US008498684B2 # (12) United States Patent Weber et al. #### (54) SINE SATURATION TRANSFORM (75) Inventors: Walter M. Weber, Laguna Hills, CA (US); **Ammar Al-Ali**, San Juan Capistrano, CA (US); **Lorenzo Cazzoli**, Barcelona (ES) (73) Assignee: Masimo Corporation, Irvine, CA (US) (*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 158 days. (21) Appl. No.: 13/043,421 (22) Filed: Mar. 8, 2011 (65) Prior Publication Data US 2011/0160552 A1 Jun. 30, 2011 # Related U.S. Application Data - (63) Continuation of application No. 12/336,419, filed on Dec. 16, 2008, now Pat. No. 7,904,132, which is a continuation of application No. 11/894,648, filed on Aug. 20, 2007, now Pat. No. 7,467,002, which is a continuation of application No. 11/417,914, filed on May 3, 2006, now Pat. No. 7,377,099, which is a continuation of application No. 11/048,232, filed on Feb. 1, 2005, now Pat. No. 7,373,194, which is a continuation of application No. 10/184,032, filed on Jun. 26, 2002, now Pat. No. 6,850,787. - (60) Provisional application No. 60/302,438, filed on Jun. 29, 2001. - (51) **Int. Cl.**A61B 5/1455 (2006.01) A61B 5/024 (2006.01) - (52) **U.S. Cl.** USPC **600/324**; 600/323; 600/502; 702/190 # (10) Patent No.: US 8,498,684 B2 (45) Date of Patent: Jul. 30, 2013 (58) Field of Classification Search See application file for complete search history. #### (56) References Cited #### U.S. PATENT DOCUMENTS | 4,960,128 A | 10/1990 | Gordon et al. | |-------------|---------|-----------------| | 4,964,408 A | 10/1990 | Hink et al. | | 5,041,187 A | 8/1991 | Hink et al. | | 5,069,213 A | 12/1991 | Polczynski | | 5,163,438 A | 11/1992 | Gordon et al. | | 5,188,108 A | 2/1993 | Secker | | 5,319,355 A | 6/1994 | Russek | | 5,337,744 A | 8/1994 | Branigan | | 5,341,805 A | 8/1994 | Stavridi et al. | | D353,195 S | 12/1994 | Savage et al. | (Continued) #### FOREIGN PATENT DOCUMENTS | WO | WO 98/42250 | 10/1998 | |----|----------------|------------| | WO | WO 02/47582 A3 | 6/2002 | | | OTHER PU | BLICATIONS | Office Action of Japanese Patent Application No. 2003-508244 dated Mar. 26, 2008 and English Translation of same in 35 pages. (Continued) Primary Examiner — Eric Winakur (74) Attorney, Agent, or Firm — Knobbe, Martens, Olson & Bear, LLP ## (57) ABSTRACT A transform for determining a physiological measurement is disclosed. The transform determines a basis function index from a physiological signal obtained through a physiological sensor. A basis function waveform is generated based on basis function index. The basis function waveform is then used to determine an optimized basis function waveform. The optimized basis function waveform is used to calculate a physiological measurement. ### 19 Claims, 14 Drawing Sheets US008498684B2 # (12) United States Patent Weber et al. #### (54) SINE SATURATION TRANSFORM (75) Inventors: Walter M. Weber, Laguna Hills, CA (US); **Ammar Al-Ali**, San Juan Capistrano, CA (US); **Lorenzo Cazzoli**, Barcelona (ES) (73) Assignee: Masimo Corporation, Irvine, CA (US) (*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 158 days. (21) Appl. No.: 13/043,421 (22) Filed: Mar. 8, 2011 (65) Prior Publication Data US 2011/0160552 A1 Jun. 30, 2011 # Related U.S. Application Data - (63) Continuation of application No. 12/336,419, filed on Dec. 16, 2008, now Pat. No. 7,904,132, which is a continuation of application No. 11/894,648, filed on Aug. 20, 2007, now Pat. No. 7,467,002, which is a continuation of application No. 11/417,914, filed on May 3, 2006, now Pat. No. 7,377,099, which is a continuation of application No. 11/048,232, filed on Feb. 1, 2005, now Pat. No. 7,373,194, which is a continuation of application No. 10/184,032, filed on Jun. 26, 2002, now Pat. No. 6,850,787. - (60) Provisional application No. 60/302,438, filed on Jun. 29, 2001. - (51) **Int. Cl.**A61B 5/1455 (2006.01) A61B 5/024 (2006.01) - (52) **U.S. Cl.** USPC **600/324**; 600/323; 600/502; 702/190 # (10) Patent No.: US 8,498,684 B2 (45) Date of Patent: Jul. 30, 2013 (58) Field of Classification Search See application file for complete search history. #### (56) References Cited #### U.S. PATENT DOCUMENTS | 4,960,128 A | 10/1990 | Gordon et al. | |-------------|---------|-----------------| | 4,964,408 A | 10/1990 | Hink et al. | | 5,041,187 A | 8/1991 | Hink et al. | | 5,069,213 A | 12/1991 | Polczynski | | 5,163,438 A | 11/1992 | Gordon et al. | | 5,188,108 A | 2/1993 | Secker | | 5,319,355 A | 6/1994 | Russek | | 5,337,744 A | 8/1994 | Branigan | | 5,341,805 A | 8/1994 | Stavridi et al. | | D353,195 S | 12/1994 | Savage et al. | (Continued) #### FOREIGN PATENT DOCUMENTS | WO | WO 98/42250 | 10/1998 | |----|----------------|------------| | WO | WO 02/47582 A3 | 6/2002 | | | OTHER PU | BLICATIONS | Office Action of Japanese Patent Application No. 2003-508244 dated Mar. 26, 2008 and English Translation of same in 35 pages. (Continued) Primary Examiner — Eric Winakur (74) Attorney, Agent, or Firm — Knobbe, Martens, Olson & Bear, LLP ## (57) ABSTRACT A transform for determining a physiological measurement is disclosed. The transform determines a basis function index from a physiological signal obtained through a physiological sensor. A basis function waveform is generated based on basis function index. The basis function waveform is then used to determine an optimized basis function waveform. The optimized basis function waveform is used to calculate a physiological measurement. ### 19 Claims, 14 Drawing Sheets # US 8,498,684 B2 Page 2 | U.S. | PATENT | DOCUMENTS | 6,321,100 B1 | 11/2001 | | |---|---|---|--|---|--| | D353,196 S | 12/1004 | Savage et al. | 6,325,761 B1 | 12/2001 | | | 5,377,676 A | | Vari et al. | 6,334,065 B1 | | Al-Ali et al. | | | | Savage et al. | 6,343,224 B1 | 1/2002 | Parker | | D359,546 S | | | 6,349,228 B1 | 2/2002 | Kiani et al. | | 5,431,170 A | | Mathews | 6,360,114 B1 | 3/2002 | Diab et al. | | D361,840 S | | Savage et al. | 6,368,283 B1 | | Xu et al. | | D362,063 S | 9/1995 | Savage et al. | 6,371,921 B1 | | Caro et al. | | 5,452,717 A | 9/1995 | Branigan et al. | | 4/2002 | | | D363,120 S | 10/1995 | Savage et al. | 6,377,829 B1 | | | | 5,456,252 A | | Vari et al. | 6,388,240 B2 | | Schulz et al. | | 5,479,934 A | 1/1996 | | 6,397,091 B2 | | Diab et al. | | | | | 6,430,437 B1 | 8/2002 | | | 5,482,036 A | | Diab et al. | 6,430,525 B1 | 8/2002 | Weber et al. | | 5,490,505 A | | Diab et al. | 6,463,311 B1 | 10/2002 | Diab | | 5,494,043 A | | O'Sullivan et al. | 6,470,199 B1 | 10/2002 | Kopotic et al. | | 5,533,511 A | 7/1996 | Kaspari et al. | 6,501,975 B2 | | Diab et al. | | 5,534,851 A | 7/1996 | Russek | 6,505,059 B1 | | Kollias et al. | | 5,561,275 A | 10/1996 | Savage et al. | , , , , , , , , , , , , , , , , , , , | | | | 5,562,002 A | 10/1996 | Lalin | 6,515,273 B2 | 2/2003 | | | 5,590,649 A | | Caro et al. | 6,519,487 B1 | 2/2003 | | | 5,602,924 A | | Durand et al. | 6,525,386 B1 | | Mills et al. | | | | | 6,526,300 B1 | 2/2003 | Kiani et al. | | 5,632,272 A | | Diab et al. | 6,541,756 B2 | 4/2003 | Schulz et al. | | 5,638,816 A | | Kiani-Azarbayjany et al. | 6,542,764 B1 | 4/2003 | Al-Ali et al. | | 5,638,818 A | | Diab et al. | 6,580,086 B1 | | Schulz et al. | | 5,645,440 A | 7/1997 | Tobler et al. | 6,584,336 B1 | | Ali et al. | | 5,685,299 A | 11/1997 | Diab et al. | | | Cybulski et al. | | D393,830 S | | Tobler et al. | 6,595,316 B2 | | | | 5,743,262 A | | Lepper, Jr. et al. | 6,597,932 B2 | | Tian et al. | | 5,758,644 A | | Diab et al. | 6,597,933 B2 | | Kiani et al. | | | | | 6,606,511 B1 | 8/2003 | Ali et al. | | 5,760,910 A | | Lepper, Jr. et al. | 6,632,181 B2 | 10/2003 | Flaherty et al. | | 5,769,785 A | | Diab et al. | 6,639,668 B1 | 10/2003 | | | 5,782,757 A | 7/1998 | Diab et al. | 6,640,116 B2 | 10/2003 | | | 5,785,659 A | 7/1998 | Caro et al. | | | | | 5,791,347 A | | Flaherty et al. | 6,643,530 B2 | | Diab et al. | | 5,810,734 A | | Caro et al. | 6,650,917 B2 | | Diab et al. | | 5,823,950 A | | Diab et al. | 6,654,624 B2 | | Diab et al. | | | | | 6,658,276 B2 | | Kianl et al. | | 5,830,131 A | | Caro et al. | 6,661,161 B1 | 12/2003 | Lanzo et al. | | 5,833,618 A | | Caro et al. | 6,671,531 B2 | 12/2003 | Al-Ali et al. |
 5,853,364 A | | Baker et al. | 6,678,543 B2 | | Diab et al. | | 5,860,919 A | 1/1999 | Kiani-Azarbayjany et al. | 6,684,090 B2 | | Ali et al. | | 5,890,929 A | 4/1999 | Mills et al. | 6,684,091 B2 | 1/2004 | | | 5,904,654 A | 5/1999 | Wohltmann et al. | | | | | 5,919,134 A | 7/1999 | | 6,697,656 B1 | 2/2004 | | | 5,934,925 A | | Tobler et al. | 6,697,657 B1 | | Shehada et al. | | 5,940,182 A | | | 6,697,658 B2 | 2/2004 | Al-Ali | | | | Lepper, Jr. et al. | RE38,476 E | 3/2004 | Diab et al. | | 5,995,855 A | | Kiani et al. | 6,699,194 B1 | 3/2004 | Diab et al. | | 5,997,343 A | | Mills et al. | 6,714,804 B2 | | Al-Ali et al. | | 6,002,952 A | | Diab et al. | RE38,492 E | | Diab et al. | | 6,011,986 A | 1/2000 | Diab et al. | 6,721,582 B2 | 4/2004 | | | 6,027,452 A | 2/2000 | Flaherty et al. | | 4/2004 | | | 6,036,642 A | | Diab et al. | 6,721,585 B1 | | | | 6,045,509 A | | Caro et al. | 6,725,075 B2 | 4/2004 | | | 6,067,462 A | | Diab et al. | 6,728,560 B2 | | Kollias et al. | | 6,081,735 A | | Diab et al. | 6,735,459 B2 | 5/2004 | | | | | | 6,745,060 B2 | 6/2004 | Diab et al. | | 6,083,172 A | | Baker, Jr. et al. | 6,760,607 B2 | 7/2004 | Al-Ali | | 6,088,607 A
6,110,522 A | 7/2000 | Diab et al. | | 772001 | | | 6 1 10 522 A | 0(0000 | | 6,770,028 B1 | | Ali et al. | | | 8/2000 | Lepper, Jr. et al. | 6,770,028 B1
6,771,994 B2 | 8/2004 | Ali et al.
Kiani et al. | | 6,119,026 A | 8/2000
9/2000 | Lepper, Jr. et al.
McNulty et al. | 6,771,994 B2 | 8/2004
8/2004 | Kiani et al. | | | 8/2000
9/2000 | Lepper, Jr. et al. | 6,771,994 B2
6,792,300 B1 | 8/2004
8/2004
9/2004 | Kiani et al.
Diab et al. | | 6,119,026 A
6,124,597 A | 8/2000
9/2000
9/2000 | Lepper, Jr. et al.
McNulty et al.
Shehada | 6,771,994 B2
6,792,300 B1
6,813,511 B2 | 8/2004
8/2004
9/2004
11/2004 | Kiani et al.
Diab et al.
Diab et al. | | 6,119,026 A
6,124,597 A
6,128,521 A | 8/2000
9/2000
9/2000
10/2000 | Lepper, Jr. et al.
McNulty et al.
Shehada
Marro et al. | 6,771,994 B2
6,792,300 B1
6,813,511 B2
6,816,741 B2 | 8/2004
8/2004
9/2004
11/2004
11/2004 | Kiani et al.
Diab et al.
Diab et al.
Diab | | 6,119,026 A
6,124,597 A
6,128,521 A
6,129,675 A | 8/2000
9/2000
9/2000
10/2000
10/2000 | Lepper, Jr. et al.
McNulty et al.
Shehada
Marro et al.
Jay | 6,771,994 B2
6,792,300 B1
6,813,511 B2
6,816,741 B2
6,822,564 B2 | 8/2004
8/2004
9/2004
11/2004
11/2004 | Kiani et al.
Diab et al.
Diab et al.
Diab
Al-Ali | | 6,119,026 A
6,124,597 A
6,128,521 A
6,129,675 A
6,144,868 A | 8/2000
9/2000
9/2000
10/2000
10/2000
11/2000 | Lepper, Jr. et al.
McNulty et al.
Shehada
Marro et al.
Jay
Parker | 6,771,994 B2
6,792,300 B1
6,813,511 B2
6,816,741 B2
6,822,564 B2
6,826,419 B2 | 8/2004
8/2004
9/2004
11/2004
11/2004
11/2004 | Kiani et al.
Diab et al.
Diab et al.
Diab
Al-Ali
Diab et al. | | 6,119,026 A
6,124,597 A
6,128,521 A
6,129,675 A
6,144,868 A
6,151,516 A | 8/2000
9/2000
9/2000
10/2000
10/2000
11/2000
11/2000 | Lepper, Jr. et al. McNulty et al. Shehada Marro et al. Jay Parker Kiani-Azarbayjany et al. | 6,771,994 B2
6,792,300 B1
6,813,511 B2
6,816,741 B2
6,822,564 B2 | 8/2004
8/2004
9/2004
11/2004
11/2004
11/2004 | Kiani et al.
Diab et al.
Diab et al.
Diab
Al-Ali | | 6,119,026 A
6,124,597 A
6,128,521 A
6,129,675 A
6,144,868 A
6,151,516 A
6,152,754 A | 8/2000
9/2000
9/2000
10/2000
10/2000
11/2000
11/2000
11/2000 | Lepper, Jr. et al. McNulty et al. Shehada Marro et al. Jay Parker Kiani-Azarbayjany et al. Gerhardt et al. | 6,771,994 B2
6,792,300 B1
6,813,511 B2
6,816,741 B2
6,822,564 B2
6,826,419 B2 | 8/2004
8/2004
9/2004
11/2004
11/2004
11/2004
12/2004 | Kiani et al.
Diab et al.
Diab et al.
Diab
Al-Ali
Diab et al. | | 6,119,026 A
6,124,597 A
6,128,521 A
6,129,675 A
6,144,868 A
6,151,516 A
6,152,754 A
6,157,850 A | 8/2000
9/2000
9/2000
10/2000
11/2000
11/2000
11/2000
12/2000 | Lepper, Jr. et al. McNulty et al. Shehada Marro et al. Jay Parker Kiani-Azarbayjany et al. Gerhardt et al. Diab et al. | 6,771,994 B2
6,792,300 B1
6,813,511 B2
6,816,741 B2
6,822,564 B2
6,826,419 B2
6,830,711 B2
6,850,787 B2 | 8/2004
8/2004
9/2004
11/2004
11/2004
11/2004
12/2004
2/2005 | Kiani et al. Diab et al. Diab et al. Diab Al-Ali Diab et al. Mills et al. Weber et al. | | 6,119,026 A
6,124,597 A
6,128,521 A
6,129,675 A
6,144,868 A
6,151,516 A
6,152,754 A
6,157,850 A
6,165,005 A | 8/2000
9/2000
9/2000
10/2000
11/2000
11/2000
11/2000
12/2000
12/2000 | Lepper, Jr. et al. McNulty et al. Shehada Marro et al. Jay Parker Kiani-Azarbayjany et al. Gerhardt et al. Diab et al. Mills et al. | 6,771,994 B2
6,792,300 B1
6,813,511 B2
6,816,741 B2
6,822,564 B2
6,826,419 B2
6,830,711 B2
6,850,787 B2
6,850,788 B2 | 8/2004
8/2004
9/2004
11/2004
11/2004
11/2004
12/2004
2/2005
2/2005 | Kiani et al. Diab et al. Diab et al. Diab et al. Diab Al-Ali Diab et al. Mills et al. Weber et al. Al-Ali | | 6,119,026 A
6,124,597 A
6,128,521 A
6,129,675 A
6,144,868 A
6,151,516 A
6,152,754 A
6,157,850 A
6,165,005 A
6,184,521 B1 | 8/2000
9/2000
9/2000
10/2000
10/2000
11/2000
11/2000
12/2000
12/2000
2/2001 | Lepper, Jr. et al. McNulty et al. Shehada Marro et al. Jay Parker Kiani-Azarbayjany et al. Gerhardt et al. Diab et al. Mills et al. Coffin, IV et al. | 6,771,994 B2
6,792,300 B1
6,813,511 B2
6,816,741 B2
6,822,564 B2
6,826,419 B2
6,830,711 B2
6,850,787 B2
6,850,788 B2
6,852,083 B2 | 8/2004
8/2004
9/2004
11/2004
11/2004
11/2004
12/2004
2/2005
2/2005
2/2005 | Kiani et al. Diab et al. Diab et al. Diab et al. Diab Al-Ali Diab et al. Mills et al. Weber et al. Al-Ali Caro et al. | | 6,119,026 A
6,124,597 A
6,128,521 A
6,129,675 A
6,124,868 A
6,151,516 A
6,152,754 A
6,157,850 A
6,165,005 A
6,184,521 B1
6,206,830 B1 | 8/2000
9/2000
9/2000
10/2000
10/2000
11/2000
11/2000
12/2000
12/2000
2/2001 | Lepper, Jr. et al. McNulty et al. Shehada Marro et al. Jay Parker Kiani-Azarbayjany et al. Gerhardt et al. Diab et al. Mills et al. | 6,771,994 B2
6,792,300 B1
6,813,511 B2
6,816,741 B2
6,822,564 B2
6,826,419 B2
6,830,711 B2
6,850,787 B2
6,850,788 B2
6,852,083 B2
6,861,639 B2 | 8/2004
8/2004
9/2004
11/2004
11/2004
11/2004
12/2004
2/2005
2/2005
2/2005
3/2005 | Kiani et al. Diab et al. Diab et al. Diab Al-Ali Diab et al. Mills et al. Weber et al. Al-Ali Caro et al. Al-Ali | | 6,119,026 A
6,124,597 A
6,128,521 A
6,129,675 A
6,144,868 A
6,151,516 A
6,152,754 A
6,157,850 A
6,165,005 A
6,184,521 B1 | 8/2000
9/2000
9/2000
10/2000
10/2000
11/2000
11/2000
12/2000
12/2000
2/2001
3/2001 | Lepper, Jr. et al. McNulty et al. Shehada Marro et al. Jay Parker Kiani-Azarbayjany et al. Gerhardt et al. Diab et al. Mills et al. Coffin, IV et al. | 6,771,994 B2
6,792,300 B1
6,813,511 B2
6,816,741 B2
6,822,564 B2
6,826,419 B2
6,830,711 B2
6,850,787 B2
6,850,788 B2
6,852,083 B2
6,852,083 B2
6,861,639 B2
6,898,452 B2 | 8/2004
8/2004
9/2004
11/2004
11/2004
11/2004
12/2004
2/2005
2/2005
2/2005
5/2005 | Kiani et al. Diab et al. Diab et al. Diab Al-Ali Diab et al. Mills et al. Weber et al. Al-Ali Caro et al. Al-Ali Al-Ali Al-Ali | | 6,119,026 A
6,124,597 A
6,128,521 A
6,129,675 A
6,144,868 A
6,151,516 A
6,152,754 A
6,157,850 A
6,165,005 A
6,184,521 B1
6,206,830 B1
6,229,856 B1 | 8/2000
9/2000
9/2000
10/2000
11/2000
11/2000
11/2000
12/2000
2/2001
3/2001
5/2001 | Lepper, Jr. et al. McNulty et al. Shehada Marro et al. Jay Parker Kiani-Azarbayjany et al. Gerhardt et al. Diab et al. Mills et al. Coffin, IV et al. Diab et al. Diab et al. Diab et al. | 6,771,994 B2
6,792,300 B1
6,813,511 B2
6,816,741 B2
6,825,564 B2
6,826,419 B2
6,830,711 B2
6,850,787 B2
6,850,788 B2
6,852,083 B2
6,861,639 B2
6,898,452 B2
6,920,345 B2 | 8/2004
8/2004
9/2004
11/2004
11/2004
11/2004
12/2004
2/2005
2/2005
2/2005
2/2005
5/2005
7/2005 | Kiani et al. Diab et al. Diab et al. Diab et al. Diab Al-Ali Diab et al. Mills et al. Weber et al. Al-Ali Caro et al. Al-Ali Al-Ali et al. Al-Ali et al. | | 6,119,026 A
6,124,597 A
6,128,521 A
6,129,675 A
6,144,868 A
6,151,516 A
6,152,754 A
6,157,850 A
6,165,005 A
6,184,521 B1
6,206,830 B1
6,229,856 B1
6,232,609 B1 | 8/2000
9/2000
9/2000
10/2000
11/2000
11/2000
11/2000
12/2000
2/2001
3/2001
5/2001 | Lepper, Jr. et al. McNulty et al. Shehada Marro et al. Jay Parker Kiani-Azarbayjany et al. Gerhardt et al. Diab et al. Mills et al. Coffin, IV et al. Diab et al. Diab et al. Snyder et al. | 6,771,994 B2
6,792,300 B1
6,813,511 B2
6,816,741 B2
6,825,564 B2
6,826,419 B2
6,830,711 B2
6,850,787 B2
6,850,788 B2
6,852,083 B2
6,861,639 B2
6,898,452 B2
6,9931,268 B1 | 8/2004
8/2004
9/2004
11/2004
11/2004
11/2004
12/2005
2/2005
2/2005
3/2005
5/2005
5/2005
8/2005 | Kiani et al. Diab et al. Diab et al. Diab et al. Diab Al-Ali Diab et al. Mills et al. Mills et al. Weber et al. Al-Ali Caro et al. Al-Ali Al-Ali et al. Al-Ali et al. Kiani-Azarbayjany et al. | | 6,119,026 A
6,124,597 A
6,128,521 A
6,129,675 A
6,144,868 A
6,151,516 A
6,152,754 A
6,157,850
A
6,165,005 A
6,184,521 B1
6,206,830 B1
6,229,856 B1
6,232,609 B1
6,236,872 B1 | 8/2000
9/2000
9/2000
10/2000
11/2000
11/2000
11/2000
12/2000
2/2001
3/2001
5/2001
5/2001 | Lepper, Jr. et al. McNulty et al. Shehada Marro et al. Jay Parker Kiani-Azarbayjany et al. Gerhardt et al. Diab et al. Mills et al. Coffin, IV et al. Diab et al. Snyder et al. Diab et al. Diab et al. Snyder et al. Diab et al. | 6,771,994 B2
6,792,300 B1
6,813,511 B2
6,816,741 B2
6,825,564 B2
6,826,419 B2
6,830,711 B2
6,850,787 B2
6,850,788 B2
6,852,083 B2
6,861,639 B2
6,898,452 B2
6,920,345 B2 | 8/2004
8/2004
9/2004
11/2004
11/2004
11/2004
12/2005
2/2005
2/2005
3/2005
5/2005
5/2005
8/2005 | Kiani et al. Diab et al. Diab et al. Diab et al. Diab Al-Ali Diab et al. Mills et al. Weber et al. Al-Ali Caro et al. Al-Ali Al-Ali et al. Al-Ali et al. | | 6,119,026 A
6,124,597 A
6,128,521 A
6,128,521 A
6,144,868 A
6,151,516 A
6,152,754 A
6,157,850 A
6,165,005 A
6,184,521 B1
6,206,830 B1
6,232,609 B1
6,232,609 B1
6,232,609 B1
6,236,872 B1
6,241,683 B1 | 8/2000
9/2000
9/2000
10/2000
11/2000
11/2000
11/2000
12/2000
2/2001
3/2001
5/2001
5/2001
6/2001 | Lepper, Jr. et al. McNulty et al. Shehada Marro et al. Jay Parker Kiani-Azarbayjany et al. Gerhardt et al. Diab et al. Mills et al. Coffin, IV et al. Diab et al. Snyder et al. Diab et al. And the she al. Diab et al. Diab et al. Macklem et al. | 6,771,994 B2
6,792,300 B1
6,813,511 B2
6,816,741 B2
6,825,564 B2
6,826,419 B2
6,830,711 B2
6,850,788 B2
6,850,788 B2
6,852,083 B2
6,861,639 B2
6,898,452 B2
6,920,345 B2
6,934,570 B2 | 8/2004
8/2004
9/2004
11/2004
11/2004
11/2004
12/2005
2/2005
2/2005
3/2005
5/2005
5/2005
8/2005
8/2005 | Kiani et al. Diab et al. Diab et al. Diab et al. Diab Al-Ali Diab et al. Mills et al. Weber et al. Al-Ali Caro et al. Al-Ali Al-Ali et al. Kiani-Azarbayjany et al. Kiani et al. | | 6,119,026 A
6,124,597 A
6,128,521 A
6,129,675 A
6,144,868 A
6,151,516 A
6,152,754 A
6,157,850 A
6,165,005 A
6,165,005 A
6,184,521 B1
6,206,830 B1
6,229,856 B1
6,232,609 B1
6,236,872 B1
6,241,683 B1
6,253,097 B1 | 8/2000
9/2000
9/2000
10/2000
11/2000
11/2000
11/2000
12/2000
2/2001
5/2001
5/2001
5/2001
6/2001 | Lepper, Jr. et al. McNulty et al. Shehada Marro et al. Jay Parker Kiani-Azarbayjany et al. Gerhardt et al. Diab et al. Coffin, IV et al. Diab et al. Diab et al. Snyder et al. Diab et al. Aronow et al. Aronow et al. | 6,771,994 B2
6,792,300 B1
6,813,511 B2
6,816,741 B2
6,825,564 B2
6,826,419 B2
6,850,787 B2
6,850,788 B2
6,850,788 B2
6,852,083 B2
6,861,639 B2
6,898,452 B2
6,920,345 B2
6,931,268 B1
6,934,570 B2
6,939,305 B2 | 8/2004
8/2004
9/2004
11/2004
11/2004
11/2004
2/2005
2/2005
2/2005
3/2005
5/2005
8/2005
8/2005
9/2005 | Kiani et al. Diab et al. Diab et al. Diab et al. Diab Al-Ali Diab et al. Mills et al. Weber et al. Al-Ali Caro et al. Al-Ali Al-Ali et al. Al-Ali et al. Kiani-Azarbayjany et al. Kiani-Azarbaytyany et al. Flaherty et al. | | 6,119,026 A
6,124,597 A
6,128,521 A
6,129,675 A
6,144,868 A
6,151,516 A
6,152,754 A
6,157,850 A
6,165,005 A
6,184,521 B1
6,206,830 B1
6,222,650 B1
6,232,609 B1
6,232,609 B1
6,2341,683 B1
6,255,523 B1 | 8/2000
9/2000
9/2000
10/2000
11/2000
11/2000
11/2000
12/2000
2/2001
3/2001
5/2001
5/2001
6/2001
7/2001 | Lepper, Jr. et al. McNulty et al. Shehada Marro et al. Jay Parker Kiani-Azarbayjany et al. Gerhardt et al. Diab et al. Mills et al. Coffin, IV et al. Diab et al. Snyder et al. Jiab et al. Macklem et al. Aronow et al. Diab et al. Diab et al. | 6,771,994 B2
6,792,300 B1
6,813,511 B2
6,816,741 B2
6,825,564 B2
6,826,419 B2
6,830,711 B2
6,850,787 B2
6,850,788 B2
6,852,083 B2
6,861,639 B2
6,984,452 B2
6,931,268 B1
6,931,268 B1
6,934,570 B2
6,939,305 B2
6,943,348 B1 | 8/2004
8/2004
9/2004
11/2004
11/2004
11/2004
2/2005
2/2005
2/2005
3/2005
5/2005
8/2005
8/2005
9/2005
9/2005 | Kiani et al. Diab et al. Diab et al. Diab et al. Diab Al-Ali Diab et al. Mills et al. Weber et al. Al-Ali Caro et al. Al-Ali Al-Ali et al. Al-Ali et al. Kiani-Azarbayjany et al. Kiani et al. Flaherty et al. Coffin, IV | | 6,119,026 A
6,124,597 A
6,128,521 A
6,129,675 A
6,144,868 A
6,151,516 A
6,152,754 A
6,157,850 A
6,165,005 A
6,184,521 B1
6,229,856 B1
6,223,609 B1
6,232,609 B1
6,232,609 B1
6,232,609 B1
6,241,683 B1
6,253,097 B1
6,255,523 B1
6,263,222 B1 | 8/2000
9/2000
9/2000
10/2000
11/2000
11/2000
12/2000
12/2000
2/2001
3/2001
5/2001
5/2001
6/2001
6/2001
7/2001 | Lepper, Jr. et al. McNulty et al. Shehada Marro et al. Jay Parker Kiani-Azarbayjany et al. Gerhardt et al. Diab et al. Mills et al. Coffin, IV et al. Diab et al. Snyder et al. Diab et al. Aronow et al. Diab et al. Diab et al. Aronow et al. Diab et al. Diab et al. Diab et al. | 6,771,994 B2
6,792,300 B1
6,813,511 B2
6,816,741 B2
6,825,564 B2
6,826,419 B2
6,830,711 B2
6,850,787 B2
6,850,788 B2
6,851,639 B2
6,861,639 B2
6,931,268 B1
6,934,570 B2
6,934,570 B2
6,934,570 B2
6,939,305 B2
6,943,348 B1
6,950,687 B2 | 8/2004
8/2004
9/2004
11/2004
11/2004
11/2004
11/2005
2/2005
2/2005
3/2005
5/2005
7/2005
8/2005
8/2005
9/2005
9/2005 | Kiani et al. Diab et al. Diab et al. Diab et al. Diab Al-Ali Diab et al. Mills et al. Weber et al. Al-Ali Caro et al. Al-Ali Al-Ali et al. Al-Ali et al. Kiani-Azarbayjany et al. Kiani et al. Flaherty et al. Coffin, IV Al-Ali | | 6,119,026 A
6,124,597 A
6,128,521 A
6,129,675 A
6,144,868 A
6,151,516 A
6,152,754 A
6,157,850 A
6,165,005 A
6,184,521 B1
6,206,830 B1
6,222,650 B1
6,232,609 B1
6,232,609 B1
6,2341,683 B1
6,255,523 B1 | 8/2000
9/2000
9/2000
10/2000
11/2000
11/2000
12/2000
12/2000
2/2001
3/2001
5/2001
5/2001
6/2001
6/2001
7/2001 | Lepper, Jr. et al. McNulty et al. Shehada Marro et al. Jay Parker Kiani-Azarbayjany et al. Gerhardt et al. Diab et al. Mills et al. Coffin, IV et al. Diab et al. Snyder et al. Jiab et al. Macklem et al. Aronow et al. Diab et al. Diab et al. | 6,771,994 B2
6,792,300 B1
6,813,511 B2
6,816,741 B2
6,825,564 B2
6,826,419 B2
6,830,711 B2
6,850,787 B2
6,850,788 B2
6,852,083 B2
6,852,083 B2
6,861,639 B2
6,920,345 B2
6,931,268 B1
6,934,570 B2
6,934,348 B1
6,943,348 B1
6,950,687 B2
6,961,598 B2 | 8/2004
8/2004
9/2004
11/2004
11/2004
11/2004
11/2005
2/2005
2/2005
3/2005
5/2005
7/2005
8/2005
8/2005
9/2005
9/2005
9/2005 | Kiani et al. Diab et al. Diab et al. Diab et al. Diab at al. Diab Al-Ali Diab et al. Mills et al. Weber et al. Al-Ali Caro et al. Al-Ali Al-Ali et al. Al-Ali et al. Kiani-Azarbayjany et al. Kiani et al. Flaherty et al. Coffin, IV Al-Ali Diab | | 6,119,026 A
6,124,597 A
6,128,521 A
6,129,675 A
6,144,868 A
6,151,516 A
6,152,754 A
6,157,850 A
6,165,005 A
6,184,521 B1
6,229,856 B1
6,223,609 B1
6,232,609 B1
6,232,609 B1
6,232,609 B1
6,241,683 B1
6,253,097 B1
6,255,523 B1
6,263,222 B1 | 8/2000
9/2000
9/2000
10/2000
11/2000
11/2000
11/2000
12/2000
2/2001
3/2001
5/2001
5/2001
6/2001
6/2001
7/2001
8/2001 | Lepper, Jr. et al. McNulty et al. Shehada Marro et al. Jay Parker Kiani-Azarbayjany et al. Gerhardt et al. Diab et al. Mills et al. Coffin, IV et al. Diab et al. Snyder et al. Diab et al. Aronow et al. Diab et al. Diab et al. Aronow et al. Diab et al. Diab et al. Diab et al. | 6,771,994 B2
6,792,300 B1
6,813,511 B2
6,816,741 B2
6,825,564 B2
6,826,419 B2
6,830,711 B2
6,850,787 B2
6,850,788 B2
6,851,639 B2
6,861,639 B2
6,931,268 B1
6,934,570 B2
6,934,570 B2
6,934,570 B2
6,939,305 B2
6,943,348 B1
6,950,687 B2 | 8/2004
8/2004
9/2004
11/2004
11/2004
11/2004
11/2005
2/2005
2/2005
3/2005
5/2005
7/2005
8/2005
8/2005
9/2005
9/2005 | Kiani et al. Diab et al. Diab et al. Diab et al. Diab al. Diab Al-Ali Diab et al. Mills et al. Weber et al. Al-Ali Caro et al. Al-Ali Al-Ali et al. Al-Ali et al. Kiani-Azarbayjany et al. Kiani et al. Flaherty et al. Coffin, IV Al-Ali Diab | | 6,119,026 A
6,124,597 A
6,128,521 A
6,129,675 A
6,144,868 A
6,151,516 A
6,152,754 A
6,157,850 A
6,165,005 A
6,184,521 B1
6,206,830 B1
6,229,856 B1
6,232,609 B1
6,232,609 B1
6,236,872 B1
6,241,683 B1
6,253,097 B1
6,256,523 B1
6,263,222 B1
6,278,522 B1
6,280,213 B1 | 8/2000
9/2000
9/2000
10/2000
11/2000
11/2000
11/2000
12/2000
2/2001
3/2001
5/2001
5/2001
6/2001
6/2001
7/2001
8/2001
8/2001 | Lepper, Jr. et al. McNulty et al. Shehada Marro et al. Jay Parker Kiani-Azarbayjany et al. Gerhardt et al. Diab et al. Mills et al. Coffin, IV et al. Diab et al. Snyder et al. Diab et al. Aronow et al. Diab et al. Lepper, Jr. et al. Tobler et al. Tobler et al. Tobler et al. | 6,771,994 B2
6,792,300 B1
6,813,511 B2
6,816,741 B2
6,825,564 B2
6,826,419 B2
6,830,711 B2
6,850,787 B2
6,850,788 B2
6,852,083 B2
6,852,083 B2
6,861,639 B2
6,920,345 B2
6,931,268 B1
6,934,570 B2
6,934,348 B1
6,943,348 B1
6,950,687 B2
6,961,598 B2 |
8/2004
8/2004
9/2004
11/2004
11/2004
11/2004
11/2005
2/2005
2/2005
3/2005
5/2005
7/2005
8/2005
8/2005
9/2005
9/2005
9/2005 | Kiani et al. Diab et al. Diab et al. Diab et al. Diab Al-Ali Diab et al. Mills et al. Mills et al. Weber et al. Al-Ali Caro et al. Al-Ali Al-Ali et al. Al-Ali et al. Kiani-Azarbayjany et al. Kiani et al. Coffin, IV Al-Ali Diab Diab | | 6,119,026 A
6,124,597 A
6,128,521 A
6,129,675 A
6,144,868 A
6,151,516 A
6,152,754 A
6,157,850 A
6,165,005 A
6,184,521 B1
6,206,830 B1
6,229,856 B1
6,232,609 B1
6,236,872 B1
6,241,683 B1
6,253,097 B1
6,256,523 B1
6,263,222 B1
6,278,522 B1
6,278,522 B1
6,285,896 B1 | 8/2000
9/2000
9/2000
10/2000
11/2000
11/2000
12/2000
12/2000
2/2001
5/2001
5/2001
5/2001
6/2001
7/2001
7/2001
8/2001
8/2001
9/2001 | Lepper, Jr. et al. McNulty et al. Shehada Marro et al. Jay Parker Kiani-Azarbayjany et al. Gerhardt et al. Diab et al. Mills et al. Coffin, IV et al. Diab et al. Snyder et al. Diab et al. Aronow et al. Diab et al. Lepper, Jr. et al. Tobler et al. Tobler et al. Tobler et al. | 6,771,994 B2
6,792,300 B1
6,813,511 B2
6,816,741 B2
6,825,564 B2
6,826,419 B2
6,830,711 B2
6,850,788 B2
6,850,788 B2
6,852,083 B2
6,861,639 B2
6,982,452 B2
6,920,345 B2
6,931,268 B1
6,934,570 B2
6,934,348 B1
6,950,687 B2
6,961,598 B2
6,961,598 B2
6,970,792 B1
6,979,812 B2 | 8/2004
8/2004
9/2004
11/2004
11/2004
11/2004
2/2005
2/2005
2/2005
3/2005
5/2005
5/2005
8/2005
8/2005
9/2005
9/2005
9/2005
11/2005
11/2005 | Kiani et al. Diab et al. Diab et al. Diab et al. Diab Al-Ali Diab et al. Mills et al. Weber et al. Al-Ali Caro et al. Al-Ali Al-Ali et al. Al-Ali et al. Kiani-Azarbayjany et al. Kiani et al. Flaherty et al. Coffin, IV Al-Ali Diab Diab Al-Ali | | 6,119,026 A
6,124,597 A
6,128,521 A
6,129,675 A
6,144,868 A
6,151,516 A
6,152,754 A
6,157,850 A
6,165,005 A
6,184,521 B1
6,220,856 B1
6,232,609 B1
6,232,609 B1
6,232,609 B1
6,241,683 B1
6,253,097 B1
6,253,097 B1
6,255,523 B1
6,263,222 B1
6,278,522 B1
6,280,213 B1
6,280,213 B1
6,285,896 B1
6,301,493 B1 | 8/2000
9/2000
9/2000
10/2000
11/2000
11/2000
11/2000
12/2000
2/2001
3/2001
5/2001
5/2001
6/2001
6/2001
7/2001
8/2001
8/2001
8/2001
9/2001 | Lepper, Jr. et al. McNulty et al. Shehada Marro et al. Jay Parker Kiani-Azarbayjany et al. Gerhardt et al. Diab et al. Mills et al. Coffin, IV et al. Diab et al. Diab et al. Snyder et al. Diab et al. Aronow et al. Diab et al. Lepper, Jr. et al. Tobler et al. Tobler et al. Tobler et al. Marro et al. | 6,771,994 B2
6,792,300 B1
6,813,511 B2
6,816,741 B2
6,825,564 B2
6,826,419 B2
6,830,711 B2
6,850,788 B2
6,850,788 B2
6,852,083 B2
6,861,639 B2
6,920,345 B2
6,920,345 B2
6,934,570 B2
6,934,570 B2
6,934,348 B1
6,934,570 B2
6,934,348 B1
6,950,687 B2
6,961,598 B2
6,970,792 B1
6,970,792 B1
6,979,812 B2
6,985,764 B2 | 8/2004
8/2004
9/2004
11/2004
11/2004
11/2004
12/2005
2/2005
2/2005
3/2005
5/2005
5/2005
8/2005
9/2005
9/2005
9/2005
11/2005
11/2005
12/2005 | Kiani et al. Diab et al. Diab et al. Diab et al. Diab Al-Ali Diab et al. Mills et al. Weber et al. Al-Ali Caro et al. Al-Ali Al-Ali et al. Al-Ali et al. Kiani-Azarbayjany et al. Kiani et al. Flaherty et al. Coffin, IV Al-Ali Diab Diab Al-Ali Mason et al. | | 6,119,026 A
6,124,597 A
6,128,521 A
6,129,675 A
6,144,868 A
6,151,516 A
6,152,754 A
6,157,850 A
6,165,005 A
6,184,521 B1
6,206,830 B1
6,229,856 B1
6,232,609 B1
6,236,872 B1
6,241,683 B1
6,253,097 B1
6,256,523 B1
6,263,222 B1
6,278,522 B1
6,278,522 B1
6,285,896 B1 | 8/2000
9/2000
9/2000
10/2000
11/2000
11/2000
11/2000
12/2000
2/2001
3/2001
5/2001
5/2001
6/2001
6/2001
7/2001
8/2001
8/2001
8/2001
9/2001 | Lepper, Jr. et al. McNulty et al. Shehada Marro et al. Jay Parker Kiani-Azarbayjany et al. Gerhardt et al. Diab et al. Mills et al. Coffin, IV et al. Diab et al. Snyder et al. Diab et al. Aronow et al. Diab et al. Lepper, Jr. et al. Tobler et al. Tobler et al. Tobler et al. | 6,771,994 B2
6,792,300 B1
6,813,511 B2
6,816,741 B2
6,825,564 B2
6,826,419 B2
6,830,711 B2
6,850,788 B2
6,850,788 B2
6,852,083 B2
6,861,639 B2
6,982,452 B2
6,920,345 B2
6,931,268 B1
6,934,570 B2
6,934,348 B1
6,950,687 B2
6,961,598 B2
6,961,598 B2
6,970,792 B1
6,979,812 B2 | 8/2004
8/2004
9/2004
11/2004
11/2004
11/2004
12/2005
2/2005
2/2005
3/2005
5/2005
5/2005
8/2005
9/2005
9/2005
9/2005
11/2005
11/2005
12/2005 | Kiani et al. Diab et al. Diab et al. Diab et al. Diab Al-Ali Diab et al. Mills et al. Weber et al. Al-Ali Caro et al. Al-Ali Al-Ali et al. Al-Ali et al. Kiani-Azarbayjany et al. Kiani et al. Flaherty et al. Coffin, IV Al-Ali Diab Diab Al-Ali | # US 8,498,684 B2 Page 3 | 6,996,427 B2 | 2/2006 | Ali et al. | 7,467,002 B2 | 12/2008 | Weber et al. | |--------------|---------|--------------------------|-------------------------|---------|-------------------------------------| | 6,999,904 B2 | 2/2006 | Weber et al. | 7,469,157 B2 | 12/2008 | Diab et al. | | 7,003,338 B2 | 2/2006 | Weber et al. | 7,471,969 B2 | 12/2008 | Diab et al. | | 7,003,339 B2 | 2/2006 | Diab et al. | 7,471,971 B2 | 12/2008 | Diab et al. | | 7,015,451 B2 | 3/2006 | Dalke et al. | 7,483,729 B2 | 1/2009 | Al-Ali et al. | | 7,024,233 B2 | 4/2006 | Ali et al. | 7,483,730 B2 | 1/2009 | Diab et al. | | 7,027,849 B2 | 4/2006 | Al-Ali | 7,489,958 B2 | 2/2009 | Diab et al. | | 7,030,749 B2 | 4/2006 | Al-Ali | 7,496,391 B2 | 2/2009 | Diab et al. | | 7,039,449 B2 | 5/2006 | Al-Ali | 7,496,393 B2 | 2/2009 | Diab et al. | | 7,041,060 B2 | 5/2006 | Flaherty et al. | D587,657 S | 3/2009 | Al-Ali et al. | | 7,044,918 B2 | 5/2006 | Diab | 7,499,741 B2 | 3/2009 | Diab et al. | | 7,067,893 B2 | | Mills et al. | 7,499,835 B2 | 3/2009 | Weber et al. | | 7,096,052 B2 | 8/2006 | Mason et al. | 7,500,950 B2 | 3/2009 | Al-Ali et al. | | 7,096,054 B2 | 8/2006 | Abdul-Hafiz et al. | 7,509,154 B2 | 3/2009 | Diab et al. | | 7,132,641 B2 | 11/2006 | Schulz et al. | 7,509,494 B2 | 3/2009 | Al-Ali | | 7,142,901 B2 | 11/2006 | Kiani et al. | 7,510,849 B2 | 3/2009 | Schurman et al. | | 7,149,561 B2 | 12/2006 | Diab | 7,526,328 B2 | 4/2009 | Diab et al. | | 7,186,966 B2 | 3/2007 | Al-Ali | 7,530,942 B1 | 5/2009 | Diab | | 7,190,261 B2 | 3/2007 | Al-Ali | 7,530,949 B2 | 5/2009 | Al Ali et al. | | 7,215,984 B2 | 5/2007 | Diab | 7,530,955 B2 | 5/2009 | Diab et al. | | 7,215,986 B2 | 5/2007 | Diab | 7,563,110 B2 | 7/2009 | Al-Ali et al. | | 7,221,971 B2 | 5/2007 | Diab | 7,596,398 B2 | 9/2009 | Al-Ali et al. | | 7,225,006 B2 | 5/2007 | Al-Ali et al. | 7,618,375 B2 | 11/2009 | Flaherty | | 7,225,007 B2 | 5/2007 | Al-Ali | D606,659 S | 12/2009 | Kiani et al. | | RE39,672 E | | Shehada et al. | 7,647,083 B2 | 1/2010 | Al-Ali et al. | | 7,239,905 B2 | 7/2007 | Kiani-Azarbayjany et al. | D609,193 S | | Al-Ali et al. | | 7,245,953 B1 | 7/2007 | Parker | D614,305 S | 4/2010 | Al-Ali et al. | | 7,254,429 B2 | 8/2007 | Schurman et al. | RE41,317 E | 5/2010 | | | 7,254,431 B2 | | Al-Ali | 7,729,733 B2 | 6/2010 | Al-Ali et al. | | 7,254,433 B2 | 8/2007 | Diab et al. | 7,734,320 B2 | 6/2010 | | | 7,254,434 B2 | 8/2007 | Schulz et al. | 7,761,127 B2 | 7/2010 | Al-Ali et al. | | 7,272,425 B2 | 9/2007 | Al-Ali | 7,761,128 B2 | 7/2010 | Al-Ali et al. | | 7,274,955 B2 | 9/2007 | Kiani et al. | 7,764,982 B2 | | Dalke et al. | | D554,263 S | 10/2007 | Al-Ali | D621,516 S | 8/2010 | Kiani et al. | | 7,280,858 B2 | 10/2007 | Al-Ali et al. | 7,791,155 B2 | 9/2010 | Diab | | 7,289,835 B2 | 10/2007 | Mansfield et al. | 7,801,581 B2 | 9/2010 | Diab | | 7,292,883 B2 | 11/2007 | De Felice et al. | 7,822,452 B2 | 10/2010 | Schurman et al. | | 7,295,866 B2 | 11/2007 | | RE41,912 E | 11/2010 | | | 7,328,053 B1 | 2/2008 | Diab et al. | 7,844,313 B2 | 11/2010 | Kiani et al. | | 7,332,784 B2 | 2/2008 | Mills et al. | 7,844,314 B2 | 11/2010 | | | 7,340,287 B2 | 3/2008 | Mason et al. | 7,844,315 B2 | 11/2010 | Al-Ali | | 7,341,559 B2 | | Schulz et al. | 7,865,222 B2 | 1/2011 | Weber et al. | | 7,343,186 B2 | 3/2008 | Lamego et al. | 7,873,497 B2 | 1/2011 | Weber et al. | | D566,282 S | 4/2008 | Al-Ali et al. | 7,880,606 B2 | 2/2011 | | | 7,355,512 B1 | 4/2008 | | 7,880,626 B2 | 2/2011 | Al-Ali et al. | | 7,356,365 B2 | | Schurman | 7,891,355 B2 | | Al-Ali et al. | | 7,371,981 B2 | | Abdul-Hafiz | 7,894,868 B2 | | Al-Ali et al. | | 7,373,193 B2 | | Al-Ali et al. | 7,899,507 B2 | | Al-Ali et al. | | 7,373,194 B2 | | Weber et al. | 7,899,518 B2 | 3/2011 | Trepagnier et al. | | 7,376,453 B1 | | Diab et al. | 7,904,132 B2 | | Weber et al. | | 7,377,794 B2 | | Al Ali et al. | | | | | 7,377,899 B2 | | Weber et al. | OT | HER PUI | BLICATIONS | | 7,383,070 B2 | | Diab et al. | nom. | | | | 7,415,297 B2 | | Al-Ali et al. | | - | , App. No. PCT/US 02/20674, App. | | 7,428,432 B2 | | Ali et al. | Dates: Jun. 28, 2002, 5 | pages. | | | 7,438,683 B2 | | Al-Ali et al. | | | at and Engineer's Guide to Digital | | 7,440,787 B2 | 10/2008 | | | | Edition, 1997, California Technical | | 7,454,240 B2 | | Diab et al. | Publishing. | | | | 7,737,270 DZ | 11/2000 | Diao et ai. | i donaning. | | | FIG. 1A FIG. 1B FIG. 1C FIG. 2 FIG. 3 FIG. 4 FIG. 5 FIG. 6 FIG. 7 FIG. 8A FIG. 9 FIG. 10 FIG. 11 #### SINE SATURATION TRANSFORM # CROSS-REFERENCE TO RELATED APPLICATIONS The present application claims priority benefit under 35 U.S.C. §120 to, and is a continuation of U.S. patent application Ser. No. 12/336,419, filed Dec. 16, 2008
entitled "Sine Saturation Transform," which is a continuation of, U.S. patent application Ser. No. 11/894,648, filed Aug. 20, 2007 entitled $\,^{10}$ "Sine Saturation Transform," now U.S. Pat. No. 7,467,002 which is a continuation of U.S. patent application Ser. No. 11/417,914, filed May 3, 2006, entitled "Sine Saturation Transform," now U.S. Pat. No. 7,377,899, which is a continuation of, U.S. patent application Ser. No. 11/048,232, filed Feb. 1, 2005, entitled "Signal Component Processor," now U.S. Pat. No. 7,373,194 which is a continuation of U.S. patent application Ser. No. 10/184,032, filed Jun. 26, 2002, entitled "Signal Component Processor," now U.S. Pat. No. 6,850,787, which claims priority benefit under 35 U.S.C. §119(e) from 20 U.S. Provisional Application No. 60/302,438, filed Jun. 29, 2001, entitled "Signal Component Processor." The present application also incorporates the foregoing disclosures herein by reference. #### BACKGROUND OF THE INVENTION Early detection of low blood oxygen is critical in the medical field, for example in critical care and surgical applications, because an insufficient supply of oxygen can result in brain 30 damage and death in a matter of minutes. Pulse oximetry is a widely accepted noninvasive procedure for measuring the oxygen saturation level of arterial blood, an indicator of oxygen supply. A pulse oximeter typically provides a numerical readout of the patient's oxygen saturation and pulse rate. A 35 pulse oximetry system consists of a sensor attached to a patient, a monitor, and a cable connecting the sensor and monitor. Conventionally, a pulse oximetry sensor has both red (RD) and infrared (IR) light-emitting diode (LED) emitters and a photodiode detector. The pulse oximeter measurements 40 are based upon the absorption by arterial blood of the two wavelengths emitted by the sensor. The pulse oximeter alternately activates the RD and IR sensor emitters and reads the resulting RD and IR sensor signals, i.e. the current generated by the photodiode in proportion to the detected RD and IR 45 light intensity, in order to derive an arterial oxygen saturation value, as is well-known in the art. A pulse oximeter contains circuitry for controlling the sensor, processing the sensor signals and displaying the patient's oxygen saturation and pulse rate. ### SUMMARY OF THE INVENTION FIG. 1A illustrates a plethysmograph waveform 110, which is a display of blood volume, shown along the ordinate 55 101, over time, shown along the abscissa 102. The shape of the plethysmograph waveform 110 is a function of heart stroke volume, pressure gradient, arterial elasticity and peripheral resistance. Ideally, the waveform 110 displays a short, steep inflow phase 111 during ventricular systole followed by a typically three to four times longer outflow phase 112 during diastole. A dicrotic notch 116 is generally attributed to closure of the aortic valve at the end of ventricular systole. FIG. 1B illustrates a corresponding RD or IR sensor signal 65 s(t) 130, such as described above. The typical plethysmograph waveform 110 (FIG. 1A), being a function of blood 2 volume, also provides a light absorption profile. A pulse oximeter, however, does not directly detect light absorption and, hence, does not directly measure the plethysmograph waveform 110. However, IR or RD sensor signals are 180° out-of-phase versions of the waveform 110. That is, peak detected intensity 134 occurs at minimum absorption 114 and minimum detected intensity 138 occurs at maximum absorption 118. FIG. 1C illustrates the corresponding spectrum of s(t), which is a display of signal spectral magnitude $|S(\omega)|$, shown along the ordinate 105, versus frequency, shown along the abscissa 106. The plethysmograph spectrum is depicted under both high signal quality 150 and low signal quality 160 conditions. Low signal quality can result when a pulse oximeter sensor signal is distorted by motion-artifact and noise. Signal processing technologies such as described in U.S. Pat. No. 5,632,272, assigned to the assignee of the present invention and incorporated by reference herein, allow pulse oximetry to function through patient motion and other low signal quality conditions. Ideally, plethysmograph energy is concentrated at the pulse rate frequency 172 and associated harmonics 174, 176. Accordingly, motion-artifact and noise may be reduced and pulse oximetry measurements improved by filtering out sen-25 sor signal frequencies that are not related to the pulse rate. Under low signal quality conditions, however, the frequency spectrum is corrupted and the pulse rate fundamental 152 and harmonics 154, 156 can be obscured or masked, resulting in errors in the computed pulse rate. In addition, a pulse rate, physiologically, is dynamic, potentially varying significantly between different measurement periods. Hence, maximum plethysmograph energy may not correspond to the computed pulse rate except under high signal quality conditions and stable pulse rates. Further, an oxygen saturation value calculated from an optical density ratio, such as a normalized red over infrared ratio, at the pulse rate frequency can be sensitive to computed pulse rate errors. In order to increase the robustness of oxygen saturation measurements, therefore, it is desirable to improve pulse rate based measurements by identifying sensor signal components that correspond to an optimization, such as maximum signal energy. One aspect of a signal component processor comprises a physiological signal, a basis function index determined from the signal, a basis function waveform generated according to the index, a component derived from the sensor signal and the waveform, and a physiological measurement responsive to the component. In one embodiment, the component is responsive to the inner product of the sensor signal and the waveform. In another embodiment, the index is a frequency and the waveform is a sinusoid at the frequency. In that embodiment, the signal processor may further comprise a pulse rate estimate derived from the signal wherein the frequency is selected from a window including the pulse rate estimate. The physiological measurement may be an oxygen saturation value responsive to a magnitude of the component. Another aspect of a signal component processor comprises a signal input, a basis function indicator derived from the signal input, a plurality of basis functions generated according to the indicator, a plurality of characteristics of the signal input corresponding to the basis functions and an optimization of the characteristics so as to identify at least one of said basis functions. In one embodiment, the indicator is a pulse rate estimate and the processor further comprises a window configured to include the pulse rate estimate, and a plurality of frequencies selected from within the window. In another embodiment, the characteristic comprises a plurality of signal remainders corresponding to the basis functions and a plural- ity of magnitudes of the signal remainders. In that embodiment, the optimization comprises a minima of the magnitudes. In a further embodiment, the characteristic comprises a plurality of components corresponding to the basis functions and a plurality of magnitudes of the components. In this behavior of the optimization comprises a maxima of the magnitudes. An aspect of a signal component processing method comprises the steps of receiving a sensor signal, calculating an estimated pulse rate, determining an optimization of the sensor signal proximate the estimated pulse rate, defining a frequency corresponding to the optimization, and outputting a physiological measurement responsive to a component of the sensor signal at the frequency. In one embodiment the determining step comprises the substeps of transforming the sensor signal to a frequency spectrum encompassing the estimated pulse rate and detecting an extrema of the spectrum indicative of the frequency. The transforming step may comprise the substeps of defining a window including the esti- 20 mated pulse rate, defining a plurality of selected frequencies within the window, canceling the selected frequencies, individually, from the sensor signal to generate a plurality of remainder signals and calculating a plurality of magnitudes of the remainder signals. The detecting step may comprise the 25 substep of locating a minima of the magnitudes. In another embodiment, the outputting step comprises the substeps of inputting a red (RD) portion and an infrared (IR) portion of the sensor signal, deriving a RD component of the RD portion and an IR component of the IR portion corre- 30 sponding to the frequency and computing an oxygen saturation based upon a magnitude ratio of the RD component and the IR component. The deriving step may comprise the substeps of generating a sinusoidal waveform at the frequency and selecting the RD component and the IR component uti- 35 lizing the waveform. The selecting step may comprise the substep of calculating the inner product between the waveform and the RD portion and the inner product between the waveform and the IR portion. The selecting step may comprise the substeps of canceling the waveform from the RD 40 portion and the IR portion, leaving a RD remainder and an IR remainder, and subtracting the RD remainder from the RD portion and the IR remainder from the IR portion. A further aspect of a signal component processor comprises a first calculator means for deriving an optimization 45 frequency from a pulse rate estimate input and a sensor signal, and a second calculator means for deriving a physiological measurement responsive to a sensor signal component at the frequency. In one embodiment, the first calculator means comprises a signal component transform means for determin- 50 ing a plurality of signal values corresponding to a plurality of selected frequencies within a window including the pulse rate estimate, and a detection means
for determining a particular one of the selected frequencies corresponding to an optimization of the sensor signal. The second calculator means may 55 comprise a waveform means for generating a sinusoidal signal at the frequency, a frequency selection means for determining a component of the sensor signal from the sinusoidal signal and a calculator means for deriving a ratio responsive to the component. ### BRIEF DESCRIPTION OF THE DRAWINGS FIGS. 1A-C are graphical representations of a pulse oximetry sensor signal; FIG. 1A is a typical plethysmograph illustrating blood volume versus time: 4 FIG. 1B is a pulse oximetry sensor signal illustrating detected light intensity versus time; FIG. 1C is a pulse oximetry sensor signal spectrum illustrating both high signal quality and low signal quality conditions: FIGS. **2-3** are magnitude versus frequency graphs for a pulse oximetry sensor signal illustrating an example of signal component processing; FIG. 2 illustrates a frequency window around an estimated pulse rate: and FIG. 3 illustrates an associated signal component transform: FIGS. **4-7** are functional block diagrams of one embodiment of a signal component processor; FIG. 4 is a top-level functional block diagram of a signal component processor; FIG. 5 is a functional block diagram of a frequency calculator: FIG. $\mathbf{6}$ is a functional block diagram of a saturation calculator; and FIG. 7 is a functional block diagram of one embodiment of a frequency selection; FIGS. 8A-B are flowcharts of an iterative embodiment of a frequency calculator; and FIGS. **9-11** are functional block diagrams of another embodiment of a signal component processor; FIG. **9** is a top-level functional block diagram of a signal component processor; FIG. 10 is a functional block diagram of an index calculator; and FIG. 11 is a functional block diagram of a measurement calculator. #### DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIGS. 2 and 3 provide graphical illustration examples of signal component processing. Advantageously, signal component processing provides a direct method for the calculation of saturation based on pulse rate. For example, it is not necessary to compute a frequency transform, such as an FFT, which derives an entire frequency spectrum. Rather, signal component processing singles out specific signal components, as described in more detail below. Further, signal component processing advantageously provides a method of refinement for the calculation of saturation based on pulse rate. FIG. 2 illustrates high and low signal quality sensor signal spectrums 150, 160 as described with respect to FIG. 1C, above. A frequency window 220 is created, including a pulse rate estimate PR 210. A pulse rate estimate can be calculated as disclosed in U.S. Pat. No. 6,002,952, entitled "Signal Processing Apparatus and Method," assigned to the assignee of the present invention and incorporated by reference herein. A search is conducted within this window 220 for a component frequency for at an optimization. In particular, selected frequencies 230, which include PR, are defined within the window 220. The components of a signal s(t) at each of these frequencies 230 are then examined for an optimization indicative of an extrema of energy, power or other signal characteristic. In an alternative embodiment, the components of the signal s(t) are examined for an optimization over a continuous range of frequencies within the window 220. FIG. 3 illustrates an expanded portion of the graph described with respect to FIG. 2, above. Superimposed on the high signal quality 150 and low signal quality 160 spectrums is a signal component transform 310. In one embodiment, a an oxygen saturation output, SAT_{fo}462. The saturation calculator 460 determines values of the IR signal input 402 and the RD signal input 404 at the component frequency f_O 412 and computes a ratio of those values to determine SAT_{fo} 462, as described with respect to FIG. 6, below. The IR signal input 402 and RD signal input 404 can be expressed as: 6 signal component transform 310 is indicative of sensor signal energy and is calculated at selected signal frequencies 230 within the window 220. A signal component transform 310 has an extrema 320 that indicates, in this embodiment, energy optimization at a particular one 330 of the selected frequencies 230. The extrema 320 can be, for example, a maxima, minima or inflection point. In the embodiment illustrated, each point of the transform 310 is the magnitude of the signal remaining after canceling a sensor signal component at one of the selected frequencies. The extrema 320 is a minima, which 10 indicates that canceling the corresponding frequency 330 removes the most signal energy. In an alternative embodiment, not illustrated, the transform 310 is calculated as the magnitude of signal components at each of the selected frequencies 230. In that embodiment, the extrema is a maxima, 15 which indicates the largest energy signal at the corresponding frequency. The result of a signal component transform 310 is identification of a frequency f_Q 330 determined from the frequency of a signal component transform extrema 320. Frequency f_O 330 is then used to calculate an oxygen satura- 20 tion. A signal component transform and corresponding oxygen saturation calculations are described in additional detail with respect to FIGS. 4-8, below. Although signal component processing is described above with respect to identifying a particular frequency within a window including a pulse rate 25 estimate PR, a similar procedure could be performed on 2PR, 3PR etc. resulting in the identification of multiple frequencies f_{O1}^{f} , f_{O2} etc., which could be used for the calculation of oxygen saturation as well. $$IR = \begin{bmatrix} IR_0 \\ \vdots \\ IR_{N-1} \end{bmatrix}; RD = \begin{bmatrix} RD_0 \\ \vdots \\ RD_{N-1} \end{bmatrix}$$ (1) Advantageously, a signal component transform 310 is calculated over any set of selected frequencies, unrestricted by the number or spacing of these frequencies. In this manner, a signal component transform 310 differs from a FFT or other standard frequency transforms. For example, a FFT is limited to N evenly-distributed frequencies spaced at a resolution of 35 f_s/N , where N is the number of signal samples and f_s is the sampling frequency. That is, for a FFT, a relatively high sampling rate or a relatively large record length or both are needed to achieve a relatively high resolution in frequency. Signal component processing, as described herein, is not so 40 selected frequencies 230 (FIG. 3). Specifically limited. Further, a signal component transform 310 is advantageously calculated only over a range of frequencies of interest. A FFT or similar frequency transformation may be computationally more burdensome than signal component processing, in part because such a transform is computed over 45 all frequencies within a range determined by the sampling frequency, f_s. where N is the number of samples of each signal input. FIGS. 4-7 illustrate one embodiment of a signal component processor. FIG. 4 is a top-level functional block diagram of a signal component processor 400. The signal component pro- 50 cessor 400 has a frequency calculator 410 and a saturation calculator 460. The frequency calculator 410 has an IR signal input 402, a pulse rate estimate signal PR input 408 and a component frequency f_Q output 412. The frequency calculator 410 performs a signal component transform based upon 55 the PR input 408 and determines the f_Q output 412, as described with respect to FIGS. 2-3, above. The frequency calculator 410 is described in further detail with respect to FIG. 5 shows one embodiment of the frequency calculator 410. In this particular embodiment, the frequency calculator functions are window generation 520, frequency cancellation 540, magnitude calculation 560 and minima determination 580. Window generation 520, frequency cancellation 540 and magnitude calculation 560 combine to create a signal component transform 310 (FIG. 3), as described with respect to FIG. 3, above. Minima determination 580 locates the signal component transform extrema 320 (FIG. 3), which identifies f_o 412, also described with respect to FIG. 3, above. determines f_O 412 based upon a RD signal input substituted for, or in addition to, the IR signal input 402. Similarly, one of ordinary skill in the art will recognize that f_Q can be determined by the frequency calculator 410 based upon one or more inputs responsive to a variety of sensor wavelengths. In an alternative embodiment, the frequency calculator 410 60 As shown in FIG. 5, window generation 520 has a PR input 408 and defines a window 220 (FIG. 3) about PR 210 (FIG. 3) including a set of selected frequencies 230 (FIG. 3) The saturation calculator 460 has an IR signal input 402, a RD signal input 404, a component frequency $\mathbf{f}_{\mathcal{O}}$ input 412 and $$\{f_m; m = 0, \dots M - 1\}; f = \begin{bmatrix} f_0 \\ \vdots \\ f_{M-1} \end{bmatrix}$$ (2) where M is the number of selected frequencies 230 (FIG. 3) within the window 220 (FIG. 3). Window generation 520 has a sinusoidal output X_f , Y_f 522, which is a set of sinusoidal waveforms $x_{n,f} y_{n,f}$ each corresponding to one of the set of $$X_{f} = \begin{bmatrix} x_{0,f} \\ \vdots \\ x_{N-1,f} \end{bmatrix}; Y_{f} = \begin{bmatrix} y_{0,f} \\ \vdots \\ y_{N-1,f} \end{bmatrix}$$ $$(3a)$$ $$x_{n,f} = \sin(2\pi f n); y_{n,f} = \cos(2\pi f n)$$ (3b) Also shown in FIG. 5, the frequency cancellation 540 has IR 402 and X_{e} Y_{f} 522 inputs and a remainder output R_{f} 542, which is a set of remainder signals $r_{n,f}$ each corresponding to one of the sinusoidal waveforms $x_{n,f}$, $y_{n,f}$. For each selected frequency f 230 (FIG. 3), frequency cancellation 540 cancels that frequency component from the input signal IR 402 to generate a remainder signal $r_{n,f}$. In
particular, frequency cancellation 540 generates a remainder R_f 542 $$R_{f} = \begin{bmatrix} r_{0,f} \\ \vdots \\ r_{N-1,f} \end{bmatrix}$$ $$R_{f} = IR - \frac{IR \cdot X_{f}}{|X_{f}|^{2}} X_{f} - \frac{IR \cdot Y_{f}}{|Y_{f}|^{2}} Y_{f}$$ $$(4a)$$ $$R_f = IR - \frac{IR \cdot X_f}{|X_f|^2} X_f - \frac{IR \cdot Y_f}{|Y_f|^2} Y_f \tag{4b} \label{eq:4b}$$ Additionally, as shown in FIG. 5, the magnitude calculation 560 has a remainder input R_f 542 and generates a magnitude output W_c 562, where $$W_f = |R_f| = \sqrt{\sum_{n=0}^{N-1} r_{n,f}^2}$$ (5) Further shown in FIG. 5, the minima determination $580\,\mathrm{has}^{-10}$ the magnitude values W_f 562 as inputs and generates a component frequency f_O output. Frequency f_O is the particular frequency associated with the minimum magnitude value $$\mathbf{W}_{\mathbf{f}_{\mathbf{c}}} = \min\{\mathbf{W}_{\mathbf{f}}\}\tag{6}$$ FIG. 6 shows that the saturation calculator 460 functions are sinusoid generation 610, frequency selection 620, 640 and ratio calculation 670. Sinusoid generation has a component frequency f_O input 208 and a sinusoidal waveform X_{f_O} , Y_{f_O} 20 output 612, which has a frequency of f_O . Frequency selection 620, 640 has a sensor signal input, which is either an IR signal 202 or a RD signal 204 and a sinusoid waveform X_{f_O} , Y_{f_O} input 612. Frequency selection 620, 640 provides magnitude outputs z_{IR,f_O} 622 and z_{RD,f_O} 642 which are the frequency components of the IR 202 and RD 204 sensor signals at the f_O frequency. Specifically, from equation 3(a) $$X_{fo} = \begin{bmatrix} x_{0,fo} \\ \vdots \\ x_{N-1,f_o} \end{bmatrix}; Y_{f_o} = \begin{bmatrix} y_{0,f_o} \\ \vdots \\ y_{N-1,f_o} \end{bmatrix}$$ Then, referring to equation 1 $$z_{IR,f_O} = \left| \frac{IR \cdot X_{f_O}}{|X_{f_O}|^2} X_{f_O} + \frac{IR \cdot Y_{f_O}}{|Y_{f_O}|^2} Y_{f_O} \right|$$ $$= \sqrt{\frac{(IR \cdot X_{f_O})^2}{|X_{f_O}|^2} + \frac{(IR \cdot Y_{f_O})^2}{|Y_{f_O}|^2}}$$ (8a) $$\begin{split} z_{RD,f_O} &= \left| \frac{RD \cdot X_{f_O}}{|X_{f_O}|^2} X_{f_O} + \frac{RD \cdot Y_{f_O}}{|Y_{f_O}|^2} Y_{f_O} \right| \\ &= \sqrt{\frac{(RD \cdot X_{f_O})^2}{|X_{f_O}|^2} + \frac{(RD \cdot Y_{f_O})^2}{|Y_{f_O}|^2}} \end{split}$$ (8b) For simplicity of illustration, EQS. 8a-b assume that the cross-product of X_{f_o} and Y_{f_o} is zero, although generally this is not the case. The ratio calculation and mapping **670** has z_{IR,f_o} **622** and z_{RD,f_o} **642** as inputs and provides SAT_{f_o} **262** as an output. That is $$SAT_{f_O} = g\{z_{RD,f_O}/z_{IR,f_O}\}$$ $$(9)$$ where g is a mapping of the red-over-IR ratio to oxygen saturation, which may be an empirically derived lookup table, for example. FIG. 7 illustrates an alternative embodiment of frequency 60 selection **620** (FIG. **6**), as described above. In this embodiment, frequency cancellation **540** and magnitude calculation **560**, as described with respect to FIG. **5**, can also be used, advantageously, to perform frequency selection. Specifically, frequency cancellation **540** has IR **202** and X_{fo} , Y_{fo} **612** as 65 inputs and generates a remainder signal R_{fo} **712** as an output, where 8 $$R_{fo} = IR - \frac{IR \cdot X_{fo}}{|X_{fo}|^2} X_{fo} - \frac{IR \cdot Y_{fo}}{|Y_{fo}|^2} Y_{fo}$$ (10) $$Z_{fo} = IR - \left[IR - \frac{IR \cdot X_{fo}}{|X_{fo}|^2} X_{fo} - \frac{IR \cdot Y_{fo}}{|Y_{fo}|^2} Y_{fo} \right]$$ $$= \frac{IR \cdot X_{fo}}{|X_{fo}|^2} X_{fo} + \frac{IR \cdot Y_{fo}}{|Y_{fo}|^2} Y_{fo}$$ (11) where \mathbf{z}_{f_O} 722 is the component of IR 202 at the \mathbf{f}_O frequency. The magnitude calculation 560 has \mathbf{z}_{f_O} 722 as an input and calculates $$|Z_{fo}| = \left| \frac{IR \cdot X_{fo}}{|X_{fo}|^2} X_{fo} + \frac{IR \cdot Y_{fo}}{|Y_{fo}|^2} Y_{fo} \right|$$ $$= \sqrt{\frac{(IR \cdot X_{fo})^2}{|X_{fo}|^2} + \frac{(IR \cdot Y_{fo})^2}{|Y_{fo}|^2}}$$ (12) which is equivalent to equation 8a, above. FIGS. 8A-B illustrate an iterative embodiment of the frequency calculator 410 (FIG. 4) described above. An iterative frequency calculator 410 has an initialization 810, a signal component transform 820, an extrema detection 850, a resolution decision 860 and a resolution refinement 880 and provides a component frequency f_O 870. Initialization 810 defines a window around the pulse rate estimate PR and a frequency resolution within that window. As shown in FIG. 8A, a signal component transform 820 has an initial frequency selection 822, a frequency cancellation 824 and an magnitude calculation 828. A decision block 40 830 determines if the magnitude calculation 828 has been performed at each frequency within the window. If not, the loop of frequency cancellation 824 and magnitude calculation 828 is repeated for another selected frequency in the window. The frequency cancellation 824 removes a frequency component from the IR sensor signal, as described with respect to FIG. 5, above. The magnitude calculation 828 determines the magnitude of the remainder signal, also described with respect to FIG. 5, above. If the decision block 830 determines that the remainder signal magnitudes have been calculated at each of the selected frequencies, then the signal component transform loop 820 is exited to the steps described with respect to FIG. 8B. As shown in FIG. 8B, the extrema detector 850 finds a minima of a signal component transform 820 and a resolution decision block 860 determines if the final frequency resolution of a signal component transform is achieved. If not, resolution refinement 880 is performed. If the final resolution is achieved, the component frequency output f_O is equated to the frequency of the minima 870, i.e. a signal component transform minima determined by the extrema detector 850. Further shown in FIG. 8B, the resolution refinement 880 has a set frequency estimate 882, a window decrease 884 and a frequency resolution increase 888. Specifically, the frequency estimate 882 is set to a signal component transform minima, as determined by the extrema detector 850. The window decrease 884 defines a new and narrower window around the frequency estimate, and the frequency resolution increase **888** reduces the spacing of the selected frequencies within that window prior to the next iteration of a signal component transform **820**. In this manner, a signal component transform **820** and the resulting frequency estimate are refined to a higher resolution with each iteration of signal component transform **820**, extrema detection **850**, and resolution refinement **880**. In a particular embodiment, the component calculation requires three iterations. A frequency resolution of 4 beats per minute or 4 BPM is used initially and a window of five or seven selected frequencies, including that of the initial pulse rate estimate PR, is defined. That is, a window of either 16 BPM or 24 BPM centered on PR is defined, and a signal component transform is computed for a set of 5 or 7 selected frequencies evenly spaced at 4 BPM. The result is a frequency estimate f₁. Next, the frequency resolution is reduced from 4 BPM to 2 BPM and a 4 BPM window centered on f₁ is defined with three selected frequencies, i.e. f_1 -2 BPM, f_1 , and f_1 +2 BPM. The result is a higher resolution frequency estimate f_2 . ²⁰ On the final iteration, the frequency resolution is reduced to 1 BPM and a 2 BPM window centered on f_2 is defined with three selected frequencies, i.e. f_2 -1 BPM, f_2 , and f_2 +1 BPM. The final result is the component frequency for determined by a signal component transform to within a 1 BPM resolution. This component frequency f_O is then used to calculate the oxygen saturation, SAT_{f_0} , as described above. The signal component processor has been described above with respect to pulse oximetry and oxygen saturation measurements based upon a frequency component that optimizes signal energy. The signal component processor, however, is applicable to other physiological measurements, such as blood glucose, carboxy-hemoglobin, respiration rate and blood pressure to name a few. Further, the signal component processor is generally applicable to identifying, selecting and processing any basis function signal components, of which single frequency components are one embodiment, as described in further detail with respect to FIG. 9, below. FIGS. 9-11 illustrate another embodiment of a signal component processor 900. As shown in FIG. 9, the processor 900 has an index calculator 910 and a measurement calculator 960. The index calculator has a sensor signal input S 902 and outputs a basis function index $\kappa_{\mathcal{O}}$ 912, as described with 45 respect to FIG. 10, below. The measurement calculator 960 inputs the basis function index $\kappa_{\mathcal{O}}$ 912 and outputs a physiological measurement $U_{\kappa_{\mathcal{O}}}$ 962, as described with respect to FIG. 11, below. The processor 900 also has a basis function indicator 980, which is responsive to the sensor signal input S 902 and provides a parameter ϵ 982 that indicates a set of basis functions to be utilized by the index calculator 910, as described with respect to FIG. 10, below. As shown in FIG. 10, the functions of the index calculator 910 are basis subset generation 1020, component cancellation 1040 and optimization calculation 1060. The basis subset generation 1020 outputs a subset Φ_κ 1022 of basis function waveforms corresponding to a set of selected basis function indices κ . The basis functions can be any complete set of functions such that $$S = \sum_{\kappa} \alpha_{\kappa} \Phi_{\kappa} \tag{13}$$ For simplicity of illustration purposes, these basis functions are assumed to be orthogonal $$\langle \overrightarrow{\Phi}_{\gamma}, \overrightarrow{\Phi}_{\eta} \rangle = 0; \gamma \neq \eta$$ (14) where \(\rangle\) denotes an inner product. As such $$\alpha_{\kappa}
= \langle S, \Phi_{\kappa} \rangle / \langle \Phi_{\kappa}, \Phi_{\kappa} \rangle \tag{15}$$ $$S_{\kappa} = \alpha_{\kappa} \Phi_{\kappa}$$ (16) In general, the basis functions may be non-orthogonal. The subset of basis functions generated is determined by an input parameter ϵ 982. In the embodiment described with respect to FIG. 5, above, the basis functions are sinusoids, the indices are the sinusoid frequencies and the input parameter ϵ 982 is a pulse rate estimate that determines a frequency window. As shown in FIG. 10, the component cancellation 1040 generates a remainder output R_{κ} 1042, which is a set of remainder signals corresponding to the subset of basis function waveforms Φ_{κ} 1022. For each basis function waveform generated, component cancellation removes the corresponding basis function component from the sensor signal S 902 to generate a remainder signal. In an alternative embodiment, component cancellation 1040 is replaced with a component selection that generates a corresponding basis function component of the sensor signal S 902 for each basis function generated. The optimization calculation 1060 generates a particular index $\kappa_{\mathcal{O}}$ 912 associated with an optimization of the remainders R_{κ} 1042 or, alternatively, an optimization of the selected basis function signal components. As shown in FIG. 11, the functions of the measurement calculator 960 are basis function generation 1120, component selection 1140, and physiological measurement calculation 1170. The component selection 1140 inputs the sensor signal S 902 and a particular basis function waveform $\Phi_{\kappa_{\mathcal{O}}}$ 1122 and outputs a sensor signal component S_{κ_0} 1142. The physiological measurement 1170 inputs the sensor signal component S_{κ_0} 1142 and outputs the physiological measurement U_{κ_0} 962, which is responsive to the sensor signal component S_{κ_0} 1142. In the embodiment described with respect to FIG. 6, above, the basis functions Φ_{κ} are sinusoids and the index κ_{O} is a particular sinusoid frequency. The basis function generation 1120 creates sine and cosine waveforms at this frequency. The component selection 1140 selects corresponding frequency components of the sensor signal portions, RD and IR. Also, the physiological measurement 1170 computes an oxygen saturation based upon a magnitude ratio of these RD and IR frequency components. The signal component processor has been disclosed in detail in connection with various embodiments. These embodiments are disclosed by way of examples only and are not to limit the scope of the claims that follow. One of ordinary skill in the art will appreciate many variations and modifications. What is claimed is: 1. A method of determining of a physiological parameter of a monitored patient attached to a noninvasive optical sensor, the method including electronically processing signals indicative of attenuation by body tissue of the patient, the 60 method comprising: receiving one or more signals indicative of light attenuated by body tissue of pulsing blood in said monitored patient, said one or more signals usable to determine measurements for one or more physiological parameters of said monitored patient; electronically determining at least one basis function index based on said one or more signals; - electronically generating at least one basis function waveform based on said at least one basis function index; - electronically optmizing said at least one basis function waveform and said one or more signals to determine an optimized basis function index; - electronically generating an optimized basis function waveform based on said optimized basis function index; and - electronically processing said one or more signals and said optimized basis function waveform to determine an output measurement of one or more of said one or more physiological parameters. - 2. The method of claim 1, comprising generating one or more sinusoidal waves as the at least one basis function waveform - 3. The method of claim 2, comprising individually canceling the generated sinusoidal waves from said one or more signals. - **4**. The method of claim **1**, wherein said optimizing includes determining a frequency corresponding to the sinusoidal 20 waveform which produces an extrema. - 5. The method of claim 4, wherein the extrema comprises a minima. - **6**. The method of claim **1**, comprising sending said output measurement to a display. - 7. The method of claim 6, comprising displaying said output measurement. - 8. The method of claim 1, wherein said one or more physiological parameters comprises oxygen saturation. - 9. The method of claim 1, wherein said at least one basis 30 function corresponds to an estimated pulse rate. - 10. The method of claim 1, wherein said at least one basis function waveform comprises two or more basis function waveforms - 11. A signal processing system for determining a physiological parameter of a monitored patient attached to a non-invasive optical sensor, electronically processing signals indicative of attenuation by body tissue of the patient, the system comprising: - at least one input configured to receive one or more signals 40 indicative of light attenuated by body tissue of pulsing blood in said monitored patient, said one or more signals usable to determine measurements for one or more physiological parameters of said monitored patient; - at least one basis function indicator configured to determine at least one basis function index based on said one or more signals; - at least one basis subset generator configured to generate at least one basis function waveform based on said at least one basis function index; - at least one optimization calculator configured to optimize said one or more signals and said one or more basis function waveforms to determine an optimized basis function index; - at least one basis function generator configured to generate 55 an optimized basis function waveform based on said optimized basis function index; and 12 - at least one physiological measurement calculator configured to process said one or more signals and said optimized basis function waveform to determine a physiological measurement. - 12. The system of claim 11, comprising at least one component calculator configured to combine said at least one basis function waveform with said one or more of said signals to produce a remainder signal response. - 13. The system of claim 11, comprising at least one component selection calculator configured to process said one or more signals and said second basis function waveform to determine a sensor signal component. - **14**. The system of claim **11**, wherein said one or more physiological parameters comprises two or more physiological parameters. - 15. The method of claim 11, wherein said at least one basis function corresponds to an estimated pulse rate. - 16. The method of claim 11, wherein said at least one basis function waveform comprises two or more basis function waveforms. - 17. A signal processing system for determining a physiological parameter of a monitored patient attached to a non-invasive optical sensor, electronically processing signals indicative of attenuation by body tissue of the patient, the method comprising: - an input capable of accepting at least one physiological signal; - a first waveform generator configured to generate a plurality of waveforms based on an estimated pulse rate from said at least one physiological signal; - a frequency optimization calculator configured to: - process said at least one signal with said plurality of waveforms to determine one or more remainder waveforms; - determine one or more magnitudes based on said one or more remainder waveforms; - determine an optimized component frequency based on said one or more magnitudes; - a second waveform generator configured to generate a component waveform corresponding to said optimized component frequency; and - a physiological measurement calculator configured to: process said at least one signal based on said component waveform to determine frequency components of said at least one signal: - determine a physiological measurement based on said frequency components. - 18. The system of claim 17, wherein said at least one physiological signal comprises an IR signal input and an RD signal input. - 19. The system of claim 18, wherein the physiological measurement calculator determines frequency components of said IR signal input and said RD signal input corresponding to said component frequency. * * * * * | 专利名称(译) | 正弦饱和变换 | | | |----------------|---|---------|------------| | 公开(公告)号 | <u>US8498684</u> | 公开(公告)日 | 2013-07-30 | | 申请号 | US13/043421 | 申请日 | 2011-03-08 | | [标]申请(专利权)人(译) | WEBER WALTER中号
AL ALI AMMAR
CAZZOLI LORENZO | | | | 申请(专利权)人(译) | WEBER , WALTER M.
AL-ALI , AMMAR
CAZZOLI , LORENZO | | | | 当前申请(专利权)人(译) | Masimo公司 | | | | [标]发明人 | WEBER WALTER M
AL ALI AMMAR
CAZZOLI LORENZO | | | | 发明人 | WEBER, WALTER M.
AL-ALI, AMMAR
CAZZOLI, LORENZO | | | | IPC分类号 | A61B5/1455 A61B5/024 A61B5/02 A61B5/00 A61B5/145 | | | | CPC分类号 | A61B5/024 A61B5/14551 A61B5/1455 A61B5/14532 A61B5/02433 A61B5/14552 A61B5/7282 | | | | 优先权 | 11/894648 2008-12-16 US
11/417914 2008-05-27 US
11/048232 2008-05-13 US
10/184032 2005-02-01 US
60/302438 2001-06-29 US | | | | 其他公开文献 | US20110160552A1 | | | | 外部链接 | Espacenet USPTO | | | # 摘要(译) 公开了一种用于确定生理测量的变换。变换根据通过生理传感器获得的 生理信号确定基函数指数。基于基函数索引生成基函数波形。然后使用 基函数波形来确定优化的基函数波形。优化的基函数波形用于计算生理 测量。