

(12) United States Patent Kiani et al.

US 6,934,570 B2 (10) Patent No.:

(45) Date of Patent: Aug. 23, 2005

(54) PHYSIOLOGICAL SENSOR COMBINATION

(75) Inventors: Massi E. Kiani, Laguna Niguel, CA (US); Ammar Al-Ali, Tustin, CA (US); Ronald Coverston, Portola Hills, CA (US); Gene Mason, La Mirada, CA (US); Fred Robertson, Mequon, WI (US)

Assignee: Masimo Corporation, Irvine, CA (US)

Subject to any disclaimer, the term of this (*) Notice: patent is extended or adjusted under 35 U.S.C. 154(b) by 246 days.

Appl. No.: 10/325,699 (21)

(22)Filed: Dec. 19, 2002

(65)**Prior Publication Data**

US 2003/0225323 A1 Dec. 4, 2003

Related U.S. Application Data

- (60)Provisional application No. 60/347,047, filed on Jan. 8,
- **Int. Cl.**⁷ **A61B 5/00**; A61B 5/0205 (51)**U.S. Cl.** **600/324**; 600/344; 600/372;
- 600/323, 324, 340, 344, 372, 383, 384, 393, 481, 483

(56)References Cited

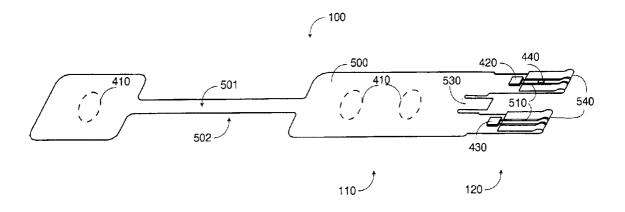
U.S. PATENT DOCUMENTS

4,854,699 A	8/1989	Edgar, Jr.
4,865,038 A	9/1989	Rich et al.
4,955,380 A	* 9/1990	Edell 600/355
4,957,109 A	* 9/1990	Groeger et al 600/391
4,960,128 A	10/1990	Gordon et al.
4,964,408 A	* 10/1990	Hink et al 600/344
5,163,438 A	11/1992	Gordon et al.
5,337,744 A	8/1994	Branigan
5,431,170 A	7/1995	Mathews

5,452,717 A	9/1995	Branigan et al.
5,482,036 A	1/1996	Diab et al.
5,490,505 A	2/1996	Diab et al.
5,494,043 A	2/1996	O'Sullivan et al.
5,533,511 A	7/1996	Kaspari et al.
5,584,296 A	* 12/1996	Cui et al 600/479
5,590,649 A	1/1997	Caro et al.
5,632,272 A	5/1997	Diab et al.
5,638,816 A	6/1997	Kiani-Azarbayjany et al.
5,638,818 A	6/1997	Diab et al.
5,645,440 A	7/1997	Tobler et al.
5,685,299 A	11/1997	Diab et al.
5,697,367 A	12/1997	Lewis et al.
D393,830 S	4/1998	Tobler et al.
5,743,262 A	4/1998	Lepper, Jr. et al.
5,758,644 A	,	Diab et al.
5,760,910 A		Lepper, Jr. et al.
5,769,785 A		Diab et al.
5,782,757 A		Diab et al.
5,785,659 A	7/1998	
5,791,347 A	8/1998	,
5,810,734 A	9/1998	Caro et al.
5,823,950 A	10/1998	Diab et al.
	(Com	time of

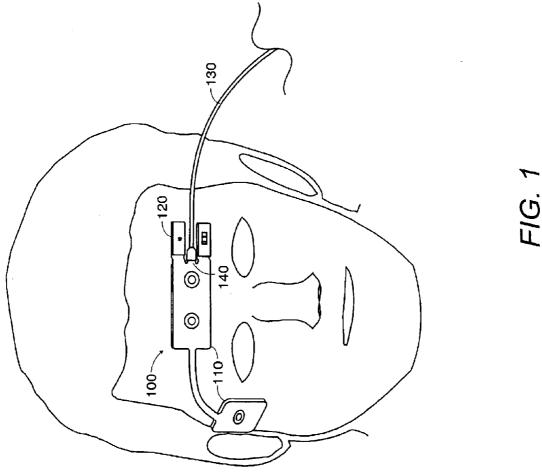
(Continued)

FOREIGN PATENT DOCUMENTS

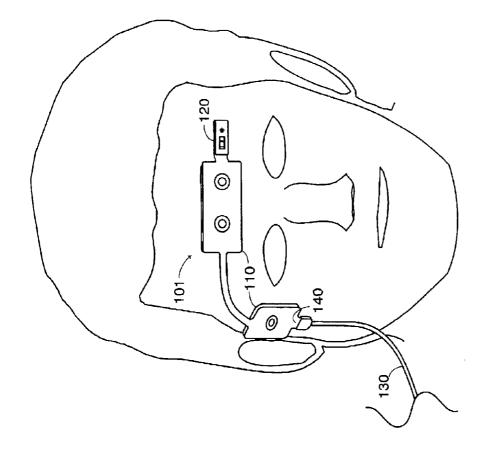

EP 0463 620 A1 1/1992

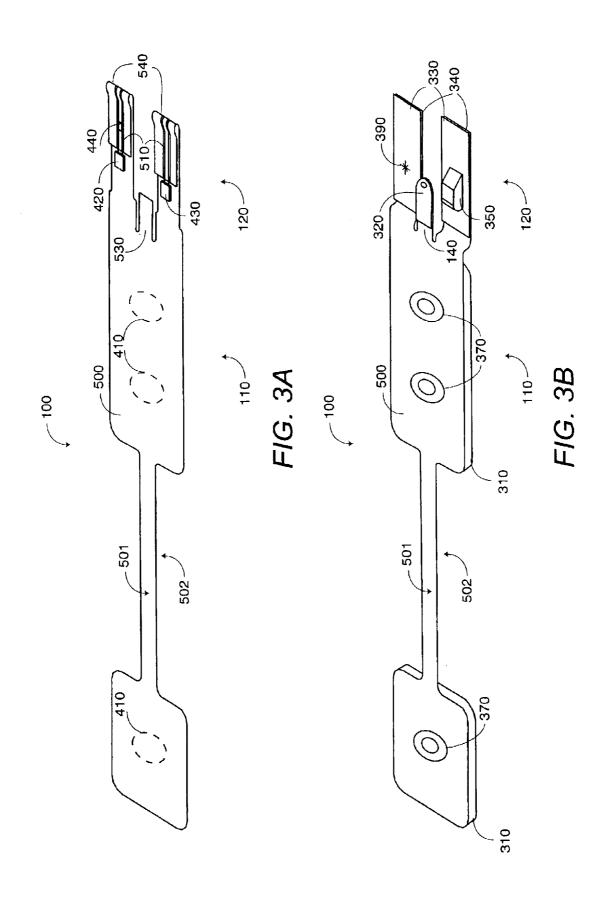
Primary Examiner—Eric F. Winakur (74) Attorney, Agent, or Firm-Knobbe, Martens, Olson & Bear, LLP

(57)ABSTRACT

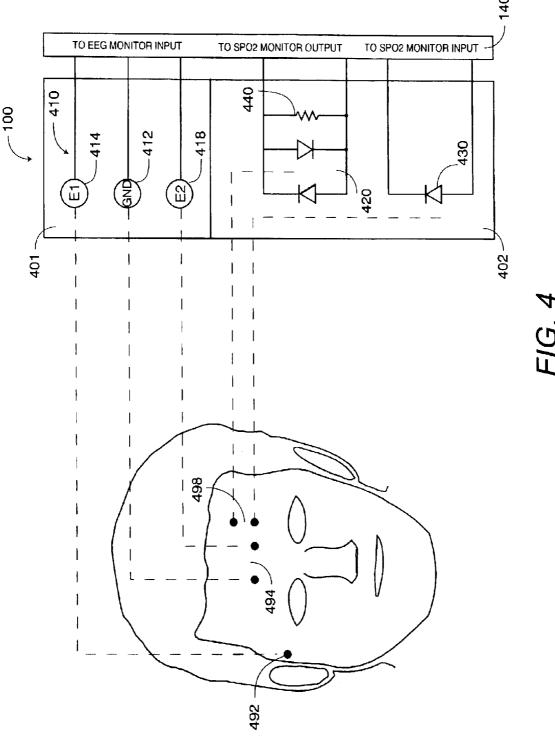

A physiological sensor combination has a flexible substrate configured to attach to a tissue site. Multiple sensors are disposed on the substrate, which generate physiological signals. Each of the signals is responsive to a different physiological parameter. Conductors are carried on the substrate and routed between the sensors and at least one connector. The connector is configured to communicate the physiological signals to at least one monitor, which derives measurements of the parameters.

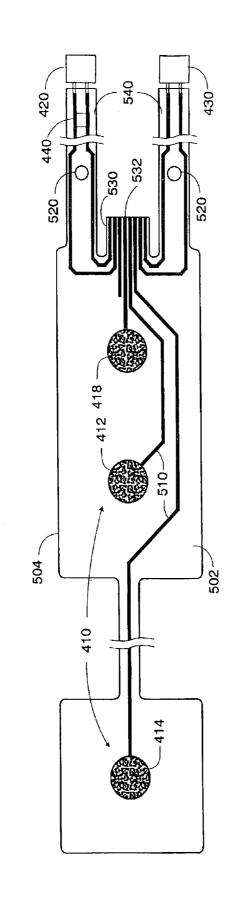
10 Claims, 7 Drawing Sheets

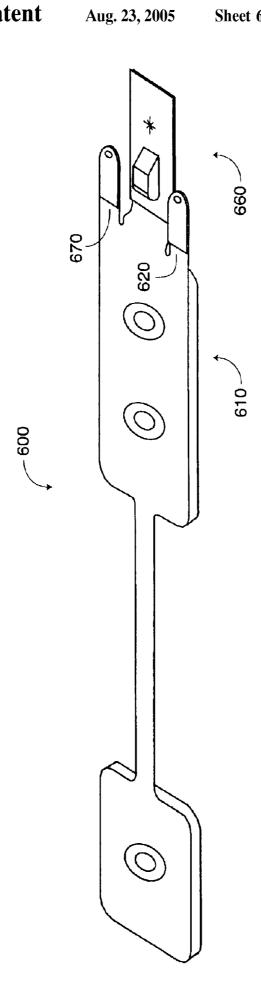


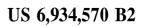

US 6,934,570 B2 Page 2

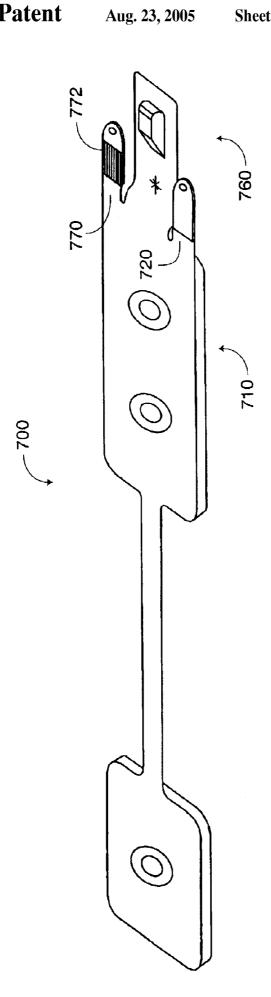
U.S.	PATENT	DOCUMENTS	6,463,311		10/2002	
5 020 121 A	11/1000	Caro et al.	6,470,199			Kopotic et al.
5,830,131 A			6,501,975			Diab et al.
5,833,618 A 5,839,439 A	,	Caro et al. Nierlich et al.	6,515,273	B2	2/2003	Al-Ali
			6,525,386	B1	2/2003	Mills et al.
5,860,919 A		Kiani-Azarbayjany et al.	6,526,300	B 1	2/2003	Kiani et al.
5,890,929 A		Mills et al.	6,541,756	B2	4/2003	Schulz et al.
5,904,654 A	5/1999 7/1999	Wohltmann et al.	6,542,764	B 1	4/2003	Al-Ali et al.
5,919,134 A			6,580,086	B 1	6/2003	Schulz et al.
5,934,925 A		Tobler et al.	6,584,336	B 1	6/2003	Ali et al.
5,940,182 A	8/1999	Lepper, Jr. et al.	6,597,933	B2	7/2003	Kiani et al.
5,995,855 A	11/1999		6,606,511		8/2003	Ali et al.
5,997,343 A	12/1999		6,632,181	B2	10/2003	Flaherty et al.
6,002,952 A		Diab et al.	6,640,116	B2	10/2003	Diab
6,011,986 A		Diab et al.	6,643,530	B2		Diab et al.
6,027,452 A		Flaherty et al.	6,650,917	B 2	11/2003	Diab et al.
6,036,642 A		Diab et al.	6,654,624	B2	11/2003	Diab et al.
6,045,509 A	-	Caro et al.	6,658,276			Pishney et al.
6,067,462 A		Diab et al.	6,671,531			Al-Ali et al.
6,081,735 A		Diab et al.	6,678,543		1/2004	Diab et al.
6,088,607 A		Diab et al.	6,684,090		1/2004	Ali et al.
6,110,522 A		Lepper, Jr. et al.	6,697,656		2/2004	
6,151,516 A		Kiani-Azarbayjany et al.	6,697,658		2/2004	Al-Ali
6,152,754 A		Gerhardt et al.	RE38,476		3/2004	Diab et al.
6,157,850 A		Diab et al.	6,699,194			Diab et al.
6,165,005 A		Mills et al.	6,714,804			Al-Ali et al.
6,171,258 B1		Karakasoglu et al.	RE38,492			Diab et al.
6,184,521 B1		Coffin, IV et al.	6,725,075		4/2004	Al-Ali
6,206,830 B1		Diab et al.	6,745,060			Diab et al.
6,229,856 B1		Diab et al.	6,760,607		7/2004	Al-All
6,236,872 B1		Diab et al.	6,770,028			Ali et al.
6,256,523 B1		Diab et al.	6,771,994			Kiani et al.
6,263,222 B1		Diab et al.	6,792,300			Diab et al.
6,278,522 B1		Lepper, Jr. et al.	6,813,511		11/2004	Diab et al.
6,280,213 B1		Tobler et al.	6,816,741		11/2004	
6,285,896 B1	-	Tobler et al.	6,822,564		11/2004	Al-Ali
6,298,255 B1		Cordero et al.	6,826,419			Diab et al.
6,334,065 B1	-	Al-Ali et al.	6,830,711		12/2004	Mills et al.
6,349,228 B1	,	Kiani et al.	6,850,787			Weber et al.
6,360,114 B1		Diab et al.	6,850,788		2/2005	
6,371,921 B1	,	Caro et al.	6,852,083		2/2005	
6,377,829 B1	4/2002		6,861,639		3/2005	
6,388,240 B2		Schulz et al.	, ,			
6,397,091 B2		Diab et al.	* cited by exa	min) r	
6,430,525 B1	8/2002	Weber et al.	ched by exa	шш	-1	




Aug. 23, 2005




Aug. 23, 2005



Aug. 23, 2005

PHYSIOLOGICAL SENSOR COMBINATION

CROSS-REFERENCE TO RELATED APPLICATIONS

This application relates to and claims the benefit of prior U.S. Provisional Patent Application No. 60/347,047 entitled Physiological Sensor Combination, filed Jan. 08, 2002, which is incorporated by reference herein.

BACKGROUND OF THE INVENTION

Pulse oximetry is a widely accepted noninvasive procedure for measuring the oxygen saturation level of arterial blood, an indicator of a person's oxygen supply. Early detection of low blood oxygen level is important in the 15 medical field, for example in critical care and surgical applications, because an insufficient supply of oxygen can result in brain damage and death in a matter of minutes. A pulse oximetry system consists of a sensor applied to a patient, a pulse oximeter, and a patient cable connecting the 20 sensor and the pulse oximeter. The pulse oximeter typically provides a numerical readout of the patient's oxygen saturation, a numerical readout of pulse rate, and an audible indication of each pulse. In addition, the pulse oximeter may display the patient's plethysmograph, which provides a 25 visual indication of the patient's pulse contour and pulse

Measuring a biopotential signal, such as an electroencephalogram (EEG) is also a widely accepted procedure for patient monitoring and diagnostic tests. An EEG measures cortical activity of the brain, which can reflect changes in cortical or subcortical cellular function due to insufficient oxygen or drugs, to name a few. For example, changes in EEG bandwidth and power can provide a measure of the effects of anesthetics on the brain. A biopotential measurement system consists of a bipotential sensor, a monitor and a patient cable connecting the sensor to the monitor. For example, an EEG monitor measures the potential difference between at least two well-spaced electrodes, using a separate ground electrode, and displays the resulting signal.

SUMMARY OF THE INVENTION

A physiological sensor combination has a flexible substrate configured to attach to a tissue site. Multiple sensors 45 are disposed on the substrate, which generate physiological signals. Each of the signals is responsive to a different physiological parameter. Conductors are carried on the substrate and routed between the sensors and at least one connector. The connector is configured to communicate the 50 physiological signals to at least one monitor, which derives measurements of the parameters. In one embodiment, the sensors comprise multiple electrodes disposed on the substrate. Each of the electrodes are adapted to be in electrical communication with the tissue site and electrically connect 55 to at least one of the conductors. Further, an emitter and a detector are mounted to the substrate and electrically connected to at least one of the conductors. The emitter is adapted to transmit light into the tissue site, and the detector is adapted to receive reflected light from the tissue site.

In a particular embodiment, the substrate has a first side adapted to face toward the tissue site and a second side adapted to face away from the tissue site, where the conductors and the electrodes are disposed on the first side and the emitter and the detector are mounted to the first side. The 65 substrate may comprise a fold-over portion having a circuit side corresponding to the first side, where the fold-over

2

portion is adapted to fold so that the circuit side is proximate the second side. Further, the emitter and the detector may be mounted to the a fold-over portion. The substrate may define at least one aperture configured so that the emitter and the detector each align with a corresponding aperture when the fold-over is in a folded position.

In another particular embodiment, the physiological sensor combination comprises a plurality of biopotential sensor pinouts corresponding to the electrodes, a plurality of optical sensor pinouts corresponding to the emitter and the detector, and a common connector extending from the substrate. The biopotential sensor pinouts and said optical sensor pinouts are each disposed on the common connector.

Another aspect of a physiological sensor combination is a substrate means for combining a first sensor and a second sensor, a connector means for communicating signals from the first sensor and the second sensor to at least one monitor, and an identifying means of conveying information about each of the first sensor and the second sensor to the monitor. The physiological sensor combination may further comprise a fold-over means for positioning sensor components so as to extend away from a tissue site. The physiological sensor combination may additionally comprise an aperture means for providing light communications between sensor components and the tissue site.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is an illustration of a physiological sensor combination applied to a patient and having a patient cable connected near the patient's forehead;

FIG. 2 is an illustration of a physiological sensor combination applied to a patient and having a patient cable connected near the patient's temple;

FIGS. 3A–B are perspective views of a circuit substrate and an assembled sensor, respectively, for a physiological sensor combination having a single-sided circuit substrate and a shared connector;

FIG. **4** is a schematic diagram of a physiological sensor combination showing the location of applied sensor components;

FIG. 5 is a layout diagram of a single-sided circuit for a physiological sensor combination;

FIG. 6 is a perspective view of a physiological sensor combination having a single-sided circuit substrate and dual connectors; and

FIG. 7 is a perspective view of a physiological sensor combination having a double-sided circuit substrate and dual connectors.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

FIGS. 1–2 show a physiological sensor combination applied to a patient. FIGS. 3–5 illustrate a physiological sensor combination having a biopotential sensor and an optical sensor configured on a single-sided flexible circuit substrate with a shared patient cable connector. FIG. 6 illustrates a physiological sensor combination also having a biopotential sensor and an optical sensor configured on a single-sided flexible circuit substrate. The biopotential sensor and the optical sensor, however, each have separate patient cable connectors. FIG. 7 illustrates a physiological sensor combination having a biopotential sensor and an optical sensor configured on a double-sided circuit substrate, each sensor also having separate patient cable connectors.

FIGS. 1-2 illustrate a physiological sensor combination applied to the forehead and temple areas of a patient. A

patient cable 130 connects the physiological sensor combination 100 (FIG. 1), 101 (FIG. 2) to one or more monitoring devices (not shown). As shown in FIG. 1, the patient cable 130 may connect near the patient's forehead. As shown in FIG. 2, the patient cable 130 may alternatively connect near the patient's temple. The biopotential sensor 110 and optical sensor 120 may share a common connector 140. Alternatively, the biopotential sensor 110 and optical sensor 120 may each have a dedicated patient cable connector, as described in further detail with respect to FIGS. 6–7, below. The biopotential sensor 110 may be an EEG sensor for depth of consciousness monitoring, as described above. The optical sensor 120 may be a pulse oximetry reflectance sensor for oxygen saturation monitoring, also described above

FIGS. 3A–B illustrate a physiological sensor combination 100 having a biopotential sensor 110 and an optical sensor 120 configured on a flexible circuit substrate 500. As shown in FIG. 3A, the flexible circuit 500 is single-sided, having a blank side 501 and a circuit side 502 with printed conductive traces 510 on the circuit side 502. The biopotential sensor 110 has electrodes 410 (not visible and shown as dashed lines) printed on the circuit side 502. The electrodes 410 are configured so that one electrode is applied to the temple area and two electrodes are applied to the forehead, as further described with respect to FIGS. 4–5, below.

Further shown in FIG. 3A, the optical sensor 120 includes 25 a fold-over 540, an emitter 420, a detector 430 and an information element 440. The emitter 420, detector 430 and information element 440 are each mounted to the circuit side 502 on the fold-over 540 and electrically connected to traces **510**, as described in detail with respect to FIGS. **4–5**, below. The optical sensor 120 is configured so that emitter 420 and a detector 430 are applied over the forehead, also described with respect to FIGS. 4-5, below. The fold-over 540 is such that each of the emitter 420 and detector 430 align with corresponding apertures 520 (FIG. 5) so that light transmitted from the emitter 420 passes through an aperture 520 35 (FIG. 5) and into a patient's skin and that reflected light passes out of a patient's skin, through an aperture 520 (FIG. 5) and is received by the detector 430. The substrate 500 has a stub 530 that contains pinouts 532 (FIG. 5), which connect to the electrodes 410 and also to the emitter 420, detector 40 430 and information element 440, also described in detail with respect to FIGS. 4-5, below. Emitters and a detector for a pulse oximetry sensor are described in detail in U.S. Pat. No. 6,256,523 entitled "Low Noise Optical Probe," which is assigned to Masimo Corporation and incorporated by refer- 45 ence herein. An information element for a pulse oximetry sensor is described in detail in U.S. Pat. No. 6,001,986 entitled "Manual And Automatic Probe Calibration," which is assigned to Masimo Corporation and incorporated by reference herein.

As shown in FIG. 3B, the biopotential sensor 110 has an adhesive foam layer 310 disposed around the electrodes 410 on the circuit side 502. The foam layer 310 has an adhesive for patient skin attachment and cushions the biopotential sensor 110 against the skin. Further, the foam layer 310 55 forms cavities around the electrodes 410 that are filled with a conductive gel for electrical communication between a tissue site and the electrodes 410. Printed electrode indicators 370 facilitate sensor application on a tissue site. Electrodes printed on a substrate, an associated foam layer, and 60 gel-filled foam cavities are described in detail in U.S. Pat. No. 6,032,064 entitled "Electrode Array System For Measuring Electrophysiological Signals," assigned to Aspect Medical Systems, Inc. and incorporated by reference herein. One of ordinary skill in the art will recognize that various 65 electrode configurations may be utilized as the biopotential sensor 110.

4

Also shown in FIG. 3B, the optical sensor 120 has a face tape 330 and a base tape 340 that envelop the fold-over 540 along with the fold-over mounted components 420–440. In one embodiment, the face tape 330 and base tape 340 attach together and to the fold-over 540 with PSA. Further, the base tape 340 has a backing (not shown) that is removed to expose an adhesive for skin attachment. The face tape 330 also secures the detector 430 within an optical cavity and cover 350. A printed emitter indicator 390 facilitates sensor application on a tissue site. Emitters, detectors, optical cavities and corresponding covers are described in detail in U.S. Pat. No. 6,256,523, referenced above.

Further shown in FIG. 3B, the physiological sensor combination 100 has a tab 320 that attaches to the stub 530 (FIG. 3A) to complete the connector 140. In one embodiment, the attachment is accomplished with pressure sensitive adhesive (PSA) between the tab 320 and stub 530. The tab 320 provides a stiffener for the pinouts 532 (FIG. 5) and an insertion and locking mechanism for a mating patient cable connector, as described in U.S. Pat. No. 6,152,754 entitled "Circuit Board Based Cable Connector" and U.S. Pat. No. 6,280,213 entitled "Patient Cable Connector," each assigned to Masimo Corporation and incorporated by reference herein.

The physiological sensor combination 100 is described above with respect to a fold-over that positions the optical sensor components 420-440 so that they extend away from the tissue site. This advantageously allows a smooth surface to be positioned against the tissue site for patient comfort. In another embodiment, however, there is no fold-over 540 and the components 420-440 extend from the substrate toward the tissue site. In yet another embodiment, there is no fold-over and the components 420 are mounted on the substrate side opposite the conductors and utilize substrate feed-throughs to connect with the flex circuit traces 510. Further, the fold-over **540** is described above as positioning the emitter 420 and detector 430 over substrate apertures 520 (FIG. 5). In an alternative embodiment, the fold-over 540 is skewed so that the emitter 420 and detector 430 are positioned away from the substrate so that no apertures are necessary.

FIG. 4 illustrates a circuit diagram for a physiological sensor combination 100 having a biopotential sensor circuit 401 and an optical sensor circuit 402. The biopotential sensor circuit 401 has an electrode array 410, which is placed on well-separated skin areas. In one embodiment, a first electrode 414 is placed on a temple area 492 and a second electrode 418 is placed on a forehead area 494. A ground electrode 412 is also placed on the forehead area 494 near the second electrode 418. Each electrode of the array 410 provides a pinout to a connector 140. The connector 140 provides sensor input to a monitor. The electrodes placed on the patient's head transmit EEG signals to a monitor, which may include a separate digitizer located near the patient to reduce electrical noise. The difference in potential between the first electrode 414 and second electrode 418 reflects primarily a far-field electrical source, i.e. the EEG from the distant brain cortex, and not a near-field electrical source, such as transdermal nervous stimulation of muscle. The monitor filters the EEG data, analyzes it for artifact and extracts characteristic features from the complex signal to provide pattern recognition of changes over time.

Also shown in FIG. 4, the optical sensor circuit 402 has an emitter 420, a detector 430 and an information element 440. The emitter 420 includes both a red LED (light emitting diode) and an infrared (IR) LED in a back-to-back arrangement. In alternative embodiments, the red and IR LEDs are

arranged in three-wire, common anode or common cathode configurations, as is well-known in the art. The detector 430 is a photodiode. The LEDs 420 and photodiode 430 are located on the skin in close proximity, such as on a forehead area 498. In this manner, the LEDs emit light into the blood vessels and capillaries underneath the skin, and the photodiode 430 is positioned to detect the LED emitted light reflected from the skin tissues. The emitter 420 and detector 430 provide pinouts to the connector 140, which provides a sensor input to a monitor. The monitor determines oxygen saturation by computing the differential absorption by arterial blood of the two wavelengths of light projected into the skin from the emitter 420, as is well-known in the art. The monitor provides LED drive current, which alternately activates the red and IR LEDs. The detector 430 uses a single 15 photodiode that responds to both the red and infrared emitted light and generates a time-division-multiplexed ("modulated") output signal to the monitor, corresponding to the red and infrared light energy attenuated by absorption and reflection from the patient's tissue. The monitor has 20 front-end circuitry for amplification, filtering and digitization of the detector signal. The monitor also has a signal processor that calculates a ratio of detected red and infrared intensities, and an arterial oxygen saturation value is empirically determined based on that ratio.

Further shown in FIG. 4, the optical sensor circuit 402 may have an information element 440, such as a resistor configured in parallel with the emitter 420 LEDs. The information element 440 can be read by the monitor and used to determine such things as LED wavelength, sensor type or manufacturer. Information elements and monitor reading of information elements are described in U.S. Pat. No. 6,011,986, referenced above. Advantageously, although associated with the optical sensor circuit 402, the information element 440 can be used to designate information regarding the biopotential sensor portion of the physiological sensor combination 100. For example, the information element 440 can specify the number of electrodes as well as the electrode locations on the head.

FIG. 5 illustrates a flexible circuit 500 for a physiological sensor combination 100. The flexible circuit 500 has a substrate 504, traces 510, electrodes 410, pinouts 530 and apertures 520. Conductors are deposited and/or etched on a circuit side 502 of the substrate 504 in a pattern to form the traces 510, electrodes 410 and pinouts 532, as is well known in the art. In one embodiment, the substrate 504 is a flexible polyester film and the conductors are silver/silver-chloride. In another embodiment, the conductors are copper. The components 420–440 attach to the flexible circuit 500 and are electrically connected to the traces 510, such as with solder. The fold-over 540 is configured so that the emitter 420 and detector 430 align with the corresponding apertures 520

FIG. 6 illustrates a physiological sensor combination 600 having a biopotential sensor 610 and an optical sensor 660. 55 The biopotential sensor 610 is configured as described with respect to FIGS. 3–5, above, except that the physiological sensor combination 600 has a connector 620 that is dedicated to the biopotential sensor 610 rather than being shared with the optical sensor 660. The optical sensor 660 also is 60 configured as described with respect to FIGS. 3–5, above, except that a connector 670 is dedicated to the optical sensor 660 rather than being shared with the biopotential sensor 610. Further, the optical sensor 660 has a single fold-over (not visible) on which is mounted the emitter 420 (FIG. 4) 65 and detector 430 (FIG. 4) rather than having a separate fold-over 540 (FIG. 3A) for each.

6

FIG. 7 illustrates a physiological sensor combination 700 having a biopotential sensor 710 and an optical sensor 760. The biopotential sensor 710 is configured as described with respect to FIG. 6, above. The optical sensor 760 also is configured as described with respect to FIG. 6, above, except that the flexible circuit 500 (FIG. 5) is double-sided, i.e. the traces 510 (FIG. 5) associated with the biopotential sensor 710 are on the side facing the patient's skin when applied, and the traces 510 (FIG. 5) associated with the optical sensor 760 are on the side away from the patient's skin when applied. As a result, the connector 770 is dedicated to the optical sensor 760 and has pinouts 772 facing away from the patient's skin when applied. Further, the optical sensor 760 does not have a fold-over 540 (FIG. 3A). Rather, the optical sensor components 420-440 (FIG. 4) are mounted on the flexible circuit side away from the patient's skin.

A physiological sensor combination is described above with either a shared patient cable connector or a patient cable connector dedicated to each sensor. One of ordinary skill will recognize that either connector configuration will allow the sensor to communicate with a single monitor that analyzes and displays multiple physiological parameters or, alternatively, multiple monitors that are dedicated to analyzing only related physiological parameters, such as oxygen saturation and pulse rate.

The physiological sensor combination as described above can be cost effectively manufactured, advantageously allowing disposable use. One of ordinary skill in the art will recognize that, however, that the physiological sensor combination as disclosed herein can be similarly applied to construct a reusable sensor combination.

The physiological sensor combination was also described above with respect to a shared substrate. One of ordinary skill in the art will recognize that a physiological sensor combination can be constructed from, for example, a biopotential sensor configured on a first substrate and an optical sensor configured on a second substrate, where the first substrate and the second substrate are joined together during the manufacturing process to form a multilayer substrate or an otherwise integrated substrate incorporating multiple sensors.

Although a physiological sensor combination is described above with respect to a biopotential sensor combined with an optical sensor applied to a patient's head, one of ordinary skill in the art will recognize that a physiological sensor combination may be applied to other tissue sites and utilize other sensor combinations, where there is a need to combine two or more sensors in one to accommodate sensors competing for the same tissue site. For example, a physiological sensor combination may include a noninvasive blood pressure (NIBP) sensor and a pulse oximetry sensor or a NIBP sensor and a respiration rate sensor for monitoring on the forearm or the wrist. As another example, a physiological sensor combination may include two optical sensors and one biopotential sensor applied to the forehead and configured as a pulse oximetry sensor and a EEG sensor, as described above, in addition to a near infrared spectroscopy sensor for measuring cerebral tissue oxygenation.

A biopotential sensor as described above could be used in conjunction with a depth of anesthesia monitor that uses not just passive EEG, but also active EEG. That is an Evoked Potential EEG can be used, where some kind of sound is played and changes in EEG are observed as the patient goes into consciousness.

A physiological sensor combination has been disclosed in detail in connection with various embodiments. These

embodiments are disclosed by way of examples only and are not to limit the scope of the claims that follow. One of ordinary skill in the art will appreciate many variations and modifications.

What is claimed is:

- 1. A physiological sensor combination comprising:
- a flexible substrate configured to attach to a tissue site;
- a plurality of sensors disposed on said substrate and adapted to provide a corresponding plurality of physiological signals, each of said signals responsive to at least one of a plurality of physiological parameters;
- a plurality of conductors disposed on said substrate between said sensors and at least one connector, and
- said at least one connector configured to communicate 15 said signals to at least one monitor so as to derive a plurality of measurements of said parameters,

wherein said sensors comprise:

- a plurality of electrodes disposed on said substrate, communication with said tissue site and electrically connected to at least one of said conductors; and
- an emitter and a detector mounted to said substrate and electrically connected to at least one of said conductors, said emitter adapted to transmit light 25 into said tissue site and said detector adapted to receive reflected light from said tissue site,

wherein:

- said substrate has a first side adapted to face toward said tissue site and a second side adapted to face 30 away from said tissue site;
- said conductors and said electrodes disposed on said first side; and
- said emitter and said detector mounted to said first side wherein said substrate comprises a fold-over portion 35 having a circuit side corresponding to said first side, and said fold-over portion adapted to fold so that said circuit side is proximate said second side.
- 2. The physiological sensor combination according to claim 1 wherein said emitter and said detector are mounted 40 to said a fold-over portion.
- 3. The physiological sensor combination according to claim 2 wherein said substrate defines at least one aperture configured so that said emitter and said detector each align with a corresponding one of said at least one aperture when 45 said fold-over is in a folded position.
- 4. The physiological sensor combination according to claim 3 further comprising:
 - a plurality of biopotential sensor pinouts corresponding to said electrodes;
 - a plurality of optical sensor pinouts corresponding to said emitter and said detector; and

- a common connector extending from said substrate, said biopotential sensor pinouts and said optical sensor pinouts each disposed on said common connector.
- **5**. The physiological sensor combination comprising:
- a substrate means for combining a first sensor and a second sensor;
- a connector means for communicating signals from said first sensor and said second sensor to at least one
- an identifying means of conveying information about each of said first sensor and said second sensor to said monitor; and
- fold-over means for positioning sensor components so as to extend away from a tissue site.
- 6. The physiological sensor combination according to claim 5 further comprising an aperture means for providing light communications between sensor components and said tissue site.
- 7. A sensor capable of outputting a signal indicative of one each of said electrodes adapted to be in electrical 20 or more physiological parameters of body tissue of a patient, the sensor comprising:
 - a substrate including a fold-over portion;
 - a first sensor positioned on said substrate and including a detector capable of detecting light attenuated by body tissue, said detector also capable of outputting a detector signal indicative of one or more physiological parameters of said body tissue;
 - a second sensor positioned on said substrate;
 - conductors capable of communicating signals between said first sensor and at least one monitor, said signals including said detector signal; and
 - conductors capable of communicating signals between said second sensor and said at least one monitor,
 - wherein the fold-over portion of the substrate positions sensor components of said first sensor away from said body tissue to provide a substantially smooth sensor surface at said body tissue.
 - 8. The sensor according to claim 7, wherein said substrate further comprises apertures, and wherein said sensor components are aligned with said apertures when said substrate is folded over, thereby allowing said sensor components to emit and detect energy through said apertures.
 - 9. The sensor according to claim 7, further comprising an information element identifiable by said at least one monitor to convey information about at least one of said first sensor and said second sensor.
 - 10. The sensor according to claim 7, wherein said first sensor comprises a pulse oximetry sensor including a plurality of emitters and said detector, and wherein said second sensor comprises a biopotential sensor including electrodes.

UNITED STATES PATENT AND TRADEMARK OFFICE CERTIFICATE OF CORRECTION

PATENT NO. : 6,934,570 B2 Page 1 of 1

APPLICATION NO.: 10/325699
DATED: August 23, 2005
INVENTOR(S): Kiani et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

Title Page, column 1 Item [75] (Inventors), line 4, delete "La Mirada" and insert -- La Habra Heights --, therefore.

Title Page, column 1 Item [73] (Assignee), line 1, before "Irvine" insert -- 40 parker --.

Title Page, column 1 Item [73] (Assignee), line 1, after "CA" insert -- 92618 --.

At column 2, line 3, after "the" delete "a".

At column 2, line 53, delete "show" and insert -- shows --, therefore.

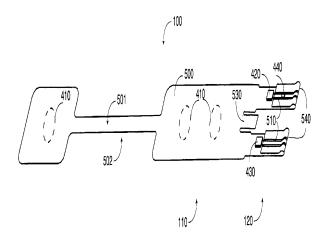
At column 3, line 13 (Approx.), after "above" insert -- . --.

At column 8, line 13, in Claim 5, before "fold-over" insert -- a --.

Signed and Sealed this

Twenty-sixth Day of June, 2007

JON W. DUDAS


Director of the United States Patent and Trademark Office

专利名称(译)	生理传感器组合					
公开(公告)号	<u>US6934570</u>	公开(公告)日	2005-08-23			
申请号	US10/325699	申请日	2002-12-19			
[标]申请(专利权)人(译)	Kiani曾MASSIê AL ALI AMMAR COVERSTON RONALD MASON基因 ROBERTSON FRED					
申请(专利权)人(译)	Kiani曾MASSI E. AL-ALI AMMAR COVERSTON RONALD MASON基因 ROBERTSON FRED					
当前申请(专利权)人(译)	摩根大通银行,NATIONAL ASSOCIATION					
[标]发明人	KIANI MASSI E AL ALI AMMAR COVERSTON RONALD MASON GENE ROBERTSON FRED					
发明人	KIANI, MASSI E. AL-ALI, AMMAR COVERSTON, RONALD MASON, GENE ROBERTSON, FRED					
IPC分类号	A61B5/0476 A61B5/00 A61B5/0478 A61B5/0205					
CPC分类号	A61B5/0478 A61B5/14552 A61B5/6814 A61B2562/164					
优先权	60/347047 2002-01-08 US					
其他公开文献	US20030225323A1					
外部链接	Espacenet USPTO					
按西(汉)						

摘要(译)

生理传感器组合具有柔性基板,其配置成附接到组织部位。多个传感器设置在基板上,其产生生理信号。每个信号响应于不同的生理参数。导体承载在基板上并在传感器和至少一个连接器之间布线。连接器被配置为将生理信号传送到至少一个监视器,该监视器导出参数的测量值。

