US009622693B2 # (12) United States Patent Diab # (45) **Date of Patent:** *Apr. 18, 2017 # (54) SYSTEMS AND METHODS FOR DETERMINING BLOOD OXYGEN SATURATION VALUES USING COMPLEX NUMBER ENCODING (71) Applicant: Cercacor Laboratories, Inc., Irvine, CA (US) (72) Inventor: **Mohamed K. Diab**, Ladera Ranch, CA (US) (73) Assignee: MASIMO CORPORATION, Irvine, CA (US) (*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 0 days. This patent is subject to a terminal disclaimer. (21) Appl. No.: 14/609,841 (22) Filed: Jan. 30, 2015 #### (65) **Prior Publication Data** US 2015/0201874 A1 Jul. 23, 2015 ### Related U.S. Application Data (63) Continuation of application No. 13/896,731, filed on May 17, 2013, now Pat. No. 8,948,835, which is a (Continued) (51) **Int. Cl.**A61B 5/1455 (2006.01) A61B 5/00 (2006.01) A61B 5/024 (2006.01) (52) **U.S. Cl.** CPC *A61B 5/14551* (2013.01); *A61B 5/02416* (2013.01); *A61B 5/7207* (2013.01); (Continued) #### (58) Field of Classification Search (10) Patent No.: CPC A61B 5/14551; A61B 5/1455; A61B 5/14552; A61B 5/7207; A61B 5/7253; A61B 5/743; A61B 5/742; A61B 5/7239 See application file for complete search history. US 9,622,693 B2 ### (56) References Cited #### U.S. PATENT DOCUMENTS 4,051,522 A 9/1977 Healy 4,085,378 A 4/1978 Ryan (Continued) ## FOREIGN PATENT DOCUMENTS DE 3328862 A1 2/1985 EP 0104771 B1 4/1984 (Continued) #### OTHER PUBLICATIONS US 8,845,543, 09/2014, Diab et al. (withdrawn) (Continued) Primary Examiner — Eric Winakur (74) Attorney, Agent, or Firm — Knobbe, Martens, Olson & Bear, LLP ### (57) ABSTRACT The disclosure includes pulse oximetry systems and methods for determining point-by-point saturation values by encoding photoplethysmographs in the complex domain and processing the complex signals. The systems filter motion artifacts and other noise using a variety of techniques, including statistical analysis such as correlation, or phase filtering. ## 17 Claims, 28 Drawing Sheets #### 5,448,991 A 5,452,717 A Related U.S. Application Data 9/1995 Polson et al. 9/1995 Branigan et al. continuation of application No. 12/248,868, filed on 10/1995 D363,120 S Savage et al. Oct. 9, 2008, now Pat. No. 8,447,374, which is a 5,456,252 A 10/1995 Vari et al. 5,479,934 A 1/1996 Imran continuation of application No. 11/288,812, filed on 5,481,620 A 1/1996 Vaidyanathan Nov. 28, 2005, now Pat. No. 7,440,787, which is a Diab et al. 5,482,036 A 1/1996 continuation of application No. 10/727,348, filed on 5,490,505 A 2/1996 Diab et al. Dec. 3, 2003, now Pat. No. 6,970,792. 5,494,043 A 2/1996 O'Sullivan et al. 5.503,148 A 4/1996 Pologe 5.533,511 A 7/1996 Kaspari et al. (60) Provisional application No. 60/430,834, filed on Dec. 7/1996 5,534,851 A Russek 8/1996 5,542,421 A Erdman 5,549,111 A 8/1996 Wright et al. 5,561,275 10/1996 Savage et al. (52) U.S. Cl. 5,562,002 A 10/1996 Lalin CPC A61B 5/7253 (2013.01); A61B 5/7278 5,575,284 A 11/1996 Athan (2013.01); A61B 5/742 (2013.01); A61B 5/743 5,588,435 A 12/1996 Weng et al. (2013.01); A61B 5/7239 (2013.01) 5,590,649 A 1/1997 Caro et al. 5,602,924 A 2/1997 Durand et al. 3/1997 5.608.820 A Vaidvanathan (56)References Cited 3/1997 5,610,996 A Eller 5,632,272 A 5/1997 Diab et al. U.S. PATENT DOCUMENTS 5,638,816 A 6/1997 Kiani-Azarbayjany et al. 5,638,818 A 6/1997 Diab et al. 4,623,248 A 11/1986 Sperinde 5,645,440 A 7/1997 Tobler et al. 4,653,498 A 3/1987 New 5,652,566 A 7/1997 Lambert 4,745,398 A 5/1988 Abel 5,685,299 A 11/1997 Diab et al 4,765,340 A 8/1988 Sakai 5.720,293 A 2/1998 Ouinn 4,800,495 A 1/1989 Smith D393,830 S 4/1998 Tobler et al. 4,802,486 A 2/1989 Goodman 5,743,262 A 4/1998 Lepper, Jr. et al. 4,863,265 A 9/1989 Flower 5,758,644 A 6/1998 Diab et al. 4,870,588 A 9/1989 Merhay 5,760,910 A 6/1998 Lepper, Jr. et al. 4,911,167 A 3/1990 Corenman 5,769,785 A 6/1998 Diab et al. 4,934,372 A 6/1990 Corenman et al. 5,782,237 A 7/1998 Casciani 4,942,877 A 7/1990 Sakai 5,782,757 A 7/1998 Diab et al. 4,955,379 A 9/1990 Hall 5,785,659 A 7/1998 Caro et al. 4,960,128 A 10/1990 Gordon et al. 5,791,347 A 8/1998 Flaherty et al. 4,964,408 A 10/1990 Hink et al. 9/1998 5,810,734 A Caro et al. 4,965,840 A 10/1990 Subbarao 10/1998 5.820.267 A Baker, Jr. et al 5,003,252 A 3/1991 Nystrom 5,823,950 A 10/1998 Diab et al. RE33.643 E 7/1991 Isaacson et al. 5,830,131 A 11/1998 Caro et al. 8/1991 5,041,187 A Hink et al. 5,833,618 A 11/1998 Caro et al 12/1991 5,069,213 A Polczynski 5,842,979 A 12/1998 Jarman 5,163,438 A 11/1992Gordon et al. 5,853,364 A 12/1998 Baker, Jr. et al. 5,170,791 A 12/1992 Boos et al. Kiani-Azarbayjany et al. 5.860.919 A 1/1999 5,188,108 A 2/1993 Secker 5,865,736 A 2/1999 Baker, Jr. et al. 5,190,038 A 3/1993 Polson 5,890,929 A 4/1999 Mills et al. 5,193,124 A 3/1993 Subbarao 4/1999 5,891,023 A Lynn 5,218,962 A 6/1993 Mannheimer 5,904,654 A 5/1999 Wohltmann et al. 5,226,417 A 7/1993 Swedlow 5,919,134 A 7/1999 Diab 5,246,002 A 9/1993 Prosser 5,921,921 A 7/1999 Potratz et al. 5,259,381 A 11/1993 Cheung 5,934,925 8/1999 Tobler et al. 5,270,942 A 12/1993 Reed 5,940,182 A 8/1999 Lepper, Jr. et al. 5,307,284 A 4/1994 Brunfeldt et al. 5.950.139 A 9/1999 Korycan 5,319,355 A 6/1994 Russek 5,987,343 A 11/1999 Kinast 5,331,394 A 7/1994 Shalon et al 5,995,855 A 11/1999 Kiani et al. 5,337,744 A 8/1994 Branigan 5,997,343 A 12/1999 Mills et al 5,341,805 A 8/1994 Stavridi et al. 6,002,952 A 12/1999 Diab et al. 5,345,510 A 9/1994 Singhi 6,011,986 A 1/2000 Diab et al. 5,353,356 A 10/1994 Waugh et al. 6,027,452 A 2/2000 Flaherty et al. 10/1994 5,355,882 A Ukawa 6,036,642 A 3/2000 Diab et al. 5,357,965 A 10/1994 Hall et al 6,045,509 A 4/2000 Caro et al. 11/1994 5,368,224 A Richardson 6,047,203 A 4/2000 Sackner et al. D353,195 S 12/1994 Savage et al 6,064,910 A 5/2000 Andersson et al. D353,196 S 12/1994 Savage et al 6,067,462 A 6,081,735 A 5/2000 Diab et al. 5,377,676 A 1/1995 Vari et al. 6/2000 Diab et al. 1/1995 5,384,451 A Smith et al. 6,083,172 A 7/2000 Baker, Jr. et al. 5,398,003 A 3/1995 Hevl et al. 6,088,607 A 7/2000 Diab et al. 4/1995 5,404,003 A Smith 6,110,522 A 8/2000 Lepper, Jr. et al. 5,406,952 A 4/1995 Barnes 6,119,026 A 9/2000 McNulty et al. D359,546 S 6/1995 Savage et al. 6,122,535 A 9/2000 Kaestle et al. 6/1995 5,421,329 A Casciani 6,124,597 A 9/2000 Shehada 5,431,170 A 7/1995 Mathews 6,128,521 A 10/2000 Marro et al D361,840 S 8/1995 Savage et al 10/2000 Jay 5,438,983 A 8/1995 6,129,675 A Falcone 6,135,952 A 10/2000 5,442,940 A 8/1995 Secker Coetzee 5,445,156 A * 8/1995 Daft G01S 15/8979 6,144,868 A 11/2000 Parker 6.151.516 A 11/2000 Kiani-Azarbayjany et al. 600/454 D362,063 S 9/1995 Savage et al. 6,152,754 A 11/2000 Gerhardt et al. # US 9,622,693 B2 Page 3 | (56) | Referen | ces Cited | 6,792,300 B1 | | Diab et al. | |------------------------------|------------------|----------------------------------|------------------------------|--------------------|--| | U.S | . PATENT | DOCUMENTS | 6,813,511 B2
6,816,741 B2 | 11/2004 | | | C 4 5 5 0 5 0 4 | 12/2000 | D. 1 | 6,822,564 B2
6,826,419 B2 | 11/2004 | Al-Alı
Diab et al. | | 6,157,850 A
6,165,005 A | | Diab et al.
Mills et al. | 6,830,711 B2 | | Mills et al. | | 6,184,521 B1 | | Coffin, IV et al. | 6,850,787 B2 | | Weber et al. | | 6,188,407 B1 | 2/2001 | Smith et al. | 6,850,788 B2 | 2/2005 | | | 6,206,830 B1 | | Diab et al. | 6,852,083 B2
6,861,639 B2 | 3/2005 | Caro et al. | | 6,229,856 B1
6,232,609 B1 | | Diab et al.
Snyder et al. | 6,898,452 B2 | | Al-Ali et al. | | 6,236,872 B1 | | Diab et al. | 6,920,345 B2 | | Al-Ali et al. | | 6,241,683 B1 | | Macklem et al. | 6,931,268 B1
6,934,570 B2 | | Kiani-Azarbayjany et al.
Kiani et al. | | 6,253,097 B1
6,256,523 B1 | | Aronow et al.
Diab et al. | 6,939,305 B2 | | Flaherty et al. | | 6,263,222 B1 | | Diab et al. | 6,943,348 B1 | 9/2005 | Coffin, IV | | 6,278,522 B1 | 8/2001 | Lepper, Jr. et al. | 6,950,687 B2 | 9/2005 | | | 6,280,213 B1 | | Tobler et al. | 6,961,598 B2
6,970,792 B1 | 11/2005
11/2005 | | | 6,285,896 B1
6,301,493 B1 | | Tobler et al.
Marro et al. | 6,979,812 B2 | 12/2005 | | | 6,317,627 B1 | | Ennen et al. | 6,985,764 B2 | | Mason et al. | | 6,321,100 B1 | 11/2001 | | 6,993,371 B2
6,996,427 B2 | | Kiani et al.
Ali et al. | | 6,325,761 B1
6,334,065 B1 | 12/2001 | Jay
Al-Ali et al. | 6,999,904 B2 | | Weber et al. | | 6,343,224 B1 | 1/2002 | Parker | 7,003,338 B2 | | Weber et al. | | 6,349,228 B1 | | Kiani et al. | 7,003,339 B2
7,015,451 B2 | | Diab et al. Dalke et al. | | 6,360,114 B1
6,368,283 B1 | | Diab et al.
Xu et al. | 7,013,431 B2
7,024,233 B2 | | Ali et al. | | 6,371,921 B1 | | Caro et al. | 7,027,849 B2 | 4/2006 | Al-Ali | | 6,377,829 B1 | 4/2002 | Al-Ali | 7,030,749 B2 | 4/2006 | | | 6,388,240 B2 | | Schulz et al. | 7,039,449 B2
7,041,060 B2 | 5/2006
5/2006 | Flaherty et al. | | 6,397,091 B2
6,430,437 B1 | 8/2002 | Diab et al. | 7,044,918 B2 | 5/2006 | | | 6,430,525 B1 | | Weber et al. | 7,067,893 B2 | | Mills et al. | | 6,463,311 B1 | 10/2002 | | 7,096,052 B2
7,096,054 B2 | | Mason et al.
Abdul-Hafiz et al. | | 6,470,199 B1
6,501,975 B2 | | Kopotic et al.
Diab et al. | 7,132,641 B2 | | Schulz et al. | | 6,505,059 B1 | | Kollias et al. | 7,142,901 B2 | | Kiani et al. | | 6,515,273 B2 | 2/2003 | | 7,149,561 B2 | 12/2006 | | | 6,519,486 B1
6,519,487 B1 | 2/2003
2/2003 | Edgar, Jr. et al. | 7,186,966 B2
7,190,261 B2 | 3/2007
3/2007 | | | 6,525,386 B1 | | Mills et al. | 7,215,984 B2 | 5/2007 | | | 6,526,300 B1 | | Kiani et al. | 7,215,986 B2 | 5/2007 | | | 6,541,756 B2 | | Schulz et al. | 7,221,971 B2
7,225,006 B2 | 5/2007
5/2007 | Al-Ali et al. | | 6,542,764 B1
6,580,086 B1 | | Al-Ali et al.
Schulz et al. | 7,225,007 B2 | 5/2007 | Al-Ali | | 6,584,336 B1 | 6/2003 | Ali et al. | RE39,672 E | | Shehada et al. | | 6,595,316 B2 | | Cybulski et al. | 7,239,905 B2
7,245,953 B1 | 7/2007 |
Kiani-Azarbayjany et al. | | 6,597,932 B2
6,597,933 B2 | 7/2003 | Tian et al.
Kiani et al. | 7,254,429 B2 | | Schurman et al. | | 6,606,511 B1 | 8/2003 | Ali et al. | 7,254,431 B2 | 8/2007 | Al-Ali | | 6,632,181 B2 | 10/2003 | Flaherty et al. | 7,254,433 B2
7,254,434 B2 | | Diab et al.
Schulz et al. | | 6,639,668 B1
6,640,116 B2 | 10/2003 | Trepagnier
Dieb | 7,234,434 B2
7,272,425 B2 | 9/2007 | | | 6,643,530 B2 | | Diab et al. | 7,274,955 B2 | 9/2007 | Kiani et al. | | 6,650,917 B2 | | Diab et al. | D554,263 S
7,280,858 B2 | 10/2007 | Al-Ali
Al-Ali et al. | | 6,654,624 B2
6,658,276 B2 | | Diab et al.
Kianl et al. | 7,289,835 B2
7,289,835 B2 | | Mansfield et al. | | 6,661,161 B1 | | Lanzo et al. | 7,292,883 B2 | 11/2007 | De Felice et al. | | 6,671,531 B2 | 12/2003 | Al-Ali et al. | 7,295,866 B2 | 11/2007 | | | 6,678,543 B2
6,684,090 B2 | | Diab et al. | 7,328,053 B1
7,332,784 B2 | | Diab et al.
Mills et al. | | 6,684,091 B2 | 1/2004 | Ali et al.
Parker | 7,340,287 B2 | | Mason et al. | | 6,697,656 B1 | 2/2004 | | 7,341,559 B2 | | Schulz et al. | | 6,697,657 B1 | | Shehada et al. | 7,343,186 B2
D566,282 S | | Lamego et al.
Al-Ali et al. | | 6,697,658 B2
RE38,476 E | 2/2004
3/2004 | Al-Ali
Diab et al. | 7,355,512 B1 | 4/2008 | | | 6,699,194 B1 | | Diab et al. | 7,356,365 B2 | | Schurman | | 6,714,804 B2 | | Al-Ali et al. | 7,371,981 B2 | | Abdul-Hafiz | | RE38,492 E
6,721,582 B2 | | Diab et al.
Trepagnier et al. | 7,373,193 B2
7,373,194 B2 | | Al-Ali et al.
Weber et al. | | 6,721,582 B2
6,721,585 B1 | 4/2004 | | 7,376,453 B1 | | Diab et al. | | 6,725,075 B2 | 4/2004 | Al-Ali | 7,377,794 B2 | | Al-Ali et al. | | 6,728,560 B2 | | Kollias et al. | 7,377,899 B2 | | Weber et al. | | 6,735,459 B2
6,745,060 B2 | 5/2004
6/2004 | Parker
Diab et al. | 7,383,070 B2
7,415,297 B2 | | Diab et al.
Al-Ali et al. | | 6,760,607 B2 | 7/2004 | | 7,413,237 B2
7,428,432 B2 | | Ali et al. | | 6,770,028 B1 | | Ali et al. | 7,438,683 B2 | 10/2008 | Al-Ali et al. | | 6,771,994 B2 | 8/2004 | Kiani et al. | 7,440,787 B2 | 10/2008 | Diab | # US 9,622,693 B2 Page 4 | (56) | Referen | ices Cited | | ,042 B2 | | Diab et al. | |----------------------------|------------|----------------------------------|-------|------------------------------|------------------------------|---------------------------------------| | U | .S. PATENT | DOCUMENTS | 8,050 | ,040 B2
,728 B2
,169 E | 11/2011
11/2011
2/2012 | Al-Ali et al. | | 7,454,240 B | 32 11/2008 | Diab et al. | 8,118 | ,620 B2 | 2/2012 | Al-Ali et al. | | 7,467,002 B | 32 12/2008 | Weber et al. | | ,528 B2 | | Diab et al. | | 7,469,157 B | | Diab et al. Diab et al. | | ,572 B2
,105 B2 | | Diab et al.
Al-Ali et al. | | 7,471,969 B
7,471,971 B | | Diab et al. Diab et al. | 8,145 | ,287 B2 | 3/2012 | Diab et al. | | 7,483,729 B | 1/2009 | Al-Ali et al. | | ,487 B2 | | Diab et al. | | 7,483,730 B | | Diab et al. Diab et al. | | ,672 B2
,420 B2 | 5/2012
5/2012 | Diab et al. | | 7,489,958 B
7,496,391 B | | Diab et al. | 8,182 | ,443 B1 | 5/2012 | Kiani | | 7,496,393 B | 32 2/2009 | Diab et al. | | ,180 B2 | | Diab et al. | | D587,657 S
7,499,741 B | | Al-Ali et al.
Diab et al. | | ,223 B2
,227 B2 | | Al-Ali et al.
Diab et al. | | 7,499,835 B | | Weber et al. | 8,203 | ,438 B2 | 6/2012 | Kiani et al. | | 7,500,950 B | | Al-Ali et al. | | ,704 B2
,411 B2 | | Merritt et al.
Al-Ali et al. | | 7,509,154 B
7,509,494 B | | Diab et al.
Al-Ali | | ,411 B2
,181 B2 | 7/2012 | | | 7,510,849 B | | Schurman et al. | 8,229 | ,533 B2 | | Diab et al. | | 7,526,328 B | | Diab et al. | | ,955 B2
,325 B2 | | Al-Ali et al.
Al-Ali et al. | | 7,530,942 B
7,530,949 B | | Diab
Al Ali et al. | | ,026 B1 | 8/2012 | | | 7,530,955 B | | Diab et al. | | ,027 B2 | | Al-Ali et al. | | 7,563,110 B | | Al-Ali et al. | | ,028 B2
,577 B2 | | Al-Ali et al.
Weber et al. | | 7,596,398 B
7,618,375 B | | Al-Ali et al.
Flaherty | | ,723 B1 | | McHale et al. | | D606,659 S | | Kiani et al. | | ,360 B2 | | Sampath et al. | | 7,647,083 B | | Al-Ali et al. | | ,217 B2
,336 B2 | | Al-Ali et al.
Muhsin et al. | | D609,193 S
D614,305 S | | Al-Ali et al.
Al-Ali et al. | | ,683 B2 | | Al-Ali et al. | | RE41,317 E | 5/2010 | Parker | | ,860 E | 12/2012 | | | 7,729,733 B | | Al-Ali et al. | | ,403 B2
,792 C1 | 1/2012 | Al-Ali et al. | | 7,734,320 B
7,761,127 B | | Al-Ali et al. | 8,346 | ,330 B2 | 1/2013 | Lamego | | 7,761,128 B | 32 7/2010 | Al-Ali et al. | | ,842 B2
,766 B2 | | Al-Ali et al.
MacNeish, III et al. | | 7,764,982 B
D621,516 S | | Dalke et al.
Kiani et al. | | ,780 B2
,080 B2 | | Diab et al. | | 7,791,155 B | | | 8,364 | ,223 B2 | | Al-Ali et al. | | 7,801,581 B | | | | ,226 B2
,665 B2 | | Diab et al.
Lamego | | 7,822,452 B
RE41,912 E | | Schurman et al.
Parker | 8,385 | ,995 B2 | | Al-Ali et al. | | 7,844,313 B | 11/2010 | Kiani et al. | | ,996 B2 | | Smith et al. | | 7,844,314 B
7,844,315 B | | | | ,353 B2
,822 B2 | 3/2013 | Kiani et al.
Al-Ali | | 7,865,222 B | | Weber et al. | 8,401 | ,602 B2 | 3/2013 | Kiani | | 7,873,497 B | | Weber et al. | | ,608 B2
,499 B2 | | Al-Ali et al.
Al-Ali et al. | | 7,880,606 B
7,880,626 B | | Al-Ali
Al-Ali et al. | | ,524 B2 | 4/2013 | | | 7,891,355 B | | Al-Ali et al. | | ,106 B2 | | Lamego et al. | | 7,894,868 B | | Al-Ali et al.
Al-Ali et al. | | ,967 B2
,817 B1 | | Olsen et al.
Al-Ali et al. | | 7,899,507 B
7,899,518 B | | Trepagnier et al. | | ,825 B2 | | Dalvi et al. | | 7,904,132 B | 3/2011 | Weber et al. | | ,374 B2 | 5/2013 | | | 7,909,772 B
7,910,875 B | | Popov et al.
Al-Ali | | ,290 B2
,703 B2 | 6/2013 | Siskavich
Al-Ali | | 7,919,713 B | | Al-Ali et al. | 8,457 | ,707 B2 | 6/2013 | Kiani | | 7,937,128 B | | Al-Ali | | ,349 B2
,286 B2 | | Diab et al.
Bellott et al. | | 7,937,129 B
7,937,130 B | | Mason et al.
Diab et al. | | ,713 B2 | | Poeze et al. | | 7,941,199 B | 5/2011 | Kiani | | ,020 B2 | | Kiani et al. | | 7,951,086 B
7,957,780 B | | Flaherty et al.
Lamego et al. | | ,787 B2
,364 B2 | | Al-Ali et al.
Weber et al. | | 7,937,780 B
7.962.188 B | | Kiani et al. | 8,498 | ,684 B2 | 7/2013 | Weber et al. | | 7,962,190 B | | Diab et al. | | ,867 B2
,509 B2 | | Workman et al.
Bruinsma et al. | | 7,976,472 B
7,988,637 B | | | | ,509 B2
,781 B2 | 9/2013 | | | 7,990,382 B | | | | ,301 B2 | | Al-Ali et al. | | 7,991,446 B | | Al-Ali et al. | | ,727 B2
,728 B2 | | Ali et al.
Diab et al. | | 8,000,761 B
8,008,088 B | | Al-Ali
Bellott et al. | | ,128 B2
,145 S | | Al-Ali et al. | | RE42,753 E | 9/2011 | Kiani-Azarbayjany et al. | 8,547 | ,209 B2 | 10/2013 | Kiani et al. | | 8,019,400 B | | Diab et al. | | ,548 B2 | 10/2013 | Al-Ali
Al-Ali et al. | | 8,028,701 B
8,029,765 B | | Al-Ali et al.
Bellott et al. | | ,550 B2
,032 B2 | | Al-Ali et al. | | 8,036,728 B | 32 10/2011 | Diab et al. | 8,560 | ,034 B1 | 10/2013 | Diab et al. | | 8,046,040 B | | Ali et al. | | ,167 B2 | 10/2013 | | | 8,046,041 B | 52 10/2011 | Diab et al. | 8,570 | ,503 B2 | 10/2013 | vo et al. | # **US 9,622,693 B2**Page 5 | U.S. PATENT DOCUMENTS 8.984,335 B2 22015 Diab 8.571,619 B2 10/2013 Lamego et al. 8.571,619 B2 10/2013 Al-Ali et al. 8.757,1619 B2 11/2013 Lamego et al. 8.578,850 B2 11/2013 Lamego et al. 8.588,850 B2 11/2013 Al-Ali et al. 8.508,607 B2 12/2013 Diab 8.508,607 B2 12/2013 Diab 9.066,666 B2 6/2015 Kinni 8.606,342 B2 12/2013 Diab 9.066,666 B2 6/2015 Kinni 8.606,342 B2 12/2014 Al-Ali et al. 9.072,774 B2 7/2014 Lamego et al. 8.604,871 B2 12/2014 Lamego et al. 8.604,871 B2 12/2014 Lamego et al. 8.604,871 B2 12/2014 Al-Ali et al. 9.075,774 B2 7/2014 Sierne et al. 9.075,774 B2 3/2014 Sierne et al. 9.075,774 B2 3/2014 Sierne et al. 9.075,774 B2 3/2014 Sierne et al. 9.075,775 3/20 | (56) | | Referen | nces Cited | 8,948,834 | | | Diab et al. |
--|------|-----------|---------|-----------------|--------------|----|---------|----------------| | S.571,618 B1 10/2013 Lamego et al. S.998,364 B2 3/2015 Al-Ali et al. S.998,376 S.9 | | HS | PATENT | DOCUMENTS | | | | | | 8,571,619 B2 102013 Al-Alf et al. 8,595,038 B2 3,2015 Kiani et al. 8,595,038 B2 112013 Al-Alf et al. 8,595,038 B2 112013 Al-Alf et al. 8,600,467 B2 122013 Al-Alf et al. 8,600,467 B2 122013 Al-Alf et al. 8,600,467 B2 122013 Al-Alf et al. 9,006,721 B2 5,2015 Al-Alf et al. 8,600,467 B2 122013 Al-Alf et al. 9,006,721 B2 62015 Kiani al. 8,600,467 B2 122014 Al-Alf et al. 9,006,678 B1 6,2015 Kiani al. 8,600,467 B2 122014 Al-Alf et al. 9,006,678 B1 6,2015 Al-Alf et al. 8,604,889 B2 121014 Al-Alf et al. 8,604,889 B2 122014 Al-Alf et al. 8,604,889 B2 122014 Al-Alf et al. 8,604,889 B2 122014 Al-Alf et al. 9,005,818 B2 22014 Al-Alf et al. 9,005,818 B2 22015 Al-Alf et al. 8,605,006 B1 B2 22014 Al-Alf et al. 9,005,818 B2 82015 Telfor et al. 8,605,006 B2 22014 Al-Alf et al. 9,005,818 B2 82015 Telfor et al. 8,605,006 B2 22014 Al-Alf et al. 9,005,818 B2 82015 Telfor et al. 8,605,006 B2 22014 Al-Alf et al. 9,005,818 B2 82015 Telfor et al. 8,605,006 B2 22014 Al-Alf et al. 9,107,626 B2 82015 Al-Alf et al. 8,605,006 B2 22014 Al-Alf et al. 9,107,626 B2 82015 Al-Alf et al. 8,605,006 B2 22014 Al-Alf et al. 9,107,626 B2 82015 Al-Alf et al. 8,605,006 B2 22014 Al-Alf et al. 9,107,626 B2 82015 Al-Alf et al. 8,605,006 B2 22014 Al-Alf et al. 9,118,318 B2 82015 Al-Alf et al. 8,605,006 B2 22014 Al-Alf et al. 9,118,318 B2 82015 Al-Alf et al. 8,605,006 B2 22014 Al-Alf et al. 9,118,318 B2 82015 Al-Alf et al. 8,605,006 B2 22014 Al-Alf et al. 9,118,318 B2 82015 Al-Alf et al. 8,605,006 B2 22014 Al-Alf et al. 9,118,318 B2 82015 Al-Alf et al. 8,605,006 B2 22015 Al-Alf et al. 9,118,318 B2 82015 Al-Alf et al. 8,605,006 B2 22015 Al-Alf et al. 9,118,318 B2 82015 | | 0.5. | TATENT | DOCUMENTS | | | | | | 8,577,431 B2 11,2013 Lamego et al. 8,598,890 B2 4,2015 Kiani 8,583,838 B2 11,2013 Al-Ali et al. 9,037,207 B2 5,2015 Al-Ali et al. 8,603,426 B2 12,2013 Diab 9,066,666 B2 6,2015 Kiani 8,603,428 B2 12,2014 JA-Ali et al. 9,006,666 B2 6,2015 Kiani 8,603,428 B2 12,2014 JA-Ali et al. 9,006,666 B2 6,2015 Kiani 8,603,618 B2 12,2014 JA-Ali et al. 9,006,666 B2 6,2015 Kiani 8,603,618 B2 12,2014 JA-Ali et al. 9,006,606 B2 6,2015 Kiani 8,603,618 B2 12,2014 JA-Ali et al. 9,006,606 B2 6,2015 Kiani 8,603,618 B2 12,2014 JA-Ali et al. 9,007,474 B2 7,2015 Al-Ali et al. 9,008,109 B2 12,2014 JA-Ali et al. 9,008,109 B2 2,2014 9,113,818 B2 9,2015 Al-Ali et al. 8,660,109 B2 3,2014 JA-Ali 9,113,818 B2 9,2015 Al-Ali et al. 8,660,109 B2 2,2014 JA-Ali 9,113,818 B2 9,2015 Al-Ali et al. 8,660,109 B2 2,2014 JA-Ali 9,113,818 B2 9,2015 Al-Ali et al. 8,660,109 B2 2,2014 JA-Ali 9,13,13,109 B2 2,2015 Al-Ali et al. 8,660,109 B2 2,2014 JA-Ali 9,13,13,109 B2 2,2015 Al-Ali et al. 8,660,109 B2 2,2014 JA-Ali 9,13,13,109 B2 2,2015 Al-Ali et al. 8,660,109 B2 2,2014 JA-Ali 9,13,13,109 B2 2,2015 Al-Ali et al. 8,600,109 B2 2,2014 JA-Ali 9,13,13,109 B2 2,2015 Al-Ali et al. 8,600,109 B2 2,2014 JA-Ali 8,100 B2 4,100 | 8,57 | 71,618 B1 | 10/2013 | Lamego et al. | | | | | | 8.84.348 B2 11/2013 Al-Ali et al. 9,038,429 B2 5,2015 Telfort et al. 8,600,467 B2 12/2013 Al-Ali et al. 9,037,207 B2 5,2015 Richtport et al. 8,600,467 B2 12/2013 Al-Ali et al. 9,066,676 B2 6,2015 Richtport et al. 8,606,469 B2 12/2014 Al-Ali et al. 9,066,686 B1 6,2015 Al-Ali et al. 8,606,489 B2 12/2014 Al-Ali et al. 9,078,450 B2 7,2015 Al-Ali et al. 8,643,489 B2 12/2014 Al-Ali et al. 9,078,560 B2 7,2015 Al-Ali et al. 8,653,060 B1 B2 2,2014 Al-Ali et al. 9,078,560 B2 7,2015 Schurman et al. 8,651,060 B2 2,2014 Al-Ali 9,078,560 B2 2,2014 Al-Ali 9,060,018 B2 8,2015 Telfort et al. 8,652,060 B2 2,2014 Al-Ali 9,076,265 B2 8,2015 Telfort et al. 8,667,076 B2 3,2014 Al-Ali 9,076,265 B2 8,2015 Telfort et al. 8,667,076 B2 3,2014 Al-Ali 9,076,265 B2 8,2015 Al-Ali et al. 8,667,076 B2 3,2014 Al-Ali 9,107,626 B2 8,2015 Al-Ali et al. 8,667,081 B2 3,2014 Al-Ali 9,107,626 B2 8,2015 Al-Ali et al. 8,667,081 B2 3,2014 Al-Ali 9,113,832 B2 8,2015 Al-Ali et al. 8,667,076 B2 3,2014 Al-Ali 9,113,832 B2 8,2015 Al-Ali et al. 8,667,076 B2 3,2014 Al-Ali 9,113,832 B2 8,2015 Al-Ali et al. 8,662,076 B2 3,2014 Weber et al. 9,131,881 B2 8,2015 Al-Ali et al. 8,662,076 B2 3,2014 Al-Ali 9,131,882 B2 9,2015 Al-Ali et al. 8,662,076 B2 3,2014 Weber et al. 9,131,881 B2 8,2015 Al-Ali et al. 8,662,076 B2 3,2014 Weber et al. 9,131,881 B2 8,2015 Al-Ali et al. 8,662,076 B2 3,2014 Weber et al. 9,131,881 B2 8,2015 Al-Ali et al. 8,662,076 B2 3,2014 Weber et al. 9,131,881 B2 8,2015 Al-Ali et al. 8,701,128 B2 42014 Vehicle et al. 9,131,881 B2 8,2015 Al-Ali et al. 9,131,128 B2 B2 9,2015 | | | | | | | | | | 8,588,880 B2 11/2013 Abdul-Haife et al. 9,003,207 B2 52 62015 Al-Ali et al. 8,606,342 B2 12/2013 Diab 9,066,666 B2 67015 Kiani 8,606,342 B2 12/2014 Al-Ali et al. 9,006,666 B2 67015 Kiani 8,606,342 B2 12/2014 Al-Ali et al. 9,006,666 B2 67015 Kiani 8,606,069 B2 12/2015 Al-Ali et al. 9,006,666 B2 67015 Kiani 8,606,069 B2 12/2015 Al-Ali et al. 9,006,666 B2 67015 Kiani 8,606,069 B2 12/2015 Al-Ali et al. 9,006,666 B2 67015 Kiani 8,606,069 B2 12/2015 Al-Ali et al. 9,006,666 B2 67015 Kiani 8,606,069 B2 12/2015 Al-Ali et al. 9,006,666 B2 67015 Al-Ali et al. 9,006,666 B2 2014 Al-Ali et al. 9,006,666 B2 2014 Al-Ali et al. 9,006,666 B2 2015 Al-Ali et al. 9,007,625 B2 82015 Telfor et al. 8,607,081 B2 32014 Al-Ali et al. 9,107,625 B2 82015 Al-Ali et al. 8,607,804 B2 32014 Al-Ali et al. 9,113,813 B2 2025 Al-Ali et al. 8,607,804 B2 32014 Al-Ali et al. 9,113,818 B2 2025 Al-Ali et al. 8,607,804 B2 32014 Al-Ali et al. 9,131,881 B2 92015 Al-Ali et al. 8,607,807 B2 32014 Al-Ali et al. 9,131,881 B2 92015 Al-Ali et al. 8,607,909 B2 42014 Kiani et al. 9,131,881 B2 92015 Al-Ali et al. 8,607,909 B2 42014 Kiani et al. 9,131,818 B2 92015 Al-Ali et al. 8,607,909 B2 42014 Kiani et al. 9,131,818 B2 92015 Al-Ali et al. 8,702,627 B2 42014 Kiani et al. 9,131,818 B2 92015 Al-Ali et al. 8,702,627 B2 42014 Kiani et al. 9,131,818 B2 92015 Al-Ali et al. 8,702,627 B2 42014 Kiani et al. 9,131,818 B2 92015 Al-Ali et al. 8,702,627 B2 42014 Kiani et al. 9,131,818 B2 92015 Al-Ali et al. 8,702,627 B2 42014 Kiani et al. 9,136,60 B2 12/2014 Al-Ali 9,136,6 | | | | | | | | | | 8,666,342 B2 122013 Diab 9,066,666 B2 6/2015 Kiani 8,660,634 B2 122014 Lamego et al. 9,066,668 B1 6/2015 Kiani et al. 8,618,689 B2 122014 Lamego et al. 9,072,474 B2 127,72015 Al-Ali et al. 8,641,631 B2 22014 Sierra et al. 9,078,560 B2 7/2015 Schurman et al. 8,641,631 B2 22014 Sierra et al. 9,078,560 B2 7/2015 Schurman et al. 8,641,631 B2 22014 Diab 9,106,038 B2 82015 Telfort et al. 8,664,670 B2 32014 Kiani 9,107,625 B2 8/2015 Telfort et al. 8,666,468 B1 3/2014 Al-Ali et al. 9,107,625 B2 8/2015 Telfort et al. 8,666,468 B1 3/2014 Al-Ali et al. 9,107,625 B2 8/2015 Telfort et al. 8,667,876 B2 3/2014 Al-Ali et al. 9,113,831 B2 8/2015 Al-Ali et al. 8,670,811 B2 3/2014 O'Reilly 9,113,832 B2 8/2015 Al-Ali et al. 8,670,814 B2 3/2014 O'Reilly 9,113,832 B2 9/2015 Diab et al. 9,113,831 B2 8/2015 Diab et al. 9,113,831 B2 8/2015 Diab et al. 9,113,831 B2 8/2015 Diab et al. 8,670,814 B2 3/2014 Weber et al. 9,131,881 B2 9/2015 Diab et al. 8,670,814 B2 3/2014 Weber et al. 9,131,881 B2 9/2015 Diab et al. 8,670,814 B2 3/2014 Weber et al. 9,131,881 B2 9/2015 Diab et al. 8,670,814 B2 3/2014 Weber et al. 9,131,881 B2 9/2015 Diab et al. 8,670,814 B2 3/2014 Weber et al. 9,131,881 B2 9/2015 Diab et al. 8,670,814 B2 3/2014 Weber et al. 9,131,818 B2 9/2015 Diab et al. 8,670,799 B2 4/2014 Telfort et al. 9,131,818 B2 9/2015 Al-Ali et al. 8,670,799 B2 4/2014 Telfort et al. 9,138,182 B2 9/2015 Al-Ali et al. 8,700,112 B2 4/2014 Visini et al. 9,138,182 B2 9/2015 Al-Ali et al. 8,700,112 B2 4/2014 Visini et al. 9,138,182 B2 9/2015 Al-Ali 9 | | | | | | | | | | 8,656,255 B2 1,2014 Al-Ali et al. 9,066,680 B1 6,2015 Al-Ali et al. 8,641,839 B2 1,2014 Al-Ali et al. 9,072,474 B2
7,2015 Schurman et al. 8,641,839 B2 1,2014 Al-Ali et al. 9,078,560 B2 7,7015 Schurman et al. 8,651,630 B2 2,2014 Al-Ali 9,083,560 B2 7,7015 Schurman et al. 8,652,060 B2 2,2014 Al-Ali 9,083,560 B2 7,2015 Schurman et al. 8,663,107 B2 3,2014 Kiani 9,107,625 B2 8,2015 Telfort et al. 8,663,107 B2 3,2014 Kiani 9,107,625 B2 8,2015 Telfort et al. 8,667,967 B2 3,2014 Al-Ali et al. 9,113,831 B2 3,2014 O'Reilly 9,113,832 B2 8,2015 Al-Ali et al. 8,670,841 B2 3,2014 O'Reilly 9,113,832 B2 8,2015 Al-Ali et al. 8,670,841 B2 3,2014 Diabe et al. 9,113,831 B2 8,2015 Al-Ali et al. 8,667,844 B2 3,2014 Diabe et al. 9,113,831 B2 B2 2,2015 Al-Ali et al. 8,662,467 B2 3,2014 Al-Ali et al. 9,133,83 B2 B2 2,2015 Al-Ali et al. 8,662,467 B2 3,2014 Al-Ali et al. 9,131,838 B2 B2 2,2015 Al-Ali et al. 8,662,467 B2 3,2014 Al-Ali et al. 9,131,838 B2 B2 2,2015 Al-Ali et al. 8,662,467 B2 3,2014 Al-Ali et al. 9,131,838 B2 B2 2,2015 Al-Ali et al. 8,662,467 B2 3,2014 Al-Ali et al. 9,131,838 B2 B2 2,2015 Al-Ali et al. 9,131,839 B1 9,2015 Coversion et al. 8,662,467 B2 4,2014 Parker et al. 9,131,819 B2 9,2015 Coversion et al. 8,662,467 B2 4,2014 Parker et al. 9,131,819 B2 2,2015 Coversion et al. 8,762,762 B2 4,2014 Parker et al. 9,131,811 B2 B2 2,2015 Mehre et al. 8,762,762 B2 4,2014 Parker et al. 9,131,811 B2 B2 2,2015 Mehre et al. 8,762,763 B2 5,2014 Al-Ali et al. 9,131,811 B2 B2 2,2015 Mehre et al. 8,762,763 B2 5,2014 MacNeish, Ill et al. 9,161,619 B2 5,2014 Al-Ali et al. 9,161,619 B2 1,2015 Mehre et al. 8,771,519 B2 5,2014 MacNeish, Ill et al. 9,161,619 B2 1,2015 Mehre et al. 8,771,519 B2 5,2014 MacNeish, Ill et al. 9,161,619 B2 1,2015 Mehre et al. 8,771,519 B2 5,2014 MacNeish, Ill et al. 9,161, | | | | | | | | | | 8,630,691 B2 | | | | | | | | | | 8,644,869 B2 1/2014 Al-Alí et al. 9,938-500 B2 7/2015 Seburman et al. 8,652,060 B2 2/2014 Al-Alí 9,095,316 B2 22015 Weber et al. 8,652,060 B2 2/2014 Al-Alí 9,095,316 B2 82015 Velch et al. 8,663,107 B2 3/2014 Kiani 9,107,625 B2 82015 Telfort et al. 8,663,107 B2 3/2014 Al-Alí 1,017,626 B2 82015 Telfort et al. 8,667,967 B2 3/2014 Al-Alí et al. 9,115,831 B2 82015 Al-Alí et al. 8,667,967 B2 3/2014 Al-Alí et al. 9,115,831 B2 82015 Al-Alí et al. 8,667,818 B2 3/2014 O'Reilly 9,115,832 B2 82015 Al-Alí et al. 8,670,818 B2 3/2014 O'Reilly 9,115,832 B2 82015 Al-Alí et al. 8,670,818 B2 3/2014 Al-Alí 9,131,832 B2 82015 Al-Alí et al. 8,682,407 B2 3/2014 Al-Alí 9,131,838 B2 92015 Diab et al. 8,682,407 B2 3/2014 Al-Alí 9,131,838 B2 92015 Diab et al. 8,682,407 B2 4/2014 Kiani et al. 9,131,838 B2 92015 Al-Alí et al. 8,690,799 B2 4/2014 Kiani et al. 9,131,838 B2 92015 Al-Alí et al. 8,690,799 B2 4/2014 Kiani et al. 9,131,818 B2 92015 Coverston et al. 8,702,627 B2 4/2014 Kiani et al. 9,131,818 B2 92015 Coverston et al. 8,702,627 B2 4/2014 Kiani et al. 9,131,128 B1 92015 Coverston et al. 8,702,627 B2 4/2014 MacNeish, III et al. 9,131,12B B1 10,2015 Kiani et al. 8,712,494 B1 4/2014 MacNeish, III et al. 9,131,12B B1 10,2015 Kiani et al. 8,712,494 B1 4/2014 MacNeish, III et al. 9,151,12B B2 10,2015 Kiani et al. 8,712,494 B2 5/2014 Al-Alí et al. 9,161,696 B2 10,2015 Kiani et al. 8,712,494 B2 5/2014 Al-Alí et al. 9,161,696 B2 10,2015 Kiani et al. 8,712,494 B2 5/2014 Al-Alí et al. 9,161,696 B2 10,2015 Kiani et al. 8,712,494 B3 5/2014 Kiani et al. 9,161,696 B2 10,2015 Kiani et al. 8,712,494 B3 5/2014 Kiani et al. 9,161,696 B2 10,2015 Kiani et al. 8,712,494 B3 5/2014 Kiani et al. 9,161,696 B2 10,2015 Kiani et al. 8,712,494 B3 5/2014 Kiani et al. 9,161,696 B2 10,2015 Kiani et al. 8,712,494 B3 5/2014 Kiani et al. 9,161,696 B2 10,2015 Kiani et al. 8,712,494 B3 5/2014 Kiani et al. 9,161,696 B2 10,2015 Kiani et al. 8,712,494 B3 5/2014 Kiani et al. 9,102,600 B2 10,2015 Kiani et al. 8,723,673 B2 5/2014 Kiani et al. 200,000,000,000 A1 10,2015 Kiani | | | | | 9,072,474 | B2 | 7/2015 | Al-Ali et al. | | 8,652,060 B2 2/2014 Al-Ali 9,095,316 B2 8,2015 Velch et al. 8,663,107 B2 3/2014 Kiani 9,107,625 B2 8,2015 Telfort et al. 8,663,107 B2 3/2014 Al-Ali 9,107,626 B2 8,2015 Al-Ali et al. 8,667,967 B2 3/2014 Al-Ali et al. 9,107,626 B2 8,2015 Al-Ali et al. 8,667,967 B2 3/2014 Al-Ali et al. 9,107,626 B2 8,2015 Al-Ali et al. 8,670,818 B2 3/2014 O'Reilly 9,113,832 B2 8,2015 Al-Ali 8,670,818 B2 3/2014 O'Reilly 9,113,832 B2 8,2015 Al-Ali 8,670,818 B2 3/2014 O'Reilly 9,113,832 B2 2,2015 Al-Ali 8,670,818 B2 3/2014 O'Reilly 9,113,832 B2 2,2015 Al-Ali 8,682,407 B2 3/2014 Al-Ali 9,131,882 B2 2,2015 Diab et al. 8,682,407 B2 4/2014 Velcher et al. 9,131,882 B2 2,2015 Diab et al. 8,682,407 B2 4/2014 Velcher et al. 9,131,883 B2 2,2015 Al-Ali et al. 8,690,799 B2 4/2014 Velcher et al. 9,131,818 B2 2,2015 Al-Ali et al. 8,690,799 B2 4/2014 Velcher et al. 9,131,818 B2 2,2015 Al-Ali et al. 8,700,112 B2 4/2014 Velcher et al. 9,138,182 B2 2,2015 Coverston et al. 8,700,112 B2 4/2014 Velcher et al. 9,138,182 B2 2,2015 Coverston et al. 8,700,125 B2 4/2014 Parker 9,142,117 B2 2,2015 Velcher et al. 8,701,270 B2 4/2014 Parker 9,142,117 B2 2,2015 Welcher et al. 8,712,498 B1 4/2014 WacNeish, III et al. 9,153,122 B2 2,2015 Welcher et al. 8,718,737 B2 5/2014 Diab et al. 9,161,713 B2 10,2015 Kiani et al. 8,718,737 B2 5/2014 Diab et al. 9,161,713 B2 10,2015 Kiani et al. 8,718,737 B2 5/2014 Al-Ali et al. 9,161,713 B2 10,2015 Kiani et al. 8,721,549 B2 5/2014 Al-Ali et al. 9,161,713 B2 10,2015 Kiani et al. 8,721,549 B2 5/2014 Al-Ali et al. 9,161,713 B2 10,2015 Kiani et al. 8,721,549 B2 5/2014 Al-Ali et al. 9,161,713 B2 10,2015 Kiani et al. 8,721,549 B2 5/2014 Al-Ali et al. 9,161,713 B2 10,2015 Kiani et al. 8,721,549 B2 5/2014 Al-Ali et al. 9,161,713 B2 10,2015 Kiani et al. 8,721,549 B2 5/2014 Al-Ali et al. 2010,003,0004 Al. 1,102,003 Jan. 8,721,724 B2 5/2014 Al-Ali et al. 2010,003,0004 Al. 1,102,003 Jan. 8,721,724 B2 5/2014 Al-Ali et al. 2010,003,0004 Al. 1,102,003 Jan. 8,721,724 B2 5/2014 Al-Ali et al. 2010,003,0004 Al. 2,1010 Kiani et al. 8,731,735 B2 5 | 8,63 | 34,889 B2 | 1/2014 | Al-Ali et al. | | | | | | 7,440,787 C1 3,2014 Diab 9,106,038 B2 8,2015 Telfort et al. 8,666,168 B1 3,2014 Al-Ali 9,107,625 B2 8,2015 Al-Ali 8,666,468 B1 3,2014 Al-Ali 9,107,626 B2 8,2015 Al-Ali 8,667,081 B2 3,2014 Al-Ali 9,113,333 B2 8,2015 Al-Ali 8,670,811 B2 3,2014 O'Reilly 9,113,333 B2 8,2015 Al-Ali 8,670,811 B2 3,2014 O'Reilly 9,113,333 B2 8,2015 Al-Ali 8,670,818 B2 3,2014 Weber et al. 9,113,1881 B2 9,2015 Diab et al. 9,131,881 B2 9,2015 Diab et al. 9,131,883 B2 9,2015 Al-Ali 4,416 Al-Ali 4,416 Al-Ali 4,416 4 | | | | | | | | | | 8,663,107 B2 3/2014 Kiani 9,107,625 B2 2015 Al-Ali et al. 8,666,967 B2 3/2014 Al-Ali et al. 9,113,831 B2 2015 Al-Ali et al. 8,670,814 B2 3/2014 O'Reilly 9,113,832 B2 2015 Al-Ali 8,670,814 B2 3/2014 O'Reilly 9,113,832 B2 2015 Al-Ali et al. 8,670,826 B2 3/2014 Al-Ali 9,131,832 B2 2015 D'Al-Ali et al. 8,680,709 B2 3/2014 Parker 9,131,838 B2 2015 Al-Ali et al. 8,690,799 B2 4/2014 Kiani 9,138,182 B2 2015 Al-Ali et al. 8,700,120 B2 4/2014 Kiani 9,138,182 B2 2015 Celfort et al. 8,700,179 B2 4/2014 Kiani 9,138,182 B2 2015 Al-Ali et al. 8,701,179 B1 H2014 Marce 9 | | | | | 9,106,038 | B2 | 8/2015 | Telfort et al. | | Section Sect | 8,66 | 53,107 B2 | 3/2014 | Kiani | | | | | | 8,70,811 B2 3,2014 O'Reilly 9,113,832 B2 8,2015 Al-Ali 8,670,286 B2 3,2014 Weber et al. 9,113,881 B2 9,2015 Diab et al. 8,676,286 B2 3,2014 Weber et al. 9,131,881 B2 9,2015 Diab et al. 8,682,407 B2 3,2014 Al-Ali 9,131,882 B2 9,2015 Diab et al. 8,682,407 B2 3,2014 Al-Ali 9,131,882 B2 9,2015 Diab et al. 8,682,407 B2 4,2014 Al-Ali 9,131,883 B2 9,2015 Diab et al. 8,690,709 B2 4,2014 Parker 9,131,818 B2 9,2015 Diab et al. 8,700,112 B2 4,2014 Felfort et al. 9,138,182 B2 9,2015 Diab et al. 8,700,112 B2 4,2014 Felfort et al. 9,138,182 B2 9,2015 Diab et al. 8,700,102 B2 4,2014 MacNeish, III et al. 9,138,182 B2 9,2015 MacNeish et al. 8,715,206 B2 4,2014 MacNeish, III et al. 9,138,112 B1 Di2015 Kiani et al. 8,715,206 B2 5,2014 Telfort et al. 9,135,112 B1 Di2015 Kiani et al. 8,718,737 B2 5,2014 Diab et al. 9,161,606 B2 Di2015 Kiani et al. 8,718,737 B2 5,2014 Al-Ali et al. 9,161,606 B2 Di2015 Al-Ali et al. 8,721,541 B2 5,2014 Al-Ali et al. 9,161,606 B2 Di2015 Al-Ali et al. 8,721,542 B2 5,2014 Al-Ali et al. 9,185,102 B2 I1,2015 Al-Ali et al. 8,721,542 B2 5,2014 Al-Ali et al. 9,185,102 B2 I1,2015 Al-Ali et al. 8,723,677 B1 6,2014 Kiani et al. 2002,002,488 A1 6,2002 Al-Ali et al. 8,735,735,735 B2 6,2014 Kiani et al. 2003,000,322 A1 Li,2003 Li,2003 Li,2003 8,754,776 B2 6,2014 Marinow 2003,001,824 Al Li,2003 Li,2003 Li,2003 8,754,764 B2 7,2014 Kiani et al. 2010,000,418 A1 Li,2003 Li,2003 Li,2003 8,754,764 B2 7,2014 Kiani et al. 2010,000,618 A1 Li,2003 Li,2003 Li,2003 8,754,764 B2 7,2014 Kiani et al. 2010,000,603 A1 Al-2003 Li,2003 Li,2003 8,754,764 B2 7,2014 Kiani et al. 2010,000,603 A1 Al-2003 Li,2003 Li,2003 8,754,764 B2 7,2014 Kiani et al. 2010,000,603 A1 Al-2003 Li,2003 Li,2003 8,754,764 B2 7,2004 Al-Ali et a | | | | | | | | | | 8,670,814 B2 32014 Diab et al.
9,113,881 B2 9,2015 Diab et al. 8,682,407 B2 32014 Meber et al. 9,131,881 B2 9,2015 Diab et al. 8,682,407 B2 32014 Al-Ali 9,131,882 B2 9,2015 Al-Ali et al. 8,689,799 B2 42014 Faffort et al. 9,131,917 B2 9,2015 Telfort et al. 8,699,799 B2 42014 Telfort et al. 9,138,180 B1 9,2015 Coversion et al. 8,700,112 B2 42014 Kinni 9,138,180 B2 9,2015 Al-Ali et al. 8,700,112 B2 42014 Kinni 9,138,180 B2 9,2015 Mehali et al. 8,700,112 B2 42014 Menèreish, III et al. 9,138,192 B2 9,2015 Weber et al. 8,706,179 B2 42014 Menèreish, III et al. 9,133,112 B1 10,2015 Kinni et al. 8,715,206 B2 5,2014 Telfort et al. 9,135,112 B1 10,2015 Kinni et al. 8,718,735 B2 5,2014 Telfort et al. 9,135,112 B1 10,2015 Kinni et al. 8,718,735 B2 5,2014 Lamego et al. 9,161,703 B2 10,2015 Al-Ali et al. 9,161,713 B2 10,2015 Al-Ali et al. 9,165,102 B2 5,2014 Kinni et al. 9,165,102 B2 5,2014 Kinni et al. 9,165,102 B2 5,2014 Kinni et al. 10,2002 Kinni et al. 8,721,576 B3 6,2024 Forter et al. 2003/0001824 Al Al 10,2003 Mannaheimer Al. 8,755,575 B2 6,2014 Telfort et al. 2003/001824 Al Al 10,2003 Mannaheimer Al. 8,755,575 B2 6,2014 Telfort et al. 2003/001824 Al Al 10,2003 Mannaheimer Al. 8,761,863 B2 6,2014 Marinow 2003/012/0164 Al Al 6,2003 Mannaheimer Al. 8,761,863 B2 6,2014 Marinow 2003/012/0164 Al Al 6,2003 Mannaheimer Al. 8,776,646 B2 6,2014 Marinow 2003/012/0164 Al Al 6,2003 Mannaheimer Al. 8,771,204 B2 7,7014 Kinni 2000/000000000000000000000000000000000 | | | | | | | | | | Re44,823 E | 8,67 | 70,814 B2 | 3/2014 | Diab et al. | | | | | | RE44,823 E | | | | | | | | | | RE44,875 E 4/2014 Kiani et al. 9,131,917 B2 9,2015 Tellort et al. 8,590,979 B2 4/2014 Tellor et al. 9,138,180 B1 9,2015 Al-Ali et al. 8,706,179 B2 4/2014 Tellor et al. 9,138,180 B2 9,2015 Al-Ali et al. 8,715,206 B2 4/2014 Tellor et al. 9,131,121 B2 9,2015 Muhsin et al. 8,715,206 B2 5/2014 Tellor et al. 9,131,121 B2 10,2015 Kiani et al. 8,718,735 B2 5/2014 Tellor et al. 9,131,121 B2 10,2015 Kiani et al. 8,718,735 B2 5/2014 Diab et al. 9,161,671 B2 10,2015 Kiani et al. 8,718,735 B2 5/2014 Al-Ali et al. 9,161,671 B2 10,2015 Kiani et al. 8,718,735 B2 5/2014 Al-Ali et al. 9,167,995 B2 10,2015 Al-Ali et al. 8,721,544 B2 5/2014 Al-Ali et al. 9,186,102 B2 11,2015 Bruinsne et al. 8,721,544 B2 5/2014 Kiani et al. 9,186,102 B2 11,2015 Bruinsne et al. 8,734,792 B1 6/2014 February et al. 200,2006,1284 Al-Ali et al. 200,2006,1284 Al-Ali et al. 200,3006,102 A1 20 | | | | | 9,131,883 | B2 | | | | S,700,112 B2 | | | 4/2014 | Kiani et al. | | | | | | S,706,179 B2 4/2014 Telfort et al. 9,138,192 B2 9/2015 Weber et al. | | | | | | | | | | 8,706,179 B2 42014 Parker 9,142,117 B2 9,2015 Muhnis et al. 8,716,206 B2 5/2014 Telfort et al. 9,153,121 B2 10,2015 Kiani et al. 8,718,735 B2 5/2014 Diab et al. 9,161,713 B2 10/2015 Kiani et al. 8,718,735 B2 5/2014 Diab et al. 9,161,713 B2 10/2015 Kiani et al. 8,718,735 B2 5/2014 Diab et al. 9,161,713 B2 10/2015 Al-Ali et al. 8,718,735 B2 5/2014 Al-Ali et al. 9,167,995 B2 10/2015 Al-Ali et al. 8,720,249 B2 5/2014 Al-Ali et al. 9,167,995 B2 10/2015 Al-Ali et al. 8,721,542 B2 5/2014 Al-Ali et al. 9,166,195 B2 10/2015 Al-Ali et al. 8,721,542 B2 5/2014 Kiani et al. 9,186,102 B2 11/2015 Al-Ali et al. 8,721,542 B2 5/2014 Kiani al. 2002/0052488 Al 6/2002 Al-Ali et al. 8,740,792 B1 6/2014 Felfort et al. 2003/00032288 Al 6/2002 Al-Ali et al. 8,754,776 B2 6/2014 Poeze et al. 2003/000322 Al 1/2003 Mannheimer Al-8,755,856 B2 6/2014 Telfort et al. 2003/0003280 Al 4/2003 Al-Ali et al. 8,755,856 B2 6/2014 Marinow 2009/01/20164 Al 6/2003 Nielsen 8,761,850 B2 6/2014 Marinow 2009/01/20164 Al 6/2003 Nielsen 8,761,850 B2 6/2014 Kiani et al. 2010/000304 Al 1/2010 Al-Ali et al. 8,771,634 B2 7/2014 Kiani et al. 2010/000304 Al 1/2010 Voet al. 8,771,634 B2 7/2014 Kiani et al. 2011/000504 Al 1/2010 Poeze et al. 8,771,634 B2 7/2014 Kiani et al. 2011/000504 Al 1/2010 Poeze et al. 8,771,634 B2 7/2014 Kiani et al. 2011/000504 Al 1/2010 Poeze et al. 8,781,549 B2 7/2014 Al-Ali et al. 2011/000504 Al 1/2010 Poeze et al. 8,781,549 B2 7/2014 Al-Ali et al. 2011/000504 Al 2010 Poeze et al. 8,781,549 B2 7/2014 Al-Ali et al. 2011/000504 Al 2010 Poeze et al. 8,881,415 B2 9/2014 Al-Ali et al. 2011/000504 Al 2010 Poeze et al. 8,881,415 B2 9/2014 Al-Ali et al. 2011/003373 Al 9/2011 Al-Ali et al. 2011/003574 Al 1/2011 Kiani et al. 2011/003574 Al 1/2011 Kiani et al. 8,884,740 B2 9/2014 Al-Ali et al. 2011/003573 Al 9/2011 Al-Ali et al. 2012/009096 Al Al-Ali et al. 2013/009096 Al Al-Ali et al. 2013/009096 Al Al-Ali et al. 2013/009096 Al Al-Ali | | | | | | | | | | S,715,206 B2 5/2014 Telfort et al. 9,153,121 B2 10/2015 Kiani et al. 8,718,735 B2 5/2014 Diab et al. 9,161,713 B2 10/2015 Al-Ali et al. 8,718,737 B2 5/2014 Diab et al. 9,161,713 B2 10/2015 Al-Ali et al. 8,720,249 B2 5/2014 Al-Ali et al. 9,167,995 B2 10/2015 Al-Ali et al. 8,721,542 B2 5/2014 Al-Ali et al. 9,166,104 B2 11/2015 Al-Ali et al. 8,721,542 B2 5/2014 Al-Ali et al. 9,166,104 B2 11/2015 Al-Ali et al. 8,721,542 B2 5/2014 Kiani et al. 2002/0052488 A1 6/2002 Al-Ali et al. 2003/000522 A1 1/2015 Bruinsmaet al. 2003/000522 A1 1/2013 Al-Ali et al. 2003/000522 A1 1/2013 Al-Ali et al. 2003/000522 A1 1/2013 Al-Ali et al. 2003/000520 A1 Al-Ali et al. 2003/00073890 A1 4/2003 Al-Ali et al. 2003/0073890 2003/0073891 A1 4/2003 Al-Ali et al. 2003/0073890 A1 4/2003 Al-Ali et al. 2003/0073890 A1 4/2003 Al-Ali et al. 2003/0073891 A1 4/2003 Al-Ali et al. 2003/007390 A1 4/2003 Al-Ali | 8,70 | 06,179 B2 | | | | | | | | S,718,735 B2 5/2014 Lamego et al. 9,161,696 B2 10/2015 Al-Ali et al. 8,718,737 B2 5/2014 Diab et al. 9,167,995 B2 10/2015 Al-Ali et al. 8,721,541 B2 5/2014 Al-Ali et al. 9,176,144 B2 11/2015 Al-Ali et al. 9,176,144 B2 11/2015 Al-Ali et al. 9,176,144 B2 11/2015 Bruinsma et al. 8,721,542 B2 5/2014 Al-Ali et al. 9,186,102 B2 11/2015 Bruinsma et al. 8,723,677 B1 5/2014 Kiani 2002/0082488 A1 6/2002 Al-Ali et al. 2003/0000522 A1 1/2003 Lamego et al. 8,754,776 B2 6/2014 Poeze et al. 2003/0018241 Al 1/2003 Lamego Al-Ali et al. 2003/0018241 Al 1/2003 Lamego Al-Ali et al. 2003/0018241 Al 1/2003 Mannheimer 4/2003 Al-Ali et al. 2003/0018241 Al 1/2003 Al-Ali et al. 2003/0018241 Al 1/2003 Mannheimer 4/2003 Al-Ali et al. 2003/0018241 Al 1/2003 Al-Ali et al. 2009/00275844 Al 1/2009 Al-Ali et al. 2009/00275844 Al-Ali et al. 2009/00275844 | | | | | | | | | | 8,718,737 B2 5/2014 Al-Ali et al. 8,721,542 B2 5/2014 Al-Ali et al. 9,167,1713 B2 10/2015 Lamego et al. 8,721,542 B2 5/2014 Al-Ali et al. 9,176,141 B2 11/2015 Al-Ali et al. 8,721,542 B2 5/2014 Al-Ali et al. 9,186,102 B2 11/2015 Al-Ali et al. 8,721,542 B2 5/2014 Al-Ali et al. 9,186,102 B2 11/2015 Al-Ali et al. 8,721,542 B2 5/2014 Kiani 2002/0082488 A1 6/2002 Al-Ali et al. 8,740,792 B1 6/2014 Viani et al. 8,740,792 B1 6/2014 Poeze et al. 2003/0000522 A1 12/2003 Lynn 8,755,535 B2 6/2014 Telfort et al. 2003/000522 A1 12/2003 Lynn 8,755,856 B2 6/2014 Telfort et al. 2003/00073890 A1 4/2003 Hanna 8,755,857 B1 6/2014 Marinow 2003/0120164 A1 6/2003 Nielsen 8,761,850 B2 6/2014 Lamego 2009/0247984 A1 10/2009 Al-Ali 8,761,850 B2 7/2014 Kiani 2009/027884 A1 11/2009 Al-Ali 8,768,423 B2 7/2014 Shakespeare et al. 2010/0004518 A1 12/2009 Al-Ali 8,771,204 B2 7/2014 Kiani 2010/000040 A1 2/2010 Poeze et al. 8,777,634 B2 7/2014 Viani et al. 8,781,543 B2 7/2014 Al-Ali et al. 2011/0008584 A1 1/2011 Viani et al. 8,781,544 B2 7/2014 Al-Ali et al. 2011/0008584 A1 5/2011 Kiani et al. 8,781,549 B2 7/2014 Al-Ali et al. 2011/003854 A1 5/2011 Kiani et al. 8,781,549 B2 7/2014 Al-Ali et al. 2011/0208015 A1 8/2011 Al-Ali 8,801,613 B2 8/2014 Al-Ali et al. 2011/0208015 A1 8/2011 Al-Ali 8,801,613 B2 8/2014 Al-Ali et al. 2011/0208024 A1 8/2011 Al-Ali 8,801,613 B2 9/2014 Al-Ali et al. 2012/0209084 A1 8/2012 Al-Ali 8,831,700 B2 9/2014 Al-Ali et al. 2012/0209084 A1 8/2012 Al-Ali 8,830,449 B1 9/2014 Schurman et al. 2012/0209084 A1 8/2012 Al-Ali 8,830,449 B1 9/2014 Al-Ali et al. 2012/0209084 A1 8/2012 Al-Ali 8,830,49 B2 9/2014 Al-Ali et al. 2012/0209084 A1 8/2012 Al-Ali 8,830,49 B2 9/2014 Al-Ali et al. 2012/0209084 A1 8/2012 Al-Ali 8,830,49 B2 9/2014 Al-Ali et al. 2012/0209084 A1 8/2012 Al-Ali 8,886,477 B2 9/2014 Al-Ali et al. 2012/0209084 A1 8/2012 Al-Ali 8,886,803 B2 9/2014 Al-Ali et al. 2013/090605 A1 4/2012 Al-Ali et al. 2013/090605 A1 4/2013 | | | | | | | | | | S,721,541 B2 5/2014 Al-Ali et al. 9,176,141 B2 11/2015 Bruinsma et al. | | | | | | | | | | S.721,542 B2 S.2014 Al-Ali et al. 9,186,102 B2 11/2015 Bruinsma et al. | | | | | | | | | | 8,723,677 B1 5,2014 Kiani 2002/0082488 A1 6/2002 Al-Alni 8,740,792 B1 6/2014 Poeze et al. 2003/0006522 A1 1/2003 Mannheimer 8,754,776 B2 6/2014 Poeze et al. 2003/0006522 A1 1/2003 Mannheimer 8,755,535 B2 6/2014 Diab et al. 2003/0018241 A1 1/2003 Mannheimer 8,755,535 B2 6/2014 Diab et al. 2003/0073890 A1 6/2003 Hanna 8,755,872 B1 6/2014 Marinow 2003/0120164 A1 6/2003 Mannheimer 8,761,850 B2 6/2014 Kiani 2003/0073890 A1 11/2009 Lamego et al. 2009/0274984 A1 11/2009 A1-Ali 8,768,423 B2 7/2014 Kiani 2009/0275844 A1 11/2009 A1-Ali 8,768,423 B2 7/2014 Kiani et al. 2010/0004518 A1 1/2010 Vo et al. 27/2014 B2 7/2014 Kiani et al. 2010/00030040 A1 1/2011 Vo et al. 8,771,634 B2 7/2014 Marinot A1-Ali et al. 2011/0008771 A1 4/2011 Poeze et al. 8,781,549 B2 7/2014 A1-Ali et al. 2011/008871 A1 4/2011 Poeze et al. 8,781,549 B2 7/2014 A1-Ali et al. 2011/0208015 A1 8/2011 Welch et al. 8,788,030 B2 7/2014 A1-Ali et al. 2011/0233731 A1 9/2011 A1-Ali 8,780,268 B2 7/2014 A1-Ali et al. 2011/0233731 A1 9/2011 A1-Ali 8,801,613 B2 8/2014 A1-Ali et al. 2011/0233731 A1 9/2011 A1-Ali 8,801,613 B2 8/2014 A1-Ali et al. 2011/0233731 A1 9/2011 A1-Ali 8,831,700 B2 9/2014 A1-Ali et al. 2011/0230733 A1 9/2011 A1-Ali 8,831,700 B2 9/2014 A1-Ali et al. 2012/0290984 A1 8/2012 Lamego et al. 8,831,409 B2 9/2014 A1-Ali et al. 2012/0290984 A1 8/2012 Jansen et al. 8,834,49 B1 9/2014 A1-Ali et al. 2012/0290984 A1 8/2012 Lamego et al. 8,834,549 B2 9/2014 Schurman et al. 2012/0290984 A1 8/2012 A1-Ali et al. 2012/0290984 A1 8/2012 Lamego et al. 8,835,204 B2 10/2014 A1-Ali et
al. 2012/0233512 A1 11/2012 Kiani et al. 8,835,204 B2 10/2014 A1-Ali et al. 2012/0233512 A1 11/2012 Kiani et al. 8,836,840,549 B2 9/2014 Kiani et al. 2012/0233512 A1 11/2012 Lamego et al. 8,836,840,549 B2 9/2014 Kiani et al. 2012/0233512 A1 11/2012 Kiani et al. 2012/0233512 A1 11/2012 Kiani et al. 2012/0233512 A1 11/2012 Lamego et al. 8,836,840,549 B2 9/2014 Kiani et al. 2013/0045685 A1 12/2013 Lamego et al. 8,836,840,549 B2 1/2014 A1-Ali et al. 2013/0045685 A1 1/2013 Lamego et al. 8,836, | | | | | | | | | | 8,754,776 B2 6/2014 Poeze et al. 2003/000522 A1 1/2003 Lynn 8,755,535 B2 6/2014 Telfort et al. 2003/0073890 A1 4/2003 Hanna 8,755,535 B2 6/2014 Marinow 2003/012014 A1 6/2003 Nielsen 8,761,850 B2 6/2014 Lamego 2003/012014 A1 6/2003 Nielsen 8,761,850 B2 6/2014 Lamego 2009/0247984 A1 10/2009 Lamego et al. 8,764,671 B2 7/2014 Kiani 2009/0275844 A1 10/2009 A1-Ali 8,768,423 B2 7/2014 Shakespeare et al. 2010/0004518 A1 1/2010 Vo et al. 8,771,204 B2 7/2014 Telfort et al. 2010/0030040 A1 1/2010 Vo et al. 8,777,634 B2 7/2014 Kiani et al. 2011/00030040 A1 1/2011 Kiani et al. 8,781,543 B2 7/2014 Diab et al. 2011/0082711 A1 4/2011 Poeze et al. 8,781,543 B2 7/2014 Al-Ali et al. 2011/008271 A1 4/2011 Poeze et al. 8,781,549 B2 7/2014 Al-Ali et al. 2011/0208015 A1 8/2011 Welch et al. 8,788,003 B2 7/2014 Al-Ali et al. 2011/0230733 A1 9/2011 Al-Ali 8,780,068 B2 7/2014 Al-Ali et al. 2011/0230733 A1 9/2011 Al-Ali 8,801,613 B2 8/2014 Al-Ali et al. 2011/0230733 A1 9/2011 Al-Ali 8,821,397 B2 9/2014 Al-Ali et al. 2012/0059267 A1 3/2012 Lamego et al. 8,821,397 B2 9/2014 Al-Ali et al. 2012/0059267 A1 3/2012 Lamego et al. 8,830,449 B1 9/2014 Lamego et al. 2012/0209084 A1 8/2012 Cleane et al. 8,847,740 B2 9/2014 Al-Ali et al. 2012/0209084 A1 8/2012 Cleane et al. 8,847,740 B2 9/2014 Al-Ali et al. 2012/0209084 A1 8/2012 Cleane et al. 8,847,740 B2 9/2014 Al-Ali et al. 2012/0209084 A1 8/2012 Cleane et al. 8,852,094 B2 10/2014 Al-Ali et al. 2012/0209084 A1 8/2012 Cleane et al. 8,852,094 B2 10/2014 Al-Ali et al. 2012/030916 A1 1/2012 Kiani et al. 8,868,150 B2 10/2014 Al-Ali et al. 2012/030916 A1 1/2012 Kiani et al. 8,868,150 B2 10/2014 Al-Ali et al. 2013/0045685 A1 2/2012 Kiani et al. 8,888,798 B2 11/2014 Al-Ali et al. 2013/004568 A1 1/2012 Clamego et al. 8,888,798 B2 11/2014 Al-Ali et al. 2013/004569 A1 1/2013 Lamego et al. 8,888,798 B2 11/2014 Al-Ali et al. 2013/004569 A1 1/2013 Clamego et al. 8,889,780 B2 11/2014 Al-Ali et al. 2013/004569 A1 1/2013 Clamego et al. 8,899,301 B2 12/2014 Al-Ali et al. 2013/004569 A1 1/2013 Clamego et al. 8,992,30 | 8,72 | 23,677 B1 | 5/2014 | Kiani | | | | | | S.755,535 B2 G/2014 Telfort et al. 2003/0018241 A1 1/2003 Mannheimer R.755,836 B2 G/2014 Diab et al. 2003/0073890 A1 4/2003 Hanna A2003 R.755,836 B2 G/2014 Diab et al. 2003/0120164 A1 G/2003 Nielsen R.755,836 B2 G/2014 Lamego 2009/0247984 A1 10/2009 Lamego et al. R.764,671 B2 7/2014 Kiani 2009/0247984 A1 11/2009 A1-Ali R.768,423 B2 7/2014 Kiani 2010/0003040 A1 2/2010 Poeze et al. R.771,204 B2 7/2014 Kiani et al. 2011/0001605 A1 1/2011 Vo et al. R.771,674 B2 7/2014 Kiani et al. 2011/0001605 A1 1/2011 Kiani et al. 2011/0008711 A1 4/2011 Poeze et al. R.781,543 B2 7/2014 A1-Ali et al. 2011/0208015 A1 8/2011 Welch et al. 2011/0208015 A1 8/2011 Welch et al. 2011/0208015 A1 8/2011 Welch et al. 2011/0239731 A1 9/2011 A1-Ali et al. 2011/0239731 A1 9/2011 A1-Ali R.8790,268 B2 7/2014 A1-Ali et al. 2011/0239731 A1 9/2011 A1-Ali R.871,379 B2 9/2014 A1-Ali et al. 2011/0239731 A1 9/2011 A1-Ali R.8731,409 B2 9/2014 A1-Ali et al. 2011/0239731 A1 9/2011 A1-Ali R.8731,409 B2 9/2014 A1-Ali et al. 2011/0239731 A1 9/2011 A1-Ali R.8731,409 B2 9/2014 A1-Ali et al. 2011/0239739 A1 9/2011 A1-Ali R.8731,409 B2 9/2014 A1-Ali et al. 2011/0209082 A1 8/2012 A1-Ali R.8731,409 B2 9/2014 A1-Ali et al. 2011/0209082 A1 8/2012 A1-Ali R.8847,400 B2 9/2014 A1-Ali et al. 2011/0209082 A1 8/2012 A1-Ali R.888,4053 B2 9/2014 A1-Ali et al. 2011/0209082 A1 8/2012 A1-Ali R.888,4053 B2 9/2014 A1-Ali et al. 2011/0203773 A1 1/2012 A1-Ali R.888,4053 B2 9/2014 A1-Ali et al. 2011/0203773 A1 1/2012 A1-Ali R.888,808,150 B2 9/2014 A1-Ali et al. 2011/0203773 A1 1/2012 A1-Ali R.8888,509 B2 11/2014 A1-Ali et al. 2013/0004056 A1 4/2013 A1-Ali et al. 2013/004605 A1 4/2013 A1-Ali | | | | | | | | | | 8,755,856 B2 6/2014 Diab et al. 2003/0073890 All 4/2003 Hanna 8,755,872 B1 6/2014 Marinow 2003/01/20164 Al 6/2003 Nielsen 8,761,850 B2 6/2014 Lamego 2009/0247984 Al 10/2009 Lamego et al. 8,764,671 B2 7/2014 Shakespeare et al. 2010/0004518 Al 1/2010 Vo et al. 8,771,204 B2 7/2014 Telfort et al. 2010/0030040 Al 2/2010 Vo et al. 8,771,204 B2 7/2014 Telfort et al. 2011/00030040 Al 2/2010 Poeze et al. 8,771,634 B2 7/2014 Kiani et al. 2011/00030040 Al 2/2010 Poeze et al. 8,781,543 B2 7/2014 Diab et al. 2011/0008711 Al 4/2011 Poeze et al. 8,781,543 B2 7/2014 Al-Ali et al. 2011/008871 Al 4/2011 Poeze et al. 8,781,549 B2 7/2014 Al-Ali et al. 2011/0208015 Al 5/2011 Kiani et al. 8,781,549 B2 7/2014 Al-Ali et al. 2011/0208015 Al 5/2011 Kiani et al. 8,788,003 B2 7/2014 Al-Ali et al. 2011/02030733 Al 9/2011 Al-Ali 8,790,268 B2 7/2014 Al-Ali et al. 2011/02030733 Al 9/2011 Al-Ali 8,801,613 B2 8/2014 Al-Ali et al. 2011/02030733 Al 9/2011 Al-Ali 8,81,201 B2 9/2014 Al-Ali et al. 2012/0059267 Al 3/2012 Lamego et al. 8,821,415 B2 9/2014 Al-Ali et al. 2012/0059267 Al 3/2012 Lamego et al. 8,831,700 B2 9/2014 Al-Ali et al. 2012/0209084 Al 8/2012 Jansen et al. 8,840,549 B2 9/2014 Kiani et al. 2012/0209084 Al 8/2012 Al-Ali 8,847,740 B2 9/2014 Kiani et al. 2012/0209084 Al 8/2012 Al-Ali 8,847,740 B2 9/2014 Kiani et al. 2012/0209084 Al 8/2012 Clasen et al. 8,849,365 B2 9/2014 Al-Ali et al. 2012/0209084 Al 8/2012 Lamego et al. 8,849,365 B2 9/2014 Kiani et al. 2012/020917 Al 1/2012 Lamego et al. 8,852,094 B2 10/2014 Al-Ali et al. 2012/02030737 Al 1/2012 Lamego et al. 8,868,150 B2 10/2014 Al-Ali et al. 2012/0303012 Al 2/2013 Lamego et al. 8,868,150 B2 10/2014 Al-Ali et al. 2013/0045685 Al 2/2013 Lamego et al. 8,868,150 B2 10/2014 Al-Ali et al. 2013/004568 Al 2/2013 Lamego et al. 8,886,3150 B2 10/2014 Al-Ali et al. 2013/0045685 Al 2/2013 Lamego et al. 8,886,319 B2 11/2014 Kiani et al. 2013/0045685 Al 2/2013 Lamego et al. 8,886,319 B2 11/2014 Kiani et al. 2013/0045685 Al 2/2013 Kiani al. 8,903,310 B2 11/2014 Val-Ali et al. 2013/0045685 Al 2/2013 | | | | | | | 1/2003 | Mannheimer | | 8,761,850 B2 6/2014 Lamego 2009/0275844 Al 10/2009 Lamego et al. 8,764,671 B2 7/2014 Kiani 2009/0275844 Al 10/2009 Lamego et al. 8,764,671 B2 7/2014 Kiani 2010/0004518 Al 1/2010 Vo et al. 8,771,204 B2 7/2014 Kiani et al. 2011/00004518 Al 1/2011 Voie et al. 8,771,634 B2 7/2014 Kiani et al. 2011/00004518 Al 1/2011 Voie et al. 8,781,543 B2 7/2014 Al-Ali et al. 2011/0008015 Al 4/2011 Poeze et al. 8,781,549 B2 7/2014 Al-Ali et al. 2011/0208015 Al 8/2011 Velch et al. 8,781,549 B2 7/2014 Al-Ali et al. 2011/0208015 Al 8/2011 Velch et al. 8,781,549 B2 7/2014 Al-Ali et al. 2011/0230733 Al 9/2011 Al-Ali 8,780,03 B2 7/2014 Al-Ali et al. 2011/0230733 Al 9/2011 Al-Ali 8,801,613 B2 8/2014 Al-Ali et al. 2011/0230733 Al 9/2011 Al-Ali 8,821,337 B2 9/2014 Al-Ali et al. 2012/0059267 Al 3/2012 Lamego et al. 8,821,347 B2 9/2014 Al-Ali et al. 2012/0059267 Al 3/2012 Lamego et al. 8,830,449 B1 9/2014 Al-Ali et al. 2012/0209082 Al 8/2012 Al-Ali Al-Ali et al. 2012/0209082 Al 8/2012 Al-Ali Al-Ali Al-Ali et al. 2012/0209082 Al 8/2012 Al-Ali | | | | | | | 4/2003 | Hanna | | 8,764,671 B2 7/2014 Kiani 2009/0275844 A1 11/2009 A1-Alī 8,768,423 B2 7/2014 Shakespeare et al. 2010/0004518 A1 1/2010 Vo et al. 8,771,204 B2 7/2014 Clifort et al. 2010/0030040 A1 2/2010 Poeze et al. 8,777,634 B2 7/2014 Clifort et al. 2011/0001605 A1 1/2011 Kiani et al. 8,781,543 B2 7/2014 Diab et al. 2011/008271 A1 4/2011 Poeze et al. 8,781,544 B2 7/2014 A1-Ali et al. 2011/0208015 A1 5/2011 Kiani et al. 8,781,549 B2 7/2014 A1-Ali et al. 2011/0208015 A1 8/2011 Welch et al. 8,788,003 B2 7/2014 A1-Ali et al. 2011/020373 A1 9/2011 Kiani et al. 8,788,003 B2 7/2014 Schurman et al. 2011/023373 A1 9/2011 A1-Alī 8,801,613 B2 8/2014 A1-Alī et al. 2011/023373 A1 9/2011 A1-Alī 8,801,613 B2 8/2014 A1-Alī et al. 2011/0237911 A1 9/2011 Lamego et al. 8,821,397 B2 9/2014 A1-Alī et al. 2012/0059267 A1 3/2012 Lamego et al. 8,821,415 B2 9/2014 A1-Alī et al. 2012/019006 A1 7/2012 Jansen et al. 8,831,700 B2 9/2014 Schurman et al. 2012/0209082 A1 8/2012 A1-Alī 8,840,365 B2 9/2014 Kiani et al. 2012/0209084 A1 8/2012 Olsen et al. 8,847,740 B2 9/2014 Kiani et al. 2012/0209084 A1 8/2012 Clisen et al. 8,847,740 B2 9/2014 Schurman et al. 2012/0209084 A1 8/2012 Clisen et al. 8,852,994 B2 10/2014 Wojtczuk et al. 2012/0296178 A1 11/2012 Kiani et al. 8,852,994 B2 10/2014 Wojtczuk et al. 2012/02330112 A1 12/2012 Lamego et al. 8,868,147 B2 10/2014 Sipiok et al. 2012/0330112 A1 12/2012 Lamego et al. 8,868,150 B2 10/2014 Kiani et al. 2013/0045685 A1 2/2013 Lamego et al. 8,885,39 B2 11/2014 Kiani et al. 2013/004604 A1 2/2013 Lamego et al. 8,888,788 B2 11/2014 Kiani et al. 2013/004604 A1 2/2013 Lamego et al. 8,892,180 B2 11/2014 Kiani et al. 2013/004604 A1 2/2013 Lamego et al. 8,892,180 B2 11/2014 Weber et al. 2013/004604 A1 2/2013 Lamego et al. 8,993,310 B2 12/2014 A1-Alī et al. 2013/004604 A1 2/2013 Lamego et al. 8,993,310 B2 12/2014 A1-Alī et al. 2013/004604 A1 2/2013 Sinpath et al. 8,909,310 B2 12/2014 A1-Alī et al. 2013/004604 A1 2/2013 Sinpath et al. 8,911,377 B2 12/2014 A1-Alī et al. 2013/0096036 A1 4/2013 Sinpath et al. 8,909,310 B2 12/2014 | | | | | | | | | | 8,768,423 B2 7/2014 Shakespeare et al. 8,771,204 B2 7/2014 Telfort et al. 8,771,204 B2 7/2014 Telfort et al. 8,771,634 B2 7/2014 Telfort et al. 8,771,634 B2 7/2014 Telfort et al. 8,778,534 B2 7/2014 Diab et al. 8,781,543 B2 7/2014 Al-Ali et al. 8,781,549 B2 7/2014 Al-Ali et al. 8,781,549 B2 7/2014 Al-Ali et al. 8,781,549 B2 7/2014 Al-Ali et al. 8,788,003 B2 7/2014 Al-Ali et al. 8,788,003 B2 7/2014 Al-Ali et al. 8,790,268 B2 7/2014 Al-Ali et al. 8,801,613 B2 8/2014 Al-Ali et al. 8,821,397 B2 9/2014 Al-Ali
et al. 8,821,397 B2 9/2014 Al-Ali et al. 8,831,700 B2 9/2014 Al-Ali et al. 8,831,700 B2 9/2014 Schurman et al. 8,831,700 B2 9/2014 Schurman et al. 8,840,349 B1 9/2014 Lamego et al. 8,840,349 B2 9/2014 Al-Ali et al. 8,847,740 B2 9/2014 Kiani et al. 8,849,365 B2 9/2014 Al-Ali et al. 8,849,365 B2 9/2014 Al-Ali et al. 8,852,994 B2 10/2014 Al-Ali et al. 8,868,147 8,869,370,79 B2 11/2014 Al-Ali et al. 8,869,380 B2 11/2014 Al-Ali et al. 8,869,380 B2 11/2014 Al-Ali et al. 8,869,380 B2 11/2014 Al-Ali et al. 8,870,79 B2 10/2014 Al-Ali et al. 8,889,380 B2 11/2014 Al-Ali et al. 8,890,310 B2 12/2014 Al-Ali et al. 8,909,310 | | | | - | | | | | | 8,777,634 B2 7/2014 Kiani et al. 8,778,534 B2 7/2014 Kiani et al. 8,781,543 B2 7/2014 Diab et al. 2011/0082711 A1 4/2011 Poeze et al. 8,781,543 B2 7/2014 Al-Ali et al. 2011/0108854 A1 5/2011 Kiani et al. 8,781,549 B2 7/2014 Al-Ali et al. 2011/0208015 A1 8/2011 Welch et al. 8,788,003 B2 7/2014 Schurman et al. 2011/0237373 A1 9/2011 Al-Ali 8,8790,268 B2 7/2014 Al-Ali 2011/0237373 A1 9/2011 Al-Ali 8,801,613 B2 8/2014 Al-Ali et al. 2011/0237911 A1 9/2011 Lamego et al. 8,821,397 B2 9/2014 Al-Ali et al. 2012/0059267 A1 3/2012 Lamego et al. 8,821,415 B2 9/2014 Al-Ali et al. 2012/0179006 A1 7/2012 Jansen et al. 8,831,700 B2 9/2014 Schurman et al. 2012/0209082 A1 8/2012 Al-Ali 8,840,349 B1 9/2014 Lamego et al. 2012/0209082 A1 8/2012 Olsen et al. 8,840,549 B2 9/2014 Kiani et al. 2012/0227739 A1 9/2012 Kiani 8,847,740 B2 9/2014 Kiani et al. 2012/0238524 A1 11/2012 Kiani 8,847,740 B2 9/2014 Smith et al. 2012/0238524 A1 11/2012 Kiani 8,852,994 B2 10/2014 Al-Ali et al. 2012/0330112 A1 12/2012 Lamego et al. 8,852,994 B2 10/2014 Al-Ali et al. 2012/0330112 A1 12/2012 Lamego et al. 8,868,150 B2 10/2014 Al-Ali et al. 2013/004604 A1 2/2013 Lamego et al. 8,868,150 B2 10/2014 Al-Ali et al. 2013/004604 A1 2/2013 Lamego et al. 8,886,271 B2 11/2014 Kiani et al. 2013/004604 A1 2/2013 Lamego et al. 8,888,798 B2 11/2014 Al-Ali et al. 2013/0094693 A1 4/2013 Sampath et al. 8,899,310 B2 11/2014 Al-Ali et al. 2013/0094604 A1 2/2013 Lamego et al. 8,899,310 B2 11/2014 Al-Ali et al. 2013/0094604 A1 2/2013 Lamego et al. 8,899,310 B2 11/2014 Al-Ali et al. 2013/0094604 A1 2/2013 Lamego et al. 8,890,310 B2 12/2014 Al-Ali et al. 2013/0094604 A1 2/2013 Simpath et al. 8,909,310 B2 12/2014 Al-Ali et al. 2013/0094604 A1 2/2013 Simpath et al. 8,909,310 B2 12/2014 Al-Ali et al. 2013/0094604 A1 2/2013 Simpath et al. 8,909,310 B2 12/2014 Al-Ali et al. 2013/0094604 A1 2/2013 Simpath et al. 8,909,310 B2 12/2014 Al-Ali et al. 2013/0094604 A1 2/2013 Simpath et al. 8,909,310 B2 12/2014 Al-Ali et al. 2013/0094604 A1 2/2013 Diab et al. 8,909,310 B2 12/2014 Al-Ali e | 8,76 | 58,423 B2 | | | | | | | | 8,781,543 B2 7/2014 Al-Ali et al. 2011/0082711 Al 4/2011 Poeze et al. 8,781,544 B2 7/2014 Al-Ali et al. 2011/0208015 Al 8/2011 Welch et al. 8,781,549 B2 7/2014 Al-Ali et al. 2011/0208015 Al 8/2011 Welch et al. 8,788,003 B2 7/2014 Al-Ali et al. 2011/0230733 Al 9/2011 Al-Ali 8,790,268 B2 7/2014 Al-Ali et al. 2011/0230733 Al 9/2011 Al-Ali 8,801,613 B2 8/2014 Al-Ali et al. 2011/0230733 Al 9/2011 Al-Ali 8,801,613 B2 8/2014 Al-Ali et al. 2011/025967 Al 3/2012 Lamego et al. 8,821,415 B2 9/2014 Al-Ali et al. 2012/0179006 Al 7/2012 Jansen et al. 8,830,449 B1 9/2014 Lamego et al. 2012/0209084 Al 8/2012 Al-Ali 8,831,700 B2 9/2014 Schurman et al. 2012/0209084 Al 8/2012 Olsen et al. 8,840,549 B2 9/2014 Kiani et al. 2012/0209084 Al 8/2012 Olsen et al. 8,847,740 B2 9/2014 Kiani et al. 2012/0233524 Al 11/2012 Kiani et al. 8,852,094 B2 10/2014 Al-Ali et al. 2012/02330112 Al 11/2012 Lamego et al. 8,852,094 B2 10/2014 Wojtczuk et al. 2012/0330112 Al 12/2012 Lamego et al. 8,868,147 B2 10/2014 Wojtczuk et al. 2013/004375 Al 1/2013 Lamego et al. 8,868,150 B2 10/2014 Al-Ali et al. 2013/0045685 Al 2/2013 Kiani et al. 8,870,792 B2 10/2014 Kiani et al. 2013/0045685 Al 2/2013 Kiani et al. 8,888,52994 B2 10/2014 Kiani et al. 2013/0045685 Al 2/2013 Kiani et al. 8,888,707 B2 11/2014 Kiani et al. 2013/0045685 Al 2/2013 Kiani et al. 8,888,708 B2 11/2014 Kiani et al. 2013/004604 Al 2/2013 Lamego et al. 8,888,708 B2 11/2014 Kiani et al. 2013/004604 Al 2/2013 Kiani et al. 8,892,180 B2 11/2014 Al-Ali et al. 2013/0096036 Al 4/2013 Sampath et al. 8,892,180 B2 11/2014 Al-Ali et al. 2013/0096036 Al 4/2013 Siarbio Sampath et al. 8,909,310 B2 12/2014 Al-Ali et al. 2013/00253334 Al 9/2013 Siskavich 8,920,317 B2 12/2014 Al-Ali et al. 2013/0253334 Al 9/2013 Olsen et al. 8,921,809 B2 12/2014 Al-Ali et al. 2013/0253334 Al 9/2013 | 8,77 | 71,204 B2 | | | | | | | | 8,781,544 B2 7/2014 Al-Ali et al. 2011/0105854 Al 5/2011 Kiani et al. 8,781,549 B2 7/2014 Al-Ali et al. 2011/0230733 Al 9/2011 Al-Ali 8,790,268 B2 7/2014 Al-Ali 2011/0230733 Al 9/2011 Al-Ali 8,801,613 B2 8/2014 Al-Ali et al. 2011/0237911 Al Al-Ali 8,821,397 B2 9/2014 Al-Ali et al. 2012/0059267 Al 7/2012 Lamego et al. 8,831,415 B2 9/2014 Al-Ali et al. 2012/0209082 Al 7/2012 Jansen et al. 8,831,700 B2 9/2014 Lamego et al. 2012/0209082 Al 8/2012 Al-Ali 8,840,549 B2 9/2014 Al-Ali et al. 2012/0209082 Al 11/2012 Kiani et al. 8,849,365 B2 9/2014 Al-Ali et al. 2012/0293524 Al 11/2012 Kiani et al. 8,852,994 B2 10 | | | | | | | | | | 8,788,003 B2 7/2014 Schurman et al. 2011/0213212 A1 9/2011 Al-Ali 8,790,268 B2 7/2014 Al-Ali et al. 2011/02337911 A1 9/2011 Al-Ali 8,801,613 B2 8/2014 Al-Ali et al. 2012/0059267 A1 3/2012 Lamego et al. 8,821,415 B2 9/2014 Al-Ali et al. 2012/0179006 A1 7/2012 Jansen et al. 8,830,449 B1 9/2014 Lamego et al. 2012/0209082 A1 8/2012 Al-Ali 8,831,700 B2 9/2014 Schurman et al. 2012/0209082 A1 8/2012 Olsen et al. 8,840,549 B2 9/2014 Kiani et al. 2012/0227739 A1 9/2012 Kiani et al. 8,847,740 B2 9/2014 Kiani et al. 2012/02283524 A1 11/2012 Kiani et al. 8,852,094 B2 10/2014 Kiani et al. 2012/02396178 A1 11/2012 Lamego et al. 8,852,094 B2 10/2014 Kiani et al. 2012/0330112 A1 12/2012 Lamego et al. 8,868,147 B2 10/2014 Kipick et al. 2012/0330112 A1 12/2012 Lamego et al. 8,868,150 B2 10/2014 Kipick et al. 2013/0023775 A1 1/2013 Lamego et al. 8,886,271 B2 10/2014 Al-Ali et al. 2013/0045685 A1 2/2013 Lamego et al. 8,886,271 B2 11/2014 Al-Ali et al. 2013/0046204 A1 2/2013 Lamego et al. 8,888,708 B2 11/2014 Al-Ali et al. 2013/0046204 A1 2/2013 Lamego et al. 8,888,708 B2 11/2014 Al-Ali et al. 2013/0060147 A1 3/2013 Welch et al. 8,888,708 B2 11/2014 Diab et al. 2013/0064056 A1 2/2013 Lamego et al. 8,897,847 B2 11/2014 Al-Ali et al. 2013/0096405 A1 4/2013 Garfio 8,892,180 B2 11/2014 Al-Ali et al. 2013/0096405 A1 4/2013 Garfio 8,892,180 B2 11/2014 Al-Ali et al. 2013/0096405 A1 4/2013 Garfio 8,897,847 B2 11/2014 Al-Ali et al. 2013/0096405 A1 4/2013 Garfio 8,999,310 B2 12/2014 Al-Ali et al. 2013/0190581 A1 7/2013 Al-Ali et al. 8,911,377 B2 12/2014 Al-Ali et al. 2013/0190581 A1 7/2013 Siskavich 8,921,699 B2 12/2014 Al-Ali et al. 2013/0243021 A1 9/2013 Siskavich 8,922,382 B2 12/2014 Al-Ali et al. 2013/024607 A1 11/2013 Dalvi et al. 8,922,9964 B2 1/2015 Al-Ali et al. 2013/0324808 A1 12/2013 Dalvi et al. 8,929,964 B2 1/2015 Al-Ali et al. 2013/0324808 A1 12/2013 Dalvi et al. 2013/0324808 A1 12/2013 Dalvi et al. | 8,78 | 31,544 B2 | 7/2014 | Al-Ali et al. | | | | | | 8,790,268 B2 7/2014 Al-Ali 2011/0230733 A1 9/2011 Al-Ali 8,801,613 B2 8/2014 Al-Ali et al. 2011/0237911 A1 9/2011 Lamego et al. 8,821,397 B2 9/2014 Al-Ali et al. 2012/0059267 A1 3/2012 Lamego et al. 8,821,415 B2 9/2014 Al-Ali et al. 2012/0179006 A1 7/2012 Jansen et al. 8,830,449 B1 9/2014 Lamego et al. 2012/0209082 A1 8/2012 Al-Ali 8,831,700 B2 9/2014 Schurman et al. 2012/0209084 A1 8/2012 Olsen et al. 8,840,549 B2 9/2014 Kiani et al. 2012/0227739 A1 9/2012 Kiani 8,847,740 B2 9/2014 Kiani et al. 2012/02283524 A1 11/2012 Kiani et al. 8,849,365 B2 9/2014 Smith et al. 2012/02363524 A1 11/2012 Lamego et al. 8,852,094 B2 10/2014 Al-Ali et al. 2012/0330112 A1 12/2012 Al-Ali 8,852,094 B2 10/2014 Stippick et al. 2012/0330112 A1 12/2012 Lamego et al. 8,868,147 B2 10/2014 Stippick et al. 2013/0041591 A1 1/2013 Lamego et al. 8,868,150 B2 10/2014 Al-Ali et al. 2013/0045685 A1 2/2013 Lamego et al. 8,886,271 B2 11/2014 Kiani et al. 2013/0046204 A1 2/2013 Lamego et al. 8,888,539 B2 11/2014 Kiani et al. 2013/00460404 A1 2/2013 Lamego et al. 8,888,539 B2 11/2014 Diab et al. 2013/00640147 A1 3/2013 Welch et al. 8,898,7847 B2 11/2014 Diab et al. 2013/0096405 A1 4/2013 Sampath et al. 8,999,310 B2 12/2014 Al-Ali et al. 2013/009638 A1 4/2013 Sampath et al. 8,999,310 B2 12/2014 Al-Ali et al. 2013/0253334 A1 9/2013 Siskavich 8,920,317 B2 12/2014 Al-Ali et al. 2013/0253334 A1 9/2013 Siskavich 8,920,317 B2 12/2014 Al-Ali et al. 2013/0253334 A1 9/2013 Siskavich 8,920,317 B2 12/2014 Al-Ali et al. 2013/0253334 A1 9/2013 Olsen 8,912,699 B2 12/2014 Al-Ali et al. 2013/0253334 A1 9/2013 Diab et al. 8,921,699 B2 12/2014 Al-Ali et al. 2013/0324808 A1 12/2013 Dabvi et al. 8,922,382 B2 12/2014 Al-Ali et al. 2013/0324808 A1 12/2013 Dabvi et al. 8,929,964 B2 1/2015 Al-Ali et al. 2013/0324808 A1 12/2013 Dabvi et al. 8,929,964 B2 1/2015 Al-Ali et al. 2013/0324808 A1 12/2013 Al-Ali et al. | | | | | | | | | | 8,801,613 B2 8/2014 Al-Ali et al. 8,821,397 B2 9/2014 Al-Ali et al. 8,821,397 B2 9/2014 Al-Ali et al. 2012/0059267 Al 3/2012 Lamego et al. 8,821,415 B2 9/2014 Al-Ali et al. 2012/0209082 Al 8/2012 Jansen et al. 8,830,449 B1 9/2014 Lamego et al. 2012/0209082 Al 8/2012 Jansen et al. 8,831,700 B2 9/2014 Schurman et al. 2012/0209084 Al 8/2012 Olsen et al. 8,840,549 B2 9/2014 Kiani et al. 2012/0227739 Al 9/2012 Kiani 8,847,740 B2 9/2014 Kiani et al. 2012/02283524 Al 11/2012 Kiani et al. 8,849,365 B2 9/2014 Smith et al. 2012/0296178 Al 11/2012 Lamego et al. 8,852,094 B2 10/2014 Al-Ali et al. 2012/0319816 Al 12/2012 Al-Ali 8,852,994 B2 10/2014 Stippick et al. 2012/0330112 Al 12/2012 Lamego et al. 8,868,150 B2 10/2014 Stippick et al. 2013/0041591 Al 2/2013 Lamego et al. 8,868,150 B2 10/2014 Al-Ali et al. 2013/004585 Al 2/2013 Kiani 8,886,271 B2 11/2014 Kiani et al. 2013/0046204 Al 2/2013 Lamego et al. 8,888,539 B2
11/2014 Al-Ali et al. 2013/0046204 Al 2/2013 Lamego et al. 8,888,708 B2 11/2014 Diab et al. 2013/0096936 Al 4/2013 Garfio 8,892,180 B2 11/2014 Al-Ali et al. 2013/0096936 Al 4/2013 Garfio 8,897,847 B2 11/2014 Al-Ali 8,897,847 B2 11/2014 Al-Ali 8,897,847 B2 11/2014 Al-Ali 8,993,310 B2 12/2014 Al-Ali 8,993,310 B2 12/2014 Al-Ali 8,993,310 B2 12/2014 Al-Ali 8,991,377 B2 12/2014 Al-Ali 8,993,317 B2 12/2014 Al-Ali 8,993,317 B2 12/2014 Al-Ali 8,993,317 B2 12/2014 Al-Ali et al. 2013/0243021 Al 9/2013 Siskavich 8,920,317 B2 12/2014 Al-Ali et al. 2013/0253334 Al 9/2013 Olsen 8,912,909 B2 12/2014 Al-Ali et al. 2013/0324808 Al 12/2013 Dalvi et al. 8,922,382 B2 12/2014 Al-Ali et al. 2013/0324808 Al 12/2013 Dalvi et al. | | | | | | | | | | 8,821,415 B2 9/2014 Al-Ali et al. 2012/0179006 A1 7/2012 Jansen et al. 8,830,449 B1 9/2014 Lamego et al. 2012/0209082 A1 8/2012 Al-Ali 8,831,700 B2 9/2014 Schurman et al. 2012/0209084 A1 8/2012 Olsen et al. 8,840,549 B2 9/2014 Kiani et al. 2012/0283524 A1 11/2012 Kiani et al. 8,847,740 B2 9/2014 Kiani et al. 2012/0283524 A1 11/2012 Kiani et al. 8,849,365 B2 9/2014 Smith et al. 2012/0296178 A1 11/2012 Lamego et al. 8,852,094 B2 10/2014 Al-Ali et al. 2012/0319816 A1 12/2012 Al-Ali 8,852,094 B2 10/2014 Vojtczuk et al. 2012/0330112 A1 12/2012 Lamego et al. 8,868,147 B2 10/2014 Stippick et al. 2013/0023775 A1 1/2013 Lamego et al. 8,868,150 B2 10/2014 Al-Ali et al. 2013/0041591 A1 2/2013 Lamego et al. 8,868,150 B2 10/2014 Al-Ali et al. 2013/0045685 A1 2/2013 Lamego et al. 8,868,70792 B2 10/2014 Al-Ali et al. 2013/004604 A1 2/2013 Lamego et al. 8,888,539 B2 11/2014 Kiani et al. 2013/004604 A1 2/2013 Lamego et al. 8,888,708 B2 11/2014 Al-Ali et al. 2013/0060147 A1 3/2013 Lamego et al. 8,888,708 B2 11/2014 Al-Ali et al. 2013/0060147 A1 3/2013 Carfio Al-Ali et al. 2013/0060147 A1 3/2013 Carfio Al-Ali et al. 2013/0060936 A1 4/2013 Carfio Al-Ali et al. 2013/0096936 A1 4/2013 Carfio Al-Ali et al. 2013/0096936 A1 4/2013 Carfio Al-Ali et al. 2013/0096936 A1 4/2013 Carfio Al-Ali et al. 2013/0197328 A1 8/2013 Diab et al. 8,909,310 B2 12/2014 Al-Ali et al. 2013/0243021 A1 8/2013 Clsen 8,912,909 B2 12/2014 Al-Ali et al. 2013/0243021 A1 8/2013 Clsen 8,912,909 B2 12/2014 Al-Ali et al. 2013/0253334 A1 9/2013 Siskavich 8,920,317 B2 12/2014 Al-Ali et al. 2013/0253334 A1 9/2013 Clsen 8,921,609 B2 12/2014 Al-Ali et al. 2013/0317370 A1 11/2013 Dalvi et al. 8,922,382 B2 12/2014 Al-Ali et al. 2013/0324808 A1 12/2013 Al-Ali et al. 8,922,382 B2 12/2014 Al-Ali et al. 2013/0324808 A1 12/2013 Al-Ali et al. 8,922,382 B2 12/2014 Al-Ali et al. 2013/0324808 A1 12/2013 Al-Ali et al. | | | | | | | | | | 8,830,449 B1 9/2014 Lamego et al. 8,831,700 B2 9/2014 Schurman et al. 8,840,549 B2 9/2014 Al-Ali et al. 8,847,740 B2 9/2014 Kiani et al. 8,849,365 B2 9/2014 Smith et al. 8,852,094 B2 10/2014 Al-Ali et al. 8,852,994 B2 10/2014 Mojtczuk et al. 8,868,147 B2 10/2014 Stippick et al. 8,868,150 B2 10/2014 Al-Ali et al. 8,868,70,792 B2 10/2014 Al-Ali et al. 8,888,539 B2 11/2014 Al-Ali et al. 8,888,539 B2 11/2014 Al-Ali et al. 8,888,70 8,890,310 B2 12/2014 Al-Ali et al. 8,909,310 B2 12/2014 Al-Ali et al. 8,909,310 B2 12/2014 Al-Ali et al. 8,911,377 B2 12/2014 Al-Ali et al. 8,912,909 B2 12/2014 Al-Ali et al. 8,922,382 B2 12/2014 Al-Ali et al. 8,923,0964 B2 1/2014 8,924,0964 B2 1/2014 Al-Ali et al. 8,929,964 B2 1/2014 Al-Ali et al. 8,921,699 B2 12/2014 Al-Ali et al. 8,921,699 B2 12/2014 Al-Ali et al. 8,921,699 B2 12/2014 Al-Ali et al. 8,921,691 | | | | | | | | | | 8,831,700 B2 9/2014 Schurman et al. 2012/0209084 Al 8/2012 Olsen et al. 8,840,549 B2 9/2014 Al-Ali et al. 2012/0227739 Al 9/2012 Kiani 8,847,740 B2 9/2014 Kiani et al. 2012/0283524 Al 11/2012 Kiani et al. 8,849,365 B2 9/2014 Smith et al. 2012/0296178 Al 11/2012 Lamego et al. 8,852,994 B2 10/2014 Al-Ali et al. 2012/0330112 Al 12/2012 Al-Ali 8,868,147 B2 10/2014 Stippick et al. 2013/004575 Al 1/2013 Lamego et al. 8,868,150 B2 10/2014 Al-Ali et al. 2013/0045685 Al 2/2013 Lamego et al. 8,870,792 B2 10/2014 Al-Ali et al. 2013/0046204 Al 2/2013 Lamego et al. 8,888,539 B2 11/2014 Al-Ali et al. 2013/0046204 Al 2/2013 Lamego et al. 8,888,708 B2 11/2014 Diab et al. 2013/0060147 Al | | | | | | | | | | 8,847,740 B2 9/2014 Kiani et al. 2012/0283524 A1 11/2012 Kiani et al. 8,849,365 B2 9/2014 Smith et al. 2012/0296178 A1 11/2012 Lamego et al. 8,852,094 B2 10/2014 Al-Ali et al. 2012/0319816 A1 12/2012 Al-Ali 8,852,094 B2 10/2014 Wojtczuk et al. 2012/0330112 A1 12/2012 Lamego et al. 8,868,147 B2 10/2014 Stippick et al. 2013/0023775 A1 1/2013 Lamego et al. 8,868,150 B2 10/2014 Al-Ali et al. 2013/0045685 A1 2/2013 Lamego et al. 8,870,792 B2 10/2014 Al-Ali et al. 2013/0045685 A1 2/2013 Kiani 8,886,271 B2 11/2014 Kiani et al. 2013/0046204 A1 2/2013 Lamego et al. 8,888,708 B2 11/2014 Al-Ali et al. 2013/0060147 A1 3/2013 Welch et al. 8,892,180 B2 11/2014 Weber et al. 2013/0096936 A1 | 8,83 | 31,700 B2 | 9/2014 | Schurman et al. | | | | | | 8,849,365 B2 9/2014 Smith et al. 2012/0319816 A1 11/2012 Lamego et al. 8,852,994 B2 10/2014 Al-Ali et al. 2012/0330112 A1 12/2012 Al-Ali 8,852,994 B2 10/2014 Stippick et al. 2013/0023775 A1 1/2013 Lamego et al. 8,868,147 B2 10/2014 Al-Ali et al. 2013/0045685 A1 2/2013 Lamego et al. 8,868,150 B2 10/2014 Al-Ali et al. 2013/0045685 A1 2/2013 Lamego et al. 8,870,792 B2 10/2014 Kiani et al. 2013/0045685 A1 2/2013 Kiani 8,886,271 B2 11/2014 Kiani et al. 2013/0046204 A1 2/2013 Lamego et al. 8,888,539 B2 11/2014 Al-Ali et al. 2013/0060147 A1 3/2013 Welch et al. 8,888,708 B2 11/2014 Diab et al. 2013/0060147 A1 3/2013 Garfio 8,892,180 B2 11/2014 Weber et al. 2013/0096936 A1 4/2013 Garfio 8,897,847 B2 11/2014 Al-Ali Expression Al-Ali et al. 2013/0190581 A1 7/2013 Al-Ali et al. 8,911,377 B2 12/2014 Al-Ali 2013/0197328 A1 8/2013 Olsen 8,912,909 B2 12/2014 Al-Ali et al. 2013/0243021 A1 8/2013 Olsen 8,920,317 B2 12/2014 Al-Ali et al. 2013/0253334 A1 9/2013 Siskavich 8,920,317 B2 12/2014 Al-Ali et al. 2013/0253334 A1 9/2013 Siskavich 8,920,317 B2 12/2014 Al-Ali et al. 2013/0253334 A1 9/2013 Siskavich 8,920,317 B2 12/2014 Al-Ali et al. 2013/0253334 A1 9/2013 O'Neil et al. 8,922,382 B2 12/2014 Al-Ali et al. 2013/0317370 A1 11/2013 Dalvi et al. 8,922,382 B2 12/2014 Al-Ali et al. 2013/0324808 A1 12/2013 Al-Ali et al. 8,929,964 B2 1/2015 Al-Ali et al. 2013/0324808 A1 12/2013 Al-Ali et al. | | | | | | | | | | 8,852,094 B2 10/2014 Al-Ali et al. 2012/0319816 Al 12/2012 Al-Ali 8,852,994 B2 10/2014 Wojtczuk et al. 2012/0330112 Al 12/2012 Lamego et al. 8,868,147 B2 10/2014 Stippick et al. 2013/0023775 Al 1/2013 Lamego et al. 8,868,150 B2 10/2014 Al-Ali et al. 2013/0045685 Al 2/2013 Lamego 8,870,792 B2 10/2014 Al-Ali et al. 2013/0045685 Al 2/2013 Lamego 8,886,271 B2 11/2014 Kiani et al. 2013/0046204 Al 2/2013 Lamego et al. 8,888,539 B2 11/2014 Al-Ali et al. 2013/0060147 Al 3/2013 Welch et al. 8,888,708 B2 11/2014 Diab et al. 2013/0096405 Al 4/2013 Garfio 8,892,180 B2 11/2014 Weber et al. 2013/0096936 Al 4/2013 Sampath et al. 8,997,847 B2 11/2014 Al-Ali 2013/0197328 Al 8/2013 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>11/2012</td> <td>Lamego et al.</td> | | | | | | | 11/2012 | Lamego et al. | | 8,868,147 B2 10/2014 Stippick et al. 8,868,150 B2 10/2014 Al-Ali et al. 8,868,70,792 B2 10/2014 Al-Ali et al. 8,886,271 B2 11/2014 Kiani et al. 8,888,539 B2 11/2014 Al-Ali et al. 8,888,708 B2 11/2014 Diab et al. 8,892,180 B2 11/2014 Weber et al. 8,897,847 B2 11/2014 Lamego et al. 8,899,310 B2 12/2014 Al-Ali 8,909,310 B2 12/2014 Al-Ali 8,911,377 B2 12/2014 Al-Ali 8,912,909 B2 12/2014 Al-Ali et al. 8,921,809 B2 12/2014 Al-Ali et al. 8,91,309 B2 12/2014 Al-Ali et al. 8,91,309 B2 12/2014 Al-Ali et al. 8,91,309 B2 12/2014 Al-Ali et al. 8,912,909 B2 12/2014 Al-Ali et al. 8,921,809 B2 12/2014 Al-Ali et al. 8,921,809 B2 12/2014 Al-Ali et al. 8,922,382 B2 12/2014 Al-Ali et al. 8,922,382 B2 12/2014 Al-Ali et al. 8,929,964 B2 1/2015 Al-Ali et al. 8,921,009 B2 1/2014 Al-Ali et al. 8,921,009 B2 1/2014 Al-Ali et al. 8,922,382 B2 1/2014 Al-Ali et al. 8,923,340 Al 1/2013 Dalvi et al. 8,924,369 B2 1/2014 Al-Ali et al. 8,924,369 B2 1/2014 Al-Ali et al. 8,929,964 B2 1/2015 Al-Ali et al. 8,921,000 Al-Ali et al. 8,921,000 Al-Ali et al. 8,922,382 B2 1/2014 Al-Ali et al. 8,923,340 Al 1/2013 Dalvi et al. 8,924,360 Al 1/2013 Al-Ali et al. 8,925,360 Al 1/2013 Al-Ali et al. 8,924,360 Al 1/2013 Al-Ali et al. | 8,85 | 52,094 B2 | 10/2014 | Al-Ali et al. | | | | | | 8,868,150 B2 10/2014 Al-Ali et al. 2013/0041591 A1 2/2013 Lamego 8,870,792 B2 10/2014 Al-Ali et al. 2013/0045685 A1 2/2013 Kiani 8,886,271 B2 11/2014 Kiani et al. 2013/0046204 A1 2/2013 Lamego et al. 8,888,539 B2 11/2014 Al-Ali et al. 2013/0060147 A1 3/2013 Welch et al. 8,888,708 B2 11/2014 Diab et al. 2013/0096405 A1 4/2013 Garfio 8,892,180 B2 11/2014 Weber et al. 2013/0096936 A1 4/2013 Sampath et al. 8,897,847 B2 11/2014 Al-Ali 2013/0190581 A1 7/2013 Al-Ali et al. 8,909,310 B2 12/2014 Lamego et al. 2013/0197328 A1 8/2013 Diab et al. 8,911,377 B2 12/2014 Al-Ali 2013/0197328 A1 8/2013 Diab et al. 8,912,909 B2 12/2014 Al-Ali et al. 2013/0243021 A1 9/2013 Siskavich 8,920,317 B2 12/2014 Al-Ali et al. 2013/0253334 A1 9/2013 Siskavich 8,920,317 B2 12/2014 Al-Ali et al. 2013/0253334 A1 9/2013 Al-Ali et al. 8,921,699 B2 12/2014 Al-Ali et al. 2013/0296672 A1 11/2013 O'Neil et al. 8,922,382 B2 12/2014 Al-Ali et al. 2013/0324808 A1 12/2013 Dalvi et al. 8,929,964 B2 1/2015 Al-Ali et al. 2013/0324808 A1 12/2013 Al-Ali et al. | | | | | | | | | | 8,870,792 B2 10/2014 Al-Ali et al. 2013/0045685 Al 2/2013 Kiani 8,886,271 B2 11/2014 Kiani et al. 2013/0046204 Al 2/2013 Lamego et al. 8,888,539 B2 11/2014 Al-Ali et al. 2013/0060147 Al 3/2013 Welch et al. 8,888,708 B2 11/2014 Diab et al. 2013/00969405 Al 4/2013 Garfio 8,892,180 B2 11/2014 Weber et al. 2013/0096936 Al 4/2013 Sampath et al. 8,909,310 B2 11/2014 Al-Ali 2013/0197328 Al 7/2013 Al-Ali et al. 8,909,310 B2 12/2014 Al-Ali 2013/0197328 Al 7/2013 Al-Ali et al. 8,911,377 B2 12/2014 Al-Ali 2013/0211214 Al 8/2013
Oisen 8,912,909 B2 12/2014 Al-Ali et al. 2013/0243021 Al 9/2013 Siskavich 8,921,699 B2 12/2014 Al-Ali et al. 2013/0253334 Al 9/2013 Al-A | | | | | 2013/0041591 | A1 | 2/2013 | Lamego | | 8,888,539 B2 11/2014 Al-Ali et al. 2013/0060147 A1 3/2013 Welch et al. 8,888,708 B2 11/2014 Diab et al. 2013/0096405 A1 4/2013 Garfio 8,892,180 B2 11/2014 Weber et al. 2013/0096936 A1 4/2013 Sampath et al. 8,897,847 B2 11/2014 Al-Ali 2013/0190581 A1 7/2013 Al-Ali et al. 8,909,310 B2 12/2014 Lamego et al. 2013/0197328 A1 8/2013 Diab et al. 8,911,377 B2 12/2014 Al-Ali 2013/0211214 A1 8/2013 Olsen 8,912,909 B2 12/2014 Al-Ali et al. 2013/0243021 A1 9/2013 Siskavich 8,920,317 B2 12/2014 Al-Ali et al. 2013/0253334 A1 9/2013 Siskavich 8,920,317 B2 12/2014 Al-Ali et al. 2013/0253334 A1 9/2013 Al-Ali et al. 8,921,699 B2 12/2014 Al-Ali et al. 2013/0296672 A1 11/2013 O'Neil et al. 8,922,382 B2 12/2014 Al-Ali et al. 2013/0317370 A1 11/2013 Dalvi et al. 8,929,964 B2 1/2015 Al-Ali et al. 2013/0324808 A1 12/2013 Al-Ali et al. | | | | | | | | | | 8,888,708 B2 11/2014 Diab et al. 8,892,180 B2 11/2014 Weber et al. 8,897,847 B2 11/2014 Al-Ali 2013/0190581 A1 7/2013 Al-Ali et al. 8,909,310 B2 12/2014 Al-Ali 2013/0197328 A1 8/2013 Diab et al. 8,911,377 B2 12/2014 Al-Ali 2013/0197328 A1 8/2013 Diab et al. 8,912,909 B2 12/2014 Al-Ali et al. 2013/0213214 A1 8/2013 Diab et al. 8,912,909 B2 12/2014 Al-Ali et al. 2013/0243021 A1 9/2013 Siskavich 8,920,317 B2 12/2014 Al-Ali et al. 2013/0253334 A1 9/2013 Siskavich 8,920,317 B2 12/2014 Al-Ali et al. 2013/0253334 A1 9/2013 Al-Ali et al. 8,921,699 B2 12/2014 Al-Ali et al. 2013/035334 A1 9/2013 Diab et al. 2013/0253334 A1 9/2013 Al-Ali et al. 2013/035334 A1 11/2013 Diab et al. 2013/035334 A1 11/2013 Diab et al. 2013/035334 A1 9/2013 Al-Ali et al. | | | | | | | | | | 8,892,180 B2 11/2014 Weber et al. 2013/0096936 A1 4/2013 Sampath et al. 8,897,847 B2 11/2014 Al-Ali 2013/0190581 A1 7/2013 Al-Ali et al. 8,909,310 B2 12/2014 Lamego et al. 2013/0197328 A1 8/2013 Diab et al. 8,911,377 B2 12/2014 Al-Ali 2013/0211214 A1 8/2013 Olsen 8,912,909 B2 12/2014 Al-Ali et al. 2013/0243021 A1 9/2013 Siskavich 8,920,317 B2 12/2014 Al-Ali et al. 2013/0253334 A1 9/2013 Al-Ali et al. 8,921,699 B2 12/2014 Al-Ali et al. 2013/0296672 A1 11/2013 O'Neil et al. 8,922,382 B2 12/2014 Al-Ali et al. 2013/0317370 A1 11/2013 Dalvi et al. 8,929,964 B2 1/2015 Al-Ali et al. 2013/0324808 A1 12/2013 Al-Ali et al. | | | | | 2013/0096405 | A1 | 4/2013 | Garfio | | 8,909,310 B2 12/2014 Lamego et al. 2013/0197328 A1 8/2013 Diab et al. 8,911,377 B2 12/2014 Al-Ali 2013/0211214 A1 8/2013 Olsen 8,912,909 B2 12/2014 Al-Ali et al. 2013/0243021 A1 9/2013 Siskavich 8,920,317 B2 12/2014 Al-Ali et al. 2013/0253334 A1 9/2013 Al-Ali et al. 8,921,699 B2 12/2014 Al-Ali et al. 2013/0296672 A1 11/2013 O'Neil et al. 8,922,382 B2 12/2014 Al-Ali et al. 2013/0317370 A1 11/2013 Dalvi et al. 8,929,964 B2 1/2015 Al-Ali et al. 2013/0324808 A1 12/2013 Al-Ali et al. | 8,89 | 92,180 B2 | 11/2014 | Weber et al. | | | | | | 8,911,377 B2 12/2014 Al-Ali 2013/0211214 A1 8/2013 Olsen 8,912,909 B2 12/2014 Al-Ali et al. 2013/0243021 A1 9/2013 Siskavich 8,920,317 B2 12/2014 Al-Ali et al. 2013/0253334 A1 9/2013 Al-Ali et al. 8,921,699 B2 12/2014 Al-Ali et al. 2013/0296672 A1 11/2013 O'Neil et al. 8,922,382 B2 12/2014 Al-Ali et al. 2013/0317370 A1 11/2013 Dalvi et al. 8,929,964 B2 1/2015 Al-Ali et al. 2013/0324808 A1 12/2013 Al-Ali et al. | | | | | | | | | | 8,912,909 B2 12/2014 Al-Ali et al. 2013/0243021 Al 9/2013 Siskavich 8,920,317 B2 12/2014 Al-Ali et al. 2013/0253334 Al 9/2013 Al-Ali et al. 8,921,699 B2 12/2014 Al-Ali et al. 2013/0296672 Al 11/2013 O'Neil et al. 8,922,382 B2 12/2014 Al-Ali et al. 2013/0317370 Al 11/2013 Dalvi et al. 8,929,964 B2 1/2015 Al-Ali et al. 2013/0324808 Al 12/2013 Al-Ali et al. | | | | | | | | | | 8,921,699 B2 12/2014 Al-Ali et al. 2013/0296672 A1 11/2013 O'Neil et al. 8,922,382 B2 12/2014 Al-Ali et al. 2013/0317370 A1 11/2013 Dalvi et al. 8,929,964 B2 1/2015 Al-Ali et al. 2013/0324808 A1 12/2013 Al-Ali et al. | 8,91 | 12,909 B2 | 12/2014 | Al-Ali et al. | 2013/0243021 | A1 | | | | 8,922,382 B2 12/2014 Al-Ali et al. 2013/0317370 Al 11/2013 Dalvi et al. 8,929,964 B2 1/2015 Al-Ali et al. 2013/0324808 Al 12/2013 Al-Ali et al. | | , | | | | | | | | 8,929,964 B2 1/2015 Al-Ali et al. 2013/0324808 A1 12/2013 Al-Ali et al. | | | | | | | | | | | | | | | | | 12/2013 | Al-Ali et al. | | | | | 1/2015 | Diab et al. | 2013/0331670 | A1 | 12/2013 | Kiani | #### (56) References Cited #### U.S. PATENT DOCUMENTS | 2013/0338461 A1 | 12/2013 | Lamego et al. | |------------------------------------|---------|--------------------| | 2014/0034353 A1 | 12/2013 | Al-Ali et al. | | 2014/0012100 A1 | 1/2014 | Al-Ali et al. | | 2014/0051953 A1 | 2/2014 | Lamego et al. | | 2014/0058230 A1 | 2/2014 | Abdul-Hafiz et al. | | 2014/0066783 A1 | 3/2014 | Kiani et al. | | 2014/0077956 A1 | 3/2014 | Sampath et al. | | 2014/0081100 A1 | 3/2014 | Muhsin et al. | | 2014/0081175 A1 | 3/2014 | Telfort | | 2014/0094667 A1 | 4/2014 | Schurman et al. | | 2014/0100434 A1 | 4/2014 | Diab et al. | | 2014/0114199 A1 | 4/2014 | Lamego et al. | | 2014/0120564 A1 | 5/2014 | Workman et al. | | 2014/0121482 A1 | 5/2014 | Merritt et al. | | 2014/0121483 A1 | 5/2014 | Kiani | | 2014/0127137 A1 | 5/2014 | Bellott et al. | | 2014/0129702 A1 | 5/2014 | Lamego et al. | | 2014/0135588 A1 | 5/2014 | Al-Ali et al. | | 2014/0142401 A1 | 5/2014 | Al-Ali et al. | | 2014/0163344 A1 | 6/2014 | Al-Ali | | 2014/0163402 A1 | 6/2014 | Lamego et al. | | 2014/0166076 A1 | 6/2014 | Kiani et al. | | 2014/0171763 A1 | 6/2014 | Diab | | 2014/0180038 A1 | 6/2014 | Kiani | | 2014/0180154 A1 | 6/2014 | Sierra et al. | | 2014/0194709 A1 | 7/2014 | Al-Ali et al. | | 2014/0194711 A1 | 7/2014 | Al-Ali | | 2014/0194766 A1 | 7/2014 | Al-Ali et al. | | 2014/0206963 A1 | 7/2014 | Al-Ali | | 2014/0200903 A1
2014/0213864 A1 | 7/2014 | Abdul-Hafiz et al. | | | | | | 2014/0243627 A1 | 8/2014 | Diab et al. | | 2014/0266790 A1 | 9/2014 | Al-Ali et al. | | 2014/0275808 A1 | 9/2014 | Poeze et al. | | 2014/0275835 A1 | 9/2014 | Lamego et al. | | 2014/0275871 A1 | 9/2014 | Lamego et al. | | 2014/0275872 A1 | 9/2014 | Merritt et al. | | 2014/0275881 A1 | 9/2014 | Lamego et al. | | 2014/0288400 A1 | 9/2014 | Diab et al. | | 2014/0303520 A1 | 10/2014 | Telfort et al. | | 2014/0316228 A1 | 10/2014 | Blank et al. | | 2014/0323825 A1 | 10/2014 | Al-Ali et al. | | 2014/0330092 A1 | 11/2014 | Al-Ali et al. | | 2014/0330098 A1 | 11/2014 | Merritt et al. | | 2014/0330099 A1 | 11/2014 | Al-Ali et al. | | 2014/0333440 A1 | 11/2014 | Kiani | | 2014/0336481 A1 | 11/2014 | Shakespeare et al. | | 2014/0343436 A1 | 11/2014 | Kiani | | | 1/2014 | Al-Ali et al. | | 2015/0018650 A1 | 1/2015 | Ai-Aii et ai. | # FOREIGN PATENT DOCUMENTS | EP | 0352923 | 1/1990 | |----|-------------|---------| | EP | 0645117 | 3/1995 | | EP | 0659384 | 6/1995 | | WO | WO 84/03032 | 8/1984 | | WO | WO 92/11803 | 7/1992 | | WO | WO 92/15955 | 9/1992 | | WO | WO 92/20273 | 11/1992 | | WO | WO 95/21567 | 8/1995 | | WO | WO 98/43071 | 10/1998 | ## OTHER PUBLICATIONS Edward Bedrosian, The Analytic Signal Representation of Modulating Waveforms (1962). Boualem Boashash, *Note on the Use of the Wigner Distribution for Time-Frequency Signal Analysis*, IEEE on Acoustics, Speech and Signal Processing, vol. 36, No. 9 (Sep. 1988). Boualem Boashash, Estimating and Interpreting the Instantaneous Frequency of a Signal—Part 1: Fundamentals, Proceedings of the IEEE, vol. 80, No. 4 (Apr. 1992). - Wukitsch, M.W., BA, et al. Pulse Oximetry: Analysis of Theory, Technology, and Practice, Journal of Clinical Monitoring, vol. 4, (1988), pp. 290-301. - U.S. Appl. No. 90/012,403, filed Jul. 23, 2012, requesting ex parte reexamination of U.S. Pat. No. 6,263,222, including accompanying Reexam Request, claim charts, and other documentation filed under 37 C.F.R. § 1.510 and 35 U.S.C. § 302. - U.S. Appl. No. 90/012,409, filed Aug. 17, 2012, requesting ex parte reexamination of U.S. Pat. No. 6,699,194, including accompanying Reexam Request, claim charts, and other documentation filed under 37 C.F.R. § 1.510 and 35 U.S.C. § 302. - U.S. Appl. No. 90/012,463, filed Sep. 5, 2012, requesting ex parte reexamination of of U.S. Pat. No. 7,215,984, including accompanying Reexam Request, claim charts, and other documentation filed under 37 C.F.R. § 1.510 and 35 U.S.C. § 302. - U.S. Appl. No. 90/012,532, filed Sep. 13, 2012, requesting ex parte reexamination of U.S. Pat. No. 7,499,835, including accompanying Reexam Request, claim charts, and other documentation filed under 37 C.F.R. § 1.510 and 35 U.S.C. § 302. - U.S. Appl. No. 90/012,534, filed Sep. 13, 2012, requesting ex parte reexamination of U.S. Pat. No. 7,962,188, including accompanying Reexam Request, claim charts, and other documentation filed under 37 C.F.R. § 1.510 and 35 U.S.C. § 302. - U.S. Appl. No. 90/012,538, filed Sep. 13, 2012, requesting ex parte reexamination of U.S. Pat. No. 7,377,899, including accompanying Reexam Request, claim charts, and other documentation filed under 37 C.F.R. § 1.510 and 35 U.S.C. § 302. - U.S. Appl. No. 90/012,541, filed Sep. 13, 2012, requesting ex parte reexamination of U.S. Pat. No. 7,899,507, including accompanying Reexam Request, claim charts, and other documentation filed under 37 C.F.R. § 1.510 and 35 U.S.C. § 302. - U.S. Appl. No. 90/012,542, filed Sep. 13, 2012, requesting ex parte reexamination of U.S. Pat. No. 8,180,420, including accompanying Reexam Request, claim charts, and other documentation filed under 37 C.F.R. § 1.510 and 35 U.S.C. § 302. - U.S. Appl. No. 90/012,543, filed Sep. 13, 2012, requesting ex parte reexamination of U.S. Pat. No. 6,850,787, including accompanying Reexam Request, claim charts, and other documentation filed under 37 C.F.R. § 1.510 and 35 U.S.C. § 302. - U.S. Appl. No. 90/012,546, filed Sep. 13, 2012, requesting ex parte reexamination of U.S. Pat. No. 7,438,683, including accompanying Reexam
Request, claim charts, and other documentation filed under 37 C.F.R. § 1.510 and 35 U.S.C. § 302. - U.S. Appl. No. 90/012,548, filed Sep. 13, 2012, requesting ex parte reexamination of U.S. Pat. No. 7,880,606, including accompanying Reexam Request, claim charts, and other documentation filed under 37 C.F.R. \S 1.510 and 35 U.S.C. \S 302. - U.S. Appl. No. 90/012,553, filed Sep. 13, 2012, requesting ex parte reexamination of U.S. Pat. No. 7,024,233, including accompanying Reexam Request, claim charts, and other documentation filed under 37 C.F.R. § 1.510 and 35 U.S.C. § 302. - U.S. Appl. No. 90/012,555, filed Sep. 13, 2012, requesting ex parte reexamination of U.S. Pat. No. 7,440,787, including accompanying Reexam Request, claim charts, and other documentation filed under 37 C.F.R. § 1.510 and 35 U.S.C. § 302. - U.S. Appl. No. 90/012,557, filed Sep. 13, 2012, requesting ex parte reexamination of U.S. Pat. No. 8,150,487, including accompanying Reexam Request, claim charts, and other documentation filed under 37 C.F.R. § 1.510 and 35 U.S.C. § 302. - U.S. Appl. No. 90/012,559, filed Sep. 13, 2012, requesting ex parte reexamination of U.S. Pat. No. 8,190,223, including accompanying Reexam Request, claim charts, and other documentation filed under 37 C.F.R. § 1.510 and 35 U.S.C. § 302. - U.S. Appl. No. 90/012,561, filed Sep. 14, 2012, requesting ex parte reexamination of U.S. Pat. No. 8,019,400, including accompanying Reexam Request, claim charts, and other documentation filed under 37 C.F.R. \S 1.510 and 35 U.S.C. \S 302. - U.S. Appl. No. 90/012,562, filed Sep. 14, 2012 requesting ex parte reexamination of U.S. Pat. No. 6,463,311, including accompanying Reexam Request, claim charts, and other documentation filed under 37 C.F.R. § 1.510 and 35 U.S.C. § 302. - U.S. Appl. No. 90/012,566, filed Sep. 14, 2012, requesting ex parte reexamination of U.S. Pat. No. 7,530,955, including accompanying #### (56) References Cited #### OTHER PUBLICATIONS Reexam Request, claim charts, and other documentation filed under 37 C.F.R. § 1.510 and 35 U.S.C. § 302. U.S. Appl. No. 90/012,567, filed Sep. 14, 2012, requesting ex parte reexamination of U.S. Pat. No. 6,684,090, including accompanying Reexam Request, claim charts, and other documentation filed under 37 C.F.R. § 1.510 and 35 U.S.C. § 302. U.S. Appl. No. 90/012,568, filed Sep. 14, 2012, requesting ex parte reexamination of U.S. Pat. No. 8,128,572, including accompanying Reexam Request, claim charts, and other documentation filed under 37 C.F.R. § 1.510 and 35 U.S.C. § 302. U.S. Appl. No. 90/012,699, filed Oct. 4, 2012, requesting ex parte reexamination of U.S. Pat. No. 6,002,952, including accompanying Reexam Request, claim charts, and other documentation filed under 37 C.F.R. § 1.510 and 35 U.S.C. § 302. U.S. Appl. No. 95/002,183, filed Sep. 12, 2012, requesting inter partes reexamination of U.S. Pat. No. 7,530,955, including accompanying Reexam Request, claim charts, and other documentation filed under 37 C.F.R. § 1.913 and 35 U.S.C. § 311. Blitt, Casey D., Monitoring in Anesthesia and Critical Care Medicine, (2d ed. 1990). Business Wire, "Mallinckrodt Announces the Nellcor N-395 Pulse Oximeter With Oxismart XL and SatSeconds," Oct. 7, 1999. Hanzo et al., "A Portable Multimedia Communicator Scheme", Multimedia Technologies and Future Applications: Proceedings of the IEEE International Symposium (1994). Maciej Niedzwiecki et al. "Smoothing of Discontinuous Signals: The Competitive Approach," *IEEE Transactions on Signal Processing*, vol. 43, No. 1, Jan. 1995, pp. 1-13. Steven W. Smith, The Scientist and Engineer's Guide to Digital Signal Processing, § 8 (1st ed. 1997). Declaration of Perry D. Oldham in Support of Masimo Opposition to Defendant's Motion for Summary Judgment of Invalidity and Noninfringement of U.S. Pat. No. 7,215,984, vol. 1, Doc. 556, Masimo Corporation v. Philips Electronics North America Corporation and Philips Medizin Systeme Böblingen GMBH, (District of Delaware, Case No. 1:09-cv-00080 (LPS/MPT) dated Sep. 28, 2012. (Redacted). Declaration of Perry D. Oldham in Support of Masimo's Opposition to Defendant's Motion for Summary Judgment of Invalidity and Noninfringement of U.S. Pat. No. 7,215,984, vol. 2, Doc. 558, Masimo Corporation v. Philips Electronics North America Corporation and Philips Medizin Systeme Böblingen GMBH, (District of Delaware, Case No. 1:09-cv-00080 (LPS/MPT) dated Sep. 28, 2012. (Redacted). Masimo Corporation's Answering Brief in Opposition to Defendant's Motion for Summary Judgment of Invalidity and Noninfringement of U.S. Pat. No. 7,215,984, Doc. 555, Masimo Corporation v. Philips Electronics North America Corporation and Philips Medizin Systeme Böblingen GMBH, (District of Delaware, Case No. 1:09-cv-00080 (LPS/MPT) dated Sep. 28, 2012. (Redacted). Philip's Opening Brief in Support of Defendant's Motion for Summary Judgment of Invalidity and Nonnigringement of U.S. Pat. No. 7,215,984, Doc. 442, *Masimo Corporation v. Philips Electronics North America Corporation and Philips Medizin Systeme Böblingen GMBH*, (District of Delaware, Case No. 1:09-cv-00080 (LPS/MPT) dated Aug. 21, 2012. (Redacted). Philip Defendant's Motion for Summary Judgment of Invalidity and Noninfringement of U.S. Pat. No. 7,215,984, Doc. 394, *Masimo Corporation v. Philips Electronics North America Corporation and Philips Medizin Systeme Böblingen GMBH*, (District of Delaware, Case No. 1:09-cv-00080 (LPS/MPT) dated Aug. 14, 2012. Reply Brief in Support of Defendants' Motion for Summary Judgment of invalidity and Noninfringement of U.S. Pat. No. 7,216,984, Doc. 609, Masimo Corporation v. Philips Electronics North America Corporation and Philips Medizin Systeme Böblingen GMBH, (District of Delaware, Case No. 1:09-cv-00080 (LPS/MPT) dated Oct. 26, 2012. (Redacted). Declaration of Gail Baura, Ph.D. in Support of Masimo's Opposition to Defendant's Motion for Summary Judgment of Invalidity of U.S. Pat. No. 7,215,984, Doc. 561, *Masimo Corporation v. Philips Electronics North America Corporation and Philips Medizin Systeme Böblingen GMBH*, (District of Delaware, Case No. 1:09-cv-00080 (LPS/MPT) dated Sep. 28, 2012. (Redacted). Declaration of Gail Baura, Ph.D. in Support of Masimo's Opposition to Defendant's Motion for Summary Judgment of Invalidity of U.S. Pat. No. 5,632,272, Doc. 554, Masimo Corporation v. Philips Electronics North America Corporation and Philips Medizin Systeme Böblingen GMBH, (District of Delaware, Case No. 1:09-cv-00080 (LPS/MPT) dated Sep. 28, 2012. (Redacted). Declaration of Perry D. Oldham in Support of Masimo Opposition to Defendant's Motion for Summary Judgment of Invalidity of U.S. Pat. No. 5,632,272, Doc. 553, Masimo Corporation v. Philips Electronics North America Corporation and Philips Medizin Systeme Böblingen GMBH, (District of Delaware, Case No. 1:09-cv-00080 (LPS/MPT) dated Sep. 28, 2012. (Redacted). Masimo Corporation's Answering Brief in Opposition to Defendant's Motion for Summary Judgment of Invalidity and Noninfringement of U.S. Pat. No. 5,632,272, Doc. 552, Masimo Corporation v. Philips Electronics North America Corporation and Philips Medizin Systeme Böblingen GMBH, (District of Delaware, Case No. 1:09-cv-00080 (LPS/MPT) dated Sep. 28, 2012. (Redacted). Opening Brief in Support of Defendants' Motion for Summary Judgment of Invalidity and Noninfringement of U.S. Pat. No. 5,632,272, Doc. 444, *Masimo Corporation v. Philips Electronics North America Corporation and Philips Medizin Systeme Böblingen GMBH*, (District of Delaware, Case No. 1:09-cv-00080 (LPS/MPT) dated Aug. 21, 2012. (Redacted). Defendants' Motion for Summary Judgment of Invalidity and Noninfringement of U.S. Pat. No. 5,632,272, Doc. 402, *Masimo Corporation v. Philips Electronics North America Corporation and Philips Medizin Systeme Böblingen GMBH*, (District of Delaware, Case No. 1:09-cv-00080 (LPS/MPT) dated Aug. 14, 2012. Reply Brief in Support of Defendants' Motion for Summary Judgment of Invalidity and Noninfringement of U.S. Pat. No. 5,632,272, Doc. 614, *Masimo Corporation v. Philips Electronics North America Corporation and Philips Medizin Systeme Böblingen GMBH*, (District of Delaware, Case No. 1:09-cv-00080 (LPS/MPT) dated Oct. 26, 2012 (Redacted). Declaration of Mohammed K. Diab in Support of Masimo's Oppositions to Defendants' Motions for Summary Judgment of Invalidity and Noninfringement of U.S. Pat. Nos. 5,632,272 and 7,215,984, Doc. 563, Masimo Corporation v. Philips Electronics North America Corporation and Philips Medizin Systeme Böblingen GMBH, (District of Delaware, Case No. 1:09-cv-00080 (LPS/MPT) dated Sep. 28, 2012 (Redacted). Declaration of Perry D. Oldham in Support of Masimo's Opposition to Defendant's Motion for Summary Judgment of Invalidity of U.S. Pat. No. 6,263,222, Doc. 550, Masimo Corporation v. Philips Electronics North America Corporation and Philips Medizin Systeme Böblingen GMBH, (District of Delaware, Case No. 1:09-cv-00080 (LPS/MPT) dated Sep. 28, 2012 (Redacted). Masimo Corporation's Answering Brief in Opposition to Defendants' Motion for Summary Judgment of Invalidity of U.S. Pat. No. 6,263,222, Doc. 549, Masimo Corporation v. Philips Electronics North America Corporation and Philips Medizin Systeme Böblingen GMBH, (District of Delaware, Case No. 1:09-cv-00080 (LPS/MPT) dated Sep. 28, 2012 (Redacted). Philips' Opening Brief in Support of Defendants' Motion for Summary Judgment of Invalidity of U.S. Pat. No. 6,263,222, Doc. 413, Masimo Corporation v. Philips Electronics North America Corporation and Philips Medizin Systeme Böblingen GMBH, (District of Delaware, Case No. 1:09-cv00080 (LPS/MPT) dated Aug. 14, 2012. Defendants' Motion for Summary Judgment of Invalidity of U.S. Pat. No. 6,263,222, Doc. 410, Masimo Corporation v. Philips Electronics North America Corporation and Philips Medizin Systeme Böblingen GMBH, (District of Delaware, Case No. 1:09-cv-00080 (LPS/MPT) dated Aug. 14, 2012. #### (56) References Cited #### OTHER
PUBLICATIONS Reply Brief in Support of Defendants' Motion for Summary Judgment of Invalidity of U.S. Pat. No. 6,263,222, Doc. 613, Masimo Corporation v. Philips Electronics North America Corporation and Philips Medizin Systeme Böblingen GMBH, (District of Delaware, Case No. 1:09-cv-00080 (LPS/MPT) dated Oct. 26, 2012 (Redacted). Declaration of Gail Baura, Ph.D. in Support of Masimo's Opposition to Defendant's Motion for Summary Judgment of Invalidity of U.S. Pat. No. 6,263,222, Doc. 551, *Masimo Corporation v. Philips Electronics North America Corporation and Philips Medizin Systeme Böblingen GMBH*, (District of Delaware, Case No. 1:09-cv-00080 (LPS/MPT) dated Sep. 28, 2012. (Redacted). V. Ya. Volkov, "Enhancing the Reliability and Accuracy of Pulse Oximetry with a Built-In Expert System," *Biomedical Engineering*, vol. 27, No. 3 (May-Jun. 1993) (translated from Russian). Declaration of Gail Baura, Ph.D. in Support of Masimo's Opposition to Defendant's Motion for Summary Judgment of Invalidity of U.S. Pat. No. 6,699,194, Doc. 508, Masimo Corporation v. Philips Electronics North America Corporation and Philips Medizin Systeme Böblingen GMBH, (District of Delaware, Case No. 1:09-cv-00080 (LPS/MPT) dated Sep. 21, 2012. Opening Brief in Support of Defendants' Motion for Summary Judgment of Invalidity of U.S. Pat. No. 6,699,194, Doc. 445, Masimo Corporation v. Philips Electronics North America Corporation and Philips Medizin Systeme Böblingen GMBH, (District of Delaware, Case No. 1:09-cv-00080 (LPS/MPT) dated Aug. 21, 2012. (Redacted). Defendants' Motion for Summary Judgment of Invalidity of U.S. Pat. No. 6,699,194, Doc. 406, *Masimo Corporation v. Philips Electronics North America Corporation and Philips Medizin Systeme Böblingen GMBH*, (District of Delaware, Case No. 1:09-cv-00080 (LPS/MPT) dated Aug. 14, 2012. Reply Brief in Support of Defendants' Motion for Summary Judgment of Invalidity of U.S. Pat. No. 6,699,194, Doc. 610, Masimo Corporation v. Philips Electronics North America Corporation and Philips Medizin Systeme Böblingen GMBH, (District of Delaware, Case No. 1:09-cv-00080 (LPS/MPT) dated Oct. 26, 2012. (Redacted). Declaration of Perry D. Oldham in Support of Masimo Opposition to Defendant's Motion for Summary Judgment of Invalidity of U.S. Pat. No. 6,699,194, Doc. 548, *Masimo Corporation v. Philips Electronics North America Corporation and Philips Medizin Systeme Böblingen GMBH*, (District of Delaware, Case No. 1:09-cv-00080 (LPS/MPT) dated Sep. 28, 2012. (Redacted). Scharf, "Optimization of Portable Pulse Oximetry Through Fourier Analysis" Scharf, "Pulse Oximetry Through Spectral Analysis". Rusch, "Master's Thesis," Graduate School University of South Florida, Tampa, Florida (Dec. 1994). Philips' Response to Masimo Corporation's Objections to the Report and Recommendation Regarding Claim Construction, Doc. 230, Masimo Corporation v. Philips Electronics North America Corporation and Philips Medizin Systeme Böblingen GMBH, (District of Delaware, Case No. 1:09-cv-00080 (LPS/MPT) dated Mar. 24, 2011 Masimo Corporation's Objections to the Report and Recommendation Regarding Claim Construction, Doc. 219, *Masimo Corporation v. Philips Electronics North America Corporation and Philips Medizin Systeme Böblingen GMBH*, (District of Delaware, Case No. 1:09-cv-00080 (LPS/MPT) dated Mar. 8, 2011. Defendants' Objections to Magistrate Judge Thynge's Report and Recommendation Regarding Claim Construction, Doc. 218, Masimo Corporation v. Philips Electronics North America Corporation and Philips Medizin Systeme Böblingen GMBH, (District of Delaware, Case No. 1:09-cv-00080 (LPS/MPT) dated Mar. 7, 2011. Report and Recommendation Regarding Claim Construction, Doc. 210, Masimo Corporation v. Philips Electronics North America Corporation and Philips Medizin Systeme Böblingen GMBH, (District of Delaware, Case No. 1:09-cv-00080 (LPS/MPT) dated Feb. 18, 2011. Memorandum Order Adopting Report and Recommendation Regarding Claim Construction, Doc. 319, Masimo Corporation v. Philips Electronics North America Corporation and Philips Medizin Systeme Böblingen GMBH, (District of Delaware, Case No. 1:09-cv-00080 (LPS/MPT) dated Jan. 17, 2011. Masimo Corporation's Response to Defendants' Objections to the Report and Recommendation Regarding Claim Construction, Doc. 232, Masimo Corporation v. Philips Electronics North America Corporation and Philips Medizin Systeme Böblingen GMBH, (District of Delaware, Case No. 1:09-cv-00080 (LPS/MPT) dated Mar. 24, 2011. V. Ya. Volkov, "Principles and Algroithms for Determining Blood Oxygenation Level by Pulse Oximetry," *Biomedical Engineering*, vol. 27, No. 1 (Jan.-Feb. 1993) (translated from Russian). Supplemental Expert Report of Dr. Robert Stone Regarding the invalidity of Masimo's Patents-in-Suit (U.S. Pat. No. 5,632,272, U.S. Pat. No. 6,263,222, U.S. Pat. No. 7,215,984, and U.S. Pat. No. 6,699,194, Masimo Corporation v. Philips Electronics North America Corporation and Philips Medizin Systeme Böblingen GMBH, (District of Delaware, Case No. 1:09-cv-00080 (LPS/MPT) dated Mar. 18, 2012. Appendixes for Expert Report of Dr. Robert Stone Regarding the invalidity of Masimo's Patents-in-Suit (U.S. Pat. No. 5,632,272, U.S. Pat. No. 6,263,222, U.S. Pat. No. 7,215,984, and U.S. Pat. No. 6,699,194, Masimo Corporation v. Philips Electronics North America Corporation and Philips Medizin Systeme Böblingen GMBH, (District of Delaware, Case No. 1:09-cv-00080 (LPS/MPT) dated Mar. 7, 2012. Expert Report of Dr. Robert Stone Regarding the invalidity of Masimo's Patents-in-Suit (U.S. Pat. No. 5,632,272, U.S. Pat. No. 6,263,222, U.S. Pat. No. 7,215,984, and U.S. Pat. No. 6,699,194, Masimo Corporation v. Philips Electronics North America Corporation and Philips Medizin Systeme Böblingen GMBH, (District of Delaware, Case No. 1:09-cv-00080 (LPS/MPT) dated Mar. 7, 2012. Revised Expert Report of Dr. Robert Stone Regarding the invalidity of Masimo's Patents-in-Suit (U.S. Pat. No. 5,632,272, U.S. Pat. No. 6,263,222, U.S. Pat. No. 7,215,984, and U.S. Pat. No. 6,699,194, Masimo Corporation v. Philips Electronics North America Corporation and Philips Medizin Systeme Böblingen GMBH, (District of Delaware, Case No. 1:09-cv-00080 (LPS/MPT) dated Mar. 7, 2012. Wukitsch, et al., "Knowing Your Monitoring Equipment," Journal of Clinical Monitoring, vol. 4, No. 4 (Oct. 1998). Second Amended Complaint for Patent Infringement, Doc. 42, *Masimo Corporation v. Philips Electronics North America Corporation and Philips Medizin Systeme Böblingen GMBH*, (District of Delaware, Case No. 1:11-cv-00742 (LPS/MPT) dated Apr. 25, 2012. Masimo's Answer to Philips' Counterclaims, Doc. 28, Masimo Corporation v. Philips Electronics North America Corporation and Philips Medizin Systeme Böblingen GMBH, (District of Delaware, Case No. 1:11-cv-00742 (LPS/MPT) dated Dec. 30, 2011. Defendants' Answer and Philips Electronics North America Corp.'s Counterclaims to Masimo's First Amended Complaint, Doc. 11, Masimo Corporation v. Philips Electronics North America Corporation and Philips Medizin Systeme Böblingen GMBH, (District of Delaware, Case No. 1:11-cv-00742 (LPS/MPT) dated Nov. 7, 2011. Masimo's Answer to Philips' Counterclaims to Masimo's Second Amended Complaint, Doc. 358, Masimo Corporation v. Philips Electronics North America Corporation and Philips Medizin Systeme Böblingen GMBH, (District of Delaware, Case No. 1:11-cv-00742 (LPS/MPT) dated Jun. 4, 2012. Defendants' Answer and Philips Electronics North America Corp.'s Counterclaims to Masimo's Second Amended Complaint, Doc. 43, *Masimo Corporation v. Philips Electronics North America Corporation and Philips Medizin Systeme Böblingen GMBH*, (District of Delaware, Case No. 1:11-cv-00742 (LPS/MPT) dated May 11, 2012. ^{*} cited by examiner FIG. 5A Apr. 18, 2017 Apr. 18, 2017 FIG. 11 Apr. 18, 2017 COMPLEX CORRELATION NORMALIZED VEERSION FIG. 1 ## SYSTEMS AND METHODS FOR DETERMINING BLOOD OXYGEN SATURATION VALUES USING COMPLEX NUMBER ENCODING #### REFERENCE TO RELATED APPLICATIONS The present application claims priority benefit under 35 U.S.C. §120 to, and is a continuation of, U.S. patent application Ser. No. 13/896,731, filed May 17, 2013, entitled 10 "Systems and Methods for Determining Blood Oxygen Saturation Values Using Complex Number Encoding," which is a continuation of U.S. patent application Ser. No. 12/248,868, filed Oct. 9, 2008, now U.S. Pat. No. 8,447,374, entitled "Systems and Methods for Determining Blood Oxygen Saturation Values Using Complex Number Encoding," which is a continuation of U.S. patent application Ser. No. 11/288,812, filed Nov. 28, 2005, now U.S. Pat. No. 7,440, 787, entitled "Systems and Methods for Determining Blood Oxygen Saturation Values Using Complex Number Encod- 20 ing," which is a continuation of U.S. patent application Ser. No. 10/727,348, filed Dec. 3, 2003, now U.S. Pat. No. 6,970,792, entitled "Systems and Methods for Determining Blood Oxygen Saturation Values Using Complex Number Encoding," which claims priority benefit under 35 U.S.C. 25 §119(e) from U.S. Provisional Application No. 60/430,834, filed Dec. 4, 2002, entitled "Systems and Methods for Determining Blood Oxygen Saturation Values Using Complex Number Encoding." The present application hereby incorporates the foregoing disclosures herein by reference in 30 their entirety. #### FIELD OF THE INVENTION The present invention relates to the field of pulse photometery. More specifically, the invention relates to calculating continuous saturation values using complex number analysis. ### BACKGROUND OF THE INVENTION Pulse photometry is a noninvasive technique for measuring blood analytes in living tissue. In this technique, multiple light sources emit light of differing wavelengths, which is transmitted through or reflected from a vascular bed. One 45 or more photodetectors then detect the transmitted or reflected light as an optical signal. As the photons propagate through the tissue, they are subjected to
random absorption and scattering processes due to the nonhomogeneous nature of the tissue. These effects manifest themselves as a loss of 50 energy in the optical signal, and are generally referred to as bulk loss. In addition to bulk loss, the optical signal is modulated by the flow of arterial blood into the vascular bed. Moreover, the movement of venous blood into or out of the tissue, local tissue compression and local muscle move- 55 ments super-impose yet another modulation on the optical signal, usually of lower frequency than the arterial flow. For example, FIG. 1 illustrates detected optical signals that include the foregoing attenuation, arterial flow modulation, and low frequency modulation. Each optical signal, with its 60 combined attenuation and modulations, e.g., each combined optical signal, is generally referred to as a photoplethysmograph (photopleth.) Pulse oximetry is a special case of pulse photometry where the oxygenation of arterial blood is sought in order to 65 estimate the state of oxygen exchange in the body. In order to calculate the oxygen saturation of arterial blood, two 2 wavelengths of light, e.g. Red, at about 660 nm, and Infrared, at about 900 nm, are used to calculate the ratio of two dominant hemoglobin components, oxygenated hemoglobin (HBO₂) and deoxygenated hemoglobin (HB). The detected optical signals, which correspond to the Red and Infrared wavelengths, are first normalized in order to balance the effects of unknown source intensity as well as unknown bulk loss at each wavelength. The arterial pulses are then isolated by filtering each normalized signal, where a high pass or a band-pass filter takes advantage of the typically higher frequency of the pulsatile arterial blood, hence the name pulse oximetry. This normalized and filtered signal is referred to as the AC component and is typically sampled with the help of an analog to digital converter with a rate of about 30 to about 100 samples/second. For example, FIG. 2 illustrates the optical signals of FIG. 1 after they have been normalized and bandpassed. In order to estimate blood oxygenation, a (Red/Infrared) ratio is calculated by dividing the strength of the Red AC (RdAC) by the corresponding strength of the Infrared AC (IrAC). The (RdAC/IrAC) ratio is then generally plugged into an empirical calibration curve equation that relates it to blood oxygenation. For example, reference can be made to Japanese Patent No. Sho 50/1975-128387, issued to Aoyagi, entitled "Optical Type Blood Measuring Equipment." The arterial blood flow generally has a higher fundamental frequency than other components of the photopleth, however, there are cases where the two frequencies may overlap. One such example is the effect of motion artifacts on the optical signal, which is described in detail in U.S. Pat. No 6,157,850, issued to Diab et al., entitled "Signal Processing Apparatus." Another effect occurs whenever the venous component of the blood is strongly coupled, mechanically, with the arterial component. This condition leads to a venous modulation of the optical signal that has the same or similar frequency as the arterial one. Such conditions are generally difficult to effectively process because of the overlapping effects. As described in the Aoyagi patent, the strength of each AC 40 waveform may be estimated by measuring its size through, for example, a peak-to-valley subtraction, by a root mean square (RMS) calculations, integrating the area under the waveform, or the like. These calculations are generally least averaged over one or more arterial pulses. It is desirable, however, to calculate instantaneous ratios (RdAC/IrAC) that can be mapped into corresponding instantaneous saturation values, based on the sampling rate of the photopleth. However, such calculations are problematic as the AC signal nears a zero-crossing where the signal to noise ratio (SNR) drops significantly. For example, dividing two signals with low SNR values can render the calculated ratio unreliable, or worse, can render the calculated ratio undefined, such as when a near zero-crossing area causes division by or near zero. To try to avoid division by zero, the Ohmeda Biox pulse oximeter calculated the small changes between consecutive sampling points of each photopleth in order to get instantaneous saturation values. FIG. 3 illustrates various techniques used to try to avoid the foregoing drawbacks related to zero or near zero-crossing, including the differential technique attempted by the Ohmeda Biox. Note that Ohmeda's differential technique is equivalent to a calculation over a derivative of the photopleth, and the derivative has the same low SNR problem whenever a flattened section of the photopleth is used in the ratios calculations. For example, the derivative will have a zero or near zero value and the RdAC/IrAC ratio will become unreliable or undefined, even in a substantially noise free signal. For example, FIG. 4 illustrates the derivative of the IrAC photopleth plotted along with the photopleth itself. As shown in FIG. 4, the derivative is even more prone to zero-crossing than the original photopleth as it crosses the zero line more often. Also, as mentioned, the derivative of 5 a signal is often very sensitive to electronic noise. For example, according to "Pulse Oximetry: Analysis of Theory, Technology, and Practice." Journal of Clinical Monitoring. Vol. 4, Oct. 1988, a published paper by the designers of the Ohmeda Biox, the calculated instantaneous saturations over some sections of the photopleth can be off by more than 50 percent (0/0) from the real value over a time as short as 1/10th of a second. As the designers described in their paper, this result is clearly an artifact of the signal processing technique employed in the Biox pulse oximeter since the blood saturation value can not change by that amount in 1/10th of a Because of some of the foregoing drawbacks associated with the determination of instantaneous or point-by-point saturation from RdAC/IrAC ratios, designers now typically 20 unequally weigh the calculated instantaneous saturation values over each photopleth, even when the photopleth is substantially noise free, with the consequence that a significant number of saturation values receive insignificant weights. This is tantamount to filtering out or ignoring valid 25 signal data during the troublesome sections described above. #### SUMMARY OF THE INVENTION The result of the foregoing drawbacks is that the previous 30 attempts fail to determine a stream of point-by-point saturation values. However, it is noteworthy that the sensitivity of the ratio calculation near a zero-crossing section of the waveform is not intrinsic to the photopleth itself, but rather an artifact of passing the detected signal through a high-pass 35 FIG. 17. filter. Accordingly, an aspect of the present invention includes a method of determining continuous and reliable calculations of the (RdAC/IrAC) ratio for each sampling point without concern for zero-crossing areas. As discussed in the foregoing and disclosed in the following, such deter- 40 mination of continuous ratios is very advantageous, especially in cases of venous pulsation, intermittent motion artifacts, and the like. Moreover, such determination is advantageous for its sheer diagnostic value. For purposes of summarizing the invention, certain 45 aspects, advantages and novel features of the invention have been described herein. Of course, it is to be understood that not necessarily all such aspects, advantages or features will be embodied in any particular embodiment of the invention. # BRIEF DESCRIPTION OF THE DRAWINGS A general architecture that implements the various features of the invention will now be described with reference tions are provided to illustrate embodiments of the invention and not to limit the scope of the invention. - FIG. 1 illustrates a photopleths including detected Red and Infrared signals. - FIG. 2 illustrates the photopleths of FIG. 1, after it has 60 been normalized and bandpassed. - FIG. 3 illustrates conventional techniques for calculating strength of one of the photopleths of FIG. 2. - FIG. 4 illustrates the IrAC photopleth of FIG. 2 and its derivative. - FIG. 4A illustrates the photopleth of FIG. 1 and its Hilbert transform, according to an embodiment of the invention. - FIG. 5 illustrates a block diagram of a complex photopleth generator, according to an embodiment of the invention. - FIG. 5A illustrates a block diagram of a complex maker of the generator of FIG. 5. - FIG. 6 illustrates a polar plot of the complex photopleths - FIG. 7 illustrates an area calculation of the complex photopleths of FIG. 5. - FIG. 8 illustrates a block diagram of another complex photopleth generator, according to another embodiment of the invention. - FIG. 9 illustrates a polar plot of the complex photopleth of FIG. 8. - FIG. 10 illustrates a three-dimensional polar plot of the complex photopleth of FIG. 8. - FIG. 11 illustrates a block diagram of a complex ratio generator, according to another embodiment of the inven- - FIG. 12 illustrates complex ratios for the type A complex signals illustrated in FIG. 6. - FIG. 13 illustrates complex ratios for the type B complex signals illustrated in FIG. 9. - FIG. 14 illustrates the complex ratios of FIG. 13 in three (3) dimensions. - FIG. 15 illustrates a block diagram of a complex correlation generator, according to another embodiment of the invention. - FIG. 16 illustrates complex ratios generated by the complex ratio generator of FIG. 11 using the complex signals generated by the generator of FIG. 8. - FIG. 17 illustrates complex correlations generated by the complex correlation generator of FIG. 15. - FIG. 18 illustrates the square root of the magnitude of the complex ratios of FIG. 16 vs. the complex correlations of - FIG. 19 illustrates a plot of the instantaneous saturation of the data used to generate the complex ratios shown
in FIG. 12, as well as the corresponding complex photopleth from which the saturation was calculated. - FIG. 20 illustrates an expanded view of the saturation distribution results of FIG. 19. - FIGS. 21 and 22 illustrate Infrared and Red photopleths, respectively, modulated by venous pulsation. - FIG. 23 illustrates an instantaneous saturation which highlights a large spread of values over one photopleth, as compared to that of FIG. 19 and FIG. 20. - FIG. 24 illustrates a histogram of the distribution of the instantaneous saturation values of FIG. 23. - FIGS. 25 and 26 illustrate photopleth signals that are 50 corrupted by motion artifacts. - FIG. 27 illustrates a polar plot for type A complex waveforms generated using the photopleths of FIGS. 25 and - FIG. 28 illustrates a polar plot for type B complex to the drawings. The drawings and the associated descrip- 55 waveforms generated using the photopleths of FIGS. 25 and - FIG. 29 illustrates the complex ratios of FIG. 27 after being filtered, according to embodiments of the invention. - FIG. 30 illustrates a histogram of the filtered saturation points of FIG. 29. - FIG. 31 illustrates plots of unfiltered instantaneous saturation values generated from the photopleths of FIGS. 25 and 26, as well as the phase filtered saturation values of FIGS. 29 and 30. - FIG. 32 illustrates magnitudes of complex frequency ratios calculated from the fundamental and harmonics of the photopleths of FIG. 2. FIG. 33 illustrates frequency transformed photopleths and phases of the corresponding ratios. FIG. 34 illustrates the polar plot of the complex frequency ratios of FIG. 32 and FIG. 33. # DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT Complex numbers were generally invented/discovered in the 1500's by Galiermo Cardano in Italy as he was strug- 10 gling to solve a general third order polynomial equation. Later, Argand suggested that each complex number may be represented as a point in a plane where its imaginary part is plotted on the Y-axis and its real part on the X-axis, this is referred to as the Cartesian form of a complex number. An 15 alternate representation of complex numbers is called the polar form where a magnitude and an angle can designate a unique point in the Argand plane, hence representing a complex number. Although mathematicians at that time looked at complex numbers with great suspicion, it turned 20 out that they were useful for the general solutions of polynomial equations and applicable in such diverse fields as quantum mechanics to describe the state of elementary particles. In the field of electrical engineering, students learn that 25 circuit analysis, under alternating voltage conditions, can be significantly simplified if the concept of complex currents and voltages is introduced. When a voltage is applied to an electrical element, a current is caused to pass through it. Dividing the applied voltage by the corresponding current 30 gives the resistance of the electrical element. In the complex domain, dividing the complex voltage by the complex current give rise to a complex form of resistance called "impedance," which is represented again by a complex number. The real part of the impedance is the resistance 35 while the complex part is related to capacitance and inductance. The complex part affects the phase, lead or lag, of the driving signals. It can be shown that the response of a linear system to a sinusoidal excitation is a sinusoid with the same frequency but generally of different amplitude and phase. A 40 resistor element, for example, affects the amplitude only, whereas a capacitor or an inductor affects the phase. A combination of resistors, capacitors and/or inductors can affect the amplitude as well as the phase of the driving excitation and are considered examples of a linear system. 45 Since each complex number consists of amplitude and phase, it is natural that they be used to encode the amplitude and phase and track their evolution throughout a linear system. Therefore, when a linear system is driven by a complex excitation, its output will be the same complex 50 input multiplied by a complex scaling factor that scales its amplitude appropriately and adds a certain phase in accordance with the rules of complex multiplication. Note that the phase in this context is a relative one between two fundamental variables of the system, e.g. for an electrical circuit 55 they might be voltage and current at a certain node of the circuit, or output voltage and input voltage, or the like. In pulse oximetry, there is no direct analog for voltages or currents. Generally, pulse oximetry deals with two highly correlated optical signals, e.g., the Red and Infrared signals, 60 with fundamentally little or no discernible phase difference. Thus, encoding those signals as complex numbers seems to add little or no value to the signal processing. However, there are several conditions under which a variable phase difference may be introduced between the Red and Infrared 65 signals. For example, motion artifacts create a condition where the sensor may decouple from the skin. In such a 6 condition, the detected optical signals will have components that depend on the refraction through the sensor material itself instead of the wavelength of light, as well as the desired components that have traveled through the vascular bed. Venous pulsation creates another condition, which, as disclosed in the foregoing, affects the phase difference. Under the foregoing conditions where the phase is changing, use of complex number encoding provides advantages in signal processing, including providing the ability to continuously monitor the arterial saturation vs. time without concern about signal zero-crossing, as disclosed in the following. A Hilbert Transformer is a signal processing technique that takes a real signal and converts it into a related signal which has its frequency components shifted by $\pi/2$ radians for positive frequencies, and by $-\pi/2$ radians for negative frequencies, without affecting their respective amplitudes. The book, "Theory and Application of Digital Signal Processing, Prentice-Hall, Inc.," by Rabiner and Gold, introduces the subject. Formation of a complex signal is accomplished by considering the original signal itself as the real part of a complex signal and the output of the Hilbert Transformer as the imaginary part of the same complex signal. Such signals are generally referred to as an "analytical signal" in the signal processing field because the magnitudes of its negative frequencies are equal to zero. In the context of pulse photometry, we shall refer to such a complex signal as complex photopleth or complex AC. It is noteworthy that the prior methodology of seeking a derivative of a signal shifts that signal's components by $\pi/2$ radians, similar to the Hilbert transform. However, the derivative of a signal also multiplies each corresponding amplitude by the value of the radian frequency ω , thus magnifying the signal's frequency components as the components increase in frequency. Thus, the derivative is often more sensitive to electronic noise. In contrast, the Hilbert Transformer generally has a flat response with respect to frequency. However, a skilled artisan will recognize other transforms, derivatives, or the like, can be used to encode the imaginary part of the complex photopleth. When the foregoing complex encoding is applied to both RdAC and IrAC photopleths, as shown in a complex photopleth generator of FIG. 5, then both complex RdAC and IrAC are in phase. As shown in FIG. 5, the complex photopleth generator 500 includes one or more log filters 502, one or more high pass filters 504, one or more Hilbert transformers 506, and one or more complex makers 508. The log and high pass filter 502 and 508 generally normalize and filter the signals, as disclosed in the foregoing with reference to FIG. 2. The Hilbert transformers 506 converts the real signal into related signals shifted by $\pi/2$ and $-\pi/2$ radians, also as disclosed in the foregoing. The complex makers 508 combine the output of the Hilbert transformers 506 with the input of the Hilbert transformers 506 to generate complex in phase photopleths, generally referred to herein as type "A" complex signals, as shown in FIG. 5A. FIGS. 6 and 7 illustrate polar plots of the complex photopleths generated from the generator 500 of FIG. 5. FIG. 8 illustrates a complex photopleth generator 800, according to another embodiment of the invention. As shown in FIG. 8, the generator 800 includes the one or more log filters 502, the one or more high pass filters 504, the one or more Hilbert transformers 506, and the one or more complex makers 508 disclosed with respect to FIG. 5. However, in the generator 800, the Hilbert transformer 506 accepting the exemplary Red signal encodes the real components of the RdAC signal rather than the complex com- ponents. Thus, the generator 800 of FIG. 8 generates a complex photopleth, generally referred to herein as type "B" complex signals. FIGS. 9 and 10 illustrate polar plots of the complex photopleths generated from the generator 800 of FIG. 8. Note that as time progresses, the locus of the 5 complex points rotates around the origin but does not pass through it, regardless of type A or type B complex signals. Accordingly, the strength of each of the foregoing AC photopleth complex signals can be encoded in their respective magnitudes, which is the length between the origin and 10 any point on the complex waveform in FIGS. 6, 7, 9 and 10. The morphology of the complex signals depend on the condition of the subject, such as, for example, age, blood pressure, arterial impedance, posture, or the like. Based on the foregoing disclosure, the complex photop- 15 leths of FIGS. 6, 7, 9 and 10 can be classified with techniques like the "Slant Line Transform" or other classification techniques available in the field of image recognition or the
like. Such classification techniques can be advantageously employed to help reject photopleths that are corrupted by 20 noise, which can be an invaluable during episodes of motion artifacts. #### Generating Complex Ratios FIG. 11 illustrates a complex ratio generator 1100 for generating what will generally be referred to as the "com- 25 plex ratio." The complex ratio is a point-wise complex division of type A or type B RdAC and IrAC complex photopleth signals. The magnitude of each division carries along with it the conventional (RdAC/IrAC) ratio, in addition, its phase encodes the angle variation between the Red 30 and Infrared signals, which as disclosed in the foregoing, can generally be equal to zero for undisturbed signals. Different plots in the complex plane result depending upon whether type A or type B complex waveforms are used to generate the complex ratios. The different plots also enable 35 or suggest different types of signal processing, examples of which are disclosed as follows. For example, when the arterial saturation is constant and type A complex waveforms are generated, the complex ratio plot in the complex plane looks like a fuzzy point very close 40 to the real axis, as shown in FIG. 12. This is remarkable for it indicates, unlike previous techniques, that the instantaneous ratios over one or several photopleths are nearly constant throughout, which matches the input signal data, i.e., that the saturation is constant. FIG. 19 illustrates a plot 45 of the instantaneous saturation vs. time of the data used to generate the complex ratios shown in FIG. 12, as well as the corresponding photopleth from which the saturation was calculated. Note that the saturation is generally calculated from the magnitudes of the complex ratios vs. time. Also, 50 FIG. 20 illustrates that the maximum deviation from the mean value of the saturation is less than about 0.5 percent (%), which compares favorably to the more than about 50 percent (%) variations calculated using the Biox algorithm. Moreover, FIG. 20 illustrates that the standard deviation of 55 the saturation is a mere about 0.18 percent (%). These results clearly and advantageously indicate that weighing or filtering is not needed to utilize the data, and that all points in the photopleth can be useful in the subsequent analysis. FIG. 13 is a plot of the complex ratios generated by the 60 photopleths used to generate FIG. 12, but with type B complex waveforms. As shown in FIG. 13, the constant saturation translated into a circle of fixed radius in the complex plane. A myriad of mapping techniques available in the field of complex analysis can be brought to bear to help 65 analyze this type of signal. For example, the logarithm function may be used to map a circle in the complex plane into a line in the same complex plane. FIG. 14 depicts a 3D plot of complex ratios vs. time, where time is plotted along the vertical 'Z' axis. As shown in FIG. 14, a constant ratio, i.e. constant saturation, is reflected as a uniform helix. Generating Confidence Measures Normally, each of the instantaneous complex ratio values are valid and reliable. However, certain physiological or patient motion conditions may render a some or all of the calculated ratios unusable. Therefore, it is desirable to provide confidence measures by which such unreliable points may be discarded, filtered or corrected. Toward that end, FIG. 15 illustrates a complex correlation generator 1500, which includes one or more conjugate generators 1502, one or more signal multipliers 1504, signal adders 1506 and signal dividers 1508. As shown in FIG. 15, the complex RdAC and the complex IrAC are input into the generator 1502. The complex RdAC is multiplied by the conjugate of the complex IrAC. This product is divided by the sum of the complex IrAC multiplied with its conjugate, and the product of the complex RdAC and its conjugate. The resulting signal is then multiplied by the scalar two (2) to form a measure of the complex correlation, such as, for example, a complex confidence number associated with each calculated complex ratio. This confidence may be used to gate or preferentially weigh each corresponding complex ratio in a filtering technique to provide more reliable saturation values. For example, FIG. 16 depicts a plot of instantaneous complex ratios calculated over several seconds and FIG. 17 depicts the instantaneous complex correlations associated with the calculated complex ratios. FIG. 18 depicts the joint relationship between the calculated complex ratios of FIG. 16 and associated the complex correlation of FIG. 17. Note that a certain correlation threshold may be established below which all data point can be rejected, thereby advantageously enhancing the final saturation estimation. Note that in FIG. 18, all the data points are acceptable. Situations where not all data points are acceptable, e.g. abnormal waveforms or motion artifacts, will be disclosed in the following. The phase of the instantaneous complex ratios may also be used to assign a confidence measure to each complex ratio value. Typically the phase value should be very close to zero in the case of complex ratios generated from type A complex waveforms, as shown in FIG. 12. However, example of the use of the phase in the filtering of unreliable complex ratios under the effects of motion artifacts will also be discussed in the following. Implementing Filtering Techniques Once the complex waveforms or their corresponding instantaneous complex ratios or saturation values are available, a myriad of linear, nonlinear and statistical filtering techniques may be applied to reliably estimate the blood saturation values. For example, when simple averaging is desired, the areas of the complex photopleth waveforms shown in FIG. 6 can be calculated over a certain span of time or integral number of pulses. The ratio between two values corresponding to the Red and Infrared waveforms' areas is calculated, the result of which can then be used to calculate the blood saturation value. Note that this is the analog of integrating the area of the Red and Infrared photopleths shown in FIG. 2 then taking their ratios. FIG. 3 shows an example of area integration of one real waveform. For the case of a complex waveform the area can be estimated by summing the individual areas of triangles that constitute the complex waveform, as shown in FIG. 7. Introductory calculus textbooks may be consulted on the subject of area integration. This technique does not require the use of complex ratios, rather straightforward real number division of waveform areas can be used. Another powerful filtering technique takes advantage of the abundance of ratios values available over short period of time. For example, the continuous stream of instantaneous 5 ratio or saturation values can be fed into a weighing filter along with their associated confidence values. The filter can then discard or appropriately weigh the corresponding value of the ratio or the saturation. The high number of values, e.g., 62.5 values per second in the present embodiment, 10 available to the filter makes it more likely that some of them will be within an acceptable limit despite the affect of disturbances or noise. Statistical techniques such as frequency distribution analysis can further be used alone or in combination with the 15 previous techniques to estimate the true blood saturation values. Exemplary techniques where the statistics of the distribution of the ratio or saturation values can be used to extract a more accurate estimation of the true saturation value, as disclosed in the following. Managing Abnormal Waveforms Under certain physiological conditions, venous blood in the vascular bed may undergo pulsation that may or may not be coupled to the arterial pulsation. These pulsation can be giving erroneous saturation readings. When the arterial pulsation has a distinct frequency from the venous pulsation, then the arterial pulsation can be isolated using frequency analysis such as the Fast Fourier Transform used to perform a Saturation Transform, as disclosed in U.S. Pat. No. 6,157, 30 850, mentioned in the foregoing. Strong venous coupling may not be necessarily uniform in time across each arterial pulse, and under certain patient conditions the venous pulse may affect only a portion on the photopleth. This can be advantageous for an algorithm that analyzes the information 35 in the time domain. FIGS. 21 and 22 depict Infrared and Red photopleths that are modulated by venous pulsation. Although their shape may look like a normal photopleth, the instantaneous saturation vs. time curve in FIG. 23 illustrates a large spread in the instantaneous saturation values over one 40 photopleth, as compared to that of FIG. 19 and FIG. 20. Under such conditions, taking the average value (or determining the area) of all the instantaneous saturation points may not be the best estimate of the true saturation value. For example, the distribution of the instantaneous 45 saturation values of FIG. 23, e.g. the histogram illustrated in FIG. 24 shows a skewed distribution with a mode at about 83.5 percent (%). This is about 1.8 percent (%) below the average saturation value of about 85.3 percent (%). Another possibility is to phase filter the data and the use the distri- 50 bution in a similar manner. Phase filtering will be discussed in more detail in the section on managing motion artifacts. In yet another approach, averaging the saturation values over a certain subsection of the photopleth, away from the location of the venous pulsation, can generate more accurate 55 saturation values. Managing Motion Artifacts In the context of pulse oximetry, "motion artifacts" refer to any extraneous disturbing source that affects the shape or quality of the optically detected photopleth signal. The 60 disturbance may be a deformation of the vascular bed, a decoupling of the photo detector from the skin, the
movement of the sensor itself along the skin surface, or the like. The wide dynamic range of the effect, in terms of its frequency and size, as well as its multiple sources, makes the 65 impact of motion artifacts on the photopleth quite dramatic. More importantly, the impact of motion artifacts on the 10 calculated saturation values can also be very large, thus causing drawbacks in many older generations of pulse oximeters. For example, when motion is repetitive and affects the photopleth over its entirety, then a combination of adaptive filtering and frequency-domain techniques can provide the best estimates of the saturation values. On the other hand, when motion is intermittent or non-repetitive, e.g. pseudo random, then a combination of a time-domain analysis and adaptive filtering techniques with fast adaptation rates works better. While each of the foregoing techniques has its strength and weaknesses, use of multiple parallel engines executing two or more of the foregoing techniques in parallel, and then fusing their results together, often provides best overall performance. Toward that end, the present technique of complex analysis can be a valuable addition to a set of parallel engines that advantageously improves the accuracy of pulse oximeters by correcting for a subset of conditions where the previous algorithms have failed. For example, the ability of the present algorithm to 20 explicitly encode the phase of the signal on a point by point basis renders it very valuable in case of sensor decoupling from the skin where phase decorrelation between Red and Infrared photopleths is prevalent. FIGS. 25 and 26 illustrate photopleth signals that are strong enough as to disrupt the normal ratio calculations thus 25 corrupted by motion artifacts. FIG. 27 illustrates a polar plot for type A complex waveforms generated using the photopleths of FIGS. 25 and 26, while and FIG. 28 illustrates a polar plot for type B complex waveforms generated using the photopleths of FIGS. 25 and 26. It is noteworthy to compare and contrast FIG. 12 with FIG. 27. As disclosed in the foregoing, FIG. 12 illustrates complex ratios where the input signals are motion artifact free. FIG. 12 exhibits a localized point with a magnitude of about 0.53, which generally corresponds to a saturation of about 99 percent (%). Note that the small angle it subtends near the real axis. On the other hand, FIG. 27 illustrates complex ratios where the input signals are riddled with motion artifacts, resulting in ratios with varying magnitudes having widely varying angles. At the outset, it is difficult to tell which ratios of FIG. 27 are true and which ratios were affected by noise and are therefore, false. However, as shown in FIG. 28, a phase filter can select or pass values similar to those expected, such as, for example, values that subtend low angles from the origin. In one embodiment, the phase filter passes values corresponding to the type and value of phase angles determined, for example, through calibration processes performed and associated with valid data. In an embodiment, the phase filter selects or passes values corresponding to phase angles ranging from about -2.0 to about 3.0 degrees, and more preferably, selects values corresponding to phase angles ranging from about 0.0 to about 1.0 degrees. When the phase filtered saturation points are histogramed, as shown in FIG. 30, the most likely saturation is somewhere near about 98 percent (%), which is only about 1 percent (%) away from the true saturation value of about 99 percent (%). FIG. 31 also includes plots of unfiltered instantaneous saturation values vs. time as well as the phase filtered saturation values plotted on top of them. The corresponding photopleth is also shown for comparison. Using Frequency Domain Complex Ratios When a real signal is transformed into the frequency domain, using the Fourier transform for example, the corresponding frequency representation is a series of complex numbers. These complex numbers denote complex frequencies each having a magnitude and a phase. When the Red and Infrared photopleths are transformed into the frequency domain, their corresponding complex frequencies can advantageously be divided to generate complex ratios. Each complex ratio posses a magnitude and a phase similar to the complex ratios generated in the time domain, as disclosed in the foregoing. The frequency domain complex ratios are a 5 representation that has complex ratios vs. frequency, as opposed to representations that have time domain complex ratios vs. time. As disclosed, each technique has its advantages and disadvantages depending on the type of signals present and the nature of the perturbations. An example of the use of frequency domain complex ratios according to aspects of the present invention are illustrated in FIG. 32 and FIG. 33. A series of ratios are calculated for the fundamental and first two (2) harmonics of the photopleths waveforms shown in FIG. 2. FIG. 32 illus- 15 trates the magnitudes of the complex frequency ratios calculated from the fundamental and harmonics of the photopleths of FIG. 2, while FIG. 33 illustrates frequency transformed photopleths and the phases of the corresponding ratios. FIG. 34 illustrates the polar plot of the complex 20 frequency ratios of FIG. 32 and FIG. 33. Although the foregoing disclosure generally references various signal processing mechanisms, a skilled artisan will recognize from the disclosure herein that the generators 500, 800, 1100, and 1500 can be implemented with software, 25 firmware, or the like executing on hardware, such as, for example a digital signal processor (DSP). Moreover, the calculations incorporated into the generators can be carried out using software, hardware, or combinations of the same. In addition, the DSP can be part of a portable or stationary 30 device, such as an oximeter, personal monitoring device, or the like Although the foregoing invention has been described in terms of certain preferred embodiments, other embodiments will be apparent to those of ordinary skill in the art from the 35 disclosure herein. Additionally, other combinations, omissions, substitutions and modifications will be apparent to the skilled artisan in view of the disclosure herein. Accordingly, the present invention is not intended to be limited by the reaction of the preferred embodiments, but is to be defined 40 by reference to the appended claims. Additionally, all publications, patents, and patent applications mentioned in this specification are herein incorporated by reference to the same extent as if each individual publication, patent, or patent application was specifically 45 and individually indicated to be incorporated by reference. What is claimed is: - 1. A physiological monitor that computes arterial oxygen saturation in tissue material, the physiological monitor comprising: - a light emitter which emits light of at least first and second wavelengths; - a light detector responsive to light from said light emitter attenuated by body tissue, said light detector providing an output signal indicative of at least first and second intensity signals associated with said at least first and second wavelengths; and - one or more hardware processors programmed to encode the first and second intensity signals in a complex domain; filter artifacts based on the complex encoding of the first and second intensity signals; compute arterial oxygen saturation from the filtered complex encod- 12 ing of the first and second intensity signals; and output the calculated arterial oxygen saturation. - 2. The physiological monitor of claim 1, wherein the filtering of artifacts comprises filtering ratios corresponding to the encoded first and second intensity signals. - 3. The physiological monitor of claim 2, wherein the filtering comprises using a phase filter including a first range of phases. - 4. The physiological monitor of claim 3, wherein the first range of phases comprise phase angles from about -2.0 to about 3.0 degrees. - **5**. The physiological monitor of claim **3**, wherein the first range of phases comprise phase angles from about 0 to about 1 degree. - 6. The physiological monitor of claim 2, wherein the filtering comprises using a weighing filter on a continuous stream of instantaneous ratios corresponding to the first and the second intensity signals. - 7. The physiological monitor of claim 1, wherein the complex domain comprises complex time domain. - **8**. The physiological monitor of claim **1**, wherein the complex domain comprises complex frequency domain. - 9. The physiological monitor of claim 1, wherein the one or more hardware processors are further programmed to determine a plurality of ratios over time from the first and the second intensity signals. - 10. The physiological monitor of claim 1, wherein the artifacts comprise motion artifacts. - 11. The physiological monitor of claim 1, wherein the artifacts comprise venous pulsation. - 12. A physiological monitoring method for computing arterial oxygen saturation in tissue material, the physiological monitor method comprising: - driving a light emitter configured to emit light of at least first and second wavelengths; - receiving an output signal indicative from a light detector of at least first and second intensity signals associated with said at least first and second wavelengths; - encoding the first and second intensity signals in a complex domain; - filtering artifacts from the complex encoding of the first and second intensity signals; - computing arterial oxygen saturation based on the filtered complex encoding of the first and second intensity signals; and output the computed arterial oxygen saturation. - 13. The physiological monitoring method of claim 12, wherein the filtering comprises using a phase filter including a first range of phases. - **14**. The physiological monitoring method of claim **13**, wherein the first range of phases
comprise phase angles from about –2.0 to about 3.0 degrees. - 15. The physiological monitoring method of claim 12, wherein the filtering comprises using a weighing filter on a continuous stream of instantaneous ratios corresponding to the first and the second intensity signals. - **16**. The physiological monitoring method of claim **12**, further comprising determining a plurality of ratios over time from the first and the second intensity signals. - 17. The physiological monitoring method of claim 12, wherein the artifacts comprise motion artifacts. * * * * * | 使用复数编码确定血氧饱和度值 | ī的系统和方法 | | |-------------------------------------|--|--| | <u>US9622693</u> | 公开(公告)日 | 2017-04-18 | | US14/609841 | 申请日 | 2015-01-30 | | CERCACOR LAB | | | | CERCACOR LABORATORIES | , INC. | | | Masimo公司 | | | | DIAB MOHAMED K | | | | DIAB, MOHAMED K. | | | | A61B5/1455 A61B5/024 A61B5 | 5/00 | | | A61B5/14551 A61B5/02416 A6
/7239 | 31B5/7207 A61B5/7253 A61B5/727 | 78 A61B5/742 A61B5/743 A61B5 | | 12/248868 2013-05-21 US | | | | 11/288812 2008-10-21 US | | | | 10/727348 2005-11-29 US | | | | 60/430834 2002-12-04 US | | | | US20150201874A1 | | | | Espacenet USPTO | | | | | US9622693 US14/609841 CERCACOR LAB CERCACOR LABORATORIES Masimo公司 DIAB MOHAMED K DIAB, MOHAMED K. A61B5/1455 A61B5/024 A61B5 A61B5/14551 A61B5/02416 A66 /7239 12/248868 2013-05-21 US 11/288812 2008-10-21 US 10/727348 2005-11-29 US 60/430834 2002-12-04 US US20150201874A1 | US14/609841 申请日 CERCACOR LAB CERCACOR LABORATORIES , INC. Masimo公司 DIAB MOHAMED K DIAB, MOHAMED K. A61B5/1455 A61B5/024 A61B5/00 A61B5/14551 A61B5/02416 A61B5/7207 A61B5/7253 A61B5/727/7239 12/248868 2013-05-21 US 11/288812 2008-10-21 US 10/727348 2005-11-29 US 60/430834 2002-12-04 US US20150201874A1 | # 摘要(译) 本公开包括脉搏血氧测定系统和方法,用于通过编码复域中的光电容积描记器并处理复信号来确定逐点饱和度值。系统使用各种技术过滤运动伪影和其他噪声,包括统计分析,如相关或相位滤波。