US 20190336096A1
ao) United States

12) Patent Application Publication (o) Pub. No.: US 2019/0336096 A1

Itu et al. (43) Pub, Date: Nov. 7, 2019
(54) SYSTEM AND METHODS FOR FAST GO6N 99/00 (2006.01)
COMPUTATION OF COMPUTED A6IB 5/00 (2006.01)
TOMOGRAPHY BASED FRACTIONAL AGIB 6/03 (2006.01)
FLOW RESERVE A6IB 34/10 (2006.01)
(52) US. CL
(71)  Applicant: Siemens Healthcare GmbH, Erlangen CPC oo, AG61B 6/5217 (2013.01); G16H 30/40
(DE) (2018.01); GI6H 10/60 (2018.01); GO6N
99/005 (2013.01); A61B 2034/105 (2016.02);
(72) Inventors: Lucian Mihat Itu, Brasov (RO); AGIB 6/032 (2013.01); AGIB 6/504 (2013.01);
Saikiran Rapaka, Pennington, NJ AGIB 6/507 (2013.01); A61B 34/10 (2016.02);
(US); Tiziano Passerini, Plainsboro, NJ AG61B 5/7267 (2013.01)
(US); Puneet Sharma, Princeton
Junction, NJ (US) (57) ABSTRACT

A method and system for fast non-invasive computer-based
computation of a hemodynamic index, such as fractional
flow reserve (FFR) from medical image data of a patient is
disclosed. A patient-specific anatomical model of one or
more arteries of a patient is automatically generated based
on medical image data of the patient. Regions in the auto-

(21) Appl. No.: 15/968,836
(22) Filed: May 2, 2018

Publication Classification

(51) Imt. CL matically generated patient-specific anatomical model for
A61B 6/00 (2006.01) which user feedback is required for accurate computation of
GI16H 30/40 (2006.01) a hemodynamic index are predicted using one or more
G16H 10/60 (2006.01) trained machine learning models.

Network 506 502
Interface i -~
508
o~ 504
Vo Processor Storage
512
Memory 7 510
— 520

Image Acquisition
Device




Patent Application Publication  Nov. 7,2019 Sheet 1 of 5 US 2019/0336096 A1

FIG. 1

Automatically Generate Patient- 102
Specific Anatomical Model of One
or More Arteries from Medical
Image Data of Patient

Predict Regions of Anatomical
Model for which User Feedback is
Required for Accurate Computation
of Hemodynamic Index Using One | 104
or More Trained Machine Learning
Models




Patent Application Publication  Nov. 7,2019 Sheet 2 of 5 US 2019/0336096 A1

FI1G. 2
Receive Non-Invasive Receive One or More
Patient Data and CCTA Images of 204
202 Measurements Patient

—] —
Automatically Generate Patient-

Specific Anatomical Model of 206
Coronary Arteries

Perform Anatomical Evaluation

and Compute Initial cFFR Values | 208

for Automatically Generated
Anatomical Model

Extract Features of Interest from 210
Patient Data

Predict Regions of Anatomical
Model for which User Feedback is
Required for Accurate 212
Computation of cFFR Using One
or More Trained Machine
Learning Models

Request User Feedback for

Regions of Anatomical Model 214

Predicted to Require User
Feedback

Compute Final cFFR Values for

Revised Anatomical Model 216
Output Final Computed cFFR
218
Results




Patent Application Publication  Nov. 7,2019 Sheet 3 of 5 US 2019/0336096 A1

FIG.3

300




Patent Application Publication  Nov. 7,2019 Sheet 4 of 5 US 2019/0336096 A1

FIG. 4
Acquire Database of Training Data 402
Perform Compute Initial
404 Anatomical cFFR Values for | 400
Evaluation for Training Samples
Training Samples
Extract User
Feedback
Extract Features of Interest From Requirements from | 408
410 Training Samples Training Samples

Train Machine Learning Model
Based on Features and User 412
Feedback Requirements




Patent Application Publication  Nov. 7,2019 Sheet 5 of 5 US 2019/0336096 A1

FIG. 5
Network 506 502
Interface S o
08
i L~ 504
Vo Processor Storage
512

Memory | 510

Image Acquisition
Device




US 2019/0336096 A1

SYSTEM AND METHODS FOR FAST
COMPUTATION OF COMPUTED
TOMOGRAPHY BASED FRACTIONAL
FLOW RESERVE

BACKGROUND OF THE INVENTION

[0001] The present invention relates generally to non-
invasive computation of hemodynamic indices for an arterial
stenosis, and more particularly to fast non-invasive compu-
tation of hemodynamic indices, such as fractional flow
reserve, based on medical image data of a patient.

[0002] Cardiovascular disease (CVD) is the leading cause
of deaths worldwide. Among various CYDs, coronary artery
disease (CAD) accounts for nearly fifty percent of those
deaths. Despite significant improvements in medical imag-
ing and other diagnostic modalities, the increase in prema-
ture morbidity and mortality for CAD patients is still very
high. The current clinical practice for diagnosis and man-
agement of coronary stenosis involves the assessment of the
diseased vessel either visually or by Quantitative Coronary
Angiography (QCA). Such assessment provides the clini-
cian with an anatomical overview of the stenosis segment
and parent vessel, including the area reduction, lesion
length, and minimal lumen diameter, but does not provide a
functional assessment of the effect of the lesion on blood
flow through the vessel. Measuring the fractional flow
reserve (FFR) by inserting a pressure wire into the stenosed
vessel has been shown to be a better option for guiding
revascularization decisions, since the FFR is more effective
in identifying ischemia causing lesions, as compared to
invasive angiography. QCA only evaluates the morphologi-
cal significance of the stenosis and has a number of other
limitations. Pressure wire based FFR measurements involve
risks associated with the intervention necessary to insert the
pressure wire into the vessel, and for a very narrow stenosis,
the pressure wire may induce an additional pressure drop.

[0003] In recent years, there has been considerable focus
on computational approaches for modeling the flow ofblood
in the human cardiovascular system. Blood flow computa-
tions, performed using computational fluid dynamics (CFD)
algorithms, when used in conjunction with patient-specific
anatomical models extracted from medical images, have
been proposed for diagnosis, risk stratification, and surgical
planning. However, such computational approaches often
require long computation times.

BRIEF SUMMARY OF THE INVENTION

[0004] The present invention provides a method and sys-
tem for fast non-invasive computation of hemodynamic
indices based on medical image data of a patient.

[0005] In an embodiment, a method for providing fast
non-invasive computer-based computation of a hemody-
namic index from medical image data of a patient com-
prises: automatically generating a patient-specific anatomi-
cal model of one or more arteries of a patient based on
medical image data of the patient; and predicting regions in
the automatically generated patient-specific anatomical
model for which user feedback is required for accurate
computation of a hemodynamic index using one or more
trained machine learning models.

[0006] In an embodiment, automatically generating a
patient-specific anatomical model of one or more arteries of
a patient based on medical image data of the patient com-
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prises: automatically extracting centerlines and cross-sec-
tional contours for each of the one or more arteries of the
patient from the medical image data of the patient.

[0007] In an embodiment, predicting regions in the auto-
matically generated patient-specific anatomical model for
which user feedback is required for accurate computation of
a hemodynamic index using one or more trained machine
learning models comprises: predicting the regions in the
automatically generated patient-specific anatomical model
for which user feedback is required for accurate computation
of the hemodynamic index using the one or more trained
machine learning models based on extracted features related
to the automatically generated patient-specific anatomical
mode] that are input to the one or more trained machine
learning models.

[0008] In an embodiment, the features include features
extracted from the medical image data of the patient.

[0009] In an embodiment, the features include non-inva-
sive patient data and measurements acquired for the patient.

[0010] In an embodiment, the features include features
extracted from the automatically generated patient-specific
anatomical model of the one or more arteries of the patient.

[0011] In an embodiment, the method further comprises:
automatically computing initial values for the hemodynamic
index at a plurality of locations in the automatically gener-
ated patient-specific anatomical model of the one or more
arteries of the patient, wherein the features include the initial
values computed for the hemodynamic index at the plurality
of locations in the automatically generated patient-specific
anatomical model and features extracted from the initial
values for the hemodynamic index at the plurality of loca-
tions in the automatically generated patient-specific ana-
tomical model.

[0012] In an embodiment, automatically computing initial
values for the hemodynamic index at a plurality of locations
in the automatically generated patient-specific anatomical
model of the one or more arteries of the patient comprises:
computing initial values for the hemodynamic index at the
plurality of locations in the automatically generated patient
specific anatomical model of the one or more arteries using
a second trained machine learning model.

[0013] In an embodiment, the method further comprises:
performing an automated anatomical evaluation of the one
or more arteries of the patient in the automatically generated
patient-specific anatomical model, wherein the features
include anatomical features related to one or more stenosis
regions in the one or more arteries of the patient extracted
from results of the automated anatomical evaluation of the
one or more arteries of the patient in the automatically
generated patient-specific anatomical model.

[0014] In an embodiment, the method further comprises:
requesting user feedback for only the regions in the auto-
matically generated patient-specific anatomical model pre-
dicted by the one or more trained machine learning models
as requiring user feedback for accurate computation of the
hemodynamic index; receiving user feedback for the regions
in the automatically generated patient-specific anatomical
model predicted by the one or more trained machine learn-
ing models as requiring user feedback for accurate compu-
tation of the hemodynamic index, resulting in a revised
anatomical model of the one or more arteries of the patient;
and computing final values for the hemodynamic index at a
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plurality of locations in the one or more arteries of the
patient based on the revised anatomical model of the one or
more arteries of the patient.

[0015] In an embodiment, the one or more trained
machine learning models include a first trained machine
learning model for predicting user feedback requirements at
a tree level, a second trained machine learning model for
predicting user feedback requirements at a branch level, and
a third trained machine learning model for predicting user
feedback requirements at a cross-sectional contour level.
[0016] In an embodiment, the hemodynamic index is
fractional flow reserve.

[0017] In an embodiment, the one or more arteries of the
patient comprise one or more coronary arteries of the
patient.

[0018] In an embodiment, an apparatus for providing fast
non-invasive computation of a hemodynamic index from
medical image data of a patient, comprises: a processor and
a memory storing computer program instructions which
when executed by the processor cause the processor to
perform operations comprising: automatically generating a
patient-specific anatomical model of one or more arteries of
a patient based on medical image data of the patient; and
predicting regions in the automatically generated patient-
specific anatomical model for which user feedback is
required for accurate computation of a hemodynamic index
using one or more trained machine learning models.
[0019] In an embodiment, a non-transitory computer read-
able medium stores computer program instructions for pro-
viding fast non-invasive computation of a hemodynamic
index from medical image data of a patient, the computer
program instructions when executed by a processor cause
the processor to perform operations comprising: automati-
cally generating a patient-specific anatomical model of one
or more arteries of a patient based on medical image data of
the patient; and predicting regions in the automatically
generated patient-specific anatomical model for which user
feedback is required for accurate computation of a hemo-
dynamic index using one or more trained machine learning
models.

[0020] These and other advantages of the invention will be
apparent to those of ordinary skill in the art by reference to
the following detailed description and the accompanying
drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

[0021] FIG. 1 illustrates a method for predicting where
user feedback is required in an anatomical model to provide
fast computer-based computation of a hemodynamic index
from medical image data according to an embodiment of the
present invention;

[0022] FIG. 2 illustrates a method for fast non-invasive
computation of fractional flow reserve (FFR) in coronary
arteries of a patient based on coronary computed tomogra-
phy angiography (CCTA) data according to an embodiment
of the present invention,

[0023] FIG. 3 illustrates an exemplary output map of a
machine learning model;

[0024] FIG. 4 illustrates a method for training a machine
learning model for predicting regions of an arterial anatomi-
cal model that require user feedback according to an
embodiment of the present invention; and

[0025] FIG. 5 is a high-level block diagram of a computer
capable of implementing the present invention.
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DETAILED DESCRIPTION

[0026] The present invention provides a method and sys-
tem for fast non-invasive computation of hemodynamic
indices based on medical image data of a patient. Embodi-
ments of the present invention are described herein to give
a visual understanding of methods for fast computer-based
computation of hemodynamic indices, such as fractional
flow reserve (FFR), from medical image data, such as
computed tomography angiography (CTA) images, of a
patient. A digital image is often composed of digital repre-
sentations of one or more objects (or shapes). The digital
representation of an object is often described herein in terms
of identifying and manipulating the objects. Such manipu-
lations are virtual manipulations accomplished in the
memory or other circuitry/hardware of a computer system.
Accordingly, is to be understood that embodiments of the
present invention may be performed within a computer
system using data stored within the computer system.
[0027] In recent years, there has been considerable focus
on using computational approaches for modeling the flow of
blood in the human cardiovascular system to perform non-
invasive medical image-based assessment of arterial steno-
sis. In such computational approaches, blood flow compu-
tations, performed using computational fluid dynamics
(CFD) algorithms, are used in conjunction with patient-
specific anatomical models extracted from medical images
to estimate hemodynamic indices, such as FFR. We have
recently introduced a machine learning (ML) model for FFR
computation as an alternative to CFD-based modeling for
non-invasive hemodynamic assessment of arterial stenoses.
For example, the machine learning model for FFR compu-
tation is described in Itu et al., “A Machine Learning
Approach for Computation of Fractional Flow Reserve from
Coronary Computed Tomography,” Journal of Applied
Physiology, Volume 121, 2016, pp. 42-52, which is incor-
porated herein in its entirety by reference. We have shown
that such the performance of machine learning model is not
statistically discernable from that of the CFD approach. In
addition, the computation time for computing FFR using the
machine learning model is much faster than that of the CFD
approach.

[0028] Given an anatomical model (i.e., lumen segmenta-
tion) of the patient’s coronary arteries (or other arteries), the
computer-based computation of FFR using the machine
learning model (cFFRML) is fully automatic, without
requiring user intervention. However, in existing methods,
the pre-processing pipeline to generate the anatomical is
only semi-automatic. The system (computer) presents the
user (e.g., clinician) with automatically extracted centerlines
and cross-sectional contours, which can then be interactively
edited by the user to create the anatomical model. For
example, editing may be required in atherosclerotic regions
where the automatically performed segmentation has a
lower accuracy and confidence, and which also have the
highest influence on the computed FFR values. Since, in
existing computer-based techniques for non-invasive hemo-
dynamic assessment, there is no method for automatically
determining a priori the regions where user interaction/
editing is crucial for obtaining accurate FFR estimation
results and regions where user editing will have little influ-
ence on the FFR estimation results, the main bottleneck in
terms of the overall processing time remains the preparation
of the anatomical model/extraction of the anatomical infor-
mation required for computing the FFR.
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[0029] Different approaches are currently used in prepa-
ration of the anatomical model in existing computer-based
techniques for non-invasive computation of hemodynamic
indices. In a thorough approach, the user needs to review all
of the branches and all cross-sections before FFR can be
computed. This leads to large processing times. In another
approach, the user is allowed to focus on locations which
he/she believes to be crucial for the accuracy of the finally
computed FFR values (e.g., stenotic regions). The disadvan-
tage of this approach is that is it subjective, leading to high
intra- and inter-user variability. In addition, this approach
may lead to inaccurate final computed FFR values if the user
chooses to ignore a region that has a high influence on the
final FFR values.

[0030] Embodiments of the present invention provide an
improvement to existing methods for computer-based non-
invasive computation of hemodynamic indices, such as
FFR, that ensures fast and accurate computation of medical
image (e.g., CT) based hemodynamic indices. Embodiments
of the present invention reduce to a minimum the user
interaction during the preparation of the anatomical model,
while preserving accuracy of the final computed FFR values.
In an embodiment of the present invention, the starting point
is an automatically generated anatomical model of one or
more arteries of the patient that is generated from medical
image data of the patient, such as CAT images. For example,
the automatically generated anatomical model may include
centerlines and cross-section contours of the one or more
arteries. The user interaction typically refers to correcting
the vessel centerlines, for example to add new branches or
remove branches (e.g., veins identified as arteries), and
correcting the cross-section contours (this occupies the most
time). Embodiments of the present invention utilize one or
more machine learning models to indicate/predict certain
parts of the arterial geometry where user feedback is
required for obtaining accurate computed FFR (cFFR)
results, while for the remaining parts, the automatically
extracted information is used without requesting any feed-
back from the user. This provides an improvement over
existing computer-based methods by reducing the time
required for user editing and thus reducing the total com-
putation time for the computer-based computation of FFR
(or other hemodynamic indices), while preserving accurate
FFR computations. In addition, the method described herein
provides an advantage over existing computer-based meth-
ods in reducing intra- and inter-user variability of ¢cFFR
results.

[0031] FIG. 1 illustrates a method for predicting where
user feedback is required in an anatomical model to provide
fast computer-based computation of a hemodynamic index
from medical image data according to an embodiment of the
present invention. In an advantageous embodiment, the
hemodynamic metric is FFR, but the present invention is not
limited thereto. In other embodiments, other hemodynamic
indices may be computed, such as instantaneous wave-free
ratio (iFR), rest distal-to-aortic pressure ratio (Pd/Pa), com-
putational flow reserve (CFR), hyperaemic stenosis resis-
tance (HSR), baseline stenosis resistance (BSR), index of
microvascular resistance (IMR), or wall shear stress. As
illustrated in FIG. 1, at step 102, a patient-specific anatomi-
cal model of one or more arteries of the patient is automati-
cally generated from medical image data of the patient. In an
advantageous embodiment, the arteries are coronary arteries
and the medical image data is one or more coronary com-
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puted tomography angiography (CCTA) images of the
patient. At step 104, one or more trained machine learning
models are used to predict regions of the patient-specific
anatomical model for which user feedback is required for
accurate computation of the hemodynamic index. In a pos-
sible implementation, regions at different resolutions may be
targeted by different trained machine learning models. For
example, trained machine learning models may make pre-
dictions at a tree level (collection of branches), branch level,
and/or cross-sectional level. In any of the embodiments
described herein, which are used to determine regions of an
arterial tree where user feedback is required and regions in
which no user feedback is required, all or some of the
regions in which no user feedback is required may be
discarded at the time of cFFR computation. The method
steps in FIG. 1 are described in greater detail below in
connection with the more detailed method illustrated in FIG.
2

[0032] FIG. 2 illustrates a method for fast non-invasive
computation of fractional flow reserve (FFR) in coronary
arteries of a patient based on coronary computed tomogra-
phy angiography (CCTA) data according to an embodiment
of the present invention. The method of FIG. 2 provides an
improvement to existing computer-based methods for non-
invasive computation of FFR. Although the embodiment of
FIG. 2 describes fast computation of FFR for coronary
arteries from CCTA data, the method may be similarly
applied for computation of other hemodynamic indices (e.g.,
iFR, rest Pd/Pa, CFR, HSR, BSR, IMR, wall shear stress,
etc.). Further, the method of FIG. 2 may be similarly applied
for fast non-invasive computation FFR or other hemody-
namic indices in other types of arteries from medical images
(e.g., CTA) of such arteries.

[0033] Referring to FIG. 2, at step 202, non-invasive
patient data and measurements of the patient are received.
The non-invasive patient data and measurements may
include demographic data, patient history, non-invasive
measurements acquired using medical equipment and
devices, such as stethoscope, blood pressure meter, and
non-medical grade devices (e.g., wearables), laboratory
diagnostics, and measurements from non-invasive tests
(e.g., myocardial perfusion imaging (MPI), stress echo,
etc.). For example, measurements such as blood pressure,
heart rate, ECG can be acquired using non-invasive medical
devices. Results of previously performed non-invasive stress
tests, such as MPI, multigated acquisition (MUGA) scan,
radionuclide stress test and nuclear stress test, exercise stress
test, electrocardiogram (EKG/ECG), stress/rest electrocar-
diography. In a possible embodiment, demographics infor-
mation and medical history may include age, ethnicity,
gender, weight, height, race, body mass index (BMI), dia-
betes, hypertension, hypercholesterolemia, smoking history,
family history of CAD, prior myocardial infarction (MI),
prior percutaneous coronary intervention (PCI), prior coro-
nary artery bypass grafting (CABG), angina type (stable,
worsening, silent ischemia, or other angina category accord-
ing to Canadian Cardiovascular Society (CCS) or American
Heart Association (AHA)/American College of Cardiology
(ACC)). The non-invasive patient data and measurements
can be received by inputting newly acquired data and
measurements and/or by retrieving previously stored data
and measurements.

[0034] At step 204, one or more CCTA images of the
patient are received. In an advantageous embodiment, one or
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more 3D CCTA images are received. The CCTA images may
be received directly from an image acquisition device (CT
scanner) or may be received by loading previously stored
CCTA images for a patient.

[0035] At step 206, a patient-specific anatomical model of
the coronary arteries is automatically generated from the one
or more CCTA images of the patient. The patient-specific
anatomical model can be generated by segmenting the
coronary arteries in the CCTA image data using an auto-
mated coronary artery centerline extraction algorithm. For
example, the coronary arteries can be segmented in a CT
volume using the method described United States Published
Patent Application No. 2010/0067760, entitled “Method and
System for Automatic Coronary Artery Detection,” the
disclosure of which is incorporated herein by reference in its
entirety. Once a coronary artery centerline tree is extracted,
cross-section contours can be generated at each point of the
centerline tree. The cross-section contour at each centerline
point gives a corresponding cross-section area measurement
at that point in the coronary artery. Other segmentation
methods may also be employed. In one embodiment, the
patient-specific anatomical model includes the extracted
centerlines and cross-section contours. In another possible
embodiment, the patient-specific anatomical model can be a
3D mesh generated from the centerlines and cross-section
contours. In this case, a 3D anatomical surface model is
generated for the segmented coronary arteries. For example,
methods for anatomical modeling of the coronary arteries
are described in U.S. Pat. No. 7,860,290, entitled “Three-
Dimensional (3D) Modeling of Coronary Arteries,” and U.S.
Pat. No. 7,953,266, entitled “Robust Vessel Tree Modeling,”
the disclosures of which are incorporated herein by refer-
ence in their entirety. In addition to the coronaries, the
patient-specific anatomical model can include the aortic root
together with the proximal part of the aorta.

[0036] At step 208, an anatomical evaluation of the coro-
nary arteries is performed and initial cFFR values are
computed at locations in the automatically generated ana-
tomical model of the coronary arteries. The anatomical
evaluation of the coronary arteries is performed using an
automated method or model that automatically locates
stenosis regions in the coronary arteries and then automati-
cally performs an anatomical evaluation of each detected
stenosis region. Stenosis regions may be automatically
detected in the image data using an algorithm for automatic
detection of coronary artery stenosis, such as the method for
automatic detection of coronary artery stenosis described in
United States Published Patent Application No. 2011/
0224542, entitled “Method and System for Automatic
Detection and Classification of Coronary Stenoses in Car-
diac CT Volumes,” the disclosure of which is incorporated
herein by reference in its entirety. An automated anatomical
evaluation algorithm may then be applied to each stenosis
region to determine information such as stenosis grade,
stenosis length, and plaque characteristics (e.g., composition
(fatty, fibrous, calcified), size, high risk plaque characteris-
tics, degree of positive remodeling) for each stenosis region.
For example, such anatomical evaluation is described in
U.S. Pat. No. 9,349,178, entitled “Synthetic Data-Driven
Hemodynamic Determination in Medical Imaging,” the dis-
closure of which is incorporated herein by reference in its
entirety.

[0037] In an advantageous embodiment, initial cFFR val-
ues at various locations in the automatically generated
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anatomical model of the coronary arteries are computed
using a trained machine learning model. In this case, geo-
metric features may be extracted from or the automatically
generated anatomical model and input to a trained machine
learning model that computed the cFFR values based on the
input features. For example, such machine learning based
computation of cFFR values for an anatomical model of the
coronary arteries is described in Itu et al, “A Machine
Learning Approach for Computation of Fractional Flow
Reserve from Coronary Computed Tomography,” Journal of
Applied Physiology, Volume 121, 2016, pp. 42-52, U.S. Pat.
No. 9,538,925, entitled “Method and System for Machine
Learning Based Assessment of Fractional Flow Reserve,”
U.S. Pat. No. 9,349,178, entitled “Synthetic Data-Driven
Hemodynamic Determination in Medical Imaging,” and
United States Publication No. 2017/0245821, entitled
“Method and System for Purely Geometric Machine Learn-
ing Based Fractional Flow Reserve,” the disclosures of
which are incorporated herein by reference in their entirety.

[0038] At step 210, features of interest are extracted from
the patient data. The features can be extracted from the
non-invasive patient data and measurements, the CCTA
image data, the automatically generated patient-specific
anatomical model, the results of the anatomical evaluation
of the coronary arteries, and the initial cFFR values com-
puted for the automatically generated anatomical model.
The extracted features of interest are input to one or more
trained machine learning models, which are used (in step
212) to predict regions of the automatically generated ana-
tomical model that require user interaction for accurate
cFFR computation. The trained machine learning model acts
as a decision support system, which uses as input the
extracted features. The features to the trained machine
learning model may include any of the following:

[0039] The CCTA imaging data;

[0040] The automatically generated anatomical model,
including but not limited to centerlines, automatic or
user-edited (when these steps are repeated) lumen
segmentation, probability maps of lumen location,
coronary mask, etc., as well as confidence metrics
calculated at each location of the coronary tree;

[0041] The results of the anatomical evaluation of the
coronary arteries, such as stenosis grades, stenosis
lengths, stenosis locations, and plaque characteristics
such as composition (fatty/fibrous/calcified), size, high
risk characteristics, and degree of positive remodeling.
In addition, any of the anatomical features described in
U.S. Pat. No. 9,349,178, entitled “Synthetic Data-
Driven Hemodynamic Determination in Medical Imag-
ing,” which is incorporated herein by reference in its
entirety, may be extracted as input to the trained
machine learning model;

[0042] Other metrics derived from the CCTA image
data: image quality, calcium score, transluminal attenu-
ation gradient (TAG), risk scores (e.g., segment steno-
sis risk score, segment involvement score, Framingham
risk score, etc.);

[0043] The initial cFFR values computed based on the
automatically generated anatomical model, as well as
metrics of uncertainty (e.g., standard deviation, confi-
dence intervals, probability density functions, etc.);

[0044] Local sensitivity values at each location of the
coronary anatomical model (i.e., how sensitive is the
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initial computed cFFR value with respect to the varia-
tion of the cross-sectional area at each location);

[0045] Other medical equipment and device measure-
ments: stethoscope, blood pressure meter, laboratory
diagnostics, etc. (blood pressure, heart rate, ECG sig-
nals);

[0046]

[0047] Results of previously performed non-invasive
stress tests: MPI, MUGA scan, radionuclide stress test
and nuclear stress test, exercise stress test, electrocar-
diogram (EKG/ECG), and/or stress/rest echocardiog-
raphy:

[0048] Demographics information (e.g., age, ethnicity,
gender, weight, height, race, BMI, diabetes, hyperten-
sion, hypercholesterolemia, smoking history, family
history of CAD, prior MI, prior CABG, angina type
(stable/worsening/silent ischemia/other angina type
according to CCS or AHA/ACC)); and

[0049] Clinical history of the patient, e.g., if medical
images of the coronary arteries have been acquired
before, this information can be used to estimate which
regions of the coronary circulation are pathologic.

[0050] All of the different input information/features may
be acquired at a single time point, or at different time points.
For example, features extracted from a previous CCTA or
from other previously performed imaging tests may be input
to the machine learning model to predict the regions that
require user interaction.

[0051] At step 212, one or more trained machine learning
models are used to predict regions of the automatically
generated anatomical model that require user interaction for
accurate cFFR computation based on the input features. The
features extracted in step 210 are input to one or more
trained machine learning models, and the trained machine
learning models predict on a region-by-region basis whether
user feedback to the automatically generated anatomical
model is required for accurate computation of cFFR.

[0052] The trained machine learning models are trained in
an offline training stage to make decisions as to whether user
feedback is required for regions in the automatically gener-
ated anatomical model of the coronary arteries based on the
various features input to the trained machine learning mod-
els. Examples of the types of decisions that may be taken by
the trained machine learning models based on the above
described types of input features as a result of the training
include: not asking for user feedback in regions where the
confidence of the automatically generated anatomical model
is high; not asking for user feedback in regions where the
local sensitivity to cFFR is low; asking for user feedback in
regions where no stenosis is present but positive remodeling
can be observed (i.e., plaque is present); not asking for user
feedback when the image quality is high and/or the calcium
score is low; not asking for user feedback is regions where
the cFFR value is high even for a low threshold of the
associated confidence interval; not asking for user feedback
in a certain region of the coronary tree where a perfusion
indicated normal coronary perfusion; and asking for user
feedback is a region where a previous imaging exam iden-
tified atherosclerosis. It is to be understood that such deci-
sions are exemplary and the present invention is not limited
thereto, and the decisions/predictions by the trained machine
learning models are made from the set features input and are
learned from the training of the machine learning models

Type of patient: stable or acute;
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based on a database of training samples. The training of the
machine learning models is described in greater detail below
in connection with FIG. 4.

[0053] The one or more trained machine learning models
can include multiple machine learning models that are used
in a cascaded or parallel workflow. In an advantageous
embodiment, the one or more trained machine learning
models can include a plurality of trained machine learning
classifiers each trained to classify regions of the automati-
cally generated anatomical model at a different resolution or
level of granularity. For example, a first trained machine
learning model may be used to classify each of the coronary
arteries in the automatically generated anatomical model at
a tree level, a second trained machine learning model may
be used to classify individual branches at a branch level, and
a third trained machine learning model may classify point by
point within a branch or segment at a cross-sectional contour
level. These machine learning models can be applied in a
cascaded workflow such that the first trained machine learn-
ing model is first applied to each coronary artery in the
automatically generated anatomical model to predict
whether any user feedback is required for that coronary
artery tree. If the first trained machine learning model
predicts that user feedback is required for a particular
coronary artery tree, the second trained machine learning
model is applied to evaluate each branch in the coronary
artery tree to predict whether any user feedback is required
for that branch. If the second trained machine learning
model predicts that user feedback is required for a particular
branch, the third trained machine learning model is then
applied on a point-by-point basis along the branch to predict
which cross-section contours require user feedback.

[0054] In another possible embodiment, the one or more
trained machine learning models can include different
machine learning models trained to evaluate different arter-
ies in the automatically generated anatomical model. For
example different trained machine learning models used to
predict which regions require user feedback in the right
coronary artery, the left main coronary artery, the left
anterior descending coronary artery. In this case, the differ-
ent machine learning models trained for the different coro-
nary arteries can be applied in parallel.

[0055] In advantageous embodiments of the present
invention, deep learning based methods may be used to train
each machine learning model. Deep learning refers to a
category of artificial intelligence techniques in which a
machine learning model includes multiple information pro-
cessing layers for which weights are learned during training.
In such deep learning based machine learning models,
hierarchical structures are employed, either for learning the
features for representation of the patient data (during train-
ing) or for classification or regression during the online
prediction stage. Various deep learning architectures can be
used for the machine learning models. In an exemplary
implementation, each of the one or more trained machine
learning models can be implemented as a convolutional
neural network (CNN). The CNN can take as input both
imaging and non-imaging features and provide decisions/
predictions (e.g., user feedback is required/not required) for
different parts of the coronary tree or different parts of the
image. The CNN may be implemented as a multi-task CNN
that also provides as output confidence measures for the
output predictions. In another exemplary implementation,
each of the one or more machine learning models can be
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implemented using a long short term memory (LSTM)
network. In this implementation, segments of the coronary
anatomical model are fed to the network sequentially (e.g.,
starting from the root of the coronary tree). The LSTM
model is then able to output a decision/prediction for each
segment and may use the information from previous seg-
ments to make the prediction at the current segment. In
either iniplementation, the deep learning architecture may be
trained as a classification model with binary or multi-class
outputs or as a regression model with continuous outputs.

[0056] In one embodiment, the measure of interest to be
predicted by the machine learning model may be a binary
value indicating a classification of a given location or region
as requiring user feedback or not requiring user feedback.
For example, a value of 1 may be output for a region or
location requiring user feedback for accurate computation of
cFFR and a value of 0 may be output for a region or location
not requiring user feedback for accurate computation of
cFFR. In another embodiment, the machine learning model
may provide continuous output values. For example, the
machine learning model may output a probability score
between 0 and 1 for a given location or region, indicating a
predicted probability that user feedback is required for that
location or region. The predicted probability score for a
given region/location is then compared to a threshold, and
the region/location in the automatically generated anatomi-
cal model is determined to require user feedback if the
predicted probability value is greater than the threshold.
According to an exemplary implementation, different
threshold values may be employed from case to case to
determine which regions require user feedback and which
regions can be used as given by the automatically generated
anatomical model. For example, the threshold value may be
higher in cases of acute patients where a decision needs to
be taken fast, and lower for stable coronary artery disease
(CAD) patients where delaying the decision poses no risk to
the patient. The threshold value itself may be determined
automatically by another machine learning algorithm for
each case. The threshold value may be additionally be based
on a cost analysis, in which case the decision to ask for user
feedback may be based at least in part on cost-effectiveness.
In another possible implementation, one or more predeter-
mined threshold values can be applied.

[0057] The trained machine learning model(s) can output
a map of the automatically generated anatomical model of
the coronary arteries that shows the predictions of which
regions require user feedback and which regions do not
require user feedback. For example, the machine learning
model can output a color coded probability map of the
anatomical model in which different colors represent differ-
ent predicted probabilities for requiring user feedback.
Alternatively, the machine learning model can output a
binary map that shows the regions predicted to require user
feedback. Such maps can be displayed on a display device
of a computer system. FIG. 3 illustrates an exemplary output
map 300 of a machine learning model. As shown in FIG. 3,
the output map 300 is a color coded map of the automatically
generated anatomical model of the coronary arteries with
different colors represented different probability scores out-
put by the trained machine learning model.

[0058] Returning to FIG. 2, at step 214, user feedback is
requested for the regions of the automatically generated
anatomical model predicted to require user feedback. In one
embodiment, an output map showing the predicted regions
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that require user feedback can be displayed on a display
device. An example of such an output map 300 is shown in
FIG. 3. The user can then select each region that is predicted
to require user feedback and edit that region of the auto-
matically generated anatomical model to correct the cross-
sectional contours in that region. For example, the user can
use an input device (e.g., mouse, touchscreen, etc.) to edit
the automatically generated anatomical model. In another
embodiment, an iterative process can be used to sequentially
display to the user only the regions predicted to require user
feedback and request user input for each sequentially dis-
played region.

[0059] In a possible embodiment, the user feedback pre-
dictions for the anatomical model may be updated in real
time while the user is providing feedback. Corrections at
proximal locations in an artery may effect the predictions
regarding whether user feedback is required at distal loca-
tions in the artery. In this embodiment, the regions predicted
to require user feedback are shown to the user in order from
proximal to distal with respect to the blood flow direction.
When user feedback to correct the cross-sectional contours
for a particular region is received, steps 208-212 of the
method of FIG. 2 are repeated with the updated anatomical
model to obtain updated predictions for whether the regions/
locations distal to the corrected region require user feedback.
For example, while the user is correcting cross-sectional
contours in the proximal left anterior descending (LLAD)
artery, the predictions as to whether feedback is required in
the distal LAD may be re-evaluated in real time, possibly
leading to the updated prediction that feedback is no longer
required (e.g., cFFR in the distal LAD is high with a high
confidence). Real time updates of the predictions are feasible
because both the machine learning models for computing
cFFR and associated confidence intervals and the machine
learning models for predicting the user feedback require-
ments provide results in real time and can be applied
iteratively when the user is providing feedback for certain
regions of the anatomical model. In an exemplary imple-
mentation, the machine learning models may be employed
to make predictions based on partial information, such as
anatomical information extracted using fully automated cen-
terline and segmentation algorithms, anatomical information
of the main branches, a subset of the features that are used
for the CT-cFFR machine learning model that can be deter-
mined automatically or with limited user interaction, and
measures of uncertainty for any type of the above listed
features and information,

[0060] At step 216, final cFFR values are determined for
the revised anatomical model. The user feedback to edit the
anatomical model results in a revised patient-specific ana-
tomical model of the coronary arteries. In an advantageous
embodiment, final cFFR values can be computed at loca-
tions in the revised anatomical model using a trained
machine learning model for FFR computation. Such
machine learning based computation of cFFR values for an
anatomical model of the coronary arteries is described in Itu
et al., “A Machine Learning Approach for Computation of
Fractional Flow Reserve from Coronary Computed Tomog-
raphy,” Journal of Applied Physiology, Volume 121, 2016,
pp. 42-52, U.S. Pat. No. 9,538.925, entitled “Method and
System for Machine Learning Based Assessment of Frac-
tional Flow Reserve,” U.S. Pat. No. 9,349,178, entitled
“Synthetic Data-Driven Hemodynamic Determination in
Medical Imaging,” and United States Publication No. 2017/
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0245821, entitled “Method and System for Purely Geomet-
ric Machine Learning Based Fractional Flow Reserve,” the
disclosures of which are incorporated herein by reference in
their entirety. In an alternative embodiment, CFD based
simulations can be used to simulate blood flow and pressure
in the revised anatomical model of the coronary arteries and
the final cFFR values can be computed based on the CFD
based simulations.

[0061] In one embodiment, certain parts of the coronary
anatomy may be discarded completely while computing the
final cFFR values. In this case, the initial cFFR values can
be used for such parts of the coronary artery and no further
computation of cFFR values is needed for these parts. For
example, if the right coronary artery (RCA) tree is consid-
ered to be completely healthy (based on the generated
anatomical information, plaque information, etc.), no further
computations may be performed for the RCA.

[0062] In another embodiment, small side branches may
be discarded for the cFFR computation. In this case, dis-
carding does not necessarily refer to completely ignoring the
information, but instead the corresponding information is
used in a different simplified approach. For example, each
small side branch may be represented by a bifurcation
location and a corresponding healthy radius value. The flow
loss in the main branch due to the side branch is estimated
and taken into account for model predictions at all down-
stream locations.

[0063] In another embodiment, distal parts of the main
branches with small radius values may be discarded from the
cFFR computation. Fully automated algorithms may be
employed to determine cutting points for each branch, thus
discarding locations on each branch.

[0064] In U.S. Pat. No. 9,349,178, entitled “Synthetic
Data-Driven Hemodynamic Determination in Medical
Imaging,” an advanced feature called ischemic weight is
introduced. Ischemic weight is estimated at the branch level
and can be computed either from radius information or from
left ventricle (LV) mass information. In another embodi-
ment, if the ischemic weight determined from radius infor-
mation and from LV mass information is similar, cFFR may
be computed on a partial tree using, for example, the
machine learning algorithm which is employed for anig-
oFFR (FFR computed from X-ray angiography medical
images) and which has been specifically designed to provide
computed FFR values with reduced anatomical information,
as described in U.S. Pat. No. 9,349,178, entitled “Synthetic
Data-Driven Hemodynamic Determination in Medical
Imaging,” the disclosure of which is incorporated herein by
reference in its entirety.

[0065] At step 218, the final cFFR results are output. The
final cFFR results can be output by displaying the final cFFR
results on a display device of a computer system. In one
embodiment, the final cFFR results can be displayed using
a color coded map of the revised anatomical model of the
coronary arteries in which different colors represent different
ranges of cFFR values.

[0066] The methods of FIG. 1 and FIG. 2 are used for the
prediction phase which is performed online. To be able to
use one or more machine learning models for the prediction
of user feedback requirements, these machine learning mod-
els must be trained a priori offline. FIG. 4 illustrates a
method for training a machine learning model for predicting
regions of an arterial anatomical model that requires user
feedback according to an embodiment of the present inven-
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tion. Referring to FIG. 4, at step 402, a database of training
data is acquired. In one embodiment, a large database
containing patient-specific data (for many different patients)
is used for training. The database can include medical image
data (e.g., CCTA) and non-invasive patient data and mea-
surements (e.g., demographics, patient history, measure-
ments from non-invasive medical devices, such as stetho-
scope, blood pressure meter, non-medical grade devices,
etc.) for each patient, as well as information regarding the
automatically generated anatomical model (centerlines and
cross-sectional contours), the corrections performed by the
user and the associated final cFFR values. At step 404, an
automated anatomical evaluation of the coronary arteries is
performed for each training sample in the database. At step
406, initial cFFR values are computed for each training
sample in the database. Steps 404 and 406 can be performed
as described above in connection with step 208 of FIG. 2.

[0067] At step 408, user feedback requirements are
extracted for each training sample in the database. The
database is processed to determine case-by-case which of
the corrections performed by the user have influenced the
final cFFR values (as compared with the initial cFFR
values), thus labeling each correction as required or not
required. These labels of required or not required provide
ground truth outputs for training the machine learning
model. Alternatively, if information on the user performed
corrections is not available, the automatically generated
anatomical model may be used as a starting point and
random corrections may be automatically performed, while
observing the variations in the final cFFR values. Thus,
labels may be generated automatically for each region.

[0068] At step 410, features of interest are extracted from
the training samples. Such features of interest are described
above in the method of FIG. 2. At step 412, the machine
learning model is trained based on the features and the user
feedback requirements extracted for the training samples.
The machine learning model is a data-driven surrogate
model trained using a machine learning algorithm. The
machine learning model can be trained to minimize a cost
function that represents an error between the ground truth
extracted user feedback requirements and the predicted user
feedback requirements over the set of training samples.

[0069] In advantageous embodiments of the present
invention, deep learning based methods may be used to train
the machine learning model. Deep learning refers to a
category of artificial intelligence techniques in which a
machine learning model includes multiple information pro-
cessing layers for which weights are learned during training.
In such deep learning based machine learning models,
hierarchical structures are employed, either for learning the
features for representation of the patient data (during train-
ing) or for classification or regression during the online
prediction stage. Various deep learning architectures can be
used for the machine learning model. In an exemplary
implementation, the machine learning models can be imple-
mented as a convolutional neural network (CNN). The CNN
can take as input both imaging and non-imaging features and
provide decisions/predictions (e.g., user feedback is
required/not required) for different parts of the coronary tree
or different parts of the image. The CNN may be imple-
mented as a multi-task CNN that also provides as output
confidence measures for the output predictions. In another
exemplary implementation, the machine learning model can
be implemented using a long short term memory (LSTM)
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network. In this implementation, segments of the coronary
anatomical model are fed to the network sequentially (e.g.,
starting from the root of the coronary tree). The LSTM
model is then able to output a decision/prediction for each
segment and may use the information from previous seg-
ments to make the prediction at the current segment. In
either implementation, the deep learning architecture may be
trained as a classification model with binary or multi-class
outputs or as a regression model with continuous outputs.

[0070] Once the machine learning model is trained, the
machine learning model can be stored in a memory or
storage of a computer system and used in the prediction
phase to perform prediction of user feedback requirements
for an automatically generated anatomical model of one or
more arteries for a new patient. During the training phase,
more features may be available than during the online
prediction phase. In an exemplary implementation, the fea-
tures that are missing during the prediction phase may be
estimated based on similar datasets in the training database.
For example, a separate machine learning algorithm can be
specifically trained for this purpose and employed to esti-
mate the missing features.

[0071] In one embodiment, the database used for training
the one or more machine learning models may contain only
synthetically generated data. Automated methods are
employed to generate synthetic CCTA images and synthetic
anatomical models including plaque data. For example,
various techniques for generating synthetic training data are
described in U.S. Pat. No. 9,538,925, entitled “Method and
System for Machine Learning Based Assessment of Frac-
tional Flow Reserve,” U.S. Pat. No. 9,349,178, entitled
“Synthetic Data-Driven Hemodynamic Determination in
Medical Imaging,” and United States Publication No. 2017/
0245821, entitled “Method and System for Purely Geomet-
ric Machine Learning Based Fractional Flow Reserve,” the
disclosures of which are incorporated herein by reference in
their entirety. In a possible implementation, a generative
adversarial network (GAN) can be used to train a machine
learning model to generate synthetic CCTA images. Random
corrections in the synthetically generated anatomical models
are then performed, while observing the variations in the
final cFFR values. Thus, labels are generated automatically
on a region-by-region basis. In an exemplary implementa-
tion, the type of corrections performed for each region may
be learned from previous experience, e.g. based on a data-
base containing patient-specific data and corresponding cor-
rections performed by the user.

[0072] The above-described methods may be imple-
mented on a computer using well-known computer proces-
sors, memory units, storage devices, computer software, and
other components. A high-level block diagram of such a
computer is illustrated in FIG. 5. Computer 502 contains a
processor 504, which controls the overall operation of the
computer 502 by executing computer program instructions
which define such operation. The computer program instruc-
tions may be stored in a storage device 512 (e.g., magnetic
disk) and loaded into memory 510 when execution of the
computer program instructions is desired. Thus, the steps of
the methods of FIGS. 1, 2, and 4 may be defined by the
computer program instructions stored in the memory 510
and/or storage 512 and controlled by the processor 504
executing the computer program instructions. An image
acquisition device 520, such as a CT scanning device, can be
connected to the computer 502 to input image data to the
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computer 502. The image acquisition device 520 and the
computer 502 may communicate wirelessly through a net-
work. The computer 502 also includes one or more network
interfaces 506 for communicating with other devices via a
network. The computer 502 also includes other input/output
devices 508 that enable user interaction with the computer
502 (e.g., display, keyboard, mouse, speakers, buttons, etc.).
One skilled in the art will recognize that an implementation
of an actual computer could contain other components as
well, and that FIG. 5 is a high level representation of some
of the components of such a computer for illustrative

purposes.

[0073] The above-described methods may be imple-
mented using computers operating in a client-server rela-
tionship. Typically, in such a system, the client computers
are located remotely from the server computer and interact
via a network. The client-server relationship may be defined
and controlled by computer programs running on the respec-
tive client and server computers.

[0074] The above-described methods may be imple-
mented within a network-based cloud computing system. In
such a network-based cloud computing system, a server or
another processor that is connected to a network communi-
cates with one or more client computers via a network. A
client computer may communicate with the server via a
network browser application residing and operating on the
client computer, for example. A client computer may store
data on the server and access the data via the network. A
client computer may transmit requests for data, or requests
for online services, to the server via the network. The server
may perform requested services and provide data to the
client computer(s). The server may also transmit data
adapted to cause a client computer to perform a specified
function, e.g., to perform a calculation, to display specified
data on a screen, etc. For example, the server may transmit
a request adapted to cause a client computer to perform one
or more of the method steps described herein, including one
or more of the steps of FIGS. 1, 2, and 4. Certain steps of the
methods described herein, including one or more of the steps
of FIGS. 1, 2, and 4 may be performed by a server or by
another processor in a network-based cloud-computing sys-
tem. Certain steps of the methods described herein, includ-
ing one or more of the steps of FIGS. 1, 2, and 4, may be
performed by a client computer in a network-based cloud
computing system. The steps of the methods described
herein, including one or more of the steps of FIGS. 1, 2, and
4, may be performed by a server and/or by a client computer
in a network-based cloud computing system, in any combi-
nation.

[0075] The foregoing Detailed Description is to be under-
stood as being in every respect illustrative and exemplary,
but not restrictive, and the scope of the invention disclosed
herein is not to be determined from the Detailed Description,
but rather from the claims as interpreted according to the full
breadth permitted by the patent laws. It is to be understood
that the embodiments shown and described herein are only
illustrative of the principles of the present invention and that
various modifications may be implemented by those skilled
in the art without departing from the scope and spirit of the
invention. Those skilled in the art could implement various
other feature combinations without departing from the scope
and spirit of the invention.
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1. A method for providing fast non-invasive computer-
based computation of a hemodynamic index from medical
image data of a patient, comprising:

automatically generating a patient-specific anatomical

model of one or more arteries of a patient based on
medical image data of the patient; and

predicting regions in the automatically generated patient-
specific anatomical model for which user feedback is
required for accurate computation of a hemodynamic
index using one or more trained machine learning
models.

2. The method of claim 1, wherein automatically gener-
ating a patient-specific anatomical model of one or more
arteries of a patient based on medical image data of the
patient comprises:

automatically extracting centerlines and cross-sectional
contours for each of the one or more arteries of the
patient from the medical image data of the patient.

3. The method of claim 1, wherein predicting regions in
the automatically generated patient-specific anatomical
model for which user feedback is required for accurate
computation of a hemodynamic index using one or more
trained machine learning models comprises:

predicting the regions in the automatically generated
patient-specific anatomical model for which user feed-
back is required for accurate computation of the hemo-
dynamic index using the one or more trained machine
learning models based on extracted features related to
the automatically generated patient-specific anatomical
model that are input to the one or more trained machine
learning models.

4. The method of claim 3, wherein the features include
features extracted from the medical image data of the
patient.

5. The method of claim 3, wherein the features include
non-invasive patient data and measurements acquired for the
patient.

6. The method of claim 3, wherein the features include
features extracted from the automatically generated patient-
specific anatomical model of the one or more arteries of the
patient.

7. The method of claim 3, further comprising:

automatically computing initial values for the hemody-
namic index at a plurality of locations in the automati-
cally generated patient-specific anatomical model of
the one or more arteries of the patient, wherein the
features include the initial values computed for the
hemodynamic index at the plurality of locations in the
automatically generated patient-specific anatomical
model and features extracted from the initial values for
the hemodynamic index at the plurality of locations in
the automatically generated patient-specific anatomical
model.

8. The method of claim 7, wherein automatically com-
puting initial values for the hemodynamic index at a plu-
rality of locations in the automatically generated patient-
specific anatomical model of the one or more arteries of the
patient comprises:

computing initial values for the hemodynamic index at the

plurality of locations in the automatically generated
patient specific anatomical model of the one or more
arteries using a second trained machine learning model.
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9. The method of claim 3, further comprising:

performing an automated anatomical evaluation of the

one or more arteries of the patient in the automatically
generated patient-specific anatomical model, wherein
the features include anatomical features related to one
or more stenosis regions in the one or more arteries of
the patient extracted from results of the automated
anatomical evaluation of the one or more arteries of the
patient in the automatically generated patient-specific
anatomical model.

10. The method of claim 1, further comprising:

requesting user feedback for only the regions in the

automatically generated patient-specific anatomical
model predicted by the one or more trained machine
learning models as requiring user feedback for accurate
computation of the hemodynamic index;

receiving user feedback for the regions in the automati-

cally generated patient-specific anatomical model pre-
dicted by the one or more trained machine learning
models as requiring user feedback for accurate com-
putation of the hemodynamic index, resulting in a
revised anatomical model of the one or more arteries of
the patient; and

computing final values for the hemodynamic index at a

plurality of locations in the one or more arteries of the
patient based on the revised anatomical model of the
one or more arteries of the patient.

11. The method of claim 1, wherein the one or more
trained machine learning models include a first trained
machine learning model for predicting user feedback
requirements at a tree level, a second trained machine
learning model for predicting user feedback requirements at
a branch level, and a third trained machine learning model
for predicting user feedback requirements at a cross-sec-
tional contour level.

12. The method of claim 1, wherein the hemodynamic
index is fractional flow reserve.

13. The method of claim 1, wherein the one or more
arteries of the patient comprise one or more coronary
arteries of the patient.

14. An apparatus for providing fast non-invasive compu-
tation of a hemodynamic index from medical image data of
a patient, comprising:

a processor; and

a memory storing computer program instructions which

when executed by the processor cause the processor to
perform operations comprising:

automatically generating a patient-specific anatomical

model of one or more arteries of a patient based on
medical image data of the patient; and

predicting regions in the automatically generated patient-

specific anatomical model for which user feedback is
required for accurate computation of a hemodynamic
index using one or more trained machine learning
models.

15. The apparatus of claim 14, wherein predicting regions
in the automatically generated patient-specific anatomical
model for which user feedback is required for accurate
computation of a hemodynamic index using one or more
trained machine learning models comprises:

predicting the regions in the automatically generated

patient-specific anatomical model for which user feed-
back is required for accurate computation of the hemo-
dynamic index using the one or more trained machine
learning models based on extracted features related to
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the automatically generated patient-specific anatomical
model that are input to the one or more trained machine
learning models.

16. The apparatus of claim 15, wherein the operations
further comprise:

automatically computing initial values for the hemody-

namic index at a plurality of locations in the automati-
cally generated patient-specific anatomical model of
the one or more arteries of the patient, wherein the
features include the initial values computed for the
hemodynamic index at the plurality of locations in the
automatically generated patient-specific anatomical
model and features extracted from the initial values for
the hemodynamic index at the plurality of locations in
the automatically generated patient-specific anatomical
model.

17. The apparatus of claim 15, wherein the operations
further comprise:

performing an automated anatomical evaluation of the

one or more arteries of the patient in the automatically
generated patient-specific anatomical model, wherein
the features include anatomical features related to one
or more stenosis regions in the one or more arteries of
the patient extracted from results of the automated
anatomical evaluation of the one or more arteries of the
patient in the automatically generated patient-specific
anatomical model.

18. The apparatus of claim 14, wherein the operations
further comprise:

requesting user feedback for only the regions in the

automatically generated patient-specific anatomical
model predicted by the one or more trained machine
learning models as requiring user feedback for accurate
computation of the hemodynamic index;

receiving user feedback for the regions in the automati-

cally generated patient-specific anatomical model pre-
dicted by the one or more trained machine learning
models as requiring user feedback for accurate com-
putation of the hemodynamic index, resulting in a
revised anatomical model of the one or more arteries of
the patient; and

computing final values for the hemodynamic index at a

plurality of locations in the one or more arteries of the
patient based on the revised anatomical model of the
one or more arteries of the patient.

19. A non-transitory computer readable medium storing
computer program instructions for providing fast non-inva-
sive computation of a hemodynamic index from medical
image data of a patient, the computer program instructions
when executed by a processor cause the processor to per-
form operations comprising:

automatically generating a patient-specific anatomical

model of one or more arteries of a patient based on
medical image data of the patient; and

predicting regions in the automatically generated patient-

specific anatomical model for which user feedback is
required for accurate computation of a hemodynamic
index using one or more trained machine learning
models.
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20. The non-transitory computer readable medium of
claim 19, wherein predicting regions in the automatically
generated patient-specific anatomical model for which user
feedback is required for accurate computation of a hemo-
dynamic index using one or more trained machine learning
models comprises:

predicting the regions in the automatically generated

patient-specific anatomical model for which user feed-
back is required for accurate computation of the hemo-
dynamic index using the one or more trained machine
learning models based on extracted features related to
the automatically generated patient-specific anatomical
model that are input to the one or more trained machine
learning models.

21. The non-transitory computer readable medium of
claim 20, wherein the operations further comprise:

automatically computing initial values for the hemody-

namic index at a plurality of locations in the automati-
cally generated patient-specific anatomical model of
the one or more arteries of the patient, wherein the
features include the initial values computed for the
hemodynamic index at the plurality of locations in the
automatically generated patient-specific anatomical
mode] and features extracted from the initial values for
the hemodynamic index at the plurality of locations in
the automatically generated patient-specific anatomical
model.

22. The non-transitory computer readable medium of
claim 20, wherein the operations further comprise:

performing an automated anatomical evaluation of the
one or more arteries of the patient in the automatically
generated patient-specific anatomical model, wherein
the features include anatomical features related to one
or more stenosis regions in the one or more arteries of
the patient extracted from results of the automated
anatomical evaluation of the one or more arteries of the
patient in the automatically generated patient-specific
anatomical model.

23. The non-transitory computer readable medium of
claim 19, wherein the operations further comprise:

requesting user feedback for only the regions in the
automatically generated patient-specific anatomical
model predicted by the one or more trained machine
learning models as requiring user feedback for accurate
computation of the hemodynamic index;

receiving user feedback for the regions in the automati-
cally generated patient-specific anatomical model pre-
dicted by the one or more trained machine learning
models as requiring user feedback for accurate com-
putation of the hemodynamic index, resulting in a
revised anatomical model of the one or more arteries of
the patient; and

computing final values for the hemodynamic index at a
plurality of locations in the one or more arteries of the
patient based on the revised anatomical model of the
one or more arteries of the patient.

* #* * #* #®



THMBW(EF)

[ i (S RIR) A ()
e (S IR) A (%)

HAT R E (TR AGE)

patsnap
BRGNS BREMZRETENREMGE

US20190336096A1 NI (»&E)B 2019-11-07

US15/968836 RiEH 2018-05-02

Al FREFRIEELF

A1 ¥ &7y GMBH

7] FESTGMBH

[ﬁ\]ﬁﬁﬂk ITU LUCIAN MIHAI
RAPAKA SAIKIRAN
PASSERINI TIZIANO
SHARMA PUNEET
EZBAA ITU, LUCIAN MIHAI
RAPAKA, SAIKIRAN
PASSERINI, TIZIANO
SHARMA, PUNEET
IPCH %S A61B6/00 G16H30/40 G16H10/60 GO6N99/00 A61B5/00 A61B6/03 A61B34/10
CPCH k5 GO6N20/00 A61B5/7267 A61B34/10 A61B6/5217 A61B6/504 A61B2034/105 A61B6/507 G16H10/60
A61B6/032 G16H30/40 A61B5/0033 A61B5/02028 GO6N3/0445 GO6N3/0454 GO6N3/08 G16H50/30
G16H50/50
S\EBEEE Espacenet USPTO
WE()
AFT —METFETF M5 H 2SRRI A T EA PR ERY oo 1% T
FENRE | FORIAS 2R MR B BB E2 R GBIRN 5 -~
M%MEE (FFR) ., EFBRENELXRGRREAHERBEN - RS — T ™ e
MBI ETF R ENBIER, FA-ARSMIGEEONEEY
BE ALRNESERNSE TR ENRLERhEER S RIR A L,
AR E M 5 2SR X 8, 0
Memory | 51

— 520
Image Acquisition
Device



https://share-analytics.zhihuiya.com/view/206fb687-4302-420c-8154-1d005cae346b
https://worldwide.espacenet.com/patent/search/family/068384348/publication/US2019336096A1?q=US2019336096A1
http://appft.uspto.gov/netacgi/nph-Parser?Sect1=PTO1&Sect2=HITOFF&d=PG01&p=1&u=%2Fnetahtml%2FPTO%2Fsrchnum.html&r=1&f=G&l=50&s1=%2220190336096%22.PGNR.&OS=DN/20190336096&RS=DN/20190336096

