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(57) ABSTRACT

The method of classifying raw EEG signals uses a classifi-
cation method based on nuclear features extracted as domi-
nant singular values from an EEG signal segment using
singular value decomposition (SVD) and a class means-
based minimum distance classifier (CMMDC) to classify a
patient’s EEG signals. From a mean EEG signal, a set of
zero-centered EEG signals are calculated, and from the
zero-centered EEG signals and a standard deviation of the
EEG signals, a unit variance is calculated for each compo-
nent. Using the standardized component signals a nuclear
matrix is calculated, to which singular value decomposition
is applied to generate a set of singular values. The CMMDC
is applied to class means associated with first and second
classes and a nuclear feature vector to classify the patient’s
EEG signals as belonging in either the first or second class.

2 Claims, 4 Drawing Sheets
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1
METHOD OF CLASSIFYING RAW EEG
SIGNALS

BACKGROUND
1. Field

The disclosure of the present patent application relates to
the classification of electroencephalogram (EEG) signals,
and particularly to a classification method based on nuclear
features extracted as dominant singular values from an EEG
signal segment using singular value decomposition (SVD)
and a class means-based minimum distance classifier (CM-
MDC) to classify a patient’s EEG signals.

2. Description of the Related Art

A wide variety of electroencephalogram (EEG) feature
extraction methods have been studied, such as transform-
based approaches, spectral analysis, wavelet analysis, power
analysis, entropy analysis, time-frequency analysis and time
series analysis. In each of these methods, discriminative
features are extracted from EEG data and are passed to
different classifiers to classify EEG brain signals. Trans-
form-based techniques are among the most common EEG
classifiers for extracting discriminative features from EEG
signals. The objective in such methods is to present lower
dimensional information in a compact form, where maxi-
mum data energy is presented in a few coeflicients which are
uncorrelated. After removing the indiscriminative features,
these methods aid in extracting appropriate features.

The time series analysis, or entropy analysis, has been
used to detect epileptic seizures, along with classification
between control and schizophrenic subjects. This technique
extracts different features, such as permutation entropy,
sample entropy (SamEn) and approximate entropy (ApEn),
for the classification of EEG signals. Spectral analysis of
EEG signals has also been extensively used to extract
features. This method uses signal rhythm analysis to classify
EEG signals into, for example, alpha, beta, theta, gamma
and delta frequencies, a power density spectrum, local
minima and maxima, or the autoregressive moving average
for the classification problem of EEG signals.

Time-frequency analysis of EEG signals has also been
used for clinical EEG data to extract wavelet features from
EEG patterns, providing, for example, a technique for epi-
leptic seizure detection. In one study, various features were
extracted from EEG signals, including wavelet-based fea-
tures, fractal dimension (FD), SamEn and ApEn. After
feature extraction, different classifiers were applied, includ-
ing a decision tree, support vector machines (SVM), a
k-nearest neighbor (k-NN) and a neural network (NN) to
identify epileptic seizures. The study reported an accuracy of
99% by using wavelet and time-domain based features.
However, only a small dataset was used in this study.

Other studies have employed different features based on
complexity and entropy, such as FD, spectral entropy, ApEn
and Lempel-Ziv complexity. Classification of EEG signals
of schizophrenic patients were found to achieve an accuracy
of 80-90% by using Adaboost and linear discriminant analy-
sis (LDA) classifiers. In a further study, wavelet complexity
and entropy features were extracted from EEG signals and
non-linear classifiers were applied, including SVM and NN,
to classify working memory (WM) loads. A classification
accuracy between 90-96% was obtained for discriminating
various WM loads. However, the EEG signals utilized in
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2

these studies were time locked. Further, the length of the
EEG signals was relatively short compared against sponta-
neous EEG signals.

The above methods either use complicated and time-
consuming feature extraction methods (e.g., ApEn, SamEn)
or employ sophisticated classification techniques, such as
kernel-based SVM and NN, and only yield acceptable
classification accuracy when the data is clean. Specifically,
these techniques are single-application specific and work
only with clean EEG signals. Further, these techniques suffer
from the “overfitting” problem; i.e., when they are applied
to different datasets concerning the same problem, the
classification may fail to fit additional data or predict future
observations reliably. Thus, a method of classifying EEG
signals solving the aforementioned problems is desired.

SUMMARY

The method of classifying raw electroencephalogram
(EEG) signals uses a classification method based on nuclear
features extracted as dominant singular values from an EEG
signal segment using singular value decomposition (SVD)
and a class means-based minimum distance classifier (CM-
MDC) to classify a patient’s EEG signals. The EEG signals
are received from a set of EEG channels associated with the
patient’s brain (i.e., each EEG channel is associated with an
electrode connected to the patient for recording EEG signals
from the patient’s brain). The set of EEG signals are
represented as x*, X%, X°, . . ., X", where n represents a total
number of the EEG channels. Particularly, an i”” EEG signal
segment (time t, to t,) corresponding to the i” channel is X',
where x'=[x,'(1), X,/(L,), . . ., X/t =[x, X', . .., x/], and
the set of EEG signals x', x>, x°, . . ., X" correspond to an
event. This EEG segment represents the brain state activated
by the event and is treated as an instance. A mean EEG
signal, X, and a standard deviation of the set of EEG signals,
std, are each calculated.

From the mean EEG signal, a set of zero-centered EEG
signals are then calculated. An i one of the zero-centered
EEG signals, y', is calculated as y'=x'-x for i=1, 2,3, .. .,
n. From the zero-centered EEG signals and the standard
deviation, a unit variance for each of the zero-centered EEG
signals is then calculated, where an i” one of the unit
variances, ¢, is calculated as

A nuclear matrix, N, is calculated as N=ATA, where A is
a matrix representing standardized component signals and is
formed as A=[¢" ¢* . . . ¢”]. Singular value decomposition is
applied to the nuclear matrix to generate a set of singular
values, such that N=UDV?, where U and V are unitary
matrices and D is a diagonal matrix formed from a set of
singular values. An i” one of the singular values is repre-
sented as o, fori=1, 2,3, .. ., n, with 0, and o, being defined
as dominant singular values such that a nuclear feature
vector, F, is defined as F=[o,, a,]~.

The mean nuclear feature vectors, Cy, and Cy,, respec-
tively corresponding to first and second classes, C,; and C,,
are calculated using training EEG signal segments. A class
means-based minimum distance classifier (CMMDC) is
used to classify an BEG signal segment into one of the two
classes, C, or C,. The CMMDC assigns an unknown EEG
signal segment to the class for which distance between the
class mean and its nuclear feature vector is a minimum. The
distance used as a measure of similarity indicates that
similarity is maximum if distance is minimum. Thus, a first
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distance, d,, is calculated as d,=IF-Cy, |, where Cy, is the
mean nuclear feature vector of the first class, C,, of a sample
dataset. Similarly, a second distance, d,, is calculated as
d,=IF-Cu,|, where Cu, is the mean nuclear feature vector of
the second class, C,, of the sample dataset.

The set of EEG signals of the patient is then classified as
being in the second class, C,, if d,>d,. Otherwise, the set of
EEG signals of the patient is classified as being in the first
class, C,. As an example, the sample dataset may be
established through prior EEG readings of a sample set of
test subjects measuring fluid intelligence. The first classifi-
cation may then be high ability, with regard to fluid intel-
ligence, and the second classification may be low ability. If
d,>d,, then the patient’s EEG signals may be classified by
the second classifier (i.e., low ability in this example),
otherwise the patient’s EEG signals may be classified by the
first classification (i.e.. high ability in this example).

These and other features of the present invention will
become readily apparent upon further review of the follow-
ing specification.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a plot of singular values, calculated by a method
of classifying electroencephalogram (EEG) signals, with the
data being obtained from clean EEG signals captured from
frontal-left and frontal-right regions of a test subject.

FIG. 2 is a plot of singular values, calculated by the
method of classifying EEG signals, with the data being
obtained from raw EEG signals captured from frontal-left
and frontal-right regions of the test subject.

FIG. 3 is a plot of class data, shown for two different
groups, using nuclear features calculated by the method of
classifying EEG signals and extracted from clean EEG
signals captured from frontal-left and frontal-right regions of
a set of test subjects.

FIG. 4 is a plot of class data, shown for two different
groups, using nuclear features calculated by the method of
classifying EEG signals and extracted from raw EEG signals
captured from frontal-left and frontal-right regions of the set
of test subjects.

FIG. 5 is a graph showing accuracy of results for nuclear
features calculated by the method of classifying EEG signals
using a test sample of fluid intelligence clean data.

FIG. 6 is a graph showing accuracy of results for nuclear
features calculated by the method of classifying EEG signals
using a test sample of fluid intelligence raw data.

FIG. 7 is a block diagram illustrating system components
for implementing the method of classifying EEG signals.

Similar reference characters denote corresponding fea-
tures consistently throughout the attached drawings.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENTS

A method of classifying electroencephalogram (EEG)
signals uses a singular value decomposition (SVD) to extract
nuclear features from EEG signals and a class means-based
minimum distance classifier (CMMDC) to classify the
nuclear features. The FEG signals are received from a set of
EEG channels associated with an individual’s brain (i.e.,
each EEG channel is associated with an electrode connected
to the patient for recording EEG signals from the patient’s
brain). The nuclear features can be extracted from raw EEG
signals i.e., EEG signals captured directly from the brain
without any pre-processing. The projection of raw EEG
signals captured from a certain brain region on a singular
space by singular value decomposition (SVD) provides an
amount of variances along different directions. Small value
variances are due to artifacts and dominant (big value)
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variances represent the discriminative part of the signals. As
such, dominant variances can be used to represent an event
and a small number of dominant variances can be enough to
discriminate two different events. As such, the extraction
technique results in a feature space of small dimension,
where the regions corresponding to different classes are
well-separated. CMMDC can then be used to efficiently and
reliably classify any unknown event.

The EEG signals are associated with a brain state acti-
vated by an event. From a mean EEG signal, a set of
zero-centered EEG signals are calculated by transforming
the signals, and from the zero-centered EEG signals and a
standard deviation of the EEG signals, a unit variance of
each component is calculated by dividing each signal com-
ponent-wise with the standard deviation. The unit variances
are used to establish a nuclear matrix, to which singular
value decomposition is applied to generate a set of singular
values. The mean nuclear feature vectors, Cp, and Cu,,
respectively corresponding to first and second classes, C;
and C,, are calculated using training EEG signal segments.
A class means-based minimum distance classifier (CM-
MDC) is used to classify an EEG signal segment into one of
the two classes, C, or C,. The CMMDC assigns an unknown
BEG signal segment to the class for which distance between
the class mean and its nuclear feature vector is a minimum.
The distance used as a measure of similarity indicates that
similarity is maximum if distance is minimum.

Feature extraction can be based on the nuclear norm,
which is defined using singular values of a matrix as:

n M
lcll. = > (0,
i=1

where 0,,1=1, 2,3, . .. . nare the singular values. It is known
that nuclear norm is more discriminative and robust than the
L,-norm, the L,-norm or the Frobenius norm. The nuclear
norm has been employed for many pattern recognition tasks,
such as robust PCA, low rank matrix recovery, and nuclear
norm based 2-DPCA (N-2-DPCA). The reason that the
nuclear norm outperforms the L;-norm and the L,-norm
appears to be its basis of singular values. This indicates that
singular values can be used to represent EEG brain signals.
Based on this indication, singular values can be computed
for the nuclear matrices of EEG signals measured from the
same region corresponding to different brain states (events),
as will be described in detail below.

The i EEG signal segment (time t, to t,) corresponding
to the i channel is represented as x’, where x’=[x,(t,),
(6, X0, .. x XL xS xS L, x /e, for
purposes of clarity, time stamps have been removed in the
representation. In the following, n is the number of elec-
trodes placed on a particular brain region, and x', X%,
X3, ..., X" represent the signals (i.e., channels) captured by
the n electrodes during brain activation corresponding to an
event; i.e., these signals represent the brain state activated by
an event and are treated as an “instance”. The mean, X, and
standard deviation, std, of these signals are respectively
given by:
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The signals are transformed so that they are zero-centered:
7 4

Each signal y is then divided component-wise by the stan-
dard deviation std so that each component has unit variance:

Yaiexi=123, ...

®)

7
= —,i=1,2,3,... ,n
¢ s’ "

Using the transformed signals, the following matrix is
defined:

N=474, (6)

where A=[¢* ¢ . . . ¢"]. The size of matrix N is nxn, and it
represents a single event (e.g., high ability or low ability).
The matrix N is referred to as the nuclear matrix. Using
singular value decomposition (SVD), the matrix N is fac-
torized as:

N=UDV?, )

where D is diagonal and the diagonal entries are the singular
values 0;,1=1,2,3, ..., 10 0, and 0, are defined as dominant
singular values such that a nuclear feature vector, F, is
defined as F=[o, a,]”.

For purposes of testing, the method of characterizing EEG
signals was used by the present inventors for fluid intelli-
gence level prediction. EEG signals were collected from 34
test subjects. Using a Raven’s advanced progressive matri-
ces (RAPM) test, the subjects were divided into two groups:
low ability (LA) and high ability (HA), based on their
intellectual abilities. The visual oddball cognitive task was
then used to capture the neural activity of each subject.
Target and standard stimuli were presented to the subjects.
EEG signals were measured in the same region, correspond-
ing to different brain states, or events. Two dominant sin-
gular values were selected to represent the EEG signals. The
brain activation of each subject was captured as EEG signals
from the following different brain regions: “TEMP”, which
includes temporal-left (TL) and temporal-right (TR) (with 8
channels); “FRONT”, which includes frontal-left (FL) and
frontal-right (FR) (with 16 channels); “CENT”, which
includes central-left (CL) and central-right (CR) (with 20
channels); “PERI”, which includes parietal-left (PL) and
parietal-right (PR) (with 18 channels); “OCCIP”, which
includes occipital-left (OL) and occipital-right (OR) (with
18 channels); and “ALL”, which includes all regions (AR)
(with 100 channels).

From the recorded EEG signals, two datasets for the
classification of subjects into the LA and HA groups were
prepared, based on their fluid intelligence levels: the “raw”
dataset (RD) is data without any processing after recording
of the signal, and the clean dataset (CD), made after record-
ing by removing artifacts. The EEG trials related to each
subject were segmented using a window having a duration
of 600 msec, which contains a pre-stimulus period of 100
msec (i.e., the baseline) and a post-stimulus period of 500
msec.

For the CD, the data was cleaned by first removing
muscular artifacts of high frequency, as well as removing the
DC components by using a band pass filter (roll off 12 dB
octave, 0.3-30 Hz). The trials which suffered from artifacts,
such as eye movements and eye blinks, were rejected. For
example, if the amplitude of the EEG signal of any trial was
+90 uV, it was rejected. All recorded EEG signals were
visually inspected and the channels, which had no contact in
the phase of widespread drift, were removed. The spherical
spline method was used to discard a trial if any bad channel
was found. The nuclear features were extracted from raw
and clean data using SVD based method. The discriminative
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6

features were input to the simple and efficient CMMDC to
predict whether an individual belongs to LA or HA group in
raw as well as clean data.

FIG. 1 shows a plot of singular values obtained from
“clean” EEG signals captured from the “FRONT” (including
FL and FR) region of a test subject, and FIG. 2 shows a plot
of singular values obtained from “raw” EEG signals cap-
tured from the FRONT region of the test subject. These plots
show that the singular values clearly discriminate the two
events. As such, these can be used to differentiate the brain
states corresponding to different events. Further, the plots
show that the largest singular values are more discriminant.
In view of this observation, the two largest singular values
may be used to represent the brain states stimulated by
different events. Further, in order to rule out the possibility
that the discrimination shown in FIGS. 1 and 2 is only
associated with these two particular examples, a number of
additional examples of two events for both clean and raw
data of the visual oddball task are shown in FIGS. 3 and 4.
FIGS. 3 and 4 each plot EEG brain signals represented as the
two largest singular values (represented as crosses for high
ability and circles for low ability) for two different events.
In FIG. 3, the results for the two separate groups (HA and
LA) are shown for the two dominant nuclear features
extracted from the clean EEG signal from the FRONT
region. In FIG. 4, the results for the two separate groups (HA
and LA) are shown for the two dominant nuclear features
extracted from the raw EEG signal from the FRONT region.
As shown, the two different events cluster together in two
distinct regions of the feature space, which can be separated
by a simple decision boundary. This observation leads to the
conclusion that the two largest singular values can discrimi-
nate well for EEG brain signals corresponding to different
events, and can be used as features to represent the events.
These features are referred to as “nuclear features”.

From FIGS. 3 and 4, it can be seen that data belonging to
each class is clustered around the mean of its own class.
These plots show that the examples related to two different
events have high interclass variation and are clustered in
separate regions of the feature space, which can be separated
by simple decision boundary. Thus, a simple and efficient
minimum distance classifier based on class means may be

used to classify the nuclear features of the two classes (i.e.,
LA and HA).

The class means-based minimum distance classifier (CM-
MDC) assigns a sample to the class for which distance
between the sample and its mean is a minimum. The distance
as a measure of similarity indicates that similarity is a
maximum if distance is a minimum. The class means, Cy,
and Cp,, of both classes, C; and C, are first calculated in
each dataset. Then, the distance, d, between each sample, x,
and the mean of each class are calculated as:

d,=IF-Cyy, and 13)

dy=IF=C, . (14

If d,>d,, then x€C,, otherwise x€C,.

The classification results on the two datasets CD and RD
in two different brain regions, FRONT and PERI, are shown
below in Tables 1 and 2. In Tables 1 and 2, AUC represents
the area under the curve. Table 1 shows the results for the
class means-based minimum distance classifier (CMMDC),
and Table 2 shows the results for a support vector machines
(SVM) classifier with a linear kernel, used for purposes of
comparison.
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TABLE 1

CMMDC results for the prediction of fluid intelligence level (LA vs. HA)

No. of Testing
Brain Nuclear  No. of Time
Dataset Region Features Channels Accuracy Sensitivity Specificity ~ AUC (sec)
CD FRONT 02 16 100 100 100 1 54
FRONT 03 16 100 100 100 1 542
PERI 02 18 99.7 99 99 0.99 7.46
PERI 03 18 99 99.4 99 0.989 7.48
RD FRONT 02 16 100 100 100 1 542
FRONT 03 16 100 100 100 1 545
PERI 02 18 99.1 99.5 98.9 098 747
PERI 03 18 99.5 99.8 99 0.99 7.49
15
TABLE 2
Support vector machines (SVM) classifier results for the prediction of fluid
intelligence level (LA vs. HA)
No. of Testing
Brain Nuclear  No. of Time
Dataset Region Features Channels Accuracy Sensitivity Specificity ~ AUC (sec)
CD FRONT 02 16 100 100 100 1 8.79
FRONT 03 16 100 100 100 1 8.802
PERI 02 18 99.4 99.6 98.2 0.99 10.93
PERI 03 18 99.1 99.3 98 0.987 10.95
RD FRONT 02 16 100 100 100 1 8.86
FRONT 03 16 100 100 100 1 8.89
PERI 02 18 99 99.5 98.1 0.99 10.92
PERI 03 18 99.2 99.4 98.9 0.99 10.96

To evaluate the classification method, a 10-fold cross
validation technique was used to test the performance of the
system over different variations of the data. The given data
was divided into 10 folds. Each fold was held out in turn and
the remaining 9 folds were used to train and tune the system.
After training and tuning the system, the left-over fold was
used as an independent set to test the performance of the
system. This process was repeated for each fold and the
average performance values were calculated. The primary
advantage of this technique was that the system was tested
under various samples of data.

For purposes of evaluation, measures of accuracy, sensi-
tivity and specificity were used, with each being defined as
follows:

TP+ 1IN

y s)
TP+ FN +1IN + FP

Accuracy = 100;

(16)

Sensitivity = x 100; and

TP
TP+FN
Specificity = l X100 a7

IN+FP™
where TP represents the number of true positives (e.g., the
number of subjects actually belonging to LA which were
predicted as belonging to LA), TN represents the number of
true negatives (e.g., the number of subjects actually belong-
ing to HA which were predicted as belonging to HA), FP
represents the number of false positives (e.g., the number of
subjects belonging to HA which were predicted as belonging
to LA), and FN represents the number of false negatives
(e.g., the number of subjects belonging to LA which were

40

45

50

55

60

65

predicted as belonging to HA). The area under the receiver
operating characteristic (ROC) curve was also used as a
performance measure. In both datasets CD and RD, the total
number of trials for the HA and LA groups were 551 and
482, respectively, and the channel length in each trial was
150 samples.

To analyze the performance of the classification method,
six brain regions were considered; i.e., TEMP, FRONT,
CENT, PERI, OCCIP and ALL, as described above. Both
clean and raw EEG signals were captured for each region. In
order to assess performance, the nuclear features were
extracted using 8, 16, 20, 18, 18 and 100 channels captured
from TEMP, FRONT, CENT, PERI, OCCIP and ALL,
respectively. After extracting the nuclear features from the
training data, class means were calculated and the test data
was classified using CMMDC. The results of the classifica-
tion are shown in FIGS. 5 and 6. FIG. 5 shows the classi-
fication results of nuclear features extracted using CMMDC
with fluid intelligence clean data (CD). FIG. 6 shows the
classification results of nuclear features extracted using
CMMDC with fluid intelligence raw data (RD).

As shown in FIGS. 5 and 6, the different brain regions
lead to different results. The best performance in assessing
the fluid intelligence level is given by two regions out of the
total six, namely the FRONT and PERI regions. The accu-
racy for the other regions is below 97%. These results show
the dominance of the FRONT and PERI regions, which gave
100% and 99% accuracies, respectively, with two or three
nuclear features. The detailed results for the two datasets CD
and RD for these two brain regions are given above in Table
1. The results clearly show that nuclear features extracted
from these two regions, the FRONT and the PERI regions,
are discriminative and lead to the best results in classifying
the subjects based on their fluid intelligence level (either LA
or HA).
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The results given above in Table 1 for CD and RD show
that raw data gives results equivalent to those from clean
data. In the case of the PERI region, the RD results in a
relatively better performance than that of CD. For the PERI
region, RD gives 99.5% accuracy and 99.8% sensitivity,
whereas 99.0% accuracy and 99.4% sensitivity are obtained
from CD. The CD gives slightly less accuracy and sensitiv-
ity than RD because some information is lost during clean-
ing of the EEG signals. Thus, it can be concluded that
nuclear features are robust in representing the raw data.

To validate the usefulness of CMMDC, the SVM classi-
fier with a linear kernel was also used for purposes of
comparison. The detailed results with the SVM classifier are
shown above in Table 2. The SVM classifier also gave 100%
and 99% accuracies using nuclear features extracted from
the FRONT and PERI regions, respectively. The results are
the same as those obtained by using CMMDC, but CMMDC
is more computationally efficient than SVM. Further,
CMMDC is more memory eflicient in that it does not need
to keep the entirety of the training data, with only two class
means being stored. This indicates that the CMMDC is more
suitable for the classification of subjects based on their fluid
intelligence levels.

It should be understood that the above calculations may
be performed by any suitable computer system, such as that
diagrammatically shown in FIG. 7. Data is entered into
system 100 via any suitable type of user interface 116, and
may be stored in memory 112, which may be any suitable
type of computer readable and programmable memory and
is preferably a non-transitory, computer readable storage
medium. Calculations are performed by processor 114,
which may be any suitable type of computer processor and
may be displayed to the user on display 118, which may be
any suitable type of computer display.

Processor 114 may be associated with, or incorporated
into, any suitable type of computing device, for example, a
personal computer or a programmable logic controller. The
display 118, the processor 114, the memory 112 and any
associated computer readable recording media are in com-
munication with one another by any suitable type of data
bus, as is well known in the art.

Non-limiting examples of computer-readable recording
media include non-transitory storage media, a magnetic
recording apparatus, an optical disk, a magneto-optical disk,
and/or a semiconductor memory (for example, RAM, ROM,
etc.). Non-limiting examples of magnetic recording appara-
tus that may be used in addition to memory 112, or in place
of memory 112, include a hard disk device (HDD), a flexible
disk (FD), and a magnetic tape (MT). Non-limiting
examples of the optical disk include a DVD (Digital Ver-
satile Disc), a DVD-RAM, a CD-ROM (Compact Disc-Read
Only Memory), and a CD-R (Recordable)/RW. It should be
understood that non-transitory computer-readable storage
media include all computer-readable media, with the sole
exception being a transitory, propagating signal.

It is to be understood that the method of classifying EEG
signals is not limited to the specific embodiments described
above, but encompasses any and all embodiments within the
scope of the generic language of the following claims
enabled by the embodiments described herein, or otherwise
shown in the drawings or described above in terms sufficient
to enable one of ordinary skill in the art to make and use the
claimed subject matter.

We claim:
1. A computer implemented method of classifying raw
electroencephalogram (EEG) signals by extracted features
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10
for the detection of high ability and low ability with regard
to fluid intelligence in a patient, comprising the steps of:
placing a set of electrodes on the patient’s scalp, wherein
the placement includes at least the frontal-left and
frontal-right and the parietal-left and the parietal-right
brain regions;
providing a computer system, the computer system
including a processor and a memory device having
instructions stored thereon, wherein the instructions in
response to executions by the processor cause the
processor to:
receive a set of raw EEG signals directly from a set of
EEG channels associated with the brain regions of
the patient, wherein the raw EEG signals are asso-
ciated with a brain state activated by an event, the set
of raw EEG signals being represented as x', x7,
x>, ..., x", where n represents a total number of the
EEG channels;
calculate a mean EEG signal, X, wherein the step of
calculating the mean EEG signal comprises calcu-
lating X as

calculate a standard deviation of the set of EEG signals,
std, as

1d = LS ome s
std = nil](x x);

calculate a set of zero-centered EEG signals, wherein
an i’ one of the zero-centered EEG signals, ', is
calculated as y'=x'-X for i=1, 2,3, ..., n;

calculate a unit variance for each of the zero-centered
EEG signals, wherein an i” one of the unit variances,
¢, is calculated as

and constitutes a transformed signal; calculate a nuclear
matrix, N, as N=A”A, wherein A is a matrix represent-
ing the transformed signals and being formed as A=[¢"
¢ ... ¢"], further wherein the matrix represents either
high ability or low ability;
apply singular value decomposition to the nuclear
matrix to generate a set of singular values, such that
N=UDVZ, where U and V are unitary matrices and D
is a diagonal matrix formed from a set of singular
values, wherein an i one of the singular values is
represented as o, fori=1,2,3,...,n, 0, and 0, being
defined as dominant singular values such that a
nuclear feature vector, F, is defined as F=[o,, o,]%
use a class means based minimum distance classifier
(CMMDC) to calculate a first distance, d,, as d,=IF-
Cu, |, wherein Cp, represents a mean nuclear feature
vector of a first class of a sample dataset established
through prior EEG readings of a sample set of test
subjects measuring fluid intelligence;
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use a class means based minimum distance classifier
(CMMDC) to calculate a second distance, d,, as
d,=IF-Cy, |, wherein Cy, represents a mean nuclear
feature vector of a second class of the sample data-
set;

classify the set of raw EEG signals of the patient as
being in the second class if d,;>d,, and otherwise
classifying the set of EEG signals of the patient as
being in the first class, wherein the first class repre-
sents low ability and the second class represents high
ability;

input the set of raw EEG signals directly from the set
of EEG channels associated with the brain regions of
the patient into a support vector machine (SVM) for
generating a classification of the fluid intelligence of
the brain regions being assessed and comparing the
classification results with the CMMDC result to
assess the accuracy of the CMMDC classification;
and display the CMMDC classification result.
2. A system for classifying raw EEG signals by extracted
features for the detection of high ability and low ability with 20
regard to fluid intelligence in a patient, the system compris-
ing:
a set of electrodes adapted to be placed on the patient’s
scalp, wherein the placement includes at least the
frontal-left and frontal-right and the parietal-left and 5
the parietal-right brain regions;
a computer system, the computer system including a
processor and a computer readable medium for storing
program instructions thereon that, when executed,
cause the processor to:
receive a set of raw EEG signals directly from a set of
EEG channels associated with the brain regions of
the patient, wherein the raw EEG signals are asso-
ciated with a brain state activated by an event, the set
of raw EEG signals being represented as x', x2, x°,
..., X", where n represents a total number of the EEG
channels;

calculate a mean BEEG signal, X, wherein the step of
calculating the mean EEG signal comprises calcu-
lating X as
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calculate a set of zero-centered EEG signals, wherein
an i’ one of the zero-centered EEG signals, ', is
calculated as y=x'-—x for i=1, 2, 3, . . ., n;

calculate a unit variance for each of the zero-centered
EEG signals, wherein an i one of the unit variances,
¢', is calculated as

and constitutes a transformed signal;

calculate a nuclear matrix, N, as N=ATA, wherein A is
a matrix representing the transformed signals and
being formed as A=[¢" ¢° . . . ¢], further wherein the
matrix represents either high ability or low ability;

apply singular value decomposition to the nuclear
matrix to generate a set of singular values, such that
N=UDV7, where U and V are unitary matrices and D
is a diagonal matrix formed from a set of singular
values, wherein an i” one of the singular values is
represented as o, fori=1,2,3,...,n, 0, and 0, being
defined as dominant singular values such that a

nuclear feature vector, F, is defined as F=[o,, o,]%

use a class means based minimum distance classifier
(CMMDOC) to calculate a first distance, d,, as d,=IF-
Cu, |, wherein Cp, represents a mean nuclear feature
vector of a first class of a sample dataset established
through prior EEG readings of a sample set of test
subjects measuring fluid intelligence;

use a class means based minimum distance classifier
(CMMDC) to calculate a second distance, d,, as
d,=IF-Cy,|, wherein Cp2 represents a mean nuclear
feature vector of a second class of the sample data-
set;

classify the set of raw EEG signals of the patient as
being in the second class if d,>d,, and otherwise
classifying the set of EEG signals of the patient as
being in the first class, wherein the first class repre-
sents low ability and the second class represents high
ability;

input the set of raw EEG signals directly from the set
of EEG channels associated with the brain regions of
the patient into a support vector machine (SVM) for
generating a classification of the fluid intelligence of
the brain regions being assessed and comparing the
classification result with the CMMDC results to
assess the accuracy of the CMMDC classification;
and display the CMMDC classification result.
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