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SYSTEMS AND METHODS FOR IMAGING
OF NEUROVASCULAR-COUPLING

[0001] This application claims priority to U.S. provisional
application 62/670,512, filed May 11, 2018 and U.S. provi-
sional application 62/755,810, filed Nov. 5, 2018, the dis-
closures of which are incorporated herein by reference.

FIELD OF THE INVENTION

[0002] The field of the invention is methods, systems, kits,
and devices related to tissue and organ imaging and analysis.

BACKGROUND

[0003] The background description includes information
that may be useful in understanding the present invention. It
is not an admission that any of the information provided
herein is prior art or relevant to the presently claimed
invention, or that any publication specifically or implicitly
referenced is prior art.

[0004] Neurovascular coupling refers to the relationship
between (1) activity of neurons, and (2) the supply of
oxygen and nutrients local to the neurons as provided by
nearby blood vessels. Attempts have been made in the prior
art to measure and/or visualize neurovascular coupling
(“NVC”) using Electroencephalography (“EEG”). optical
imaging, and functional magnetic resonance imaging
(“f/MRTI”). However, these techniques all require comparing
recordings of the brain at rest to recordings of the brain
while it performs a task (e.g., visual task, holding breath,
cognitively engaging task, etc). Moreover, each of these
techniques is sensitive to patient-specific conditions (e.g.,
hydration, brain morphometry, blood pressure, blood oxy-
genation, etc) and scanner-specific conditions (e.g., model,
software, sensitivity, environmental conditions, etc). As
such, while patient and scanner specific analysis can be
performed reliably, cross-analysis between different patients
or cohorts cannot be performed reliably.

[0005] Thus, there remains a need for systems and meth-
ods for providing analysis between organ or tissue imaging
that is not sensitive to patient-specific or scanner-specific
characteristics.

SUMMARY OF THE INVENTION

[0006] The inventive subject matter provides apparatus,
systems, and methods for comparative analysis of tissue and
organ scans between patients or groups of patients without
sensitivity to patient-specific or scanner specific character-
istics, including prediction, diagnosis, prognosis, tracking,
and treatment guidance.

[0007] The inventive subject matter contemplates appara-
tus, systems, and methods of measuring and visualizing
neurovascular coupling using fMRI without the requirement
of measuring and comparing patient brain activity during a
task with patient brain activity during rest. The variability of
blood-oxygen-level dependent (“BOLD”) contrast image
fMRI signals are measured by comparing a resting BOLD
fMRI against an anatomically plausible variability range.
Surprisingly, such inventive systems and methods enable
assessment of neurovascular coupling with significantly
improved spatial resolution, while simultaneously control-
ling for differences not only between patients, but also
across different MM scanners. Such methods provide
unprecedented robustness, reliability, and reproducibility.
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[0008] Systems are contemplated for analyzing a sub-
strate-dependent activity (e.g., BOLD activity, glycolysis,
etc.) in a tissue (e.g.. brain). Such systems have a scanner or
detector (e.g., MRI, fMRI) that detects signals related to the
substrate-dependent activity. While the signals can be of
different types (e.g., oxygen related, metabolic activity
related, metabolite related, blood flow related, enzymatic
activity related, etc), or from different sources (e.g., different
regions of the brain, etc), preferably the signals are of the
same type. A computer processor is informationally coupled
to the scanner to process data from the scans, including
organizing the signals into data sets, and applying refining
applications (e.g., cleaning, motion correcting, etc) to the
data set to produce a refined data set. Refined data sets are
used to identify maximum and minimum values within each
data set, which are used to normalize at least some of the
values in the refined data set.

[0009] As an example when measuring BOLD activity in
the brain, the maximum value is derived from the Circle of
Willis (or Vein or Galen, etc), and the minimum value is
derived from the Sagittal Sinus (or Middle Cerebral Artery
(MCA), etc). It should be appreciated that, when dealing
with imaging scanners, the data is typically stored as a
plurality of voxels. To normalize such data sets, it is con-
templated that the maximum value is the mean of resting
BOLD values from a first subset of voxels in the Circle of
Willis (or Vein or Galen, etc), and the minimum value is the
mean of resting BOLD values from a second subset of
voxels in the Sagittal Sinus (or MCA, etc). Viewed from
another perspective, the maximum value and the minimum
value define an (anatomically) plausible range of values that
the computer processor uses to normalize the refined data
set. It is also contemplated that only the first subset of voxels
in the Circle of Willis (or Vein or Galen, etc) is used to set
the maximum value, only the second subset of voxels in the
Sagittal Sinus (or MCA, etc) is used to set the minimum
value, or vice versa.

[0010] Systems for visualizing BOLD activity in the
patient’s brain are also contemplated, involving fMRI gen-
erating BOLD contrast data sets that are refined and ana-
lyzed to identify maximum and minimum values in the
refined data set. The maximum and minimum values are
used to normalize at least part (preferably all) of the refined
data set, which is then depicted by a display informationally
coupled to the system.

[0011] Methods are also contemplated, including methods
for normalizing a data set made up of a plurality of signal
data. A maximum value and a minimum value are identified
in the plurality of signal data and used to define a plausible
range of values. The plausible range of values is then used
to normalize the data set. It should be appreciated that data
sets that are not normalized offer little comparative analyti-
cal value, while normalized data sets can favorably be used
to compare data between different patients, taken at different
times, by different scanners, under different conditions.
[0012] Contemplated methods include diagnosing a con-
dition in a patient, where the patient’s data set is accessed
and analyzed to identify a maximum value and a minimum
value. The maximum and minimum values are applied to the
patient’s data set to produce a normalized data set, which is
then compared with a profile of the condition and used to
diagnose the condition in the patient. In preferred embodi-
ments, the profile is a normalized profile of at least one
different patient representative of the condition, more pref-
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erably an average of a plurality of normalized profiles.
While it is contemplated the inventive subject matter is
applicable to any condition (e.g., disease, disorder, charac-
teristic, etc) that is related to a detectable profile, preferred
conditions related to the brain include those listed in Table
L.

TABLE 1

Condition Profile

Alzheimer’s Irregular neurovascular coupling in the hippocampus

disease: and surrounding cortex

Parkinson’s Irregular neurovascular coupling in the substantia

disease: nigra and basal ganglia

Vascular Irregular neurovascular coupling diffusely throughout

dementia: the brain

MS: Irregular neurovascular coupling focally around
MS lesions

Cancer: Increased neurovascular coupling around the tumor
and decreased coupling in surrounding necrotic tissue

Schizophrenia: Irregular neurovascular coupling in the frontal lobe as
well as heschl’s gyrus

Depression: Irregular neurovascular coupling in the frontal lobe

Substance Irregular neurovascular coupling in the diffusely

abuse: throughout the cortex but likely not in subcortical
structures

Traumatic Reduced neurovascular coupling near area of injury

Brain Injury:

[0013] Methods are also contemplated for tracking a con-

dition in a patient, where the patient’s data set, including a
first data set recorded at to and a second data set recorded at
ti, is accessed to identify a maximum and minimum value in
each of the first and second data sets. The maximum and
minimum values are applied respectively to the first and
second data sets to produce normalized first and second data
sets, which are then compared with a profile of the condition
in order to track the condition in the patient. Preferably the
profile is one of (1) a normalized profile or (2) an average of
a plurality of normalized profiles representative of the
condition.

[0014] Methods are also contemplated for predicting a
condition in a patient, where the patient’s data set is
accessed to identify a maximum and minimum value, which
is then applied to the patient data set to produce a normalized
data set. The normalized data set is then compared with a
predictive profile of the condition to predict the condition in
the patient. Preferably, the predictive profile is one of (1) a
normalized predictive profile or (2) an average of a plurality
of normalized predictive profiles representative of the con-
dition.

[0015] Prognosis methods are also contemplated, where a
patient’s data set is accessed to identify a maximum and
minimum value and applied to the patient data set to produce
a normalized data set. The normalized data set is then
compared with a plurality of prognosis profiles of the
condition to prognose the condition in the patient. Preferably
the plurality of prognosis profiles include one or more of (1)
a condition-stable profile, (2) a condition-progressing pro-
file, (3) a condition-receding profile, (4) a condition-terminal
profile, or (5) an average of a plurality of normalized
prognosis profiles representative of the condition.

[0016] Methods of guiding treatment of a condition in a
patient are also contemplated, where the patient’s data set,
including a pre-treatment data set and a post-treatment data
set, is accessed to identify a maximum and minimum value
in each of the pre-treatment and post-treatment data sets.
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The maximum and minimum values are applied respectively
to the pre-treatment and post-treatment data sets to produce
normalized pre-treatment and post-treatment data sets. The
normalized pre-treatment and post-treatment data sets are
compared with a desirable profile of the condition to guide
subsequent treatment of the patient. Preferably the desirable
profile is one of (1) a normalized condition-stable profile, (2)
a normalized condition-receding profile, (3) a normalized
condition-free profile, or (4) an average of a plurality of
normalized desirable profiles of the same type.

[0017] Itisalso contemplated that methods of terminating
treatment of a condition in a patient include accessing a
patient’s data set including a pre-treatment data set and a
post-treatment data set. Maximum and minimum values in
each of the pre-treatment and post-treatment data sets are
identified and applied respectively to the pre-treatment and
post-treatment data sets to produce normalized pre-treat-
ment and post-treatment data sets. The normalized data sets
are then compared with a condition-free profile of the
condition to indicate terminating treatment. Preferably the
condition-free profile is one of (1) a normalized condition-
free profile or (2) an average of a plurality of normalized
condition-free profiles.

[0018] Methods of predicting (alternatively diagnosing) a
condition in a specific patient are also contemplated, where
a patient-specific data set and a plurality of non-patient-
specific data sets related to the condition are accessed.
Maximum and minimum values in at least some of the
non-patient-specific data sets are identified and applied to
each respective data set in the plurality of non-specific data
sets to produce a plurality of normalized non-patient-specific
data sets. The normalized non-patient-specific data sets are
then used to train a machine learning algorithm to predict the
condition, producing a predictive (or diagnosing) algorithm,
which can then be applied to the patient-specific data set to
predict (or diagnose) the condition in the specific patient.
[0019] Methods are also contemplated for prognosing a
condition in a specific patient by accessing a patient-specific
data set and a plurality of non-patient-specific data sets
related to the condition and identifying a maximum value
and a minimum value in at least some of the non-patient-
specific data sets. The maximum and minimum values are
applied to each respective non-specific data set to produce a
plurality of normalized non-patient-specific data sets, which
can be used 1o train a machine learning algorithm to prog-
nose the condition, producing a prognosis algorithm. The
prognosis algorithm is then applied to the patient-specific
data set to prognose the condition in the specific patient.
Preferably, the plurality of non-patient-specific data sets
comprise at least one of (1) a plurality of condition-stable
data sets for a single patient, (2) a plurality of condition-
progressing data sets for a single patient, (3) a plurality of
condition-receding data sets for a single patient, or (4) a
plurality of condition-terminal data sets for a single patient.
Viewed from another perspective, data sets for a single
patient can be collected from t,, preceding the condition,
through t,, the occurrence of the condition, to t, where n>i.
[0020] Methods of guiding treatment of a condition in a
specific patient are also contemplated. A patient-specific
data set and a plurality of non-patient-specific data sets
related to a desirable response to treatment of the condition
are accessed. A maximum and minimum value in at least
some of the non-patient-specific data sets are identified and
applied to each respective non-patient-specific data set to
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produce a plurality of normalized non-patient-specific data
sets. A machine learning algorithm is then trained on nor-
malized non-patient-specific data sets to guide treatment,
producing a guiding algorithm. The guiding algorithm is
then applied to the patient-specific data set to guide treat-
ment of the condition in the specific patient. Preferably, the
plurality of non-patient-specific data sets comprise at least
one of (1) a plurality of condition-stable data sets for a single
patient, (2) a plurality of condition-receding data sets for a
single patient, or (3) a plurality of condition-free data sets
for a single patient. Optionally, the patient-specific data set
comprises a pre-treatment data set and a post-treatment data
set.

[0021] Methods are also contemplated for training a
machine learning algorithm on a plurality of patient data
related to a condition. The plurality of patient data related to
the condition is accessed and to identify a maximum and
minimum value in each set of data. The maximum and
minimum values are applied respectively to each data set in
the plurality of data sets to produce a plurality of normalized
patient data. The machine learning algorithm is then trained
on the plurality of normalized patient data to predict, diag-
nose, prognose, or propose treatment for the condition.
Viewed from another perspective, a prediction device, a
diagnosis device, a prognosis device, a treatment device, or
some combination thereof, is produced by the inventive
subject matter capable of predicting, diagnosing, prognos-
ing, or treating a condition based on review of patient data
related to the condition, for example BOLD fMRI data.
[0022] Systems are also contemplated for analyzing a
condition-related signal in a tissue. A sensor 1s used to detect
a plurality of condition related signals in the tissue and a
processor informationally coupled with the sensor organizes
the plurality of signals into a data set, identifies a maximum
and minimum value within the data set, and uses the
maximum value and the minimum value to normalize at
least some of the values in the data set. Preferably, before
identifying the maximum and minimum value within the
data set, the computer processor applies a first refining
application to the data set to produce a refined data set.
[0023] Systems for providing an analysis of a condition in
a specific patient are also contemplated. A display is infor-
mationally coupled to a computer processor to depict the
analysis. The computer processor has at least partial access
to a patient-specific data set and a plurality of non-patient-
specific data sets related to the condition. The computer
processor identifies a maximum value and a minimum value
in at least some of the data sets in the plurality of non-
patient-specific data sets and applies the maximum and
minimum values to each respective data set in the plurality
of non-specific data sets to produce a plurality of normalized
non-patient-specific data sets. The plurality of normalized
non-patient-specific data sets are applied to train a machine
learning algorithm to analyze the patient-specific data set
with respect to the condition, producing an analytical algo-
rithm. The analytical algorithm is then applied to the patient-
specific data set to provide the analysis of the condition in
the specific patient. Preferably, the analysis is at least one of
a prediction, a diagnosis, a prognosis, or a proposed treat-
ment of the condition in the specific patient.

[0024] Systems for providing normalized data for analysis
are also contemplated. A display implement (e.g., monitor,
projector, augmented reality device, virtual reality device,
printer, 3D printer, etc). is informationally coupled to a
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computer processor to present (e.g., render, etc) the normal-
ized data. The computer processor preferably has at least
partial access to a patient-specific data set and a plurality of
non-patient-specific data sets related to a condition. The
computer processor identifies a maximum value and a
minimum value in at least some of the data sets in the
plurality of non-patient-specific data sets and applies the
maximum and minimum values to each respective data set
in the plurality of non-specific data sets to produce a
plurality of normalized non-patient-specific data sets. At
least some of the plurality of normalized non-patient-spe-
cific data sets are presented by the display implement. It is
contemplated the presentation can be of each discrete data
set, a (preferably weighted) combination of multiple data
sets, an average of some (preferably most, more preferably
all) data sets, or other appropriate statistical combinations of
data sets. The analysis is preferably performed by a trained
reader, for example a neurologist, a radiologist, a psychia-
trist, etc, but can also be performed by an artificial trained
reader, for example an artificial intelligence, and trained
machine learning algorithm, etc. Preferably, the analysis is
at least one of a prediction, a diagnosis, a prognosis, or a
proposed treatment of the condition in the specific patient.
[0025] Various objects, features, aspects, and advantages
of the inventive subject matter will become more apparent
from the following detailed description of preferred embodi-
ments, along with the accompanying drawing figures in
which like numerals represent like components.

BRIEF DESCRIPTION OF THE DRAWING

[0026] FIG. 1 shows BOLD contrast fMRI of a healthy
adult brain.
[0027] FIG. 2 shows BOLD contrast fMRI of a brain with

mild neurocognitive disorder due to Alzheimer’s Disease.
[0028] FIG. 3 shows BOLD contrast fMRI of a brain with
major neurocognitive disorder due to Alzheimer’s Disease.
[0029] FIG. 4 shows results for patients with CDR 0, CDR
0.5, and CDR 1 for whole brain NVC.

[0030] FIG. 5 shows results for patients with CDR 0, CDR
0.5, and CDR 1 for grey matter NVC.

[0031] FIG. 6 shows results for patients with CDR 0, CDR
0.5, and CDR 1 for grey matter NVC and whole brain NVC.

DETAILED DESCRIPTION

[0032] The inventive subject matter provides apparatus,
systems, and methods for comparative analysis of tissue and
organ scans between patients or groups of patients without
sensitivity to patient-specific or scanner specific character-
istics, including prediction, diagnosis, prognosis, tracking,
and treatment guidance.

[0033] Structural and functional data is acquired using
scanners known in the art, for example a 1.5 T Siemens
Espree scanner with a 16-channel head coil. Structural
images are preferably acquired in high spatial resolution to
properly align subject data to standard atlas space. For
example, suitable structural data includes a magnetization-
prepared, rapid-acquisition gradient-echo (MPRAGE)
T1-weighted sequence (TR=1810 ms; TE=3.50 ms;
FoV=180x240 mm,; resolution 1 mm isotropic), though
additional or altemative structural data is contemplated as
appropriate. BOLD/functional images are taken for about 8
minutes and 20 seconds long, but can be 5 to 8 minutes long,
less than 4, 3, 2, or 1 minute long, or greater than 10, 15, or
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20 minutes long. Functional sequences are preferably
acquired while the subject rests (e.g., TR=2500 ms; TE=30
ms; FoV=192x192 mm; resolution 4 mm isotropic; 200
spatial volumes).

[0034] Preferably, data recorded for each patient, for
example fMRI data, is pre-processed to improve analysis,
for example using tools from the FMRIB Software Library.
It is contemplated that preprocessing reduces noise, for
example, such that there is an increase in sensitivity and
validity of analysis. However, additional preprocessing steps
with various results are contemplated. For example, imaging
related to the brain such as fMRI data is preferably “de-
faced” or “skull stripped” (e.g., via MCFLIRT) to produce
an image showing primarily the cerebrum, cerebellum, brain
stem and cerebrospinal fluid (“CSF”) spaces. Data can also
(or alternatively) be motion corrected (e.g., via high pass
filter, etc), spatially smoothed (e.g., 5 mm FWHM, etc) or
registered to standard space (e.g., via non-linear warping
methods, etc). Optionally, further nefarious motion artifact
can be corrected, for example by Independent Component
Analysis strategy for Automatic Removal of Motion Artifact
(ICA-AROMA)

[0035] With respect to motion correction, it is contem-
plated MRI imaging modalities acquire a series of images,
for example once every few seconds over a period of
minutes, multiple times per second over a series of minutes,
etc. Preferably statistical analysis is applied to unprocessed
imaging results to extract useful information. While the
assumption that any given voxel represents the same loca-
tion in the brain over the course of the scan can be used, it
is preferred that additional (or alternative analysis) be
applied as subjects typically move during their scans, espe-
cially during the longer ones.

[0036] Insomeembodiments, it is desirable to correct data
to remove imperfections, artifacts, or corrupted data. For
example, optionally correcting MRI data for patient motion
can be viewed in terms of image registration and spatial
alignment of brain images. For example, image registration
is characterized by minimizing the difference between a
reference image and a floating image (e.g., calculating
differences using a cost function, etc). The MRI data to be
corrected for motion are preferably acquired using the same
scanning parameters and on the same subject, thus making
the transformations both intramodal and intrasubject. Under
this analysis, motion correction is comprised of rigid body
transformations.

[0037] While all appropriate statistical analysis or data
correction methods are contemplated, preferably cost func-
tions applying normalized cross correlation are used. In
mathematical terms, the inner product of the normalized
reference image A, with the normalized floating image B,
such that

ST—< A B >
“ AL BN

[0038] Preferred motion corrections utilize rigid body
transformations with six (6) different parameters to opti-
mize; three (3) translations and three (3) rotations. Mini-
mizing the difference between the floating and reference
image requires searching for the transformation by scanning
through the different parameters and calculating the cost. In
preferred embodiments, finding the transformation starts
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with a coarse search through the rotation, followed by
optimizing more finely for translations. The coarse search
broadly localizes the areas that lead to a minimized differ-
ence between images. The finer search is done over the
localized regions to further pinpoint the minima. A full
optimization can further be done for each local minima from
the finer search.

[0039] Correcting MRI data for motion can raise compli-
cations, for example (1) local minima leading to a misalign-
ment, and (2) time cost to find the absolute minimum.
Surprisingly, separate assumptions can be made to safely
remedy such issues without biasing the data. For example,
subsampling across the whole set of Mill data, or for each
image, allows for a coarser and computationally faster
search to show the general area of the absolute minima,
providing the technical effect of substantially reduced com-
putational stress or costs for compute hardware. The sub-
sampled registration is preferably used to initialize searches
at higher resolution. Additionally (or alternatively), an
assumption can be made that motion between successive or
chronological images will be small. Once the transformation
for a first image or pair of images has been determined, that
transformation is used to initialize the search for the subse-
quent image, favorably reducing time and cost of analysis.
In preferred embodiments, both assumptions (subsampling
and successive analysis) are applied to significantly optimize
performance while surprisingly improving accuracy.
[0040] As a further example, motion correction begins by
subsampling the set of images and picking the reference,
typically the middle or median image. Every image in the
series 1s then registered to the reference. Then, using the
transformations from the subsampled set, the process is done
on the full resolution series. The final stage builds off of the
previous step by doing the search again, however more in
depth (e.g., higher resolution, etc), and initialized by the
transformations of previous. In addition to producing a
series of images with noticeably improved motion correc-
tion, the transformations in the analysis describe both the
relative motion between images, and when concatenated, the
absolute motion from the reference image.

[0041] Aligning the fMRI series with motion correction is
the first step in preparing the data. Preferably, the next step
is to remove the artifactual signals that arise from motion,
diminishing the strength of effects and findings being looked
for. While removing afflicted volumes may achieve this
goal, it also affects the temporal integrity of the sequence
and decreases the degrees of freedom (“DOF”). A far more
robust, and effective, method is to break the acquisition into
separate components through an independent components
analysis (ICA). From here, using the motion parameters
gathered from motion correction, components with signifi-
cant correlation to motion may be regressed out. This allows
for the data to retain its temporal structure and successfully
conserves DOF’s while mitigating harmful motion artifact.
[0042] Using a standard atlas, manually drawn masks
were created to capture voxels known to comprise the Circle
of Willis as well as the Sagittal Sinus. However, additional
atlases are contemplated, for example a patient-specific
atlas, a demographic-specific atlas, a physician or trained
professional developed atlas, etc. Further, while the Circle of
Willis and the Sagittal Sinus were targeted regions, it is
contemplated that other regions in the brain with relative
differences in local blood oxygen levels can be used, for
example the Vein of Galen and the Middle Cerebral Artery
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(MCA). This mask was created such that all voxels in the
known region of interest were collected and then an erode
function was used to remove the outer layer of voxels. In so
eroding the mask. a single voxel gap was created between
the mask and surrounding regions. This ensured that no
extraneous regions were captured in the masks, as could be
the case due to partial voluming or averaging during acqui-
sition and/or registration.

[0043] After preprocessing was completed, the voxelwise
time series mean of the resting-state fMRI data was com-
puted. Then, using the previously generated masks, the mean
resting BOLD value was extracted from voxels in the Circle
of Willis (or Vein or Galen, etc) as well as from voxels
within the Sagittal Sinus (or MCA, etc). The Circle of Willis
(or Vein or Galen, etc) mean was used as the maximum
anatomically plausible intensity while the sagittal sinus (or
MCA, etc) mean represented the minimum anatomically
plausible intensity. A total plausible signal variability range
was then computed by subtracting the sagittal sinus (or
MCA. etc) mean from the Circle of Willis (or Vein or Galen,
etc) mean signal intensity value.

[0044] Next, the time series range for each voxel was
computed by subtracting each voxel’s time series minimum
from its time series maximum. Alternative or additional
methods are also contemplated, for example computing the
time series range for each voxel first clipping the time series
to a 90% winsorization (or 70%-90%, 90%-100%, etc) on a
voxelwise level (or voxel pair, more than 3 voxels, more
than 5 voxels, etc). Finally, the voxelwise time series range
was divided by the total plausible range resulting in a ratio
of the voxelwise to anatomically plausible variability. This
final, voxelwise variability ratio was considered the resting
BOLD-based proxy for neurovasculary coupling (NVC).
This method is robust to changes in general cerebrovascular
health as it uses a within-patient approach to normalize
signal intensity based on the patient’s own cerebrovascular
signal. However, it is limited in its sensitivity to BOLD
signal variability.

[0045] Further steps are also contemplated, for example
producing a measure of neurovascular response by using
Gaussian mixture model effects segmentation. The histo-
gram is treated as a bimodal distribution, allowing segmen-
tation to split into two separate Gaussian curves. The first,
larger distribution corresponds to the data of interest (and
also in an anatomically plausible range) while the second
targets voxels susceptible to noise, nefarious artifact, and
regions not of interest. This produces a cleaned image of the
neurovascular response.

[0046] FIGS. 1-3 are examples of NVC results using this
technique in a healthy adult (FIG. 1), an adult with mild
amnestic neurocognitive disorder due to Alzheimer’s dis-
ease (FIG. 2), and an adult with major neurocognitive
disorder due to Alzheimer’s disease (FIG. 3). For patients in
FIGS. 2 and 3, Alzheimer’s disease was verified using spinal
tap-derived cerebrospinal fluid quantification of amyloid
beta and phosphotau levels.

[0047] The same method as above was used with one
modification. Rather than compute the voxelwise time series
mean and extract the total range of signal intensity, the
variance of the time series within each voxel was used as the
metric of interest. Thus:

[0048] After processing was complete, using the previ-
ously generated masks, the standard deviation of the BOLD
value was computed for the Circle of Willis (or Vein or

Nov. 28,2019

Galen, etc) and the Sagital Sinus (or MCA, etc). The Circle
of Willis (or Vein or Galen, etc) standard deviation was used
as the maximum anatomically plausible variability while the
sagittal sinus (or MCA, etc) standard deviation represented
the minimum anatomically plausible variability. These stan-
dard deviations were squared to compute variance for the
Circle of Willis (or Vein or Galen, etc) and Sagital Sinus (or
MCA, etc), respectively. A total plausible signal variability
value was then computed by subtracting the sagittal sinus (or
MCA, etc) variance from the Circle of Willis (or Vein or
Galen, etc) signal variance value.

[0049] Next, the time series variance for each voxel was
computed by squaring each voxel’s time series standard
deviation. Finally, the voxelwise time series variance was
divided by the total plausible variance resulting in a ratio of
the voxelwise to anatomically plausible variance. This final,
voxelwise variance ratio was considered another resting
BOLD-based proxy for neurovasculary coupling (NVC).
This method is more sensitive to BOLD variability than the
previous method. However, it is also somewhat limited by
general cerebrovascular health confounds which could affect
the range of variability of signal seen in the Circle of Willis
(or Vein or Galen, etc) and the Sagittal Sinus (or MCA, etc).
[0050] It is contemplated that, due to unfavorable suscep-
tibility to artifact inherent in fMRI data acquisition which
can deleteriously affect the signal in the Vein of Galen (or
Circle of Willis, etc) region, an alternate anatomical source
can be isolated for the oxygenated signal intensity used for
the maximum plausible signal. Preferably, such a region
must provide the ability to measure signal from an artery in
a robust and reliable manner. For this purpose, methods of
the inventive subject matter can be further modified, altered,
or enhanced.

[0051] For example, instead of using a Vein of Galen (or
Circle of Willis, etc) mask, a mask of the Insula was
generated which captured the MCA. Likewise, rather than
(or in addition to) using the mean intensity or the variance
of the intensity of all voxels within each mask (or groups or
pairs of voxels), the value of the voxel with the highest
signal intensity from within each mask can be used as the
reference value for that region. This allows for more precise
anatomical localization of arteries and veins within the
BOLD signal, allowing for more anatomically precise detet-
mination of the anatomically plausible signal range.

[0052] After generating the time series mean for each
voxel (or pair, or group of voxels) in the brain, the resting
BOLD voxel intensity value can be extracted from the voxel
with the highest signal intensity value in the Insula as well
as from the voxel with the highest signal intensity value
within the MCA (or sagittal sinus, etc). The highest intensity
value from the Insula/MCA (or sagittal sinus, etc) is used as
the maximum anatomically plausible intensity while the
highest intensity value from the MCA represented the mini-
mum anatomically plausible intensity. A total plausible
signal intensity range can be computed by subtracting the
MCA highest intensity from the insula/middle cerebral
artery highest intensity value.

[0053] The voxelwise range (for example, computer as
described above) can be further divided by the total ana-
tomically plausible signal intensity. The resulting voxelwise
signal intensity ratio is another resting BOLD-based proxy
for neurovasculary coupling (NVC). Preferably, such meth-
ods normalize the data across patients and across scanning
platforms. This method is more sensitive to accurately



US 2019/0357770 A1l

detecting BOLD signal in arteries, thereby more accurately
computing the anatomically plausible BOLD signal range.
This method is also less affected by susceptibility to arti-
facts. Further improvements to the inventive methods are
contemplated to improve or mitigate susceptibility to outli-
ers in the data.

[0054] Registration to standardized space allows for visual
and statistical comparison between groups or between
patient and normative sample. Because these NVC metrics
were computed at the voxel level, they could then be
visualized with high spatial sensitivity. Further, due to the
patient-specific anatomically plausible variability normal-
ization method used, the final NVC image was not con-
founded by imaging environment-specific variables (e.g.
scanner type, acquisition parameters) nor was it confounded
by patient-specific variables (e.g. hydration status). This
allowed for statistical comparison of NVC results across
participants, including across participants collected on dif-
ferent data collection platforms (e.g. MR scanners).

[0055] Itis further contemplated that methods and systems
of the inventive subject matter be used to successfully
predict, diagnose, or track a variety of conditions (e.g.,
diseases, etc) in various tissues or organs of a patient (e.g.,
brain tissue, brain etc). As an example, Table 1 identifies a
number of conditions along with the respective signal profile
of BOLD activity (or alternative indication of neurovascular
coupling) that can be used to predict, diagnose, or track each
condition.

[0056] Validation of methods and systems of the inventive
subject matter was completed using proprietary data from
patients. Resting BOLD functional MM data and images
were preprocessed and then analyzed using inventive meth-
ods. Twenty Alzheimer’s disease (mean age=76.88, sd=7.68
years; 50% female) patients were identified using the gold
standard lumbar puncture amyloid-beta and tau markers.
Twenty three healthy age- and sex-matched control partici-
pants were also recruited (mean age=68.34, sd=12.84; 50%
female). A double blinded classification test was created to
ensure that findings from this analysis are detectable by
trained clinicians. In a blinded study, two clinicians were
shown 3 normal and 3 AD subjects. Based on these 6
training cases, the clinicians created an agreed upon metric
to classify the rest of the sample. The clinicians were
independently presented 10 AD and 10 controls in a ran-
domized order, and using their previously defined metric
they classified 20 cases. Using the statistical NVC maps
generated, the clinicians were able to classify patients accu-
rately with 90% sensitivity, 80% specificity, 82% positive
predictive value (PPV) and 89% negative predictive value
(NPV). There was a 75% overlap between raters with
regards to how they classified patients’ diagnosis. See Table
2.

TABLE 2

Sensitivity ~ Specificity PPV NPV Agreement

Normal vs 90% 80% 82%  89% 75%
Alzheimer’s
[0057] A large external dataset was also used to cross-

validate applying the inventive subject matter to differenti-
ating patients based on level of neurocognitive impairment.
The Open Access Series of Imaging Studies (OASIS) dataset
was chosen based on its robust MRI repository and its
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classification of participants’ level of cognitive proficiency.
Classification of degree of cognitive impairment within the
OASIS dataset was determined using Clinical Dementia
Rating Scale (CDR). CDR level 0 corresponded to “no
cognitive impairment” (N=1310, mean age=68.9, sd=9.32,
58.9% female); CDR level 0.5 corresponded to “mild cog-
nitive impairment” (N=277, mean age=75.1, sd=738§,
43.4% female); CDR level 1 corresponded to “mild demen-
tia” (N=95, mean age=74.8, sd=8.37, 44.0% female). While
CDR was used in this case, the inventive subject matter can
be used in conjunction with other neurological or cognitive
scales or metrics (e.g., Global Deterioration Scale, Dementia
Severity Rating Scale, FAST scale, ABC Dementia Scale,
etc), as well as patients that have not yet been scored or
evaluated. For example, the inventive subject matter can be
applied to validate a score, to validate methodologies for
assigning scores, or assess accuracy of a score, as well as to
assign scores or diagnoses.

[0058] Resting BOLD functional Mill images from the
OASIS dataset were preprocessed and then analyzed with
methods, systems, and devices of the inventive subject
matter. Surprisingly, based on neurovascular coupling imag-
ing and data alone, patients with CDR level 0 were accu-
rately classified as CDR level 0 with 96.7% sensitivity,
100% specificity, 100% PPV and 97.1% NPV. Patients with
CDR level 0.5 were accurately classified as CDR level 0.5
with 94.1% sensitivity, 97% specificity, 86.5% PPV and
98.8% NPV. Patients with CDR level 1 were accurately
classified as CDR level 1 with 97.1% sensitivity, 98.5%
specificity, 97.1% PPV and 98.5% NPV. See Table 3.

TABLE 3
Sensitivity ~ Specificity PPV NPV
CDR O 97.0 100.0 100.0 97.1
CDR 0.5 94.1 97.0 86.5 98.8
CDR 1 971 985 97.1 98.5

[0059] With regard to predicting cognitive decline in the
future, the OASIS dataset was divided into those partici-
pants who were cognitively stable and those participants
who displayed cognitive decline over time. The cognitively
stable group was generated by selecting those participants
who were initially classified by OASIS as CDR level 0 and
who were followed for at least three years and did not
demonstrate any change in CDR level (N=503, mean
age=66.85, sd=8.46, 62% female). The cognitively declining
group was generated by selecting those participants who
were initially classified by OASIS as CDR level 0 and then
converted to CDR level 0.5 or CDR level 1 later in the
longitudinal study (N=400, mean age=75.03, sd=7.85,
53.7% female).

[0060] Resting BOLD functional Mill images from the
OASIS dataset were processed and then analyzed with
methods, systems, and devices of the inventive subject
matter. Surprisingly, participants were accurately classified
as CDRO cognitive stable or CDRO cognitive declining with
61% sensitivity, 62% specificity, 56% PPV and 67% NPV.
See Table 4.

TABLE 4
Sensitivity  Specificity PPV NPV
Stable Vs 61% 62% 56% 67%

Declining
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[0061] Finally, the cognitively stable group was modified
to include only those participants who had an amyloid
positron emission tomography (PET) scan that was negative
for amyloid. Amyloid detection was calculated using the
Standardized Uptake Value ratio (SUVr) and the Binding
Potential (BP), both of which are metrics derived from the
amyloid binding ligand used during the PET scan. The lentil
scale is a metric which incorporates both SUVr and BP to
determine the likelihood a patient with certain amyloid PET
metrics is normal or has Alzheimer’s disease. A lentil scale
of 0 is indicative of low likelihood of developing Alzheim-
er’s disease. Therefore, this final sample of cognitive stable
participants was determined based on those participants that
did maintained a CDR value of 0 over at least three years and
had a lentil score of less than 0. This final sample was
comprised of CDRO and amyloid PET-defined cognitively
stable participants (N=188, mean age=63.83, sd=9.13,
58.5% female) and those participants who were initially
classified by OASIS as CDR level 0 and then converted to
CDR level 0.5 or CDR level 1 later in the longitudinal study
(N=400, mean age=75.03, sd=7.85, 53.7% female).

[0062] Resting BOLD functional Mill images from the
OASIS dataset were processed and then analyzed with
methods, systems, and devices of the inventive subject
matter. Surprisingly, participants were accurately classified
as CDRO cognitive stable or CDRO cognitive declining with
71% sensitivity, 50% specificity, 75% PPV and 45% NPV.
See Table 5.

TABLE 5
Sensitivity  Specificity PPV NPV
Stable Vs 71% 50% 75% 45%

Declining

[0063] Univariate analysis of variance (ANOVA) was
computed to assess differences in white matter NVC and
grey matter NVC between patients with CDRO, CDRO.5 and
CDRI. As seen in FIG. 4, CDRO group (mean=0.017,
$d=0.002) has significantly higher [(F(2, 201)=75.77, p<O0.
0001, partial-°=0.43] white matter NVC than CDRO0.5
(mean=0.013, sd=0.0018) and the CDR1 groups (mean=0.
012, sd=0.0033). The CDRO0.5 group also had a higher white
matter NVC than the CDR1 group (mean difference=0.001,
sd=0.00052, p<0.05). As seen in FIG. 5, CDRO group
(mean=0.019, sd=0.0024) has significantly higher [(F(2,
201)=194.09, p<0.0001, partial-n*=0.664] grey matter NVC
than CDRO0.5 (mean=0.013, sd=0.0018) and than CDRI
(mean=0.011, st. dev=0.0030). CDRO.5 group also had
significantly higher grey matter NVC than the CDR1 group
(mean difference=0.002, st. dev=0.0005, p<0.05). FIG. 6
depicts the observable relationship between whole brain
NVC and grey matter NVC across patients categorized as
CDR 0, CDR 0.5, and CDR 1.

[0064] Permutation-based discriminant function analyses
were used to determine the success with which NVC (white
matter, grey matter or both) could be used to accurately
classify participants according to their CDR rating. Surpris-
ingly, using white matter NVC only, discriminant function
analysis successfully differentiated between CDRO, CDRO.5
and CDR1 groups 68.7% of the time. Table 6 depicts
detailed results.
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TABLE 6

Classification Results®

Predicted Group Membership

D CDR_0 CDR_0.5 CDR_1.0 Total
Original Count CDR_0 78 21 0 99
CDR_0.5 5 16 13 34
CDR_1.0 12 12 44 68
% CDR_0 78.8 21.2 0 100.0
CDR_0.5 14.7 47.1 38.2 100.0
CDR_1.0 17.6 17.6 64.7 100.0

[0065] Surprisingly, using grey matter NVC only, dis-
criminant function analysis successfully differentiated
between CDRO, CDRO.5 and CDR1 groups 81.6% of the
time. Table 7 depicts detailed results.

TABLE 7

Classification Results®

Predicted Group Membership

D CDR_0O CDR_0.5 CDR_1.0 Total
Original Count CDR_0 97 2 0 99
CDR_0.5 4 19 11 34
CDR_1.0 7 13 48 68
% CDR_0 98.0 2.0 0 100.0
CDR_0.5 11.8 55.9 32.4 100.0
CDR_1.0 10.3 19.1 70.6 100.0

[0066] Surprisingly, using white matter NVC and grey
matter NVC, discriminant function analysis successfully
differentiated between CDRO, CDRO.5 and CDRI1 groups
96.5% of the time. Table 8 depicts detailed results.

Classification Results®

Predicted Group Membership

D CDR_0 CDR_0.5 CDR_1.0 Total
Original Count CDR_0 96 3 0 99
CDR_0.5 0 32 2 34
CDR_1.0 0 2 66 68
% CDR_0 97.0 3.0 0 100.0
CDR_0.5 0 94.1 5.9 100.0
CDR_1.0 0 29 97.1 100.0

496.5% of original grouped cases cotrectly classified.

[0067] The description includes information that may be
useful in understanding the present invention. It is not an
admission that any of the information provided herein is
prior art, necessary, or relevant to the presently claimed
invention, or that any publication specifically or implicitly
referenced is prior art.

[0068] As used in the description herein and throughout
the claims that follow, the meaning of “a,” “an,” and “the”
includes plural reference unless the context clearly dictates
otherwise. Also, as used in the description herein, the
meaning of “in” includes “in” and “on” unless the context
clearly dictates otherwise.

[0069] As used herein, and unless the context dictates
otherwise, the term “coupled to” is intended to include both
direct coupling (in which two elements that are coupled to
each other contact each other) and indirect coupling (in
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which at least one additional element is located between the
two elements). Therefore, the terms “coupled to” and
“coupled with” are used synonymously.

[0070] Unless the context dictates the contrary, all ranges
set forth herein should be interpreted as being inclusive of
their endpoints, and open-ended ranges should be inter-
preted to include commercially practical values. Similarly,
all lists of values should be considered as inclusive of
intermediate values unless the context indicates the contrary.
[0071] The recitation of ranges of values herein is merely
intended to serve as a shorthand method of referring indi-
vidually to each separate value falling within the range.
Unless otherwise indicated herein, each individual value is
incorporated into the specification as if it were individually
recited herein. All methods described herein can be per-
formed in any suitable order unless otherwise indicated
herein or otherwise clearly contradicted by context. The use
of any and all examples, or exemplary language (e.g. “such
as”) provided with respect to certain embodiments herein is
intended merely to better illuminate the invention and does
not pose a limitation on the scope of the invention otherwise
claimed. No language in the specification should be con-
strued as indicating any non-claimed element essential to the
practice of the invention.

[0072] Groupings of alternative elements or embodiments
of the invention disclosed herein are not to be construed as
limitations. Fach group member can be referred to and
claimed individually or in any combination with other
members of the group or other elements found herein. One
or more members of a group can be included in, or deleted
from, a group for reasons of convenience and/or patentabil-
ity. When any such inclusion or deletion occurs, the speci-
fication is herein deemed to contain the group as modified
thus fulfilling the written description of all Markush groups
used in the appended claims.

[0073] It should be noted that any language directed to a
computer device or a computer system should be read to
include any suitable combination of computing devices,
including servers, interfaces, systems, databases, agents,
peers, engines, controllers, or other types of computing
devices operating individually or collectively in a networked
environment (e.g. local intranet or an Internet cloud). One
should appreciate the computing devices comprise a pro-
cessor configured to execute software instructions stored on
a tangible, non-transitory computer readable storage
medium (e.g., hard drive, solid state drive, RAM, flash,
ROM, etc.). The software instructions preferably configure
the computing device to provide the roles, responsibilities,
or other functionality as discussed below with respect to the
disclosed apparatus. In especially preferred embodiments,
the various servers, systems, databases, or interfaces
exchange data using standardized protocols or algorithms,
possibly based on HTTP, HTTPS, AES, public-private key
exchanges, web service APIs, known financial transaction
protocols, or other electronic information exchanging meth-
ods. Data exchanges preferably are conducted over a packet-
switched network, the Internet, LAN, WAN, VPN, or other
type of packet switched network.

[0074] The discussion provides many example embodi-
ments of the inventive subject matter. Although each
embodiment represents a single combination of inventive
elements, the inventive subject matter is considered to
include all possible combinations of the disclosed elements.
Thus if one embodiment comprises elements A, B, and C,
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and a second embodiment comprises elements B and D, then
the inventive subject matter is also considered to include
other remaining combinations of A, B, C, or D, even if not
explicitly disclosed.
[0075] Tt should be apparent to those skilled in the art that
many more modifications besides those already described
are possible without departing from the inventive concepts
herein. The inventive subject matter, therefore, is not to be
restricted except in the scope of the appended claims.
Moreover, in interpreting both the specification and the
claims, all terms should be interpreted in the broadest
possible manner consistent with the context. In particular,
the terms “comprises” and “comprising” should be inter-
preted as referring to elements, components, or steps in a
non-exclusive manner, indicating that the referenced ele-
ments, components, or steps may be present, or utilized, or
combined with other elements, components, or steps that are
not expressly referenced. Where the specification claims
refers to at least one of something selected from the group
consisting of A, B, C . . . and N, the text should be
interpreted as requiring only one element from the group,
not A plus N, or B plus N, etc.
What is claimed is:
1. A system for analyzing a substrate-dependent activity
in a tissue, comprising:
a scanner, wherein the scanner detects a plurality of
signals related to the substrate-dependent activity in the
tissue; and
a computer processor informationally coupled to the
scanner; wherein the computer processor:
organizes the plurality of signals into a data set;
identifies a maximum value and a minimum value
within the data set; and

uses the maximum value and the minimum value to
normalize at least some of the values in the refined
data set.

2. The system of claim 1, wherein the computer processor
further applies a first refining application to the data set to
produce a refined data set, wherein the data set comprises the
refined data set.

3. The system of claim 1, wherein the tissue is a brain
tissue.

4. The system of claim 1, wherein the substrate-dependent
activity is blood-oxygen-level dependent (BOLD).

5. The system of claim 1, wherein the scanner is a
functional magnetic resonance imager (fMRI).

6. The system of claim 1, wherein the plurality of signals
comprise the same type of signal.

7. The system of claim 1, wherein the plurality of signals
comprise at least two different types of signal.

8. The system of claim 1, wherein the first refining
application is one of a motion correction application or a
cleaning application.

9. The system of claim 3, wherein the maximum value is
derived from the Circle of Willis or Vein of Galen, and
wherein the minimum value is derived from the Sagittal
Sinus or Middle Cerebral Artery (MCA).

10. The system of claim 1, wherein the data set comprises
a plurality of voxels.

11. The system of claim 10, wherein the maximum value
is the mean of resting BOLD values from a first subset of
voxels in the Circle of Willis or Vein of Galen, and wherein
the minimum value is the mean of resting BOLD values
from a second subset of voxels in the Sagittal Sinus or MCA.
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12. The system of claim 1, wherein the maximum value
and the minimum value define a plausible range of values,
and wherein the computer processor uses the plausible range
of values to normalize the refined data set.

13. A method of diagnosing a condition in a patient,
comptrising:

accessing a patient data set;

identifying a maximum value and a minimum value in the

patient data set;

applying the maximum and minimum values to the data

set to produce a normalized data set; and

comparing the normalized data set with a profile of the

condition to diagnose the condition in the patient.

14. The method of claim 13, wherein the condition is
Alzheimer’s disease and the profile is irregular BOLD
activity in the Hippocampus and surrounding cortex of the
patient’s brain.

15. The method of claim 13, wherein the condition is
Parkinson’s disease and the profile is irregular BOLD activ-
ity in the Substantia Nigra and Basal Ganglia of the patient’s
brain.

16. The method of claim 13, wherein the condition is
vascular dementia and the profile is irregular BOLD activity
diffusely throughout the patient’s brain.

17. The method of claim 13, wherein the profile is a
normalized profile representative of the condition.

18. The method of claim 13, wherein the profile is an
average of a plurality of normalized profiles representative
of the condition.

19. A method of predicting a condition in a patient,
comprising:

accessing a patient data set;

identifying a maximum value and a minimum value in the

patient data set;

applying the maximum and minimum values to the patient

data set to produce a normalized data set; and
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comparing the normalized data set with a predictive
profile of the condition to predict the condition in the
patient.

20. The method of claim 19, wherein the predictive profile
is one of (1) a normalized predictive profile or (2) an average
of a plurality of normalized predictive profiles representative
of the condition.

21. A method of prognosing a condition in a patient,
comprising:

accessing a patient data set;

identifying a maximum value and a minimum value in the

patient data set;
applying the maximum and minimum values to the patient
data set to produce a normalized data set; and

comparing the normalized data set with a plurality of
prognosis profiles of the condition to prognose the
condition in the patient.

22. The method of claim 21, wherein the plurality of
prognosis profiles comprise at least one of (1) a condition-
stable profile, (2) a condition-progressing profile, (3) a
condition-receding profile, (4) a condition-terminal profile,
or (5) an average of a plurality of normalized prognosis
profiles representative of the condition.

23. A method of training a machine learning algorithm on
a plurality of patient data related to a condition, comprising:

accessing the plurality of patient data related to the

condition;

identifying a maximum value and a minimum value in

each set of data in the plurality of patient data;
applying the maximum and minimum values to each
respective data set in the plurality of data sets to
produce a plurality of normalized patient data; and
training the machine learning algorithm on the plurality of
normalized patient data to predict, diagnose, prognose,
or propose treatment for the condition.
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