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(57) ABSTRACT

A decision support tool is provided for predicting the
neonatal vitality scores of a fetus during delivery, the scores
being an indicator of future health for the infant anticipated
to be born within a future time interval, measured as time to
birth. The predicted neonatal vitality score is determined
from measurements of physiological variables monitored
during labor, such as uterine activity and fetal heart rate.
Fetal heart rate variability and patterns may be detected and
computed using the monitored physiological variables, and
neonatal vitality scores may be predicted based, at least in
part, on the variability metrics and fetal heart rate patterns.
Scores may be predicted for different delivery methods, such
as vaginal delivery or cesarean delivery, for different time-
to-birth intervals. In this way, these scores may be used for
decision support for care plans during labor, such as
increased monitoring and/or modifying the delivery type.
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FORECASTING NEONATAL VITALITY

CROSS-REFERENCE TO RELATED
APPLICATIONS

[0001] This application claims the benefit of U.S. Provi-
sional Application No. 62/569,546 titled “FORECASTING
NEONATAL VITALITY,” filed on Oct. 8, 2017, which is
hereby expressly incorporated by reference in its entirety.

BACKGROUND

[0002] Compared to vaginal births, cesarean deliveries
(C-sections) increase the risk of complications for the
mother and create a greater financial burden on the payor.
Accordingly, vaginal births are often preferred unless certain
health risks during labor warrant a C-section. Traditionally,
the fetal heart rate and the mother’s uterine activity are
electronically monitored as labor progresses, and a physi-
cian manually categorizes fetal heart rate and uterine activity
strips as one of three categories developed by the National
Institute of Child Health and Human Development (NICHD)
to determine whether a C-section delivery is appropriate.
Category I strips are considered low-risk, and no interven-
tion is typically required. At the other side of the spectrum,
strips that persist at category 1II are considered high-risk,
and preventive action (often a C-section) is typically
required. Anything between category I and I1I is classified as
a category II strip. Because the criteria for categorizing a
strip at either extreme (i.e., category I or III) are stringent,
over half of strips persist in category Il where it is difficult
to determine if intervention is required. Accordingly, it is
often difficult for physicians to determine whether to rec-
ommend a C-section, resulting in unnecessary C-sections
that increase the health risks to the mother.

SUMMARY

[0003] Systems, methods and computer-readable media
are provided for predicting the neonatal vitality of infants
that are likely to be born in a future time interval based on
monitored physiological variables of the maternal patient
measured during labor and, in some instances, for providing
a decision support tool to clinicians and caregivers for
proceeding with different delivery methods according to the
predicted vitality scores. In particular, a fetal monitoring
decision support system is provided for determining a likely
neonatal score for an infant that is anticipated to be delivered
within a future time interval. Embodiments of the disclosure
described herein may provide a neonatal vitality score (such
as APGAR score) that will represent the likely condition of
an infant that will be delivered within a time horizon
comprising a future time interval. Multiple neonatal vitality
scores may be forecasted for different future time intervals
and, in some embodiments, based on different delivery
methods (e.g., vaginal delivery and C-section).

[0004] Aspects described herein include a fetal monitoring
decision support system that forecasts vitality of a future
infant by monitoring physiological variables during labor. In
exemplary aspects, measurements for mother’s uterine
activity (UA) and the fetus’s heart rate (FHR) are acquired
over time. These measurements form a time series that can
be used with predictive models trained to predict a neonatal
vitality score indicating the likely health level of an infant
anticipated to be born within a future time interval.
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[0005] The fetal monitoring decision support system may
use a plurality of models to forecast neonatal vitality scores
for infants anticipated to be delivered within multiple dif-
ferent future time intervals. Additionally, different scores
may be provided for different delivery methods, including
vaginal delivery and a C-section. Using the maternal
patient’s dilation, a likely future time interval for a vaginal
delivery may be determined, and a neonatal vitality score for
a vaginal birth within the time interval may be compared
with one or more thresholds and/or with a neonatal vitality
score for a C-section delivery. In this way, caregivers can
more accurately determine whether the fetus is in distress in
labor in a way that will impact the health of the newly born
infant and respond in accordance with the determinations.
For instance, a notification may be provided with one or
more of the forecasted neonatal vitality scores, and in some
embodiments, a recommendation to proceed with a C-sec-
tion or to increase monitoring of the patient in labor may be
made based on the score. Accordingly, one aim of embodi-
ments of this disclosure is to improve upon conventional
industry practice by deriving accurate predictive capabilities
for fetal monitoring to provide more effective treatment and
care during labor and delivery. In this way, current embodi-
ments provide for a counter-conventional technological
solution that is unknown in the industry and the area of
clinical suppott.

BRIEF DESCRIPTION OF THE DRAWINGS

[0006] The present invention is described in detail below
with reference to the attached drawing figures, wherein:
[0007] FIGS. 1A and 1B depict aspects of an illustrative
operating environment suitable for practicing an embodi-
ment of the disclosure;

[0008] FIG. 2 depicts a flow diagram of a method for
predicting vitality scores using measurements from the
patient acquired during labor and suitable for implementa-
tion in a decision support system, in accordance with an
embodiment of the disclosure;

[0009] FIG. 3 depicts example fetal monitoring strips with
artifacts identified in accordance with an embodiment of the
disclosure;

[0010] FIG. 4 depicts graphical illustrations of uterine
activity sub-signals over time;

[0011] FIG. 5 depicts graphical illustrations of fetal heart
rate sub-signals over time;

[0012] FIG. 6 depicts a graphical illustration of uterine
activity signals over time to identify contractions in accor-
dance with an embodiment of the disclosure;

[0013] FIG. 7 depicts graphical illustrations of a fetal heart
rate signal and uterine activity signal to illustrate FHR
patterns in accordance with an embodiment of the disclo-
sure; and

[0014] FIG. 8 depicts graphical illustrations of a fetal heart
rate signal and uterine activity signal to illustrate tachycardia
and bradycardia in accordance with an embodiment of the
disclosure.

DETAILED DESCRIPTION

[0015] The subject matter of the present invention is
described with specificity herein to meet statutory require-
ments. However, the description itself is not intended to
limit the scope of this patent. Rather, the inventors have
contemplated that the claimed subject matter might also be
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embodied in other ways, to include different steps or com-
binations of steps similar to the ones described in this
document, in conjunction with other present or future tech-
nologies. Moreover, although the terms “step” and/or
“block” may be used herein to connote different elements of
methods employed, the terms should not be interpreted as
implying any particular order among or between various
steps herein disclosed unless and except when the order of
individual steps is explicitly described.

[0016] As one skilled in the art will appreciate, embodi-
ments of the invention may be embodied as, among other
things: a method, system, or set of instructions embodied on
one or more computer readable media. Accordingly, the
embodiments may take the form of a hardware embodiment,
a software embodiment, or an embodiment combining soft-
ware and hardware. In one embodiment, the invention takes
the form of a computer-program product that includes com-
puter-usable instructions embodied on one or more com-
puter readable media, as discussed further with respect to
FIGS. 1A-1B.

[0017] Accordingly, at a high level, this disclosure
describes, among other things, methods and systems for
predicting neonatal vitality scores for an infant anticipated to
be born within a future time interval based on fetal moni-
toring during labor. In some embodiments, the methods and
systems may be implemented as a decision support com-
puter application or tool and may be part of a more com-
prehensive healthcare decision support application for moni-
toring patients in labor and providing decision support to
caregivers. Such decision support technology plays an
important part of modern medicine.

[0018] Embodiments of the disclosure include systems,
methods and computer-readable media for predicting the
neonatal vitality of infants that are likely to be born in a
future time interval based on physiological variables mea-
sured during labor. In particular, the fetal monitoring deci-
sion support system may provide forecasts of vitality of a
future infant by monitoring physiological variables during
labor. In exemplary aspects, measurements for mother’s
uterine activity (UA) and the fetus’s heart rate (FHR) are
acquired during labor, and UA and FHR time series are
formed. These time series may be used to train and then
utilize predictive models to forecast the neonatal vitality
score for an infant that is anticipated to be delivered within
a future time interval. The neonatal vitality score is a health
level of an infant that is traditionally measured after deliv-
ery. For example, a neonatal vitality score may be an
APGAR score, a cord blood gas measurement, or a combi-
nation thereof. Unlike with conventional methods, however,
APGAR scores and cord blood gas measurements may be
predicted for an infant who is not yet born by monitoring
fetal and maternal vital signs during delivery.

[0019] In aspects described herein, the UA time series is
used to identify the timing of contractions. Accelerations
and/or decelerations of the FHR may be detected from the
FHR time series, and FHR patterns may be identified (and
classified) using at least classifications of decelerations,
which may depend, in part, on the timing of the deceleration
relative to identified contractions. Additionally, short-term
and long-term variability metrics of the FHR may be com-
puted and used to forecast the likely neonatal vitality score.
[0020] Multiple neonatal vitality scores may be predicted
for the fetus (which may also be referred to as the fetal
patient). The different scores may be specific to a future time
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interval and/or delivery method. For instance, delivery may
either be a vaginal delivery or cesarean (C-section) delivery.
Bach type of delivery may have multiple neonatal vitality
scores based on different future time intervals. For instance,
some embodiments generate eight neonatal vitality scores
for a vaginal delivery for eight different future time intervals
ranging from 30 minutes to 10 hours and generate two
neonatal vitality scores for a C-section delivery within a
30-minute and a one-hour future time interval.

[0021] Based on the plurality of neonatal vitality scores
forecasted, a response may be initiated. The particular
response may depend on a comparison of the neonatal
vitality scores to threshold scores and/or to other forecasted
neonatal vitality scores for the patient. Specifically, in some
embodiments, one or more scores forecasted for vaginal
delivery may be compared to a threshold to determine
whether the fetus is likely in distress. If so, the neonatal
vitality score may be compared to a neonatal vitality score
for a C-section delivery to determine whether a C-section
delivery would be a safer treatment course than a vaginal
delivery. In other words, one or more predictive models may
use data from active labor to forecast the health of a fetus
upon delivery, and forecasts for vaginal delivery based on
expected time-to-delivery may be compared with a forecast
for cesarean delivery in the next hour. A response based on
the forecasts may comprise initiation of a notification of the
neonatal vitality scores, recommendations for modification
of a care plan, such as increased monitoring and/or changing
the delivery method, scheduling resources relating to a
recommended modification of a care plan, and the like.

[0022] Accordingly, embodiments of the technology
described herein improve on conventional medical decision
support technologies by utilizing these innovated forecast-
ing techniques and, thus, provide a practical application in
decision support systems for monitoring and treating
patients in labor, including aiding in determining an appro-
priate delivery method. Specifically, with respect to delivery
methods, there has been an increasing trend in the rate of
C-section deliveries over the past two decades. According to
the Centers for Disease Control and Prevention, the overall
C-section delivery rate in the United States increased from
20.7% in 1996 to 32.9% in 2009. While some efforts have
been made to reduce the rate of non-medically indicated
C-sections (which may be referred to herein as elective
C-sections), the overall rate for C-sections was still at 32.2%
in 2014. C-sections come with a number of adverse health
risks, especially for the mother. Cesarean deliveries increase
the risk of operative complications, and the risk of maternal
mortality is doubled after C-sections. Further complicating
the issue is that many expectant mothers who have previ-
ously had a C-section will require one for subsequent
deliveries, and studies have confirmed that the increase in
C-sections is partially due to subsequent deliveries of moth-
ers who previously had a C-section. Mothers who have had
previous C-sections, however, face increased health risks as
it has been shown that the risk of placenta accreta, uterine
rupture, and hysterectomy increase with each subsequent
C-section.

[0023] In addition to the increased health risks, unneces-
sary C-sections increase the financial burden for payers,
organizations, and individuals. For instance, a study released
by the Center for Healthcare Quality and Payment Reform
in 2013 indicated that reducing the cesarean delivery rate to
the 15% recommended by the World Health Organization
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would save approximately 5 billion. The same study shows
that the average cost of a C-Section for commercially
insured patients is approximately 50% more than a vaginal
birth—$27,866 per C-sections vs. $18,329 per vaginal birth.
Similarly, Medicaid programs pay an average for $4,000
more per C-section. Accordingly, reducing unnecessary
C-sections would not only reduce unnecessary health risks
but also help to alleviate financial burden for payers.

[0024] Currently, healthcare decisions regarding the
whether a C-section is appropriate are made using a three-
tier classification system developed by the National Institute
of Child Health and Human Development (NICHD). Using
the conventional system, a healthcare provider views fetal
heart rate strips and classifies the strips into one of three
categories: normal (Category I), indeterminate (Category
1I), or abnormal (Category III). Category I strips are con-
sidered low-risk, and no intervention is typically required.
At the other side of the spectrum, category III strips are
considered high-risk and typically require preventive action
(i.e., a C-section). Category 1I strips are between category |
and category II strips and indicate that a C-section may be
warranted. Because NICHD’s criteria for categorizing a
strip at either extreme (i.e., category I or III) are stringent
and category II strips account for everything in between,
over half of strips persist in being labeled category I1 where
it is difficult to determine if intervention is required.

[0025] Accordingly, one aim of embodiments of this dis-
closure is to improve upon conventional industry technology
by deriving more accurate predictive capabilities for fetal
monitoring to provide more effective treatment and care
during labor and delivery. Specifically, these forecasted
neonatal vitality scores derived at least in part from physi-
ological measurements, such as UA and FHR measurements,
offer an innovative fetal monitoring decision support system
because it provides an objective manner for determining
fetal distress and/or proceeding with delivery. Specifically,
at least one way that embodiments described herein improve
upon conventional technology is because they are not vul-
nerable to inconsistent reliability between different caregiv-
ers interpreting the fetal monitoring strips and or even within
the same caregiver. With more objective scoring utilizing
forecasted neonatal vitality levels to determine fetal distress,
embodiments described herein provide a more accurate
approach for recognizing actual or potential fetal distress
and decision support for the delivery. Embodiments help to
alleviate problems arising from conventional system with
too many strips being labeled as category I1, which does not
indicate a clear care plan for proceeding with the delivery.

[0026] Referring now to the drawings generally and, more
specifically, referring to FIG. 1A, an aspect of an operating
environment 100 is provided suitable for practicing an
embodiment of this disclosure. Certain items in block-
diagram form are shown more for being able to reference
something consistent with the nature of a patent than to
imply that a certain component is or is not part of a certain
device. Similarly, although some items are depicted in the
singular form, plural items are contemplated as well (e.g.,
what is shown as one data store might really be multiple
data-stores distributed across multiple locations). But show-
ing every variation of each item might obscure aspects of the
invention. Thus, for readability, items are shown and refer-
enced in the singular (while fully contemplating, where
applicable, the plural).
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[0027] As shown in FIG. 1A, example operating environ-
ment 100 provides an aspect of a computerized system for
compiling and/or running an embodiment of a computer-
decision support tool for forecasting neonatal vitality at a
future time using the fetal heart rate and uterine activity
during labor. Environment 100 includes one or more elec-
tronic health record (EHR) systems, such as hospital EHR
system 160, communicatively coupled to network 175,
which is communicatively coupled to computer system 120.
In some embodiments, components of environment 100 that
are shown as distinct components may be embodied as part
of or within other components of environment 100. For
example, EHR systems 160 may comprise one or more EHR
systems, such as hospital EHR systems, health information
exchange EHR systems, ambulatory clinic EHR systems,
psychiatry/neurology EHR systems. Such EHR systems may
be implemented in computer system 120. Similarly, EHR
system 160 may perform functions for two or more of the
EHR systems (not shown).

[0028] Network 175 may comprise the Internet, and/or
one or more public networks, private networks, other com-
munications networks such as a cellular network, or similar
network for facilitating communication among devices con-
nected through the network. In some embodiments, network
175 may be determined based on factors such as the source
and destination of the information communicated over net-
work 175, the path between the source and destination, or
the nature of the information. For example, intra-organiza-
tion or internal communication may use a private network or
virtual private network (VPN). Moreover, in some embodi-
ments, items shown as being communicatively coupled to
network 175 may be directly communicatively coupled to
other items shown communicatively coupled to network
175.

[0029] In some embodiments, operating environment 100
may include a firewall (not shown) between a first compo-
nent and network 175. In such embodiments, the firewall
may reside on a second component located between the first
component and network 175, such as on a server (not
shown), or reside on another component within network
175, or may reside on or as part of the first component.
[0030] Embodiments of EHR system 160 include one or
more data stores of health records, which may be stored on
storage 121, and may further include one or more computers
or servers that facilitate the storing and retrieval of health
records. In some embodiments, EHR system 160 may be
implemented as a cloud-based platform or may be distrib-
uted across multiple physical locations. EHR system 160
may further include record systems that store real-time or
near real-time patient (or user) information, such as wear-
able, bedside, or in-home patient monitors, for example.
Although FIG. 1A depicts an exemplary EHR system 160
that may be used for storing patient information, it is
contemplated that an embodiment may also rely on decision
support application 140 and/or monitor 141 for storing and
retrieving patient record information, such as information
acquired from monitor 141.

[0031] Example operating environment 100 further
includes a provider user/clinician interface 142 communi-
catively coupled through network 175 to EHR system 160.
Although environment 100 depicts an indirect communica-
tive coupling between user/clinician interface 142 and EHR
system 160 through network 175, it is contemplated that an
embodiment of user/clinician interface 142 is communica-
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tively coupled to EHR system 160 directly. An embodiment
of user/clinician interface 142 takes the form of a graphical
user interface operated by a software application or set of
applications (e.g., decision support application 140) on a
computing device. In an embodiment, the application
includes the PowerChart® software manufactured by Cerner
Corporation. In an embodiment, the application is a Web-
based application or applet. A healthcare provider applica-
tion may facilitate accessing and receiving information from
a user or healthcare provider about a specific patient or set
of patients for which the likelihood(s) of delivering an infant
with predicted vitality levels are determined according to the
embodiments presented herein. Embodiments of user/clini-
cian interface 142 also facilitate accessing and receiving
information from a user or healthcare provider about a
specific patient or population of patients including patient
history; healthcare resource data; physiological variables
(e.g., vital signs) measurements, time series, and predictions
(including plotting or displaying the determined outcome
and/or issuing an alert) described herein; or other health-
related information, and facilitates the display of results,
recommendations, or orders, for example. In an embodi-
ment, user/clinician interface 142 also facilitates receiving
orders for the patient from the clinician/user based on the
results of monitoring and predictions. User/clinician inter-
face 142 may also be used for providing diagnostic services
or evaluation of the performance of various embodiments.

[0032] An embodiment of decision support application
140 comprises a software application or set of applications
(which may include programs, routines, functions, or com-
puter-performed services) residing on a client computing
device, on one or more servers in the cloud, or distributed in
the cloud and on a client computing device such as a
personal computer, laptop, smartphone, tablet, mobile com-
puting device, front-end terminals in communication with
back-end computing systems or other computing device(s)
such as computing system 120 described below. In an
embodiment, decision support application 140 includes a
Web-based application or applet (or set of applications)
usable to provide or manage user services provided by an
embodiment of the invention. For example, in an embodi-
ment, decision support application 140 facilitates process-
ing, interpreting, accessing, storing, retrieving, and commu-
nicating information acquired from monitor 141, EHR
system 160, or storage 121, including predictions and con-
dition evaluations determined by embodiments of the inven-
tion as described herein. In an embodiment, patient decision
support application 140 sends a recommendation or notifi-
cation (such as an alarm or other indication) directly to
user/clinician interface 142 through network 175. In an
embodiment, application 140 sends a maintenance indica-
tion to user/clinician interface 142. In some embodiments,
application 140 includes or is incorporated into a comput-
erized decision support tool, as described herein. Further,
some embodiments of application 140 utilize user/clinician
interface 142. For instance, in one embodiment of applica-
tion 140, an interface component, such as user/clinician
interface 142, may be used to facilitate access by a user
(including a clinician/caregiver or patient) to functions or
information on monitor 141, such as operational settings or
parameters, user identification, user data stored on monitor
141, and diagnostic services or firmware updates for monitor
141, for example.
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[0033] In some embodiments, application 140 and/or
interface 142 facilitates accessing and receiving information
from a user or health care provider about a specific patient,
a set of patients, or a population according to the embodi-
ments presented herein. Such information may include his-
torical data; health care resource data; variables measure-
ments, time series, and predictions (including plotting or
displaying the determined outcome and/or issuing an alert)
described herein; or other health-related information, and
facilitates the display of results, recommendations, or
orders, for example. In an embodiment, application 140 also
facilitates receiving orders, staffing scheduling, or queries
from a user, based on the results of monitoring and/or
forecasted outputs, which may in some embodiments utilize
user interface 142. Decision support application 140 may
also be used for providing diagnostic services or evaluation
of the performance of various embodiments. As shown in
example environment 100, in one embodiment, decision
support application 140, or the computer system on which it
operates, is communicatively coupled to monitor 141 via
network 175. In an embodiment, patient monitor 141 com-
municates directly (or via network 175) to computer system
120 and/or user/clinician interface 142. In an embodiment of
monitor 141 (sometimes referred to herein as an patient-
interface component) comprises one or more sensor com-
ponents operable to acquire clinical or physiological infor-
mation about a patient, such as various types of
physiological measurements, physiological variables, or
similar clinical information associated with a particular
physical or mental state of the patient. Such clinical or
physiological information may be acquired by monitor 141
periodically, continuously, as needed, or as they become
available, and may be represented as one or more time series
of measured variables.

[0034] In one embodiment, monitor 141 comprises sen-
sors for obtaining (and, in some instances, pre-processing or
interpreting) and recording of maternal vital signs and fetal
vital signs, which may be obtained continuously, periodi-
cally, or at irregular intervals. For example, in an embodi-
ment, monitor 141 comprises a patient monitoring system
for acquiring fetal heart rate (FHR) measurements and
uterine activity (UA) measurements. In some embodiments,
monitor 141 comprises a patient bedside monitor. In an
embodiment, one or more sensor components of monitor
141 may comprise a user-wearable sensor component or
sensor component integrated into the patient’s environment.
Examples of sensor components of monitor 141 include a
sensor positioned on an appendage (on or near the user’s
head, attached to the user’s clothing, worn around the user’s
head, neck, leg, arm, wrist, ankle, finger, etc.); skin-patch
sensor; ingestible or sub-dermal sensor; sensor component
(s) integrated into the user’s living environment (including
the bed, pillow, or bathroom); and sensors operable with or
through a smartphone carried by the user, for example. It is
also contemplated that the clinical or physiological infor-
mation about the patient, such as the monitored variables
and/or clinical narratives regarding the patient, used accord-
ing to the embodiment of the invention disclosed herein may
be received from a patient’s historical data in EHR system
160, or from human measurements, human observations, or
automatically determined by sensors in proximity to the
patient.

[0035] Examples of physiological variables monitored by
monitor 141 can include vital signs variables, such as
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maternal heart rate (bradycardia and tachycardia), fetal heart
rate (bradycardia and tachycardia), blood pressure, uterine
pressure, and respiratory rate, as described herein. Addition-
ally, in some embodiments, monitor 141 may monitor other
vital signs or any type of measurable, determinable, or
observable physiological or clinical variable or characteris-
tic associated with a patient, which in some embodiments
may be used for forecasting a future value (of the measured
variable, a composite variable based on one or more mea-
sured variables, or other factor determined at least in part
from one or more measured variables) of a patient to
facilitate clinical decision making. In an embodiment, moni-
tor 141 comprises a sensor probe, such as an EEG probe, and
a communication link that periodically transmits identifica-
tion information and probe data to decision support appli-
cation 140 so that the time series of monitored values is
stored and accessed by application 140, enabling application
140 to form an alarm indication and/or a physiological
variable decision statistic. In an embodiment, application
140 facilitates the collection of raw sensor information,
which may be received from monitor 141, and performs
signal processing and computations thereby forming a
physiological variable decision statistic, cumulative sum-
ming, trending, wavelet processing, thresholding, computa-
tional processing of decision statistics, logical processing of
decision statistics, pre-processing or signal condition, etc.,
part or all of which may be performed on monitor 141,
application 140, and/or computer system 120.

[0036] An embodiment of monitor 141 stores user-derived
data locally or communicates data over network 175 to be
stored remotely. In an embodiment, decision support appli-
cation 140, or the computer system it is operating on, is
wirelessly communicatively coupled to monitor 141. Appli-
cation 140 may also be embodied as a software application
or app operating on a user’s mobile device, as described
above. In an embodiment, application 140 and monitor 141
are functional components of the same device, such as a
device comprising a sensor, application, and a user interface.
In an embodiment, decision support application 140 is in
communication with or resides on a computing system that
is embodied as a base station, which may also include
functionality for charging monitor 141 or downloading
information from monitor 141.

[0037] Example operating environment 100 further
includes computer system 120, which may take the form of
a server, which is communicatively coupled through net-
work 175 to EHR system 160, and storage 121. Computer
system 120 comprises one or more processors operable to
receive instructions and process them accordingly and may
be embodied as a single computing device or multiple
computing devices communicatively coupled to each other.
In one embodiment, processing actions performed by com-
puter system 120 are distributed among multiple locations
such as one or more local clients and one or more remote
servers and may be distributed across the other components
of example operating environment 100. For example, a
portion of computer system 120 may be embodied on
monitor 141 or the computer system supporting application
140 for performing signal conditioning of the measured
patient variable(s). In one embodiment, computer system
120 comprises one or more computing devices, such as a
server, desktop computer, laptop, or tablet, cloud-computing
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device or distributed computing architecture, a portable
computing device such as a laptop, tablet, ultra-mobile P.C.,
or a mobile phone.

[0038] Embodiments of computer system 120 include
computer software stack 125, which, in some embodiments,
operates in the cloud, as a distributed system on a virtual-
ization layer within computer system 120, and includes
operating system 129. Operating system 129 may be imple-
mented as a platform in the cloud and is capable of hosting
a number of services such as services 122, 124, 126, and
128, described further herein. Some embodiments of oper-
ating system 129 comprise a distributed adaptive agent
operating system. Embodiments of services 122, 124, 126,
and 128 run as a local or distributed stack in the cloud, on
one or niore personal computers or servers such as computer
system 120, and/or a computing device running interface
142 and/or decision support application 140. In some
embodiments, user/clinician interface 142 and/or decision
support application 140 operate in conjunction with software
stack 125.

[0039] In embodiments, model variables indexing service
122 provide services that facilitate retrieving frequent item-
sets, extracting database records, and cleaning the values of
variables in records. For example, service 122 may perform
functions for synonymic discovery, indexing or mapping
variables in records, or mapping disparate health systems’
ontologies, such as determining that a particular medication
frequency of a first record system is the same as another
record system. In some embodiments, model variables
indexing service 122 may invoke computation services 126.
Predictive models service 124 is generally responsible for
providing one or more models for predicting neonatal vital-
ity at future time intervals based on physiological variables
monitored for a patient in labor as described in connection
to method 200 of FIG. 2.

[0040] Computation services 126 perform statistical sofi-
ware operations, such as computing the FHR variability
metrics as described herein. In an embodiment, computation
services 126 and predictive models service 124 include
computer software services or computer program routines.
Computation services 126 also may include natural language
processing services (not shown) such as Discern nCode™
developed by Cerner Corporation, or similar services. In an
embodiment, computation services 126 include the services
or routines that may be embodied as one or more software
agents or computer software routines. Computation services
126 also may include services or routines for utilizing one or
more models, including logistic models, for predicting neo-
natal vitality scores, such as the models described in con-
nection to FIGS. 2-9.

[0041] In some embodiments, stack 125 includes file
system or cloud-services 128. Some embodiments of file
system/cloud-services 128 may comprise an Apache
Hadoop and Hbase framework or similar frameworks opet-
able for providing a distributed file system and which, in
some embodiments, provide access to cloud-based services
such as those provided by Cerner Healthe Intent®. Addi-
tionally, some embodiments of file system/cloud-services
128 or stack 125 may comprise one or more stream pro-
cessing services (not shown). For example, such stream
processing services may be embodied using IBM InfoSphere
stream processing platform, Twitter Storm stream process-
ing, Ptolemy or Kepler stream processing software, or
similar complex event processing (CEP) platforms, frame-
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works, or services, which may include the use of multiple
such stream processing services (in parallel, serially, or
operating independently). Some embodiments of the inven-
tion also may be used in conjunction with Cerner Millen-
nium®, Cerner CareAware® (including CareAware iBus®),
Cerner CareCompass®, or similar products and services.

[0042] Example operating environment 100 also includes
storage 121 (or data store 121), which, in some embodi-
ments, includes patient data for a candidate or target patient
(or information for multiple patients), including raw and
processed patient data; variables associated with patient
recommendations; recommendation knowledge base; rec-
ommendation rules; recommendations; recommendation
update statistics; an operational data store, which stores
events, frequent itemsets (such as “X often happens with Y”,
for example), and itemsets index information; association
rulebases; agent libraries, solvers and solver libraries, and
other similar information including data and computer-
usable instructions; patient-derived data; and healthcare
provider information, for example. It is contemplated that
the term “data” used herein includes any information that
can be stored in a computer-storage device or system, such
as user-derived data, computer usable instructions, software
applications, or other information. In some embodiments,
storage 121 comprises data store(s) associated with EHR
system 160. Further, although depicted as a single storage
store, storage 121 may comprise one or more data stores, or
may be in the cloud.

[0043] Turning briefly to FIG. 1B, there is shown one
example embodiment of computing system 180 representa-
tive of a system architecture that is suitable for computer
systems such as computer system 120. Computing device
180 includes a bus 182 that directly or indirectly couples the
following devices: memory 184, one or more processors
186, one or more presentation components 188, input/output
(/O) ports 190, input/output components 192, radio 196,
and an illustrative power supply 194. Bus 182 represents
what may be one or more busses (such as an address bus,
data bus, or combination thereof). Although the various
blocks of FIG. 1A are shown with lines for the sake of
clarity, in reality, delineating various components is not so
clear, and metaphorically, the lines would more accurately
be grey and fuzzy. For example, one may consider a pre-
sentation component, such as a display device, to be an I/O
component. Also, processors have memory. As such, the
diagram of FIG. 1A is merely illustrative of an exemplary
computing system that can be used in connection with one
or more embodiments of the present invention. Distinction
is not made between such categories as “workstation,”
“server,” “laptop,” “hand-held device,” etc., as all are con-
templated within the scope of FIG. 1A and reference to
“computing system.”

[0044] Computing system 180 typically includes a variety
of computer-readable media. Computer-readable media can
be any available media that can be accessed by computing
system 180 and includes both volatile and nonvolatile
media, and removable and non-removable media. By way of
example, and not limitation, computer-readable media may
comprise computer storage media and communication
media. Computer storage media includes both volatile and
nonvolatile, removable and non-removable media imple-
mented in any method or technology for storage of infor-
mation such as computer-readable instructions, data struc-
tures, program modules or other data. Computer storage
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media includes, but is not limited to, RAM, ROM,
EEPROM, flash memory or other memory technology, CD-
ROM, digital versatile disks (DVD) or other optical disk
storage, magnetic cassettes, magnetic tape, magnetic disk
storage or other magnetic storage devices, or any other
medium which can be used to store the desired information
and which can be accessed by computing system 180.
Computer storage media does not comprise signals per se.
Communication media typically embodies computer-read-
able instructions, data structures, program modules or other
data in a modulated data signal such as a carrier wave or
other transport mechanism and includes any information
delivery media. The term “modulated data signal” means a
signal that has one or more of its characteristics set or
changed in such a manner as to encode information in the
signal. By way of example, and not limitation, communi-
cation media includes wired media such as a wired network
or direct-wired connection, and wireless media such as
acoustic, RF, infrared and other wireless media. Combina-
tions of any of the above should also be included within the
scope of computer-readable media.

[0045] Memory 184 includes computer-storage media in
the form of volatile and/or nonvolatile memory. The
memory may be removable, non-removable, or a combina-
tion thereof. Exemplary hardware devices include solid-state
memory, hard drives, optical-disc drives, etc. Computing
system 180 includes one or more processors that read data
from various entities such as memory 184 or I/O compo-
nents 192. Presentation component(s) 188 present data indi-
cations to a user or other device. Exemplary presentation
components include a display device, speaker, printing com-
ponent, vibrating component, eftc.

[0046] In some embodiments, computing system 196
comprises radio(s) 196 that facilitates communication with
a wireless-telecommunications network. Illustrative wire-
less telecommunications technologies include CDMA,
GPRS, TDMA, GSM, and the like. Radio 196 may addi-
tionally or alternatively facilitate other types of wireless
communications including Wi-Fi, WIMAX, LTE, or other
VoIP communications. As can be appreciated, in various
embodiments, radio 196 can be configured to support mul-
tiple technologies and/or multiple radios can be utilized to
support multiple technologies.

[0047] 1/O ports 190 allow computing system 180 to be
logically coupled to other devices, including 1/O compo-
nents 192, some of which may be built in. Illustrative
components include a microphone, joystick, game pad,
satellite dish, scanner, printer, wireless device, etc. The /O
components 192 may provide a natural user interface (NUT)
that processes air gestures, voice, or other physiological
inputs generated by a user. In some instances, inputs may be
transmitted to an appropriate network element for further
processing. An NUI may implement any combination of
speech recognition, stylus recognition, facial recognition,
biometric recognition, gesture recognition both on screen
and adjacent to the screen, air gestures, head and eye
tracking, and touch recognition (as described in more detail
below) associated with a display of the computing system
180. The computing system 180 may be equipped with depth
cameras, such as stereoscopic camera systems, infrared
camera systems, RGB camera systems, touchscreen tech-
nology, and combinations of these, for gesture detection and
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recognition. Additionally, the computing system 180 may be
equipped with accelerometers or gyroscopes that enable
detection of motion.

[0048] The architecture depicted in FIG. 1B is provided as
one example of any number of suitable computer architec-
tures, such as computing architectures that support local,
distributed, or cloud-based software platforms, and are suit-
able for supporting computer system 120.

[0049] Returning to FIG. 1A, in some embodiments, com-
puter system 120 is a computing system made up of one or
more computing devices. In some embodiments, computer
system 120 includes one or more software agents and, in an
embodiment. includes an adaptive multi-agent operating
system, but it will be appreciated that computer system 120
may also take the form of an adaptive single agent system or
a non-agent system. Computer system 120 may be a dis-
tributed computing system, a data processing system, a
centralized computing system, a single computer such as a
desktop or laptop computer or a networked computing
system.

[0050] Turning now to FIG. 2, an example embodiment of
a method for predicting neonatal vitality at one or more
future time intervals is provided and is referred to generally
as method 200. In particular, example method 200 utilizes
FHR patterns and variability for predicting the health of an
infant within a time-to-birth interval. In some embodiments,
method 200 is suitable for implementation as a computer-
performed decision support tool or application for fetal
monitoring and, thus, care plans for proceeding with a
delivery based on more objective and accurate indicators of
fetal distress than conventional technology would otherwise
allow.

[0051] With reference to FIG. 2 and method 200, gener-
ally, the method 200 of providing decision support during
labor and delivery by predicting neonatal vitality at one or
more future time intervals for a delivery method is provided.
First, at step 210, a plurality of measurements of physiologi-
cal variables for a patient is received. The plurality of
measurements may have been acquired for the patient over
a period of time while the patient is in labor. In exemplary
aspects, the physiological variables include fetal heart rate
(FHR) and uterine activity (UA). In exemplary aspects, there
may be two FHR feeds recording fetal heart rate in bpm. The
UA variable may be recorded using either internal monitor-
ing devices or external monitoring devices. For internal
monitoring devices, UA may be measured as uterine pres-
sure, while external monitoring devices may provide indi-
cations of UA through skin tension measurements. In exem-
plary aspects, UA is measured as uterine pressure using an
internal monitoring device, which does not require the
additional re-calibration based on the maternal patient’s
body mass index that is often involved with external moni-
toring devices. Additionally, in some embodiments, addi-
tional physiological variables are monitored and received.
For instance, the patient’s heart rate (i.e., maternal heart
rate), the patient’s level of dilation, patient’s age, fetal
gestational age, cord blood pH, and the like.

[0052] The measurements for the physiological variables
may be received from the patient’s EHR, such as a medical
EHR within EHR system 160 in FIG. 1, or other data
storage, or may be received directly from a monitoring
device, such as patient monitor 141. In some aspects, the
physiological variables are being monitored independently
of the neonatal vitality forecasting system. In other words,
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rather than require additional monitoring to perform method
200, method 200 may leverage data that is often already
being recorded in the normal course of monitoring a patient
in labor, such as FHR and UA. Embodiments of step 210
may acquire the physiological variable measurements con-
tinuously, periodically, or at non-regular intervals. In some
embodiments, the date/time information for each measure-
ment is stored with the measured variable values.

[0053] Next, as step 220, a time series is constructed for
one or more of the physiological variables measured. The
time series may be constructed by appending the most recent
physiological variable measurements to the historical mea-
surements, using the associated date/time information. In
some embodiments, the historical measurements comprise
measurements obtained within a recent timeframe such as
the previous 20 minutes, hour, or several hours. In such
embodiments, only historical measurements from within this
recent timeframe are retrieved and used for the constructing
time series. In some aspects, the time series is evaluated to
determine whether it is of sufficient length. In one embodi-
ment, where the time series is determined to be greater than
a pre-determined length, method 200 proceeds to step 230.
But if the time series is not long enough, then method 200
returns to step 210, where additional measurements may be
acquired. In one embodiment, the pre-determined length
comprises at least 15 minutes.

[0054] In some aspects in which data is received from
multiple FHR feeds for a single patient, constructing a time
series includes selecting one or more FHR feeds from which
data is used to predict neonatal vitality. In some aspects, for
each time stamp, each of FHR 1 feed, FHR 2 feed, UA feed,
and the maternal heart rate feed produce a sequence of four
readings that are averaged to determine the arithmetic mean.
The two FHR feeds may include indicators describing the
type of monitoring devices being used, which may be used
to determine which of the FHR feeds to rely. An example
observation is provided below:

“ClinicalTime™:*2016-07-09T14:55:53.841-05:007,

[0055] “TFetalData™:[{“Feed”:“FHR1”,“Mode”:“ULTRA-
SOUND”,“Value s7:“135,135,135,1357},

{“Feed™:*FHR2”,“Mode™:“NO TRANSDUCER”,*“Values™:
“0,0,0,07}1,

“MaternalData”:{“Feed”: “Maternal”,“Mode”:“BEX TER -
NAL”,“Values™:0,0,0,0”}

“UAData”:{“Feed”:“UA” “Values”:“11,11,11,117}.

[0056] It will be appreciated that data observations may be
collected and stored in other formats.

[0057] In some instances, such as the one in Example 1,
only one of the FHR feeds records an actual value in bpm,
while the other feed only records 0’s. Where only one FHR
feed is recording, the values from the recording FHR feed
are the values that are used. In some embodiments, when
both feeds are recording, the two FHR feeds are combined
into a single time series. In the instances in which both FHR
feeds are recording data from monitoring devices having
distinct indicators, the data is chosen from the more reliable
source. In exemplary aspects, direct electrocardiogram
(DECG) FHR feeds are chosen as more reliable over ultra-
sound FHR feeds, which are generally chosen as more
reliable over “NO TRANSDUCER” sources. When both
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feeds are recording and their monitoring device indicators
match (i.e., they are coming from the same type of source),
one of the feeds may be determined as showing impossibly
low values, such as an FHR of five bpm, while the other
reading is reasonable. Accordingly, when both FHR feeds
are active with matching indicators, the maximum of the two
FHR values for each time stamp is taken. As used herein,
FHR data may refer to a time series formed by one FHR
feeds or both feeds.

[0058] In exemplary aspects, forming a time series in
method 200 further comprises pre-processing the data to
remove artifacts and/or address missing data, as shown in
FIG. 3. FIG. 3 illustrates example fetal monitoring strips 300
that comprise a FHR time series strip 310 based on fetal
measurements from the patient and a UA time series strip
320 based on maternal measurements of the patient. The
FHR time series strip 310 depicts FHR measurements (mea-
surement in beats per minutes) in time until birth, and UA
time series strip 320 depicts UA measurements (in mmHg)
in time until birth. As illustrated, the example FHR time
series strip 310 includes one or more artifacts, including the
spike 312 around 8 minutes and 20 seconds prior to birth,
and the UA time series strip 320 includes missing gaps, such
as the gap 322 at approximately 6 minutes and 50 seconds
prior to birth. The artifacts and gaps are displayed as dashed
lines in the example fetal monitoring strips 300 in FIG. 3.
[0059] Missing data may arise when one or more of the
devices (e.g., a fetal monitoring device or a maternal moni-
toring device) is either not powered on or is on but not
properly attached to the patient, which results in 0’s being
recorded. Because methods utilize both UA and FHR data
during the same time series, observations in which one or
both of these feeds are not recording properly (i.e., when the
feeds are producing 0’s) cannot be used and, therefore, are
removed.

[0060] Removing the observations from non-recording
creates a gap in the data. In some embodiments, when there
is a gap between observations that is 60 seconds or longer in
length, the data is separated into distinct segments to be
analyzed separately, and any segment that less than 15
minutes long is removed from the time series. Segments
with gaps less than 60 seconds may be retained, and inter-
polated values for those gaps may be used. For example,
FIG. 3 shows dashed lines to account for gaps, such as gap
322, that are retained in the time series 320.

[0061] Further, in some aspects, processing the data into
different segments is based on the type of maternal moni-
toring devices for each UA data point. In some embodi-
ments, there are three possible indicators for the maternal
monitoring device: internal, external, or “NO TRANS-
DUCER.” As previously mentioned, internal monitoring
devices record UA in terms of pressure, and, as such, a
physical unit (e.g., mmHg) is associated with the observa-
tions. External devices typically measure skin tension and
do not produce observations associated with a physical unit.
External devices typically require calibration each time they
are used because readings from external devices may vary
between patients (particularly based on patient BMI) and
may also vary within the same patient encounter if the
calibration changes. Because of this, readings from external
devices generally only have meaning relative to other obser-
vations from the same device with the same calibration. Due
to the differences between external and internal maternal
monitoring devices, segments of data from different devices
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may be analyzed separately, and segments of data from
external devices with different calibrations may further be
analyzed separately. To account for a change of device (or
calibration), a segment may be split into two distinct pieces
anytime the maternal monitoring device changes for more
than 10 seconds. As previously mentioned, in some embodi-
ments, only segments with a duration of at least 15 minutes
are retained.

[0062] In addition to gaps, artifacts in the time series may
be detected and removed. FIG. 3, for instance, depicts
several artifacts, including the sharp drop in FHR around 8
minutes and 20 seconds prior to birth indicated by spike 312.
These sudden drops are not indicative of the true FHR but,
rather, are “artifacts” of true observations. Artifacts like
spike 312 and the other artifacts shown in dashed lines in the
FHR time series strip 310 in FIG. 3 may be caused by the
patient coughing or movement of the fetal monitor.

[0063] In example embodiments, the Porto system is used
to automate the artifact identification and imputation pro-
cess. In accordance with the Porto system, a stable stretch of
an FHR tracing, such as the tracing in the FHR time series
strip 310, is one in which five consecutive observations have
differences of less than 5 bpm. Ifthe change in FHR between
any two observations is greater than 20 bpm, it is identified
as an artifact. Whenever a difference of 20 bpm is detected,
alinear interpolation is applied between the first of these two
observations and the first observation in the next stable
stretch. In addition to artifacts occurring in the middle of an
FHR ftracing, the beginning and end of segments may have
artificial observations that may be attributed to the monitor-
ing device recording while it is still being positioned or
removed. Accordingly, in example aspects, observations
before the first stable segment or after the last stable segment
are removed to ensure the data being analyzed is of a
sufficient quality.

[0064] Although artifacts are only illustrated in the FHR
time series strip 310 in FIG. 3, a similar process may be used
to remove artifacts from the UA time series strip 320 if any
artifacts are identified. In some aspects, for UA times series
strips, observations are removed and replaced with interpo-
lated values when the difference between any two consecu-
tive observations is greater than or equal to 10 units, such as
10 mmHg, where the maternal monitoring device is an
internal device. A stable segment for UA data may be one in
which there are five consecutive values having differences of
less than 5 units. For both FHR and UA time series, a portion
of the time series may be discarded if the delay between an
artifact and the next stable stretch is at least one minute.
[0065] Additionally, in some aspects, processing the data
for the times series also includes imputing data to account
for certain sampling delays. For instance, in some aspects,
the exemplary sampling rate is a uniform rate of 1 second
with no missing data. However, there may be larger gaps
between observations caused by the sampling rate of the
monitoring devices being set to a different rate due to other
uses of the devices and data. Additionally, the sampling rates
may be not uniform, which is common for fetal monitoring
devices. To achieve a sampling rate of 1 second, data may
be imputed any time there is a delay greater than 1.5 seconds
between consecutive samples. In this case, the number of
imputed observations is determined to make the sampling
rate as close to 1 second as possible. The imputed FHR
values and UA values may be determined using Stine
interpolation (for example, using the ‘pracma’ package in
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R), and noise may be added to the interpolated data. The
added noise may be Gaussian with a mean of 0 and a
standard deviation equal to the standard deviation of the
observation values. Segments of data where no more than
20% of the data is imputed due to artifacts or missing values
may be retained to form the time series.

[0066] Further, in some embodiments, the time series data
is filtered in the pre-processing stage. For example, the time
series data for each variable may be filtered into three
components: noise, signal, and trend. FIG. 4 illustrates a UA
time series strip as it is broken down into components, which
are also referred to herein as sub-signals. UA times series
410 represents the raw data time series that is traditionally
what the healthcare provider is presented when monitoring
a patient’s UA. UA time series 410 is filtered into different
components: UA component 420 representing the noise; UA
component 430 representing the UA signal with a mean of
0; and UA component 440 representing the UA trend. The
trend shown in UA component 440 is considered a (possibly
nonlinear) long-term moving average. The two higher fre-
quency components, UA component 420 and 430, each have
a mean of zero such that the areas above and below the
curves are equal and cancel each other out. The sum of the
three components 420, 430, and 440 is equal to the full time
UA series 410. The FHR time series may be similarly filtered
as shown in the example FIG. 5. FHR time series 510 is the
raw FHR data that is filtered into different components: FHR
component 520 representing the noise; FHR component 530
representing the FHR signal with a mean of 0; and FHR
component 540 representing the FHR trend.

[0067] In some aspects reduced to practice, Ensemble
Empirical Mode Decomposition (EEMD) is used to filter the
data using the ‘Rlibeemd’ package in R. Further, in other
aspects, the base Empirical Mode Decomposition (EMD)
may be used for filtering. The same processes may be used
for filtering UA and FHR, but it is also contemplated each
variable may be filtered differently. When using EEMD or
EMD, the time series may be split into more than three
components, such as 12 components, and one or more of the
components may be summed together to create one of the
components (sub signals) illustrated in FIGS. 4 and 5. For
instance, in some aspects, UA component 420 for noise is a
sum of five components identified using EMD, and UA
component 430 is a sum of two or more components. FHR
components may summed or aggregated in a similar fashion.
In other embodiments, filtering may be performed using
wavelet or spectral analysis.

[0068] By filtering, meaning can be attributed to the
components of each variable times series (UA and FHR).
For the FHR time series, the trend corresponds to a baseline
heart rate of the fetus, the noise represents beat-to-beat
variation (and perhaps some instrumental error), and the
FHR signal (represented by FHR component 530) is the
component forming the basis for FHR pattern detection to
forecast neonatal vitality. In other words, the FHR compo-
nent 530 represents de-noised deviation from the baseline
(as shown by FHR component 540). In some embodiments,
the UA component 420 representing noise is not used in the
analysis, and the UA component 440 representing trend is
effectively the minimum threshold that the UA must exceed
to be categorized as a contraction, while the UA signal (i.e.,
UA component 430) is the oscillatory pattern analyzed to
detect contractions.
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[0069] Returning to method 200 of FIG. 2, at step 230,
FHR patterns are detected. In exemplary aspects, such as
method 200, FHR pattern detection comprises: identifying
contractions from the UA times series (at step 232); deter-
mining FHR variability (at step 234); and classifying decel-
erations (at step 236).

[0070] Turning to FIG. 6, a UA time series strip 600 is
depicted to illustrated a patient’s contractions. In embodi-
ments in which filtering is performed, the UA time series
strip 600 may be a UA signal component that is a de-noised
deviation from the baseline, similar to UA component 430 in
FIG. 4. A contraction may be identified from the peaks in the
UA time series strip 600. Specifically, identifying peaks
includes identifying the largest local maxima for the UA
time series 600 over a time interval. This identification
process may involve several steps. Initially, identifying
contractions may involve considering the local maxima of
the UA signal that are positive. As previously discussed, the
UA signal, may be determined from subtracting the noise
(e.g., UA component 420 in FIG. 4) and the long-term trend
(e.g., UA component 440 in FIG. 4) from the complete time
series (e.g., UA times series strip 410 in FIG. 4). Because
UA is roughly bounded by the interval [0,100], the long-
term trend may be between 0 and 100, and the UA signal
may oscillate (non-periodically) around 0. As such, positive
values in the UA signal represent elevated activity. Any
negative local maxima are likely either not contractions or
are weak enough that they will have minimal effect on the
FHR.

[0071] Next, after identifying positive local maximum, the
largest local maximum within a time interval (i.e., a peak) is
determined. In some embodiments, this time interval is 90
seconds. For instance, if a positive local maximum is
identified at time t_, the 90-second interval for determining
the largest local maximum is (.45, t.+45). In some
embodiments, the timer interval may be a sliding window.
Additionally, to account for elongated periods of elevated
activity, the local maximum is a value that is at least one
standard deviation above the mean UA over a pre-deter-
mined time interval, which in some aspects, is the one-
minute interval preceding the maximum, i.e., (t.-60, t.).
Other measurements for defining the local maximum may be
also used, such as one-half of a standard deviation above the
mean UA. In FIG. 6, for instance, the UA time series strip
600 includes a plurality of identified contractions (peaks
612A-F) that occurred within 73 minutes until delivery.
[0072] In some aspects, the strength of the contraction is
related to the depth and duration of a corresponding decel-
eration if one exists. When UA is measured from an external
device, variable data forming the time series may be com-
bined with the maternal patient’s BMI to approximate actual
contraction strength.

[0073] Continuing with detecting FHR patterns, at step
234, FHR variability metrics are computed. A FHR time
series includes a baseline and will likely include accelera-
tions and decelerations in which the FHR departs from the
baseline by a threshold amount. Identification and, in some
instance, classification of accelerations may be used to
determine the FHR variability outside of the acceleration
and deceleration segments. The FHR variability metrics may
then be used for analyzing decelerations in conjunction with
the contractions identified from the UA time series.

[0074] As used herein, FHR baseline refers to an approxi-
mation of the mean FHR data values during a specified time



US 2019/0133536 Al

frame. In some embodiments, the FHR baseline comprises
the mean FHR values within a 10-min window rounded to
nearest 5 bpm. The FHR baseline may not take into account
accelerations, decelerations, and periods with marked FHR
variability. In some embodiments, determining the FHR
baseline involves determining whether the time interval
considered includes is a minimum length of identifiable
segments that do not include accelerations, decelerations,
and periods with marked FHR variability. In some instances,
this minimum length is two minutes for a 10-minute time
interval. Additionally, in some aspects, the two-minute inter-
val does not necessarily need to be contiguous within the
10-minute interval. If the minimum length is not present, the
segment may be considered indeterminate, and the previous
10-minute interval may be used for the FHR baseline.

[0075] Accelerations may be identified when there is an
increase in FHR values with a peak FHR value above a
threshold amount from the FHR baseline value for a thresh-
old duration. In some embodiments, the threshold amount
and/or threshold duration is dependent on the gestational
age. For instance, when the gestational age is at least 32
weeks, an acceleration may be identified by an increase in
FHR values with a peak at least 15 bpm above the FHR
baseline value for a duration of at least 15 seconds, and for
a gestational age less than 32 week, an acceleration may be
identified when there is an increase in FHR values with peak
at least 10 bpm above the baseline for a duration of at least
10 seconds.

[0076] For each acceleration detected, information relat-
ing to the acceleration may be logged and stored. In some
embodiments, for example, each acceleration is logged with
the following information: (i) onset time, which is defined as
the time of the first observation with an FHR value above the
FHR baseline; (ii) the time of the acceleration peak, which
is defined as when the FHR values exceed a threshold value
(such as 15 bpm) above the baseline; (iii) the slope between
onset and peak; and (iv) duration of the acceleration, which
is considered to be finished when the FHR returns to the
baseline. Based on this information, the accelerations may
be classified as abrupt, prolonged, or having or marked
variability. In some embodiments, an abrupt acceleration is
defined as an acceleration in which the time between onset
and peak is less than or equal to 30 seconds. Alternatively or
additionally, an abrupt acceleration may be defined as hav-
ing a slope greater than 0.5. An acceleration with marked
variability may be an abrupt acceleration with a slope of
greater than 2. A prolonged acceleration may be defined as
an acceleration with a duration of at least two minutes. In
practice, a prolonged acceleration has a duration between
two and ten minutes because durations over 10 minutes
results in a change in FHR baseline.

[0077] After the accelerations are identified, FHR vari-
ability may be computed using segments of the FHR time
series. FHR variability metrics may include long-term vari-
ability metrics and short-term variability metrics. In
example embodiments, two long-term variability metrics are
computed: (i) acceleration count within a pre-determined
time interval; and (ii) and the Hurst exponent of the FHR
time series over a pre-determined time interval. For instance,
one long-term variability metric may be the number of
accelerations in the 10-minute interval preceding a contrac-
tion. In aspects in which an acceleration is defined as 15 bpm
above the baseline for a duration of least 15 seconds, this
acceleration count may be referred to as 15x15 count over
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the 10-minute window. The second long-term variability
metric may be the Hurst exponent of the FHR time series
over the 20 minute interval preceding the contraction. In
some embodiments, the pre-determined interval for comput-
ing the Hurt exponent is a minimum of five minutes prior to
the start of the FHR time series segment. The Hurst com-
ponent may be considered an aggregate of number of lags
along the correlation and is used to determine self-similarity
in the long term.

[0078] In some aspects, two short-term variability metrics
are also computed: SDANN and RMSSD. SDANN, as used
herein, refers to the standard deviation of time between heart
beats (which may also be referred to as NN intervals) and
may be computed in milliseconds. RMSSD, as used herein,
is the root mean squared of successive deviations of NN
intervals and also may be computed in milliseconds.
SDANN and RMSDD provides measures of beat-to-beat
variability. In some embodiments, SDANN and RMSSD are
computed for segments with at least 120 observations within
the 5-minute interval prior to the contraction, and, in some
embodiments, the 120-observation minimum may be satis-
fied only after removing observations within accelerations
and decelerations. When there are less than 120 qualifying
(e.g., not accelerations and decelerations) observations in
the five-minute interval, the time interval may be extended
up to a maximum window interval, which may be ten
minutes. In some embodiments, the short-term variability
metrics (SDANN and RMSSD) are computed only if vari-
ability was not classified as marked when considering the
accelerations. One or more of the metrics may be used to
classify FHR variability. In one embodiment, for instance,
the Hurst exponent, SDANN, and RMSSD are combined to
classify variability as either absent, minimal, normal, or
marked based on standard deviations away from the mean of
the log-normal distribution from the data. At least some of
the variability metrics may be computed using the FHR time
series after excluding observations occurring within an
acceleration or deceleration. For computing other variability
metrics, such as the Hurst exponent, the acceleration and
decelerations are not removed.

[0079] Continuing with detecting FHR patterns, decelera-
tions (or the lack thereof) are analyzed and, where present,
classified at step 236. Decelerations may be identified based
on the time of a contraction identified from the UA time
series. Where the peak of the contraction occurs at time t,,
the maximum FHR (relative to the baseline) in the time
interval preceding the peak of the contraction is first deter-
mined. For instance, the time interval may be 40 seconds
prior to the peak of contraction [t.-40, t_]. Upon identifying
the maximum FHR during that 40-second interval, it is
determined whether there is a drop in FHR that is a threshold
distance below the previous maximum and a threshold
distance below the FHR baseline, which is called the mini-
mum threshold (MT). In exemplary embodiments, the
threshold values are determined using the long-term vari-
ability metrics. Additionally, it is determined whether there
is a recovery (i.e., a rise in FHR value following the
identified drop) to at least either the previous maximum
FHR or the FHR baseline.

[0080] When a decrease (drop) in FHR values that meets
the threshold distances is identified, it is classified as natural
variability based or a deceleration based on variability
metrics, and, where it is a deceleration, the type of decel-
eration may be determined. When the FHR decrease is
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determined to be a deceleration (rather than natural vari-
ability), it may be categorized into a type of deceleration
based on the (i) amplitude (magnitude of the decrease), (ii)
the slope from onset to the nadir (the lowest FHR value), (iii)
duration of the deceleration, and (iv) the timing relative to
the contraction. In some aspects, the different types of
decelerations are defined as follows:
[0081] Variable: amplitude =15, slope =-0.5, and dura-
tion € [15 s, 120 s]
[0082] Early: amplitude =MT, slope >-0.5, and occurs
within 2 s of contraction
[0083] Late: amplitude =MT, slope >-0.5, and occurs
more than 2 s after contraction
[0084] Prolonged: duration >120 s
[0085] It is contemplated that variable, early, late, and
prolonged decelerations may be defined in alternative ways.
For instance, a variable deceleration may be defined as an
abrupt decrease in FHR with less than 30 seconds between
onset and nadir, a decrease of at least 15 bpm, and a duration
between 15 seconds and 2 minutes. Early and late decelera-
tions, on the other hand, may both be defined by a gradual
decrease with at least 30 seconds between onset and nadir,
but the nadir of a late deceleration occurs after the peak of
contraction and a nadir of an early deceleration occurs at the
same time as the peak of a contraction. Additionally, a
prolonged deceleration may have a deceleration of at least
15 bpm lasting between 2 minutes and 10 minutes.
[0086] In accordance with the above definitions, it is
possible for a deceleration to be classified as two types.
Specifically, an early or late deceleration can also be clas-
sified as a prolonged deceleration. Additionally, decelera-
tions, including a late or variable decelerations, may be
determined by recurrent where the decelerations occur with
at least half of the contractions in a pre-determined time
interval, such as a 20-minute window, for example. Inter-
mittent decelerations are referred to herein as decelerations
that are not recurrent.
[0087] Generally, some level of decelerations are expected
with a contraction; however, some deceleration patterns may
be a concern to the patient’s own health and/or the health of
the fetus. Early decelerations, for instance, may indicate
head compression, which is typically not a cause of concern,
and variable decelerations may indicate potential issues,
such as chord compression. Variability decelerations are not
necessarily associated with a uterine contraction and, when
they are, onset, depth, and duration may vary with succes-
sive contractions. Late decelerations may indicate fetal
distress.
[0088] Turning to FIG. 7, an example graphic user inter-
face 700 with fetal monitoring strips are illustrated. The
example fetal monitoring strips includes a FHR time series
strip 700 and UA time series strip 600, which is the same UA
time series strip 600 provided in FIG. 6. In example embodi-
ments, the FHR time series strip 700 and UA time series strip
600 are presented to a caregiver, such as a physician, who is
monitoring the patient. The strips 600 and 700 may be
presented together as shown in the graphic user interface
700 in FIG. 7 such that the relationship between UA
(contractions) and FHR (decelerations and other variability)
can be visually perceived by the caregiver. Accordingly, as
previously described, UA time series strip 600 depicts six
identified contractions (identified as peaks 612A-F in FIG.
6), and contraction marks 710, shown as dashed vertical
lines extend through each contraction peak in the UA times
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series strip 600. Contraction marks 710 also extend into the
FHR time series strip 700 to indicate the time at which the
contractions are occurring within the FHR time series strip
700.

[0089] In addition to contraction marks 710, the FHR time
series strip 700 may include deceleration marks 712 marking
times of FHR decelerations. In the example graphic user
interface 700 of FIG. 7, the deceleration marks 712 are
shown as dotted vertical lines. While the contraction marks
710 and deceleration marks 712 are shown as dashed and
dotted vertical lines in FIG. 7, it may be appreciated that
other types of markings, such as lines of different colors,
symbols, or a combination thereof, may be used to denote
contractions and decelerations.

[0090] As shown in FIG. 7, decelerations or variability in
the FHR may occur near a contraction identified from the
UA time series 600. For instance, deceleration mark 712A
occurs within approximately two seconds of the peak of the
contraction 710A. Based on the definitions for deceleration
discussed with respect to step 236 of method 200, mark
712A may represent an early and/or variable FHR decelera-
tion. Additionally, decelerations depicted with deceleration
marks 712B and 712C occur over two seconds after con-
tractions designated by contraction marks 710B and 710C,
respectively. The time at which deceleration 712B occurs
may reflect a transition between a category 1 and a category
11 fetal monitoring strips, which may prompt additional or
increased monitoring. In accordance with embodiments of
method 200, decelerations indicated by marks 712B and
712C may be determined to be late decelerations. As certain
deceleration types are more indicative of fetal distress (such
as late decelerations), the different decelerations types may
be depicted within the graphic user interface with visually
distinct markings, such as markings of different colors.
[0091] While decelerations are often associated with con-
tractions, some variable decelerations occur independently
of contractions. Accordingly, in addition to identifying and
classifying decelerations resulting from an identified con-
traction, some embodiments involve detecting decelerations
that fit criteria for a deceleration between a previous con-
traction and the current contraction and then validating
whether any variable decelerations have been detected. This
process helps to account for these spontaneous variable
decelerations when determining the FHR variability and
computing short-term metrics. In some embodiments,
searching for these spontaneous variable decelerations may
depend on the frequency of contractions. Specifically, spon-
taneous variable decelerations are searched for only when
contractions are not happening with a sufficient frequency.
In an embodiment, for example, when no contractions are
detected between updates of the forecasting model, which
may occur every two to five minutes, the system searches for
spontaneous variable decelerations.

[0092] Inaddition to FHR patterns based on decelerations,
embodiments of the disclosure involve identifying any
instances of tachycardia and bradycardia using the FHR
baseline. Turning to FIG. 8, example FHR time series strip
700 and UA time series strip 600 from FIG. 7 are provided.
Similar to FIG. 7, the FHR time series strip 700 is presented
with indicators for tachycardia and bradycardia boundaries.
For instance, horizontal line 714 may represent tachycardia
while horizontal line 716 indicates bradycardia. As used
herein, bradycardia is present where the FHR baseline is less
than 100 bpm, and tachycardia is present where the FHR
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baseline is greater than 160 bpm. In some aspects, adjust-
ments to determinations of tachycardia and bradycardia are
made based on an estimated gestational age. For instance,
bradycardia may be present when the FHR baseline is less
110 bpm depending on gestational age. In FIG. 8, the stretch
of FHR values 718 appear to be borderline bradycardia. As
shown in FIG. 7, horizontal lines 714 and 716 may be
displayed within graphic user interface 700 with the con-
traction marks 710 and deceleration marks 712 such that a
user can quickly observe the detection of tachycardia and/
bradycardia. The borderline bradycardia 718 may also be an
indication of a switch from category I to category II strips.
It is contemplated that the presence or absence of bradycar-
dia and tachycardia may be done before, after, or contem-
poraneously with detection and classification of decelera-
tions in accordance with embodiments of method 200.

[0093] Additionally, it may be determined whether the
FHR time series is sinusoidal. In some aspects, this deter-
mination is made by performing a spectral analysis. A
determination that the FHR time series is sinusoidal may
occur when the maximal spectral power occurs at a pre-
determined frequency. In some embodiments, this frequency
is between 0.091-0.044 Hz, which is a range that includes
the frequencies typically associated with dangerous sinusoi-
dal patterns while allowing for the presence of some noise.
A dangerous sinusoidal pattern may include a pattern of one
oscillation every 12-20 seconds.

[0094] At step 240 of FIG. 2, neonatal vitality scores may
be forecasted using the detected FHR patterns detected and
the calculated variability metrics. In exemplary embodi-
ments, the neonatal vitality scores are predicted in terms of
a 1-minute APGAR score and/or a 5-minute APGAR score.
In other embodiments, a 10-minute APGAR score and/or a
20-minute APGAR score may be provided. APGAR scores
are used as measurement for a new infant’s health and have
traditionally been determined after birth based on appear-
ance (color), pulse (heart rate), grimace (reflex), activity
(muscle tone), and respiration (breathing rate/effort).
APGAR scores may range from 0 to 10. A normal APGAR
score is greater than or equal to 7, while low APGAR scores
are those less than 7 and indicate potential issues with the
infant’s health. In some aspects, low APGAR scores are
considered those between 6 and 3, while scores less than 3
are considered critical. In some embodiments, a neonatal
vitality score is provided as a forecasted cord blood gas
measurement (also referred to as cord blood pH), which
provides an objective measurement. Further, in some
aspects, the neonatal vitality score is a combination of an
APGAR score and a cord blood gas measurement.

[0095] In accordance with embodiments of the disclosure,
one or more neonatal vitality scores, such as APGAR scores,
may be predicted. The neonatal vitality scores may be a
numerical score, such as a numerical APGAR score, a cord
blood gas measurement, or a percentage of vitality, or may
be a qualitative score, such as healthy, normal, critical, low,
and the like. In some embodiments, the forecasted scores are
included only for a vaginal delivery within future time
intervals, and, in other embodiments, the forecasted scores
may include scores for vaginal delivery and C-section. In
this way, recommendations for proceeding with a planned
vaginal delivery be made by using scores for each delivery
time. Neonatal vitality scores may be predicted after the start
of active labor and forecasted for one or more future time
intervals.
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[0096] The neonatal vitality scores are forecasted using a
predictive model with the patient’s FHR and UA measure-
ments as input. Specifically, FHR patterns and variability
metrics from the FHR and UA time series may be used with
the model to generate the neonatal vitality scores. FHR
patterns over time may be aggregated and input into the one
or more predictive models. The particular predictive model
(s) utilized may be specific to a delivery type and future time
interval such that scores for each delivery method and future
time interval may be determined using separate models.
Example predictive models that may be used include but are
not limited to: moving average, exponential smoothing,
autoregressive moving average, autoregressive integrated
moving average, trend estimation, linear regression, non-
linear regression, and a statistical classification model, such
as for example, logistic regression, support vector machines,
neural networks, cluster algorithms, binomial classification
models, multinomial classification models, and decision tree
(e.g., random forest) models. In an example reduced to
practice, least absolute shrinkage and selection operator
(LASSO) models were used.

[0097] Additionally, the neonatal vitality forecast model
be based on a spectral analysis. For instance, in an embodi-
ment reduced to practice, spectral power was computed in a
running 2-minute time window and relative spectral density
in non-overlapping bands were compared. The three non-
overlapping bands were considered: low-frequency (Y50-Yis
Hz), mid-frequency (V1s-%1s Hz), and high-frequency (%s-1
Hz). In particular, the normalized high-frequency power
(nHF), normalized mid-frequency power (nMF), and mid-
frequency to high-frequency ratio (MFHF) were computed
in accordance with the following definitions:

MF= — oo
iy vy i

nHF x 100

HF
" LF+MF + HF
MF

MFHF = —
HF

where LF, MF, HF are the sums of the spectral powers for
frequencies in the respective intervals. The means of each
(nMF, nHF, MFHF) are computed for each of the pre-
determined intervals before birth. Changes in spectral den-
sity may be tracked as labor progresses.

[0098] The forecast model(s) uses a plurality of features to
predict the neonatal vitality score, such as an APGAR score.
The features used may include:

[0099] Type of maternal (UA) monitoring device;
[0100] Duration of observations;
[0101] Number of contractions and the approximate

period of contractions;

[0102] Number of each type of deceleration: early, late,
prolonged, and variable (with or without contraction
separately);

[0103] Maximum number of consecutive late or pro-
longed decelerations;

[0104] Recurrence of late and variable decelerations;
[0105] Number of prolonged and abrupt accelerations;
[0106] NICHD variability classification: absent, mini-

mal, marked, or sinusoidal;
[0107] Bradycardia or Tachycardia;
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[0108] NICHD Category: at start of interval, at end of
interval, averaged over the interval, and maximal cat-
egory;

[0109] Mean short-term variability metrics: SDANN,
RMSSD;

[0110] Mean Hurst exponent;

[0111] Maximum power and associated frequency;

[0112] Mean spectral metrics: nMF, nHF, MFHF;

[0113] Correlation between strength of contraction and

depth/duration of decelerations; and
[0114] Demographic, medical, and clinical data (includ-
ing medial history) of the mother, such as diagnoses,
labs, procedures, and/or medications.
[0115] When training the models to predict neonatal vital-
ity, additional metadata may be provided. This metadata
may include the delivery outcome, the delivery method, the
patient’s age, the patient’s BMI, the gestational age of the
fetus, actual cord blood pH (also referred to as blood gas
pH), time to delivery, dilation, and certain medications taken
by the patient. In this way, the model may also be trained to
take into consideration the patient’s age, gestational age,
patient’s BMI, and medications.
[0116] As previously mentioned, the forecasts for neonatal
vitality are provided for a delivery (either vaginal or cesar-
ean) within a future time interval. For forecasts of neonatal
vitality based on a C-section delivery, the score may be
provided with the assumption that the C-section would occur
within a shorter time period. For instance, the neonatal
vitality score may be based on a C-section occurring within
one hour or 30 minutes from the time of the forecasts.
Accordingly, in some embodiments, scores for a C-section
birth are provided for both a one-hour interval and a 30-min-
ute interval. Because the timing for vaginal births are much
more variable and can be predicted less easily, neonatal
scores for vaginal deliveries may be generated for a greater
number of time intervals. For instance, in some embodi-
ments, eight neonatal vitality scores for vaginal births are
forecasted for the following time-to-birth intervals (in

hours):
[0117] (10,7)
[0118] (7, 5)
[0119] (5, 4)
[0120] (4, 3)
[0121] (3. 2)
[0122] (2,1
[0123] (1, 0.5)
[0124] (0.5, 0)
[0125] In an embodiment reduced to practice, LASSO

regression models (e.g., cv. glmnet with alpha=1) were used
to generate each forecast for the time intervals/delivery
method combinations. The system included eight models for
vaginal births (for the above eight time intervals), and two
models for cesarean births (for the two shortest time inter-
vals), for a total of ten models. The models were trained with
different combinations of approximately 3 to 14 features
chosen from the features list discussed herein. The area
under the curve (AUC) for the models ranged from 0.792 to
1.0, with the eight out of ten models having an AUC of 0.9
or greater.

[0126] Based on the neonatal vitality scores, a response
action may be initiated, as shown at step 250 of FIG. 2. The
response action may be based on a comparison of one or
more of the neonatal vitality scores to a threshold score
and/or a comparison of neonatal scores for different delivery
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methods. One such response action may be a recommenda-
tion or notification that is emitted or otherwise communi-
cated to a caregiver responsible for the patient’s care, such
as an obstetrician. For instance, when the neonatal scores for
vaginal deliveries satisfy a threshold indicating that a sig-
nificant risk of a low or critical APGAR score exists, a
notification of the risk may be generated and communicated
via a bedside alarm, user/clinician interface (such as inter-
face 142 described in FIG. 1A), or may be communicated to
a smartphone or personal computing device of a caregiver,
thereby alerting the caregiver of a potential risk through
continued labor. In one embodiment, the notification com-
prises an event signal and includes one or more neonatal
vitality scores. Additionally, some embodiments of step 250
may comprise storing the result of the determination of
neonatal vitality scores in an EHR associated with the
patient and further may include providing the patient’s EHR
(or facilitating access to the EHR) in the notification. In
some embodiments, the threshold risk level for neonatal
vitality scores based on vaginal delivery is set by a user/
clinician.

[0127] In addition to or alternatively of the notification, a
set of one or more actions relating to preventative and/or
therapeutic responses may be initiated. For example, as
described herein, when the scores for vaginal delivery fall
below a threshold risk level, the neonatal vitality scores for
a C-section may be presented and compared to the neonatal
scores for a vaginal delivery to provide a recommendation
regarding whether to proceed with a vaginal or C-section
delivery. In some embodiments, scores for each of the time
intervals are determined and provided to a clinician and the
most likely time-to-birth interval for a vaginal delivery may
be determined based on the patient’s dilation and other
factors, such as the number of previous deliveries the patient
has had. The neonatal vitality score for a vaginal delivery
within that most-likely time interval is then compared to the
score for a C-section for a determination of whether to
proceed with a C-section or have labor continue for a vaginal
delivery.

[0128] Additionally, therapeutic responses may be initi-
ated based on one or more of the predicted neonatal vitality
scores. For example, a recommendation to increase patient
monitoring or level of care, or administering a therapeutic
intervention, such as a medication or procedure may be
generated. The therapeutic response recommendation may
be provided in conjunction with a notification of the pre-
dicted neonatal vitality scores, and/or may be provided via
auser/clinician interface, such as interface 142, described in
connection with FIG. 1A.

[0129] Yet another action that may be initiated comprises
automatically modifying computer code executed in a
healthcare software program for treating the patient, thereby
transforming the program at runtime. For example in one
embodiment, the modification comprises modifying (or gen-
erating new) computer instructions to be executed at runtime
in the program, the modification may correspond to a change
in a care plan, treatment procedure, or therapeutic interven-
tion to be administered to the patient due to the predicted
neonatal vitality scores.

[0130] A further action that may be initiated based on the
determined likelihood includes scheduling healthcare
resources for the patient. For example in one embodiment,
it may be determined based on the neonatal vitality scores
that the patient should undergo a C-section within an hour
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and, based on this determination, an operating room (OR)
resource may be automatically reserved for the patient, OR
staff may be notified and/or automatically scheduled, and
transportation/support staff’ or resources for getting the
patient to the OR may be called. In one embodiment, this
action comprises modifying or updating a resource/sched-
uling electronic record in a resource/scheduling system.
[0131] Many different arrangements of the various com-
ponents depicted, as well as components not shown, are
possible without departing from the spirit and scope of the
present invention. It will be understood that certain features
and subcombinations are of utility and may be employed
without reference to other features and subcombinations and
are contemplated within the scope of the claims. Not all
steps listed in the various figures need be carried out in the
specific order described. Accordingly, the scope of the
invention is intended to be limited only by the following
claims.

What is claimed is:

1. Computer-readable media having computer-executable
instructions embodied thereon that when executed, provide
method for a decision support system using neonatal vitality
forecasts, the method comprising:

receiving a plurality of measurements of physiological

variables for a patient in labor, the plurality of mea-
surements being acquired over a time span and the
physiological variables comprising fetal heart rate
(FHR) and uterine activity (UA);

constructing a time series from the plurality of measure-

ments for each physiological variable;
using the time series for UA and the time series for FHR,
detecting FHR patterns, the FHR patterns comprising
decelerations corresponding to contractions;

forecasting at least one predicted neonatal vitality score
based on at least the FHR patterns; and

based on the at least one predicted neonatal vitality score,

initiating a response action.

2. The media of claim 1, wherein the at least one neonatal
vitality score comprise a plurality of neonatal vitality scores
predicted for vaginal delivery occurring at different future
time intervals.

3. The media of claim 2, wherein each neonatal vitality
score 1s forecast with a separate model for the future time
interval.

4. The media of claim 2, wherein the at least one predicted
neonatal vitality score further comprises a neonatal vitality
score predicted for cesarean delivery occurring within the
next 30 minutes and a neonatal vitality score predicted for
cesarean delivery occurring between the next 30 minutes
and an hour.

5. The media of claim 1, wherein each neonatal vitality
score comprises either a normal APGAR score or a low
APGAR score.

6. The media of claim 1, wherein detecting FHR patterns
comprises identifying contractions within the times series
for UA and computing one or more FHR variability metrics,
and wherein forecasting at least one predicted neonatal
vitality score is further based on the one or more FHR
variability metrics.

7. The medial of claim 6, wherein the one or more FHR
variability metrics comprise: acceleration count, Hurst expo-
nent, standard deviation of beat-to-beat intervals, and root
mean squared of successive deviations of beat-to-beat inter-
vals.
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8. The media of claim 6, wherein detecting FHR patterns
comprises detecting decelerations within FHR and classify-
ing detected decelerations as one or more of variable, early,
late and prolonged.

9. The media of claim 8, wherein a deceleration is
detected within a time interval preceding a peak of a
contraction identified in UA time series and comprises a
decrease in FHR below an FHR baseline by a minimum
threshold amount and below a prior maximum FHR value by
a threshold amount.

10. The media of claim 8, wherein classifying detected
decelerations is based, at least in part, on the one or more
FHR variability metrics.

11. The media of claim 1, wherein the response action
comprises one or more of: automatically generating and
communicating an electronic notification to a caregiver of
the patient; generating and providing a recommendation for
a delivery method for the patient; modifying computer code
executed in a healthcare software program for treating the
patient; or scheduling healthcare resources for the patient.

12. The media of claim 11, wherein the modified com-
puter code executed in a healthcare software program com-
prises a software healthcare agent associated with a plan of
care for the patient.

13. A system for forecasting neonatal vitality within a
future time interval, the system comprising:

One more Processors;

memory storing computer-usable instructions that, when

executed by the one or more processors, implement a

method comprising;

receiving a plurality of measurements acquired over
time for physiological variables for a patient in labor,
the plurality of comprising fetal heart rate (FHR) and
uterine activity (UA);

constructing an UA time series and an FHR time series
using the plurality of measurements;

computing one or more FHR variability metrics;

detecting FHR patterns;

forecasting a plurality of predicted neonatal vitality
scores based on at least the FHR patterns and FHR
variability metrics; and

based on the plurality of predicted neonatal vitality
scores, initiating a response action.

14. The system of claim 13, wherein the system further
comprises one or more sensors configured to acquire the
measurements for UA and one or more sensors configured to
acquire the measurements for FHR from the patient.

15. The system of claim 13, wherein the predicted neo-
natal vitality scores comprise one or more of a predicted
1-minute APGAR score, a predicted 5-minutes APGAR
score, and a predicted cord blood pH measurement.

16. The system of claim 13, wherein the response action
comprises automatically generating an electronic notifica-
tion of fetal distress.

17. The system of claim 13, wherein the system further
comprises a data store configured for storing and logging
FHR and UA data and predicted neonatal vitality scores for
the patient.

18. The system of claim 13, wherein the predicted neo-
natal vitality scores are forecasted based on at least relative
spectral density.

19. A computerized method for forecasting neonatal vital-
ity within a future time interval, the method comprising:
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receiving a plurality of measurements acquired over time
for physiological variables for a patient in labor, the
plurality of comprising fetal heart rate (FHR) and
uterine activity (UA);

constructing an UA time series and an FHR time series

using the plurality of measurements;

computing one or more short-term FHR variability met-

rics;

computing one or more long-term FHR variability met-

rics;

detecting one or more decelerations in the FHR time

series,

classifying each of the one or more decelerations as early,

late, variable, or prolonged,;

generate a plurality of predicted neonatal vitality scores

based on at least the one or more short-term FHR
variability metrics, the one or more long-term variabil-
ity metrics, and the one or more decelerations, the
plurality of predicted neonatal vitality scores compris-
ing one or more neonatal vitality scores predicted for
vaginal delivery and one or more neonatal vitality
scores predicted for cesarean delivery; and

based on the plurality of predicted neonatal vitality

scores, initiating a response action.

20. The computerized method of claim 19, wherein the
one or more neonatal vitality scores predicted for cesarean
delivery comprise a neonatal vitality score predicted for
cesarean delivery occurring within the next 30 minutes and
a neonatal vitality score predicted for cesarean delivery
occurring between the next 30 minutes and an hour.
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