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An apparatus and computerized method of classifying a
(21) Appl. No.: 16/445,036 wide complex heart beat(s) comprising: providing a com-
puting device having an input/output interface, one or more
(22) Filed: Jun. 18, 2019 processors and a memory; receiving one or more wide
complex heart beat waveform amplitudes and/or time-volt-
Related U.S. Application Data age areas, and one or more baseline heart beat waveform
.. . amplitudes and/or time-voltage areas via the input/output
(60) Provisional application No. 62/688,265, filed on Jun. inte?rface or the memory; dcétermining a signgl chal?ge
21, 2018. between the wide complex heart beat waveform amplitudes
L . . and/or time-voltage areas and the baseline heart beat wave-
Publication Classification form amplitudes and/or time-voltage areas using the one or
(51) Int. CL more processors; and providing the signal change via the
A61B 5/0464 (2006.01) input/output interface, wherein the signal change provides
A6IB 5/00 (2006.01) an indication whether the wide complex heart beat(s) is from
A6IB 5/0472 (2006.01) a ventricular source or a supraventricular aberrant condition.
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5015 — November ¢

> duration 2120 ms
rt rate 2100 beats/minute
>G Laboratory diagnosis of

_ “wide-complex tachycardia”
OR

“ventricular tachycardia”
OR

“supraventricular tachycardia”

-77 Abbreviated WCT duration on ECG
4 -37 No subsequent baseline ECG
T 11 Narrow-complex tachycardia
et -5 Faulty QRS amplitude measurements
R -2 Unconventional ECG lead placements
- -2 No established clinical diagnosis

FIG. 8
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FIG. 9
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FIG. 10
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FIG. 11
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FIG. 12D

Electrocardiographic Variables Among Baseline ECG Sub-groups
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FIG. 14
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FIG. 17
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VT Diagnosis

Clinical Diagnosis ECG Laboratory
2 6

FIG. 18A
SWCT Diagnosis

Clinical Diagnosis ECG Laboratory
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APPARATUS AND METHOD FOR
DIFFERENTIATING WIDE COMPLEX
HEART BEATS

CROSS-REFERENCE TO RELATED
APPLICATIONS

[0001] This non-provisional patent application claims pri-
ority to U.S. Provisional Patent Application Ser. No. 62/688,
265, filed Jun. 21, 2018, entitled “Apparatus and Method for
Differentiating Wide Complex Heart Beats,” the contents of
which is incorporated by reference herein in its entirety.

TECHNICAL FIELD OF THE INVENTION

[0002] The present invention relates in general to heart
rhythms, and more particularly, to an apparatus and method
for differentiating wide complex heart beats.

STATEMENT OF FEDERALLY FUNDED
RESEARCH

[0003] None.

INCORPORATION-BY-REFERENCE OF
MATERIALS FILED ON COMPACT DISC

[0004] None.
BACKGROUND OF THE INVENTION
[0005] Without limiting the scope of the invention, its

background is described in connection with classifying wide
complex tachycardia (WCT).

[0006] The successful differentiation of wide complex
tachycardias (WCTs) into ventricular tachycardia (VT) or
supraventricular wide complex tachycardia (SWCT) has
undeniably important therapeutic and prognostic implica-
tions. Ventricular tachycardia (VT) is an abnormal rapid
heart rhythm that is often dangerous. Supraventricular wide
complex tachycardia (SWCT) is a similar appearing abnor-
mal rapid heart rhythm that is typically less hazardous.
[0007] The 12-lead electrocardiogram (ECG) is the most
practical test to non-invasively differentiate VT and SWCT,
in part, because it is one of the most commonly used
diagnostic tests performed in medicine (~300 million ECGs
are performed each year in the United states). Unfortunately,
the differentiation of VT and SWCT remains problematic
despite the availability of numerous manually-operated
ECG criteria and algorithms (1-15). These manual interpre-
tation methods do not perform well when used be less
experienced ECG interpreters. In fact, few clinicians, aside
from expert electrocardiographers, are able use manual
methods with reliable accuracy. In addition, published con-
ventional ECG interpretation methods are limited by their
(1) compulsory need for manual ECG interpretation, (2)
inability to estimate VT probability and (3) uncertain diag-
nostic performance when applied on WCTs regularly
encountered in clinical practice.

SUMMARY OF THE INVENTION

[0008] The present invention is able to accurately distin-
guish VT and SWCT without the need for manual ECG,
electrogram (EMG) and/or vectorcardiogram (VCG) inter-
pretation or calculation. The present invention provides an
apparatus and method for wide complex beat differentiation

Dec. 26, 2019

that can be automatically implemented using data provided
by contemporary ECG, EMG and/or VCG interpretation
software.

[0009] One embodiment of the present invention provides
a computerized method of classifying a wide complex heart
beat(s) comprising: providing a computing device having an
input/output interface, one or more processors and a
memory; receiving one or more wide complex heart beat
waveform amplitudes and/or time-voltage areas, and one or
more baseline heart beat waveform amplitudes and/or time-
voltage areas via the input/output interface or the memory;
determining a signal change between the wide complex
heart beat waveform amplitudes and/or time-voltage areas
and the baseline heart beat waveform amplitudes and/or
time-voltage areas using the one or more processors; and
providing the signal change via the input/output interface,
wherein the signal change provides an indication whether
the wide complex heart beat(s) is from a ventricular source
or a supraventricular aberrant condition.

[0010] In one aspect, the signal change further provides
the indication whether the wide complex heart beat(s) is due
to ventricular pacing. In another aspect, the wide complex
heart beat(s) comprise a wide complex tachycardia (WCT),
the ventricular source comprises a ventricular tachycardia
(VT), and the supraventricular aberrant condition comprises
a supraventricular wide complex tachycardia (SWCT). In
another aspect, providing the signal change via the input/
output interface comprises: automatically determining a
wide complex heart beat classification for the wide complex
heart beat(s) by comparing the signal change to a predeter-
mined value using the one or more processors, wherein the
wide complex heart beat classification comprises a ventricu-
lar source or a supraventricular aberrant condition; and
providing the wide complex heart beat classification via the
input/output interface. In another aspect, the signal change
comprises a VT probability, the wide complex heart beat
classification comprises a VT whenever the VT probability
is greater than or equal to the predetermined value, and the
wide complex heart beat classification comprises a SWCT
whenever the VT probability is less than the predetermined
value. In another aspect, the method further comprises
selecting the predetermined value from a range of 0% to
100%. In another aspect, the predetermined value comprises
about 1%, 10%, 25%, 50%, 75%, 90% or 99%. In another
aspect, providing the signal change comprises providing a
“shock” signal, a “no shock”™ signal, or no signal. In another
aspect, the method further comprises obtaining the wide
complex heart beat waveform amplitudes and/or time-volt-
age areas and the baseline heart beat waveform amplitudes
and/or time-voltage areas from an electrocardiogram (ECG)
QRS signal, a ventricular electrogram (EMG) signal, and/or
a vectorcardiogram (VCG) signal. In another aspect, the
wide complex heart beat waveform amplitudes and/or time-
voltage areas comprise a plurality of measured amplitudes
and/or time-voltage areas of a ECG QRS waveform, a EMG
waveform and/or a VCG waveform above and below an
1soelectric baseline; and the baseline heart beat waveform
amplitudes and/or time-voltage areas comprise a plurality of
measured amplitudes and/or time-voltage areas of a baseline
ECG QRS waveform, a baseline EMG waveform and/or a
baseline VCG waveform above and below the isoelectric
baseline.

[0011] In another aspect, receiving the one or more wide
complex heart beat waveform amplitudes and/or time-volt-
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age areas, and one or more baseline heart beat waveform
amplitudes and/or time-voltage areas comprises: receiving a
ECG QRS data, a EMG data, a VCG data and/or a math-
ematically synthesized VCG data via the input/output inter-
face or the memory; receiving a baseline ECG QRS data, a
baseline EMG data and/or a baseline VCG data via the
input/output interface or the memory; determining the one or
more waveform amplitudes and/or time-voltage areas from
the ECG QRS data, the EMG data and/or the VCG data
using the one or more processors; and determining the one
or more baseline waveform amplitudes and/or time-voltage
areas from the baseline ECG QRS data, the baseline EMG
data and/or the baseline VCG data using the one or more
processors. In another aspect, the ECG QRS data, the EMG
data and/or the VCG data is generated or recorded before or
after the baseline ECG QRS data, the baseline EMG data
and/or the baseline VCG data. In another aspect, the ECG
QRS data, the EMG data and/or the VCG data is generated
or recorded after the baseline ECG QRS data, the baseline
EMG data and/or the baseline VCG data and determining the
signal change. In another aspect, the method further com-
prises generating or recording the ECG QRS data, the EMG
data and/or the VCG data and the baseline ECG QRS data,
the baseline EMG data and/or the baseline VCG data using
one or more sensors or devices. In another aspect, the one or
more sensors or devices comprise a 12-lead ECG device, a
continuous ECG telemetry monitor, a stress testing system,
an extended monitoring device, a smartphone-enabled ECG
medical device, an external cardioverter-defibrillator
therapy device, a subcutaneous implantable cardioverter
defibrillators (ICD), a pacemaker, an automated external
defibrillators (AED), or an automatic implantable cardio-
verter defibrillator (AICD). In another aspect, the computing
device is integrated into the one or more sensors or devices;
or the one or more sensors or devices are integrated into the
computing device. In another aspect, determining the signal
change between the wide complex heart beat waveform
amplitudes and/or time-voltage areas and the baseline heart
beat waveform amplitudes and/or time-voltage areas com-
prises: receiving a wide complex heart beat waveform
duration via the input/output interface or the memory;
determining, using the one or more processors, a percent
amplitude change (PAC) based on the wide complex heart
beat waveform amplitudes and the baseline wide complex
heart beat waveform amplitudes, and/or a percent time-
voltage area change (PTVAC) based on the wide complex
heart beat waveform time-voltage areas and the baseline
wide complex heart beat waveform time-voltage areas;
determining a classification probability based on the wide
complex heart beat waveform duration, and the PAC and/or
the PTVAC using the one or more processors; and wherein
the signal change comprises the classification probability,
and the classification probability comprises a VT probabil-
ity, a SWCT probability, or a ventricular pacing probability.
In another aspect, determining the classification probability
is further determined based one or more additional classi-
fication predictors. In another aspect, the PAC comprises a
frontal PAC and a horizontal PAC, and the PTVAC com-
prises a frontal PTVAC and a horizontal PTVAC.

[0012] In another aspect, determining the signal change
between the wide complex heart beat waveform amplitudes
and/or time-voltage areas and the baseline heart beat wave-
form amplitudes and/or time-voltage areas comprises:
receiving a WCT QRS duration via the input/output inter-
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face or the memory; the one or more wide complex heart
beat waveform amplitudes and/or time-voltage areas com-
prise one or more frontal plane WCT positive waveform
amplitudes and/or time-voltage areas, one or more horizon-
tal plane WCT positive waveform amplitudes and/or time-
voltage areas, one or more frontal plane WCT negative
waveform amplitudes and/or time-voltage areas, and one or
more horizontal plane WCT negative waveform amplitudes
and/or time-voltage areas; the one or more the baseline heart
beat waveform amplitudes and/or time-voltage areas com-
prise one or more frontal plane baseline positive waveform
amplitudes and/or time-voltage areas, one or more horizon-
tal plane baseline positive waveform amplitudes and/or
time-voltage areas, one or more frontal plane baseline nega-
tive waveform amplitudes and/or time-voltage areas, and
one or more horizontal baseline negative waveform ampli-
tudes and/or time-voltage areas; determining (1) a frontal
percent amplitude change (PAC) based on the one or more
frontal plane WCT positive waveform amplitudes, one or
more frontal plane WCT negative waveform amplitudes, one
or more frontal plane baseline positive waveform ampli-
tudes, and one or more frontal plane baseline negative
waveform amplitudes, and/or (2) a frontal percent time-
voltage area (PTVAC) based on the one or more frontal
plane WCT positive waveform time-voltage areas, one or
more frontal plane WCT negative waveform time-voltage
areas, one or more frontal plane baseline positive waveform
time-voltage areas, and one or more frontal plane baseline
negative waveform time-voltage areas; determining (1) a
horizontal PAC based on the one or more horizontal plane
WCT positive waveform amplitudes, one or more horizontal
plane WCT negative waveform amplitudes, one or more
horizontal plane baseline positive waveform amplitudes, and
one or more horizontal baseline negative waveform ampli-
tudes, and/or (2) a horizontal PTVAC based on the one or
more horizontal plane WCT positive waveform time-voltage
areas, one or more horizontal plane WCT negative wave-
form time-voltage areas, one or more horizontal plane
baseline positive waveform time-voltage areas, and one or
more horizontal baseline negative waveform time-voltage
areas; determining a VT probability using a statistical or
machine learning process based on the WCT QRS duration
and (1) the frontal PAC and the horizontal PAC, and/or (2)
the frontal PTVAC and the horizontal PTVAC; and wherein
the signal change comprises the VT probability. In another
aspect, the statistical or machine learning process comprises
a linear regression algorithm, a logistic regression model, a
linear discriminate analysis algorithm, a Naive Bayes algo-
rithm, a computational model using artificial neural net-
works, a computational model based on classification or
regression trees, a k-nearest neighbors based model, a sup-
port vector machine based model, a boosting algorithm, or
an ensemble machine learning algorithm.

[0013] In another aspect, the frontal PAC is determined by
F | PAC (%) = Frontal AAC 100
rontal (%) _(m]x 5

where: Frontal AAC=TAC ,x+TAC,;;+TAC,_,;5, Frontal
BA=TBA ;.+TBA_,;+IBA ,»  TAC, .. +~APC, ..+
ANCy v TBAG, e teaa=(-)AmMDlitudes, ( gie 1 it
(+)AmplinldeBaseZine:LeadXﬁ ‘A‘PCLeadle (+)Ampllmde wWCT:
reagx—(+)Amplitudes . jime-r caaxds ANC, o7 1(=)
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AmplitudeWCT:LeadY_(_)AmplinldeBaseZine:LeaXm s LeadX
denotes V1, V4, V6 (horizontal plane) or aVL, aVR, aVF
(frontal plane); the horizontal PAC is determined by

Horizontal AAC

Horizontal PAC (%) = (m
orizonta

]>< 100,

where: Horizontal AAC=TAC,,+TAC,,+TAC,,, Horizon-
tal BA=TBA,, +TBA,,+IBA; and the VT probability
(Pyp) is determined by:

e(‘”b XWCT uration +*PAC froniar+d<PAChorizopial )

Pyr = BXWCT gy PAC dXPACy ’
1+ e(‘” >XWCT duration X PAC fropiartdx iwnzonral)

where a, b, ¢ and d are constants. In another aspect, the
frontal PTVAC is determined by

Frontal ATV AC

F | PTVAC (%)= | —————
ronta %) ( Frontal BTV A

]xlOO,

where: Frontal ATVAC=TTVAC,,+TTVAC,, +TTVA-
C,yr Frontal BIVA=TBTVA ,,+TBTVA_,,+TBTVA .,
TTVAC,,,.~TVAPC,,, +TVANC,, v,

Lea.

TBTVAgusetine:Loadx=(—)TimeVoltageAreag . iine:
Leadx+(+) TimeVoltageAreay .. . jine s cudrs

TVAPC,, . .x|(+)TimeVoltageArea perg pax—(+)Ti-
meVoltageAreas, e fne:eadi's

TVANC,,,.v=|(-)TimeVoltageAreayer. s cuax—(-)

TimeVoltageAreas seine:Loadxls

LeadX denotes V1, V4, V6 (horizontal plane) or aVL, aVR,
aVF (frontal plane); the horizontal PTVAC is determined by

. Horizontal ATV AC
Horizontal PTV AC (%) = (m] %100,
where:  Horizontal ATVAC=TTVAC,,+TTVAC,,+TT-
VAC,,
[0014] Horizontal BTVA=TBTVA, +ITBTVA,. TBT-

VA ; and the VT probability (P,-,) is determined by:

AT i+ X PTY AC o +d5PTV ACypiz0mtat)

Pyr = ,
1+ e(a+bXWCTdurarion+CXPTV AC pongat td<PTV AChorizomal)

where: a, b, ¢ and d are constants.

[0015] In another aspect, the input/output interface com-
prises a remote device, and the remote device is communi-
cably coupled to the one or more processors via one or more
networks. In another aspect, the method further comprises
providing a recommendation to select or exclude a therapy,
medication, diagnostic testing or referral for a patient based
on the signal change. In another aspect, the computing
device comprises a server computer, a workstation com-
puter, a laptop computer, a mobile communications device,
a personal data assistant, or a medical device. Moreover, the
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method can be implemented using a non-transitory computer
readable medium that when executed causes the one or more
processors to perform the method.

[0016] Another embodiment of the present invention pro-
vides an apparatus for classifying a wide complex heart
beat(s) comprising an input/output interface, a memory, and
one or more processors communicably coupled to the input/
output interface and the memory. The one or more proces-
sors: receive one or more wide complex heart beat wave-
form amplitudes and/or time-voltage areas, and one or more
baseline heart beat waveform amplitudes and/or time-volt-
age areas via the input/output interface or the memory,
determine a signal change between the wide complex heart
beat waveform amplitudes and/or time-voltage areas and the
baseline heart beat waveform amplitudes and/or time-volt-
age areas using the one or more processors, and provide the
signal change via the input/output interface, wherein the
signal change provides an indication whether the wide
complex heart beat(s) is from a ventricular source or a
supraventricular aberrant condition.

[0017] In one aspect, the signal change further provides
the indication whether the wide complex heart beat(s) is due
to ventricular pacing. In another aspect, the wide complex
heart beat(s) comprise a wide complex tachycardia (WCT),
the ventricular source comprises a ventricular tachycardia
(VT), and the supraventricular aberrant condition comprises
a supraventricular wide complex tachycardia (SWCT). In
another aspect, the one or more processors provide the signal
change via the input/output interface by: automatically
determining a wide complex heart beat classification for the
wide complex heart beat(s) by comparing the signal change
to a predetermined value, wherein the wide complex heart
beat classification comprises the ventricular source or the
supraventricular aberrant condition; and providing the wide
complex heart beat classification via the input/output inter-
face. In another aspect, the signal change comprises a VT
probability, the wide complex heart beat classification com-
prises a VT whenever the VT probability is greater than or
equal to the predetermined value, and the wide complex
heart beat classification comprises a SWCT whenever the
VT probability is less than the predetermined value. In
another aspect, the one or more processors select the pre-
determined value from a range of 0% to 100%. In another
aspect, the predetermined value comprises about 1%, 10%,
25%, 50%, 75%, 90% or 99%. In another aspect, the one or
more processors provide the signal change by providing a
“shock” signal, a “no shock™ signal, or no signal. In another
aspect, the wide complex heart beat waveform amplitudes
and/or time-voltage areas and the baseline heart beat wave-
form amplitudes and/or time-voltage areas are obtained from
an electrocardiogram (ECG) QRS signal, a ventricular elec-
trogram (EMG) signal, and/or a vectorcardiogram (VCG)
signal. In another aspect, the wide complex heart beat
waveform amplitudes and/or time-voltage areas comprise a
plurality of measured amplitudes and/or time-voltage areas
of a ECG QRS waveform, a EMG waveform and/or a VCG
waveform above and below an isoelectric baseline; and the
baseline heart beat waveform amplitudes and/or time-volt-
age areas comprise a plurality of measured amplitudes
and/or time-voltage areas of a baseline ECG QRS wave-
form, a baseline EMG waveform and/or a baseline VCG
waveform above and below the isoelectric baseline.

[0018] In another aspect, the one or more processors
receive the one or more wide complex heart beat waveform
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amplitudes and/or time-voltage areas, and one or more
baseline heart beat waveform amplitudes and/or time-volt-
age areas by: receiving a ECG QRS data, a EMG data, a
VCG data and/or a mathematically synthesized VCG data
via the input/output interface or the memory; receiving a
baseline ECG QRS data, a baseline EMG data and/or a
baseline VCG data via the input/output interface or the
memory; determining the one or more waveform amplitudes
and/or time-voltage areas from the ECG QRS data, the EMG
data and/or the VCG data; and determining the one or more
baseline waveform amplitudes and/or time-voltage areas
from the baseline ECG QRS data, the baseline EMG data
and/or the baseline VCG data. In another aspect, the ECG
QRS data, the EMG data and/or the VCG data is generated
or recorded before or after the baseline ECG QRS data, the
baseline EMG data and/or the baseline VCG data. In another
aspect, the ECG QRS data, the EMG data and/or the VCG
data is generated or recorded after the baseline ECG QRS
data, the baseline EMG data and/or the baseline VCG data
and determining the signal change. In another aspect, the
ECG QRS data, the EMG data and/or the VCG data and the
baseline ECG QRS data, the baseline EMG data and/or the
baseline VCG data are generated or recorded using one or
more sensors or devices. In another aspect, the one or more
sensors or devices comprise a 12-lead ECG device, a con-
tinuous ECG telemetry monitor, a stress testing system, an
extended monitoring device, a smartphone-enabled ECG
medical device, a cardioverter-defibrillator therapy device, a
subcutaneous implantable cardioverter defibrillators (ICD),
a pacemaker, an automated external defibrillators (AED), or
an automatic implantable cardioverter defibrillator (AICD).
In another aspect, the input/output interface, the memory
and the one or more processors are integrated into the one or
more sensors or devices; or the one or more sensors or
devices are integrated into a computing device comprising
the input/output interface, the memory and the one or more
processors. In another aspect, the one or more processors
determine the signal change between the wide complex heart
beat waveform amplitudes and/or time-voltage areas and the
baseline heart beat waveform amplitudes and/or time-volt-
age areas by: receiving a wide complex heart beat waveform
duration via the input/output interface or the memory;
determining a percent amplitude change (PAC) based on the
wide complex heart beat waveform amplitudes and the
baseline wide complex heart beat waveform amplitudes,
and/or a percent time-voltage area change (PTVAC) based
on the wide complex heart beat waveform time-voltage
areas and the baseline wide complex heart beat waveform
time-voltage areas; determining a classification probability
based on the wide complex heart beat waveform duration,
the PAC and/or the PTVAC; and wherein the signal change
comprises the classification probability, and the classifica-
tion probability comprises a VT probability, a SWCT prob-
ability, or a ventricular pacing probability. In another aspect,
determining the classification probability is further deter-
mined based one or more additional classification predictors.
In another aspect, the PAC comprises a frontal PAC and a
horizontal PAC, and the PTVAC comprises a frontal PTVAC
and a horizontal PTVAC.

[0019] In another aspect, the one or more processors
determine the signal change between the wide complex heart
beat waveform amplitudes and/or time-voltage areas and the
baseline heart beat waveform amplitudes and/or time-volt-
age areas by: receiving a WCT QRS duration via the
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input/output interface or the memory; the one or more wide
complex heart beat waveform amplitudes and/or time-volt-
age areas comprise one or more frontal plane WCT positive
waveform amplitudes and/or time-voltage areas, one or
more horizontal plane WCT positive waveform amplitudes
and/or time-voltage areas, one or more frontal plane WCT
negative waveform amplitudes and/or time-voltage areas,
and one or more hotizontal plane WCT negative waveform
amplitudes and/or time-voltage areas; the one or more the
baseline heart beat waveform amplitudes and/or time-volt-
age areas comprise one or more frontal plane baseline
positive waveform amplitudes and/or time-voltage areas,
one or more horizontal plane baseline positive waveform
amplitudes and/or time-voltage areas, one or more frontal
plane baseline negative waveform amplitudes and/or time-
voltage areas, and one or more horizontal baseline negative
waveform amplitudes and/or time-voltage areas; determin-
ing (1) a frontal percent amplitude change (PAC) based on
the one or more frontal plane WCT positive waveform
amplitudes, one or more frontal plane WCT negative wave-
form amplitudes, one or more frontal plane baseline positive
waveform amplitudes, and one or more frontal plane base-
line negative waveform amplitudes, and/or (2) a frontal
percent time-voltage area (PTVAC) based on the one or
more frontal plane WCT positive waveform time-voltage
areas, one or more frontal plane WCT negative waveform
time-voltage areas, one or more frontal plane baseline posi-
tive waveform time-voltage areas, and one or more frontal
plane baseline negative waveform time-voltage areas; deter-
mining (1) a horizontal PAC based on the one or more
horizontal plane WCT positive waveform amplitudes, one or
more horizontal plane WCT negative waveform amplitudes,
one or more horizontal plane baseline positive waveform
amplitudes, and one or more horizontal baseline negative
waveform amplitudes, and/or (2) a horizontal PTVAC based
on the one or more horizontal plane WCT positive waveform
time-voltage areas, one or more horizontal plane WCT
negative waveform time-voltage areas, one or more hori-
zontal plane baseline positive waveform time-voltage areas,
and one or more horizontal baseline negative waveform
time-voltage areas; determining a VT probability using a
statistical or machine learning process based on the WCT
QRS duration and (1) the frontal PAC and the horizontal
PAC, and/or (2) the frontal PTVAC and the horizontal
PTVAC; and wherein the signal change comprises the VT
probability. In another aspect, the statistical or machine
learning process comprises a linear regression algorithm, a
logistic regression model, a linear discriminate analysis
algorithm, a Naive Bayes algorithm, a computational model
using artificial neural networks, a computational model
based on classification or regression trees, a k-nearest neigh-
bors based model, a support vector machine based model, a
boosting algorithm, or an ensemble machine learning algo-
rithm

[0020] In another aspect, the frontal PAC is determined by

Frontal AAC

Frontal PAC (%) = (m
Tontal

]xmo,

where: Frontal AAC=TAC,,z+TAC,,,,+TAC,,;, Frontal
BA=TBA ;zx+TBA_;,;+TBA ;.  TAC,_,.~APC,  .v+

ANCLeadX’ TBABaseline :LeadX:(_)Amplitudeﬁaseline :LeadX'l'
(HAmplitudeg, . smereairs  APCrouax|(H)Amplitude e r.
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LeadX= (+)Amp1itudeBaseZine:LeaXm s ANCLeadX:‘ (_)
AmplitudeWCT:LeadX_(_)AmplinldeBaseZine:LeaXm 3 LeadX
denotes V1, V4, V6 (horizontal plane) or aVL, aVR, aVF
(frontal plane); the horizontal PAC is determined by

Horizontal AAC

Horizontal PAC (%) = (m

]>< 100,

where: Horizontal AAC=TAC,,+TAC,,+TAC,,, Horizon-
tal BA=TBA,+TBA,,+TBA,; and the VT probability
(Pyy) 1s determined by:

AT PWCT gygtion, +OPAC ot +AXPAC o soma

Pyr = .
1+ g(a+bXM,CTdurarion +EXPAC frop a1 +dXPAChorizomal)

where a, b, ¢ and d are constants. In another aspect, the
frontal PTVAC is determined by

Frontal ATVAC ]

Frontal PTVAC (%) = (7 X
Frontal BTVA

where: Frontal ATVAC=TTVAC,,x+TTVAC,,,+TTVA-
C,yp, Frontal BIVA=TBTVA,,,,+TBTVA,,,, +TBTVA, .
TTVAC,, +~TVAPC,,  +TVANC,

TBTVAgasciine:Leadx—(~)TimeVoltage Areas ..
Leadx+(+) TimeVoltageAreas . i e-7eadns

TVAPC,, v~ |(+)TimeVoltageArea oy cuax—(+) Ti-
meVoltageATea s, cehneLeadx!

TVANC,, o= (=) TimeVoltageAteacr f caax—(-)
TimeVoltage Ateas serine.roadxts

LeadX denotes V1, V4, V6 (horizontal plane) or aVL, aVR,
aVF (frontal plane); the horizontal PTVAC is determined by

Horizontal ATVAC

Horizontal PTVAC(%) = ( “Horizonal BTVA.
orizontal

]x 100,

where:  Horizontal ATVAC=TTVAC,,+TTVAC,,+TT-
VACys,
[0021] Horizontal BTVA=TBTVA, +TBTVA ,+TBT-

VA ,%; and the VT probability (P;-) is determined by:

TP WCT i +OPTVAC 1 +dXPTYAC gt )

Pyr = ,
1 + AT PWCT o +OXPTVAC gl +&XPTVACh o z0msal )

where: a, b, ¢ and d are constants.

[0022] In another aspect, the input/output interface com-
prises a remote device, and the remote device is communi-
cably coupled to the one or more processors via one or more
networks. In another aspect, the one or more processors
provide a recommendation to select or exclude a therapy,
medication, diagnostic testing or referral for a patient based
on the signal change. In another aspect, apparatus comprises
a server computer, a workstation computer, a laptop com-
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puter, a mobile communications device, a personal data
assistant, or a medical device.

BRIEF DESCRIPTION OF THE DRAWINGS

[0023] For a more complete understanding of the features
and advantages of the present invention, reference is now
made to the detailed description of the invention along with
the accompanying figures and in which:

[0024] FIG. 1A depicts a schematic representation of a
normal ECG;
[0025] FIG. 1B depicts an example of ECG data collected

and recorded from a patient’s 12-lead ECG;

[0026] FIG. 2 depicts a schematic representation of the
resultant QRS amplitude changes that manifest between a
patient’s baseline and WCT ECG;

[0027] FIGS. 3A-3E depicts panels that summarize the
expected range of mean electrical vector changes in the
frontal ECG plane after WCT event onset;

[0028] FIGS. 4A-4E depicts panels that summarize the
expected range of mean electrical vector changes in the
horizontal ECG plane after WCT event onset;

[0029] FIGS. 5A-5B are graphic depictions of select ECG
lead combinations utilized by the frontal (aVR, aVL, aVF)
and horizontal (V1, inverse V4, V6) PAC formulas in
accordance with one embodiment of the present invention;
[0030] FIGS. 6A-6C depict the structure of the frontal
PAC formula, horizontal PAC formula and amplitude based
WCT formula in accordance with one embodiment of the
present invention;

[0031] FIG. 7 depicts a flow diagram representing the
inputs and output of the amplitude based WCT Formula in
accordance with one embodiment of the present invention;
[0032] FIG. 8 illustrates the inclusion criteria and reasons
for exclusion during validation cohort selection;

[0033] FIG. 9 is Table 1 showing the ECG characteristics
of the derivation cohort;

[0034] FIG. 10 is Table 2 showing the clinical character-
istics of the derivation cohort;

[0035] FIG. 11 is Table 3 showing the mean and standard
deviation (SD) of measured and calculated ECG variables
among VT or SWCT groups within the derivation cohort;

[0036] FIGS. 12A-12C are box-plots demonstrating the
median and proportional distribution of WCT QRS duration
(ms) (FIG. 12A), frontal PAC (%) (FIG. 12B) and Horizon-
tal PAC (%) (FIG. 12C) for VT and SWCT groups in
accordance with one embodiment of the present invention;
[0037] FIG. 12D is a table showing electrocardiographic
variables among baseline ECG sub-groups in accordance
with on embodiment of the present invention;

[0038] FIG. 13 is a graph of a receiver operating charac-
teristic (ROC) curve depicting amplitude based WCT For-
mula diagnostic performance in accordance with one
embodiment of the present invention;

[0039] FIG. 14 is Table 4 showing the ECG characteristics
of the validation cohort;

[0040] FIG. 15 is Table 5 showing the clinical character-
istics of the validation cohort;

[0041] FIGS. 16A and 16B are histograms demonstrating
the distribution of clinically diagnosed VT and SWCT
according to the amplitude based WCT Formula diagnostic
performance at on probability estimates (0.000%-99.999%)
for the validation cohort;
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[0042] FIG. 17 is Table 6 showing the diagnostic perfor-
mance of various VT probability partitions for the validation
cohort in accordance with one embodiment of the present
invention;

[0043] FIGS. 18A and 18B are Venn diagrams summariz-
ing the distribution of shared and non-shared VT (FIG. 18A)
and SWCT (FIG. 18B) diagnoses established by three diag-
nostic standards for the validation cohort: (1) clinical diag-
nosis, (2) ECG laboratory interpretation and (3) amplitude
based WCT Formula’s 50% VT probability partition;
[0044] FIGS. 19A and 19B are tables showing the elec-
trocardiographic characteristics of clinical SWCT classified
as VT and clinical VT classified as SWCT by the amplitude
based WCT Formula’s 50% VT probability partition for the
validation cohort;

[0045] FIG. 20 depicts a schematic representation of a
normal ECG with time-voltage areas;

[0046] FIGS. 21A-21B are graphic depictions of select
ECG lead combinations utilized by the frontal (aVR, aVL,
aVF) and horizontal (V1, inverse V4, V6) PAC formulas
with respect to time-voltage areas in accordance with one
embodiment of the present invention;

[0047] FIG. 22 depicts a schematic representation of the
resultant QRS time-voltage area changes that manifest
between a patient’s baseline and WCT ECG;

[0048] FIGS. 23A-23C depict derivations of the frontal
PTVAC formula, horizontal PTVAC formula and time-
voltage are based WCT formula in accordance with one
embodiment of the present invention;

[0049] FIGS. 24A-24B are box-plots demonstrating the
median and proportional distribution of frontal PTVAC (%)
(FIG. 24A) and horizontal PTVAC (%) (FIG. 24B) for VT
and SWCT groups in accordance with one embodiment of
the present invention;

[0050] FIGS. 25A-25B are ROC graphs depicting the
diagnostic performance of frontal PTVAC (%) (FIG. 25A)
and horizontal PTVAC (%) (FIG. 25B) in accordance with
one embodiment of the present invention;

[0051] FIG. 26 is a graph depicting the time-voltage area
based WCT Formula’s diagnostic performance for the deri-
vation cohort (AUC of 0.95) in accordance with one
embodiment of the present invention;

[0052] FIGS. 27A and 27B are histograms demonstrating
the distribution of clinical VT and SWCT according to the
time-voltage area based WCT Formula diagnostic perfor-
mance at VT probability estimates (0.000%-99.999%);
[0053] FIG. 28 is a graph depicting the VCG-VT Model’s
diagnostic performance for the testing cohort (AUC of 0.97)
in accordance with one embodiment of the present inven-
tion;

[0054] FIG. 29 is a block diagram of an apparatus in
accordance with one embodiment of the present invention;
and

[0055] FIG. 30 is a flow chart of a method in accordance
with one embodiment of the present invention.

DETAILED DESCRIPTION OF THE
INVENTION

[0056] While the making and using of various embodi-
ments of the present invention are discussed in detail below,
it should be appreciated that the present invention provides
many applicable inventive concepts that can be embodied in
a wide variety of specific contexts. The specific embodi-
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ments discussed herein are merely illustrative of specific
ways to make and use the invention and do not delimit the
scope of the invention.

[0057] To facilitate the understanding of this invention, a
number of terms are defined below. Terms defined herein
have meanings as commonly understood by a person of
ordinary skill in the areas relevant to the present invention.
Terms such as “a@”, “an” and “the” are not intended to refer
to only a singular entity, but include the general class of
which a specific example may be used for illustration. The
terminology herein is used to describe specific embodiments
of the invention, but their usage does not delimit the
invention, except as outlined in the claims.

[0058] The present invention provides a new electrophysi-
ological principle (degree of QRS or ventricular electrogram
signal change in amplitude and/or time-voltage area between
the wide complex tachycardia (WCT) and baseline heart
rhythm helps distinguish ventricular tachycardia (VT) and
supraventricular wide complex tachycardia (SWCT)) that
can be exploited by ECG interpretation software to render
precise and accurate predictions of VT verses SWCT. The
WCT differentiation method described herein can be auto-
matically implemented by contemporary ECG interpretation
software. Note that other medical devices that analyze ECG
signals, electrogram (EMG) signals, and/or vectorcardio-
gram (VCQ) signals from the heart (e.g pacemakers, trans-
venous lead or subcutaneous, automated implantable car-
dioverter-defibrillators, automated external defibrillators)
can utilize the similar methods or systems based on the
foregoing principles of this present invention. Note that
other formulas or algorithms based on the foregoing prin-
ciple and other information described herein can be used to
predict VT by diagnostic ECG interpretation software. As a
result, the present invention is not limited to the WCT
Formulas described herein.

[0059] The WCT Formulas were designed to effectively,
accurately and automatically differentiate WCT into VT,
which is usvally a dangerous heart rhythm, and SWCT,
which is generally a less hazardous heart rhythm. VT and
SWCT are most often non-invasively diagnosed using a
12-lead ECG. However, the present invention is applicable
to any current or future technology that provides the relevant
data using known or unknown detection devices or sensors
(i.e., any device that generates and analyzes ECG signals,
ventricular EMG signals, and/or VCG signals).

[0060] The WCT Formulas are logistic regression models
that deliver an automatic prediction VT likelihood (i.e., %
VT probability) using ECG measurements (e.g. WCT dura-
tion) and calculations (e.g., frontal and horizontal Percent
Amplitude Change (PAC), or frontal and horizontal Percent
Time-Voltage Area Change (PTVAC)) derived from paired
WCT and baseline ECGs. The frontal and horizontal PAC
and PTVAC formulas are highly predictive determinants of
VT and SWCT, wherein a low PAC (%) or PTVAC (%)
indicates SWCT and a high PAC (%) or PTVAC (%)
indicates VT. Moreover, the frontal and horizontal PAC or
PTVAC calculations are independent predictors of VT. Each
calculation is able to provide a reliable means to effectively
distinguish VT and SWCT. They can also be used to
differentiate discrete ventricular depolarizations due to pre-
mature ventricular contractions, ventricular pacing, and
supraventricular aberrant conduction.
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[0061] The WCT Formula using amplitudes will be
described in detail below. The WCT Formula using time-
voltage areas will be described thereafter.

[0062] Now referring to FIGS. 1A and 1B, the 12-lead
ECG and resulting data used in the WCT Formula will be
described. The ECG currently is the most commonly used
test to determine whether a patient’s underlying heart
rhythm is normal or abnormal. The 12-lead ECG records the
electrical activity of the heart using 12 separate leads. Fach
lead records unique QRS complexes representative of the
heart’s ventricular depolarization. FIG. 1A is a schematic
representation of a stereotypical ECG pattern for a single
heart beat 100. The QRS complex waveform 102 is the
combination of three graphical deflections: (1) the Q wave
104 having a downward deflection immediately following
the P wave 106; (2) the R wave 108 having an upward
deflection immediately following the Q wave 104; and (3)
the S wave 110 having a downward deflection following the
R wave 108. The Q wave 104, R wave 108 and S wave 110
occur in rapid succession and are encompassed within the
QRS complex waveform 102 and accompanying time inter-
val, QRS duration 112. The T-wave 114 follows the S wave
110. Each wave has amplitude denoted as PA, QA, RA, SA
and TA. In addition, the QT interval 116 is the time interval
extending from the onset of the QRS complex waveform
102 to the end of the T wave 114. The QRS complex 102 is
divided into positive (+) amplitudes 118 and negative (-)
amplitudes 120. The positive (+) amplitudes 118 are the
vertical QRS complex deflections above the isoelectric
baseline 122, namely the amplitude of /R wave and r'/R’
wave. The negative (-) amplitudes 120 are the vertical QRS
complex deflections below the isoelectric baseline 122,
namely the amplitude of q or QS wave, s/S wave and s/S'
wave. In addition computerized ECG interpretation soft-
ware, such as the MUSE provided by GE Healthcare,
automatically measures QRS complex waveform 102 attri-
butes, namely q or QS, /R, s/S, r/R", s'/S' durations (ms),
amplitudes (1V), and time-voltage areas (WV-ms) Note that
standard annotation of QRS complex waveforms of small
QRS waveforms are in lower case and large QRS waveforms
are in upper case.

[0063] FIG. 1B depicts a measurement matrix showing an
example of 12-lead ECG data recorded and calculated by
computerized ECG interpretation software. The 12 leads are
denoted as V1, V2, V3,V4,V5,V6, 1, aVL, 11, aVF, 111, and
aVR. In this example, QRS waveform deflection (q or QS,
/R, /S, /R, §'/S") measurements including duration (ms)
and amplitude (1V) are provided by GE Healthcare’s MUSE
ECG interpretation software and databank. In this example,
the amplitude (_A) and duration (_D) data for the various
waves are denoted as PA, PPA, QA, QD, RA, RD, SA, SD,
RPA, RPD, SPA, and SPD. Note that other computerized
ECG interpretation software can be used to derive this
electrocardiographic data. Note that these measurements are
not routinely shown on the ECG paper recording, but are
available within the ECG interpretation software databanks.
The positive (+) amplitudes 118 are the vertical QRS com-
plex deflections above the isoelectric baseline 122, namely
the /R wave amplitude (V) 150 and r/R' wave amplitude
(uV) 152. The negative (-) amplitudes 120 are the vertical
QRS complex deflections below the isoelectric baseline 122,
namely the q or QS wave amplitude (uV) 154, s/S wave
amplitude (V) 156, and s'/S' wave amplitude (uV) 158. As
will be described in more detail below, the voltage amplitude
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measurements from specific leads (frontal ECG plane: V1,
V4, V6; and horizontal ECG plane: aVL, aVF, aVR) are
used in the frontal and horizontal PAC formulas to generate
the frontal and horizontal PACs (%).

[0064] Note that contemporary computerized ECG inter-
pretation software also routinely provides standard ECG
measurements including QRS duration (ms), QTc duration
(ms), and frontal plane R and T wave axes (°). These
measurements are typically apparent/reported on the 12-lead
ECG paper recording. The difference in QRS duration (ms),
frontal plane R wave axis (°) and frontal plane T wave axis
(°) between the WCT and baseline ECGs may be automati-
cally calculated by computerized ECG interpretation soft-
ware. Note that time-voltage area measurements of separate
QRS waveform deflections (q or QS, t/R, s/S, r/R', s'/S") can
be automatically provided by computerized ECG interpre-
tation software and electronic databanks (e.g., MUSE from
GE Healthcare, etc.).

[0065] The new electrophysiology principles that are the
backbone of the horizontal and frontal PAC formulas will
now be described. The number of ways VT may propagate
within and depolarize the ventricular myocardium is osten-
sibly limitless. Consequently, VTs have an immeasurable
number of ways they can be electrocardiographically dis-
tinct from their respective baseline ECG. In contrast, the
manner SWCTs depolarize the ventricular myocardium is
ordinarily confined to the same His-Purkinje network or
implantable device system utilized by the baseline heart
rhythm; in rarer instances SWCTs may be due to ventricular
pre-excitation using separate atrioventricular accessory
pathways. As a result, many SWCTs, especially those with
pre-existing aberrancy or ventricular pacing, demonstrate
substantial electrocardiographic similarity with the baseline
BECG. On the contrary, SWCTs with “functional” aberration
exhibit recognizably different QRS complex configurations.
However, since most functional SWCTs demonstrate ante-
grade impulse propagation and ventricular depolarization
confined in the His-Purkinje network, they are destined to
express a relatively constrained variety of electrocardio-
graphically distinct QRS complexes.

[0066] Moreover, the amplitude and time-voltage area
based WCT Formulas (and its principles) can be similarly
applied to these types of defibrillator devices because they
either use ECG signals using surface ECG electrodes (or a
modification thereof with the subcutaneous ICD) or EMG
signals derived from intracardiac and extracardiac elec-
trodes (in the case of AICDs and pacemakers) to help
distinguish different heart rhythms. Because these devices
acquire ventricular depolarization signals from surface ECG
electrodes or EMG electrodes, the invention, and its prin-
ciples of QRS (or ventricular EMG signal) amplitude (or
time-voltage area) change, can be applied to help them more
accurately discriminate SWCT and V'T.

[0067] Since the means by which VT may propagate
within and depolarize the ventricular myocardium is essen-
tially unlimited, VTs have an expansive means to which
their ventricular electrograms (EMGs) may be morphologi-
cally distinct from the ventricular EMGs of the baseline
heart thythm. In contrast, the manner SWCTs depolarize the
ventricular myocardium is ordinarily confined to the same
His-Purkinje network or implantable device system utilized
by the baseline heart rhythm; in rarer instances SWCTs may
be to ventricular pre-excitation using separate atrioventricu-
lar accessory pathways. As a result, many ventricular EMGs
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from SWCTs, especially those with pre-existing aberrancy
or ventricular pacing, demonstrate marked similarity with
the ventricular EMGs for the patient’s baseline heart rhythm.
On the contrary, SWCTs with “functional” aberration
exhibit recognizably different ventricular EMG configura-
tions. However, since functional SWCTs still demonstrate
antegrade impulse propagation and ventricular depolariza-
tion confined in the His-Purkinje network, they tend to
express a relatively constrained variety of ventricular EMG
complexes.

[0068] As a result, various embodiments of the present
invention can be used to further help guide therapy decisions
(e.g., “shock patient” for VT OR “do not shock the patient”
for SWCT). As a consequence, the likelihood of appropriate
device defibrillations (i.e., shocks) may be increased while
decreasing the likelihood of inappropriate device defibrilla-
tions.

[0069] Likewise, various embodiments of the present
invention can be used by conventional, transvenous lead
based devices like AICDs or pacemakers. These devices
analyze multiple separate bipolar EMG signals derived from
various intracardiac and extracardiac electrodes combina-
tions (e.g., right ventricular coil to AICD generator housing
OR extracardiac SVC coils to AICD generator housing OR
RV right ventricular tip to right ventricular coil OR any other
combination). In general, commercially available implanted
devices usually store 2-4 EMG channels which are analyzed
by embedded interpretation algorithms. These EMG chan-
nels (separately or in combination) can be examined to
establish the degree (or percentage) of ventricular EMG
amplitude or time-voltage area change between the WCT
and baseline EMG. This procedure/method can help distin-
guish VT and SWCT.

[0070] Referring now to FIG. 2, a schematic representa-
tion 200 of the resultant QRS amplitude changes that
manifest between a patient’s baseline ECG 202 and WCT
ECG 204 is shown. The transition between a patient’s
baseline and WCT ECG (or vice versa) is inherently asso-
ciated with changes (large or small) in QRS amplitude. Note
the separate QRS amplitude changes (A’s) that occur (+)
above and (=) below the isoelectric baseline 122. Any
change in QRS amplitude essentially signals attendant
changes in the mean electrical vector of ventricular depo-
larization. Given VT’s more expansive means of ventricular
depolarization, it was hypothesized that it would typically
demonstrate greater changes to the mean electrical vector
than SWCT in both the frontal and horizontal ECG planes
(FIGS. 3A-3E and 4A-4E, respectively). To test this hypoth-
esis, the frontal and horizontal PAC formulas were created
to broadly delineate the extent of QRS amplitude change
that manifests between the WCT and baseline ECG.
[0071] Both calculations determine the percent (%)
change in QRS amplitude that occurs at specific ECG lead
combinations within the frontal (aVR, aVL, aVF) or hori-
zontal (V1, V4, V6) ECG plane. In order to detect and
quantify changes in the net direction (i.e. axis) and/or
voltage intensity of the mean electrical vector, each PAC
calculation utilizes ECG leads that are in effect separated by
approximately 120°. In the case of V4, its mathematical
inverse equivalent, “inverse V4,” is separated equidistant
from V1 and V6 by approximately 120°.

Now referring to FIGS. 3A-3E and 4A-4E, panels that
summarize mean electrical vector changes in the frontal
(FIG. 3A-3E) and horizontal (FIGS. 4A-4E) ECG planes
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after WCT event onset are shown. The mean electrical
vector (of the frontal or horizontal ECG plane) represents
the summative electrical vector of ventricular depolariza-
tion. This value is determined from the QRS amplitudes
derived from the 12-lead ECG. Heavy arrows represent the
mean electrical vector for an ECG with demonstrating
normal sinus rhythm (Panels 3A-3D, 4A-4D) or pre-existing
BBB (Panels 3E, 4E). Shaded regions depict the range of
potential axes and voltage intensities for mean electrical
vectors that occur after WCT onset. Select ECG leads
utilized by the frontal (aVR, aVL, aVF) and horizontal (V1,
V4, V6) PAC formulas are highlighted. Inverse V4 is the
inverted equivalent of its planar opposite: lead V4. Panels
3A, 4A demonstrates the mean electrical vector for a typical
normal sinus baseline ECG. Panels 3B-3E, 4B-4E demon-
strate the expected range of mean electrical vectors follow-
ing the onset of various WCTs. Panels 3B, 4B demonstrates
VT’s incredibly expansive range of potential mean electrical
vectors. Panels 3C-3D, 4C-4D demonstrate the relatively
constrained mean electrical vector changes for SWCTs due
to functional RBBB (Panels 3C, 4C) and LBBB (Panels 3D,
4D). Panels 3E, 4E depict the minimal mean electrical
vector changes for SWCTs with pre-existing aberrancy. As
shown, SWCTs have “restricted” changes to the mean
electrical vector that translates into smaller frontal and
horizontal PACs, and V'Ts tend to demonstrate “expansive”
changes in the mean electrical vector that translates into
larger frontal and horizontal PACs. Therefore, VI demon-
strates much greater frontal and horizontal PACs than
SWCT. Correspondingly, the larger frontal and horizontal
PACs strongly predict VT, whereas smaller frontal and
horizontal PACs predicted SWCT.

[0072] Referring now to FIGS. SA-5B, graphic depictions
of select ECG lead combinations utilized by the frontal
(aVR, aVL, aVF) (FIG. 5A) and horizontal (V1, inverse V4,
V6) (FIG. 5B) PAC formulas in accordance with one
embodiment of the present invention are shown. The QRS
amplitude change (A) that manifests between the baseline
and WCT ECGs at these selected leads is the foundation for
each PAC calculation. Note that the absolute QRS amplitude
changes (A’s) that manifest in lead V4 are mathematically
equivalent to its planar opposite: inverse V4.

[0073] This present invention is in agreement with the
multivariate logistic regression analysis reported by Griffith
et al in 1991 (7). In their study, WCTs demonstrating large
frontal plane QRS axis shifts (>=40°) from the baseline
sinus rhythm ECG strongly predicted VT. Notably, they
found QRS axis shifts to be the 3" strongest independent
WCT predictor (after MI history and lead aVF QRS con-
figuration) among 15 clinical and 11 electrocardiographic
variables. Similar to the recognition of large frontal plane
QRS axis shifts, each PAC calculation is able to detect
sizable changes in the net direction (i.e. axis) of the mean
electrical vector. Yet, more importantly, both PAC calcula-
tions provide a workable means to quantify changes in the
net direction, voltage intensity, and/or QRS morphologic
configuration produced by ventricular depolarization.

[0074] This present invention also indirectly agrees with
the findings reported by Dongas et al in 1985 (16). Their
study confirmed that WCTs with similar morphologic con-
figurations as the pre-existing BBB were likely SWCTs,
whereas WCTs with different morphologic configurations
were likely VTs. Correspondingly, it was observed that
SWCT demonstrated much smaller frontal and horizontal
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PACs than VT among ECG pairs with baseline QRS pro-
longation (QRS duration=>120 ms). However, it was fur-
thermore observed that SWCT demonstrates smaller frontal
and horizontal PACs than VT among ECG pairs without
baseline QRS prolongation (QRS duration<120 ms) (see
FIG. 12D).

[0075] It is well known that WCTs with more prolonged
QRS durations are less likely due to SWCTs with aberrant
conduction. This observation was first described in 1978 by
Wellens et al who showed that VTs generally demonstrate
longer QRS durations than SWCTs with functional abet-
rancy (3). This understanding later evolved into proposed
QRS duration cut-offs for VT diagnoses: QRS>140 ms for
WCTs with right BBB configuration and QRS>160 ms for
WCTs with left BBB configuration (4). However, subse-
quent study (17-20) has found the sole use of QRS duration
cut-offs to be problematic because SWCTs often demon-
strate QRS durations greater than 160 ms. This most com-
monly occurs among patients with ongoing AAD use, pre-
existing BBB or advanced cardiomyopathy. In addition,
several series have also shown that VTs often demonstrate
QRS durations less than 140 ms (3, 4, 18, 19). This tends to
occur among VTs that rapidly utilize the His-Purkinje net-
work or develop in patients without structural heart disease.
The findings described herein support that Vs demonstrate
longer QRS durations than SWCTs (see e.g., FIG. 11).

[0076] A logistic regression formula (i.e. WCT Formula)
capable of accurate VT probability predictions using mea-
surements and calculation provided by contemporary ECG
interpretation software was created. Note that the present
invention is not limited to use of a logistic regression model,
such as the amplitude based WCT Formula. Other “machine
learning” or artificial intelligence prediction methods (e.g.,
artificial neural networks, support vector machines, Random
Forests, etc.) can be used with the frontal and horizontal
PAC formulas. The amplitude based WCT Formula incor-
porates the strong independent WCT predictors including
(1) WCT QRS duration (ms), (2) frontal PAC (%) and (3)
horizontal PAC (%). The predictive contribution of each
WCT predictor is concomitantly “weighed” according to
their influence on the binary outcome (VT vs. SWCT) to
render a precise VT probability estimation. Given each
WCT predictor’s direct relationship with VT likelihood, the
amplitude based WCT Formula estimates higher VT prob-
abilities for ECG pairs demonstrating greater WCT QRS
durations, frontal PAC and/or horizontal PAC. Similarly, the
amplitude based WCT Formula estimates lower VT prob-
ability for ECG pairs with smaller WCT QRS durations,
frontal PAC and/or horizontal PAC.

[0077] The use of a multivariate logistic regression model
to formulate the WCT Formulas allows (1) delivery of
precise VT probability predictions and (2) later inclusion of
other well-established, enhanced and/or newly formulated
WCT predictors. Step-wise decision-tree approaches to
diagnosis were avoided because of their tendency to prema-
turely commit to WCT diagnoses without considering the
predictive strengths of other relevant predictors. The use of
specific value cut-offs for VT diagnoses (e.g., QRS dura-
tion=>160 ms or frontal PAC>=75%) was avoided because
this tends to cause (1) misclassifications due to VT and
SWCT overlap and (2) ambiguity concerning the strength of
WCT diagnoses for values distributed well above, well
below, or at the margin of the designated cut-offs.
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[0078] The WCT Formula’s logistic regression model
structure uses select independent WCT predictors (WCT
QRS duration (ms), frontal PAC (%) and horizontal PAC
(%)) to render a precise prediction of VT probability (%).
Each WCT predictor (X)) was assigned beta coeflicients (f,)
according to their influence on the binary outcome (VT vs.
non-VT). The “constant” term (B,) represents the y-inter-
cept of the least squares regression line. Discrete measured
or calculated WCT predictor values derived from paired
baseline and WCT ECGs are incorporated into the amplitude
based WCT Formula to calculate VT probability (P,).

[0079] A calculation series is used to quantify the degree
of QRS amplitude change that manifests between the base-
line ECG and WCT event by converting raw ECG measure-
ments into the frontal and horizontal PAC. The measured
amplitudes (uV) of QRS waveforms above (+) (/R and r'/R")
and below (=) (¢/Q8, s/S, and s'/S") the isoelectric baseline
from select frontal (aVR, aVL, aVF) and horizontal (V1, V4,
V6) ECG leads were used to derive each calculation. Cal-
culations were computed using JMP Pro 10 statistical soft-
ware. Baseline Amplitude (BA), Absolute Amplitude
Change (AAC) and Percent Amplitude Change (PAC) were
calculated for both the frontal and horizontal ECG planes.

APCy g™ |(+)Amplitude e cqax—(+)Amplitude-
Baseline: LeadX!

ANC, oqy= (=) Amplitude e 7. o -(-) Amplitude-

Baseline:LeadX‘

TACpqxmAPCaxt ANCy iy

TBABa.seline:LeadX;(_)ArnplitudeBaselme:LeadX"'(+)AIH_
plitudes,sepmeseaax

where: LeadX denotes V1, V4, V6 (horizontal plane) or
aVL, aVR, aVF (frontal plane). Note that (-) Amplitude=g/
QS+s/S+s'/S" and (+) Amplitude=t/R+r'/R'. Note that ANC
and APC equations have the “absolute” mathematical anno-
tation (e.g. lequation’s contentsl).

[0080] Absolute Amplitude Change (AAC) represents the
absolute summative difference in QRS amplitude between
the WCT and baseline ECG.

Frontal AAC=TAC, ;z+TAC,;,+TAC, ;7
Horizontal AAC=TAC;+TAC,+TAC 4

[0081] Baseline Amplitude (BA) represents the total sum
amplitude of (+) and (=) QRS waveforms in the baseline
ECG.

Frontal BA=TBA ,yz+TBA,;z+TBA, 1z

Horizontal BA=TBA;;+TBA 4+ TBA 4

[0082] Percent Amplitude Change (PAC) represents the
percent change in QRS amplitude between the WCT and
baseline ECG.

Frontal AAC

Frontal PAC (%) = ( _
Frontal BA

]xlOO

. Horizontal AAC
Horizontal PAC (%) = (7] x 100

Horizontal BA
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A diagram showing the derivation of the frontal PAC for-
mula and horizontal PAC formula are shown in FIGS. 6A
and 6B, respectively.

[0083] As previously mentioned, the amplitude based
WCT Formula is a binary outcome logistic regression model
that uses select independent WCT predictors: (1) WCT
duration (ms), (2) frontal PAC (%) and (3) horizontal PAC
(%). Each WCT predictor (X,) was assigned beta coeffi-
cients ([3,) according to their influence on the binary out-
come (VT vs. non-VT). The “constant” term (B,) represents
the y-intercept of the least squares regression line. Discrete
measured or calculated WCT predictor values derived from
paired baseline and WCT ECGs are incorporated into the
WCT Formula to calculate VT probability (P).

Pyr
=ﬂ0 +ﬂ1X1 +ﬂ2X7_ +ﬂ3X3.
1-Pyr

Xﬁ = 11‘1(

where: X, is the weighted sum of the WCT predictors;

[0084] P, is the probability of VT;

[0085] f, is the Y intercept or constant;

[0086] f, is the slope of the independent WCT predictor n;
[0087] X, is the independent WCT predictor n; and
[0088] independent WCT predictors n are WCT ...

PACfron tal> and PACh orizontal

e
Pyr =
X
1+e'8
ATHXWCT fnagion, +OXPAC froneat +dXPAChorizonsal )
Pyr = -
1+ e(a+b><l/l Claurgtion +<PAC fropsai +dxPA Chorizomal)

where a, b, ¢ and d are constants:

[0089] a=intercept=—14.5607;
[0090] b=WCT QRS duration=0.0627,;
[0091] c=frontal % change in area=0.284; and
[0092] d=horizontal % change in area=0.0395.
8(714.5607 +0.0627><WCTdumn-Dn +0.284xPA Cfromal +0.0395 XPAChorizomal )
Prr = 1+ e(—14.5607+0.0627><WCTdum,‘-on+0.284><PACfmmal+0.0395><PACh0n-ZDmgl).

A diagram showing the amplitude based WCT Formula’s
logistic regression structure is shown in FI1G. 6C.

[0093] Referring now to FIG. 7, a flow diagram 700
representing the inputs and output of the amplitude based
WCT Formula in accordance with one embodiment of the
present invention is shown. The baseline ECG QRS wave-
form measurements may be obtained from GE Healthcare’s
MUSE or other computerized ECG interpretation software
in block 702, and the WCT ECG QRS waveform measure-
ments may be obtained from GE Healthcare’s MUSEor
other computerized ECG interpretation software in block
704. The baseline (+) and (-) waveform amplitudes of V1,
V4, V6 in block 706 and WCT (+) and (-) waveform
amplitudes of V1, V4, V6 in block 708 are used in the
horizontal PAC formula in block 710 to provide the hori-
zontal PAC (%) in block 712. The baseline (+) and (-)
waveform amplitudes of aVL, aVR, aVF in block 714 and
WCT (+) and (-) waveform amplitudes of aVL, aVR, aVF
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in block 716 are used in the frontal PAC formula in block
718 to provide the horizontal PAC (%) in block 720. The
WCT QRS duration is provided in block 722, which is used
along with the horizontal PAC (%) in block 712 and frontal
PAC (%) in block 720 by the amplitude based WCT Formula
in block 724 to provide the VT Probability (%) in block 726.
[0094] A two-part study was designed to build and vali-
date the amplitude based WCT Formula capable of auto-
matic VT probability estimation. In Part 1, a derivation
cohort of paired WCT and subsequent baseline ECGs was
used to construct a logistic regression model using the
strongest independent predictors of VT and SWCT. Inde-
pendent predictors including WCT QRS duration (ms),
frontal ECG plane percent amplitude change (PAC) (%) and
horizontal ECG plane percent amplitude change (PAC) (%)
were incorporated into the amplitude based WCT Formula.
In Part 2, the amplitude based WCT Formula’s performance
was prospectively tested using a separate validation cohort
of paired WCT and subsequent baseline ECGs.

[0095] Paired WCT and subsequent baseline ECGs were
derived from the Mayo Clinic Rochester and affiliated
hospitals between September 2011 and November 2016. All
ECGs were 12-lead recordings using standard paper speed
(25 mm/s) and amplification (10 mm/mV). Electrocardio-
gram pairs were identified using a MUSE ECG databank
system (GE Healthcare). Electrocardiograms fulfilling WCT
criteria (QRS duration=120 ms, heart rate=100 bpm) plus an
ECG laboratory interpretation diagnosis of (1) “ventricular
tachycardia,” (2) “supraventricular tachycardia,” or (3)
“wide complex tachycardia” were defined as WCT events.
Baseline ECGs were defined as the most proximate non-
WCT ECG obtained after the WCT event. Electrocardio-
gram pairs were excluded if the WCT did not have a
subsequent baseline ECG or definite clinical diagnosis
recorded within the patient’s electronic medical record.
Polymorphic VTs and irregular SWCTs with varying atrio-
ventricular (AV) conduction were excluded. Abbreviated
WCTs that were not the dominant rhythm featured on the
12-lead ECG were excluded. Electrocardiogram pairs found
to have irreconcilable faulty measurements (eg. QRS ampli-
tude measurement of a pacing spike) or alternative lead
placements (eg. right-sided chest leads) were excluded.
[0096] This version of the WCT Formula was developed
and tested using two cohorts. The derivation cohort con-
sisted 0f 328 paired WCT (160 VT, 168 SWCT) and baseline
ECGs from 229 patients presenting to the Mayo Clinic
Rochester (September 2011-March 2015). The validation
cohort was comprised of 313 paired WCT (123 VT, 190
SWCT) and baseline ECGs from 228 patients presenting to
the Mayo Clinic Rochester and/or Mayo Clinic Health
System of South Eastern Minnesota—including 40 addi-
tional patient care locations: community hospitals, emer-
gency departments, and outpatient clinics (April 2015-No-
vember 2016).

[0097] As shown in FIG. 8, various ECG pairs were
excluded during validation cohort selection. Of the 337,235
recorded ECGs between Apr. 1, 2015 and Nov. 30, 2016,
448 consecutive WCTs were found that had a QRS duration
greater than or equal to 120 ms, a heart rate greater than or
equal to 100 beats/min and a ECG laboratory diagnosis of
WCT or VT or SVT. One-hundred thirty-five out of 448
consecutive WCTs were excluded. More specifically, sev-
enty-seven abbreviated WCTs that were not the dominant
rhythm featured on the 12-lead ECG were excluded. Thirty-
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seven WCTs were excluded because there was no subse-
quent baseline ECG. Eleven WCTs demonstrated inappro-
priately prolonged QRS duration measurements for narrow
complex SVTs. Five of the ECG pairs were excluded
because of faulty QRS amplitude measurements of ventricu-
lar assist device artifact (n=1) or pacing spikes (n=4). Two
of the ECG pairs were excluded due to unconventional ECG
lead placements (i.e., right-sided chest leads). Two of the
ECG pairs were exempted because they did not have an
established clinical diagnosis. As a result, 313 paired WCT
and baseline ECGs were used in the analysis

[0098] All selected ECGs were formally interpreted at the
Mayo Clinic ECG laboratory. ECG interpretation was under
the supervision of a rotating consortium of attending cardi-
ologists and electrophysiologists. Each supervising inter-
preter possessed extensive ECG interpretation experience
along with complete access to the patient’s electronic medi-
cal record (including archived 12-lead ECGs). The interpre-
tation strategy utilized for each WCT was up to the super-
vising interpreter’s discretion. The degree of diagnostic
certainty reported by the ECG laboratory for each WCT was
semi-quantitatively re-categorized: (1) definite VT, (2) prob-
able VT, (3) definite SWCT, (4) probable SWCT and (5)
undifferentiated. The time separation between the WCT and
subsequent baseline ECG was recorded.

[0099] The patient’s clinical diagnosis (VT or SWCT) was
identified from the electronic medical record. The medical
providers responsible for WCT diagnoses were categorized
according to their level of expertise: (1) heart rhythm
cardiologist, (2) non-heart rhythm cardiologist and (3) non-
cardiologist. The final WCT rhythm diagnosis was deter-
mined by the patient’s “most experienced” overseeing medi-
cal provider (heart rhythm cardiologist>non-heart rhythm
cardiologist>non-cardiologist). Each diagnosing provider
had access to the ECG laboratory’s formal WCT interpre-
tation. The completion of an electrophysiology procedure
supporting the clinical diagnosis was recorded.

[0100] Clinical demographics including history of coro-
nary artery disease (CAD), prior myocardial infarction (MI),
prior cardiac surgery, congenital heart disease, cardiomyo-
pathy (ischemic vs. non-ischemic), most proximate valua-
tion of left ventricular ejection fraction (LVEF) (>=50%;
49-31%; <=30%), prior pacemaker or automatic implantable
cardioverter-defibrillator (AICD) implantation, and ongoing
Vaughan-Williams Class [ and III antiarrhythmic drug
(AAD) use were recorded from the electronic medical
record.

[0101] Overall comparisons of continuous variables were
completed using Wilcoxon rank-sum tests. Categorical vari-
ables were compared using Chi-square tests. Receiver
operator curves were used to summarize selected indepen-
dent continuous variables. Select independent predictors of
VT and SWCT identified in the derivation cohort were used
to generate the amplitude based WCT Formula. Designate
independent variables (1) WCT duration (ms), (2) frontal
PAC (%) and (3) horizontal PAC (%) were assigned beta
coeflicients according to their influence on the binary out-
come (VT vs. non-VT). The amplitude based WCT Formula
assigned an estimated VT probability (0.000%-99.999%) for
each ECG pair of the validation cohort. The diagnostic value
of various VT probability partitions were evaluated accord-
ing to their agreement with clinical diagnosis. A 50% VT
probability partition (VI=>50%; SWCT<50%) was used to
assess for the amplitude based WCT Formula’s agreement
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with ECG laboratory interpretation and clinical diagnosis.
Diagnoses rendered by various VT probability partitions
were used to assess its diagnostic performance (e.g., accu-
racy, sensitivity, specificity, positive likelihood ratio, nega-
tive likelihood ratio). Kappa statistics were applied to
describe the diagnostic agreement between (1) clinical diag-
nosis, (2) ECG laboratory interpretation and (3) the ampli-
tude based WCT Formula’s 50% VT probability partition.
McNemar’s test was used to test for differences among
diagnostic standards. Statistical analyses were completed
using SAS version 9.4.

[0102] Now referring to FIG. 9, Table 1 shows the ECG
characteristics of the derivation cohort, which consisted of
160 VTs and 168 SWCTs from 229 patients. The majority of
clinical diagnoses were established by heart rhythm cardi-
ologists or non-heart rhythm cardiologists (86.6%). The VT
group had comparatively more clinical diagnoses estab-
lished by heart rhythm cardiologists than the SWCT group
(VT 93.8% vs. SWCT 44.6%, p<0.001). The SWCT group
had a substantially higher percentage of clinical diagnoses
established by non-cardiologists (SWCT 23.2% vs. VT
3.1%, p<0.001). The majority of WCTs were given defini-
tive or probable interpretive diagnoses by the ECG labora-
tory (91.2%). Median time separation between the WCT
event and subsequent baseline ECG was 9.5 hours. Most
baseline ECGs were acquired within 24 hours of the WCT
event (63.4%). Most clinical WCT diagnoses were not
supplemented by the findings of an electrophysiology pro-
cedure (67.4%).

[0103] Referring now to FIG. 10, Table 2 shows the
clinical characteristics of the derivation cohort. The majority
of WCTs were derived from males (72.0%). The SWCT
group included more events derived from females than the
VT group (SWCT 36.9% vs. VT 17.8%, p<0.001). The
average age of the VT group was 5.4 years younger than the
SWCT group. The VT group included more events from
patients with known CAD (p<0.001), prior MI (p<0.001),
prior cardiac surgery (p=0.02), ongoing AAD use (p<0.001),
ischemic cardiomyopathy (p<0.001), non-ischemic cardio-
myopathy (p=0.03) and implanted AICD (p<0.001), while
the SWCT group had more events from patients with pace-
makers without defibrillator capability (p=0.005). The VT
group possessed more events from patients with an
LVEF<=30% (VT 50.0% vs. SWCT 25.6%, p<0.001), while
the SWCT group had more events from patients with an
LVEF>=50% (SWCT 57.7% vs. VT 21.3%, p<0.001). The
SWCT group included more ECG pairs with baseline bundle
branch block (BBB) (SWCT 65.5% vs. VT 18.1%, p<0.
001). The VT group included more ECG pairs with baseline
ventricular pacing (VT 43.1% vs. SWCT 6.0%, p<0.001).

[0104] Now referring to FIG. 11, Table 3 shows the ECG
analysis for the derivation cohort. Significant differences
between VT and SWCT groups were noted for baseline QRS
duration (ms) (p=0.05), baseline QTc interval duration (ms)
(p=0.05), WCT QRS duration (ms) (p<0.001), change in
QRS duration (ms) (p<0.001), change in R wave axis (°)
(p<0.001), change in T wave axis (°) (p<0.001), frontal PAC
(%) (p<0.001) and horizontal PAC (%) (p<0.001).

[0105] The mean and proportional distribution of WCT
QRS duration (ms) was greater in the VT group (SWCT
144.0 vs. VT 1774, p<0.001) (FIG. 12A). Differences in
WCT QRS duration were also appreciated among baseline
ECG sub-groups: QRS duration>=120 ms (SWCT 144.3 vs.
VT 180.6, p<0.001), QRS duration<120 ms (SWCT 143.1
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vs. VT 171.1, p<0.001) and ventricular pacing (SWCT 157.2
vs. VT 187.2, p<0.001) (see FIG. 12D).

[0106] The mean and proportional distribution of frontal
PAC (%) was greater in the VT group (SWCT 34.9 vs. VT
123.7, p<0.001) (FIG. 12B). Differences in frontal PAC
were also appreciated among baseline ECG sub-groups:
QRS duration>=120 ms (SWCT 30.9 vs. VT 127.5, p<0.
001), QRS duration<120 ms (SWCT 47.0 vs. VT 116.5,
p<0.001) and ventricular pacing (SWCT 61.9 vs. VT 135.8,
p=0.004) (see FIG. 12D).

[0107] The mean and proportional distribution of horizon-
tal PAC (%) was greater in the VT group (SWCT 44.2 vs. VT
116.0, p<0.001) (FIG. 12C). Differences in horizontal PAC
were also appreciated among baseline ECG sub-groups:
QRS duration>=120 ms (SWCT 39.7 vs. VT 109.0, p<0.
001), QRS duration<120 ms (SWCT 57.9 vs. VT 129.3,
p<0.001) and ventricular pacing (SWCT 49.2 vs. VT 123.6,
p<0.001) (see FIG. 12D).

[0108] As shown in FIG. 11, WCT predictors included
baseline QRS duration (ms) (p=0.05), baseline QTc interval
duration (ms) (p=0.05), WCT QRS duration (ms) (p<0.001),
change in QRS duration (ms) (p<0.001), change in R wave
axis (°) (p<0.001), change in T wave axis (°) (p<0.001),
frontal PAC (%) (p<0.001) and horizontal PAC (%) (p<O0.
001). As shown in FIG. 13, the amplitude based WCT
Formula diagnostic performance including (1) WCT QRS
duration (ms), (2) frontal PAC (%) and (3) horizontal PAC
(%) demonstrated favorable VI and SWCT differentiation
(AUC of 0.96) using the derivation cohort (collection of
paired WCT and baseline ECGs).

[0109] Referring now to FIG. 14, Table 4 shows the WCT
event characteristics of the validation cohort, which con-
sisted of 123 VTs and 190 SWCTs from 228 patients. The
majority of clinical diagnoses were established by heart
rhythm cardiologists or non-heart rhythm cardiologists (85.
3%). The VT group had comparatively more clinical diag-
noses established by heart rhythm cardiologists than the
SWCT group (VT 87.8% vs. SWCT 43.7%, p<0.001). The
SWCT group had a substantially higher percentage of clini-
cal diagnoses established by non-cardiologists (SWCT
22.6% vs. VI 2.4%, p<0.001). The validation cohort
included comparatively more WCTs with definitive or prob-
able interpretive diagnoses coded by the ECG laboratory
than the derivation cohort (98.1% vs. 91.2%, p<0.001).
Median time separation between the WCT event and sub-
sequent baseline ECG was 4.7 hours. Most baseline ECGs
were acquired within 24 hours of the WCT event (70.9%).
Most clinical WCT diagnoses were not supplemented by the
findings of an electrophysiology procedure (69.3%).
[0110] Now referring to FIG. 15, Table 5 shows the
clinical characteristics of the validation cohort. The majority
of WCTs were derived from males (74.8%). The SWCT
group included more events derived from females than the
VT group (SWCT 32.1% vs. VT 14.6%, p<0.001). The
average age of the VT group was 4.4 years younger than the
SWCT group. The VT group included more events from
patients with known CAD (p<0.001), prior MI (p<0.001),
ongoing AAD use (p<0.001), ischemic cardiomyopathy
(p<0.001) and implanted AICD (p<0.001), while the SWCT
group had more events from patients with pacemakers
without defibrillator capability (p=0.01). The VT group
possessed more events from patients with an LVEF<=30%
(VT 35.8% vs. SWCT 12.6%, p<0.001), while the SWCT
group had more events from patients with an LVEF>=50%
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(SWCT 59.5% vs. VT 30.1%, p<0.001). The SWCT group
included more ECG pairs with baseline BBB (SWCT 68.4%
vs. VT 12.2%, p<0.001). The VT group included more ECG
pairs with baseline ventricular pacing (VT 34.2% vs. SWCT
5.3%, p<0.001).

[0111] Referring now to FIGS. 16A and 16B, histograms
demonstrating the distribution of clinical SWCT and VT for
the validation cohort according to the amplitude based WCT
Formula diagnostic performance at VT probability estimates
(0.000%-99.999%) are shown in accordance with one
embodiment of the present invention. Note that VT prob-
ability bins on the x-axis are arranged by 5.0% increments.
Most VTs (77.2%) were categorized as having high VT
probability (=>90.0%) with a compatible positive predictive
value (97.9%). Most SWCTs (72.1%) were categorized as
having low VT probability (<10.0%) with a compatible
negative predictive value (97.2%).

[0112] Now referring to FIG. 17, Table 6 shows the VT
probability partitions in accordance with one embodiment of
the present invention. This version of the WCT Formula
demonstrated favorable diagnostic characteristics across a
wide variety of VT probability partitions. A VT probability
partition of 50% (VT>=50%; SWCT<50%) yielded strong
overall accuracy (92.0%) with high sensitivity (89.4%) and
specificity (93.7%). A VT probability partition of 25%
(VT=>25%; SWCT<25%) yielded higher sensitivity (94.
3%) with a minimal reduction in overall accuracy (89.1%)
and specificity (85.8%).

[0113] Referring now to FIGS. 18A and 18B, Venn dia-
grams summarizing the distribution of shared and non-
shared VT (FIG. 18A) and SWCT (FIG. 18B) diagnoses
established by three diagnostic standards: (1) clinical diag-
nosis, (2) ECG laboratory interpretation and (3) amplitude
based WCT Formula’s 50% VT probability cut-point are
shown. Wide complex tachycardias without definitive VT or
SWCT diagnoses coded by the ECG laboratory (ie. undif-
ferentiated) were not included (6 total). The distribution of
(1) clinical diagnoses, (2) ECG laboratory interpretations
and (3) amplitude based WCT Formula diagnoses according
to a VT probability cut-point of 50% reveals strong agree-
ment between each diagnostic standard. The amplitude
based WCT Formula’s agreement with either or both ECG
laboratory interpretation and clinical diagnosis for VT diag-
noses was 91.1% and 84.6%, respectively. The amplitude
based WCT Formula’s agreement with either or both ECG
laboratory interpretation and clinical diagnosis for SWCT
diagnoses was 94.7% and 88.4%, respectively. The degree
of agreement between each diagnostic standard for VT
diagnoses was strong: (1) WCT Formula vs. ECG laboratory
(k=0.78, C1 0.71-0.85), (2) WCT Formula vs. clinical diag-
nosis (k=0.83, CI 0.77-0.90) and (3) clinical diagnosis vs.
ECG laboratory (k=0.89, CI 0.84-0.94). Similarly, the
degree of agreement between each diagnostic standard for
SWCT diagnoses was strong: (1) WCT Formula vs. ECG
laboratory (k=0.72, CI 0.65-0.80), (2) WCT Formula vs.
clinical diagnosis (k=0.83, CI 0.77-0.90) and (3) clinical
diagnosis vs. ECG laboratory (k=0.85, CI 0.79-0.91). The
WCT Formula and ECG laboratory did not differ in their
degree of agreement with clinical diagnosis (p=0.86).
[0114] As show in in FIG. 19A, thirteen out of 123
(10.6%) “clinical V'Is” were categorized as SWCT using the
amplitude based WCT Formula’s 50% VT probability par-
tition—o6 expressed a QRS duration<140 ms; 10 demon-
strated a frontal plane R axis shift<40°; 4 exhibited an
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unchanged QRS configuration at lead V1; 3 exhibited an
unchanged QRS configuration at lead V6.

[0115] As shown in FIG. 19B, twelve out of 190 (6.3%)
“clinical SWCTs” were categorized as VT using the ampli-
tude based WCT Formula’s 50% VT probability parti-
tion—7 expressed a QRS duration=>160 ms; 9 demon-
strated a frontal plane R axis shift>=40°; 5 exhibited QRS
morphology changes at lead V1; 12 exhibited QRS mor-
phology differences at lead.

[0116] This version of the WCT Formula accurately pre-
dicted the vast majority of WCTs in a prospective evaluation
using paired WCT and baseline ECGs derived from clinical
practice. Approximately 75% of WCTs from the validation
cohort were accurately allocated as having high (=>90%) or
low (<10%) VT probability. Additionally, the amplitude
based WCT Formula’s 50% and 25% VT probability parti-
tions yielded favorable overall accuracy with strong sensi-
tivity and specificity for VT.

[0117] The amplitude based WCT Formula’s diagnoses
agreed strongly with those provided by our institution’s
clinical diagnosis and ECG laboratory interpretation prac-
tices. Remarkably, despite the ECG laboratory’s presumably
strong influence on patients’ final clinical diagnosis, the
amplitude based WCT Formula was able to “match” the
ECG laboratory’s agreement with clinical diagnosis.
[0118] The amplitude based WCT Formula’s 50% VT
probability partition did not match the exceptional perfor-
mance originally ascribed to the Brugada algorithm (accu-
racy 98.0%; sensitivity 98.7%; specificity 96.5%) or Lead 11
R-wave to peak time (RWPT) criterion (sensitivity 93.2%;
specificity 99.3%) (6, 14). When compared to results first
reported for Vereckei’s lead aVR algorithm (12), the ampli-
tude based WCT Formula’s 50% VT probability cut-point
appears to be less sensitive (lead aVR 96.5% vs. WCT
Formula 89.4%) but more specific (lead aVR 75.0% vs.
WCT Formula 93.7%). However, the amplitude based WCT
Formula compares quite favorably to these other methods
when they were appraised by independent authors (12, 15,
21-28). In general, independent validation studies have
found that established manual methods typically misdiag-
nose 15-30% of evaluated WCTs. One emblematic study
which compared five different methods (Brugada, Griffith,
Bayesian, lead aVR, and RWPT) in a head-to-head fashion
found that they achieved only moderate diagnostic accuracy
(range 68.8%-77.5%) (25). Each method, aside from the
RWPT criterion, demonstrated good sensitivity (range
87.1%-94.2%) but poor specificity (range 39.8%-59.2%) for
VT. Contrariwise, the RWPT criterion was found to be
non-sensitive (60.0%) and moderately specific (82.7%).
[0119] It is well understood that the success of contem-
porary, manually-applied algorithms or criteria is highly
dependent upon the examiner interpreting the ECG. It is also
important to understand that most studies that have derived
or validated manual WCT differentiation methods used only
experienced  electrocardiographers  within  controlled
research settings (1-9, 11, 12, 14, 15, 17-20, 24, 25, 27, 29).
Although some independent studies utilized less experi-
enced ECG interpreters (21-23, 26, 28, 30), no study has
attempted to test interpreter proficiency within authentic
clinical settings.

[0120] Moreover, in clinical practice, it can be readily
observed that the reliable differentiation of WCTs using
12-lead ECGs belongs only to knowledgeable providers who
have a firm grasp of the advantages and disadvantages of
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multiple ECG criteria or algorithms, and are capable of their
careful, systematic and simultaneous application. Apart
from cardiologists and electrophysiologists this ability is not
commonplace. Therefore, the efficacy of the published
manual methods are likely lost through their misapplication
or failed utilization by less skilled ECG interpreters This is
especially likely when clinicians unexpectedly thrusted into
the clinically challenging situation of managing a patient
with WCT. The present invention, similar to any other
automated diagnostic algorithm, does not suffer from these
limitations

[0121] The principal difference between the amplitude
based WCT Formula and other established ECG interpreta-
tion methods is that it does not require manual ECG inter-
pretation. Alternatively, the WCT Formula was designed to
be automatically implemented by modern-day ECG inter-
pretation software. Consequently, these methods escape the
conventional challenges concerning provider recall (e.g.,
“What is the first step of the Brugada algorithm again?”),
subjective interpretation (e.g., “Are those dissociated p
waves?”), interobserver disagreement (21, 23, 26, 27, 30),
and precise manual measurement (e.g., Vi/Vt of Vereckei’s
aVR algorithm) characteristically present among manual
interpretation strategies (1-15). Instead, the WCT Formula
provides an automatic and reliable means to differentiate
WCTs irrespective of the user’s ECG interpretation abilities.
As a result, the WCT Formulas can help protect against or
supersede faulty diagnoses established by providers who
incorrectly apply or fail to utilize manual interpretation
methods.

[0122] The over-arching purpose of every ECG interpre-
tation criteria or algorithm is to help providers accurately
differentiate WCTs. The preferred strategy utilized by most
methods is an “absolute” committed rhythm classification
(VT vs. SWCT) according to the presence or absence of
select differentiation criteria (6, 8, 9, 11-14). While this
approach is meant to lead clinicians to the correct WCT
diagnosis, it often leaves providers unaware of the likeli-
hood that their diagnosis is actually correct because the
published diagnostic sensitivity and specificity of the vari-
ous ECG interpretation methods are usually not immediately
available or remembered. Another drawback to this afore-
mentioned strategy is that it tends to overlook the predictive
contributions of other relevant criteria found (or not found)
on a patient’s ECG.

[0123] On the other hand, the amplitude based WCT
Formula was designed to simultaneously evaluate and pre-
cisely “weigh” multiple coexistent WCT predictors to pro-
vide an automatic estimation of VT probability. As a result,
the amplitude based WCT Formula is able to deliver to its
users an accurate and timely VT probability estimation to
help them commit to or reconsider VT or SWCT diagnoses.
Additionally, the WCT Formula’s logistic regression struc-
ture can allow the incorporation of other ECG measurements
or calculations that may help to differentiate WCTs.
[0124] Furthermore, after decades of research into manu-
ally-operated ECG criteria or algorithms, researchers still do
not have a clear understanding of their overall practical
value. This is partially explained by the fact that all pub-
lished ECG interpretation methods utilized select patient
populations referred for electrophysiology procedures to
derive (3, 5, 6, 11, 12, 14, 15) or evaluate (4, 8-10, 18, 19,
21-27, 29) their respective criteria or algorithms. Although
this strategy is quite justified as it helps confirm the veracity
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of WCT diagnoses, it consequently leads to an underrepre-
sentation of WCTs diagnosed and managed non-invasively
(e.g., SWCTs due to pre-existing aberrancy), as well as an
over-representation of WCTs needing further evaluation
and/or ablative therapies (e.g., idiopathic VTs or SWCTs due
to pre-excitation). Furthermore, most prior studies either
intentionally excluded or did not sufficiently report the
inclusion of patients with pre-existing BBB (3, 6, 8, 10, 14,
18,19, 21-23,27), ongoing AAD use (3, 6-10, 14, 18, 21,22,
27), congenital heart disease (3-10, 12, 14, 15, 19, 21-23,
27), idiopathic VTs (3. 6, 8, 14, 21, 22, 27), or pre-excited
SWCTs (3, 5-8, 14, 19, 21-23, 27). This observation is
particularly important because several established ECG
methods have been shown to have reduced accuracy when
applied to WCT populations including these various sub-
groups (17, 20, 24-26, 29, 31).

[0125] In this study, approximately %4’s of WCTs did not
have an accompanying electrophysiology procedure. As a
result, the study population was comprised of many clini-
cally encountered WCTs not customarily included in other
studies. For example, the study cohorts included a higher
percentage of patients with pre-existing BBB and ongoing
AAD use than other studies (3-8, 10-12, 15, 18, 21-23, 25,
26). The SWCT groups were proportionally larger and
included more events from patients with advanced age,
CAD, prior MI and cardiomyopathy than other studies (4, 5,
11, 12, 15, 19, 23, 25, 26). Additionally, despite not being
intentionally excluded, no pre-excited SWCTs were identi-
fied within the study cohorts. Although these dissimilarities
primarily reflect the differing WCT selection strategy, they
also indicate that the studies responsible for the derivation
and evaluation of established ECG interpretation methods
used select WCT populations different from what is regu-
larly encountered in clinical practice.

[0126] According to the amplitude based WCT Formula’s
structure, “actual” VTs may be erroneously classified as
SWCT if they demonstrate narrow QRS durations (e.g.
fascicular VT) and/or very similar mean electrical vectors
compared to the baseline ECG (e.g. bundle branch re-entry).
Correspondingly, examples were observed where the ampli-
tude based WCT Formula “missed VTs” with narrower QRS
durations and/or similar QRS configurations compared to
the baseline ECG (FIG. 19A). On the other hand, the
amplitude based WCT Formula may erroneously classify
“actual” SWCTs as VT if they express wider QRS durations
(e.g. QRS prolongation due to ongoing antiarrhythmic drug
use) and/or pronounced changes to the mean electrical
vector (e.g. new left BBB aberrancy). Accordingly, we
observed examples where the amplitude based WCT For-
mula erroneously predicted VT for clinical SWCTs exhib-
iting wider QRS durations and/or dissimilar QRS configu-
rations compared to the baseline ECG (FIG. 19A).

[0127] The WCT Formula using time-voltage areas (ms/
mV) of WCT ECG QRS waveforms instead of amplitudes
will now be described. The included analyses pertaining to
the time-voltage area based WCT Formula were derived
from 641 paired WCT and baseline ECGs that constitute the
summation of the derivation and validation cohorts.

[0128] Now referring to FIG. 20, a schematic representa-
tion of a stereotypical ECG pattern for a single heart beat
2000 is shown. The various waves were previously
described in reference to FIG. 1A and common reference
numerals are used for both figures. Each wave has amplitude
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denoted as PA, q (QS not shown), r/R (r'/R' not shown), or
s/S (sS' not shown) and TA. In addition, the QT interval 116
is the time interval extending from the onset of the QRS
complex waveform 102 to the end of the T wave 114. The
QRS complex 102 is divided into positive (+) time-voltage
areas (TVA) 118 and negative (=) TVAs 120. The positive
(+) TVAs 118 are the TVAs of the vertical QRS complex
deflections above the isoelectric baseline 122, namely the
TVAs of r/R wave (and r'/R' not shown), wave 2002. The
negative (=) TVAs 120 are the TVAs of the vertical QRS
complex deflections below the isoelectric baseline 122,
namely the TVAs of q (or QS wave not shown) 2004, and s/3
(and sYS' not shown) wave 2006. Computerized ECG inter-
pretation software, such as the MUSE software provided by
GE Healthcare, automatically measures QRS complex
waveform 102 attributes, namely qor QS, r/R, s/S, /R, s/S'
durations (ms), amplitudes (uV), and time-voltage areas
(uwV-ms). Note that standard annotation of QRS complex
waveforms of small QRS waveforms are in lower case and
large QRS waveforms are in upper case.

[0129] Referring now to FIGS. 21A-21B, graphic depic-
tions of select ECG lead combinations utilized by the frontal
(aVR, aVL, aVF) (FIG. 5A) and horizontal (V1, inverse V4,
V6) (FIG. 5B) percent time-voltage area change (PTVAC)
formulas in accordance with one embodiment of the present
invention are shown. The QRS time-voltage are change (A)
that manifests between the baseline and WCT ECGs at these
selected leads is the foundation for each PTVAC calculation.
Note that the absolute QRS time-voltage area changes (A’s)
that manifest in lead V4 are mathematically equivalent to its
planar opposite: inverse V4. FIG. 22 depicts a schematic
representation of the resultant QRS time-voltage area
changes that manifest between a patient’s baseline and WCT
ECG.

[0130] Now referring to FIGS. 23A-23B, the formulas for
the horizontal PTVAC and frontal PTVAC are shown. The
time-voltage area based WCT Formula incorporates the
strong independent WCT predictors including (1) WCT
QRS duration (ms), (2) frontal PTVAC (%) and (3) hori-
zontal PTVAC (%). The predictive contribution of each
WCT predictor is concomitantly “weighed” according to
their influence on the binary outcome (VT vs. SWCT) to
render a precise VT probability estimation. Given each
WCT predictor’s direct relationship with VT likelihood, the
time-voltage area based WCT Formula estimates higher VT
probabilities for ECG pairs demonstrating greater WCT
QRS durations, frontal PTVAC and/or horizontal PTVAC.
Similarly, the time-voltage area based WCT Formula esti-
mates lower VT probability for ECG pairs with smaller
WCT QRS durations, frontal PTVAC and/or horizontal
PTVAC.

[0131] Similar to the amplitude based WCT Formula, the
time-voltage area based WCT Formula is a multivariate
logistic regression model that allows (1) delivery of precise
VT probability predictions and (2) later inclusion of other
well-established, enhanced and/or newly formulated WCT
predictors. Other “machine learning” or artificial intelli-
gence prediction methods (e.g., artificial neural networks,
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support vector machines, Random Forests, etc.) can be used
with the frontal and horizontal PTVAC formulas. A step-
wise decision-tree approach to diagnosis was avoided
because of its tendency to prematurely commit to WCT
diagnoses without considering the predictive strengths of
other relevant predictors. The use of specific value cut-offs
for VT diagnoses (e.g., QRS duration=>160 ms or frontal
PAC>=75%) was avoided because they tend to cause (1)
misclassifications due to VT and SWCT overlap and (2)
ambiguity concerning the strength of WCT diagnoses for
values distributed well above, well below, or at the margin
of the designated cut-offs.

[0132] The time-voltage area based WCT Formula is a
logistic regression formula that uses select independent
WCT predictors (WCT QRS duration (ms), frontal PTVAC
(%) and horizontal PTVAC (%)) to render a precise predic-
tion of VT probability (%). Each WCT predictor (X)) was
assigned beta coeflicients (f,) according to their influence
on the binary outcome (VT vs. non-VT). The “constant”
term (B,) represents the y-intercept of the least squares
regression line. Discrete measured or calculated WCT pre-
dictor values derived from paired baseline and WCT ECGs
are incorporated into the time-voltage area based WCT
Formula to calculate VT probability (P,).

[0133] A calculation series is used to quantify the degree
of QRS time-voltage area change that manifests between the
baseline EFCG and WCT event by converting raw ECG
measurements into the frontal and horizontal PTVAC. The
measured time-voltage areas (WV-ms) of QRS waveforms
above (+) (r/R and r'/R') and below (-) (¢/QS, s/S, and s'S")
the isoelectric baseline from select frontal (aVR, aVL, aVF)
and horizontal (V1, V4, V6) ECG leads were used to derive
each calculation. Baseline Time-Voltage Area (BTVA),
Absolute Time-Voltage Area Change (ATVAC) and Percent
Time-Voltage Area Change (PTVAC) were calculated for
both the frontal and horizontal ECG planes.

TVAPC, coqx=I(+) TimeVoltageAreaycrs caax—(+)
TimeVoltageAreag,eorine:Loadx!

TVANC a5~ (-)TimeVoltageAreay 1.z coax—(-)
TimeVoltageArea s ciine:Leadx!

TTVAC Lowar=ATAPC ooy TVANC L oax

TBTVAgusetine:Leadx=(—)TimeVoltageAreag . cine:
Leadx+(+) TimeVoltageAreas . i e zcadx

where: LeadX denotes V1, V4, V6 (horizontal plane) or
aVL, aVR, aVF (frontal plane). Note that (-) TVA=q/QS+
s/S+s"/S' and (+) TVA=r/R+1'/R". Note that TVANC and
TVAPC equations exhibit an “absolute” mathematical anno-
tation (e.g. lequation’s contents|).

[0134] Absolute Time-Voltage Area Change (ATVAC)
represents the absolute summative difference in QRS time-
voltage area between the WCT and baseline ECG.

Frontal ATVAC=TTVAC, ,z+TTVAC, ,;+TTVAC, -

Horizontal ATVAC=TTVAC,,+TTVAC,,+TTVAC 4

o
Pyr =
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[0135] Baseline Time-Voltage Area (BTVA) represents the
total sum time-voltage area of (+) and (=) QRS waveforms
in the baseline ECG.

Frontal BTIVA=TBTVA,,;z+TBTVA,;;+TBTVA,

Horizontal BTVA=TBTVA ;;+TBTVA ;3 +TBTVA 5

[0136] Percent Time-Voltage Area Change (PTVAC) rep-
resents the percent change in QRS time-voltage area
between the WCT and baseline ECG.

Frontal ATVAC
“Frontal BTVA
Horizontal ATVAC
“Horizontal BTVA

Frontal PTVAC (%) = ( ] x 100

Horizontal PTVAC (%) = ( ] X 100

[0137] As previously mentioned, the time-voltage area
based WCT Formula is a binary outcome logistic regression
formula that uses select independent WCT predictors: (1)
WCT duration (ms), (2) frontal PTVAC (%) and (3) hori-
zontal PTVAC (%). Each WCT predictor (X,) was assigned
beta coefficients (f3,) according to their influence on the
binary outcome (VT vs. non-VT). The “constant” term (B,)
represents the y-intercept of the least squares regression line.
Discrete measured or calculated WCT predictor values
derived from paired baseline and WCT ECGs are incorpo-
rated into the time-voltage area based WCT Formula to
calculate VT probability (P).

Pyr
1-Pyr

Xﬂzln( ):ﬁo+ﬂ1X1+ﬁzX2+ﬁ3X3-

where: Xg is the weighted sum of the WCT predictors;
[0138] P, is the probability of VT;

[0139] p, is the Y intercept or constant;

[0140] p, is the slope of the independent WCT predictor n;
[0141] X, is the independent WCT predictor n; and
[0142] independent WCT predictors n are WCT . .i0m
PTVAC and PTVAC

“frontal® horizontal

%5

Pyr =
1+e%8

TP WCT i +PTVAC oo+ dXPTYAC oot )

Pyr =
1 + T PWCT o +OXPTVAC ot +&XPTVAChoriz0m1a1 )

where a, b, ¢ and d are constants:

[0143] a=intercept=-11.047775;

[0144] b=WCT QRS duration=0.051762;

[0145] c=frontal % change in time-voltage area=0.
01675701; and

[0146] d=horizontal % change in time-voltage area=0.
00868261.

11047775 +0.051762 XWCT g1 o +0.0L67STOLXPTVAC fyyc +0.00868261 XPTVACpyi ot )

1 o LTI HO0SITO2XWCT gy +0.06TSTOLXPTVAC fy g +000863261 XPTVAC gyt )
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A diagram showing the amplitude based WCT Formula’s
logistic regression structure is shown in FIG. 23C.

[0147] FIGS. 24A-24B are box-plots demonstrating the
median and proportional distribution of frontal PTVAC (%)
(FIG. 24A) and horizontal PTVAC (%) (FIG. 24B) for VT
and SWCT groups in accordance with one embodiment of
the present invention.

[0148] FIGS. 25A-25B are graphs depicting the frontal
PTVAC (%) (FIG. 25A) and horizontal PTVAC (%) (FIG.
25B) in accordance with one embodiment of the present
invention.

[0149] FIG. 26 is a graph depicting the time-voltage area
based WCT Formula diagnostic performance (AUC of 0.95)
in accordance with one embodiment of the present inven-
tion.

[0150] FIGS. 27A and 27B are histograms demonstrating
the distribution of clinical VT probabilities according to the
time-voltage area based WCT Formula diagnostic perfor-
mance at VT probability estimates (0.000%-99.999%). The
641 paired WCT and baseline ECGs include both the
validation and derivation cohorts.

[0151] The following discussion refers to both the ampli-
tude and time-voltage area versions of the WCT Formula.
The WCT Formulas relies upon the presumed accuracy of
ECG software measurements. Moreover, the WCT Formulas
require the simultaneous evaluation of the WCT and base-
line ECG. Before the technological advances of ECG inter-
pretation software and electronic databank storage systems,
the automatic application of sophisticated computer algo-
rithms using data from multiple ECGs was not feasible.
Fortunately, contemporary ECG interpretation software is
now able to simultaneously record, store and integrate data
from multiple ECGs occurring before and after WCT events.
Although the WCT Formulas® derivation and evaluation
used only subsequent baseline ECGs, its performance would
be quite similar if applied baseline ECGs preceding the
WCT event. For clinical situations where WCT patients
present without previously recorded ECGs, providers will
need to rely upon conventional ECG interpretation methods
until they obtain the patient’s baseline ECG.

[0152] The WCT Formulas were derived from paired
WCT and baseline ECGs acquired from clinical practice.
Included WCTs did not require electrophysiology testing for
further diagnostic confirmation. Although this selection
strategy helps to avoid selection biases, it does not “guar-
antee” the accuracy of WCT diagnoses established by the
ECG laboratory and clinicians. Nor does it allow a more
comprehensive understanding of the strengths and weak-
nesses of both WCT Formulas that would be accomplished
with electrophysiology testing.

[0153] The WCT Formulas were derived and evaluated
using paired WCT and baseline ECGs separated by varying,
sometimes lengthy, time intervals. As a consequence, devia-
tions in ECG electrode placement and/or major changes to
the patient’s baseline ECG (e.g. new ventricular pacing
following AICD implantation) may have influenced study
results.

[0154] It is expected that the WCT formulas, or its elec-
trophysiological principles, can be used on not only for
12-lead ECGs, but for any extended heart rhythm monitor-
ing devices such as continuous ECG telemetry monitors,
stress testing systems, extended monitoring devices (e.g.,
Holter monitors, etc.), smartphone-enabled ECG medical
devices, cardioverter-defibrillator therapy devices, such as
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wearable cardioverter defibrillators (e.g., Zoll Life Vest),
subcutaneous implantable cardioverter defibrillators (ICD)
(e.g., Emblem S-ICD by Boston Scientific), pacemakers,
automated external defibrillators (AED) (e.g., HeartStart
OnSite AED by Phillips), and conventional automatic
implantable cardioverter defibrillators (AICD).

[0155] In the foregoing study, the new WCT differentia-
tion method S were found to be very accurate. The methods
described could be automatically implemented by contem-
porary ECG interpretation software. The amplitude based
and time-voltage area based WCT Formulas accurately
predicted the vast majority of WCTs according to an insti-
tution’s current clinical diagnosis practices. Although direct
head-to-head comparisons were not undertaken, both WCT
Formula methods compare favorably to the diagnostic per-
formances ascribed to other ECG criteria or algorithms.
Moreover, unlike established manual interpretation meth-
ods, the WCT Formulas are able to automatically provide
accurate VT probability estimations for WCTs routinely
encountered in clinical practice.

[0156] The fundamental purpose of every ECG criteria or
algorithm is to help providers successfully differentiate
WCTs. This invention provides examples of how modern-
day ECG interpretation software could be used to help
providers successfully differentiate VT and SWCT. This
alternative approach to diagnosis has the natural advantage
of automatically delivering precise estimations of VT prob-
ability to clinicians irrespective of their ECG interpretation
abilities. In this manner, automated methods, like the ampli-
tude based and time-voltage area based WCT Formulas, are
particularly well-suited to help providers with less experi-
ence and/or differing clinical expertise provide accurate and
timely WCT diagnoses. The incorporation of the present
invention into computerized ECG interpretation software
systems will not only supplement current diagnostic strate-
gies but may also improve the quality of care provided to
patients with WCT.

[0157] Furthermore, the WCT Formulas’ principles could
be applied by diagnostic ECG interpretation software to
predict VT. As a result, the present invention is not limited
to the WCT or PAC or PTVAC formulas. This new electro-
physiological principle (degree of QRS complex change in
amplitude or time-voltage area between the WCT and base-
line ECG helps distinguish VT and SWCT) can be utilized
by ECG interpretation software to render precise and accu-
rate predictions of VT or SWCT.

[0158] Other embodiments of these similar WCT differ-
entiation methods may be automatically implemented by
computerized ECG interpretation (CEI) software. For
example, another method which uses mathematically-syn-
thesized signals and a more sophisticated machine learning
techniques would serve as an alternative means to apply the
electrophysiological principles of the WCT differentiation
method.

[0159] For example, in a two-part analysis, paired WCT
and baseline ECGs were used to derive and test a Random
Forests model (i.e. VCG-VT Model) comprised of standard
computerized ECG measurements and novel computations
formulated from mathematically-synthesized vectorcardio-
gram (VCG) signals. These mathematically-synthesized
vectorcardiogram (VCG) signals are derived from the elec-
trical signals acquired from the 12-lead ECG. A derivation
cohort comprised of 450 WCT (199 VT, 251 SWCT) and
baseline ECG pairs was used to train a VCG-VT Model
comprised of WCT QRS duration (ms), X-lead percent QRS
amplitude change (%), Y-lead percent QRS amplitude
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change (%), and Z-lead percent QRS amplitude change (%).
VCG-VT Model implementation on the testing cohort of
150 WCT (73 VT, 77 SWCT) and baseline ECG pairs
resulted in an overall AUC, accuracy, sensitivity, and speci-
ficity of 0.97 (CI 0.94-0.99), 91.3% (CT 85.6%-95.3%),
93.2% (CI 84.7%-97.7%), and 89.6% (CI 80.6%-95.4%),
respectively as shown in FIG. 28.

[0160] Additionally, the WCT Formula’s electrophysi-
ological principles may be applied to a wide variety of ECG,
EMG and/or VCG analysis platforms beyond the diagnostic
12-lead ECG, including continuous ECG telemetry moni-
tors, stress testing systems, extended monitoring devices
(e.g., Holter monitors, etc.), smartphone-enabled ECG
medical devices, cardioverter-defibrillator therapy devices,
such as wearable cardioverter defibrillators (e.g., Zoll Life
Vest), subcutaneous implantable cardioverter defibrillators
(ICD) (e.g., Emblem S-ICD by Boston Scientific), pacemak-
ers, automated external defibrillators (AED) (e.g., HeartStart
OnSite AED by Phillips), and conventional automatic
implantable cardioverter defibrillators (AICD). Measure-
ments and calculations of EMG signals recorded from
intracardiac (e.g. right ventricular AICD coil) and/or extrac-
ardiac electrodes (e.g. AICD generator housing) may also be
used to established the degree (or percentage) of change in
amplitude or time-voltage area between the WCT and base-
line ventricular EMGs to help distinguish VT and SWCT.
This discrimination process could be used to determine the
need to deliver of device-related therapies, including anti-
tachycardia pacing and defibrillator shocks.

[0161] Various embodiments of the present invention will
now be described. These embodiments are merely examples
and are not intended to limit the scope of the invention.
[0162] Now referring to FIG. 29, an apparatus 2900 for
classifying a wide complex tachycardia (WCT) in accor-
dance with the present invention is shown. The apparatus
2900 can be a server computer, a workstation computer, a
laptop computer, a mobile communications device, a per-
sonal data assistant, a medical device or any other device
capable of performing the functions described herein. The
apparatus 2900 includes an input/output interface 2902, a
memory 2904, and one or more processors 2906 communi-
cably coupled to the input/output interface 2902 and the
memory 2904. Note that the apparatus 2900 may include
other components not specifically described herein. The
memory 2904 can be local, remote or distributed. Likewise,
the one or more processors 2906 can be local, remote or
distributed. The input/output interface 2902 can be any
mechanism for facilitating the input and/or output of infor-
mation (e.g., web-based interface, touchscreen, keyboard,
mouse, display, printer, etc.) Moreover, the input/output
interface 2902 can be a remote device communicably
coupled to the one or more processors 2906 via one or more
communication links 2908 (e.g., network(s). cable(s), wire-
less, satellite, etc.). The one or more communication links
2908 can communicably couple the apparatus 2900 to other
devices 2910 (e.g., databases, remote devices, hospitals,
doctors, researchers, patients, etc.).

[0163] The one or more processors 2906 receive one or
more wide complex heart beat waveform amplitudes and/or
time-voltage areas, and one or more baseline heart beat
waveform amplitudes and/or time-voltage areas via the
input/output interface 2902 or the memory 2904, determine
a signal change between the wide complex heart beat
waveform amplitudes and/or time-voltage areas and the
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baseline heart beat waveform amplitudes and/or time-volt-
age areas, and provide the signal change via the input/output
interface 2902, wherein the signal change provides an indi-
cation whether the wide complex heart beat(s) is from a
ventricular source or a supraventricular aberrant condition.
In one embodiment, the delivery of a signal change, such as
% VT probability, to clinicians provides an invaluable
diagnostic tool that allows them to use their clinical judge-
ment as how to manage the patient. In another embodiment,
the one or more processors 2906 provide the signal change
via the input/output interface 2902 by automatically deter-
mining a wide complex heart beat classification for the wide
complex heart beat(s) by comparing the signal change to a
predetermined value using the one or more processors, and
providing the wide complex heart beat classification via the
input/output interface 2902.

[0164] Referring now to FIG. 30, a flow chart of a com-
puterized method 3000 of automatically classifying a wide
complex heart beat(s) is shown. A computing device having
an input/output interface, one or more processors and a
memory is provided in block 3002. One or more wide
complex heart beat waveform amplitudes and/or time-volt-
age areas, and one or more baseline heart beat waveform
amplitudes and/or time-voltage areas are received via the
input/output interface or the memory in block 3004. A signal
change between the wide complex heart beat waveform
amplitudes and/or time-voltage areas and the baseline heart
beat waveform amplitudes and/or time-voltage areas is
determined using the one or more processors in block 3006.
The signal change is provided via the input/output interface
in block 3008, wherein the signal change provides an
indication whether the wide complex heart beat(s) is from a
ventricular source or a supraventricular aberrant condition.
In another embodiment, a wide complex heart beat classi-
fication for the wide complex heart beat(s) is automatically
determined by comparing the signal change to a predeter-
mined value in block 3010, wherein the wide complex heart
beat classification comprises the ventricular source or the
supraventricular aberrant condition. The wide complex heart
beat classification is provided via the input/output interface
in block 3012. The signal change can be concomitantly
“weighted” with other predictors of VT, SWCT or ventricu-
lar pacing. Moreover, the method can be implemented using
a non-transitory computer readable medium that when
executed causes the one or more processors to perform the
method.

[0165] Now referring to FIGS. 29 and 30, other aspects of
the present invention that are applicable to the apparatus
2900 and the method 3000 will now be described. In one
aspect, the signal change further provides the indication
whether the wide complex heart beat(s) is due to ventricular
pacing. In another aspect, the wide complex heart beat(s)
comprise a wide complex tachycardia (WCT), the ventricu-
lar source comprises a ventricular tachycardia (VT), and the
supraventricular aberrant condition comprises a supraven-
tricular wide complex tachycardia (SWCT). In another
aspect, the signal change comprises a VT probability, the
wide complex heart beat classification comprises a VT
whenever the VT probability is greater than or equal to the
predetermined value, and the wide complex heart beat
classification comprises a SWCT whenever the VT prob-
ability is less than the predetermined value. In another
aspect, the one or more processors select the predetermined
value from a range of 0% to 100%. In another aspect, the
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predetermined value comprises about 1%, 10%, 25%, 50%,
75%, 90% or 99%. In another aspect, the one or more
processors provide the signal change by providing a “shock”
signal, a “no shock”™ signal, or no signal. In another aspect,
the wide complex heart beat waveform amplitudes and/or
time-voltage areas and the baseline heart beat waveform
amplitudes and/or time-voltage areas are obtained from an
electrocardiogram (ECG) QRS signal, a ventricular electro-
gram (EMQ) signal, and/or a vectorcardiogram (VCG) sig-
nal. In another aspect, the wide complex heart beat wave-
form amplitudes and/or time-voltage areas comprise a
plurality of measured amplitudes and/or time-voltage areas
of a ECG QRS waveform, a EMG waveform and/or a VCG
waveform above and below an isoelectric baseline; and the
baseline heart beat waveform amplitudes and/or time-volt-
age areas comprise a plurality of measured amplitudes
and/or time-voltage areas of a baseline ECG QRS wave-
form, a baseline EMG waveform and/or a baseline VCG
waveform above and below the isoelectric baseline.

[0166] In another aspect, the one or more processors
receive the one or more wide complex heart beat waveform
amplitudes and/or time-voltage areas, and one or more
baseline heart beat waveform amplitudes and/or time-volt-
age areas by: receiving a ECG QRS data, a EMG data, a
VCG data and/or a mathematically synthesized VCG data
via the input/output interface or the memory; receiving a
baseline ECG QRS data, a baseline EMG data and/or a
baseline VCG data via the input/output interface or the
memory; determining the one or more waveform amplitudes
and/or time-voltage areas from the ECG QRS data, the EMG
data and/or the VCG data; and determining the one or more
baseline waveform amplitudes and/or time-voltage areas
from the baseline ECG QRS data, the baseline EMG data
and/or the baseline VCG data. In another aspect, the ECG
QRS data, the EMG data and/or the VCG data is generated
or recorded before or after the baseline ECG QRS data, the
baseline EMG data and/or the baseline VCG data. In another
aspect, the ECG QRS data, the EMG data and/or the VCG
data is generated or recorded after the baseline ECG QRS
data, the baseline EMG data and/or the baseline VCG data
and determining the signal change. In another aspect, the
ECG QRS data, the EMG data and/or the VCG data and the
baseline ECG QRS data, the baseline EMG data and/or the
baseline VCG data are generated or recorded using one or
more sensors or devices. In another aspect, the one or more
sensors or devices comprise a 12-lead ECG device, a con-
tinuous ECG telemetry monitor, a stress testing system, an
extended monitoring device, a smartphone-enabled ECG
medical device, a cardioverter-defibrillator therapy device, a
subcutaneous implantable cardioverter defibrillators (ICD),
a pacemaker, an automated external defibrillators (AED), or
an automatic implantable cardioverter defibrillator (AICD).
In another aspect, the input/output interface, the memory
and the one or more processors are integrated into the one or
more sensors or devices; or the one or more sensors or
devices are integrated into a computing device comprising
the input/output interface, the memory and the one or more
processors. In another aspect, the one or more processors
determine the signal change between the wide complex heart
beat waveform amplitudes and/or time-voltage areas and the
baseline heart beat waveform amplitudes and/or time-volt-
age areas by: receiving a wide complex heart beat waveform
duration via the input/output interface or the memory;
determining a percent amplitude change (PAC) based on the
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wide complex heart beat waveform amplitudes and the
baseline wide complex heart beat waveform amplitudes,
and/or a percent time-voltage area change (PTVAC) based
on the wide complex heart beat waveform time-voltage
areas and the baseline wide complex heart beat waveform
time-voltage areas; determining a classification probability
based on the wide complex heart beat waveform duration,
and the PAC and/or the PTVAC; and wherein the signal
change comprises the classification probability, and the
classification probability comprises a VT probability, a
SWCT probability, or a ventricular pacing probability. In
another aspect, determining the classification probability is
further determined based one or more additional classifica-
tion predictors. In another aspect, the PAC comprises a
frontal PAC and a horizontal PAC, and the PTVAC com-
prises a frontal PTVAC and a horizontal PTVAC.

[0167] In another aspect, the one or more processors
determine the signal change between the wide complex heart
beat waveform amplitudes and/or time-voltage areas and the
baseline heart beat waveform amplitudes and/or time-volt-
age areas by: receiving a WCT QRS duration via the
input/output interface or the memory; the one or more wide
complex heart beat waveform amplitudes and/or time-volt-
age areas comprise one or more frontal plane WCT positive
waveform amplitudes and/or time-voltage areas, one or
more horizontal plane WCT positive waveform amplitudes
and/or time-voltage areas, one or more frontal plane WCT
negative waveform amplitudes and/or time-voltage areas,
and one or more horizontal plane WCT negative waveform
amplitudes and/or time-voltage areas; the one or more the
baseline heart beat waveform amplitudes and/or time-volt-
age areas comprise one or more frontal plane baseline
positive waveform amplitudes and/or time-voltage areas,
one or more horizontal plane baseline positive waveform
amplitudes and/or time-voltage areas, one or more frontal
plane baseline negative waveform amplitudes and/or time-
voltage areas, and one or more horizontal baseline negative
waveform amplitudes and/or time-voltage areas; determin-
ing (1) a frontal percent amplitude change (PAC) based on
the one or more frontal plane WCT positive waveform
amplitudes, one or more frontal plane WCT negative wave-
form amplitudes, one or more frontal plane baseline positive
waveform amplitudes, and one or more frontal plane base-
line negative waveform amplitudes, and/or (2) a frontal
percent time-voltage area (PTVAC) based on the one or
more frontal plane WCT positive waveform time-voltage
areas, one or more frontal plane WCT negative waveform
time-voltage areas, one or more frontal plane baseline posi-
tive waveform time-voltage areas, and one or more frontal
plane baseline negative waveform time-voltage areas; deter-
mining (1) a horizontal PAC based on the one or more
horizontal plane WCT positive waveform amplitudes, one or
more horizontal plane WCT negative waveform amplitudes,
one or more horizontal plane baseline positive waveform
amplitudes, and one or more horizontal baseline negative
waveform amplitudes, and/or (2) a horizontal PTVAC based
on the one or more horizontal plane WCT positive waveform
time-voltage areas, one or more horizontal plane WCT
negative waveform time-voltage areas, one or more hori-
zontal plane baseline positive waveform time-voltage areas,
and one or more horizontal baseline negative waveform
time-voltage areas; determining a VT probability using a
statistical or machine learning process based on the WCT
QRS duration and (1) the frontal PAC and the horizontal
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PAC, and/or (2) the frontal PTVAC and the horizontal
PTVAC; and wherein the signal change comprises the VT
probability. In another aspect, the statistical or machine
learning process comprises a linear regression algorithm, a
logistic regression model, a linear discriminate analysis
algorithm, a Naive Bayes algorithm, a computational model
using artificial neural networks, a computational model
based on classification or regression trees, a k-nearest neigh-
bors based model, a support vector machine based model, a
boosting algorithm, or an ensemble machine learning algo-
rithm.

[0168] In another aspect, the frontal PAC is determined by

Frontal AAC

Frontal PAC (%) = (7
Frontal BA

]x 100,

where: Frontal AAC=TAC,;zx+TAC,,,,;+TAC,;, Frontal
BA=TBA,+TBA ,,+TBA .. TAC,,, ,,~APC,, ..+
ANCLeadX’ TBABaseline:LeadX:(_)Amplitudeﬁaszline:LeadX'l'
(HAmplitudes,sepmmezeaars  APCreaay=!(+)Amplitudey .
Leadx=(+)Amplitudes ..z cauxs ANC . 0571(-)
Amplitudeycrreaar—(=-)Amplitudes oepmezeaard.  LeadX
denotes V1, V4, V6 (horizontal plane) or aVL, aVR, aVF
(frontal plane); the horizontal PAC is determined by

Horizontal AAC
Horizontal PAC (%) = ( ] 00,

—_— X
Horizontal BA

where: Horizontal AAC=TAC,,+TAC,,,+TAC,,, Horizon-
tal BA=TBA, +TBA,,+TBA; and the VT probability
(Pyy) 1s determined by:

AT ot +OXPAC o +8XPAC i mta )

Pyr =

1+ e(a+bXM,CTdurarion +eXPAC froptal +dXPAChorizomal)

where a, b, ¢ and d are constants. In another aspect, the
frontal PTVAC is determined by

Frontal ATVAC

Frontal PTVAC (%) = ( _
Frontal BTVA

]x 100,

where: Frontal ATVAC=TTVAC,,+TTVAC,,,+TTVA-
C,yp, Frontal BIVA=TBTVA,,,,+TBTVA,,,, +TBTVA,,, .
TTVAC,,..x=TVAPC;, s # TVANC, ../

TBTVAgyseiine:Leadx—~)TimeVoltage Area g i
Leadx+(+) TimeVoltageAreag i e-7eadns

TVAPC,, v~ (+)TimeVoltageArea ey cpax—(+) Ti-
meVoltageATea, ceineLeadx!

TVANC,,,.x=|(-)TimeVoltageAreaycr eaax—(-)
TimeVoltageAreag serine:zeadx's

LeadX denotes V1, V4, V6 (horizontal plane) or aVL, aVR,
aVF (frontal plane); the horizontal PTVAC is determined by
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Horizontal ATVAC

Horizontal PTVAC(%) = ( R ——
Horizontal BTVA

]x 100,

where:  Horizontal ATVAC=TTVAC,+TTVAC,,+TT-
VACys,
[0169] Horizontal BTVA=TBTVA,, +TBTVA,,+TBT-

VA and the VT probability (P,,) is determined by:

e(a+b>< WCT gy ration +OXPTVAC oo tdXPTVACopizomar )

Pyr =

Gt OXWCT gytion +E<PTYAC jromat *5<PTVAChorizomiat)

Jronta

1+e(

where: a, b, ¢ and dare constants.

[0170] In another aspect, the input/output interface com-
prises a remote device, and the remote device is communi-
cably coupled to the one or more processors via one or more
networks. In another aspect, the one or more processors
provide a recommendation to select or exclude a therapy,
medication, diagnostic testing or referral for a patient based
on the signal change. In another aspect, apparatus comprises
a server computer, a workstation computer, a laptop com-
puter, a mobile communications device, a personal data
assistant, or a medical device.

[0171] It is contemplated that any embodiment discussed
in this specification can be implemented with respect to any
method, kit, reagent, or composition of the invention, and
vice versa. Furthermore, compositions of the invention can
be used to achieve methods of the invention.

[0172] It will be understood that particular embodiments
described herein are shown by way of illustration and not as
limitations of the invention. The principal features of this
invention can be employed in various embodiments without
departing from the scope of the invention. Those skilled in
the art will recognize, or be able to ascertain using no more
than routine experimentation, numerous equivalents to the
specific procedures described herein. Such equivalents are
considered to be within the scope of this invention and are
covered by the claims.

[0173] All publications and patent applications mentioned
in the specification are indicative of the level of skill of those
skilled in the art to which this invention pertains. All
publications and patent applications are herein incorporated
by reference to the same extent as if each individual publi-
cation or patent application was specifically and individually
indicated to be incorporated by reference.

[0174] The use of the word “a” or “an” when used in
conjunction with the term “comprising” in the claims and/or
the specification may mean “one,” but it is also consistent
with the meaning of “one or more,” “at least one,” and “one
or more than one.” The use of the term “or” in the claims is
used to mean “and/or” unless explicitly indicated to refer to
alternatives only or the alternatives are mutually exclusive,
although the disclosure supports a definition that refers to
only alternatives and “and/or.” Throughout this application,
the term “about” is used to indicate that a value includes the
inherent variation of error for the device, the method being
employed to determine the value, or the variation that exists
among the study subjects.

[0175] As used in this specification and claim(s), the
words “comprising” (and any form of comprising, such as
“comprise” and “comprises”), “having” (and any form of
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having, such as “have” and “has”), “including” (and any
form of including, such as “includes” and “include”) or
“containing” (and any form of containing, such as “con-
tains” and “contain”) are inclusive or open-ended and do not
exclude additional, unrecited elements or method steps. In
embodiments of any of the compositions and methods
provided herein, “comprising” may be replaced with “con-
sisting essentially of” or “consisting of”. As used herein, the
phrase “consisting essentially of” requires the specified
integer(s) or steps as well as those that do not materially
affect the character or function of the claimed invention. As
used herein, the term “consisting” is used to indicate the
presence of the recited integer (e.g., a feature, an element, a
characteristic, a property, a method/process step or a limi-
tation) or group of integers (e.g., feature(s), element(s),
characteristic(s), propertie(s), method/process steps or limi-
tation(s)) only.

[0176] The term “or combinations thereof” as used herein
refers to all permutations and combinations of the listed
items preceding the term. For example, “A, B, C, or com-
binations thereof” is intended to include at least one of® A,
B, C, AB, AC, BC, or ABC, and if order is important in a
particular context, also BA, CA, CB, CBA, BCA, ACB,
BAC, or CAB. Continuing with this example, expressly
included are combinations that contain repeats of one or
more item or term, such as BB, AAA, AB, BBC, AAABC-
CCC, CBBAAA, CABABB, and so forth. The skilled arti-
san will understand that typically there is no limit on the
number of items or terms in any combination, unless oth-
erwise apparent from the context.

[0177] As used herein, words of approximation such as,
without limitation, “about”, “substantial” or “substantially”
refers to a condition that when so modified is understood to
not necessarily be absolute or perfect but would be consid-
ered close enough to those of ordinary skill in the art to
warrant designating the condition as being present. The
extent to which the description may vary will depend on how
great a change can be instituted and still have one of
ordinary skilled in the art recognize the modified feature as
still having the required characteristics and capabilities of
the unmodified feature. In general, but subject to the pre-
ceding discussion, a numerical value herein that is modified
by a word of approximation such as “about” may vary from
the stated value by at least 1, 2,3,4,5,6,7, 10, 12 or 15%.

[0178] All of the compositions and/or methods disclosed
and claimed herein can be made and executed without undue
experimentation in light of the present disclosure. While the
compositions and methods of this invention have been
described in terms of preferred embodiments, it will be
apparent to those of skill in the art that variations may be
applied to the compositions and/or methods and in the steps
or in the sequence of steps of the method described herein
without departing from the concept, spirit and scope of the
invention. All such similar substitutes and modifications
apparent to those skilled in the art are deemed to be within
the spirit, scope and concept of the invention as defined by
the appended claims.
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What is claimed is:
1. A computerized method of classifying a wide complex
heart beat(s) comprising:
providing a computing device having an input/output
interface, one or more processors and a memory;

receiving one or more wide complex heart beat waveform
amplitudes and/or time-voltage areas, and one or more
baseline heart beat waveform amplitudes and/or time-
voltage areas via the input/output interface or the
memory;

determining a signal change between the wide complex

heart beat waveform amplitudes and/or time-voltage
areas and the baseline heart beat waveform amplitudes
and/or time-voltage areas using the one or more pro-
cessors; and

providing the signal change via the input/output interface,

wherein the signal change provides an indication
whether the wide complex heart beat(s) is from a
ventricular source or a supraventricular aberrant con-
dition.

2. The method of claim 1, wherein the signal change
further provides the indication whether the wide complex
heart beat(s) is due to ventricular pacing.

3. The method of claim 1, wherein:

the wide complex heart beat(s) comprise a wide complex

tachycardia (WCT);

the ventricular source comprises a ventricular tachycardia

(VT); and

the supraventricular aberrant condition comprises a

supraventricular wide complex tachycardia (SWCT).

4. The method of claim 1, wherein providing the signal
change via the input/output interface comprises:

automatically determining a wide complex heart beat

classification for the wide complex heart beat(s) by
comparing the signal change to a predetermined value
using the one or more processors, wherein the wide
complex heart beat classification comprises the ven-
tricular source or the supraventricular aberrant condi-
tion; and

providing the wide complex heart beat classification via

the input/output interface.

5. The method of claim 4, wherein:

the signal change comprises a VT probability;

the wide complex heart beat classification comprises a VT

whenever the VT probability is greater than or equal to
the predetermined value; and

the wide complex heart beat classification comprises a

SWCT whenever the VT probability is less than the
predetermined value.

6. The method of claim 5, further comprising selecting the
predetermined value from a range of 0% to 100%.

7. The method of claim 5, wherein the predetermined
value comprises about 1%, 10%, 25%, 50%, 75%, 90% or
99%.
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8. The method of claim 1, wherein providing the signal
change comprises providing a “shock” signal, a “no shock”
signal, or no signal.

9. The method of claim 1, further comprising obtaining
the wide complex heart beat waveform amplitudes and/or
time-voltage areas and the baseline heart beat waveform
amplitudes and/or time-voltage areas from an electrocardio-
gram (ECG) QRS signal, a ventricular electrogram (EMG)
signal, and/or a vectorcardiogram (VCG) signal.

10. The method of claim 1, wherein:

the wide complex heart beat waveform amplitudes and/or

time-voltage areas comprise a plurality of measured
amplitudes and/or time-voltage areas of a ECG QRS
waveform, a EMG waveform and/or a VCG waveform
above and below an isoelectric baseline; and

the baseline heart beat waveform amplitudes and/or time-

voltage areas comprise a plurality of measured ampli-
tudes and/or time-voltage areas of a baseline ECG QRS
waveform, a baseline EMG waveform and/or a baseline
VCG waveform above and below the isoelectric base-
line.

11. The method of claim 1, wherein receiving the one or
more wide complex heart beat waveform amplitudes and/or
time-voltage areas, and one or more baseline heart beat
waveform amplitudes and/or time-voltage areas comprises:

receiving a BECG QRS data, a EMG data, a VCG data

and/or a mathematically synthesized VCG data via the
input/output interface or the memory;

receiving a baseline ECG QRS data, a baseline EMG data

and/or a baseline VCG data via the input/output inter-
face or the memory;

determining the one or more waveform amplitudes and/or

time-voltage areas from the ECG QRS data, the EMG
data and/or the VCG data using the one or more
processors; and

determining the one or more baseline waveform ampli-

tudes and/or time-voltage areas from the baseline ECG
QRS data, the baseline EMG data and/or the baseline
VCG data using the one or more processors.

12. The method of claim 11, wherein the ECG QRS data,
the EMG data and/or the VCG data is generated or recorded
before or after the baseline ECG QRS data, the baseline
EMG data and/or the baseline VCG data.

13. The method of claim 11, wherein the ECG QRS data,
the EMG data and/or the VCG data is generated or recorded
after the baseline ECG QRS data, the baseline EMG data
and/or the baseline VCG data and determining the signal
change.

14. The method of claim 11, further comprising generat-
ing or recording the ECG QRS data, the EMG data and/or
the VCG data and the baseline ECG QRS data, the baseline
EMG data and/or the baseline VCG data using one or more
sensors or devices.

15. The method of claim 14, wherein the one or more
sensors or devices comprise a 12-lead ECG device, a con-
tinuous ECG telemetry monitor, a stress testing system, an
extended monitoring device, a smartphone-enabled ECG
medical device, a cardioverter-defibrillator therapy device, a
subcutaneous implantable cardioverter defibrillators (ICD),
a pacemaker, an automated external defibrillators (AED), or
an automatic implantable cardioverter defibrillator (AICD).

16. The method of ¢claim 14, wherein:

the computing device is integrated into the one or more

sensors or devices; or
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the one or more sensors or devices are integrated into the
computing device.

17. The method of claim 1, wherein determining the
signal change between the wide complex heart beat wave-
form amplitudes and/or time-voltage areas and the baseline
heart beat waveform amplitudes and/or time-voltage areas
comprises:

receiving a wide complex heart beat waveform duration
via the input/output interface or the memory;

determining, using the one or more processors, a percent
amplitude change (PAC) based on the wide complex
heart beat waveform amplitudes and the baseline wide
complex heart beat waveform amplitudes, and/or a
percent time-voltage area change (PTVAC) based on
the wide complex heart beat waveform time-voltage
areas and the baseline wide complex heart beat wave-
form time-voltage areas;

determining a classification probability based on the wide
complex heart beat waveform duration, and the PAC
and/or the PTVAC using the one or more processors;
and

wherein the signal change comprises the classification
probability, and the classification probability comprises
a VT probability, a SWCT probability, or a ventricular
pacing probability.

18. The method of claim 17, wherein determining the
classification probability is further determined based one or
more additional classification predictors.

19. The method of claim 17, wherein:

the PAC comprises a frontal PAC and a horizontal PAC;
and

the PTVAC comprises a frontal PTVAC and a horizontal
PTVAC.

20. The method of claim 1, wherein determining the
signal change between the wide complex heart beat wave-
form amplitudes and/or time-voltage areas and the baseline
heart beat waveform amplitudes and/or time-voltage areas
comprises:

receiving a WCT QRS duration via the input/output
interface or the memory;

the one or more wide complex heart beat waveform
amplitudes and/or time-voltage areas comprise one or
more frontal plane WCT positive waveform amplitudes
and/or time-voltage areas, one or more horizontal plane
WCT positive waveform amplitudes and/or time-volt-
age areas, one or more frontal plane WCT negative
waveform amplitudes and/or time-voltage areas, and
one or more horizontal plane WCT negative waveform
amplitudes and/or time-voltage areas;

the one or more the baseline heart beat waveform ampli-
tudes and/or time-voltage areas comprise one or more
frontal plane baseline positive waveform amplitudes
and/or time-voltage areas, one or more horizontal plane
baseline positive waveform amplitudes and/or time-
voltage areas, one or more frontal plane baseline nega-
tive waveform amplitudes and/or time-voltage areas,
and one or more horizontal baseline negative waveform
amplitudes and/or time-voltage areas;
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determining (1) a frontal percent amplitude change (PAC)
based on the one or more frontal plane WCT positive
waveform amplitudes, one or more frontal plane WCT
negative waveform amplitudes, one or more frontal
plane baseline positive waveform amplitudes, and one
or more frontal plane baseline negative waveform
amplitudes, and/or (2) a frontal percent time-voltage
area (PTVAC) based on the one or more frontal plane
WCT positive waveform time-voltage areas, one or
more frontal plane WCT negative waveform time-
voltage areas, one or more frontal plane baseline posi-
tive waveform time-voltage areas, and one or more
frontal plane baseline negative waveform time-voltage
areas;

determining (1) a horizontal PAC based on the one or
more horizontal plane WCT positive waveform ampli-
tudes, one or more horizontal plane WCT negative
waveform amplitudes, one or more horizontal plane
baseline positive waveform amplitudes, and one or
more horizontal baseline negative waveform ampli-
tudes, and/or (2) a horizontal PTVAC based on the one
or more horizontal plane WCT positive waveform
time-voltage areas, one or more horizontal plane WCT
negative waveform time-voltage areas, one or more
horizontal plane baseline positive waveform time-volt-
age areas, and one or more horizontal baseline negative
waveform time-voltage areas;
determining a VT probability using a statistical or
machine learning process based on the WCT QRS
duration and (1) the frontal PAC and the horizontal
PAC, and/or (2) the frontal PTVAC and the horizontal
PTVAC; and
wherein the signal change comprises the VT probability.
21. The method of claim 20, wherein the statistical or
machine learning process comprises a linear regression
algorithm, a logistic regression model, a linear discriminate
analysis algorithm, a Naive Bayes algorithm, a computa-
tional model using artificial neural networks, a computa-
tional model based on classification or regression trees, a
k-nearest neighbors based model, a support vector machine
based model, a boosting algorithm, or an ensemble machine
learning algorithm.
22. The method of claim 20, wherein:
the frontal PAC is determined by

Frontal AAC

Frontal PAC (%) = (7
Frontal BA

]x 100,

where: Frontal AAC=TAC_,z+TAC,,;+TAC,,,
Frontal BA=TBA ,»+TBA,,;+IBA 7,
TACLeadX:APCLeaM ANC’LeadX g

TBABa.seline:LeadX;(_)AInplimdeBaseline:LeadX+':+)‘AIn_
plitudez, . imezeaars

APC; =l (H)Amplitudepers o (+)Amplitude-

Baseline:LeadX ‘ >

ANCyq=I(=)Amplitude e r.p g gx=(-)Amplitude-

Baseline:LeadX‘ >

LeadX denotes V1, V4, V6 (horizontal plane) or aVL,
aVR, aVF (frontal plane);
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the horizontal PAC is determined by

Horizontal AAC

Horizontal PAC (%) = ( -
Horizontal BA

]X 100,

where: Horizontal AAC=TAC,,+TAC,,+TAC ,
Horizontal BA=TBA,,+TBA,.,+TBA,; and
the VT probability (P) is determined by:

AW i +OXPAC ot +&XPAC izt

Pyr = .
1+ e(a+bXWCTdurarion+CXPACfromal +dXPAChorizomal)

where: a, b, ¢ and d are constants,
23. The method of claim 20, wherein:
the frontal PTVAC is determined by

Frontal ATVAC

Frontal PTVAC (%) = (7
Frontal BTVA

]>< 100,

where: Frontal ATVAC=TTVAC,;+TTVAC,;+TTVA-
Ca VES
Frontal BTVA=TBTVA ,.+TBTVA,,,,+TBTVA,, ,
TIVAC,,,~TVAPC,, +TVANC,, .

ea

TBTVA gy cotime: Leadx=(~) TimeVoltage Areag, . iy,
Lead+(+)TimeVoltage Area g, rives cad s

TVAPC, .»=|(+)TimeVoltageArea e rs oo (+)
TimeVoltageAreag cerine:Leadx!»

TVANC; o= !(-)TimeVoltage Areayer paax—{(-)
TimeVoltageAreapseine:z.cadx!>
LeadX denotes V1, V4, V6 (horizontal plane) or aVL,
aVR, aVF (frontal plane);
the horizontal PTVAC is determined by

Horizontal ATVAC

Horizontal PTVAC(%) = ( -
Horizontal BTVA

]x 100,

where:  Horizontal

VAC,4,
Horizontal BTVA=TBTVA,,+TBTVA ,+TBTVA ; and
the VT probability (P,) is determined by:

ATVAC=TTVAC;,+TTVAC,,+TT-

e(a+b>< WCT urgtion +XPTVAC oy +XPTVAC i )

Pyr = ,
1+ e(a+bXWCTdurarion+CXPTVACfr0mal +dXPTVACh0rizomal)

where: a, b, ¢ and d are constants.

24. The method of claim 1, wherein the input/output
interface comprises a remote device, and the remote device
is communicably coupled to the one or more processors via
one or more networks.

25. The method of claim 1, further comprising providing
a recommendation to select or exclude a therapy, medica-
tion, diagnostic testing or referral for a patient based on the
signal change.
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26. The method of claim 1, wherein the computing device
comptrises a server computer, a workstation computer, a
laptop computer, a mobile communications device, a petr-
sonal data assistant, or a medical device.

27. An apparatus for classifying a wide complex heart
beat(s) comprising:

an input/output interface;

a memory; and

one or more processors communicably coupled to the

input/output interface and the memory, wherein the one

Or More Processors:

receive one or more wide complex heart beat waveform
amplitudes and/or time-voltage areas, and one or
more baseline heart beat waveform amplitudes and/
or time-voltage areas via the input/output interface or
the memory,

determine a signal change between the wide complex
heart beat waveform amplitudes and/or time-voltage
areas and the baseline heart beat waveform ampli-
tudes and/or time-voltage areas using the one or
more processors, and

provide the signal change via the input/output interface,
wherein the signal change provides an indication
whether the wide complex heart beat(s) is from a
ventricular source or a supraventricular aberrant con-
dition.

28. The apparatus of claim 27, wherein the signal change
further provides the indication whether the wide complex
heart beat(s) is due to ventricular pacing.

29. The apparatus of claim 27, wherein:

the wide complex heart beat(s) comprise a wide complex

tachycardia (WCT);

the ventricular source comprises a ventricular tachycardia

(VT); and
the supraventricular aberrant condition comprises a
supraventricular wide complex tachycardia (SWCT).

30. The apparatus of claim 27, wherein the one or more
processors provide the signal change via the input/output
interface by:

automatically determining a wide complex heart beat

classification for the wide complex heart beat(s) by
comparing the signal change to a predetermined value
using the one or more processors, wherein the wide
complex heart beat classification comprises the ven-
tricular source or the supraventricular aberrant condi-
tion; and

providing the wide complex heart beat classification via

the input/output interface.

31. The apparatus of claim 30, wherein:

the signal change comprises a VT probability;

the wide complex heart beat classification comprises a VT

whenever the VT probability is greater than or equal to
the predetermined value; and

the wide complex heart beat classification comprises a

SWCT whenever the VT probability is less than the
predetermined value.

32. The apparatus of claim 31, further comprising select-
ing the predetermined value from a range of 0% to 100%.

33. The apparatus of claim 31, wherein the predetermined
value comprises about 1%, 10%, 25%, 50%, 75%, 90% or
99%.

34. The apparatus of claim 27, wherein providing the
signal change comprises providing a “shock” signal, a “no
shock” signal, or no signal.
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35. The apparatus of claim 27, wherein the wide complex
heart beat waveform amplitudes and/or time-voltage areas
and the baseline heart beat waveform amplitudes and/or
time-voltage areas are obtained from an electrocardiogram
(ECG) QRS signal, a ventricular electrogram (EMG) signal,
and/or a vectorcardiogram (VCG) signal.

36. The apparatus of claim 27, wherein:

the wide complex heart beat waveform amplitudes and/or
time-voltage areas comprise a plurality of measured
amplitudes and/or time-voltage areas of a ECG QRS
waveform, a EMG waveform and/or a VCG waveform
above and below an isoelectric baseline; and

the baseline heart beat waveform amplitudes and/or time-

voltage areas comprise a plurality of measured ampli-
tudes and/or time-voltage areas of a baseline ECG QRS
waveform, a baseline EMG waveform and/or a baseline
VCG waveform above and below the isoelectric base-
line.

37. The apparatus of claim 27, wherein the one or more
processors receive the one or more wide complex heart beat
waveform amplitudes and/or time-voltage areas, and one or
more baseline heart beat waveform amplitudes and/or time-
voltage areas by:

receiving a ECG QRS data, a EMG data, a VCG data
and/or a mathematically synthesized VCG data via the
input/output interface or the memory;

receiving a baseline ECG QRS data, a baseline EMG data
and/or a baseline VCG data via the input/output inter-
face or the memory;

determining the one or more waveform amplitudes and/or
time-voltage areas from the ECG QRS data, the EMG
data and/or the VCG data; and

determining the one or more baseline waveform ampli-
tudes and/or time-voltage areas from the baseline ECG
QRS data, the baseline EMG data and/or the baseline
VCG data.

38. The apparatus of claim 37, wherein the ECG QRS
data, the EMG data and/or the VCG data is generated or
recorded before or after the baseline ECG QRS data, the
baseline EMG data and/or the baseline VCG data.

39. The apparatus of claim 37, wherein the ECG QRS
data, the EMG data and/or the VCG data is generated or
recorded after the baseline ECG QRS data, the baseline
EMG data and/or the baseline VCG data and determining the
signal change.

40. The apparatus of claim 37, wherein the ECG QRS
data, the EMG data and/or the VCG data and the baseline
ECG QRS data, the baseline EMG data and/or the baseline
VCG data are generated or recorded using one or more
sensors or devices.

41. The apparatus of claim 40, wherein the one or more
sensors or devices comprise a 12-lead ECG device, a con-
tinuous ECG telemetry monitor, a stress testing system, an
extended monitoring device, a smartphone-enabled ECG
medical device, a cardioverter-defibrillator therapy device, a
subcutaneous implantable cardioverter defibrillators (ICD),
a pacemaker, an automated external defibrillators (AED), or
an automatic implantable cardioverter defibrillator (AICD).

42. The apparatus of claim 40, wherein:

the input/output interface, the memory and the one or
more processors are integrated into the one or more
sensors or devices; or



US 2019/0387992 A1

the one or more sensors or devices are integrated into a
computing device comprising the input/output intet-
face, the memory and the one or more processors.

43. The apparatus of claim 27, wherein the one or more
processors determine the signal change between the wide
complex heart beat waveform amplitudes and/or time-volt-
age areas and the baseline heart beat waveform amplitudes
and/or time-voltage areas by:

receiving a wide complex heart beat waveform duration
via the input/output interface or the memory;

determining a percent amplitude change (PAC) based on
the wide complex heart beat waveform amplitudes and
the baseline wide complex heart beat waveform ampli-
tudes, and/or a percent time-voltage area change (PT-
VAC) based on the wide complex heart beat waveform
time-voltage areas and the baseline wide complex heart
beat waveform time-voltage areas;

determining a classification probability based on the wide
complex heart beat waveform duration, and the PAC
and/or the PTVAC; and

wherein the signal change comprises the classification
probability, and the classification probability comprises
a VT probability, a SWCT probability, or a ventricular
pacing probability.
44. The apparatus of claim 43, wherein determining the
classification probability is further determined based one or
more additional classification predictor.

45. The apparatus of claim 43, wherein:

the PAC comprises a frontal PAC and a horizontal PAC;
and

the PTVAC comprises a frontal PTVAC and a horizontal
PTVAC.

46. The apparatus of claim 43, wherein the one or more
processors determine the signal change between the wide
complex heart beat waveform amplitudes and/or time-volt-
age areas and the baseline heart beat waveform amplitudes
and/or time-voltage areas by:

receiving a WCT QRS duration via the input/output
interface or the memory;

the one or more wide complex heart beat waveform
amplitudes and/or time-voltage areas comprise one or
more frontal plane WCT positive waveform amplitudes
and/or time-voltage areas, one or more horizontal plane
WCT positive waveform amplitudes and/or time-volt-
age areas, one or more frontal plane WCT negative
waveform amplitudes and/or time-voltage areas, and
one or more horizontal plane WCT negative waveform
amplitudes and/or time-voltage areas;

the one or more the baseline heart beat waveform ampli-
tudes and/or time-voltage areas comprise one or more
frontal plane baseline positive waveform amplitudes
and/or time-voltage areas, one or more horizontal plane
baseline positive waveform amplitudes and/or time-
voltage areas, one or more frontal plane baseline nega-
tive waveform amplitudes and/or time-voltage areas,
and one or more horizontal baseline negative waveform
amplitudes and/or time-voltage areas;

determining (1) a frontal percent amplitude change (PAC)
based on the one or more frontal plane WCT positive
waveform amplitudes, one or more frontal plane WCT
negative waveform amplitudes, one or more frontal
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plane baseline positive waveform amplitudes, and one
or more frontal plane baseline negative waveform
amplitudes, and/or (2) a frontal percent time-voltage
area (PTVAC) based on the one or more frontal plane
WCT positive waveform time-voltage areas, one or
more frontal plane WCT negative waveform time-
voltage areas, one or more frontal plane baseline posi-
tive waveform time-voltage areas, and one or more
frontal plane baseline negative waveform time-voltage
areas;

determining (1) a horizontal PAC based on the one or
more horizontal plane WCT positive waveform ampli-
tudes, one or more horizontal plane WCT negative
waveform amplitudes, one or more horizontal plane
baseline positive waveform amplitudes, and one or
more horizontal baseline negative waveform ampli-
tudes, and/or (2) a horizontal PTVAC based on the one
or more horizontal plane WCT positive waveform
time-voltage areas, one or more horizontal plane WCT
negative waveform time-voltage areas, one or more
horizontal plane baseline positive waveform time-volt-
age areas, and one or more horizontal baseline negative
waveform time-voltage areas;

determining a VT probability using a statistical or
machine learning process based on the WCT QRS
duration and (1) the frontal PAC and the horizontal
PAC, and/or (2) the frontal PTVAC and the horizontal
PTVAC,; and

wherein the signal change comprises the VT probability.

47. The apparatus of claim 46, wherein the statistical or
machine learning process comprises a linear regression
algorithm, a logistic regression model, a linear discriminate
analysis algorithm, a Naive Bayes algorithm, a computa-
tional model using artificial neural networks, a computa-
tional model based on classification or regression trees, a
k-nearest neighbors based model, a support vector machine
based model, a boosting algorithm, or an ensemble machine
learning algorithm.

48. The apparatus of claim 46, wherein:

the frontal PAC is determined by

Frontal AAC

Frontal PAC (%) = (7
Frontal BA

]><100,

where: Frontal AAC=TAC,,,z+TAC,,,;+TAC 7,
Frontal BA=TBA,,,z+TBA,,,+TBA
TACLeadX':APCLead‘Y"-ANCLead){S

TBABa;eline:Leadf(—)AfnplimdeBaselme:J_eadX*"(+)Am'
plitudeg,seiinesecdrs

APCy ax=|(H)Amplituderper.z aax—(+)Amplitude-
Baseline:LeadX'>

ANC/oqx=I(-)Amplitude e cqqx—(-)Amplitude-
Baseline:LeadX'>

LeadX denotes V1, V4, V6 (horizontal plane) or aVL,
aVR, aVF (frontal plane);
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the horizontal PAC is determined by

Horizontal AAC

Horizontal PAC (%) = ( -
Horizontal BA

]X 100,

where: Horizontal AAC=TAC,+TAC,+TAC,
Horizontal BA=TBA,,+TBA,,+TBA ; and
the VT probability (P,;) is determined by:

ATHXWCT fnapion, +OPAC oot +dXPAChorizonsal )

Pyr = .
1+ g(aJ’bXWCTdurarion JrCXPACfrom‘al +dXPAChorizomal)

where: a, b, ¢ and d are constants.
49. The apparatus of claim 46, wherein:
the frontal PTVAC is determined by

Frontal ATVAC

Frontal PTVAC (%) = ( B ———
Frontal BTVA

]x 100,

where: Frontal ATVAC=TTVAC,,x+TTVAC,,;+TTVA-
Ca VE»
Frontal BIVA=TBTVA,,;z+TBTVA,;;+TBTVA 7,
TT\'/‘A‘CE (& GZeadX:T\IAPCL eadX’l' T\I‘A‘NCLeadX >

TBWABaselzneL?adX;(_)TimeV01tageAreaBaselzne:
Leadx+(+) TimeVoltageArea ,e oot cadis

TVAPC, .= (+)TimeVoltageArea pery caax—(+)
TimeVoltageAreag . crie:zeadx!s

TVANC, a1 (-)TimeVoltageAreay 17 coax—(-)
TimeVoltage Areag geiine:oadx!s
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LeadX denotes V1, V4, V6 (horizontal plane) or aVL,
aVR, aVF (frontal plane);

the horizontal PTVAC is determined by

Horizontal ATVAC

Horizontal PTVAC (%) = (7
Horizontal BTVA

]x 100,

where:  Horizontal

VACys,
Horizontal BTVA=TBTVA ,+TBTVA ,+TBTVA ; and
the VT probability (P, is determined by:

ATVAC=TTVAC,,+TTVAC,,+T1-

e(a+b XWET gy ration +o<PTVAC frontal +dXPTYAC i omtal )

Pyr = )
1+ e(a+bXWCTdurarion+CXPTVAC]'romal +d><FTVACh0rizomal)

where: a, b, ¢ and d are constants.

50. The apparatus of claim 27, wherein the input/output
interface comprises a remote device, and the remote device
is communicably coupled to the one or more processors via
one or more networks.

51. The apparatus of claim 27, wherein the one or more
processors further provides a recommendation to select or
exclude a therapy. medication, diagnostic testing or referral
for a patient based on the signal change.

52. The apparatus of claim 27, wherein the apparatus
comprises a server computer, a workstation computer, a
laptop computer, a mobile communications device, a pet-
sonal data assistant, or a medical device.
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Provide a computing device having an input/output interface, one or more
processors and a memory

3004~ l

Receive one or more wide complex heart beat waveform amplitudes and/or time-
voltage areas, and one or more baseline heart beat waveform amplitudes and/or
time-voltage areas via the input/output interface or the memory

3006 l

Determine a signal change between the wide complex heart beat waveform
amplitudes and/or time-voltage areas and the baseline heart beat waveform
amplitudes and/or time-voltage areas using the one or more processors

l 3010 v

3008~

Automatically determine a wide complex heart
beat classification for the wide complex heart
beat(s) by comparing the signal change to a

predetermined value using the one or more
processors, wherein the wide complex heart
beat classification comprises the ventricular
source or the supraventricular aberrant
condition

Provide the signal change via
the input/output interface,
wherein the signal change

provides an indication whether

the wide complex heart beat(s)
is from a ventricular source or
a supraventricular aberrant

condition 3012 v

Provide the wide complex heart beat
classification via the input/output interface
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