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(57) ABSTRACT

Blood pressure signals are reconstructed from PhotoPlethys-
moGraphy (PPG) signals by: receiving PPG signals includ-
ing systolic, diastolic and dicrotic phases; and determining
first and second derivatives of the PPG signals and: a first set
of values indicative of lengths of the signal paths of the PPG
signal, the first derivative and the second derivative thereof
in the systolic, diastolic and dicrotic phases; a second set of
values indicative of relative durations of the PPG signal and
the first and second derivatives thereof in the systolic,
diastolic and dicrotic phases; and a third set of values
indicative of the time separation of peaks and/or valleys in
subsequent waveforms of the PPG signal. Reconstruction
also includes applying artificial neural network processing to
the first, second and third set of values. The artificial neural
network processing includes artificial neural network train-
ing as a function of blood pressure signals to produce
reconstructed blood pressure signals.
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PROCESSING OF
ELECTROPHYSIOLOGICAL SIGNALS

CROSS-REFERENCE TO RELATED
APPLICATIONS

[0001] This application claims the benefit of Italian Appli-
cation No. 102017000136598, filed on Nov. 28, 2017, and
Ttalian Application No. 102018000005512, filed on May 18,
2018, which applications are hereby incorporated herein by
reference.

TECHNICAL FIELD

[0002] The description relates generally to processing
electrophysiological signals, and in particular embodiments,
to a method of processing electrophysiological signals,
corresponding system, vehicle, and computer program prod-
uct.

BACKGROUND

[0003] PhotoPlethysmoGraphy (PPG) is a simple and low-
cost optical technique that can be used to detect blood
volume changes in the microvascular bed of tissue. It is
often used non-invasively to make measurements at the skin
surface.

[0004] A PPG waveform comprises a pulsatile (‘AC’)
physiological waveform attributed to cardiac synchronous
changes in the blood volume with each heartbeat, and is
superimposed on a slowly varying (‘DC’) baseline with
various lower frequency components attributed to respira-
tion, thermoregulation, skin tissues etc.

[0005] For each cardiac cycle the heart pumps blood to the
periphery. Even though this pressure pulse is somewhat
damped by the time it reaches the skin, it is enough to
distend the arteries and arterioles in the subcutaneous tissue.
If a light reflex/transmit detector device is attached over the
skin, a pressure pulse can also be seen from the venous
plexus, as a small secondary peak. The change in volume
caused by the pressure pulse is detected by illuminating the
skin with the light from a light-emitting diode (LED) and
then measuring the amount of light either transmitted or
reflected to a photodiode. Each cardiac cycle appears as a
peak.

[0006] Because blood flow to the skin can be modulated
by multiple other physiological systems, the PPG can also be
used to monitor breathing, hypovolemia, circulatory condi-
tions as well as for subjective analysis. Additionally, the
shape of the PPG waveform differs from subject to subject,
and varies with the location and manner in which the pulse
oximeter is attached.

[0007] Use of PPG may be envisaged also in areas other
than the medical field. For instance, PPG has been consid-
ered for use in the automotive field e.g. in order to gain
useful information on the behavior and/or the reaction of
drivers and passengers in various situations which may
occur in a motor vehicle.

[0008] In fact, extensive activity exists to address the
technical problem of identifying a mental attention state, e.g.
adrowsy state of a vehicle driver (both before and during the
driving), using PPG signals and/or other electrophysiologi-
cal signals.

[0009] Despite the extensive activity in the area of PPG
signal detection and processing, improved solutions facili-
tating the calculation of blood pressure values (for both
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diastolic and systolic) from PPG signals are desirable.
Furthermore, improved solutions facilitating, for instance,
identifying a drowsy state of a vehicle driver are desirable.

SUMMARY

[0010] An object of one or more embodiments is to
contribute in providing such solutions.

[0011] One or more embodiments may relate to a corre-
sponding system. One or more embodiments may relate to
a corresponding vehicle, such as, for instance, a motor
vehicle equipped with such a system.

[0012] One or more embodiments may include a computer
program product loadable in the memory of at least one
processing circuit (e.g., a computer) and including software
code portions for executing the steps of the method when the
product is run on at least one processing circuit. As used
herein, reference to such a computer program product is
understood as being equivalent to reference to a computer-
readable medium containing instructions for controlling the
processing system in order to co-ordinate implementation of
the method according to one or more embodiments. Refer-
ence to “at least one computer” is intended to highlight the
possibility for one or more embodiments to be implemented
in modular and/or distributed form.

[0013] One or more embodiments may facilitate Electro-
EncephaloGraphy (FEG) signal processing (i.e. EEG
samples pattern recognition) applied in a PPG/EEG system
including, for example: PPG sensors (e.g. Silicon Photo-
Multipliers, abbreviated as SiPM, for PPG sensing); a PPG
signals pattern recognition method and/or system; an EEG
samples pattern recognition system method and/or system.
[0014] One or more embodiments may involve a pipeline
configured for processing PPG signals based on the use
detectors such as e.g. of SiPM detectors. Such probe sensors
may provide advantages in terms of single-photon sensitiv-
ity and high internal gain for relatively low reverse bias.
[0015] One or more embodiments may adopt (possibly in
connection with SiPM detectors) a processing pipeline
adapted to correct signal distortion, for instance filtering and
normalizing the signal.

[0016] One or more embodiments thus facilitate obtaining
information (data, physical quantities) from the living
human or animal body e.g. in support the diagnostic activity
of a human in medical and veterinary activities or for other
possible uses. Obtaining information on the behavior and/or
the reaction of drivers and passengers in the automotive field
is exemplary of one such possible use.

[0017] One or more embodiments may involve EEG sig-
nals processing which facilitate efficient segmentation of
compliant EEG sample waveforms in a combined PPG/EEG
system, which in turn facilitate robust drowsiness/alert state
monitoring of a vehicle driver.

[0018] One or more embodiments may offer one or more
of the following advantages: high-speed computation facili-
tated by pattern recognition mechanisms based on Leven-
berg-Marquardt (LM) algorithm and Multi-Layer Motor
Map neural network, which may be implemented in a
dedicated hardware; low complexity of data analysis and
low CPU consumption; accuracy and robustness due to
correlation between PPG and EEG; continuous monitoring
of the attention state of a vehicle driver facilitated; possi-
bility of avoiding training algorithms or self-tuning of
system parameters; simple implementation for EEG/PPG
signal acquisition, e.g., from detectors on the vehicle steer-
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ing wheel; high sensitivity/specificity ratio (e.g. 98%/98%)
versus low complexity design; and reduction of data buff-
ering requirements.

BRIEF DESCRIPTION OF THE DRAWINGS

[0019] One or more embodiments will now be described,
by way of example only, with reference to the annexed
figures, wherein:

[0020] FIG. 1 is a diagram exemplary of a PhotoPlethys-
moGraphy (PPG) signal;

[0021] FIGS. 2 and 3 are exemplary of the possible time
behavior of PPG signals;

[0022] FIGS. 4a to 4d illustrate possible behavior of
ElectroEncephaloGraphy (EEG) signals;

[0023] FIG. 5 is a block diagram of a signal processing
pipeline in embodiments;

[0024] FIGS. 6a and 65 are exemplary of possible opera-
tions of PPG sensors;

[0025] FIG. 7is a flow chart exemplary of possible acts of
signal processing in embodiments;

[0026] FIGS. 8a to 8¢ and FIG. 9 are diagrams exemplary
of certain possible details of processing of PPG signals in
embodiments; and

[0027] FIG. 10 is a block diagram exemplary of a possible
mode of operation of the pipeline of FIG. 5;

[0028] FIG. 11 is a functional diagram exemplary of
possible signal processing in embodiments;

[0029] FIG. 12 is a block diagram exemplary of a possible
arrangement a portion of the pipeline of FIG. 11;

[0030] FIGS. 13 and 14 are diagrams exemplary of pro-
cessing of PPG signals in the pipeline of FIG. 11;

[0031] FIG. 15 is a block diagram exemplary of a possible
arrangement of a portion of the pipeline of FIG. 11;
[0032] FIG. 16 is exemplary of possible artificial neural
network signal processing in embodiments; and

[0033] FIG. 17 is a functional diagram exemplary of
possible signal processing in embodiments.

DETAILED DESCRIPTION OF ILLUSTRATIVE
EMBODIMENTS

[0034] In the ensuing description, one or more specific
details are illustrated, aimed at providing an in-depth under-
standing of examples of embodiments of this description.
The embodiments may be obtained without one or more of
the specific details, or with other methods, components,
materials, etc. In other cases, known structures, materials, or
operations are not illustrated or described in detail so that
certain aspects of embodiments will not be obscured.
[0035] Reference to “an embodiment” or “one embodi-
ment” in the framework of the present description is
intended to indicate that a particular configuration, structure,
or characteristic described in relation to the embodiment is
included in at least one embodiment. Hence, phrases such as
“in an embodiment” or “in one embodiment” that may be
present in one or more points of the present description do
not necessarily refer to one and the same embodiment.
Moreover, particular conformations, structures, or charac-
teristics may be combined in any adequate way in one or
more embodiments.

[0036] The references used herein are provided merely for
convenience and hence do not define the extent of protection
or the scope of the embodiments.
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[0037] One or more embodiments may be applied to
processing electrophysiological signals such as e.g. Electro-
EncephaloGraphy (EEG) and/or PhotoPlethysmoGraphy
(PPG) signals.

[0038] One or more embodiments may facilitate obtaining
information (data, physical quantities) from the living
human or animal body e.g. in support the diagnostic activity
of a human in medical and veterinary activities or for other
possible uses (e.g. in the automotive sector).

[0039] As exemplified in FIG. 1, a typical PhotoPlethys-
moGraphy (briefly PPG) waveform includes:

[0040] a systolic peak SP at a peak value X,
[0041] a dicrotic notch DN,
[0042] a distolic peak DP at a value y.

[0043] A width W of the pulse may also be defined at a
given value of the PPG waveform.

[0044] PPG signals can be detected by using detection
devices (e.g. PPG sensors/devices such as sensor PD in
FIGS. 6a and 6b) including LED emitters operating at
specific wavelengths (usually infrared at 940 nm) and silicon
photomultipliers or SiIPM’s (see e.g. M. Mazzillo, et al.:
“Silicon Photomultiplier technology at STMicroelectron-
ics”, IEEE Trans. Nucl. Sci, vol. 56, no. 4, pp. 2434-2442,
2009).

[0045] As illustrated in FIGS. 6a and 64, light emitted by
the LEDs is absorbed by the skin (DC component) and the
arteries, specifically, by oxygenated (and partly by de-
oxygenated) hemoglobin (AC component).

[0046] Residual propagated/reflected (back-scattered)
light will be a function (proportional-differential) of the
amount of light absorbed by blood hemoglobin in the
various heart phases (systolic, diastolic, dicrotic, efc. . . . ).
A SiPM photomultiplier may thus detect the presence of
photons in the propagated/reflected light by transducing an
electrical signal that can be sampled by an e.g. 24-bit ADC
thus providing PPG signal as discussed previously.

[0047] Such PPG sensors PD may be applied on a steering
device of a vehicle, in various arrangements. One or more
embodiments may take advantage of the capability of the
PPG sensors PD to operate both in a transmission mode (see
FIG. 6a) that is with radiation from the LED propagating
through the body (e.g. the body of a patient being clinically
investigated or a driver), for instance through a fingertip F,
and in a reflection mode (see FIG. 65) that is with radiation
from the LED reflected (back-scattered) from the body,
facilitating relaxation of the requirements for possible posi-
tioning of the PPG sensors/detectors PD with respect to the
body.

[0048] An extensive literature exists related to estimating
blood pressure, including techniques based on PPG signals.
[0049] The following documents are exemplary of activity
in that direction:

[0050] Y. Kurylyak, et al.: “A Neural Network-based
method for continuous blood pressure estimation from
a PPG signal”, IEEE International Instrumentation and
Measurement Technology Conference (I2ZMTC), 2013
Pages: 280-283;

[0051] M. E. Emst, et al.: “Ambulatory blood pressure
monitoring”, Southern Medical Journal, vol. 96 (6), pp.
563-568, June 2003;

[0052] Y. S. Yan, et al: “Noninvasive estimation of
blood pressure using photoplethysmographic signals in
the period domain”, Proc. of 27th Annual International
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Conference of the Engineering in Medicine and Biol-
ogy Society (IEEE-EMBS 2005), 2005, pp. 3583-3584;

[0053] K. Barbé, et al: “Analyzing the windkessel
model as a potential candidate for correcting oscillo-
metric blood-pressure measurements”, IEEE Trans. on
Instrum. and Measur., vol. 61, no. 2, pp. 411-418, Feb.
2012;

[0054] W. B. Gu, C., et al: “A novel parameter from
PPG dicrotic notch for estimation of systolic blood
pressure using pulse transit time”, Medical Devices and
Biosensors (ISSS-MDBS 2008), 2008, pp. 86-88;

[0055] K. Meigas, et al: “Continuous blood pressure
monitoring using pulse wave delay”, Proc. of 23rd
Annu. Int. Conf. of the IEEE Eng. in Medicine and
Biology Society, vol. 4, 2001, pp. 3171-3174;

[0056] M. K. Ali Hassan, et al.: “Measuring blood
pressure using a photoplethysmography approach”,
Proc. of 4th Kuala Lumpur Int. Conf. on Biom. Eng,,
Vol. 21, 2008, pp. 591-594;

[0057] J.YiKim, et al.: “Comparative study on artificial
neural network with multiple regressions for continu-
ous estimation of blood pressure”, Proc. of 27th Annual
Intern. Conf. of the Engin. in Medicine and Biology
Soc., 2005, pp. 6942-6945;

[0058] F. S. Cattivelli, at al.: “Noninvasive cuffless
estimation of blood pressure from pulse arrival time
and heart rate with adaptive calibration”, Proc. of Sixth
International Workshop on Wearable and Implantable
Body Sensor Networks (BSN 2009), 2009, pp. 114-
119;

[0059] D. B. McCombie, at al.: “Adaptive blood pres-
sure estimation from wearable PPG sensors using
peripheral artery pulse wave velocity measurements
and multi-channel blind identification of local arterial
dynamics”, Proc. of 28th Annual International Confer-
ence of the IEEE Eng. In Medicine and Biology Society
(EMBS ’06), 20006, pp. 3521-3524;

[0060] X. F. Teng, et al: “Continuous and noninvasive
estimation of arterial blood pressure using a photopl-
ethysmographic approach”, Proc. of 25th Annual Inter.
Conf. of the IEEE Engineering in Medicine and Biol-
ogy Society, Cancun, Mexico, 2003, pp. 3153-3156;

[0061] Y. Yoon, at al.: “Nonconstrained blood pressure
measurement by photoplethysmography™, Journal of
the Optical Society of Korea, vol. 10, no. 2, pp. 91-95,
June 2006;

[0062] G. Fortino, et al.: “PPG-based methods for non
invasive and continuous BP measurement: an overview
and development issues in body sensor networks”,
Proc. of IEEE Int. Workshop on Medical Measur. and
Applications (MeMeA’2010), Ottawa, ON, 2010, pp.
10-13;

[0063] A. L. Goldberger, et al.: “PhysioBank, Physi-
oToolkit, and PhysioNet: Components of a New
Research Resource for Complex Physiologic Signals,”
Circulation 101(23), pp. €215-e220, 2000;

[0064] Y. Kurylyak, at al.: “Smartphone-Based Photop-
lethysmogram Measurement”, in Digital Image, Signal
and Data Processing, R. J. Duro and F. Lopez-Pefia Ed.
Aalborg, Denmark: River Publishers, 2012, pp. 135-
164,

[0065] F. Lamonaca, at al.: “Reliable pulse rate evalu-
ation by smartphone”, Proc. of IEEE Int. Symp. Medi-
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cal Measurements and Applications (MeMeA 2012),
Budapest, Hungary, 2012, pp. 234-237;

[0066] A. Gaurav, etal.: “Cuff-less PPG based continu-
ous blood pressure monitoring—A smartphone based
approach”, 2016 38th Annual International Conference
of the IEEE Engineering in Medicine and Biology
Society (EMBC) Year: 2016;

[0067] S. Datta, et al.: “Blood pressure estimation from
photoplethysmogram using latent parameters”, 2016
IEEE International Conference on Communications
(ICC) Year: 2016 Pages: 1-7, DOI: 10.1109/ICC.2016.
7511599,

[0068] Yung-Hua Kao, et al.: “A PPG sensor for con-
tinuous cuffless blood pressure monitoring with self-
adaptive signal processing”, 2017 International Con-
ference on Applied System Innovation (ICASI) Year:
2017 Pages: 357-360, DOI: 10.1109/ICASI.2017.
7988426.

[0069] In general terms, solutions as discussed previously
may involve one or more of the following: classical analytic
methods; PIT (Pulse Transit Time) based methods, involving
both ECG (ElectroCardioGraphy) and PPG signals; heuris-
tic approaches based on key features of PPG standard
waveforms; (artificial) neural networks/machine learning
algorithms; and mixed ECG-PPG approaches.

[0070] It was noted that various solutions as discussed
previously may suffer from certain limitations, such as:

[0071] they require knowledge of specific physical
parameters (arterial vessel elasticity—Moens-Ko-
rteweg equation, etc.);

[0072] the related systems, both hardware (HW) and
software (SW) (PPG/ECG sensors, data extraction
(pulse transmit time (PTT), pulse wave velocity
(PWV), or the like) may turn out to be unduly complex;

[0073] a sensitivity/specificity ratio hardly compatible
with the related (high) computational costs;

[0074] continuous ECG acquisition may be mandatory,
with related difficulties of detection in certain contexts
such as the automotive sector or smartphone systems;

[0075] those methods which are based on machine
learning and (artificial) neural networks (ANN’s) may
involve high computational costs against a reduced
accuracy and/or an estimation capability limited to a
reduced pressure range (80-90/110-125 mmHg).

[0076] Italian patent application No. 102017000120714
(see corresponding U.S. patent application Ser. No. 16/167,
817, Attorney Docket No. ST-17-CT-0393US01, which
application is hereby incorporated herein by reference)
discloses a system including PPG sensing circuitry config-
ured for sensing PPG signals indicative of the driver’s heart
pulsatile activity, as well as (artificial) neural network pro-
cessing circuitry sensitive to ECG signals and configured for
calculating a correlation between the sample ECG signals
sensed over a limited time duration and the PPG signals. The
BCG signals are reconstructed from the PPG signals sensed
as a function of the correlation between the sample ECG
signals sensed and the PPG signals. Such a system may be
configured for estimating the heart rate variability (HRV) of
the heart of the driver of vehicle and produce a correspond-
ing indicator of the driver’s drowsiness.

[0077] In order to produce from “raw” PPG signals as
sensed (see e.g. FIG. 2) “clean” PPG signals which facilitate
processing (see e.g. FIG. 3) such a system—and likewise
one or more embodiments as exemplified herein—may



US 2019/0159735 Al

adopt a solution as described in another Italian Patent
Application No. 102017000081018 (see corresponding U.S.
patent application Ser. No. 16/037,328, Attorney Docket No.
ST-17-CT-0293US01, which application is hereby incorpo-
rated herein by reference) and also discussed in: F. Rundo et
al.: “Progresses towards a Processing Pipeline in Photopl-
ethysmogram (PPG) based on SiPMs”, IEEE Proceedings of
23 European Conference on Circuit Theory and Design,
Catania (Italy) 4-6 Sep. 2017; F. Rundo et al.: “An innova-
tive Reaction-Diffusion Bio-inspired Pipeline for Physi-
ological Signals Analysis”, Proceedings of Italian National
Conference on the Physics of Matter, Trieste (Italy), 1-6 Oct.
2017; and F. Rundo et al.: “Innovative pattern recognition
algorithm for Photoplethysmography (PPG) measure-
ments”, Proceedings of Italian National Conference on the
Physics of Matter, Trieste (Italy), 1-6 Oct. 2017.

[0078] One or more embodiments as exemplified herein
may facilitate determining a correlation between blood
pressure and the PPG signal (for a same individual) which
is partly linear and partly nonlinear.

[0079] EEG is an electro-physiological method to record
electrical activity of the brain (electrocortical or EEG activ-
ity). Acquisition of EEG signals can be performed as a
non-invasive act, for instance by means of certain number of
electrodes (e.g., from 16 to 24 electrodes) placed on the
cranium by means of a conductive paste, to facilitate a low
resistance connection.

[0080] Scientific literature demonstrates that EEG activity
is due to the synaptic currents generated by the pyramidal
cortical neurons, following the signals coming from other
cortical areas or from the sensory thalamus.

[0081] The sum ofthe activity of plural pyramidal neurons
gives rise to detectable EEG signals. A pyramidal neuron
receives various inputs; if such inputs excite a group of
adjacent neurons sufficiently simultaneously (synchroniza-
tion), EEG activity may present wide and slow waves.

[0082] FIGS. 4a to 4d are exemplary of EEG signals. As
exemplified in FIGS. 4a to 4d, an EEG signal may include
waves of different frequency and amplitude, often called
“rhythms” and labeled by Greek letters: a, f, 8, 6. The
amplitude variation of these waves is specifically related to:
physiological events (e.g., sensory stimulation, sleep, etc.)
and/or pathological events (e.g., epilepsy, coma, etc.).
[0083] In EEG, each “rhythm” may exhibit certain fre-
quency and amplitude characteristics. For instance: the {3
rhythm (in FIG. 4a) may have a frequency above 13 Hz and
amplitude below 40 pV; the o thythm (in FIG. 45) may have
frequency from 8 to 13 Hz and amplitude from 40 to 50 uV;
the 8 rhythm (in FIG. 4¢) may have frequency from 4 to 7
Hz and amplitude from 50 to 75 pV; the § rhythm (in FIG.
4d) may have a frequency lower than 4 Hz and amplitude
greater than 75 pV. The synchronization of EEG “rhythms”
therefore reflects the collective behavior of the neurons
involved.

[0084] As known from the literature, EEG recordings—
for instance the o and § waves—may be (directly) indicative
of drowsy and attentive condition of a person, respectively.
Other electrophysiological signals, such as, for instance,
electrocardiogram (ECQG) signals, only represent indirect
measurements.

[0085] The diagram of FIG. 5 shows an exemplary circuit
(pipeline) for a system 10 according to one or more embodi-
ments.
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[0086] In one or more embodiments such a pipeline may
include an input circuit block 12 configured to receive “raw”
PPG signals (see e.g. FIG. 2) from a PPG probe section S
and produce therefrom “clean” PPG signals (see e.g. FIG.
3).

[0087] In one or more embodiments, the pipeline 10 may
include a mathematical analysis circuit block 14 (e.g. a
processor) which receives the PPG signals from the input
circuit block 12 and provides signals corresponding to the
results of mathematical analysis (e.g. as exemplified in the
following) to first and a second artificial neural network
(ANN) circuit blocks 16 and 18, respectively.

[0088] The first and second artificial neural network cir-
cuit blocks 16 and 18 provide output signals SBP, DBP
indicative of the systolic and diastolic blood pressure of the
individual whose PPG signals are detected via the PPG
probe section S.

[0089] The output signals SBP, DBP can be provided to a
“consumer” unit D (which per se may be a distinct element
from one or more embodiments), which may include e.g. a
display screen, a printer, a recording device, efc. so that the
signals SBP, DBP may be made available e.g. to support the
diagnostic activity of a practitioner in medical and veteri-
nary activities.

[0090] In other possible areas of use (e.g. in the automo-
tive sector), the “consumer” unit D may be any circuit
adapted to exploit the signals SBP, DBP, e.g. for detecting
drowsiness or other possible conditions of a driver or pilot.

[0091] The PPG probe section S (which per se may be a
distinct element from one or more embodiments) can be
based on the use of large area n-on-p SiPMs fabricated at
STMicroelectronics (see e.g. M. Mazzillo, et al.: “Silicon
Photomultiplier technology at STMicroelectronics”, IEEE
Trans. Nucl. Sci, vol. 56, no. 4, pp. 2434-2442, 2009,
already cited).

[0092] These SiPMs may have a total area of 4.0x4.5 mm2
and 4871 square microcells with 60 micron (1 micron=10"°
m) pitch. These devices have a geometrical fill factor of
67.4% and are packaged in a surface mount housing (SMD)
with 5.1x5.1 mm?2 total area (see e.g. M. Mazzillo, et al.,
cited above or M. Mazzillo, et al.: “Electro-optical perfor-
mances of p-on-n and n-on-p silicon photomultipliers”,
IEEE Trans. Electron Devices, vol. 59, no. 12, pp. 3419-
3425, 2012).

[0093] A Pixelteq dichroic bandpass filter with a pass band
centered at 542 nm with a Full Width at Half Maximum (0)
of 70 nm (1 nm=10"" m) and an optical transmission higher
than 90% in the pass band range can be glued on the SMD
package by using a Loctite® 352™ adhesive. With the
dichroic filter at 3V-OV the SiPM has a maximum detection
efficiency of about 29.4% at 565 nm and a PDE of about
27.4% at 540 nm (central wavelength in the filter pass band
-1 nm=10"° m). It was noted that the dichroic filter can
reduce in excess of 60% the absorption of environmental
light in the linear operation range of the detector operating
in Geiger mode above its breakdown voltage (~27V).
OSRAM LT M673 LEDs in SMD package emitting at 529
nm (1 nm=10"" m) and based on InGaN technology have
been used as optical light sources in exemplary embodi-
ments. These LEDs have an area of 2.3x1.5 mm2, viewing
angle of 120°, spectral bandwidth of 33 nm (1 nm=10"" m)
and typical power emission of a few mW in the standard
operation range.
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[0094] Use of PPG probes including SiPM detectors may
provide advantages in terms of single-photon sensitivity and
high internal gain for relatively low reverse bias.

[0095] It has been observed that SiPM detectors can
provide advantages in PPG systems in terms of higher
AC-10-DC ratio in PPG pulse waveform, high repeatability
and immunity to motion artifacts and ambient interferences.
One or more embodiments as discussed herein may sense
PPG signals by using SiPMs (as available with companies of
the ST group) as optical probe sensors, adapted to be used
in conjunction with hardware and software components in
providing a signal processing pipeline.

[0096] One or more embodiments may take advantage of
the capability of such PPG probes/detectors of operating
both in a transmission mode (see FIG. 6a) that is with
radiation from the LED propagating through the body (e.g.
the body of a patient being clinically investigated or a
driver), for instance through a fingertip F, and in a reflection
mode (see FIG. 6b) that is with radiation from the LED
reflected (back-scattered) from the body.

[0097] This permits to further relax the requirements for
possible positioning of the PPG probes/detectors with
respect to the body.

[0098] As noted, in one or more embodiments the input
circuit block 12 can be configured to produce “clean” PPG
signals (see e.g. FIG. 3) from “raw” PPG signals (see e.g.
FIG. 2) as received from the PPG probe section S by
adopting the solution described in [talian Patent Application
No. 102017000081018 (see corresponding U.S. patent
application Ser. No. 16/037,328, Attorney Docket No.
ST-17-CT-0293US01) and the various Rundo et al. papers
already cited in the foregoing.

[0099] It will be otherwise appreciated that: while desir-
able, such “cleaning” of the PPG signals from the PPG probe
section S may not be mandatory, so that, at least in certain
embodiments, the input circuit block 12 may be dispensed
with or at least simplified, e.g. in the form of a filter; and in
one or more embodiments, the PPG signals from the PPG
probe section S may be “cleaned” by resorting to solutions
different from those described in Italian Patent Application
No. 102017000081018 (see corresponding U.S. patent
application Ser. No. 16/037,328, Attorney Docket No.
ST-17-CT-0293US01) and the Rundo et al. papers.

[0100] Inonemore embodiments, the mathematical analy-
sis circuit 14 block may include a processor block (e.g. a
DSP or similar processor circuit) configured, in a manner
known per se (e.g. via software) to perform analysis of the
PPG signal from the PPG probe section S (e.g. as received—
in digital form—from the input circuit block 12) to extract
therefrom certain features to support further processing in
the artificial neural network circuits 16 and 18.

[0101] As a first act exemplified by the block boo in the
flow chart of FIG. 7, the circuit block 14 will calculate a first
set of features of the (e.g. filtered) PPG waveform denoted
PPG (see e.g. FIG. 8a) and the first and second (time)
derivatives thereof dPPG/ct and a2PPG/at2 (see e.g. FIGS.
8b and 8¢).

[0102] The following equations F1 to F18 are exemplary
of how such first act of processing can be performed in
embodiments:
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[0103] where:

[0104] 1n denotes (natural) logarithm,

[0105] Npp; are the samples i=1, . . ., Npps of the PPG
signal available over a period of the PPG signal;

[0106] the suffixes sys, dia, and die respectively denote
the systolic, diastolic, and dicrotic phases of the PPG
signal (see e.g. FIG. 1) which may be identified as the
portions A-B, A1-Bl, A2-B2 (systolic), B-D, B1-D1,
B2-D2 (dicrotic), C-E, C1-El, C2-E2 (diastolic) in the
diagrams (PPG, first derivative, second derivative) of
FIGS. 8a to 8¢

[0107] L' indicates the length of sub-curve of PPG
waveform, for the systolic, diastolic and dicrotic phases
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sys, dia and die, respectively; in the same way,
L(3PPG/at) represents the length of the sub-curve of
the first derivative of the PPG signal, and L'(32PPG/
at2) represents the length of the sub-curve of the
second derivative of the PPG signal, again for sys, dia
and dic, respectively. For the first derivative and second
derivative of PPG signal, the Simpson rule can be
adopted for computing the length of the curve; and G
denotes standard deviation for L;
[0108] Essentially, equations F1 to F3, F7 to F9 and F12
to F15 provide an indication of the “length” of the signal
curve or path of the PPG signal (and the first and second
derivatives thereof) in the systolic, diastolic and dicrotic
phases (that is, so to say, “how long” each these signals
remains in each phase).
[0109] By observing FIGS. 8a to 8¢ it will in fact be noted
that, while extending over a same time duration, the PPG
signal (see FIG. 8a), the first derivative signal (see FIG. 8b),
and the second derivative signal (see FIG. 8¢) will have
paths of different lengths and provided e.g. by the Simpson
rule.
[0110] Inthe same line, equations F4 to F6,F10to F12 and
F16 to F18 provide a refined indication of the average
(standard deviation) of the path lengths of the PPG signal
and the first and second time derivatives thereof in the
systolic, diastolic and dicrotic phases.
[0111] As asecond act as exemplified by the block 102 in
the flow chart of FIG. 7, the circuit block 14 will calculate
a second set of features F19 to F36 of the (e.g. filtered) PPG,
APPG/3t and 32PPG/3t2 signals which are indicative of
shape factors of these signals, e.g. relative measures of the
of the systolic, diastolic and dicrotic phases.
[0112] For instance, these relative measures can be
regarded as exemplary of how fast/slow the transitions
between the systolic, diastolic and dicrotic phases may
occur.
[0113] The following equations F19 to F36 are exemplary
of how such second act of processing can be performed in
embodiments:
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[0114] where the entities indicated have the same meaning
already discussed in connection with equations F1 to F18 for
the systolic, diastolic and dicrotic phases (sys, dia and dic),
respectively.

[0115] FIG. 9 is exemplary of possible processing which
may be performed as exemplified by the block 104 in the
flow chart of FIG. 7, where the distances between peaks/
valleys in subsequent PPG waveforms (generally denoted i
and i+1) are evaluated.

[0116] The following equations F37 to F42 are exemplary
of how such third act of processing can be performed in
embodiments:

(| Ve
_ s+l JEPVE
Fy =1 Nrra Z (mlndia—PPG rmndia—PPG)
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-continued

Fay =00 (e pp = P prc)

Fa = ln(U'(P;;Cl,PPG - p;ic—FPG))

[0117] where the entities already discussed in connection
with equations F1 to F36 retain the same meaning and
[0118] max: denotes the point (abscissa) where the PPG
waveform has its maximum value (systolic peak SP);
[0119] min: denotes the point (abscissa) where the PPG
waveform has its minimum value;
[0120] p’ denotes the dicrotic point (abscissa);
[0121] i and i+1 generally denote two subsequent PPG
waveforms.
[0122] The foregoing applies once more for sys, dia and
dic, respectively.
[0123] FIG. 9 further exemplifies the distances between
peaks/valleys as adapted to be expressed by formulas F37-
F38, F39-F40 and F41-F42 with reference to subsequent
PPG waveforms 1 and i+1.
[0124] The entities (e.g. F1-F42 as exemplified in the
foregoing) calculated in circuit block 14 can be input to the
artificial neural network (ANN) circuits 16 and 18 to per-
form therein processing (as exemplified by block 106 in
FIG. 6) intended to correlate the PPG signal with pressure
measurements (both diastolic and systolic) available for
training the neural network circuits 16 and 18 to produce
blood pressure signals SBPrec (systolic) and DBPrec (dia-
stolic) reconstructed starting from the PPG signals.
[0125] Training values, e.g. SBP(t+1) (systolic) and DBP
(t+1) (diastolic) can be derived e.g. from a set of measure-
ments performed on a sample of e.g. 32 patients for which
blood pressure is measured (e.g. by conventional means
such as a sphygmomanometer) concurrently with detecting
a PPG signal. These values can be used for training both
neural networks circuits 16 (e.g. Polak-Ribiere neural net-
work multi-layer perceptron) and 18 (e.g. self-organizing
map, abbreviated as SOM).
[0126] The Polak-Ribiere neural network multi-layer per-
ceptron (as exemplified e.g. in Fletcher R. et al.: “Function
minimization by conjugate gradients”, Computer Journal,
Vol. 7m 1964 pp. 149-154; or Hagan M. T.. et al.: “Neural
Network Design”, Boston, Mass.: PWS Publishing, 1996 pp.
9-15-9-22) was found to be an adequate tool for use in
learning a correlation between PPG-based features as dis-
cussed previously (e.g. F1-F42) with blood pressure mea-
surements.
[0127] The artificial neural network circuit 16 will thus be
able to reconstruct the blood pressure of a subject both for
systolic (SBP) and diastolic (DBP) values, e.g. in connection
with a first, non-linear part or component f1(*)/f2(*)}—see
below—e.g. based on a Polak-Ribiere neural network multi-
layer perceptron.
[0128] The artificial neural network circuit 18 will be able
to complete such a reconstruction of the blood pressure both
for systolic (SBP) and diastolic (DBP) values by detecting a
second, linear part or component (K1(*)/K2(*)) for both
diastolic and systolic pressures.
[0129] In fact, in one or more embodiments, blood pres-
sure values, SBPrec (systolic) and DBPrec (diastolic) were
found to be reliably and accurately reconstructed as a
combination (e.g. as a sum) of non-linear plus linear com-
ponents in the form:
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SBPrec=f1(Polak-Ribiere NV)+K1(wl[SOM1]); and

DBPrec=2(Polak-Ribiere NN)+K2(w2[SOM2]),

where f1(*) and f2(*) represent the output from a functional
mapping modelled by f1(*)-systolic—and f2(*)-diastolic—
as produced by the first network 16 (e.g. with Polak-Ribiere
learning), which is non-linear function.

[0130] The terms K1(*)-systolic—and K2(*)-diastolic—
represent the output from the second network 18 (e.g.
“Extended SOM”), which is a linear function.

[0131] Consequently, the pressure values SBPrec/DBPrec
include a non-linear portion (f1/f2) and a linear portion
(K1/K2).

[0132] An extended SOM as schematically exemplified in
FIG. 10 (where only the input layer 1L and the output layer
OL are visible) was found to be suited for use in one or more
embodiments, e.g. due to the presence of an output layer OL
where the output weights are used to compute equations
such as:

for the systolic blood pressure value SBP:

wiin(xmin-ymin-z+1 y=wiin (xmin-ymin-£)+o-px,p,2):
(Fi-wiin(xmin-ymin-z+1))

Klin(minymin-t+1)=Klin(minvmins)+o-Zpxy,0)-
([SBPi-f1(Polak-Ribiere

NN)]-K1{xmin-ymin-z+1))

AWt =(UNEIFi-win(i,p),

[0133] with an error E(t+1)<E(t) where E(t+1)=[SBP(t+
1)-SBPrec(t+1)], where SBPrec denotes the reconstructed
systolic blood pressure value; and

for the diastolic blood pressure value DBP:

wiin(xmin-ymin-z+1 y=wiin(xmin-ymin-£)+o-px,y2):
(Fi-wiin(xmin-ymin-z+1))

K2in(xminymin-t+1)=K2n(xmin-ymin-)+oZ-px,y, )
([DBPi-f2(Palak-Ribiere

NN)-K2{(xmin-ymin-z+1))

Awii =(LNVE IFi-win(ij, 0,

[0134] with an error E(t+1)<E(t) where E(t+1)=[DBP(t+
1)-DBPrec(t+1)], where DBPrec denotes the reconstructed
distolic blood pressure value.

[0135] The blood pressure values so computed (both sys-
tolic, SBPrec, and diastolic, DBPrec) can thus be supplied to
the “consumer” unit D for use as desired (e.g. support of
diagnosis by a practitioner or other uses as discussed pre-
viously).

[0136] A system as exemplified herein was found to be
able to provide a blood pressure estimation (both systolic
and diastolic) in a few seconds, with (only) 4-5 seconds of
PPG sampling found to facilitate accurate and reliable
reconstruction of a blood pressure signal.

[0137] It will be otherwise appreciated that, while exem-
plified herein in connection with reconstructing from PPG
signals both systolic and diastolic blood pressure values (e.g.
SBPrec and DBPrec), certain embodiments may involve the
reconstruction only one of those blood pressure values.
[0138] As mentioned above, one or more embodiments
may involve EEG signals processing which facilitate effi-
cient segmentation of compliant EEG sample waveforms in
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a combined PPG/EEG system, which in turn facilitate robust
drowsiness/alert state monitoring of a vehicle driver. In this
regard, reference is made to Figure ii, which is exemplary of
a possible pipeline of signal processing in a system 40
according to embodiments that facilitate robust drowsiness/
alert state monitoring of a vehicle driver.

[0139] A PPG sensor PD (shown in dashed line, insofar as
this may represent a distinct element from embodiments)
may be coupled to a first processing circuit block or stage 42
to provide thereto an unprocessed “raw” PPG signal S. In
one or more embodiments as discussed herein, the PPG
signal may be sensed in a known manner at a location of the
body of a driver D of a vehicle V. For instance, the signal
may be sensed via one or more PPG sensors (for instance,
of the type discussed in the foregoing) arranged at a steering
wheel SW of the vehicle V.

[0140] One or more embodiments of the processing stage
42 may include filtering stages, mathematical analysis stages
and artificial neural network circuits (trained with sample
EEG signals/waveforms), whose functions will be discussed
in the following, also with reference to figures such as FIGS.
12 10 17.

[0141] The output from the processing stage 42 may be
coupled to a decision stage 44. In one or more embodiments,
the decision stage 44 may include neural networks circuits
and/or comparator circuits, as discussed in the following.
One or more embodiments of the decision stage 44 may be
configured to evaluate a state of the vehicle driver D, for
instance by providing a signal DS indicative of the level of
attention of the driver D which may be fed to an interface A
(for instance a display unit, a sound and/or light generator,
and so on). This may facilitate, for instance, making the
driver D aware of a reduced level of attention, possibly due
to drowsiness or other reasons. In one or more embodiments,
the decision stage 44 may also provide signals (e.g., the
signal DS) to an error monitoring stage 46.

[0142] The error monitoring stage 46 may in turn operate,
via a feedback loop path 48, on the processing stage 42 or
the decision stage 44 as a function of signals from the
decision stage 44 and/or input from the user D (as provided
via the interface A, for instance). For instance, the error
monitoring stage 46 may trigger the activation of the feed-
back loop path 48 to facilitate retraining of neural network
circuits included in the processing stage 42 and/or in the
decision stage 44.

[0143] As exemplified in FIG. 11, the processing stage 42
may include sub-stages 42a, 425 which may include essen-
tially similar artificial neural network circuits and intended
to operate different training datasets e_real_drowsy. e_real
wakeful, as discussed in the following.

[0144] Due to the essential similarity of the sub-stages
42a, 425, for the sake of brevity, in the following a detailed
description will be provided primarily in respect to the
former one (that is 42a), being otherwise understood that the
same description also applies, mutatis mutandis, also to the
latter (that is sub-stage 42b). At least in principle, the
sub-stages 42a, 42b might even be implemented as a single
circuit intended to perform alternatively the role of the
sub-stage 42a (dataset e_real_drowsy) and the role of the
sub-stage 42b (dataset e_real_wakeful).

[0145] In one or more embodiments, the stage 42¢ may
include a first filtering circuit 420, receiving the “raw” PPG
signal S from the sensor PD and providing a filtered “clean”
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PPG signal Sclean to both a normalization stage 422 and a
mathematical analysis stage 800 (see FIG. 15).

[0146] In order to produce, from a “raw” PPG signal S,
sensed by the sensor PD, a “clean” PPG signal Sclean which
facilitate processing, the first filtering stage 420 may adopt
a solution as described above in respect of Italian Patent
Application No. 102017000081018 and the various Rundo
et al. papers cited in the foregoing. It will be otherwise
appreciated that while desirable, such “cleaning” of the PPG
signals from the PPG probe section PD may not be manda-
tory, so that, at least in certain embodiments, the first
filtering stage 420 may be dispensed with or at least sim-
plified, e.g. in the form of a filter.

[0147] Inoneor more embodiments as exemplified herein,
the normalization stage 422 may receive a “clean” PPG
signal Sclean and provide a normalized PPG signal to a
downstream first artificial neural network circuit (briefly,
ANN) 424. For instance, the normalization stage 422 may
process the “clean” PPG signal Sclean to a unitary range
[0,1] prior to segmentation of the PPG signal. The PPG
segmented waveform obtained may be further normalized
and resized e.g. via a nearest algorithm (see e.g. F. Rundo,
et al.: “Adaptive Learning for Zooming Digital Images”™—
ICCE 2007. Digest of Technical Papers. International Con-
ference on Consumer Electronics, 2007) in order to make it
comparable (in terms of value and as regards the time-axis)
with other PPG waveforms.

[0148] In one or more embodiments, the normalized PPG
signal Sclean may be received by the downstream first ANN
424 which may process the signal as to provide a “recon-
structed” EEG signal e_rec to downstream second ANN
stage 426 and mathematical analysis stage 800.

[0149] In one or more embodiments, the first ANN 424
may include a storage area for a collection of sample EEG
waveforms e_real. As noted, in one or more embodiments
the sub-stages 42a and 42b may be intended to operate
different training datasets ¢_real_drowsy, e_real_wakeful.
Consequently, in the sub-stage 42q, the first ANN 424 may
store a collection e_real_drowsy of EEG waveforms of
drivers in a drowsy state; and in the sub-stage 425, the first
ANN 424 may store a collection e_real_wakeful of EEG
waveforms of drivers in a wakeful state.

[0150] Inone or more embodiments, “reconstructed” EEG
signals e_rec may be calculated in the first ANN’s424 of the
two stages 42a, 42b as a function of: the PPG signal from the
PPG probe PD; and the respective collection of EEG wave-
forms, namely e_real_drowsy (stage 42a) or e_real_wakeful
(stage 42b). This processing will thus result in two recon-
structed EEG signals, namely a “drowsy” EEG signal e_rec_
drowsy (stage 42a) and a “wakeful” EEG signal e_rec_
wakeful (in stage 42a, with the signal e_rec_wakeful not
visible in FIG. 12).

[0151] Inoneor more embodiments the two signals e_rec_
drowsy and e_rec_wakeful may then be further processed
(to some extent, compared) with the aim of evaluating—for
instance in the block 44) whether the PPG signal S as
(currently) detected via the probe PD is indicative of a
“drowsy” state or a “wakeful” state of the driver D. This may
occur, for instance as discussed in the following with ref-
erence to FIG. 17.

[0152] In one or more embodiments, EEG signal recon-
struction to provide the two signals e_rec_drowsy and
e_rec_wakeful may be performed as exemplified in FIGS.
13 and 14.
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[0153] FIG. 13 and FIG. 14 are examples of diagrams of
a possible network topology of an artificial neural network
processing (as exemplified by stage 424 in FIG. 12) con-
figured to correlate the PPG signal with EEG measurements
available for training the first (and second) artificial neural
network (ANN) stage 424, resulting in EEG signals e_rec
(this designation will be used indifferently for e_rec_drowsy
and e_rec_wakeful) reconstructed starting from the PPG
signal S.

[0154] Training values, e.g., e_real (this designation will
again be used indifferently for e_real_drowsy and e_real
wakeful) may include sets of EEG measurements performed
on a wide sample of subjects (e.g. by conventional means
such as a plurality of electrodes on the head surface)
concurrently with detecting a PPG signal S.

[0155] These values can be used for training both neural
networks circuits (e.g. Levenberg-Marquardt) of FIG. 12.
The Levenberg-Marquardt multi-layer perceptron neural
network, briefly LM-MLP NN, is found to be an adequate
tool for use in learning a correlation between PPG signals
and EEG samples/waveforms.

[0156] The (first) ANN stage 424 will thus facilitate
reconstructing EEG signals e_rec of a subject both for
drowsy (e_rec_drowsy) and wakeful (e_rec_wakeful) val-
ues, e.g. based on a Levenberg-Marquardt neural network
multi-layer perceptron (briefly, LM MLP NN).

[0157] FIG. 13 is a diagram of a multi-layer perceptron,
briefly MLP, with one input layer 601, a hidden layer 602
and an output layer 603, having a number of parallel
perceptrons nl, n2, . . ., nO, for each respective layer.
[0158] The perceptrons in the layers are coupled to the
input node of each neuron of the downstream layer (which
may be referred to as a “fully connected feed forward”
topology) and to a bias input node. For instance, the input
layer 601 may receive an input array of values, e.g. I1, . . .
, Ini, and a bias input, e.g. +1.

[0159] FIG. 14 is exemplary of the topological diagram of
a single perceptron, e.g. a perceptron 61 belonging to the
input layer 601.

[0160] The output layer 603 of the ML.P may provide at
output an array of output values O1, ,Om, . .., Ono
whose value may be described by the followmg equatlon

eSSl

=0 =0 P 1

form-1,...,n0

[0161] The learning phase, e.g. to define the values of the
weights associated to the output layer, may facilitate the
minimization of an error function defined as:

N

Z e_rec; —e real )

[0162] The Levenberg-Marquardt error-correction learn-
ing is expressed in the equation below:

We 1 =W () e
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where the weight vector w is iteratively updated by the error
vector e modified by the Jacobian matrix J and the scalar m.
[0163] Fora LM-MLP NN (Levenberg-Marquardt Multi-
Layer Perceptron Neural Network). the input bias array
(e.g., +1) are given the values of the error vector e, and the
output bias array (e.g., +1) are set to (1-e), thus ensuring the
outliers in the inputs are scaled down in importance in the
output layer.

[0164] The first artificial neural network circuit 424 may
facilitate to complete such a reconstruction of the EEG
signals both for drowsy and wakeful driver training sets.
[0165] In one or more embodiments, a mathematical
analysis stage 800 (visible in FIG. 12 and further detailed in
FIG. 15) may be configured to process the filtered “clean”
PPG signal Sclean and the reconstructed EEG signal e_rec_
drowsy to provide a set of vectors, e.g., [G, L, E], to the
decision stage 44.

[0166] It will again be recalled that, while provided for
brevity primarily in respect of the stage 42a, the same
description herein applies, mutatis mutandis, also to the
stage 42b. Consequently, in one or more embodiments, the
stage 42b may include a respective mathematical analysis
stage 800 configured to process the filtered “clean” PPG
signal Sclean and the reconstructed EEG signal e_rec_
wakeful to provide a respective set of vectors, e.g., [G', L,
E'], to the decision stage 44.

[0167] For instance, the mathematical analysis stage 800
(both in 42a and in 42b) may include at least one processor
block (e.g. a DSP or similar processor circuit) configured, in
amanner known to those of skill in the art (e.g. via software)
to perform mathematical analysis of the “clean” PPG signal
Sclean from the PPG probe PD (e.g. as received—in digital
form—from the input) to extract therefrom certain features
to support further processing in the artificial neural network
(ANN) stages downstream.

[0168] In one or more embodiments, calculating the val-
ues of the (first) set of vectors [G, L, E] may take place as
exemplified in FIG. 15, which also applies to calculating the
values of the (second) set of vectors [G', L', E'].

[0169] In one or more embodiments, the mathematical
analysis stage 800 may include a first analysis stage 421, a
second analysis stage 425, a feature extraction stage 423 and
an optional combination stage 427.

[0170] In one or more embodiments, the first analysis
stage 421 may receive the filtered “clean” PPG signal Sclean
from the first filtering stage 420 and provide a first analysis
vector L including a plurality of values, e.g., characteristics
of the filtered “clean” PPG signals Sclean, e.g. L=[Ldia,
Lsys, LpeakToPeak].

[0171] For instance, as discussed above in greater detail,
the characteristics may include: the length of sub-curve of
PPG waveform, for the diastolic phase Ldia; the length of
sub-curve of PPG waveform, for the systolic phase, Lsys;
and the length of sub-curve of PPG waveform between two
consecutive SP peaks, [peakToPeak. The suffixes sys and
dia respectively denote the systolic and diastolic phases of
the PPG signal which may be identified, with reference to
the diagram of FIG. 1, as the portions O-SP (systolic) and
DN-DP (diastolic), while the suffix peakToPeak denotes the
phase between two consecutive SP peaks.

[0172] Similarly, the second analysis stage 425 may
receive the reconstructed EEG signals e_rec (again this may
apply to e_rec_drowsy in 42a and to e_rec_wakeful in 42b)
from the first ANN circuit 424 and provide a second analysis



US 2019/0159735 Al

vector E including a plurality of values, e.g., statistical
characteristics of the reconstructed EEG signals e_rec, e.g.
E=[u(e_rec), Gle_rec), w(R(e_rec))]. For instance, the sta-
tistical characteristics may include: a mean value of the
reconstructed EEG signal, p(e_rec); a standard deviation of
the reconstructed EEG signal, G(e_rec), and a mean value of
the autocorrelation function of the reconstructed EEG sig-
nal, p(R{e_rec)).

[0173] Next, the feature extraction stage 423 may be
configured to receive as input the first analysis vector L
(respectively, ') and the second analysis vector E (respec-
tively, E') and to provide as output a feature vector G
(respectively, G'), containing a certain number of math-
ematical features G1 to G6, e.g. G=[G1, G2, G3, G4, G5,
G6], resulting from processing input received.

[0174] In one or more embodiments, features G1 to G6
may be expressed by the following equations:

i
oofie)

G = In(LpeckToPeak )

1 1
Gy =ac(e_rec) = (m]ﬁ
Nk
((e_rec(i) — u(e_rec))(e_rec(i + k) — p(e_rec))

=1

Gs = o{e_rec)
(&
Gg = p(e_rec) = ﬁ[ 2 efrec(i)]

i

[0175] Essentially, mathematical features G1 to G3 pro-
vide an indication of the “length” of the signal curve or path
of the PPG signal in the systolic, diastolic phases (that is, so
to say, “how long” each these signals remains in each phase)
and of the peak-to-peak “length”, while features G4 to G6
provide an indication of the statistical features of the recon-
structed EEG signal e_rec.

[0176] In one or more embodiments, optionally, the first
analysis vector L (respectively, L) and the feature vector G
(respectively, G') may be combined in a combination stage
427, e.g. may be concatenated.

[0177] As a result, in one or more embodiments: the first
set of vectors [G, L, E] calculated in the mathematical
analysis stage 800 in the sub-stage 42a will depend on the
sample data set e_real_drowsy; and the second set of vectors
[G', L', E'] calculated in the mathematical analysis stage 800
in the sub-stage 425 will depend on the sample data set
e_real_wakeful.

[0178] In one or more embodiments, the second artificial
Neural Network (ANN) circuit 426 may receive the recon-
structed EEG signal e_rec (e_rec_drowsy in 42a and e_rec_
wakeful in 42b) from the first ANN circuit 424 and may be
configured to process the reconstructed EEG signal e_rec via
an artificial neural network, e.g., such as a multi-layer motor
map neural network.
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[0179] In one or more embodiments, the artificial neural
network of the second ANN circuit 426 may be trained to
provide a vector of selected weights U (for 42a) and U' (for
42b), including a plurality of selected weights, e.g., U=[ul,
,u6]; U=ful', . . ., u6 to the decision stage 44, as
discussed in the following in relation to FIG. 16.
[0180] In one or more embodiments, the second ANN
circuit 426 may include a storage area T for a collection of
BEG waveforms e_real (e_rec_drowsy in 42a and e_rec_
wakeful in 425), similarly to what described for the first
ANN circuit 424. For instance: the second ANN circuit 426
in 42¢ may store a collection of EEG waveforms of drivers
in a drowsy state e_real_drowsy; and the second ANN
circuit 426 in 425 may store a collection of EEG waveforms
of drivers in a wakeful state e_real wakeful.
[0181] The reconstructed EEG signal e_rec (e_rec_
drowsy in 42a and e_rec_wakeful in 42b) may thus be
calculated as a function of either one of alternative driver
states depending on which collection of EEG waveforms
between e_real_drowsy and e_real_wakeful is stored in the
respective memories T of the ANN circuits 424, 426, result-
ing in either a reconstructed drowsy EEG signal e_rec_
drowsy or a reconstructed wakeful EEG signal e_rec_
wakeful.
[0182] In one or more embodiments, the first vector of
selected weights U in the sub-stage 42a, e.g. U=[ul, . . .,
u6], may facilitate calculating a level of attention DLA for
a drowsy driver, while the second vector of selected weights
U'in the sub-stage 425, e.g. U=[ul, . . ., u6'], may facilitate
calculating a level of attention DLA' for a wakeful driver.
[0183] In one or more embodiments, the first and second
vectors of selected weights U, U' may be calculated with a
similar procedure, as discussed in the following.
[0184] In one or more embodiments, the second ANN
circuit 426 (both in 424 and in 425) may implement a motor
map neural system, as exemplified in FIG. 16. In one or
more enbodiments, a winner-take-all algorithm, e.g. SOMs,
may be suited to perform the training of the neural network
of the second ANN circuit 426. An extended SOM (Self
Organizing Map) as schematically exemplified in FIG. 16
(where only the input layer IL and the output layer OL are
visible) is found to be suited for use in one or more
embodiments.
[0185] For instance, in one or more embodiments, the
second ANN circuit 426 may include an input neural layer
(e.g. lattice-like, for instance n*n=n> neuronal nodes) 900,
which may receive as input the reconstructed EEG signals
e_rec, and a corresponding output layer 990 (e.g. lattice-like,
for instance n*n=n” neuronal nodes), which may provide at
output the vector of selected weights U.
[0186] In one or more embodiments, the input layer 910
may include weights win(x, y, t) while the output layer may
include weights u(x, y, t). In one or more embodiments, a
random element (t) may be included with a view to
improving the learning process.
[0187] In fact, from an initial distribution of random
weights, and over many iterations, the SOM may be trained
to facilitate providing at output a feature map of the input.
The feature map may be provided at output in the form of'a
vector of selected weights U including a plurality of weight
values, e.g. six values. The plurality of values may be the
result of the selection at the output layer 990 of the neural
network of a plurality of parameters of best matching units
(BMUs) neurons. The BMU neurons may be those neurons
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that minimize a distance (based on certain metrics, e.g.
Euclidean) between the synaptic weights (e.g., win) and the
EEG samples, as discussed in the following.

[0188] In order to do so, the artificial neural network may
be trained, e.g. its weights win(x,y,t). u(x,y,t) may be deter-
mined, through an iterative process based on providing
“real” EEG datasets ¢_real to the neural network circuit. For
instance, determining the BMU may involve iterating
through all the (neuronal) nodes and calculating the Euclid-
ean distance dNi(i,j) between a weight vector of each node
and a current input vector; the node with a weight vector
win(x,y,t) closest to the input vector e_rec may be tagged as
the BMU.

[0189] The Euclidean distance may be given as:

a¥i, j)= » (EEG ee(i) - whi(i))*

i=1

Nodes within the neighborhood of BMU nodes (including
the BMU nodes) may have their weight vector adjusted
according to the following equation:

W t+1 ):WN"(Z)+Q- Blxyt)(e_rec- WN"(Z))

where: t is the time-step; o is the learning rate; and p(x.y,t)
is a parameter of the amount of influence a node’s distance
from the BMU has on its learning, e.g. a classical Gaussian
function.

[0190] Essentially, the new adjusted weight w"'(t+1) for a
node of the neural network may be equal to the old weight
w™(1), plus a fraction of the difference between the old
weight w™(t) and the input vector e_rec.

[0191] Each of the components, e.g., ul, ..., ui,. .., us,
of the vector of selected weights U may vary in time
according to the following equation: u,(t+1)=u,(t)+cf(x,y,
#)yrand. A similar notation may apply to the vector of
selected weights U'.

[0192] Consequently, the second ANN circuits 426 in the
sub-stage 42a and the second ANN circuits 426 in the
sub-stage 42b may provide respective vectors of selected
weights U and U, each of the vectors including six values,
eg, U=[ul, . .., u6], U=ul', ..., u6] indicative of
parameters/weights of the output layer of the Self-Organiz-
ing Map (SOM) neural network.

[0193] FIG. 17 is a flow chart exemplary of a possible
mode of operation of the decision stage 44. In one or more
embodiments, the decision stage 44, coupled to processing
stage 42, may receive a “union” data set P (see FIGS. 11 and
12) including the first set of vectors [G, U, E, 1] from the
sub-processing stage 42a and the second set of vectors [G',
U', B, '] from the sub-processing stage 42b. In one or more
embodiments, the decision stage 44 may be configured to
process the sets of data from the processing stage 42 via
neural network processing.

[0194] The Levenberg-Marquardt multi-layer perceptron
neural network, briefly LM-MLP NN; is again found to
provide an adequate tool for that purpose. In one or more
embodiments as exemplified in FIG. 17, a selective output
layer 440 may use a “defuzzification” function, e.g. a
Takagi-Sugeno centroid calculated as a weighted sum, pro-
viding an array DLA(rec) of “reconstructed” driver level of
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attention values DLAnI, . . ., DLAk, ..., DLAno whose
values may be calculated according to the following equa-
tion:

Sct
i=1

DIA(rec) = (é]

e
=
5

where the index k refers to the kth member of the array and
remaining symbols in the equations are the same as already
defined in the foregoing.

[0195] For instance, the components of the vector of
selected weights U may be regarded as the membership
functions (e.g. weights of a weighted sum) of the feature
vector G components G1, . . ., G6, e.g. according to a
Takagi-Sugeno-type de-fuzzification function, for instance
as disclosed in T. Takagi and M. Sugeno: “Fuzzy Identifi-
cation of Systems and Its Applications to Modeling and
Control,” IEEE Transactions on Systems, Man and Cyber-
netics, vol. SMC-15, no. 1, pp. 116-132, 1985. For instance,
the first vector of selected weights U may be indicative of a
first membership function to apply to mathematical features
vector G of the reconstructed drowsy EEG signal e_rec_
drowsy. Similarly, the second vector of selected weights U'
may be indicative of a second membership function to apply
to mathematical features vector G' of the reconstructed
drowsy EEG signal e_rec_wakeful.

[0196] At each reconstructed driver level of attention
value DLAKk(rec) calculated from data based on the recon-
structed EEG signals e_rec (that is e_rec_drowsy and e_rec_
wakeful), a corresponding driver level of attention value
DLAk(real) may be calculated according to the formula
above, this time based on the sample EEG signals e_real.

[0197] Subsequently, computed reconstructed driver level
of attention values DLA(rec) may be compared with the
corresponding real driver level of attention values DLA
(real) by computing an error metrics, for instance square or
quadratic distance:

1yl
E= (—] (;](Dmi(e,real) — DLA;(e_rec)?
N —\2

where N denotes the number of reconstructed EEG signals
used in the training set and the index 1 identifies each
individual EEG samples.

[0198] It will be appreciated that an error E found to be
smaller than the previously calculated error may indicate
that the system is learning “well” insofar as it is minimizing
with a quadratic dynamics the average error between the
reconstructed driver level of attention values DL Ak(rec) and
the corresponding “real” ones DL Ak(real).

[0199] The learning procedure as described can be con-
tinued until a desired accuracy is achieved or for a fixed
amount of time, e.g. 3 epochs. The neural nodes of the
LM-MLP NN441 may have a transfer function, e.g. a step
fanction, to provide as an output a (classification) indicator
DS, which, for instance, may facilitate evaluating whether
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the previously calculated level(s) of driver attention (or a
combination thereof) is below or above a threshold value T,
e.g. T=0.5.

[0200] The artificial neural network processing in the
decision stage 44 may provide the indicator DS to user
circuits A and error monitoring stage 46. In one or more
embodiments, the indicator DS may have values ranging in
a unitary interval, e.g. DS €[0,1].

[0201] The indicator DS may be indicative of the level of
attention of the driver as calculated by the neural network
circuits 440, 441 of the decision stage 44. For instance, when
the indicator DS has values within a first interval, e.g.
0<DS=0.5, this may be indicative of a “drowsy” driver state,
while a value of the indicator DS outside the interval, e.g.
DS>0.5, may be indicative of a “wakeful” driver state.
[0202] The decision stage 44 will thus facilitate evaluating
the level of attention of a subject, in a range of states, e.g.
from drowsy state to wakeful state.

[0203] The indicator DS may be provided to further pro-
cessing units and may be used to trigger an alert on an
interface (see e.g. interface A in FIG. 11) such as a display,
e.g. on the dashboard of the vehicle V.

[0204] The indicator DS may be provided to the error
monitoring stage 46, which may trigger the activation of the
feedback loop path 48 towards the decision stage 44 and/or
the processing stage 42 to restart the learning phase of the
neural networks respective circuits 426, 429, 44. For
instance, neural network circuits may be re-trained to take
into account changes in the dynamics of the PPG signals S,
Sclean received.

[0205] The feedback loop path 48 may be operated to be
activated: periodically, according to a planned safety-check
schedule embedded in the error monitoring stage 46, e.g.
once a month; due to a significant deviation (above a certain
tolerance threshold) of the measured PPG signals S acquired
from sensor(s) DP from the PPG signals used for the neural
network training phase, e.g. due to a change in the driver;
and/or due to the wear of/as a consequence of safety-checks
performed on the electronic circuits.

[0206] The error monitoring stage 46 may trigger the
activation of the branches of the feedback loop path 48 in a
certain sequence. For instance, the sequence may include:
trigger the start of a training phase for the decision stage 44,
e.g. re-training the neural network; wait (e.g., for its con-
vergence) for a desired time interval, e.g. a fixed number of
epochs; and if the training phase does not converge within
the desired time interval, trigger the start of a training phase
for the processing stage 42, in particular for the second ANN
circuit 426.

[0207] In one or more embodiments, optionally, it may be
possible to iterate the procedure until the training phase for
the decision stage 44 converges within the desired time
interval.

[0208] In one or more embodiments, a method may
include:
[0209] 1) receiving (see e.g. 12, 14) PhotoPlethysmoG-

raphy, briefly PPG, signals (e.g. PPG) including sys-
tolic, diastolic and dicrotic phases (see e.g. SP, DP and
DN in FIG. 1.)

[0210] 1ii) processing (e.g. at 14) the PPG signals,
wherein the processing includes calculating the first
(0PPG/at) and second (32PPG/at2) derivatives (time
derivatives) of the PPG signals (PPG) and calculating:
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[0211] a first set of values (e.g. “features” such as e.g.
F1 to F18) indicative of the lengths of the signal paths
of the PPG signal, the first derivative and the second
derivative thereof in the systolic, diastolic and dicrotic
phases (this first set of values facilitates characterizing
the time lengths or durations of the various phases of
the cardiac cycle, with the derivatives contributing
information on the respective dynamics of systolic,
diastolic and dicrotic);

[0212] a second set of values (e.g. F19 to F36) indica-
tive of the relative durations of the PPG signal and the
first and second derivatives thereof in the systolic,
diastolic and dicrotic phases (this second set of values
facilitates characterizing the ratios between the various
phases, that is the “weight” of one phase with respect
to the others, with the derivatives again contributing
information on the ratios between the dynamics of the
various phases),

[0213] a third set of values (e.g. F37 to F42) indicative
of the time separation of peaks and/or valleys (see e.g.
FIG. 8 in subsequent waveforms of the PPG signal (this
third set of values facilitates characterizing the timing
between subsequent cardiac cycles and between sub-
sequent phases),

[0214] iii) applying artificial neural network processing
(e.g. 16, 18) to the first, second and third set of values,
wherein the artificial neural network processing
includes artificial neural network training as a function
of blood pressure signals to produce reconstructed
blood pressure signals (e.g. SBPrec, DBPrec) recon-
structed from the PPG signals.

[0215] In one or more embodiments, the artificial neural
network processing may include (e.g. at 16) Polak-Ribiere
neural network multi-layer perceptron processing to recon-
struct a nonlinear component of the reconstructed blood
pressure signals reconstructed from the PPG signals.

[0216] In one or more embodiments, the artificial neural
network processing may include (e.g. at 18) self-organizing
map, briefly SOM, processing to reconstruct a linear com-
ponent of the reconstructed blood pressure signals recon-
structed from the PPG signals.

[0217] One or more embodiments may include producing
the reconstructed blood pressure signals by combining,
optionally by adding, a nonlinear component and a linear
component of the reconstructed blood pressure signals
reconstructed from the PPG signals.

[0218] In one or more embodiments calculating the first
set of values may include calculating values (e.g. F4 to F6,
F10 to F12, F16 to F18) indicative of standard deviations of
the lengths of the signal paths of the PPG signal, the first
derivative and the second derivative thereof in the systolic,
diastolic and dicrotic phases.

[0219] One or more embodiments may include calculating
the lengths of the signal paths of the first derivative and the
second derivative of the PPG signal by means of the
Simpson rule.

[0220] In one or more embodiments, the artificial neural
network processing may include artificial neural network
training as a function of systolic and diastolic blood pressure
signals to produce reconstructed systolic blood pressure
signals (e.g. SBPrec) and diastolic blood pressure signals
(e.g. DBPrec) reconstructed from the PPG signals.
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[0221] One or more embodiments may include:

[0222] collecting PPG signals from at least one PPG
sensor (e.g. S),

[0223] applying (12) to the PPG signals collected from
at least one PPG sensor at least one of filtering,
optionally band-pass filtering, and/or PPG signal pat-
tern recognition (e.g. as disclosed in Italian Patent
Application No. 102017000081018 and the various
Rundo et al. papers cited in the foregoing),

[0224] receiving (e.g. at 14) the PPG signals after the at
least one of filtering and/or PPG signal pattern recog-
nition.

[0225] A system according to one or more embodiments
may include:

[0226] 1) an input circuit block configured to receive
PPG signals including systolic, diastolic and dicrotic
phases,

[0227] 1i) a processing circuit block active on the PPG
signals, wherein the processing circuit block (14)
includes a calculator configured to calculate the first
and second derivatives of the PPG signals as well as:

[0228] a first set of values indicative of the lengths of
the signal paths of the PPG signal, the first derivative
and the second derivative thereof in the systolic, dia-
stolic and dicrotic phases,

[0229] a second set of values indicative of the relative
durations of the PPG signal and the first and second
derivatives thereof in the systolic, diastolic and dicrotic
phases,

[0230] a third set of values indicative of the time
separation of peaks and/or valleys in subsequent wave-
forms of the PPG signal,

[0231] iii) an artificial neural network circuit configured
to process the first, second and third set of values,
wherein the artificial neural network circuit is config-
ured to perform artificial neural network training as a
function of blood pressure signals to produce recon-
structed blood pressure signals reconstructed from the
PPG signals,

[0232] the system configured to operate with the
method according to one or more embodiments.

[0233] In one or more embodiments such a system may
include:
[0234] at least one PPG signal probe (e.g. S) to provide

the PPG signals including systolic, diastolic and
dicrotic phases, and/or

[0235] a presentation unit (e.g. D) to present the recon-
structed blood pressure signals reconstructed from the
PPG signals.

[0236] One or more embodiments may include a computer
program product loadable in the memory of at least one
processing circuit (e.g. 14, 16, 18) and including software
code portions for executing the steps of the method of one
or more embodiments when the product is run on at least one
processing circuit.

[0237] In one or more embodiments, a method of process-
ing electrophysiological signals may include:

[0238] collecting a PhotoPlethysmoGraphy, briefly
PPG, signal (for instance, S) via a PPG sensor (for
instance, PD);

[0239] processing (for instance, blocks 42, 44; 424,
42b) the PPG signal, wherein processing may include
generating via artificial neural network processing (for
instance, blocks 424, 426, 44) of the PPG signal a
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reconstructed EEG signal (for instance, e_rec), the
artificial neural network processing of the PPG signal
including training at least one artificial neural network
circuit over a training set of signals (for instance,
e_real) produced during sampling a sample set of EEG
signals; and

[0240] providing the reconstructed EEG signal to a user
circuit (for instance, blocks 800, 44, A). In one or more
embodiments, processing the PPG signal may include
at least one of filtering (for instance, 420) and normal-
izing (for instance, 422) the PPG signal collected via a
PPG sensor prior to artificial neural network processing
(for instance, 424, 426) of the PPG signal.

[0241] One or more embodiments may include: sensing
(for instance, blocks 46, A) a reconstruction error signal (for
instance, ER) indicative of the accuracy of the reconstructed
EEG signals; and activating (for instance, block 48), as a
result of sensing the error signal, training of the at least one
artificial neural network circuit (for instance, blocks 424,
426, 44) over a fresh training set (for instance, e_real) of
signals produced during sampling a sample set of EEG
signals.

[0242] It will be otherwise understood that the various
individual implementing options exemplified throughout the
figures accompanying this description are not necessarily
intended to be adopted in the same combinations exempli-
fied in the figures. One or more embodiments may thus
adopt these (otherwise non-mandatory) options individually
and/or in different combinations with respect to the combi-
nation exemplified in the accompanying figures.

[0243] One or more embodiments may include triggering
training of the at least one artificial neural network circuit
over a fresh training set as a result of reception of a
re-training trigger signal from at least one of: an error
monitoring stage (for instance, block 46); a periodic internal
trigger generator; or an alert interface (for instance, block
A).

[0244] In one or more embodiments, the artificial neural
network processing of the PPG signal may include: first
artificial neural network processing (for instance, 424) to
map reconstructed EEG signals onto PPG signals; and
second artificial neural network processing (for instance,
426) of the reconstructed EEG signals (e_rec) mapped onto
PPG signals to produce a selected set (for instance, U, U'") of
output weights.

[0245] In one or more embodiments, the first artificial
neural network processing (for instance, block 424) may
include Levenberg-Marquardt multilayer perceptron pro-
cessing. Additionally, or independent of the first artificial
neural network processing, the second artificial neural net-
work processing (for instance, 426) may include Self Orga-
nizing Map, briefly SOM, motor map processing.

[0246] One or more embodiments may include fuzzy
inference processing, preferably via Takagi-Sugeno centroid
fuzzy operator, the selected set of output weights.

[0247] One or more embodiments may include generating
via artificial neural network processing of the PPG signal: a
first reconstructed EEG signal (for instance, e_rec_drowsy)
as a function of a first training set of signals (for instance,
e_real_drowsy) produced during sampling a sample set of
EEG signals in a first mental attention state; and a second
reconstructed EEG signal (for instance, e_rec_wakeful) as a
function of a second training set of signals (for instance,
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e_real_wakeful) produced during sampling a sample set of
EEG signals a sample set of EEG signals in a second mental
attention state.

[0248] One or more embodiments may include the steps
of:

[0249] calculating (for instance, 440) from the first
reconstructed EEG signal (for instance, e_rec_drowsy)
a first reconstructed level of attention indicator (for
instance, DLA);

[0250] calculating (for instance, 440) from the second
reconstructed EEG signal (for instance, e_rec_wakeful)
a second reconstructed level of attention indicator (for
instance, DLA");

[0251] calculating (for instance, 440, 441) a resulting
attention indicator (for instance, DS) as a combination
of the first reconstructed level of attention indicator and
the second reconstructed level of attention;

[0252] comparing (for instance, 441) the resulting atten-
tion indicator with a threshold value; and

[0253] producing an attention indicator signal (for
instance, A) as a function of the result of the act of
comparing.

[0254] One or more embodiments may include generating
a reconstructed EEG signal via artificial neural network,
briefly ANN, circuits (for instance, 424, 426, 44; 42, 42a,
42b) as a function of the PPG signals (for instance, S,
Sclean) which may include training the artificial neural
network circuits with datasets (for instance, e_real) of EEG
signals stored in a memory space (for instance, T).

[0255] One or more embodiments may include: collecting
the PPG signal from the driver (for instance, D) of a vehicle
(for instance, V) via a PPG sensor on board the vehicle; and
providing the reconstructed EEG signal to a user circuit (for
instance, 800, 44, A) on board the vehicle, wherein the
reconstructed EEG signal may be indicative of a level of
attention of the driver (for instance, D).

[0256] A system (for instance, 40) according to one or
more embodiments may include:

[0257] a PPG sensor (for instance, PD), configured to
collect a PhotoPlethysmoGraphy, briefly PPG, signal;
and

[0258] processing circuitry (for instance, 42, 44; 424,

42b) coupled to the PPG sensor to receive the PPG
signal therefrom, the processing circuitry including
artificial neural network processing circuits (for
instance, 424, 426, 44) and configured to provide a
reconstructed EEG signal (for instance, e_rec) to a user
circuit (for instance, 800, 44, A) according to embodi-
ments.
[0259] One or more embodiments may include a vehicle
(for instance, V) which may be equipped with a system (for
instance, 40) according to embodiments in combination with
at least one driver assistance device (for instance, A), the
driver assistance device (A) configured to operate as a
function of the reconstructed EEG signal (for instance,
e_rec).
[0260] One or more embodiments may include a computer
program product loadable in the memory of at least one
processing circuit and including software code portions for
executing the steps of the method according to embodiments
when the product is run on at least one processing circuit.
[0261] Without prejudice to the underlying principles, the
details and embodiments may vary, even significantly, with
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respect to what has been described by way of example only,
without departing from the extent of protection.

What is claimed is:

1. A method, comprising:

receiving, from at least one PhotoPlethysmoGraphy

(PPG) sensor, a PPG signal comprising a systolic

phase, a diastolic phase, and a dicrotic phase;

determining, by a processor, a first derivative of the PPG
signal and a second derivative of the PPG signal;

determining, by the processor and from the first derivative
of the PPG signal and the second derivative of the PPG
signal:

a first set of values indicative of lengths of signal paths
of the PPG signal, the first derivative of the PPG
signal, and the second derivative of the PPG signal
in the systolic phase, the diastolic phase, and the
dicrotic phases;

a second set of values indicative of relative durations of
the PPG signal, the first derivative ofthe PPG signal,
and the second derivative of the PPG signal in the
systolic phase, the diastolic phase, and the dicrotic
phase; and

a third set of values indicative of a time separation
between peaks and/or valleys in consecutive wave-
forms of the PPG signal; and

applying artificial neural network processing to the first

set of values, the second set of values, and the third set

of values, wherein the artificial neural network pro-
cessing comprises artificial neural network training as

a function of blood pressure signals to produce recon-

structed blood pressure signals reconstructed from the

PPG signal.

2. The method of claim 1, wherein the artificial neural
network processing comprises a Polak-Ribiere neural net-
work multi-layer perceptron processing to reconstruct a
nonlinear component of the reconstructed blood pressure
signals.

3. The method of claim 1, wherein the artificial neural
network processing comprises a self-organizing map pro-
cessing to reconstruct a linear component of the recon-
structed blood pressure signals.

4. The method of claim 1, further comprising producing
the reconstructed blood pressure signals by combining a
nonlinear component and a linear component of the recon-
structed blood pressure signals.

5. The method of claim 1, wherein determining the first
set of values comprises determining values indicative of
standard deviations of the lengths of the signal paths of the
PPG signal, the first derivative of the PPG signal, and the
second derivative of the PPG signal in the systolic phase, the
diastolic phase, and the dicrotic phase.

6. The method of claim 1, further comprising calculating
the lengths of the signal paths of the first derivative of the
PPG signal and the second derivative of the PPG signal in
the systolic phase. the diastolic phase, and dicrotic phase by
Simpson’s rule of numerical integration.

7. The method of claim 1, wherein artificial neural net-
work training as the function of blood pressure signals
comprises artificial neural network training as a function of
systolic and diastolic blood pressure signals to produce
reconstructed systolic blood pressure signals and recon-
structed diastolic blood pressure signals reconstructed from
the PPG signal.
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8. The method of claim 1, further comprising:

collecting an initial PPG signal from the at least one PPG
sensor; and

applying band-pass filtering and/or PPG signal pattern
recognition to the initial PPG signal to produce the PPG
signal.

9. A system, comprising:

an input circuit configured to receive a PhotoPlethysmoG-
raphy (PPG) signal comprising a systolic phase, a
diastolic phase, and a dicrotic (DN) phase;

a processing circuit configured to determine, from the
PPG signal, a first derivative of the PPG signal and a
second derivative of the PPG signal, wherein the pro-
cessing circuit is further configured to determine:

a first set of values indicative of lengths of signal paths
of the PPG signal, the first derivative of the PPG
signal, and the second derivative of the PPG signal
in the systolic phase, the diastolic phase, and the
dicrotic phase;

a second set of values indicative of relative durations of
the PPG signal, the first derivative of the PPG signal,
and the second derivative of the PPG signal in the
systolic phase, the diastolic phase, and the dicrotic
phase; and

a third set of values indicative of a time separation
between peaks and/or valleys in consecutive wave-
forms of the PPG signal; and

an artificial neural network circuit configured to process
the first set of values, the second set of values, and the
third set of values, wherein the artificial neural network
circuit is configured to perform artificial neural network
training as a function of blood pressure signals to
produce reconstructed blood pressure signals blood
pressure signals reconstructed from the PPG signal.

10. The system of claim 9, further comprising:

at least one PPG signal probe configured to generate the
PPG signal; and

a presentation unit configured to present the reconstructed
blood pressure signals.

11. A computer program product loadable in a memory of
a processing circuit and executable by the processing circuit,
the computer program product comprising instructions for:

receiving, from at least one PhotoPlethysmoGraphy

(PPG) sensor, a PPG signal comprising a systolic

phase, a diastolic phase, and a dicrotic phase;

determining, by a processor, a first derivative of the PPG
signal and a second derivative of the PPG signal;

determining, by the processor and from the first derivative
of the PPG signal and the second derivative of the PPG
signal:

a first set of values indicative of lengths of signal paths
of the PPG signal, the first derivative of the PPG
signal, and the second derivative of the PPG signal
in the systolic phase, the diastolic phase, and the
dicrotic phases;

a second set of values indicative of relative durations of
the PPG signal, the first derivative of the PPG signal,
and the second derivative of the PPG signal in the
systolic phase, the diastolic phase, and the dicrotic
phase; and

a third set of values indicative of a time separation
between peaks and/or valleys in consecutive wave-
forms of the PPG signal; and
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applying artificial neural network processing to the first
set of values, the second set of values, and the third set
of values, wherein the artificial neural network pro-
cessing comprises artificial neural network training as
a function of blood pressure signals to produce recon-
structed blood pressure signals reconstructed from the
PPG signal.

12. A method of processing electrophysiological signals,

the method comprising:

receiving a PhotoPlethysmoGraphy (PPG) signal via a
PPG sensor;

generating, by a processor and via artificial neural net-
work processing of the PPG signal, a reconstructed
ElectroEncephaloGram (EEG) signal, the artificial neu-
ral network processing of the PPG signal comprising
training at least one artificial neural network circuit
over a training set of signals produced during a sam-
pling of a sample set of EEG signals; and

providing the reconstructed EEG signal to a user circuit.

13. The method of claim 12, further comprising at least
one of filtering the PPG signal or normalizing the PPG signal
prior to artificial neural network processing of the PPG
signal.

14. The method of claim 12, further comprising:

sensing a reconstruction error signal indicative of an
accuracy of the reconstructed EEG signal; and

activating, as a result of sensing the error signal, training
of the at least one artificial neural network circuit over
a fresh training set of signals produced during the
sampling of the sample set of EEG signals.

15. The method of claim 14, further comprising triggering
training of the at least one artificial neural network circuit
over the fresh training set in response to a reception of a
re-training trigger signal from at least one of an error
monitoring stage; a periodic internal trigger generator; or an
alert interface.

16. The method of claim 12, wherein the artificial neural
network processing of the PPG signal comprises:

a first artificial neural network processing to map recon-

structed EEG signals onto the PPG signal; and

a second artificial neural network processing of the recon-
structed EEG signals mapped onto the PPG signal to
produce a selected set of output weights.

17. The method of claim 16, wherein the first artificial
neural network processing comptrises Levenberg-Marquardt
multilayer perceptron processing.

18. The method of claim 16, wherein the second artificial
neural network processing comprises a Self-Organizing Map
motor map processing.

19. The method of claim 16, further comprising fuzzy
inference processing of the selected set of output weights.

20. The method of claim 12, further comprising generat-
ing via artificial neural network processing of the PPG
signal:

a first reconstructed EEG signal as a function of a first
training set of signals produced during the sampling of
the sample set of EEG signals in a first mental attention
state; and

a second reconstructed EEG signal as a function of a
second training set of signals produced during the
sampling of the sample set of EEG signals in a second
mental attention state.
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21. The method of claim 20, further comprising;

determining, from the first reconstructed EEG signal, a

first reconstructed level of attention indicator;
determining, from the second reconstructed EEG signal, a
second reconstructed level of attention indicator;

determining a resulting attention indicator as a combina-
tion of the first reconstructed level of attention indicator
(and the second reconstructed level of attention indi-
cator,

comparing the resulting attention indicator with a thresh-

old value; and

producing an attention indicator signal in response to

comparing the resulting attention indicator with the
threshold value.

22. The method of claim 12, wherein generating the
reconstructed EEG signal via artificial neural network pro-
cessing of the PPG signal comprises training the artificial
neural network circuits with datasets of EEG signals stored
in a memory space.

23. The method of claim 12, further comprising:

collecting the PPG signal from a driver of a vehicle via the

PPG sensor located on board the vehicle; and
providing the reconstructed EEG signal to a user circuit

on board the vehicle, wherein the reconstructed EEG

signal is indicative of a level of attention of the driver.

24. A system, comprising:

a PPG sensor configured to collect a PhotoPlethysmoG-

raphy (PPG) signal; and

processing circuitry coupled to the PPG sensor and con-

figured to receive the PPG signal from the PPG sensor,
the processing circuitry comprising artificial neural
network processing circuits and configured to:
generate, via the artificial neural network processing
circuits, a reconstructed ElectroEncephaloGram
(EEG) signal, the artificial neural network process-
ing circuits being configured to train at least one
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artificial neural network circuit over a training set of
signals produced during a sampling of a sample set
of EEG signals; and

provide the reconstructed EEG signal to a user circuit.

25. A vehicle, comprising:

a driver assistance device;

a PPG sensor configured to collect a PhotoPlethysmoG-

raphy (PPG) signal; and
processing circuitry coupled to the PPG sensor and con-
figured to receive the PPG signal from the PPG sensor,
the processing circuitry comprising artificial neural
network processing circuits and configured to:
generate, via the artificial neural network processing
circuits, a reconstructed ElectroEncephaloGram
(EEG) signal, the artificial neural network process-
ing circuits being configured to train at least one
artificial neural network circuit over a training set of
signals produced during a sampling of a sample set
of EEG signals; and
provide the reconstructed EEG signal to the driver
assistance device, wherein driver assistance device is
configured to operate as a function of the recon-
structed EEG signal.
26. A computer program product loadable in a memory of
a processing circuit and executable by the processing circuit,
the computer program product comprising instructions for:
receiving a PhotoPlethysmoGraphy (PPG) signal via a
PPG sensor;

generating, by a processor and via artificial neural net-
work processing of the PPG signal, a reconstructed
ElectroEncephaloGram (EEG) signal, the artificial neu-
ral network processing of the PPG signal comprising
training at least one artificial neural network circuit
over a training set of signals produced during a sam-
pling of a sample set of EEG signals; and

providing the reconstructed EEG signal to a user circuit.
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