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(57) ABSTRACT

Systems and methods are provided for quantitatively and
objectively characterizing sleep architecture in normal indi-
viduals and persons with various health conditions. Embodi-
ments of the invention facilitate characterizing temporal-
pattern information of an individual’s sleep, such as
measured by electroencephalography (EEG), for identifying
persons with abnormalities in the temporal-pattern informa-
tion, sequences or durations of their stages of sleeping
(“sleep architecture”), for facilitating selecting appropriate
therapy or treatment, and for monitoring the effectiveness of
such therapy or treatment. In one aspect, a set of time series
are formed by electronically representing and storing infor-
mation pertaining to brain activity, such as EEG hypnogram
or sleep information, over a multi-night span. Information
for the timeseries is analyzed, using one or more models,
such as nonlinear, self-excited threshold autoregressive
(SETAR) or neural network models, for determining a
measure of chaotic properties of the timeseries. The largest
Lyapunov exponent (LLE) is determined for the time series.
Statistical departures of a particular patient’s LLE values
from one or more reference ranges are determined.
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DATE thresh | % state.2| LLE 2Q
6-JAN-12 2.9 45.7% 4.6E-02 85
7-JAN-12 2.9 45.8% 4.9E-02 64
8-JAN-12 2.9 37.3% 6.6E-02 96
9-JAN-12 2.9 36.9% 6.7E-02 82
10-JAN-12 2.9 34.9% 6.2E-02 89
11-JAN-12 2.9 38.3% 6.0E-02 110
12-JAN-12 2.9 43.7% 4.1E-02 78
13-JAN-12 2.9 358% 5.3E-02 81
14-JAN-12 2.9 31.0% 5.4E-02 86
15-JAN-12 2.9 48.5% 5.3E-02 60
16-JAN-12 2.9 39.1% 4,6E-02 76
17-JAN-12 2.9 36.0% 5.9F-02 93
18-JAN-12 2.9 47.8% 4.8E-02 63
20-JAN-12 2.9 344% | -14E01 81
21-JAN-12 2.9 307% | -8.7E-02 24
22-JAN-12 2.9 28.0% 5.1E-02 60
23-JAN-12 2.9 28.0% 6.8E-02 102
24-JAN-12 2.9 40.7% 4.7E-02 56
25-JAN-12 2.9 30.0% 3.9E-02 48
26-JAN-12 2.9 41.1% 5.0E-02 99
27-JAN-12 2.9 41.2% 2.8E-02 76
28-JAN-12 2.9 33.5% 6.2E-02 102
29-JAN-12 2.9 39.6% 4.9€-02 71
30-JAN-12 2.9 54.7% 4.7E-02 42
31-JAN-12 | 79 362% | 65E-02 67
1-FEB-12 2.5 36.2% 5.7E-02 109
2-FEB-12 2.9 37.0% 6.3E-02 87
3-FEB-12 2.9 47.4% 3.9E-02 55
4-FEB-12 2.9 38.2% 5.4E-02 104
5-FEB-12 2.9 354% | 43E-02 65
6-FEB-12 2.9 37.1% 3.9E-02 81
7-FEB-12 2.9 37.2% 5.2E-02 88
8-FEB-12 2.9 42.1% 5.2E-02 105
9-FEB-12 2.9 393% | 4.0E-02 66
10-FEB-12 2.9 40.0% 2.8E-02 67
11-FEB-12 | 29 39.4% 5.6E-02 80
12-FEB-12 | 239 55.4% 6.1E-02 67
13-FEB-12 2.9 36.6% 6.3E-02 121
14-FEB-12 2.9 40.5% 5.5E-02 92
15-FEB-12 | 29 39.1% 5.4E-02 91
16-FEB-12 | 29 27.4% 4,4E-02 65
18-FEB-12 | 2.9 35.7% 5.5E-02 82
19-FEB-12 | 249 36.1% 4,7E-02 89
20-FEB-12 | 79 34.,2% 3,6E-02 60
“““““““““““““““ min 27.4% | -14F-01
___________________ max 55.4% 68E02 | ol
median | 37.3% 52802 |

FIG. 3A
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DATE thresh | % state.2 LLE 2Q
11-JUL-12 2.9 26.8% 1.9E-02 75
12-JUL-12 29 29.4% 53E-02 94
13-JUL-12 2.9 33.0% 34EF-02 80
14-JUL-12 2.9 40.8% 41602 83
15-JUL-12 2.9 39.0% 2 4E-02 86
17-JUL-12 2.9 34.9% 4.8E-02 73
18-JUL-12 2.9 26.4% 3.2E-02 25
19-JUL-12 2.9 40.1% 42802 80
21-JUL-12 2.9 32.9% 33E-02 69
22-JUL-12 2.9 37.3% 3.7E-02 83
23-JUL-12 2.9 31.3% 3.5E-02 79
24-JUL-12 2.9 31.2% 5.2E-02 99
25-JUL-12 2.9 30.3% 42£-02 82
26-JUL-12 2.9 23.7% 2 AE-02 66
27-JUL-12 2.9 38.8% 53E-02 68
28-JUL-12 2.9 35.4% 2.9E-02 87
29-JUL-12 2.9 43.5% 44802 88
30-JUL-12 2.9 43.2% 5 4E-02 89
31-JUL-12 2.9 36.7% 6.1E-02 85
1-AUG-12 2.9 37.2% 5 0FE-02 88
2-AUG-12 2.9 35.4% 4,1E-02 81
3-AUG-12 2.9 36.4% 3.9E-02 86
4-AUG-12 2.9 37.5% 3.1E-02 71
6-AUG-12 2.9 31.9% 5A4E-02 89
7-AUG-12 2.9 34.8% | 50602 86 FIG 3B
8-AUG-12 2.9 52.7% 3,6E-02 65 .
9-AUG-12 2.9 32.0% 5.3E-02 89
10-AUG-12 | 2.9 34,5% 6.3E-02 78
11-AUG-12 ] 2.9 34.0% 33E-02 67
12-AUG-12 | 29 48.2% 76E-02 79
14-AUG-12 | 2.9 30.4% 3.9E-02 74
15-AUG-12 1 29 39.6% 5.8E-02 98
16-AUG-12 | 2.9 31.9% 4.0F-02 71
18-AUG-12 1 29 37.1% 5.5E-02 88
19-AUG-12 | 29 35.9% 6.2E-02 86
22-AUG-12 | 29 33.7% 6.0E-02 73
23-AUG-12 | 29 29.3% 6.2E-02 83
24-AUG-12 ] 29 51.5% 6.9E-02 77
25-AUG-12 | 29 38.6% 5,6E-02 79
27-AUG-12 ] 29 42.4% 5 0E-02 76
28-AUG-12 | 29 37.7% 46E-02 94
29-AUG-12 | 29 34.0% 5 0E-02 79
31-AUG-12 | 29 39.1% 5.2E-02 78
1-SEP-12 2.9 32.8% 6.0E-02 64
4-SEP-12 2.9 33.9% 4 0E-02 83
,,,,, max 52.7%
rrrrrrrrrrr median 35.4%
rrrrr avg 35.9%
SD 5.9%
V% 16.5%
"""" { Start End
lllllllllllllll total len| 36754 6 30
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DATE thresh | % state.2 LLE Q
12-JUL-12 2.9 38.8% 2.1E-02 76
13-JUL-12 2.9 38.2% 43E-02 89
14-JUL-12 2.9 40.9% 5.5E-02 89
15-JUL-12 2.9 46.3% 4,5E-02 77
16-JUL-12 29 43.6% 2.9E-02 71
17-JUL-12 2.9 39.7% 3.0E-02 68
19-JUL-12 2.9 31.4% 3.2E-02 77
20-dUL-12 2.9 50.7% 3.8F-02 43
21-JUL-12 29 61.6% 6.6E-02 40
22-JUL-12 2.9 42.5% 3.6E-02 70
23-JUL-12 2.9 41.3% 25802 81
25-JUL-12 2.9 32.6% 4 5E-02 73
26-JUL-12 2.9 46,7% 3.7E-02 88
27-JUL-12 2.9 41.,6% 3,6E-02 55
29-JUL-12 2.9 37.3% 5.0E-02 78
31-JUL-12 25 37.6% 5.1E-02 68
19-JUL-12 2.9 34.6% 2.5E-02 66
20-JUL-12 2.9 29.6% 3.4E-02 79
22-JUL-12 29 46.9% 4.2E-02 97
23-JUL-12 2.9 39.4% 3.9E-02 80
27-JUL-12 2.9 39.4% 4,0E-02 79
28-JUL-12 258 43.8% 3.1E-02 89
4-SEP-12 2.9 34.6% 4.5E-02 93
16-SEP-12 | 239 40.8% 4.7E-02 105
17-SEP-12 | 29 42.1% 2.9E-02 94
18-SEP-12 | 19 41.2% 3.4E-02 89
19-SEP-12 | 29 28.6% 3.9E-02 69
21-8EP-12 | 249 36.1% 3.7E-02 58
22-SEP-12 | 29 36.5% 2.5E-02 77
23-GEP-12 | g 23.0% 1.9E-02 68
24-SEP-12 | 29 43.3% 4,8E-02 69
26-SEP-12 | 29 42.2% 4,7E-02 92
27-SEP-12 | 28 44.6% 3.4E-02 95
28-SEP-12 | 29 41.2% 3 AE-02 57
1-0OCT-12 2.9 44.2% 4,1E-02 84
2-0CT-12 2.9 36.9% 3.8E-02 87
3-0CT-12 29 44,5% 3.7E-02 65

[

,,,,,,,,,,,,,,,,,, min 23.0% 1.9E-02

max 61.6% 6.6E-02

vvvvvvvvvvvvvvvvvvv median 40‘9% 3'7E_02

avg 40.1% 3.8E-02

__________________ $D 67% 97E03 o

CV% 16.6% 256% 1

.................. : Start End

vvvvvvvvvvvv totallen| 31385 6 30

FIG. 3C
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FIG. 4C
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library("tseriesChaos")

library("sm")

library("tsDyn"}

#

# zero-trim left and right tails of detail 30-sec state vector from Zeo

ts <.
c(2,21,2,2,2,2,2,2,2,2,2,2.3,3,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4444,4444444 44444444444,
4,4,4,3,3,3.3,3,3,3,3,2,2,2,2,222,2.22222222222222272227222272722222222222,
22,2,22222222222722222222222722222222272723,33,33,33,3,3,3,3,3,3,34,34,
44,4,444444444444444,4,44,4444444444,44444444,44444444444444,
44,4,44,44,444,333,3,2,222,3,3,3,33,3,3,3,44,4,4,44,3,3,3,3,3,444,4,4444,4,44444,44,
44,4,4,444444444,43,3,33,3,3,3,33,33,3,3,344,4,443,3,3,22,2,2,2,22,22,2,22227222,
2222222222.222.272,3,33,3,3,3,33,33,3,33.3.3,3,33,3,3,3,3,3,3,3,3,3,3,3,3,3,3.44,4,4,3,3,
4,4,4,44,444,33,3,3,3,3,3,3,3,3,4,4,444,44,44,4,4,4,4444,44,444,4444444,44444,44,
444,44444,4444444444.444,44444444,4,4,444,4,4,4,4433,33,3)

#

# transform raw series [states 0 to 4] to 5:missing, 4:wake, 3:REM, 2:light, 1:deep

ds <- 5-ts

#

# create SETAR nonlinear models;

# Note1: SETAR occationally gets singular-matrix and Cholesky errors for

# paucidisperse ordinal data

# Note2: sometimes in very chaotic timeseries the mean absolute percentage error
# (MAPE) exceeds 25% for SETAR

# Note3: prime-number lag coeffs in low and high regime models give desirable AIC
# values but unstable LLE calc

# ds.setar2 <- setar(ds, m=19, d=3, steps=1, ML=c¢(1,5,7,19), MH=¢(1,5,7,19),
# thDelay=1, th=2.9, model="TAR", nthresh=1})

ds.setar2 <- setar(ds, m=2, d=1, steps=10, mL=2, mH=2, thDelay=1, th=2.9, model="TAR",
nthresh=1)

# proportion in state #2 (REM)

ds.setar2$model.specific$RegProp[2]

# threshold cutpoint

ds.setar2$model.specific$cocefficients[7]

summary(ds.setar2)

CONTINUES IN FIG. 7B

FIG. 7A
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CONTINUES FROM FIG. 7A

# estimate largest Lyapunov exponent (lle) with 200 samples, use lyap_k() and lyap() fns in
# tseriesChaos pkg

# For Kantz algorithm add small amount of observational noise
# ts time series

# m embedding dimension

# d time delay

# s iterations along which follow the neighbours of each point
# t Theiler window

# ref number of points to take into account

# k number of considered neighbours

# eps radius in which to find nearest neighbors

#

N <- 1600

ds.new <- predict{ds.setar2, n.ahead=N)

ds.new <- ds.new + rnorm(N, sd=sd(ds.new)/50)

sarm <- min(500,length(ds.newy})

ly <-lyap_k{ds.new, m=2, d=1, t=1, k=2, ref=750, s=sam, eps=sd(ds.new)/2)
plot(ly)

#

# start Starting time of the initial linear segment of ly

# end Ending time of the linear segment of dsts

#

e <- lyap(ly, start=0.1, end=2.3)

He[2]

#

lag.plot{predict(ds.setar2, n.ahead=100))
#

# create neural network nonlinear model; Note4: generally MAPE for NNET is less than 5%,
# except for very short timeseries

#

ds.nnet <- nnetTs(ds, m=2, size=3)

summary(ds.nnet)

# estimate largest Lyapunov exponent (lle)

N <-1000

ds.new <- predict{ds.nnet, n.ahead=N)

ds.new <- ds.new + rnorm(N, sd=sd(ds.new)/50)

sam <- min(500,length(ds.newy})

ly <- lyap_k(ds.new, m=2, d=1, t=1, k=2, ref=750, s=sam, eps=sd{ds.new)/2)
plot(ly)

#

lle <- lyap(ly, start=0.1, end=2.3)

He[2]

#

# mutual information looks exponential in lags

ds.mutual <- mutual(ds)

FIG. 7B



U.S. Patent Oct. 16,2018 Sheet 17 of 17 US 10,098,582 B1

150 200

FIG. 8

50




US 10,098,582 Bl

1
CHARACTERIZING SLEEP ARCHITECTURE

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application claims the benefit of U.S. Provisional
Application No. 61/824,104, titled “NON-LINEAR TIME-
SERIES ANALYSIS SYSTEM AND METHOD,” filed on
May 16, 2013; which is hereby expressly incorporated by
reference in its entirety.

INTRODUCTION

Sleep is a complex regulated process with short periods of
wakefulness and different sleep stages. Despite some
advances in pharmaceutical therapies for sleep disorders;
however, disturbed sleep remains widely under-treated.
Treatment regimens are selected on a highly subjective
basis, and their eflicacy goes largely unmeasured. Moreover,
conditions such as schizophrenia and other psychoses, uni-
polar and bipolar depression, Alzheimer’s Disease and other
dementias, Parkinson’s Disease, Post-traumatic Stress Dis-
order (PTSD), and other mental health conditions are known
to have frequent and substantial effects on sleep. Although
diminished delta-wave deep sleep and certain other features
are detected in a modest percentage of patients, such find-
ings are not consistent or specific.

Despite conjecture about potential REM sleep abnormali-
ties in schizophrenia and other psychiatric disorders, studies
comparing patients with healthy control subjects have not
revealed consistent abnormalities in the nightly cumulative
duration of REM sleep or REM latency or frequency or
duration of REM episodes. Slow-wave sleep and non-REM
sleep often show some abnormal features, but they are
inconsistently manifested such that they are not very prac-
tical for purposes of diagnosis or monitoring of treatment
efficacy.

The frequency of changes to temporal patterns,
sequences, and durations of stages of sleeping (“sleep archi-
tecture”) and circadian rhythm sleep disturbances increases
with age. Although around 40% of older adults complain of
poor sleep, true sleep disorders are far less prevalent in
healthy older adults and are frequently associated with
comorbidities. The sleep disorders observed in Alzheimer’s
disease (AD) patients are often similar to (but more intense
than) those found in non-demented elderly people. Poor
sleep results in an increased risk of significant morbidities
and even mortality in demented patients and constitutes a
major source of stress for caregivers. The prevalence of
primary sleep disorders such as rapid eye movement (REM)
sleep behavior disorders (RBDs), restless legs syndrome
(RLS), periodic limb movements (PLMs) and sleep-disor-
dered breathing increases with age.

Schizophrenia is characterized by disturbed sleep archi-
tecture. Some conjecture that schizophrenia constitutes a
state that is “trapped” between waking and dreaming. It has
been proposed that sleep abnormalities may underlie infor-
mation processing deficits associated with this disorder.
Sleep is also disordered in PTSD and other conditions
affecting military personnel.

REM sleep is associated with enhanced activation of
limbic and amygdalar networks in the brain and decreased
activation in dorsal prefrontal regions, while stage Il NREM
is associated with greater cortical activation than REM. Not
surprisingly, these disparate brain activation patterns tend to
be associated with dramatically different phenomenologies
with regard to aggressive social interactions. REM and
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NREM variables may significantly predict daytime mood
and social interactions. This is particularly relevant to the
effective management of psychiatric conditions that are
prone to daytime agitation, self-injury, or violent behavior.

SUMMARY

This Summary is provided to introduce a selection of
concepts in a simplified form that are further described
below in the Detailed Description. This Summary is not
intended to identify key features or essential features of the
claimed subject matter, nor is it intended to be used as an aid
in determining the scope of the claimed subject matter. The
present invention is defined by the claims.

Systems, methods, and computer-readable media are pro-
vided for quantitatively and objectively characterizing sleep
architecture in normal individuals and in persons with
various health conditions, particularly psychiatric condi-
tions, dementia, and individuals who are receiving medica-
tions that may alter sleep health. For example, some embodi-
ments of the invention facilitate quantitatively and
objectively characterizing temporal-pattern information of
an individual’s sleep, such as measured by electroencepha-
lography (EEG), for identifying individual persons with
abnormalities 1in the temporal-pattern information,
sequences or durations of their stages of sleeping (“sleep
architecture™), for facilitating selecting appropriate therapy
or treatment, and for monitoring the effectiveness of such
therapy or treatment. Some embodiments facilitate evaluat-
ing the impact of particular treatments or therapies on a
user’s sleep, such as side effects resulting from pharmaceu-
tical treatments, therapies, or user-lifestyle changes. Further-
more, in some scenarios, embodiments may facilitate lon-
gitudinal, ongoing assessments of a user or patient by
engaging the patient to acquire temporal pattern informa-
tion, such as EEG signals, using inexpensive equipment on
a nightly basis in the patient’s home.

In one aspect, a set of one or more time series are formed
by electronically representing and storing information per-
taining to brain activity, such as EEG hypnogram or sleep
information, over a multi-night span. Information for a
timeseries is analyzed, using one or more timeseries models,
such as nonlinear, self-excited threshold autoregressive
(SETAR) or neural network models, for determining a
measure of chaotic properties of the timeseries. The largest
Lyapunov exponent (LLE) is determined for the time series.
Statistical departures of a particular patient’s LLE values
from one or more reference ranges are determined.

BRIEF DESCRIPTION OF THE DRAWINGS

Embodiments are described in detail below with reference
to the attached drawing figures, wherein:

FIGS. 1A, 1B and 1C depict aspects of an exemplary
operating environment suitable to implement embodiments
of the present invention;

FIG. 2 depicts a flow diagram of a method for character-
izing sleep patterns, in accordance with embodiments of the
present invention;

FIGS. 3A, 3B, and 3C each provide a table of sleep-
related metrics determined for a particular user, in accor-
dance with embodiments of the present invention;

FIGS. 4A, 4B, and 4C each provide a representation of
sleep states vs. time for a particular user for a night;

FIGS. 5A, 5B, and 5C each illustratively depict strange-
attractor diagrams corresponding to coefficients of the non-
linear model for each sample-period over a night, for a
particular user;
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FIGS. 6A and 6B provide a table of sleep-related metrics
determined for a particular user, in accordance with embodi-
ments of the present invention;

FIGS. 7A and 7B illustratively provide one example
embodiment of a computer program routine for trajectory
mining; and

FIG. 8 illustratively depicts Lyapunov exponent informa-
tion as a function of samples of time, with a tangent
corresponding to the numerical measure of the LLE, repre-
sentative of a typical night of sleep.

DETAILED DESCRIPTION

The subject matter of the present invention is described
with specificity herein to meet statutory requirements. How-
ever, the description itself is not intended to limit the scope
of this patent. Rather, the inventor has contemplated that the
claimed subject matter might also be embodied in other
ways, to include different steps or combinations of steps
similar to the ones described in this document, in conjunc-
tion with other present or future technologies. Moreover,
although the terms “step” and/or “block” may be used herein
to connote different elements of methods employed, the
terms should not be interpreted as implying any particular
order among or between various steps herein disclosed
unless and except when the order of individual steps is
explicitly described.

As one skilled in the art will appreciate, embodiments of
our invention may be embodied as, among other things: a
method, system, or set of instructions embodied on one or
more computer-readable media. Accordingly, the embodi-
ments may take the form of a hardware embodiment, a
software embodiment, or an embodiment combining soft-
ware and hardware. In one embodiment, the invention takes
the form of a computer-program product that includes com-
puter-usable instructions embodied on one or more com-
puter-readable media.

Computer-readable media include both volatile and non-
volatile media, removable nonremovable media, and con-
template media readable by a database, a switch, and various
other network devices. By way of example, and not limita-
tion, computer-readable media comprise media imple-
mented in any method or technology for storing information,
including computer-storage media and communications
media. Examples of stored information include computer-
useable instructions, data structures, program modules, and
other data representations. Computer storage media
examples include, but are not limited to information-deliv-
ery media, RAM, ROM, EEPROM, flash memory or other
memory technology, CD-ROM, digital versatile discs
(DVD), holographic media or other optical disc storage,
magnetic cassettes, magnetic tape, magnetic disk storage,
other magnetic storage devices, and other storage devices.
These technologies can store data momentarily, temporarily,
or permanently.

Embodiments of the invention are directed to methods,
computer systems, and computer-readable media for quan-
titatively and objectively characterizing sleep architecture in
normal individuals and in persons with various health con-
ditions such as psychiatric conditions, dementia, or indi-
viduals who are receiving therapy, treatment including treat-
ment from medications, or exposure to environmental
factors that may alter sleep health. Embodiments may facili-
tate identifying persons having abnormalities in temporal
patterns and sequences and durations of their stages of
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sleeping (“sleep architecture”), and selecting appropriate
treatment or therapy, and monitoring the effectiveness of
such treatment or therapy.

Other attempts or efforts at characterizing sleeping con-
ditions are deficient due to: (1) methods utilizing electroen-
cephalography (EEG) and polysomnography (PSG), which
focus on (a) “low-level” EEG waveform data and frequency-
domain spectral analysis of that and on (b) “summary” data
dealing with percentages of time spent in each sleep stage,
latency of sleep onset, latency to REM onset, latency to
Stage-2 onset, percent waking after sleep onset, number of
waking epochs per night, sleep efficiency, and other broad,
descriptive features. In particular, both (a) and (b) have only
weak statistical correlation with psychiatric conditions, their
severity, or their symptomatology during treatment. Addi-
tionally, such measures exhibit strong age-dependence
among normal individuals, which complicates accurate
interpretation, insofar as there are no well-established nor-
mative data for these measures’ ranges of values in different
age groups of persons with psychiatric conditions.

(2) Some efforts rely largely on human interpretation,
which is often subjective, inconsistent, and plagued by low
sensitivity (many false-negative errors) and low specificity
(many false-positive errors). Frequently, humans fail to
notice relevant patterns. Often, this is because the patterns
involve multiple variables or longitudinal sequences that
exhibit high degrees of variability or in other ways elude
human detection of signals and statistical associations of
signals with clinical states.

(3) Persons with disturbed sleep architecture are poorly
able to report on their sleep quality, and virtually none is able
to accurately characterize temporal properties of their pat-
terns of sleeping and wakefulness during the night.

(4) Some efforts tend to “medicalize” the process of
observation of sleep architecture, such that physicians,
nurses, neurophysiologists, somnographers, or other clinical
providers have the only active roles in measuring the phe-
nomena of the patient’s sleep, and the patient and family
members are made to be passive-disempowering them from
participating meaningfully in the processes of discovering
what is wrong and managing it.

(5) Some efforts are not amenable to periodic or continu-
ous monitoring usage, whereby the patient, their caregivers,
and their clinician providers are able to serially assess trends
and changes, including either ones that arise with progres-
sion of the patient’s illness or ones that materialize as
responses to the treatment of the illness. As such, there is a
high prevalence of ineffectively treated psychiatric condi-
tions in which the medication regimen and the doses of the
medicines that comprise the regimen are empirically
selected without adequate means to assess the efficacy ofthe
regimen in addressing insomnia or other disturbances of
sleep architecture that are associated with the illness.

(6) Alternative efforts that require detailed construction of
database retrieval extracts where the extracted cohorts
embody homogeneous populations give rise to labor-inten-
sive activities requiring individuals of high levels of exper-
tise. As a result, such systems are too expensive to operate
on a comprehensive or sustainable basis.

(7) While conventional EEG and PSG aims to utilize raw
and processed biometric signals to ascertain abnormalities in
mental health conditions, the signals are only acquired from
one or a few nights’ studies, and therefore suffer from low
sensitivity if abnormalities are not manifested on the par-
ticular night or nights studied. Additionally, such studies are
expensive to perform and rely on expert polysomnographers
and electroencephalographers who are in short supply and



US 10,098,582 Bl

5

generally available only in large metropolitan locations,
limiting access that patients have to such services. Further-
more, the studies are conducted in specially-designed sleep
labs, such that the unfamiliar environment in the lab may
induce sleep patterns that are not representative of patterns
that characterize the patient’s sleep under ordinary condi-
tions at home. This contributes to a high percentage of
false-negative and “data inadequate for evaluation” results.

(8) Some efforts that rely on human interpretation of EEG
or PSG studies produce a high rates of false-positive intet-
pretive errors as well.

Accordingly, it is therefore highly valuable and highly
desirable to provide embodiments of the methods and sys-
tems described herein for quantitatively and objectively
characterizing sleep architecture, and which also mitigate
the aforementioned limitations.

Nonlinear analyses of sleep data can provide valuable
information on sleep characteristics that may be relevant to
the functions of sleep, for example analysis of the predict-
ability and nonlinear complexity of sleep EEG time series
using measures of nonlinearity, such as symbolic dynamics
and the largest Lyapunov exponent (LLE) in schizophrenia.
In one analysis, a series of antipsychotic naive patients with
first episode of schizophrenia or schizoaffective disorder and
age-matched healthy controls were studied during awake
period, stage 1/2, slow wave sleep (stage 3/4) and rapid eye
movement (REM) sleep. Nonlinearity scores were signifi-
cantly lower during awake stage in patients compared to
controls suggesting that there may be a diminished interplay
between various parameters for the genesis of waking EEG.
This particular study examines only raw EEG signals and
not LLE or other measures in hypnogram time series clas-
sified epochs, nor does the study examine multi-night serial
EEGs or aggregate statistical properties of multi-night sets
of EEGs.

Additionally, other studies have previously evaluated
Lyapunov exponents of raw EEG signals during different
sleep stages and shown positive Lyapunov exponents during
deep sleep, such as obtaining a value of A=0.4-0.8 for stage
1I and a value of 2=0.3-0.6 for stage IV. One study reported
a greater value of A=2.1 for sleep stage II, but concluded that
an accurate value is impossible to obtain because of the
complexity of the signal, its time varying nature and the
sensibility of the results with the election of the parameters
for the calculations. Another example, modifying the Wolf
algorithm, calculated the Lyapunov exponent of EEG
recordings from 15 healthy male subjects in sleep stages I,
11, 1, IV and REM. They found in all cases positive values,
thus stating that EEG signals are neither quasi-periodic
waves nor simple noise. These and similar studies address
non-linear and stability measurements of raw FEG wave-
form data. However, none of these studies have reported on
non-linear and stability measurements of epochal hypno-
graphic time series data classified as to sleep state or stage
during each epoch. Accordingly, embodiments of the inven-
tion have determined that the largest Lyapunov exponent in
majority of multi-night hypnography time series is signifi-
cantly positive with an estimated value 2~0.02 to 0.08 using,
in some embodiments, the direct method for estimating the
LE of Wolf et al. [1985] and the method of Kantz [Hegger
1999].

Turning now to FIG. 1A there is presented an exaniple
operating environment 100 suitable for practicing embodi-
ments of the invention. Example operating environment 100
includes a computerized system for compiling and/or run-
ning an embodiment of a sleep architecture characterization
decision support recommendation service. With reference to
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FIG. 1A, one or more electronic health record (EHR)
systems, such as hospital EHR system 160, health informa-
tion exchange EHR system 162, ambulatory clinic EHR
system 164, psychiatry/neurology EHR system 166 are
communicatively coupled to network 175, which is com-
municatively coupled to computer system 120. In some
embodiments, components of operating environment 100
that are shown as distinct components may be embodied as
part of or within other components of environment 100. For
example, the one or more EHR systems 160-166 may be
implemented in computer system 120. Similarly, a single
EHR system may perform functions for two or more of the
example EHR systems shown in FIG. 1A.

In embodiments, network 175 includes the Internet, and/
or one or more public networks, private networks, other
communications networks such as a cellular network. or
similar network(s) for facilitating communication among
devices connected through the network. Network 175 may
be determined based on factors such as the source and
destination of the information communicated over network
175, the path between the source and destination, or the
nature of the information. For example, intra-organization or
internal communication may use a private network or virtual
private network (VPN). Moreover, in some embodiments
items shown communicatively coupled to network 175 may
be directly communicatively coupled to other items shown
communicatively coupled to network 175.

In some embodiments, operating environment 100 may
include a firewall (not shown) between a first component
and network 175. In such embodiments, the firewall may
reside on a second component located between the first
component and network 175, such as on a server (not
shown), or reside on another component within network
175, or may reside on or as part of the first component.

Embodiments of electronic health record (EHR) systems
160, 162, 164, and 166 include one or more data stores of
health records, which may be stored on storage 121, and may
further include one or more computers or servers that
facilitate the storing and retrieval of the health records. In
some embodiments, one or more EHR systems 160, 162,
164, and 166 may be implemented as a cloud-based platform
or may be distributed across multiple physical locations.
EHR systems 160, 162, 164, and 166 may further include
record systems, which store real-time or near real-time
patient (or user) information, such as wearable, bedside, or
in-home patient monitors, for example.

Although FIG. 1A depicts multiple example EHR sys-
tems, it is contemplated that some embodiments may
employ only one EHR system, or alternatively, may rely on
user manager 140 and/or monitor 141 for storing and
retrieving patient record information such as information
acquired from monitor 141.

Example operating environment 100 further includes pro-
vider clinician interface 142 communicatively coupled to the
one or more EHRs 160, 162, 164, and 166. Although
environment 100 depicts a direct communicative coupling
between interface 142 and the one or more EHRs 160, 162,
164, and 166, it is contemplated that some embodiments of
interface 142 may be communicatively coupled to the EHRs
through network 175. Embodiments of interface 142 may
take the form of a user interface operated by a software
application or set of applications on a client computing
device such as a personal computer, laptop, smartphone, or
tablet computing device. In one embodiment, the application
includes the PowerChart® software, manufactured by
Cerner Corporation. In an embodiment, the application is a
Web-based application or applet. Provider clinician appli-
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cation facilitates accessing and receiving information from a
user or health care provider about a specific patient or set of
patients for which sleep architecture characterization is to be
performed and facilitates the display of results, recommen-
dations or orders, for example. In some embodiments intet-
face 142 also facilitates receiving orders for the patient from
the clinician/user, based on the results. In some embodi-
ments, interface 142 may also be used to display patient
sleep-information such as illustratively provided in FIGS.
3-6 and FIG. 8. Additionally, interface 142 may use used for
providing diagnostic services, such as evaluating regression
models discussed in connection to FIG. 2.

Example operating environment 100 further includes
computer system 120, which may take the form of a server,
which is communicatively coupled through network 175 to
EHR systems 160, 162, 164, and 166, storage 121, and user
manager 140.

Embodiments of user manager 140 may take the form of
a user interface and application, which may be embodied as
a software application operating on one or more mobile
computing devices, tablets, smart-phones, front-end termi-
nals in communication with back-end computing systems,
laptops or other computing devices. In some embodiments,
manager 140 includes a Web-based application or set of
applications that is usable to manage user services provided
by embodiments of the invention. For example, in some
embodiments, manager 140 facilitates processing, interpret-
ing, accessing, storing, retrieving, and communicating infor-
mation acquired from monitor 141. In some embodiments,
manager 140 is used to display user (or patient) sleep-
information such as illustratively provided in FIGS. 3-6 and
FIG. 8. Similarly, a user (who may be a patient) may access
and view records of sleeping-patterns or analyses of previ-
ous sleep time intervals using manager 140. Moreover, in
some embodiments of manager 140, an interface component
may be used to facilitate access by a user to functions or
information on monitor 141, such as operational settings or
parameters, user identification, user data stored on monitor
141, and diagnostic services or firmware updates for monitor
141, for example.

As shown in example environment 100, manager 140 is
communicatively coupled to monitor 141 and to network
175. Embodiments of monitor 141 comprise one or more
sensor components operable to acquiring biometric or sleep-
related information about a user, such as information asso-
ciated with a particular physical or mental state or the user,
and which may be acquired periodically or as one or more
time-series. In some embodiments, monitor 141 comprises a
sensor component operable for sensing a user’s temporal
activity, such as sensing EEG signals derived from the user.
In some embodiments, muscle activity, which might be
sensed from electromyogram signals, eye movement, which
might be sensed from electro-oculogram signals, or other
biometric information may be employed.

In some embodiments, one or more sensor components of
monitor 141 may comprise a user-wearable sensor compo-
nent or sensor component integrated into the user’s or
patient’s living environment. Examples of sensor compo-
nents of monitor 141 include wherein the sensor is posi-
tioned on or near the user’s head, attached to the user’s
clothing, worn around the user’s head, neck, leg, arm, wrist,
ankle, etc., skin-patch sensor, ingestible or sub-dermal sen-
sor, or wherein sensor component(s) are integrated into the
user’s living environment (including the bed, pillow, or
bathroom), sensors operable with or through a smart phone
carried by the user, for example.
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Embodiments of monitor 141 may store user-derived data
locally or communicate data over network 175 to be stored
remotely. In some embodiments, manager 140 is wirelessly
communicatively coupled to monitor 141. Manager 140 may
also be embodied as a software application or app operating
on a user’s mobile device. In some embodiments, manager
140 and monitor 141 are functional components of the same
device, such as a device comprising a sensor and a user
interface. In some embodiments, manager 140 is embodied
as a base station, which may also include functionality for
charging monitor 141 or downloading information from
monitor 141.

Turning briefly to FIG. 1C, an example embodiment of
monitor 141 is shown. In this embodiment, monitor 141 is
worn on the user’s head and may be worn while the user is
sleeping, as shown. Further, in this example embodiment,
monitor 141 is attached to a strap to be worn around the
user’s head thereby positioning monitor 141 to be near the
user’s head. Additionally, the example embodiment of moni-
tor 141 shown in FIG. 1C includes some functionality of
manager 140. For example, this embodiment of monitor 141
includes a user interface with functionality for configuring
operational settings, such as on and off or settings for storing
and/or communicating sleep-related information acquired
from the user information, such as uploading the informa-
tion to manager 140 or to storage 121, and display func-
tionality for viewing or reviewing sleep-related information
acquired from the user. In one embodiment, monitor 141 is
embodied as a Zeo™ sleep sensor headband manufactured
by Zeo Inc. of Newton, Mass.

With reference to FIG. 1A, some embodiments of monitor
141 include analog-to-digital (A/D) converters for convert-
ing analog acquired information into digital information. For
example, in one embodiment, user information is acquired at
512 samples per second. Because sleeping-related signals
include low frequencies in comparison to other biological
signals, an appropriate sampling rate is determined to
adequately capture information sufficient to characterize a
user’s sleep architecture. For example, Delta or Theta cycles
have comparatively low frequencies.

In embodiments, monitor 141 includes functionality for
processing user-derived information locally or for commu-
nicating the information to computer system 120 or manager
140, where it may be processed. In some embodiments, the
processing may be carried out or facilitated by one or more
software agents, as described below. In some embodiments
the processing functionality, which may occur on monitor
141, manager 140 and/or computer system 120 includes
signal conditioning, such as removing noise or erroneous
information. In some embodiments processing functionality
is operable to process user-derived information, such as
EEG waveform data, as it is acquired, continuously or
periodically such as every 10, 15, or 30, 60 seconds or every
few minutes. In some embodiments, the processing includes
classifying the user-derived information acquired for a par-
ticular time interval into a sleeping category. For example,
in some embodiments, monitor 141 samples a user’s EEG
information and processes (or communicates to manager
141 or computer system 120 for processing) the information
approximately every time interval to classify the user’s sleep
state for that time interval. For example, every 30 second
time interval, the user’s sleeping state may be determined to
be one of stage 1. stage 2, etc., theta, delta, etc., or awake,
light sleep, REM sleep, deep sleep, or undetermined. Fur-
thermore, in some embodiments, processing further includes
determining a sleep score or sleep number, which qualities
the sleep state. In some embodiments, this sleep score is



US 10,098,582 Bl

9

based on the number of time intervals occurring within the
sleep categories, for a user, over a night. In embodiments of
monitor 141 comprising a Zeo sleep sensor device,
described above in ¢onnection to FIG. 1C, some models of
the Zeo device include functionality for determining a
number quantifying the user’s sleep based on total sleeping
time, and time spent in various sleep states, which is referred
to as a ZQ (for Zeo Quotient).

Computer system 120 comprises one or more processors
operable to receive instructions and process them accord-
ingly, and may be embodied as a single computing device or
multiple computing devices communicatively coupled to
each other. In one embodiment, processing actions pet-
formed by system 120 are distributed among multiple loca-
tions such as one or more local clients and one or more
remote servers. In one embodiment, system 120 comprises
one or more computing devices, such as a server, desktop
computer, laptop, or tablet, cloud-computing device or dis-
tributed computing architecture, a portable computing
device such as a laptop, tablet, ultra-mobile P.C., or a mobile
phone.

Embodiments of computer system 120 include computer
software stack 125, which in some embodiments operates in
the cloud, as a distributed system on a virtualization layer
within computer system 120. Some embodiments of soft-
ware stack 125 include a distributed adaptive agent operat-
ing system 129, which may be implemented as a platform in
the cloud, and which is capable of hosting a number of
services such as 122, 124, 126, and 128. Embodiments of
services 122, 124, 126, and 128 run as a local or distributed
stack in the cloud, on one or more personal computers or
servers such as system 120, and/or a computing device
running manager 140. In one embodiment, manager 140
operates in conjunction with software stack 125.

In embodiments, variables indexing service 122 and
records/documents ETL service 124 provide services that
facilitate retrieving frequent item sets, extracting database
records, and cleaning the values of variables in records. For
example, variables indexing service 122 may perform func-
tions for synonymic discovery, indexing or mapping vari-
ables in records, or mapping disparate health systems’
ontologies, such as determining that a particular medication
frequency of a first record system is the same as another
record system. In some embodiments, these services may
invoke software services 126. Software services 126 per-
form statistical software operations, and include statistical
calculation packages such as, in one embodiment, the R
system (the R-project for Statistical Computing, which
supports R-packages or modules tailored for specific statis-
tical operations, and which is accessible through the Com-
prehensive R Archive Network (CRAN) at http://cran.r-
project.org); R-system modules or packages including tsDyn
or similar services for facilitating implementation of non-
linear autoregressive time series models, tseriesChaos for
nonlinear time series operations, or arulesSequences or
similar services for facilitating operations such as K-nearest
neighbor distance calculations. Software packages 126 are
associated with services 128, which include Apache Hadoop
and Hbase framework, or similar frameworks operable for
providing a distributed file system, and which in some
embodiments facilitate provide access to cloud-based ser-
vices such as those provided by Cerner Healthe Intent®.

Example operating environment 100 also includes storage
121 or data store 121, which in some embodiments includes
patient data for a candidate patient and information for
multiple patients; variables associated with patient recom-
mendations; recommendation knowledge base; recommen-
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dation rules; recommendations; recommendation update sta-
tistics; an operational data store, which stores events,
frequent itemsets (such as “X often happens with Y”, for
example), and item sets index information; association rule-
bases; agent libraries, solvers and solver libraries, and other
similar information including data and computer-usable
instructions; patient-derived data; and health care provider
information, for example. It is contemplated that the term
data includes any information that can be stored in a
computer-storage device or system, such as user-derived
data, computer usable instructions, software applications, or
other information. In some embodiments, data store 121
comprises the data stores associated with the one or more
EHR systems, such as 161, 162, 164, and 166 and complex-
ity trajectory manager 140. Further, although depicted as a
single storage data store, data store 121 may comprise one
or more data stores, or may be in the cloud.

Turning briefly to FIG. 1B, there is shown one example
embodiment of computing system 900 that has software
instructions for storage of data and programs in computer-
readable media. Computing system 900 is representative of
a system architecture that is suitable for computer systems
such as computing system 120. One or more CPUs such as
901, have internal memory for storage and couple to the
north bridge device 902, allowing CPU 901 to store instruc-
tions and data elements in system memory 915, or memory
associated with graphics card 910, which is coupled to
display 911. Bios flash ROM 940 couples to north bridge
device 902. South bridge device 903 connects to north
Bridge device 902 allowing CPU 901 to store instructions
and data elements in disk storage 931 such as a fixed disk or
USB disk, or to make use of network 933 for remote storage.
User I/0 device 932 such as a communication device, a
mouse, a touch screen, a joystick, a touch stick, a trackball,
or keyboard, couples to CPU 901 through south bridge 903
as well. The system architecture depicted in FIG. 1B is
provided as one example of any number of suitable com-
puter architectures, such as computing architectures that
support local, distributed, or cloud-based software plat-
forms, and are suitable for supporting computing system
120.

Returning to FIG. 1A, in some embodiments, computer
system 120 is a computing system made up of one or more
computing devices. In some embodiments, computer system
120 includes an adaptive multi-agent operating system, but
it will be appreciated that computer system 120 may also
take the form of an adaptive single agent system or a
non-agent system. Computer system 120 may be a distrib-
uted computing system, a data processing system, a central-
ized computing system, a single computer such as a desktop
or laptop computer or a networked computing system.

In some embodiments, computer system 120 is a multi-
agent computer system with agents. A multi-agent system
may be used to address the issues of distributed intelligence
and interaction by providing the capability to design and
implement complex applications using formal modeling to
solve complex problems and divide and conquer these
problem spaces. Whereas object-oriented systems comprise
objects communicating with other objects using procedural
messaging, agent-oriented systems use agents based on
beliefs, capabilities and choices that communicate via
declarative messaging and use abstractions to allow for
future adaptations and flexibility. An agent has its own
thread of control which promotes the concept of autonomy.
Additional information about the capabilities and function-
ality of agents and distributed multi-agent operating sys-
tems, as they relate to these embodiments, is provided in
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U.S. patent application Ser. No. 13/250,072, filed on Sep.
30, 2011, which is herein incorporated by reference in its
entirety.

Turning now to FIG. 2, a flow diagram is provided for an
embodiment of a method for characterizing sleep architec-
ture and detecting abnormal sleep patterns including pattern
such as may reflect symptoms and disease processes in
mental health conditions (including, but not limited to,
dementia, depression, PTSD, Parkinson’s Disease, schizo-
phrenia and other psychoses, manic and hypomanic condi-
tions) and for monitoring the efficacy of the management
thereof, and referred to generally herein as method 200.

With reference to FIG. 2, when testing for nonlinearity
and in particular chaos in timeseries, two quantities may be
derived from a timeseries. First, one can estimate the cor-
relation dimension, which measures the fractal nature of a
possibly underlying “strange attractor.” Secondly, one can
estimate the largest Lyapunov exponent (LLE, A) which,
when found to be positive, measures the sensitive depen-
dence on initial conditions that are characteristic of a chaotic
system.

Methods for measuring a degree of order or disorder or to
detect the presence of chaos, however, are highly sensitive
to noise. In particular, estimation of the correlation dimen-
sion is frequently difficult for timeseries. One statistical test
for independence, known as the BDS-test, is based on the
correlation integral, which can be used as a general speci-
fication test. In some embodiments, a more direct test for
chaos is asymptotic distribution of a nonparametric neural
network estimator of the Lyapunov exponent of a noisy
system, since one frequently used definition of chaos is a
positive largest Lyapunov exponent.

Some embodiments of the invention have determined that
the largest Lyapunov exponent in majority of multi-night
hypnography time series is significantly positive with an
estimated value A~0.02 to 0.08 using the direct method for
estimating the Lyapunov exponent of Wolf et al. and the
method of Kantz.

The largest Lyapunov exponent (LLE, &) to characterize
the behavior and stationarity (or lack thereof) of a system:
<0 means that the trajectory is stable and moves towards a
fixed point; 2=0 holds for periodic systems; and A>0 is an
indication for chaotic or stochastic systems. A positive
Lyapunov exponent implies chaos, but one can practically
compute finite-time approximations to the exponent. There
is a distribution of finite-time exponents over samiples of the
orbit, and thus even if the true system has a zero or negative
largest exponent, it is possible that any particular finite-time
sample will register a significantly positive Lyapunov expo-
nent statistic. A statistical test of a collection of several
dozen finite-time samples accounts for this source of fluc-
tuations.

Embodiments of the invention have shown that normal,
healthy individuals have small positive median LLE (normal
range 0.02 to 0.08) in samples of 40 or more nights of sleep.
Less than 5% of samples from normal, healthy individuals
have LLE A<0. By contrast, multi-night samples from
individuals with depression and other psychiatric conditions
show median LLE that may be either more negative (indi-
cating entrainment into stationary patterns) or more positive
(indicating nonstationary patterns that are more chaotic than
those of normal, healthy individuals). A large proportion of
samples from persons who have an untreated psychiatric
condition that affects sleep architecture show LLE A outside
the normal range. The degree to which LLE is normalized
for an individual undergoing treatment may provide an
indication that such conditions are being effectively treated.
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Continuing with FIG. 2, at a step 210 of method 200
receive sleep information for a target such as a user (or
patient) or group of users (or patients) and for one or more
relevant reference populations. In some embodiments, step
210 comprises receiving multiple nights’ hypnographic
timeseries information for target user(s), such as provided by
monitor 141 or previously acquired sleep information in user
data or patient records from an EHR system and receiving
time series statistics for hypnogram sets from relevant
reference populations. In some embodiments the informa-
tion comprises timeseries including characterizations of one
or more individual’s sleeping states over recurring time
interval (such as every 30 seconds) over the course of a
night, for multiple nights.

Turning briefly 4A-4C, each of FIGS. 4A, 4B, and 4C
illustratively provides an example night’s sleep information
for a particular user, wherein sleep state is repeatedly
characterized into one of 4 sleeping states (Wake, REM,
Light, Deep) over successive time intervals, such as 30-sec-
ond intervals. FIGS. 4A, 4B, and 4C correspond to 3
different individuals, respectively.

With reference to step 210 of FIG. 2, in some embodi-
ments, information from at least 20 nights is received with
hypnograms of sleep durations longer than three hours for
all nights sampled, divided into epochs not larger than 1
minute in length. In some embodiments, the sleep informa-
tion may be accumulated over several nights, such as for
example 20 nights before providing sleep information to be
received at step 210. In some embodiments, the nights
include a minimum number of weekday nights and weekend
nights, which will have different patterns for some individu-
als. In some embodiments, an iterative process of receiving
sleep information may be applied wherein information
acquired from each additional night is added to information
acquired from previous nights, for a user or group of users.
For example, in some embodiments, a rolling window of
nights (such as 1 month, 3 months, or six months) may be
used.

In some embodiments, acquired sleep information, which
may be acquired from monitor 141 or user records, may
require cleaning or filtering. For example, it has been shown
that sometimes a user may dislodge the sensor component of
monitor 141 from the user’s head, may go to the bathroom
and become out of range for sleep data acquisition, or may
be awake for most of the night, thereby resulting in periods
missing, erroneous, or otherwise unusable values over the
night in which these incidents occur. In some embodiments,
monitor 141 may simply characterize the user’s sleeping
state as unknown for these intervals. Therefore, in some
embodiments, these periods of erroneous or missing infor-
mation may be cleaned or filtered, for example, by imputing
of filling in values, where only a small number of values are
missing or erroneous, or by excluding the entire nights
information where a larger number of values are missing or
appear erroneous. Thus, in some embodiments, even where
sleep information exists for 20 nights, some of these nights
may be excluded. Additionally, while results may be deter-
mined based on a fewer number of nights, better results are
likely to be produced where the number of nights is 24
nights or more.

In some embodiments, sleep information may come from
more than one source, such as monitor 141 and user or
patient health records, which may have been generated by
past episodes of using monitor 141. For example in the case
of a patient undergoing repeat testing using monitor 141,
sleep information from past sensor-sessions wherein the user
used monitor 141, may be used, in some embodiments.
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Similarly, sleep information may include observational cap-
tures of data that may have been accumulated at other points
of time. In some embodiments, software agents facilitate
locating and identifying relevant additional data sources of
sleep information, such as by identifying other records that
match the user, and cleaning or preparing the data to be
included.

At a step 220 the received information is assembled into
timeseries. In some embodiments, the time series comprises
one or more arrays (or row vectors) representing sleep
information for an individual, wherein each array is associ-
ated with one night or sleeping period, and wherein an array
includes one or more elements of values characterizing the
individuals sleeping state over an interval of time. Thus for
example, a 6 hour sleeping period wherein sleeping state is
characterized every 30 seconds and wherein every 30-sec-
ond period provides usable sleeping information, may be
represented as an array of 720 elements. each element
characterizing sleep for one 30-second interval over the 6
hours, in one embodiment.

In some embodiments, step 220 includes cleaning the
time series information. The ordinal or hypnogram time-
series may be cleaned to remove any leading or trailing
non-classified segments. For example leading and/or trailing
zeros for epochs not classified or wherein the monitor 141
was sensing information but not while on the user’s head.

At an step 230 nonlinear timeseries is determined. In
some embodiments, step 230 is optional, and may provide
more accurate results if included. Step 230 may comprise
calculating second-order self-excited threshold autoregres-
sive model (SETAR model) and/or neural network autore-
gressive model (NNET) based on the timeseries, in some
embodiments. These models robustly capture non-linear and
chaotic patterns in normal and abnormal sleepers.

In some embodiments, step 230 is facilitated by software
services 126 of FIG. 1A using the tsDyn package in the
R-System, or similar services for facilitating implementation
of nonlinear autoregressive time series models. An example
computer program routine for implementing tsDyn is shown
in FIGS. 7A and 7B. The tsDyn operation casts an array of
numbers into a dynamic series datatype (ts datatype) used by
the R-System for handling timeseries. For example, each
night of sleep information for an individual corresponds to
an array of numbers such as a row vector comprising a
one-dimensional array of 30-second time intervals wherein
each element of the array has a value representing a 30-sec-
ond characterization of sleeping state. The output is still a
timeseries, but a longer time series.

In some instances whether to perform step 230 may be
determined by the amount of data available. Step 240 may
be used to impute values if there are gaps in an individuals
timeseries record and to ascertain the quality of the raw
timeseries values or identify segments wherein the raw
values may be suspect. In certain circumstances, it may be
desirable to have more available data (samples of sleep
information) for more accurate determinations. For
example, typical Lyupanov operations can require several
thousand data points for accurate results. Therefore, in such
circumstances an original, shorter timeseries may be simu-
lated with an autoregressive model. The original timeseries
essentially forms a seed from which a model (or models) is
generated. For example, a timeseries comprising only 192
30-sec samples can be extended and simulated multiple
times to generate a timeseries that may be 500 to 1000
samples in length. In embodiments, a SETAR or neural
network model may be generated multiple times and then
compared to determine whether the models substantially
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agree with the autoregressive coefficients by a lag number or
R coefficients (correlation coefficients) in a neural network.
Where multiple generations of the model appear to be stable,
the model may be usable for extending the raw timeseries to
a length that is likely to produce a more stable Lyapunov
exponent.

If the data were sufficiently long enough, then step 230
may only be used for diagnostic purposes such as assessing
the quality or stability of the results of the subsequent
analysis, by determining whether the models are substan-
tially different between individuals, for example. Suppose
there are three individuals with sleep information received
from forty nights, then for diagnostic purposes a comparison
of the differences in the SETAR and/or NNET models for
each individual and across all three individuals may be
performed. Such diagnostic operations can be useful for
software quality assurance (QA), for example by conducting
release-to-release regression testing in a software QA envi-
ronment.

The tsDyn operation may also be used to generate a visual
characterization of an individual’s night sleep, sort of like a
fingerprint for the night, for the individual. In particular,
tsDyn facilitates identification of strange attractors (attrac-
tors with fractal structures) in sleep information for an
individual, for example the self-excited autoregressive sec-
ond order model lag 1 vs. the predicted value of that.
Examples of such visual characterizations are depicted in
FIGS. 5A-5C. Turning briefly to FIGS. 5A-5C, each of 5A,
5B, and 5C show a visual characterization of one night, for
a different individual (three separate individuals, 5A, 5B,
and 5C) wherein each number correspond to a sample within
that given night. Such characterizations provide personal-
ized medicine or personalized sleep-architectural imprint,
and may also be used as a qualitative or visual way to see
whether the SETAR or other NNET coefficients are different
or the same as they were before, for this individual or
population. Thus the characterizations may provide a sub-
jective sense about how sleeping went on subjective nights.
For example, FIG. 5B shows a pattern cycling towards a
stable attractor.

Returning to FIG. 2, at a step 240, the largest Lyapunov
exponent (LLE, &) of the timeseries is determined. In some
embodiments, step 240 calculates an LLE (a number) for
each timeseries. For example, wherein a set of row vectors
represents the nights of sleep information for an individual,
each row vector comprising a one-dimensional array, the
output of step 240 includes a column vector of LLEs, with
one LLE determined for each night (each timeseries or row
vector). In some embodiments, step 240 is facilitated by
software services 126 of FIG. 1A using the tseriesChaos
package in the R-System, or similar services for performing
nonlinear time series operations. An example computer
program routine for implementing tseriesChaos is shown in
FIGS. 7A and 7B.

In some embodiments, the Kantz algorithm is used for
determining the LLE for the timeseries of each night. In
particular, the lyap_k( ) function, as shown in the example
program routine of FIGS. 7A and 7B, is applied to the
generated timeseries of step 230 or step 220, if step 230 is
omitted. The lyap( ) function may then be applied to perform
regression to estimate the LLE 2. The Kantz algorithm may
produce a stable result for a smaller number of data points,
such as one to two thousand data points, whereas other
methods may require an order of data points greater (tens of
thousands) to show a stable result.

FIG. 8 shows an example graphical depiction of a largest
Lyapunov exponent as determined by the Kantz algorithm.
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FIG. 8 includes graph 800, which is representative of a
typical night of sleep for an individual. (Graph 8, thus
provides another example of personalized medicine.) As
shown, the Lyupanov exponent is calculated across scales of
time in samples (rather than seconds or minutes) for hun-
dreds of samples and relates to the lag between consecutive
time intervals. Thus it can be determined whether the
Lyupanov exponent is scale-dependent for those scales of
time. Near time zero and time close together indicate insta-
bility. In embodiments, tseriesChaos or similar routines may
be applied essentially to identify intervals that show a
reasonably linear regression. For example, a span of samples
relatively collinear with a tangent, such as line 801. The
numerical measure of LLE is given by the slope of line 801
in FIG. 8. Thus for each night a slope (representing the value
of the LLE) is determined.

In some embodiments, determining LLE by the Kantz
method may be facilitated by adding a level of random noise
to the timeseries information. In particular, where the time-
series information comprises all integers then some methods
for determining the LLE, such as Kantz, may not always
converge or may otherwise fail by converging to a value that
is not accurate. Accordingly, a solution to this problem is to
introduce a small about of observational noise (small rela-
tive to the value of the data points in the timeseries). For
example, a small Gaussian random number (or number
based on another random function) may be added to each
integer in the timeseries to re-fuzzify the values prior to
determining the LLE. Therefore some embodiments of step
240 include adding a small amount of random noise to each
timeseries before determining the LLE of each timeseries.

In some embodiments, step 240 further includes assem-
bling the LLE values of the matched target and reference
instances for facilitating statistical tests applied at a step 250.
For example, for a given individual the output of step 240
might include a set of LLEs, one characterizing each night
of sleep. In some embodiments, these LLEs are assembled
to create a distribution that characterizes the individual and
the architecture of their sleep across that time period.
Unusual LLE values and patterns of values can serve as
indicators of conditions affecting the individual or regres-
sion or progression of conditions, which might indicate the
effectiveness of a treatment or side-effect from a treatment.

In some embodiments, a cumulative sum (cusum) opera-
tion or an iteration operation might be performed, for
example by using a moving window over sequential LLE
values (one LLE per night over a series of nights). Such
operations may provide robust trend analysis to determine
whether the pattern of the individual is being stable over
time or is going one way or the other (higher or lower than
what is normal for the individual). Such trend analysis may
be used to determine whether the individual is progressing
or regressing, for example whether an individual at risk for
suicide is getting better or worse. An advantage provided by
the cusum operation is that in some embodiments, it is
autoranging and does not require input-adjustment or scal-
ing. Additionally, the output of the cusum or other iteration
operation can be used to generate a result that is provided to
a caregiver, such as in the form of a visual display repre-
senting a patient’s tending condition. For example, a neu-
rologist who is examining the stroke recovery of a patient or
a psychologist or social worker caring for a PTSD of a
wounded warrior. Such a result may be useful for indicating
that some new event has impacted a condition the patient,
for example, triggered an exacerbation in the PTSD. Accord-
ingly the caregiver may be informed to alter the treatment
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regimen, such as by adjusting the patient’s meds, ordering
additional cognitive therapy, or reaching out to the family of
the patient.

At step 250, statistical measures for the determined LLE
values and reference information are determined. For
example statistical tests may be applied to determine
whether an individual has departed from the population
normal, which may be captured in a behavioral group. In
some embodiments, wherein there are enough data for the
individual, it may also be possible to determine a deviation
from the normal for that patient, such as a trend over time
indicating whether the patient is getting better or worse.

In some embodiments of step 250 comprises performing
a t-test, Mann-Whitney test, other non-parametric tests, or
suitable tests for comparing the values from the target
subject to those of reference populations. In some embodi-
ments, this may be used to confirm that the values deter-
mined from step 240 are sufficiently unlikely to be false-
positives by comparing a p-value to a threshold, as described
at a step 260, where p might be 0.05 using one of these tests.
In particular, in some instances where data is not collected
over a longer duration, the user data may be limited to sets
of short series of several dozen data points. In such
instances, the confidence that the assumptions for t-test or
other tests assume a normal, symmetrical distribution cannot
necessarily be determined.

In some embodiments a boundary for normal LLE for an
individual is determined. For example, it is expected that the
LLE value would probable increase slightly as an individual
gets older. Thus the range for an LLE of an 80-year old
would be different than that of a middle-aged person.
Similarly, the range of an LLE for a man can be different
than that for a woman. Additionally, some embodiments of
the invention indicate that, given all the potential differences
in LLE for age, gender, or other differences, with an n=3
confidence interval, LLE ranges tend to be slightly positive.
More positive LLE values indicate a greater degree of chaos,
such as changes between sleeping states for an individual. In
some embodiments, the LLE reference range comprised
0.02 to 0.08. An LLE of exactly zero represents a perfectly
stable attractor. A range value that is positive (such as 0.1 or
greater) could indicate a problem that is diagnosable or
treatable. For example, depression and psychosis, including
treated and untreated/under-treated) can have LLE values
outside a normal reference range (such as 0.02 to 0.08). The
LLE can reveal abnormalities even when conventional sleep
parameters, such as counting minutes of sleep, are within
normal limits.

At step 260, a threshold comparison is performed to
determine whether the target subject is statistically different
than the reference population data, which may comprise data
from a normal population or population having a specific
condition, such as schizophrenia. In embodiments, the
threshold value may be determined by statistical epidemio-
logical criteria, for example representing a sensitivity that is
necessary to detect a particular abnormality. Thus in some
embodiments, the value of the threshold is derived based on
the reference population. In some embodiments, the thresh-
old may be empirically established as denoting statistically
significant deviation from the range of LLE values for one
or more reference groups.

In some embodiments the threshold value may be speci-
fied in one or more data tables, provided by a caregiver,
identified by the labeling of a drug or provided by a
pharmaceutical company, or determined by a software rou-
tine or software agent. In some embodiments, the threshold
may be specific to the individual, may be by population
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(including sub-populations based on demographics or con-
ditions) or by product, such as a drug, therapy, or other
treatment. For example, as described previously, embodi-
ments of the invention may be used to determine the effect
of certain drugs on the condition of a patient, for better or
worse. A given drug may have an associated threshold value
or range indicating to caregivers that patients being treated
by the drug may be expected to fall within this range or
below the threshold.

At a step 270, where the threshold is not satisfied, then the
target may be reported as not statistically different a refer-
ence group. On the other hand, if the threshold is satisfied,
then at a step 280, the target subject may be reported as
statistically different from the reference group. In some
embodiments, matches (or differences) between a target and
reference group may be provided to a clinician or caregiver,
and may be reported as results displayed on interface 142 of
FIG. 1A. In some embodiments, probable matches or dif-
ferences determined in step 260 merit further considerations
for intervention such as by implementing or modifying a
treatment, or taking another action.

Turning back to FIGS. 7A and 7B, an example embodi-
ment of computer program routines for implementing
aspects of method 200 is provided in FIGS. 7A and 7B,
which includes R-system packages for tsDyn, tseriesChaos,
and further include generating nonlinear models, adding
observational noise and applying lyap_k( ) and lyap func-
tions, discussed above.

With reference now to FIGS. 3A-3C, output and results
are provided for an example embodiment of the invention
using sleep information including information such as
shown for the three individuals of FIGS. 4A-4C, but
acquired over a series of 30 to 40 nights. In this example
embodiment, the non-linear timeseries SETAR and neural
network models and Largest Lyapunov Exponent methods
and subsystems were reduced to practice using a server
cluster running the Linux operating system, the open-source
statistical software package R, the R modules tseriesChaos
and tsDyn, as described above. Retrieval of structured
discrete items was performed using the Zeo™ EEG headset
device. Each of FIGS. 3A, 3B, and 3C shows the LLE
determined for each night, for the individual, and a ZQ
number determined for the night (discussed above in con-
nection to monitor 141).

With reference to FIGS. 6A and 6B, FIG. 6A provides
additional statistical measures for an example night, and
FIG. 6B shows the effect of various alternate distributions.

Although the invention has been described with reference
to the embodiments illustrated in the attached drawing
figures, it is noted that substitutions may be made and
equivalents employed herein without departing from the
scope of the invention as recited in the claims. For example,
additional steps may be added and steps omitted without
departing from the scope of the invention.

Many different arrangements of the various components
depicted, as well as components not shown, are possible
without departing from the spirit and scope of the present
invention. Embodiments of the invention have been
described with the intent to be illustrative rather than restric-
tive. Alternative embodiments will become apparent to those
skilled in the art that do not depart from its scope. A skilled
artisan may develop alternative means of implementing the
aforementioned improvements without departing from the
scope of the invention.

It will be understood that certain features and subcombi-
nations are of utility and may be employed without reference
to other features and subcombinations and are contemplated
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within the scope of the claims. Not all steps listed in the
various figures need be carried out in the specific order
described.

The invention claimed is:

1. A non-transitory computer-readable media having com-
puter-executable instructions embodied thereon that, when
executed by a processor, cause a method of characterizing
sleep architecture to be performed, the method comprising:

acquiring a first set of sleep-related information for a

target user via one or more sensors located in proximity
to the target user;

receiving a second set of sleep-related information asso-

ciated with a reference population and including a
range for largest Lyapunov exponent (LLE) values
associated with the reference population;

based on the first set of sleep-related information, deter-

mining a set of timeseries;

based on the set of timeseries, determining an LLE value

for each timeseries in the set of timeseries, thereby
generating a set of LLE values;

performing a comparison of the set of LLE values to a

threshold to determine whether the target user is sta-
tistically different than the reference population based
on the range for the LLE values associated with the
reference population;

based on the comparison determining that the target user

is not statistically different than the reference popula-
tion, designating the target user as associated with the
reference population; and

causing notification to be provided via an interface to a

caregiver that the target user is associated with the
reference population.

2. The computer-readable media of claim 1, wherein the
threshold is determined based on the range for largest
Lyapunov exponent (LLE) values associated with the refer-
ence population, and wherein the target user is determined as
not statistically different where the set of LLE values is less
than the threshold.

3. The computer-readable media of claim 1, wherein the
reference population comprises a population of individuals
of similar age and gender as the target user.

4. The computer-readable media of claim 1, wherein the
reference population comprises a population of individuals
having a condition affecting sleep.

5. A non-transitory computer-readable media having com-
puter-executable instructions embodied thereon that, when
executed by one or more computing devices, cause a method
of characterizing sleep architecture to be performed, the
method comprising:

acquiring a first set of sleep-related information for a

target user via one or more sensors located in proximity
to the target user, wherein the one or more sensors
sense one or more of electroencephalography signal
activity or muscle activity;

receiving a second set of sleep-related information asso-

ciated with a reference population and including a
range for largest Lyapunov exponent (LLE) values
associated with the reference population;

based on the first set of sleep-related information, deter-

mining a set of timeseries;

based on the set of timeseries, determining an LLE value

for each timeseries in the set of timeseries, thereby
generating a set of LLE values;

performing a threshold comparison to determine whether

the set of LLE values is statistically different than the
range for LLE values associated with the reference
population;
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based on the comparison determining a statistical depar-
ture of the set of LLE values from the range, designat-
ing the target user as not associated with the reference
population; and

causing notification to be provided via an interface to a

caregiver that the target user is not associated with the
reference population.

6. The computer-readable media of claim 5, wherein the
reference population comprises a population of individuals
of similar age and gender as the target user.

7. The computer-readable media of claim 5, further com-
prising determining whether a condition of the target user is
progressing or regressing by performing a trend analysis on
the set of LLE values.

8. The computer-readable media of claim 5, wherein
determining an LLE value for each timeseries in the set of
timeseries comprises using a Kantz algorithm.

9. The computer-readable media of claim 8, further com-
prising adding random noise to values of each timeseries,
prior to determining the LLE value for each timeseries.

10. The computer-readable media of claim 5, further
comprising:

based on the determined set of timeseries, generating a set

of non-linear timeseries; and

determining the LLE value for each non-linear timeseries

in the set of non-linear timeseries.

11. The computer-readable media of claim 10, wherein the
non-linear timeseries comprises one of a self-excited thresh-
old autoregressive or neural network model.

12. A method of characterizing sleep architecture, the
method comprising:

with one or more computing devices:

acquiring a first set of sleep-related information for a

target user via one or more sensors located in proximity
to the target user;
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receiving a second set of sleep-related information asso-
ciated with a reference population and including a
range for largest Lyapunov exponent (LLE) values
associated with the reference population;

based on the first set of sleep-related information, deter-

mining a set of timeseries;

based on the set of timeseries, determining an LLE value

for each timeseries in the set of timeseries, thereby
generating a set of LLE values;

performing a comparison of the set of LLE values to a

threshold to determine whether the target user is sta-
tistically different than the reference population based
on the range for the LLE values associated with the
reference population;

based on the comparison determining that the target user

is not statistically different than the reference popula-
tion, designating the target user as associated with the
reference population; and

causing notification to be provided via an interface to a

caregiver that the target user is associated with the
reference population.

13. The method of claim 12, wherein the threshold is
determined based on the range for largest Lyapunov expo-
nent (LLE) values associated with the reference population,
and wherein the target user is determined as not statistically
different where the set of LLE values is less than the
threshold.

14. The method of claim 12, wherein the reference
population comprises a population of individuals of similar
age and gender as the target user.

15. The method of claim 12, wherein the reference
population comprises a population of individuals having a
condition affecting sleep.
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