image taken by the camera 550. The camera
550 includes a sensor 558 and a lens 555. The tilt of the lens
555 relative to sensor 558, which may also be considered as
the angle between the lens plane 555 and the sensor plane
559, is determined according to the expected position of the
camera 550 relative to the ROI 552 when the user wears the
eyeglasses. For a refractive optical lens, the “lens plane” 556
refers to a plane that is perpendicular to the optical axis of
the lens 555. Herein, the singular also includes the plural,
and the term “lens” refers to one or more lenses. When
“lens” refers to multiple lenses (which is usually the case in
most modern cameras having a lens module with multiple
lenses), then the “lens plane” refers to a plane that is
perpendicular to the optical axis of the lens module.

The Scheimpflug principle may be used for both thermal
cameras (based on lenses and sensors for wavelengths
longer than 2500 nm) and visible-light and/or near-IR cam-
eras (based on lenses and sensors for wavelengths between
400-900 nm). FIG. 350 is a schematic illustration of a
camera that is able to change the relative tilt between its lens
and sensor planes according to the Scheimpflug principle.
Housing 311 mounts a sensor 312 and lens 313. The lens 313
is tilted relative to the sensor 312. The tilt may be fixed
according to the expected position of the camera relative to
the ROI when the user wears the HMS, or may be adjusted
using motor 314. The motor 314 may move the lens 313
and/or the sensor 312.

Because the face is not planar and the inward-facing
head-mounted camera is located close to the face, an image
captured by a camera having a wide field of view (FOV) and
a low f-number may not be perfectly sharp, even after
applying the Scheimpflug principle. Therefore, in some
embodiments, the tilt between the lens plane and the sensor
plane is selected such as to adjust the sharpness of the
various areas covered in the ROI according to their impor-
tance for detecting the user’s physiological signals. In one
embodiment, the ROI covers first and second areas, where
the first area includes finer details and/or is more important
for detecting the physiological signals than the second area.
Therefore, the tilt between the lens and sensor planes is
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adjusted such that the image of the first area is shaper than
the image of the second area.

In one embodiment, the tilt between the lens plane and
sensor plane is fixed. The fixed tilt is selected according to
an expected orientation between the camera and the ROI
when a user wears the frame.

In another embodiment, the system includes an adjustable
electromechanical tilting mechanism configured to change
the tilt between the lens and sensor planes according to the
Scheimpflug principle based on the orientation between the
camera and the ROI when the frame is worn by the user. The
tilt may be achieved using at least one motor, such as a
brushless DC motor, a stepper motor (without a feedback
sensor), a brushed DC electric motor, a piezoelectric motor,
and/or a micro-motion motor.

Various embodiments described herein involve an HMS
that may be connected, using wires and/or wirelessly, with
a device carried by the user and/or a non-wearable device.
The HMS may include a battery, a computer, sensors, and a
transceiver.

FIG. 36a and FIG. 365 are schematic illustrations of
possible embodiments for computers (400, 410) that are able
to realize one or more of the embodiments discussed herein
that include a “computer”. The computer (400, 410) may be
implemented in various ways, such as, but not limited to, a
server, a client, a personal computer, a network device, a
handheld device (e.g., a smartphone), an HMS (such as
smart glasses, an augmented reality system, and/or a virtual
reality system), a computing device embedded in a wearable
device (e.g., a smartwatch or a computer embedded in
clothing), a computing device implanted in the human body,
and/or any other computer form capable of executing a set
of computer instructions. Herein, an augmented reality sys-
tem refers also to a mixed reality system. Further, references
to a computer or processor include any collection of one or
more computers and/or processors (which may be at differ-
ent locations) that individually or jointly execute one or
more sets of computer instructions. For example, a first
computer may be embedded in the HMS that communicates
with a second computer embedded in the user’s smartphone
that communicates over the Internet with a cloud computer.

The computer 400 includes one or more of the following
components: processor 401, memory 402, computer read-
able medium 403, user interface 404, communication intet-
face 405, and bus 406. The computer 410 includes one or
more of the following components: processor 411, memory
412, and communication interface 413.

Functionality of various embodiments may be imple-
mented in hardware, software, firmware, or any combination
thereof. If implemented at least in part in software, imple-
menting the functionality may involve a computer program
that includes one or more instructions or code stored or
transmitted on a computer-readable medium and executed
by one or more processors. Computer-readable media may
include computer-readable storage media, which corre-
sponds to a tangible medium such as data storage media, or
communication media including any medium that facilitates
transfer of a computer program from one place to another.
Computer-readable medium may be any media that can be
accessed by one or more computers to retrieve instructions,
code, data, and/or data structures for implementation of the
described embodiments. A computer program product may
include a computer-readable medium. In one example, the
computer-readable medium 403 may include one or more of
the following: RAM, ROM, EEPROM, optical storage,
magnetic storage, biologic storage, flash memory, or any
other medium that can store computer readable data.
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A computer program (also known as a program, software,
software application, script, program code, or code) can be
written in any form of programming language, including
compiled or interpreted languages, declarative or procedural
languages. The program can be deployed in any form,
including as a standalone program or as a module, compo-
nent, subroutine, object, or another unit suitable for use in a
computing environment. A computer program may corre-
spond to a file in a file system, may be stored in a portion of
a file that holds other programs or data, and/or may be stored
in one or more files that may be dedicated to the program.
A computer program may be deployed to be executed on one
or more computers that are located at one or more sites that
may be interconnected by a communication network.

Computer-readable medium may include a single medium
and/or multiple media (e.g., a centralized or distributed
database, and/or associated caches and servers) that store
one or more sets of instructions. In various embodiments, a
computer program, and/or portions of a computer program,
may be stored on a non-transitory computer-readable
medium, and may be updated and/or downloaded via a
communication network, such as the Internet. Optionally,
the computer program may be downloaded from a central
repository, such as Apple App Store and/or Google Play.
Optionally, the computer program may be downloaded from
a repository, such as an open source and/or community run
repository (e.g., GitHub).

At least some of the methods described herein are “com-
puter-implemented methods™ that are implemented on a
computer, such as the computer (400, 410), by executing
instructions on the processor (401, 411). Additionally, at
least some of these instructions may be stored on a non-
transitory computer-readable medium.

As used herein, references to “one embodiment” (and its
variations) mean that the feature being referred to may be
included in at least one embodiment of the invention.
Moreover, separate references to “one embodiment”, “some
embodiments”, “another embodiment”, “still another
embodiment”, etc., may refer to the same embodiment, may
illustrate different aspects of an embodiment, and/or may
refer to different embodiments.

Some embodiments may be described using the verb
“indicating”, the adjective “indicative”, and/or using varia-
tions thereof. Herein, sentences in the form of “X is indica-
tive of Y mean that X includes information correlated with
Y, up to the case where X equals Y. Stating that “X indicates
Y” or “X indicating Y” may be interpreted as “X being
indicative of Y”. Additionally, sentences in the form of
“provide/receive an indication indicating whether X hap-
pened” may refer herein to any indication method, including
but not limited to: sending/receiving a signal when X
happened and not sending/receiving a signal when X did not
happen, not sending/receiving a signal when X happened
and sending/receiving a signal when X did not happen,
and/or sending/receiving a first signal when X happened and
sending/receiving a second signal X did not happen.

Herein, “most” of something is defined as above 51% of
the something (including 100% of the something). Both a
“portion” of something and a “region” of something refer
herein to a value between a fraction of the something and
100% of the something. For example, sentences in the form
of a “portion of an area” may cover between 0.1% and 100%
of the area. As another example, sentences in the form of a
“region on the user’s forehead” may cover between the
smallest area captured by a single pixel (such as 0.1% or 5%
of the forehead) and 100% of the forehead. The word
“region” refers to an open-ended claim language, and a
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camera said to capture a specific region on the face may
capture just a small part of the specific region, the entire
specific region, and/or a portion of the specific region
together with additional region(s).

The terms “comprises,” “comprising,” “includes,”
“including,” “has,” “having”, or any other variation thereof,
indicate an open-ended claim language that does not exclude
additional limitations. The “a” or “an” is employed to
describe one or more, and the singular also includes the
plural unless it is obvious that it is meant otherwise. For
example, “a computer” refers to one or more computers,
such as a combination of a wearable computer that operates
together with a cloud computer.

The phrase “based on” is intended to mean “based, at least
in part, on”. Additionally, stating that a value is calculated
“based on X” and following that, in a certain embodiment,
that the value is calculated “also based on Y”, means that in
the certain embodiment, the value is calculated based on X
and Y.

The terms “first”, “second” and so forth are to be inter-
preted merely as ordinal designations, and shall not be
limited in themselves. A predetermined value is a fixed value
and/or a value determined any time before performing a
calculation that compares a certain value with the predeter-
mined value. A value is also considered to be a predeter-
mined value when the logic, used to determine whether a
threshold that utilizes the value is reached, is known before
start performing computations to determine whether the
threshold is reached.

The embodiments of the invention may include any
variety of combinations and/or integrations of the features of
the embodiments described herein. Although some embodi-
ments may depict serial operations, the embodiments may
perform certain operations in parallel and/or in different
orders from those depicted. Moreover, the use of repeated
reference numerals and/or letters in the text and/or drawings
is for the purpose of simplicity and clarity and does not in
itself dictate a relationship between the various embodi-
ments and/or configurations discussed. The embodiments
are not limited in their applications to the order of steps of
the methods, or to details of implementation of the devices,
set in the description, drawings, or examples. Moreover,
individual blocks illustrated in the figures may be functional
in nature and therefore may not necessarily correspond to
discrete hardware elements.

Certain features of the embodiments, which may have
been, for clarity., described in the context of separate
embodiments, may also be provided in various combinations
in a single embodiment. Conversely, various features of the
embodiments, which may have been, for brevity, described
in the context of a single embodiment, may also be provided
separately or in any suitable sub-combination. Embodiments
described in conjunction with specific examples are pre-
sented by way of example, and not limitation. Moreover, it
is evident that many alternatives, modifications, and varia-
tions will be apparent to those skilled in the art. It is to be
understood that other embodiments may be utilized and
structural changes may be made without departing from the
scope of the embodiments. Accordingly, this disclosure is
intended to embrace all such alternatives, modifications, and
variations that fall within the spirit and scope of the
appended claims and their equivalents.

We claim:

1. A system configured to detect an abnormal medical
event, comprising;

at least one right-side head-mounted device configured to

measure at least two signals indicative of photoplethys-
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mographic signals (PPGgg, and PPG,, respectively)
at first and second regions of interest (ROI,, and
ROI,,, respectively) on the right side of a user’s head,
wherein ROI,, and ROI, are located at least 2 cm
apart;

at least one left-side head-mounted device configured to

measure at least two signals indicative of photoplethys-
mographic signals (PPGy; , and PPG;,, respectively)
at first and second regions of interest (ROI,, and
RO, ,, respectively) on the left side of the user’s head,;
wherein ROI;, and ROI,, are located at least 2 cm
apart; and

a computer configured to detect the abnormal medical

event based on an asymmetrical change to blood flow
recognizable in PPGgg,, PPGgg,, PPGg; |, and PPGg; ».

2. The system of claim 1, wherein the asymmetrical
change to the blood flow corresponds to a deviation of
PPGgg,, PPGggs, PPGy; , and PPGg;, compared to a base-
line based on previous measurements of PPGgy,, PPGz,,
PPGg;,, and PPGg;, of the user, taken before the abnormal
medical event.

3. The system of claim 2, wherein the computer is further
configured to generate feature values based on data com-
prising: (i) PPGgg,, PPGgys, PPGg;,, and PPGg,, of the
user, and (ii) the previous measurements of PPGgg,
PPGgzs, PPGg;,, and PPGy;, of the user; and wherein the
computer is further configured to utilize a model to calcu-
late, based on the feature values, a value indicative of
whether the user is experiencing the abnormal medical
event.

4. The system of claim 3, wherein the feature values
comprise a certain feature value indicative of a difference in
maximal amplitudes of one or more of the following pairs:
(1) PPGgg, and PPGp,, (i) PPGg,, and PPG, , and (iii)
PPGgy, and PPG,.

5. The system of claim 3, wherein the feature values
comprise a certain feature value indicative of a difference in
a pulse arrival time between the following pairs of regions
of interest: (i) ROI,, and ROI,,, (ii) ROI,, and ROI,,, and
(ii1) ROlg, and ROI, ,.

6. The system of claim 2, wherein the abnormal medical
event 1s ischemic stroke, and the deviation involves an
increase in asymmetry between blood flow on the left side
of the head and blood flow on the right side of the head, with
respect to baseline asymmetry of the user between blood
flow on the left side of the head and blood flow on the right
side of the head.

7. The system of claim 2, wherein the abnormal medical
event is ischemic stroke, and the deviation involves a
monotonic increase in a variation between blood flow at
ROI,, and ROIl,,, with respect to a baseline variation
between blood flow at ROI,, and ROIg,, during a period
longer than 10 minutes.

8. The system of claim 7, wherein RO, is located in
proximity of the mastoid process behind the right ear, and
ROI,, is located before of the right ear.

9. The system of claim 2, wherein the abnormal medical
event is migraine attack, and the deviation is indicative of a
pattern of a certain change to facial blood flow, which is
associated with a pattern of a change to facial blood flow of
at least one previous migraine attack, determined based on
data comprising previous PPGgg,, PPGgr,, PPGg;,, and
PPGg;,, which were measured starting from at least 5
minutes before the previous migraine attack.

10. The system of claim 2, wherein the abnormal medical
event is headache, and the deviation is indicative of at least
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one of: a change in directionality of facial blood flow, and
an asymmetrical reduction in blood flow to one side of the
face.

11. The system of claim 2, wherein the at least one
right-side head-mounted device comprises first and second
contact photoplethysmographic devices (PPG,, PPG,,
respectively), and the at least one left-side head-mounted
device comprise third and fourth contact photoplethysmo-
graphic devices (PPG,;, PPG,, respectively); wherein PPG |,
PPG,, PPG;, and PPG, are physically coupled to an eye-
glasses frame, PPG, and PPG; are in contact with the nose,
and PPG, and PPG, are in contact with regions in the
vicinities of the ears, respectively.

12. The system of claim 2, wherein the at least one
right-side head-mounted device comprises first and second
contact photoplethysmographic devices, and the at least one
left-side head-mounted device comprise third and fourth
contact photoplethysmographic devices.

13. The system of claim 2, wherein the at least one
right-side head-mounted device comprises a first inward-
facing camera located more than 0.5 cm away from ROI,,
and ROl,, and PPG, and PPGg,, are recognizable from
color changes in regions in images taken by the first inward-
facing camera; and wherein the at least one left-side head-
mounted device comprise a second inward-facing camera
located more than 0.5 cm away from ROI, ; and ROI,,, and
PPGy;, and PPGy;, are recognizable from color changes in
regions in images taken by the second inward-facing cam-
era.

14. The system of claim 13, wherein each of the first and
second inward-facing cameras utilizes a sensor having more
than 30 pixels, and each of ROI,, and ROI, | covers an area
greater than 6 cm™2 on the user’s right and left cheeks,
respectively, which is illuminated by ambient light.

15. The system of claim 13, wherein each of the first and
second inward-facing cameras utilizes a sensor having more
than 20 pixels, and each of ROI,, and ROI, , covers an area
greater than 4 cm™2 on the right and left sides of the user’s
forehead, respectively, which is illuminated by ambient
light.

16. The system of claim 2, further comprising first and
second outward-facing head-mounted cameras configured to
take images of the environment to the right and left of the
user’s head, respectively; and wherein the computer is
further configured to utilize the images of the environment
to improve the accuracy of detecting the abnormal medical
event.

17. The system of claim 1, further comprising right and
left head-mounted thermometers, located at least 2 ¢cm to the
right and to the left of a vertical symmetry axis that divides
the face, respectively, and are configured to provide right
and left temperature measurements, respectively; and the
computer is further configured to detect the abnormal medi-
cal event also based on a deviation of the right and left
temperature measurements from a baseline temperature for
the user; wherein the baseline temperature for the user is
calculated based on data comprising previous right and left
temperature measurements of the user, taken more than a
day before the abnormal medical event; and wherein the
abnormal medical event is selected from a group comprising
cellulitis and dermatitis.

18. The system of claim 1, further comprising right and
left head-mounted thermometers, located less than 4 ¢m
from the right and left earlobes, respectively, and are con-
figured to provide right and left temperature measurements,
respectively; and the computer is further configured to detect
the abnormal medical event also based on a deviation of the
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right and left temperature measurements from a baseline
temperature for the user; wherein the baseline temperature
for the user is calculated based on data comprising previous
right and left temperature measurements of the user, taken
more than a day before the abnormal medical event. 5

19. The system of claim 18, wherein the abnormal medi-
cal event is selected from a group comprising ear infection,
cerebrovascular accident, and mastoiditis.

20. A method for detecting an abnormal medical event,
comptrising: 10
measuring, utilizing at least one right-side head-mounted
device, at least two signals indicative of photoplethys-
mographic signals (PPG g, and PPG,, respectively)
at first and second regions of interest (ROI,, and

ROI,,, respectively) on the right side of a user’s head; 15
wherein ROl and ROI,, are located at least 2 cm
apart;

measuring, utilizing at least one left-side head-mounted
device, at least two signals indicative of photoplethys-
mographic signals (PPGg,;, and PPGg,,, respectively) 20
at first and second regions of interest (ROI,, and
RO, ,, respectively) on the left side of the user’s head;
wherein ROl;, and ROl,, are located at least 2 cm
apart; and

detecting the abnormal medical event based on an asym- 25
metrical change to blood flow recognizable in PPGgy,,
PPGgg,, PPGg;;, and PPGq,,, relative to a baseline
based on previous measurements of PPGgy,, PPG .,
PPGg,,, and PPGg, of the user, taken before the
abnormal medical event. 30
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