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SUB-DERMALLY IMPLANTED
ELECTROENCEPHALOGRAM SENSOR

FIELD

[0001] This specification relates generally to electroen-
cephalogram (EEG) signal processing and analysis, and
more specifically to acquiring EEG signals using a sub-
dermally implanted sensor.

BACKGROUND

[0002] An electroencephalogram (EEG) is a measurement
that detects electrical activity in a person’s brain. EEG
measures the electrical activity of large, synchronously
firing populations of neurons in the brain with electrodes
placed on the scalp.

[0003] EEG researchers have investigated brain activity
using the event-related potential (ERP) technique, in which
a large number of experimental trials are time-locked and
then averaged together, allowing the investigator to probe
sensory, perceptual, and cognitive processing with millisec-
ond precision. However, such EEG experiments are typi-
cally administered in a laboratory environment by one or
more trained technicians. EEG administration often involves
careful application of multiple sensor electrodes to a per-
son’s scalp, acquiring EEG signals using specialized and
complex equipment, and offline EEG signal analysis by a
trained individual.

SUMMARY

[0004] This specification describes technologies for EEG
signal processing in general, and specifically to systems and
methods for prompting, processing, and analyzing EEG
signals using machine learning techniques. These technolo-
gies generally involve an EEG system that is portable with
easy to apply sensors including at least one sensor that is
implanted sub-dermally. The system is able to prompt,
acquire, and process EEG signals in real time, and can
determine actions or behaviors desired by a user based on
the EEG signals.

[0005] This specification generally describes an EEG sys-
tem, integrated with machine learning models that provides
cleaned EEG signals and can implement actions chosen by
a user based on the EEG signals alone. For example, a user
may be looking at a menu and create brain signals to select
a menu item using only brain activity. The EEG system can
receive EEG signals from the user’s brain and determine
which menu item the user intends to select based on the EEG
signals. The EEG system uses the EEG signals as input to
machine learning models and generates output including
EEG signals and the user’s selection.

[0006] In general, in a first aspect, the invention features
amethod for obtaining an electroencephalogram (EEG) of a
user.

[0007] Other embodiments of this aspect include corre-
sponding computer systems, apparatus, and computer pro-
grams recorded on one or more computer storage devices,
each configured to perform the actions of the methods. For
a system of one or more computers to be configured to
perform particular operations or actions means that the
system has installed on it software, firmware, hardware, or
a combination of them that in operation cause the system to
perform the operations or actions. For one or more computer
programs to be configured to perform particular operations
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or actions means that the one or more programs include
instructions that, when executed by data processing appa-
ratus, cause the apparatus to perform the operations or
actions.

[0008] The foregoing and other embodiments can each
optionally include one or more of the following features,
alone or in combination. In particular, one embodiment
includes all the following features in combination.

[0009] An example method for analyzing electroencepha-
logram (EEG) signals includes: presenting information asso-
ciated with two or more options to a user; receiving EEG
signals from a sensor coupled to the user contemporaneously
to the user receiving the information associated with the two
or more options; processing the EEG signals in real time to
determine which one of the options was selected by the user;
and in response to determining which one ofthe options was
selected by the user, selecting an action from one or more
possible actions associated with the information presented to
the user; and generating an output associated with the
selected action.

[0010] In some embodiments, the generated output may
include control signal for an electronic device.

[0011] In some embodiments, the steps of presenting,
processing, and generating may be part of a closed-loop
feedback system through which the user controls the elec-
tronic device. The information may be presented to the user
using the electronic device. The electronic device may be
selected from the group consisting of a networked device, a
personal computer, a tablet computer, a mobile phone, and
a wearable computer.

[0012] In some embodiments, information may be pre-
sented visibly or audibly to the user. The information may be
presented based on an object detected in the user’s environ-
ment. The object may be detected based using machine
vision.

[0013] Insome embodiments, processing the EEG signals
may include cleaning the EEG signals in real time. Cleaning
the EEG signals may include increasing a signal-to-noise
ratio of the EEG signals. The EEG signals may be cleaned
according to a machine learning model. The machine learn-
ing model may be a neural network or another artificial
intelligence architecture. Processing the EEG signals may
include performing mathematical transformations on the
BEG signals in real time after cleaning the EEG signals to
determine which of the options was selected by the user. The
mathematical transformations may be performed according
to a machine learning model. The machine learning model
may be a neural network or other artificial intelligence
architecture. The machine learning model may map a time
series of values corresponding to an amplitude or change in
amplitude of the EEG signal to an output variable corre-
sponding to one of the options based on a mapping function.
The mapping function may be determined by training the
machine learning model.

[0014] In some embodiments, generating an output may
include presenting the user with additional information
associated with the selected action. The additional informa-
tion associated with the selected action may be information
associated with two or more further options.

[0015] In other embodiments, generating an output may
include sending instructions over a network in communica-
tion with a processor used to process the EEG signals.
[0016] An example electroencephalogram  system
includes: a plurality of sensors for detecting electrical activ-
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ity in a user’s brain; a user interface configured to present
information to the user; and a data processing apparatus in
communication with the plurality of sensors and the user
interface, the data processing apparatus comprising at least
one computer processor and being programmed, during
operation of the EEG system, to cause the EEG system to:
prompt the user to select from two or more options; receive
EEG signals from the plurality of sensors contemporane-
ously to the user receiving the information about the options;
process the EEG signals in real time to determine which one
of the options was selected by the user; in response to
determining which one of the options was selected by the
user, select an action from one or more possible actions
associated with the information presented to the user; and
generate an output associated with the selected action.

[0017] In some embodiments, the user interface is a com-
ponent of an electronic device and the plurality of sensors
and data processing apparatus are part of a closed-loop
feedback system through which the user controls the elec-
tronic device. The electronic device may be selected from
the group consisting of a networked device, a personal
computer, a tablet computer, a mobile phone, and a wearable
computer. The user interface may comprise an electronic
display. The data processing apparatus may be programmed
to process the EEG signals by cleaning the EEG signals in
real time.

[0018] In some embodiments, the data processing appa-
ratus may be programmed to process the EEG signals by
performing mathematical transformations on the EEG sig-
nals in real time after cleaning the EEG signals to determine
which one of the options was selected by the user. The
mathematical transformations may be performed according
to a machine learning model. At least one computer proces-
sor may perform both the EEG signal cleaning and the
mathematical transformations.

[0019] In some embodiments, a bioamplifier may include
the data processing apparatus. The bioamplifier may include
an analogue-to-digital converter arranged to receive the
EEG signals from the plurality of sensors and convert the
EEG signals from analogue signals to digital signals. The
bioamplifier may further include an amplifier arranged to
receive the EEG signals from the analogue-to-digital con-
verter and amplify the received EEG signals. The bioam-
plifier may include a housing containing the data processing
apparatus and a power source.

[0020] In some embodiments, the user interface may
include an electronic display. The user interface may include
a camera.

[0021] In some embodiments, the system may include a
networked computing device in communication with the
user interface. In other embodiments, the system may
include a mobile device, wherein the user interface and data
processing apparatus are part of the mobile device.

[0022] In some embodiments, the plurality of sensors
include an active sensor and a reference sensor. The plurality
of sensors may be dry sensors.

[0023] In some embodiments, the system may include a
wireless transceiver connecting the plurality of sensors with
the data processing apparatus.

[0024] In some embodiments, generating the output
includes providing one or more instructions to a computer
program on a computer device in communication with the
data processing apparatus.
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[0025] An example bioamplifier for analyzing electroen-
cephalogram (EEG) signals includes: an input terminal for
receiving an EEG signal from a plurality of sensors coupled
to a user; an analogue-to-digital converter arranged to
receive the EEG signal from the input terminal and convert
the EEG signal to a digital EEG signal; a data processing
apparatus arranged to receive the digital EEG signal from
the analogue-to-digital converter and programmed to pro-
cess, in real time, the digital EEG signal using a first
machine learning model to generate a cleaned EEG signal
having a higher signal-to-noise ratio than the digital EEG
signal; a power source arranged to provide electrical power
to the analogue-to-digital converter and the data processing
apparatus; and a housing containing the analogue-to-digital
converter, the data processing apparatus, the power source,
and a housing containing the analogue-to-digital converter,
the data processing apparatus, the power source, and the
sensor input.

[0026] In some embodiments, the data processing appa-
ratus may be further programmed to process, in real time, the
cleaned EEG signal to determine a selection by the user of
one of a plurality of options presented to the user.

[0027] In some embodiments, the data processing appa-
ratus may be programmed to perform mathematical trans-
formations on the cleaned EEG signal using a second
machine learning model to determine a selection by the user
of one of a plurality of options presented to the user.
[0028] In some embodiments, the data processing appa-
ratus includes a computer processor programmed to imple-
ment both the first and second machine learning models.
[0029] In some embodiments, the second machine learn-
ing model may be a neural network or other artificial
intelligence architecture.

[0030] The data processing apparatus may be programmed
to synchronize the analysis with a presentation of the options
to the user.

[0031] Insome embodiments, the bioamplifier includes an
output terminal for connecting the bioamplifier to a user
interface and the data processing apparatus is programmed
to synchronize the analysis with the presentation of the
options to the user via the user interface.

[0032] In some embodiments, the user interface may be a
component of an electronic device and the plurality of
sensors and data processing apparatus are part of a closed-
loop feedback system through which the user controls the
electronic device. The electronic device may be selected
from the group consisting of a networked device, a personal
computer, a tablet computer, a mobile phone, and a wearable
computer. The user interface may include an electronic
display. The user interface may include a camera.

[0033] Insome embodiments, the machine learning model
may be a neural network or other artificial intelligence
architecture.

[0034] In some embodiments, the bicamplifier may
include an amplifier contained in the housing and arranged
to receive the digital EEG signal from the analogue-to-
digital converter and provide an amplified digital EEG
signal to the data processing apparatus for processing.

[0035] In some embodiments, the power source may be a
battery. The analogue-to-digital converter may be a 24 bit
analogue-to-digital converter. The bioamplifier may have an
input impedance of 10 MOhms or more. The input terminal
may include a jack for receiving a connector from a lead.
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The input terminal may include a wireless transceiver for
wirelessly receiving the EEG signal.

[0036] An example method may include: receiving at least
one EEG signal from a user via a plurality of sensors
coupled to the user; amplifying, using a bioamplifier, the
EEG signal from the plurality of sensors to provide an
amplified EEG signal; processing, in real time, the amplified
signal using a machine learning model that receives the
amplified signal as input; and outputting a cleaned signal by
the machine learning model, the cleaned signal having a
higher signal-to-noise ratio than the at least one EEG signal
received from the user.

[0037] In some embodiments, the method may further
include processing, in real time, the cleaned EEG signal to
determine a selection by the user of one of a plurality of
options presented to the user.

[0038] In some embodiments, the method may further
include sending a signal to an electronic device based on the
selection determined from the cleaned EEG signal.

[0039] An example method for obtaining an electroen-
cephalogram (EEG) of a user includes:

[0040] attaching a reference sensor to the user by connect-
ing a first component of the reference sensor to a second
component of the reference sensor, at least a portion of the
first component being sub-dermally implanted on or adja-
cent to a mastoid process of the user; attaching at least one
active sensor to the user; simultaneously detecting a first
signal from the reference sensor and a second signal from
the at least one active sensor; and obtaining the EEG based
on the first signal and the second signal.

[0041] In some embodiments, the first component may
include a second portion exposed through the user’s skin.
The second portion may include a first part of a fastener and
the second component comprises a second part of the
fastener for connecting to the first part of the fastener. The
fastener may be a press stud and the first part may be a knob
of the press stud and the second part may be a hole of the
press stud shaped to attach to the knob. The fastener may be
a ring fastener. The second component may be attached to a
lead which electrically connects the sensor to a bioamplifier.
The second component may be attached to a wireless
transceiver in communication with a bioamplifier. The por-
tion of the first component sub-dermally implanted may
include an electrode. The electrode may be titanium or gold.
[0042] In some embodiments, the portion of the first
component sub-dermally implanted may include a first mag-
netic material and the second component may include a
second magpetic material, the first and second magnetic
materials of the first and second components may cause a
magnetic attraction between the first and second compo-
nents, the magnetic attraction may cause the second com-
ponent to couple to the user’s skin.

[0043] In some embodiments, the first component may be
implanted beneath the user’s skin. The first component may
be anchored to a skull bone of the user’s mastoid process.
[0044] In some embodiments, a ground sensor may be
attached to the user and signals may be detected from the
ground sensor simultaneously to detecting signals from the
reference electrode and the at least one active electrode.
[0045] An example electroencephalogram (EEG) system
may include a bioamplifier and a sensor comprising an
electrode, the sensor being in communication with the
bioamplifier and configured to transmit EEG signals to the
bioamplifier during use of the EEG system, the second
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including a first component including a first part of a
fastener, at least a portion of the first component being
composed of one or more materials and shaped for implan-
tation under a user’s skin; a second component including a
second part of the fastener for causing coupling with the first
part of the fastener to connect and detach the second
component to the first component. The second component
may be connected to a lead, the lead electrically connecting
the sensor to the bioamplifier. The first component of the
sensor further includes an anchor for causing the first
component to anchor to the user’s skull. The fastener may be
a fastening element selected from the group consisting of a
press stud, a ring, a bolt, a clasp, a clamp, a clip, a pin, a
retaining ring, and a magnetic fastener.

[0046] Among other advantages, the systems include por-
table, robust bioamplifiers that can provide real-time analy-
sis of EEG signals under conditions that would typically
result in significant signal noise and therefore be unusable or
more difficult to use with other systems. For example, the
systems can incorporate machine learning models that clean
amplified FEG signals in real time to reduce signal noise.
The machine learning models can be implemented on the
same chip or hardware that performs EEG signal acquisi-
tion. The bioamplifiers can also analyze the EEG signals in
real-time.

[0047] In some embodiments, the systems can provide
real-time EEG analysis facilitating user interaction with a
digital environment. For example, EEG systems can incor-
porate machine learning models that interpret EEG signals
associated with information presented to the user by a
computer device (e.g., a mobile device or personal com-
puter). Accordingly, a user can use the disclosed systems to
interact with a computer device using only their brain
activity.

[0048] Sensor electrodes can be quickly and effectively
attached to the user. For example, use of a sub-dermally
implanted sensor can ensure consistent secure attachment
and positioning to the user, and equally efficient detachment.
Subdermal electrodes provide two other advantages. First,
they provide cleaner data than supra-dermal electrodes, as
they are implanted under the skin and therefore the EEG
voltage does not have to pass through the skin (an electrical
resistor) prior to acquisition. Second, they allow for more
consistent data collection. When EEG sensors have to be
applied more than once to the same patient, it is very difficult
to re-apply them in exactly the same position that they were
applied to the first time. This injects noise into cross-session
recordings. Sub-dermally implanted electrodes have the
advantage that they will always be in exactly the same
position across sessions, removing this source of noise.
[0049] The details of one or more embodiments of the
subject matter of this specification are set forth in the
accompanying drawings and the description below. Other
features, aspects, and advantages of the subject matter will
become apparent from the description, the drawings, and the
claims.

BRIEF DESCRIPTION OF THE DRAWINGS

[0050] FIG. 1is a schematic diagram of an embodiment of
an FEG system.

[0051] FIG. 2 is a flowchart showing aspects of the
operation of the EEG system shown in FIG. 1

[0052] FIG. 3 is a plot comparing two EEG signals for
analysis using the system in FIG. 1.
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[0053] FIG. 4 is a flowchart showing other aspects of the
operation of the EEG system shown in FIG. 1.

[0054] FIG. 5 is a schematic diagram of an embodiment of
an EEG system that features a head-mounted camera.
[0055] FIG. 6 is a schematic diagram of another embodi-
ment of an EEG system that features a mobile phone and a
wireless connection to the system’s sensor electrodes.
[0056] FIG. 7A s a perspective view of an embodiment of
a sensor electrode including multiple wire loops.

[0057] FIG. 7B is a side view of the sensor electrode
shown in FIG. 7A.

[0058] FIG. 7C is a top view of the sensor electrode shown
in FIG. 7A.
[0059] FIG. 7D is a bottom view of the sensor electrode

shown in FIG. 7A.

[0060] FIG. 8 is a perspective view of another embodi-
ment of a sensor electrode including multiple wire loops.
[0061] FIG. 9 is a perspective view of an embodiment of
a sensor electrode that includes wires of differing lengths.
[0062] FIG. 10A is a perspective view of an embodiment
of a sensor electrode that includes multiple protuberances.
[0063] FIG. 10B is a side view of the sensor electrode
shown in FIG. 10A.

[0064] FIG. 10C is a top view of the sensor electrode
shown in FIG. 10A.

[0065] FIG. 10D is a bottom view of the sensor electrode
shown in FIG. 10A.

[0066] FIG. 11A is a perspective view of an embodiment
of a sensor electrode that includes a protective collar.
[0067] FIG. 11B is an exploded perspective view of the
sensor electrode shown in FIG. 11A.

[0068] FIG. 11C is a side view of the sensor electrode
shown in FIG. 11A.

[0069] FIG. 11D is a bottom view of the sensor electrode
shown in FIG. 11A.

[0070] FIG. 11E is a top view of the sensor electrode
shown in FIG. 11A.

[0071] FIG. 12A is a view of a user with an implanted
Sensor.
[0072] FIG. 12B is a cross-sectional view of the implanted

sensor shown in FIG. 12A with lead detached.

[0073] FIG.12C is a cross-sectional view of the implanted
sensor shown in FIG. 12A with lead attached.

[0074] FIG. 12D is a cross-sectional view of an implanted
sensor anchored to the user’s skull.

[0075] FIG. 13A and 13B are cross-sectional views of
another embodiment of an implanted sensor shown, respec-
tively, with lead detached and attached.

[0076] FIG. 14 is a cross-sectional view of a further
embodiment of an implanted sensor.

[0077] FIG. 15 is a schematic diagram of a data processing
apparatus that can be incorporated into an EEG system.
[0078] Like reference numbers and designations in the
various drawings indicate like elements.

DETAILED DESCRIPTION

[0079] Referring to FIG. 1, an EEG system 100 features a
portable bioamplifier 110 that collects and analyzes EEG
signals from a user 101 using electrode sensors 136, 137,
and 138 attached to user 101's scalp. Bioamplifier 110 is in
communication with a personal computer 140 which dis-
plays information 142—in this instance an image of an ice
cream cone—to user 101. Bioamplifier 110 synchronously
collects EEG signals from user 101 while displaying infor-
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mation 142 and analyzes the EEG signals, interpreting in
real time user 101’s brain activity responsive to viewing the
information.

[0080] In certain embodiments, bioamplifier 110 is a high-
impedance, low-gain amplifier with a high dynamic range.
The bioamplifier impedance may be, for example, higher
than 10 megaohms (e.g., 12 MS) or more, 15 MS) or more,
20 MS) or more) with a maximum gain of 24xamplification.
The dynamic range of bioamplifier 110 should be sufficient
to acquire the entire voltage range of typical EEG signals
(e.g., 0.1 to 200 pV over frequency ranges of 1 to 100 Hz).
As a portable unit, bioamplifier 110 is housed within a
compact, robust casing, providing a package that can be
readily carried by user 101, sufficiently robust to remain
functional in non-laboratory settings.

[0081] Electrode sensors 136, 137, and 138 may be dry
sensors or may be placed in contact with the user’s scalp
using a gel. The sensors can be secured in place using, for
example, adhesive tape, a headband, or some other head-
wear. One of sensors 136, 137, and 138 is an active sensor.
Generally, the active sensor’s location on the user’s scalp
depends on the location of brain activity of interest. In some
implementations, the active sensor is placed at the back of
the user’s head, at or close to the user’s inion. Another one
of the sensors is a reference sensor. The EEG signal typically
corresponds to measured electrical potential differences
between the active sensor and the reference sensor. The third
sensor is a ground sensor. Typically, the ground sensor is
used for common mode rejection and can reduce (e.g.,
prevent) noise due to certain external sources, such as power
line noise. In some implementations, the ground and/or
reference sensors are located behind the user’s ears, on the
user’s mastoid process.

[0082] Bioamplifier 110 includes jacks 132 and 134 for
connecting leads 135 and 143 to the electrode sensors and
personal computer 140, respectively. Bioamplifier 110 fur-
ther includes an analogue-to-digital converter 112, an ampli-
fier 114, and a processing module 120. Although depicted as
a single analogue-to-digital converter and a single amplifier,
analogue-to-digital converter 112 and amplifier 114 may
each have multiple channels, capable of converting and
amplifying each EEG signal separately. A power source 130
(e.g., a battery, a solar panel, a receiver for wireless power
transmission) is also contained in bioamplifier 110 and is
electrically connected to ADC 112, amplifier 114, and pro-
cessing module 120. In general, analogue-to-digital con-
verter 112 and amplifier 114 are selected to yield digital
signals of sufficient amplitude to be processed using pro-
cessing module 120.

[0083] Processing module 120 includes one or more com-
puter processors programmed to analyze and clean amplified
EEG signals received from amplifier 114 in real time. The
computer processors can include commercially-available
processors (e.g., a raspberry pi micro-controller) and/or
custom components. In some embodiments, processing
module 120 includes one or more processors custom
designed for neural network computations (e.g., Tensor
Processing Unit from Google or Intel Nervanna NNP from
Intel Corp.). Generally, processing module 120 should
include sufficient computing power to enable real time
cleaning and analysis of the EEG signals.

[0084] The components of processing module 120 are
selected and programmed to include two machine learning
(ML) models: a ML cleaning model 122 and a ML two-
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choice decision model 124. ML cleaning model 122 receives
raw EEG signals from amplifier 114 and, by application of
a machine learning algorithm, cleans the signals to reduce
noise. Thus, ML cleaning model 122 outputs cleaned EEG
signals that have a reduced signal-to-noise ratio as compared
with the input signals. Cleaning the EEG signal includes
various operations that improve the usability of the signal
for subsequent analysis, e.g., by reducing noise in the EEG
signal. For example, cleaning the EEG signal can include
filtering the signal by applying a transfer function to input
data, e.g., to attenuate some frequencies in the data and leave
others behind. Other signal cleaning operations are also
possible. For example, signals can be cleaned using a neural
network. Cleaning can also include operations to improve
signal quality besides removal of undesirable frequencies.
For instance, cleaning can include removing blinks, which
digital filtering alone does not do.

[0085] Referring to FIG. 2, the process of digitizing,
amplifying, and cleaning an EEG signal is shown in a
flowchart 200. An EEG signal, e.g., a time-varying voltage
differential between a voltage measured using an active
sensor and a reference sensor, is received by a bioamplifier
(e.g., bioamplifier 110) from the sensors attached to the
user’s scalp (step 210). The frequency at which the sensor
voltage is sampled should be sufficient to capture voltage
variations indicative of the brain activity of interest (e.g.,
between 0.1 and 10 Hz, at 10 Hz or more, at 50 Hz or more,
at 100 Hz or more). An ADC (e.g., ADC 112) converts the
signal from an analogue signal to a digital signal (step 220)
and sends the digital signal to an amplifier (e.g., amplifier
114). The digital EEG signal is then amplified (e.g., by
amplifier 114) (step 230), and the amplified signal sent to a
processor (e.g., processing module 120). The processor
(e.g., processing module 120). in real time, cleans the
amplified signal using a machine learning model (e.g., ML
model 122), thereby generating a filtered (e.g., cleaned)
signal (step 240), and outputs the cleaned signal having
increased signal-to-noise compared to an uncleaned EEG
signal (step 250).

[0086] In general, any of a variety of ML models suitable
for signal processing can be used to clean the amplified EEG
signal. In many cases, the ML model is a neural network,
which is an ML model that employs one or more layers of
nonlinear units to predict an output for a received input.
Some neural networks are deep neural networks that include
two or more hidden layers in addition to the input and output
layers. The output of each hidden layer is used as input to
another layer in the network, i.e., another hidden layer, the
output layer, or both. Some layers of the neural network
generate an output from a received input, while some layers
do not (remain “hidden”). The network may be recurrent or
feedforward. It may have a single output or an ensemble of
outputs; it may be an ensemble of architectures with a single
output or a single architecture with a single output.

[0087] A neural network for a machine learning model
(e.g., ML model 122) can be trained on EEG-specific data in
order to distinguish between actual, usable data and noise
The ML model can be trained to classify artifacts in the EEG
and to deal with EEG segments that have different types of
noise in different ways. For example, if the network recog-
nizes a vertical eye movement (a blink) it could attempt to
remove the blink using a different approach than it would
use if it recognized a horizontal eye movement. The ML
model can be trained to clean data to an arbitrary level of
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precision-- that is, it can clean up the raw data a little bit or
a lot but there is no theoretical limit as to how closely the
ML model can reproduce the type of clean data it was trained
on. The level of cleaning that the ML model does is
dependent only on time and the architecture of the model,
that is, there is no theoretical maximum amount of possible
cleaning.

[0088] EEG signals, even under controlled conditions,
may contain significant noise, e.g., due to biological and/or
electrical sources. The propensity for noise is further
increased outside of a well-controlled laboratory environ-
ment. Accordingly, ML-based noise reduction may be par-
ticularly beneficial in providing usable EEG data in real time
in real world (i.e., outside of a well-controlled environment)
conditions.

[0089] As noted previously, a processor (e.g., processing
module 120) includes a machine learning two-choice deci-
sion model (e.g., ML two-choice decision model 124) for
analyzing cleaned EEG signals that output from a machine
learning cleaning model (e.g., ML cleaning model 122). The
two-choice model interprets a response of a user (e.g., user
101) to information (e.g., information 142) presented via a
computer (e.g., computer 140). A user’s response may be a
selection of one choice among a finite set, e.g., two or more,
of choices presented to the user. The two-choice model
associates one of two binaries with information (e.g., infor-
mation 142), such as interest (e.g., acceptance of an option)
of the user in the information, or disinterest (e.g., rejection
of an option).

[0090] In general, various parameters of the cleaned EEG
signal can be used to determine the user’s response (e.g., the
user’s choice selection). Often, these parameters include the
amplitude of the response amplitude over a relevant time
period (e.g., within about 500 ms of being presented with
information 142). This is illustrated in the plot shown in
FIG. 3, for example, which compares two EEG signals
corresponding to interest (trace 310) and disinterest (trace
320) in information presented to the user. After an initial
latency of approximately 50 ms, trace 310 has a significantly
larger amplitude than trace 320. A machine learning model
(e.g., ML model 124) associates the higher amplitude with
the user’s interest, and returns this information to a computer
(e.g., computer 140).

[0091] This process 1s illustrated by flowchart 400 shown
in FIG. 4. In step 410, a system (e.g., system 100) presents
information (e.g., information 142) to a user (e.g., user 101)
via a user interface, for example, provided by a personal
computer (e.g., personal computer 140). The system (e.g.,
system 100) receives EEG signals from the system’s sensors
placed on (e.g., removably attached or otherwise coupled to)
the user’s scalp (step 420). The system (e.g., system 100)
amplifies and cleans the signals as described above using an
amplifier and a machine learning model (e.g., ML model
122). The system (e.g., system 100) then provides the
cleaned EEG signals as input to a machine learning model
(e.g., ML model 124), which generates an output from the
input indicating the user’s response to information (e.g.,
information 142) or selection of an option (step 430). The
system provides input and generates output in real-time to
feed a closed loop. In embodiments, signal analysis involves
correlating the cleaned EEG signal to the presentation of
information to the user (e.g., by matching a time-stamp
associated with signal to the time of presentation) and
observing the time-varying amplitude of the signal associ-
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ated with the user’s brain activity responsive to the infor-
mation. The system can decompose the signal into a time
series of signal amplitude and/or change in signal amplitude
and perform mathematical operations on the time series to
determine the user’s intent. For example, the mathematical
operations can associate a change in signal amplitude above
a certain threshold and within a certain time (e.g., with 50 ms
or less) of presenting the user with the information with a
particular intention (e.g., an affirmative response) and a
change in signal amplitude below the threshold with the
opposite intention (e.g., a negative response). The threshold
amplitude and/or response time can be determined by train-
ing the ML model.

[0092] The system (e.g., system 100) then outputs results
indicative of the user’s response to the information (step
440). The user’s response to the information may be a
selection among multiple choices. For example, the user
may be presented with a menu of options to order for dinner.
The user may respond with EEG signals that the system can
process to determine the user’s dinner choice. The system
can then output the selected dinner choice of the user.
[0093] In some embodiments, a bioamplifier (e.g., bioam-
plifier 110) can relay the results of two-choice decision
model analysis to another device (e.g.,personal computer
140), which may take certain actions depending on the
results. Examples are described below.

[0094] In some embodiments, the cleaning and analysis
processing occurs on the same processing module (e.g.,
using the same processor, e.g.. the same processor core), the
system does not need to send the signals across a network
and therefore does not incur added data processing latency
of network connections or bandwidth restrictions. The sys-
tem executes calculations as soon as the amplified signal is
ready for processing, providing a very low lag response to
the user.

[0095] Moreover, the system can operate as a closed-loop
system. For example, the bioamplifier and other device (e.g.,
personal computer 140) operate using feedback in which the
system regulates presentation of information to the user by
the device based on the analysis of the user’s prior or
contemporaneous EEG signals. For instance, the device can
present the user with a choice between two or more different
options and, based on the user’s selection as interpreted from
the associated EEG signals, present subsequent choices to
the user associated with the user’s prior choice.

[0096] In some embodiments, the system (e.g., system
100) can use the received EEG signals from the user’s brain
activity to determine a user’s selection among the finite set
of possibilities and subsequently perform an action based on
the user’s selection without requiring the user to provide
more input than the brain activity signals. In order to
determine the correct action to execute, a machine learning
model (e.g., ML model 124) takes EEG signals as input and
classifies the EEG signals according to the user’s intended
action. This is achieved by processing the cleaned FEEG
input to the machine learning model (e.g., ML model 124)
through the hidden layers of the model and performing
machine classification. This may involve, for example, fea-
ture extraction or successive nonlinear recodings.

[0097] Essentially, the cleaned data is presented to the
machine learning model (e.g., ML model 124) and then the
machine learning model (e.g., ML model 124) performs a
number of mathematical transformations of the cleaned data
in order to produce an output that reflects the intention of the
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user as encoded in the EEG data. The ML model is able to
do this because it has been extensively trained, prior to
interaction with the user, on what types of EEG signals
correspond to what types of responses (e.g., selections by the
user).

[0098] In general, a variety of neural networks can be used
to analyze and classify the data. For example, the neural
network can be a convolutional neural network model, a
support vector machine, or a generative adversarial model.
In some implementations, lower dimensional models, e.g., a
low featural multilayer perceptron or divergent autoencoder
can be implemented. The minimum number of features that
can be used to achieve acceptable accuracy in decoding the
user’s intention is preferred for computational simplicity.
The optimized models may be trained or simulated in
constrained computing environments in order to optimize
for speed, power, or interpretability. Three primary features
of optimization are 1) the number of features extracted (as
described above), 2) the “depth” (number of hidden layers)
of the model, and 3) whether the model implements recur-
rence. These features are balanced in order to achieve the
highest possible accuracy while still allowing the system to
operate in near real time on the embedded hardware.
[0099] In some embodiments, the machine learning model
(e.g., ML model 124) uses sub-selection in which the model
only compares the current user’s brain activity with other
user saniples that are most similar to that of the user in order
to determine the user’s selection. Similarity to other users
can be operationalized with standard techniques such as
waveform convolution and normalized cross correlation.
Alternatively, the machine learning model (e.g., ML model
124) compares the user’s brain activity to that of all brain
activity present in a large dataset. The dataset may contain
brain activity samples from one or more other users.
Samples for comparison are drawn either from 1) a data
system’s internal user data or 2) data collected from external
users who have opted-in to having their data be included in
the comparison database. All samples are anonymized and
are non-identifiable.

[0100] To train the machine learning model (e.g., ML
model 124), a system (e.g., system 100) can present a user
with a choice problem, e.g., a two-choice problem, using a
display on a personal computer (e.g., computer 140) or some
other interaction element. In some implementations, the
system (e.g., system 100) provides the user with one object
at a time, e.g., for 500 milliseconds, with random jitter, e.g,,
between 16 and 64 milliseconds, added between objects.
Each image shown to the user is either an image of a first
type of object or an image of a second type of object. Prior
to displaying any images, the user is told to pay particular
attention to the first type of object, e.g., by counting or some
other means. While the system (e.g., system 100) is present-
ing images to the user, it differentiates EEG signals between
when the user is paying particular attention to images of the
first type of object and when the user is not paying as close
of attention to images of the second type of object.

[0101] Forexample, the system (e.g., system 100) presents
the user with sequence of images showing one of two
different objects (e.g., a rabbit or a squirrel). Prior to
displaying images, the user is told to pay particular attention
to images of squirrels only, and to count the squirrels. As
each image displays, the system (e.g., system 100) records
the user’s brain activity and determines a difference between
when the user views an image of a rabbit and when the user
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views an image of a squirrel. This difference is attainable
because 1) the squirrels are task-relevant (to the task of
counting squirrels) and the rabbits are not and 2) the
squirrel-counting task requires an update of working
memory (i.e, the number of squirrels that have been viewed)
each time a squirrel appears. These cognitive processes are
reflected in relatively large signals measurable by the EEG
system and separable by the ML model.

[0102] Insome embodiments, the machine learning model
(e.g., ML model 124) can be trained using equal numbers of
objects so that the model does not learn the true population
frequency distribution of the objects in the user’s world,
which may impair the model’s ability to distinguish between
the user’s choices. For example, the system may be trained
with equal numbers of squirrels and rabbits, though most
users encounter squirrels more often than rabbits.

[0103] After collecting samples from the user, the system
(e.g., system 100) classifies the user’s EEG signals to
distinguish between EEG signals elicited when the user is
focused on an image (e.g., views the squirrel in the example
above) and when the user is not (e.g., the rabbit). This is
accomplished by the machine learning model (e.g., ML
model 124). Prior to being passed to the ML system, the
signals may be pre-processed, such as by boxcar filtering,
range-normalization, or length normalization. The pre-pro-
cessed signals are then passed to the machine learning model
(e.g., ML system 124) for classification. The classification
may be implemented in either a single-model fashion (i.e.,
classification is done by a single model) or in an ensemble-
model fashion (i.e., a number of different types of models all
make a classification and then the overall choice is made by
a vote). In some implementations, the user samples can be
added to the dataset in a database accessible to the system
(e.g., system 100) and used to train subsequent neural
network models.

[0104] Once the model is trained broadly across multiple
functional objects, tasks, and people, the system can use the
ML model on any person for any decision task without
further training. The more similar the new decision task is to
the trained task, the more effective this transfer will be.
[0105] ML models can be trained on various characteris-
tics of the user. For example, in some implementations,
models may be trained on a specific age group, e.g., over 40
or under 20. The model may take into account a user’s age
and choose user samples in the same age range or choose
from a subset of user samples in the database. As described
above, the database will consist of both internal data and
data from external users who have opted-in to their data
being included in the comparison database. All samples are
anonymized and non-identifiable. Individuals will have the
option to include not only their EEG data, but other demo-
graphic data such as age and gender. System 100 can then
use the trained model in real-life scenarios to distinguish
between a selection event by the user and rejection.

[0106] In general, an EEG system (e.g., EEG system 100)
can present a user (e.g., user 101) with choices among a
finite set, e.g., two or more, of possibilities, determine the
choice that the user (e.g., user 101) has made based on EEG
signals from brain activity, and then perform further actions
based on the user’s choice. As a result, the user (e.g., user
101) can cause the system (e.g., system 100) to perform
certain actions without any physical action beyond having
the user view the choices on a display and generate brain
activity from a selection of the viewed choices.
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[0107] For example, the user (e.g., user 101) can choose a
contact from a list of multiple contacts and place a phone
call the chosen contact using only the user’s brain activity.
To perform this activity, the EEG system (e.g., EEG system
100) sequentially presents the user (e.g.. user 101) with a list
of contacts via a computer (e.g., computer 140) and identi-
fies a selection from the list based on received EEG signals
from the user’s corresponding brain activity. Next, the
system (e.g., system 100) presents the user (e.g., user 101)
with options for contacting the selected contact, e.g., call,
text, share, or email. Again, the system identifies the user’s
selection based on received EEG signals corresponding to
the user’s brain activity representing a selection of an option.
The system (e.g.. system 100) then performs the call or
provides instructions to a telephone to make the call.
[0108] While bioamplifier 110 is interfaced with personal
computer 140 in system 100, other configurations are also
possible. Referring to FIG. 5, for example, an EEG system
500 includes bioamplifier 110 interfaced with a head-
mounted camera system 510 which is arranged to track user
101’s field of view. Camera system 510 includes a camera
512 and onboard image processing for analyzing images
captured by the camera of user 101°s field of view. For
example, EEG system 500 is configured to facilitate user
101’s interaction with an object 522 associated with a quick
response (QR) code 520 (as illustrated) or bar codes, NFC
tags, or some other identification feature readily identifiable
using machine vision.

[0109] An EEG system (e.g., system 500) analyzes EEG
signals from a user (e.g., user 101) associated with brain
waves responsive to a viewing object (e.g., viewing object
522) synchronously with reading a QR code (e.g., QR code
520). The analysis returns one of two binary choices, which
the system associates with the viewing object (e.g., object
522) based on the system viewing the QR code (e.g., QR
code 520).

[0110] While the systems described above both feature a
portable bioamplifier (i.e., bioamplifier 110), that connects
with either a computer or other interface, other implemen-
tations are also possible. For example, the components of a
bioamplifier (e.g., bioamplifier 110) can be integrated into
another device, such as a mobile phone or tablet computer.
Moreover, while the foregoing systems includes sensors that
are connected to the portable bioamplifier using leads, other
connections, e.g., wireless connections, are also possible.
Referring to FIG. 6, for instance, an EEG system 600
includes a mobile phone 610 and a head-mounted sensor
system 620. The cleaning and analysis functions of the
components of portable bioamplifier 110 , personal com-
puter 140, and/or camera system 510 described above are all
performed by mobile phone 610 alone, or in conjunction
with cloud-based computer processors. Mobile phone 610
includes a wireless transceiver 612, a display 622, and a
camera 614.

[0111] Sensor system 610 includes a transceiver unit 620
and sensors 636, 637, and 638 connected to the transceiver
unit. The sensors measure EEG signals as described above,
but the signals are related to receiver 612 using a wireless
signal transmission protocol, e.g., BlueTooth, near-field
communication (NFC), or some other short-distance proto-
col.

[0112] During operation, a mobile phone (e.g., mobile
phone 610) displays information (e.g., information 624) to a
user (e.g., user 101) on a display (e.g., display 622) and,
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synchronously, receives and analyzes EEG signals from a
transceiver unit (e.g., transceiver unit 620). Based on the
EEG signal analysis, the mobile phone (e.g., mobile phone
610) can take certain actions related to the displayed infor-
mation. For instance, the phone can accept or reject phone
calls based on the EEG signals, or take some other action.
[0113] Alternatively, or additionally, a user (e.g., user 101)
can use a camera (e.g., camera 614) to capture information
in their environment (e.g., to scan a QR code) while the
phone receives and analyzes their associated brain waves.
[0114] In general, the EEG systems described above can
use a variety of different sensors to obtain the EEG signals.
In some implementations, the sensor electrodes are “dry”
sensor which feature one or more electrodes that directly
contact the user’s scalp without a conductive gel. Dry
sensors can be desirable because they are simpler to attach
and their removal does not involve the need to clean up
excess gel. A sensor generally includes one or more elec-
trodes for contacting the user’s scalp.

[0115] Referring to FIGS. TA-7D, for example, a sensor
700 includes multiple wire loop electrodes 720 mounted on
a base 710, and a press stud electrode 730 on the opposite
side of base 710 from loops electrodes 710. Wire loop
electrodes 720 are bare electrically-conducting wires that are
in electrical contact with metal press stud 730. During use,
a user can position sensor 700 in their hair with the top of
wire loop electrodes contacting their scalp. A lead, featuring
female press stud fastener, is connected to press stud 730,
connecting sensor 700 to a bioamplifier or transceiver. The
multiple loop electrodes provide redundant contact points
with the user’s scalp, increasing the likelihood that the
sensor maintains good electrical contact with the user’s
scalp.

[0116] As is apparent in FIG. 7C (top view), sensor
electrode 700 includes a total of eight wire loop electrodes
arranged symmetrically about an axis. More generally, the
number of wire loop electrodes can vary as desired. The
length of the wire loop electrodes (from base to tip) can also
vary as desired. For instance, a user with long hair may
select a sensor with longer wire loops than a user with
shorter hair. FIG. 8, for example, shows another sensor
electrode 800 similar to sensor electrode 700 but with
shorter wire loop electrodes 820. In general, the loop elec-
trodes can have a length from about 1 mm to about 15 mm.
[0117] FIG. 9 shows yet a further sensor electrode 900 that
includes multiple wire electrodes 920. Wire electrodes 920
can be sufficiently flexible so that the user can bend them to
provide optimal contact with the scalp. Each wire electrode
920 can have the same length, or the lengths of the wires can
vary.

[0118] Other dry sensor designs are also possible. For
example, referring to FIGS. 10A-10D, a sensor electrode
1000 features multiple protuberances 1040 supported by a
base 1010. The protuberances are formed from a relatively
soft material, such as a rubber. As seen from a top view, as
shown in FIG. 10C, protuberances 1040 are arranged in two
concentric rings. The protuberances in the inner ring each
include a wire electrode 1020 which protrudes from the tip
of the respective protuberance. The protruding wire elec-
trodes can be relatively short, reducing possible user dis-
comfort due to the excessive pressure on the user’s scalp.
[0119] Referring to FIGS. 11A-11E, a further example of
a sensor electrode 1100 includes a base 1110, wire electrodes
1120, a press stud electrode 1130, and a protective cap 1140
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(e.g., a plastic cap). The cap can reduce the likelihood that
the user’s hair becomes ensnared in the electrode, e.g.,
where the electrodes are attached to the base.

[0120] Incertain implementations, subdermal implants for
one or more sensors can be used. Implanted electrodes can
facilitate quick and uncomplicated application and removal
of the sensor to the user’s scalp. Moreover, implanted
electrodes can ensure reliable lead connection and sensor
placement. The subdermal implants can make sensor place-
ment and collection easier and faster than traditional meth-
ods of EEG sensor applications. By having an implant at
least partially under the skin, a user can easily attach a sensor
themselves such that the sensor is correctly positioned and
secured and will produce high quality data every time the
user wishes to use the EEG system. As such, sensor implants
can facilitate setup of an EEG system by a user without
assistance, and also improve data quality.

[0121] Referring to FIG. 12A, in some embodiments, an
EEG system features a sensor 1210 implanted behind user
101's ear, on or adjacent to their mastoid process 1201.
Referring also to FIGS. 12B and 12C, sensor 1210 includes
an implanted portion 1220 and a connector 1230. Implanted
portion includes an electrode 1226 that is implanted between
the user’s skin 1202 and skull 1204. A shaft 1224 protrudes
through user 101's skin 1202, connecting electrode 1226 to
amale part 1222 of a press stud which is exposed behind the
user’s ear. Connector 1230 attaches a lead 1234 to implanted
portion 1220. Connector 1230 includes a female part 1231
of the press stud and a disc 1232. As shown in FIG. 12C,
when connected to implanted portion 1220, the female part
of the press stud interlocks with the male portion, brining
disc 1232 into contact with skin 1202.

[0122] Generally, the implanted portion of sensor 1210 is
sized and shaped for implantation. In other words, the sensor
is sufficiently small to fit between the skull and skin without
being particularly conspicuous or uncomfortable to the user.
To this end, electrode 1226 can be relatively small and thin.
For example, the electrode can have a footprint (i.e., its areal
projection onto the user’s skin) of 3 em? or less (e.g., 2 cm®
or less, 1 cm® or less, 0.5 cm” or less). The electrode can
have a thickness (i.e., a dimension measured perpendicular
to its footprint) of 3 mm or less (e.g., 2 mm or less, 1 mm
or less, 0.5 mm or less, 0.2 mm or less). Shaft 1224 can be
1 cm or less (e.g., 0.8 cm or less, 0.5 cm or less) in length
(i.e., as measured from the electrode to male part 1222) and
about 0.5 cm or less (e.g., 0.3 mm or less, 0.2 mm or less,
0.1 mm or less) in lateral dimension (i.e., perpendicular to its
length). Male part 122 can have a maximum dimension of 1
cm or less (e.g., 0.5 cm or less, 0.3 cm or less, 0.2 cm or
less).

[0123] Furthermore, sensor 1210 is formed from materials
that are suitable for implanting in a person’s body such as,
for example, certain metals (e.g., gold or titanium), alloys
(e.g., stainless steel, cobalt-chromium alloys, titanium
alloys), polymers (e.g., polyethylene-based polymers,
polymethylmethacrylate-based polymers), and/or ceramics
(e.g., zirconia). At least a portion of electrode 1226 is formed
from an electrically-conductive material (e.g., gold) suffi-
cient to pick up potentials associated with brain activity.
Sensor 1210 also includes an electrically-conductive path-
way from electrode 1226 to lead 1234. This can be achieved
by forming the entire sensor from an electrically-conductive
material (e.g., a metal or conducting alloy) or by including
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an electrically-conducting pathway from male part 1222,
through shaft 1224, to electrode 1226.

[0124] In general, sensor 1210 can be ISO certified under
ISO/TC 150 for surgical implants.

[0125] In some implementations, the implanted electrode
sensor can be anchored to the user’s skull. For example,
referring to FIG. 12D, electrode sensor 1210 includes a bone
screw 1228 which anchors the electrode sensor in user’s
skull 1204. Other types of anchor (e.g., a staple) can be used
as an alternative to bone screw 1228.

[0126] In general, the placement of an implanted sensor
can vary depending on the sensor’s role in EEG signal
sensing. For example, the ground sensor and the reference
sensor can both be implanted on or adjacent to the user’s
mastoid processes and connected to the controller along with
an active sensor. While FIG. 12A shows only a single sensor
that features an implant, in general, more than one sensor
can include an implant. Often, the reference sensor is
positioned farther away from the active sensor than the
ground sensor to be able to cancel out floating signals. In
some cases, the reference sensor is subdermally implanted
on or adjacent to a mastoid process, while the ground
electrode is attached elsewhere (e.g., on the user’s ear or
crown).

[0127] While sensor 1210 features electrode 1226 that is
implanted under the user’s skin, alternatively, disc 1232 can
serve as the sensor electrode and the implanted portion 1220
can function exclusively for fastening the sensor to the user.

[0128] Also, while sensor 1210 includes a press stud to
facilitate attachment of the lead to the implanted sensor
electrode, more generally, implanted sensors can use alter-
native types of fasteners. For instance, sensors can use bolts,
clamps, clips, pins, retaining rings, or other fasteners to
reliably attach and reattach a lead to an implanted sensor.
Referring to FIGS. 13A and 13B, for example, a sensor 1300
includes a ring fastener 1312 and a clasp 1320 to attach a
lead 1324 to an implanted sensor electrode 1310. Here,
implanted sensor electrode 1310 includes implanted elec-
trode 1226, shaft 1224, and ring fastener 1312 which is
exposed above the user’s skin 1202. To attach and detach,
the user (or some other person) opens a spring loaded arm
1322 on clasp 1320 and slips ring fastener 1312 through the
clasp opening to attach or detach the clasp and ring fastener.
Both clasp 1320 and ring fastener 1312 are made from
electrically-conductive material and electrical connection of
lead 1324 to electrode 1226 is completed by contact between
the clasp and ring fastener.

[0129] Subdermal implants need not feature protrusions
that extend through the user’s skin. For instance, subdermal
implants can connect to a lead magnetically through the
skin. Referring to FIG. 14, for example, a sensor 1400
includes an external connector 1410 and an implanted
portion 1420. The external connector 1410 includes a mag-
net 1412 and implanted portion 1420 is formed, at least in
part, from a magnetic material. Magnet 1412 and implanted
portion 1420 are arranged and are sufficiently strong mag-
netically so that, when external connector 1410 is brought in
sufficient proximity to portion 1420, the attractive magnetic
force between them forms a secure connection through the
user’s skin. The attractive force should also be such that
external connector can be disengaged from implanted por-
tion 1420 without significant discomfort to the user. External
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connector 1410 includes an electrically-conducting material
on the surface that contacts the user’s skin, serving as the
sensor electrode.

[0130] Insome embodiments, external connector 1410 can
include, e.g.. a rim or ring of contact spikes, that align
around the periphery of implanted portion 1420, aligning
external connector 1410 with the implant.

[0131] In general, the subdermal implants differ from
conventional subcranial implants because they are less inva-
sive than subcranial implants. For example, subdermal
implants can be implanted with a relatively minor procedure
(e.g., an out-patient requiring only local anesthesia), involv-
ing only small incisions for the implants, rather than implan-
tation in the cranial cavity.

[0132] [[Inventors: the following paragraphs are included
in X-50648/9; it is not necessary to further review this
portion if you have reviewed the draft for X-50648/9]]In
general, the EEG systems described above can be used to
accomplish a variety of computer-based tasks. For example,
the disclosed system and techniques can be used to perform
tasks commonly performed using a networked computer
device (e.g., a mobile phone), such as ordering food, sched-
uling a flight, interacting with household or personal elec-
tronic devices, and/or purchasing a ticket for an event. The
system can be used for user interaction with objects that
have QR codes, bar codes, NFC tags, or another type of
identification feature on them so that a system can detect the
object with which the user is interacting and determine tasks
associated with the object. These can be objects in a user’s
home such as a thermostat, television, phone, oven, or other
electronic device. By way of example, an automated pet
door in the user’s house may have an associated QR code.
By receiving the QR code from the dog door, the system
may determine that the user is interacting with the door with
their mobile phone. The system then can present the user
with a list of options associated with the pet door on their
phone. The system can then collect and analyze the user’s
EEG signals to determine what action the user would like the
system to perform, in this example, whether or not to lock
the pet door. Similarly, a system (e.g., EEG system 100) may
use a user’s phone or other computing device to notice
proximity of a smart device. Proximity can be recognized by
wireless or wired connectivity, (e.g., Bluetooth, near field
communication, RFID, or GPS). Once proximity is deter-
mined, the system can present the user with a choice related
the smart device. For example, a user’s phone may be able
to notice that it is in proximity to a smart thermostat, such
as a Nest, a Honeywell Lyric Round, or a Netatmo’s
thermostat, and then present the user with a choice about
whether the user would like the temperature to be warmer or
colder. Using the EEG decision making protocol described
above, the system could then adjust the temperature in the
room on the basis of the user’s EEG, without the user having
to physically interact with the thermostat. Any other two
choice decision that can be made for a smart device (e.g., a
smart home device such as an Amazon Alexa, Google
Home, or Wemo plug device) could be implemented in the
same way—for example turning a smart light on or off,
turning the volume of a smart speaker up or down, or making
a decision to buy or not to buy what is in a digital shopping
cart. [[The following boilerplate says the invention can be
implemented in all manner of digital computer and circuit
technology.]]
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[0133] Embodiments of the subject matter and the func-
tional operations described in this specification can be
implemented in digital electronic circuitry, in tangibly-
embodied computer software or firmware, in computer hard-
ware, including the structures disclosed in this specification
and their structural equivalents, or in combinations of one or
more of them. Embodiments of the subject matter described
in this specification can be implemented as one or more
computer programs, i.e., one or more modules of computer
program instructions encoded on a tangible non-transitory
storage medium for execution by, or to control the operation
of, data processing apparatus. The computer storage medium
can be a machine-readable storage device, a machine-read-
able storage substrate, a random or serial access memory
device, or a combination of one or more of them. Alterna-
tively, or in addition, the program instructions can be
encoded on an artificially-generated propagated signal, e.g.,
a machine-generated electrical, optical, or electromagnetic
signal, that is generated to encode information for transmis-
sion to suitable receiver apparatus for execution by a data
processing apparatus.

[0134] The term “data processing apparatus” refers to data
processing hardware and encompasses all kinds of appara-
tus, devices, and machines for processing data, including by
way of example a programmable processor, a computer, or
multiple processors or computers. The apparatus can also be,
or further include, special purpose logic circuitry, e.g., an
FPGA (field programmable gate array) or an ASIC (appli-
cation-specific integrated circuit). The apparatus can option-
ally include, in addition to hardware, code that creates an
execution environment for computer programs, e.g., code
that constitutes processor firmware, a protocol stack, a
database management system, an operating system, or a
combination of one or more of them.

[0135] A computer program, which may also be referred
to or described as a program, software, a software applica-
tion, an app, a module, a software module, a script, or code,
can be written in any form of programming language,
including compiled or interpreted languages, or declarative
or procedural languages; and it can be deployed in any form,
including as a stand-alone program or as a module, compo-
nent, subroutine, or other unit suitable for use in a computing
environment. A program may, but need not, correspond to a
file in a file system. A program can be stored in a portion of
a file that holds other programs or data, e.g., one or more
scripts stored in a markup language document, in a single
file dedicated to the program in question, or in multiple
coordinated files, e.g., files that store one or more modules,
sub-programs, or portions of code. A computer program can
be deployed to be executed on one computer or on multiple
computers that are located at one site or distributed across
multiple sites and interconnected by a data communication
network.

[0136] The processes and logic flows described in this
specification can be performed by one or more program-
mable computers executing one or more computer programs
to perform functions by operating on input data and gener-
ating output. The processes and logic flows can also be
performed by special purpose logic circuitry, e.g., an FPGA
or an ASIC, or by a combination of special purpose logic
circuitry and one or more programmed computers.

[0137] Computers suitable for the execution of a computer
program can be based on general or special purpose micro-
processors or both, or any other kind of central processing
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unit. Generally, a central processing unit will receive
instructions and data from a read-only memory or a random
access memory or both. The essential elements of a com-
puter are a central processing unit for performing or execut-
ing instructions and one or more memory devices for storing
instructions and data. The central processing unit and the
memory can be supplemented by, or incorporated in, special
purpose logic circuitry. Generally, a computer will also
include, or be operatively coupled to receive data from or
transfer data to, or both, one or more mass storage devices
for storing data, e.g., magnetic, magneto-optical disks, or
optical disks. However, a computer need not have such
devices. Moreover, a computer can be embedded in another
device, e.g., a mobile telephone, a personal digital assistant
(PDA), a mobile audio or video player, a game console, a
Global Positioning System (GPS) receiver, or a portable
storage device, e.g., a universal serial bus (USB) flash drive,
to name just a few.

[0138] Computer-readable media suitable for storing com-
puter program instructions and data include all forms of
non-volatile memory, media and memory devices, including
by way of example semiconductor memory devices, e.g.,
EPROM, EEPROM, and flash memory devices; magnetic
disks, e.g., internal hard disks or removable disks; magneto-
optical disks; and CD-ROM and DVD-ROM disks.

[0139] To provide for interaction with a user, embodi-
ments of the subject matter described in this specification
can be implemented on a computer having a display device,
e.g., a CRT (cathode ray tube) or LCD (liquid crystal
display) monitor, for displaying information to the user and
a keyboard and a pointing device, e.g., a mouse or a
trackball, by which the user can provide input to the com-
puter. Other kinds of devices can be used to provide for
interaction with a user as well; for example, feedback
provided to the user can be any form of sensory feedback,
e.g., visual feedback, auditory feedback, or tactile feedback;
and input from the user can be received in any form,
including acoustic, speech, or tactile input. In addition, a
computer can interact with a user by sending documents to
and receiving documents from a device that is used by the
user; for example, by sending web pages to a web browser
on a user’s device in response to requests received from the
web browser. Also, a computer can interact with a user by
sending text messages or other forms of message to a
personal device, e.g., a smartphone, running a messaging
application, and receiving responsive messages from the
user in return,

[0140] Embodiments of the subject matter described in
this specification can be implemented in a computing system
that includes a back-end component, e.g., as a data server, or
that includes a middleware component, e.g., an application
server, or that includes a front-end component, e.g., a client
computer having a graphical user interface, a web browser,
or an app through which a user can interact with an imple-
mentation of the subject matter described in this specifica-
tion, or any combination of one or more such back-end,
middleware, or front-end components. The components of
the system can be interconnected by any form or medium of
digital data communication, e.g., a communication network.
Examples of communication networks include a local area
network (LAN) and a wide area network (WAN), e.g., the
Internet.

[0141] The computing system can include clients and
servers. A client and server are generally remote from each
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other and typically interact through a communication net-
work. The relationship of client and server arises by virtue
of computer programs running on the respective computers
and having a client-server relationship to each other. In some
embodiments, a server transmits data, e.g., an HTML page,
to a user device, e.g., for purposes of displaying data to and
receiving user input from a user interacting with the device,
which acts as a client. Data generated at the user device, e.g.,
a result of the user interaction, can be received at the server
from the device.

[0142] An example of one such type of computer is shown
in FIG. 12, which shows a schematic diagram of a generic
computer system 1200. The system 1200 can be used for the
operations described in association with any of the com-
puter-implemented methods described previously, according
to one implementation. The system 1200 includes a proces-
sor 1210, a memory 1220, a storage device 1230, and an
input/output device 1240. Each of the components 1210,
1220, 1230, and 1240 are interconnected using a system bus
1250. The processor 1210 is capable of processing instruc-
tions for execution within the system 1200. In one imple-
mentation, the processor 1210 is a single-threaded processor.
In another implementation, the processor 1210 is a multi-
threaded processor. The processor 1210 is capable of pro-
cessing instructions stored in the memory 1220 or on the
storage device 1230 to display graphical information for a
user interface on the input/output device 1240.

[0143] The memory 1220 stores information within the
system 1200. In one implementation, the memory 1220 is a
computer-readable medium. In one implementation, the
memory 1220 is a volatile memory unit. In another imple-
mentation, the memory 1220 is a non-volatile memory unit.
[0144] The storage device 1230 is capable of providing
mass storage for the system 1200. In one implementation,
the storage device 1230 is a computer-readable medium. In
various different implementations, the storage device 1230
may be a floppy disk device, a hard disk device, an optical
disk device, or a tape device.

[0145] The input/output device 1240 provides input/out-
put operations for the system 1200. In one implementation,
the input/output device 1240 includes a keyboard and/or
pointing device. In another implementation, the input/output
device 1240 includes a display unit for displaying graphical
user interfaces.

[0146] While this specification contains many specific
implementation details, these should not be construed as
limitations on the scope of any invention or on the scope of
what may be claimed, but rather as descriptions of features
that may be specific to particular embodiments of particular
inventions. Certain features that are described in this speci-
fication in the context of separate embodiments can also be
implemented in combination in a single embodiment. Con-
versely, various features that are described in the context of
a single embodiment can also be implemented in multiple
embodiments separately or in any suitable subcombination.
Moreover, although features may be described above as
acting in certain combinations and even initially be claimed
as such, one or more features from a claimed combination
can in some cases be excised from the combination, and the
claimed combination may be directed to a subcombination
or variation of a subcombination.

[0147] Similarly, while operations are depicted in the
drawings in a particular order, this should not be understood
as requiring that such operations be performed in the par-

Jun. 27,2019

ticular order shown or in sequential order, or that all illus-
trated operations be performed, to achieve desirable results.
In certain circumstances, multitasking and parallel process-
ing may be advantageous. Moreover, the separation of
various system modules and components in the embodi-
ments described above should not be understood as requir-
ing such separation in all embodiments, and it should be
understood that the described program components and
systems can generally be integrated together in a single
software product or packaged into multiple software prod-
ucts.

[0148] As used herein, the term “real-time” refers to
transmitting or processing data without intentional delay
given the processing limitations of a system, the time
required to accurately obtain data and images, and the rate
of change of the data and images. In some examples,
“real-time” is used to describe concurrently receiving, clean-
ing, and interpreting EEG signals. Although there may be
some actual delays, such delays generally do not prohibit the
signals from being cleaned and analyzed within sufficient
time such that the data analysis remains relevant to provide
decision-making feedback and accomplish computer-based
tasks. For example, adjustments to a smart thermostat are
calculated based on user EEG signals. Cleaned signals are
analyzed to determine the user’s desired temperature before
enough time has passed to render the EEG signals irrelevant.
[0149] Particular embodiments of the subject matter have
been described. Other embodiments are within the scope of
the following claims. For example, the actions recited in the
claims can be performed in a different order and still achieve
desirable results. As one example, the processes depicted in
the accompanying figures do not necessarily require the
particular order shown, or sequential order, to achieve
desirable results. In some cases, multitasking and parallel
processing may be advantageous. Wireless or wired connec-
tions may be advantageous for different use cases. Minia-
turized components may replace existing components. Other
data transmission protocols than those listed may be devel-
oped and implemented. The nature of the ML systems used
for both data cleaning and classification may change.

What is claimed is:

1. A method for obtaining an electroencephalogram
(EEQG) of a user, the method comprising:

attaching a reference sensor to the user by connecting a

first component of the reference sensor to a second
component of the reference sensor, at least a portion of
the first component being sub-dermally implanted on or
adjacent to a mastoid process of the user;

attaching at least one active sensor to the user;

simultaneously detecting a first signal from the reference

sensor and a second signal from the at least one active
sensor; and

obtaining the EEG based on the first signal and the second

signal.

2. The method of claim 1, wherein the first component
comprises a second portion exposed through the user’s skin.

3. The method of claim 2, wherein the second portion
comprises a first part of a fastener and the second compornent
comprises a second part of the fastener for connecting to the
first part of the fastener.

4. The method of claim 3, wherein the fastener is a press
stud and the first part comprises a knob of the press stud and
the second part comprises a hole of the press stud shaped to
attach to the knob.
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5. The method of claim 3, wherein the fastener is a ring
fastener.

6. The method of claim 1, wherein the second component
is attached to a lead which electrically connects the sensor
to a bioamplifier.

7. The method of claim 1, wherein the second component
is attached to a wireless transceiver in communication with
a bioamplifier.

8. The method of claim 1, wherein the portion of the first
component sub-dermally implanted comprises an electrode.

9. The method of claim 8, wherein the electrode com-
prises titanium or gold.

10. The method of claim 1, wherein the portion of the first
component sub-dermally implanted comprises a first mag-
netic material and the second component comprises a second
magnetic material, the first and second magnetic materials of
the first and second components causing a magnetic attrac-
tion between the first and second components, the magnetic
attraction causing the second component to couple to the
user’s skin.

11. The method of claim 10, wherein the first component
is implanted beneath the user’s skin.

12. The method of claim 1, wherein the first component
is anchored to a skull bone of the user’s mastoid process.

13. The method of claim 1, further comprising attaching
a ground sensor to the user and detecting signals from the
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ground sensor simultaneously to detecting signals from the
reference electrode and the at least one active electrode.

14. An electroencephalogram (EEG) system, comprising:

a bioamplifier; and

a sensor comprising an electrode, the sensor being in

communication with the bioamplifier and configured to

transmit EEG signals to the bioamplifier during use of
the EEG system, the second comprising:

a first component comprising a first part of a fastener,
at least a portion of the first component being com-
posed of one or more materials and shaped for
implantation under a user’s skin;

a second component comprising a second part of the
fastener for causing coupling with the first part of the
fastener to connect and detach the second component
to the first component.

15. The EEG system of claim 14, wherein the second
component is connected to a lead, the lead electrically
connecting the sensor to the bioamplifier.

16. The EEG system of claim 14, wherein the first
component of the sensor further comprises an anchor for
causing the first component to anchor to the user’s skull.

17. The EEG system of claim 14, wherein the fastener
comprises a fastening element selected from the group
consisting of a press stud, a ring, a bolt, a clasp, a clamp, a
clip, a pin, a retaining ring, and a magnetic fastener.
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