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(57) ABSTRACT

A method and apparatus for forecasting and controlling
neurological abnormalities in humans such as seizures or

other brain disturbances. The system is based on a multi-
level control strategy. Using as inputs one or more types of
physiological measures such as brain electrical, chemical or
magnetic activity, heart rate, pupil dilation, eye movement,
temperature, chemical concentration of certain substances, a
feature set is selected off-line from a pre-programmed
feature library contained in a high level controller within a
supervisory control architecture. This high level controller
stores the feature library within a notebook or external PC.
The supervisory control also contains a knowledge base that
is continuously updated at discrete steps with the feedback
information coming from an implantable device where the
selected feature set (feature vector) is implemented. This
high level controller also establishes the initial system
settings (off-line) and subsequent settings (on-line) or tun-
ings through an outer control loop by an intelligent proce-
dure that incorporates knowledge as it arises. The subse-
quent adaptive settings for the system are determined in
conjunction with a low-level controller that resides within
the implantable device. The device has the capabilities of
forecasting brain disturbances, controlling the disturbances,
or both. Forecasting is achieved by indicating the probability
of an oncoming seizure within one or more time frames,
which is accomplished through an inner-loop control law
and a feedback necessary to prevent or control the neuro-
logical event by either electrical, chemical, cognitive, sen-
sory, and/or magnetic stimulation.
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ADAPTIVE METHOD AND APPARATUS FOR
FORECASTING AND CONTROLLING
NEUROLOGICAL DISTURBANCES UNDER A
MULTI-LEVEL CONTROL

CROSS REFERENCE TO RELATED
APPLICATIONS

[0001] This application is related to co-pending patent
application “Unified Probabilistic Framework For Predict-
ing and Detecting Seizure Onsets In The Brain and Multi-
therapeutic Device”, Ser. No. 09/693423, filed Oct. 20,
2000. The present application is also related to international
application WO 00/10455, published under the Patent Coop-
eration Treaty (PCT) on Mar. 2, 2000. The related patent
applications are hereby incorporated by reference into this
description as fully as if here represented in full.

BACKGROUND OF THE INVENTION

[0002] The present invention is in the field of prediction
and control of neurological disturbances, particularly in the
area of electrographic and clinical seizure onset prediction
based on implantable devices with the major goal of alerting
and/or avoiding seizures.

[0003] Approximately 1% of the world’s population has
epilepsy, one third of whom have seizures not controlled by
medications. Some patients, whose seizures reliably begin in
one discrete region, usually in the mesial (middle) temporal
lobe, may be cured by epilepsy surgery. This requires
removing large volumes of brain tissue, because of the lack
of a reliable method to pinpoint the location of seizure onset
and the pathways through which seizures spread. The 25%
of refractory patients in whom surgery is not an option must
resort to inadequate treatment with high doses of intoxicat-
ing medications and experimental therapies, because of
poorly localized seizure onsets, multiple brain regions inde-
pendently giving rise to seizures, or because their seizures
originate from wvital areas of the brain that cannot be
removed. For these and all other epileptic patients, the
utilization of a predicting device would be of invaluable
help. It could prevent accidents and allow these patients to
do some activities that otherwise would be risky.

[0004] Individuals with epilepsy suffer considerable dis-
ability from seizures and resulting injuries, impairment of
productivity, job loss, social isolation associated with having
seizures, disabling side effects from medications and other
therapies. One of the most disabling aspects of epilepsy is
that seizures appear to be unpredictable. However, in this
invention a seizure prediction system is disclosed. Seizure
prediction is a highly complex problem that involves detect-
ing invisible and unknown patterns, as opposed to detecting
visible and known patterns involved in seizure detection. To
tackle such an ambitious goal, some research groups have
begun developing advanced signal processing and artificial
intelligence techniques. The first natural question to ask is in
what ways the preictal (i.c., the period preceding the time
that a seizure takes place) intracranial EEGs (IEEGs) are
different from all other IEEGs segments not immediately
leading to seizures. When visual pattern recognition is
insufficient, quantitative EEG analysis may help extract
relevant characteristic measures called features, which can
then be used to make statistical inferences or to serve as
inputs in automated pattern recognition systems.

Aug. 1,2002

[0005] Typically, the study of an event involves the goals
of diagnosing (detecting) or prognosticating (predicting)
such event for corrective or preventive purposes, respec-
tively. Particularly, in the case of brain disturbances such as
epileptic seizures, these two major goals have driven the
efforts in the field. On one hand, there are several groups
developing seizure detection methods to implement correc-
tive techniques to stop seizures, and on the other, there are
some groups investigating seizure prediction methods to
provide preventive ways to avoid seizures. Among the
groups claiming seizure prediction, three categories of pre-
diction can be distinguished, clinical onset (CO) prediction,
electrographic onset (EO) prediction studies, and EO pre-
diction systems. All these categories in conjunction with
seizure detection compose most of the active research in this
field.

[0006] Related art approaches have focused on nonlinear
methods such as studying the behavior of the principal
Lyapunov exponent (PLE) in seizure EEGs, computing a
correlation dimension or nonlinear chaotic analysis or deter-
mining one major feature extracted from the ictal charac-
teristics of an electroencephalogram (EEG) or electrocor-
ticogram (ECoG).

[0007] Important Terminology Definitions

[0008] Ictal period: time when the seizure takes place and
develops.

[0009] Preictal period: time preceding the ictal period.
[0010] Interictal period or baseline: period at least 1 hour

away from a seizure. Note that the term baseline is generally
used to denote “normal” periods of EEG activity, however,
in this invention it is used interchangeably with interictal
period.

[0011] Clinical onset (COY): the time when a clinical sei-
zure is first noticeable to an observer who is watching the
patient.

[0012] Unequivocal Clinical onset (UCO): the time when
a clinical seizure is unequivocally noticeable to an observer
who is watching the patient.

[0013] Unequivocal Electrographic Onset (UEO): also
called in this work electrographic onset (EQ), indicates the
unequivocal beginning of a seizure as marked by the current
“gold standard” of expert visual analysis of the IEEG.

[0014] Earliest Electrographic Change (EEC): the earliest
change in the intracranial EEG (IEEG) preceding the UEO
and possibly related to the seizure initiation mechanisms.

[0015] Focus Channel: the intracranial EEG channel
where the UEO is first observed electrographically.

[0016] Focal Adjacent Channel: the intracranial EEG
channels adjacent to the focus channel.

[0017] Focus Region: area of the brain from which the
seizures first originate.

[0018] Feature: qualitative or quantitative measure that
distills preprocessed data into relevant information for tasks
such as prediction and detection.

[0019] Feature library: collection of algorithms used to
determine the features.
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[0020] Feature vector: set of selected features used for
prediction or detection that forms the feature vector.

[0021] Awura: symptom of a brain disturbance usually
preceding the seizure onset that may consist of hallucina-
tions, visual illusions, distorted understanding, and sudden,
intense emotion, such as anxiety or fear.

[0022] FIGS. 11A-11B illustrate some of the defined terms
on segments of a raw IEEG signal. Comparison between the
preictal segment indicated on FIG. 11A (between the EEC
and the UEO times) and the interictal period in FIG. 11B
demonstrates the difficulty of discerning between them. The
vertical scale in both figures is in microvolts (¢V).

SUMMARY OF THE INVENTION

[0023] This invention is an automatic system that predicts
or provides early detection of seizure onsets or other neu-
rological events or disturbances with the objective of alert-
ing, aborting or preventing seizures or other neurological
ailments by appropriate feedback control loops within mul-
tiple layers. One of the main differences from other inven-
tions is that the major functions of the brain implantable
device is forecasting and preventing seizures or other brain
disturbances rather than only detecting them. Unlike other
inventions, the goal is to predict the electrographic onset of
the disturbance or seizure rather than the clinical onset.
Seizure UEO detection is also accomplished as a direct
consequence of the prediction and as a means to assess
device performance. Furthermore, the innovative presence
of a supervisory control provides the apparatus with a
knowledge updating capability supported by the external PC
or notebook, and a self-evaluation proficiency used as part
of the feedback control to tune the device parameters at all
stages, also not present in the other art.

[0024] The approach disclosed in the present invention,
instead of focusing on nonlinear methods, or on one par-
ticular feature, targets multiple features from different
domains and combines them through intelligent tools such
as neural networks and fuzzy logic. Multiple and synergistic
features are selected to exploit their complementarity. Fur-
thermore, rather than using a unique crisp output that
considers one particular time frame, as the previous methods
introduced, the system provides one or more probabilistic
outputs of the likelihood of having a seizure within one or
more time frames. Based on this, when a threshold prob-
ability is reached, an approaching seizure can be declared.
The use of these multiple time frames and probabilistic
outputs are other distinct aspects from previous research in
the field.

[0025] The system possesses multiple levels of closed-
loop control. Low-level controls are built up within the
implantable device, and consist of brain stimulation actua-
tors with their respective feedback laws. The low-level
control operates in a continuous fashion as opposed to
previous techniques that provide only one closed-loop con-
trol that runs only during short times when the seizure onset
is detected. The high-level control is performed by a super-
visory controller which is achieved through an external PC
or notebook. By using sophisticated techniques, the predic-
tion system envisioned allows the patients or observers to
take appropriate precautions before the seizure onset to
avoid injuries. Furthermore, the special design of the appa-
ratus furnishes powerful techniques to prevent or avoid
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seizures and to obtain more insight into these phenomena,
thereby revealing important clinical information. The inno-
vative use of a supervisory control is the option that confers
the apparatus its unique perspective as a warning/control/
adaptive long-term device. The warning is achieved by
forecasting the disturbance; the control is accomplished by
an appropriate feedback law and a knowledge base update
law; and the adaptive capability of the device is attained also
by the knowledge base update law driven by the supervisory
control. This knowledge base resides in an external personal
computer (PC) or notebook that is the heart of the supervi-
sory control, where the apparatus computes optimization
routines, and self-evaluation metrics to establish its perfor-
mance over time, to determine required adjustments in the
system set points and produce an updating law that is fed
back into the system from this higher level of control.

[0026] The control law provided in the device allows a
feedback mechanism to be implemented based on electrical,
chemical, cognitive, intellectual, sensory and/or magnetic
brain stimulation. The main input signal to the feedback
controller is the probability of having a seizure for one or
more time frames. The supervisory control is based on an
external control loop, operating at a higher control level, that
compiles new information generated at the implantable
device into the knowledge base at discrete steps and pro-
vides set point calculations based on optimizations per-
formed either automatically, or semi-automatically by the
doctor or authorized individual.

[0027] The above and other novel features, objects, and
advantages of the invention will be understood by any
person skilled in the art when reference is made to the
following description of the preferred embodiments, taken
in conjunction with the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

[0028] FIG. 1 illustrates an overview of the overall system
architecture of the present invention.

[0029] FIG. 2 illustrates an exemplary scheme of the
multi-level supervisory control of the present invention.

[0030] FIG. 3 illustrates the main stages and components
of this invention in order to achieve the approach presented
for an on-line implementation.

[0031] FIG. 4 illustrates an exemplary block diagram of
the intelligent data processing unit that is the core section of
the system and is mainly related to forecasting seizure or
brain disturbances.

[0032] FIG. 5 illustrates the processing logic for the
selection of an optimal feature vector.

[0033] FIG. 6A illustrates the effect of subtracting the
focus channel recorded with the intracranial EEG from its
adjacent intracranial EEG channel for a 4-minute segment.

[0034] FIG. 6B illustrates the same 4-minute of IEEG
depicted in FIG. 6A but without channel subtraction.

[0035] FIG. 7 illustrates the sliding observation window
(gray area) that can include one or more brain signal (IEEG)
channels as it is approaching an epileptic seizure.

[0036] FIG. 8 illustrates an exemplary scheme followed
by the low-level feedback control.
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[0037] FIG. 9 illustrates a block diagram demarking the
blocks within the implantable device and each of the pro-
cessing or control blocks and the system, which in this case
is the brain or the human body.

[0038] FIG. 10 illustrates a block diagram of the control
mechanisms of the present invention.

[0039] FIG. 11 illustrates segments of intracranial EEG
that are useful to explain some terminology used throughout
this description.

[0040] FIG. 12 illustrates the classification of the features
into two types: instantaneous and historical features.

[0041] FIG. 13 illustrates the average power for both a
preictal and an interictal segment in two one-hour records of
an IEEG segment.

[0042] FIG. 14 illustrates the accumulated energy for the
awake record of a patient. Note that preictal (continuous
lines) as well as baseline records (dotted lines) are included
in the plots to emphasize the distinguishability and predic-
tion potential of this feature.

[0043] FIG. 15 illustrates the accumulated energy for the
asleep record of a patient.

[0044] FIG. 16 illustrates the accumulated energy trajec-
tories of 80 one-hour records including 50 baselines and 30
preictal segments.

[0045] FIG. 17 illustrates the fourth power indicator (FPI)
over time.

[0046] FIG. 18 illustrates the processing logic for the
selection of the sliding observation window size for maxi-
mum distinguishability between classes.

[0047] FIG. 19 illustrates the k-factor as a function of the
window length for the weighted fractal dimension in four
different records.

[0048] FIG. 20 illustrates a nonlinear energy derived
feature for a preictal and a baseline record from another
patient studied.

[0049] FIG. 21 illustrates the thresholded nonlinear
energy in five preictal/ictal one-hour segments and six
one-hour baseline segments.

[0050] FIG. 22 illustrates the location and magnitude of
the short term energy of the wavelet coefficient above the
long term energy adaptive threshold.

[0051] FIG. 23: illustrates the power in alpha band for
preictal and baseline records.

[0052] FIG. 24 illustrates an IEEG segment (top) and the
spike detector output (bottom). .

[0053] FIG. 25 illustrates the excess of the spike detector
output over a pre-established threshold over time in four
preictal/ictal and four baseline records.

[0054] FIG. 26 illustrates the absolute value of the 4
scale wavelet coefficients average, for five seizure records
from the same patient.

[0055] FIG. 27 illustrates graphs of the mean frequency of
a seizure (top) and a baseline (bottom).
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[0056] FIG. 28 illustrates how features are aligned to
conform the feature vector and how the span used is the
same for features generated with different window lengths.

[0057] FIGS. 29A-29B illustrate graphs that are propor-
tional to the probability density functions (pdfs) of the
feature fractal dimension for each of the classes defined in
two different patients. Note the overlap region between the
classes is marked with the cross-hatched lines.

[0058] FIGS. 30 and 31 illustrate scatter plots demon-
strating the complementarity of features for two different
patients in 1-dimensional and 2-dimensional plots.

[0059] FIG. 32 illustrates an exemplary probabilistic neu-
ral network (PNN) architecture.

DETAILED DESCRIPTION OF THE
INVENTION

[0060] The preferred embodiment of the invention uses
brain electrical signals or other input signals and an
implanted processor to predict and provide early detection of
the electrographic onsets of brain events such as seizures in
an on-line intelligent arrangement that facilitates a wide
variety of options. FIG. 1 is an overview of the overall
system architecture from the data input to the output signal
indicating the probability of having a brain disturbance or
seizure, and to the closed-loop controls included in the
system. The data is sketched as brain electrical activity, but
it is not restricted to this type of activity; it can also include
chemical, magnetic, temperature, blood pressure, and/or any
other physiological variable that can contain relevant infor-
mation for prediction and early detection of the seizure
onset. In FIG. 1, the main system blocks can be visualized
starting at the data generation block 100, then the intelligent
data processing unit 200 which is a key part of the system
responsible for forecasting, and the low level and high level
closed-loop controls 300 and 400, respectively that tie into
a supervisory control approach. In this figure, the data
generation block 100 does not include the brain, which is the
plant in this case; rather it only includes the electrodes,
cables, and any sensor used to capture physiological vari-
ables that go into the forecasting section or intelligent data
processing unit 200. The system is implemented with both
an off-line and on-line methodology. The off-line part of the
method plays a role at the initialization stage, and after that,
at subsequent adaptive parameter re-tunings, setpoint read-
justments, and at a higher layer of hierarchy as a research
tool seeking for an understanding of the mechanisms that
operate during epileptic seizures or brain disturbances, and
investigating new algorithms or features for prediction and
early detection of the UEO of seizures.

[0061] FIG. 2 illustrates the scheme of the multi-level
control, where the three layers of this control scheme are
depicted. The control actions are performed through these
layers organized in a hierarchical manner. The main goal of
the multi-level control is to keep the patient from having
seizures despite environmental and physiological load dis-
turbances. To achieve this objective, a supervisory control is
implemented providing (a) continuous regulation of the
controlled variables, (b) adaptation to external or internal
changes over time, and (¢) a knowledge base used to
accomplish the regulation and adaptation by incorporating
information as it arises, and updating the system settings and
parameters appropriately. At the regulatory layer, a low level
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supervisory control 300 takes care of the actuators (stimu-
lation units) and determines and adjusts their settings in a
continuous fashion. The control in this layer is based on the
implanted processor. At the coordination layer, the high level
of supervisory control 400 is achieved, based on an external
computer where the knowledge base resides. This layer is
responsible for re-tuning system parameters such as those
related to fusion of sensory data, feature extraction, feature
normalization, neural network retraining, fuzzy logic adjust-
ments, fault diagnosis of actuators, sensors, implantable
device, etc. This layer can operate in an automatic mode
where a master program monitors the controlled variables
and updates the control law accordingly; or in a semi-
automatic mode where the doctor or specialist can input
parameters directly into the system via the master program
user interface. At the highest level is the research layer based
on another external computer 600 whose major function is
to serve as a research tool to investigate new more powerful
algorithms for seizure or brain disturbances, UEO prediction
and detection, new control strategies, other types of param-
eter adjustment, and also to analyze physiological mecha-
nisms that can explain seizures and other brain disturbances.
This layer gathers information coming from different
patients forming a database for research and development.

[0062] At the initialization stage, during the off-line part of
the method, the system is installed and the initial settings are
determined for all the blocks indicated in FIG. 1. The
on-line operation follows after all settings are adjusted
according to the patient. Future generations of this invention
might automate the off-line procedure, turning the apparatus
into an almost completely on-line system with the exception
of the electrodes positioning, the implantable device instal-
lation, and transference to the implantable device of newly
developed and released algorithms (i.e., new features).

[0063] The initialization and operation of this apparatus is
divided into three stages: pre-implantation and initialization,
forecasting, and controlling. FIG. 3 provides an exemplary
diagram illustrating the fundamental blocks that manage
these stages. The stages are initiated consecutively and
under different procedures. The first stage includes the
installation and manual or automatic off-line tuning of the
system. It has optional steps depending on the particular
patient requirements, on the seizure complexity, and on
whether the system is feature/parameter-tuned or only
parameter-tuned. A feature/parameter tuned device refers to
a system where the features are selected for each patient,
depending on which features can capture the seizure UEO in
advance. Therefore, different patients have different features
within the feature vector, and once these features are
selected their parameters are tuned. A parameter-tuned sys-
tem uses the same features for all patients, and tunes the
parameters of each feature on a patient basis. One common
parameter that can be adjusted for all the features is the
running window length used in the feature extraction.

[0064] Summarizing this idea, the embodiment of this
invention is patient-tuned, with two possible alternatives.
Either the same features are used for all patients and their
parameters are tuned according to each patient, or the
features are selected according to the patient and their
parameters adjusted on a patient basis as well. The second
approach is the more robust and is the system default.

[0065] An overview of the steps that comprise the initial-
ization and operation of this apparatus is presented next. An
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exemplary general diagram of the stages and blocks
involved in each stage is illustrated in FIG. 3.

[0066]

[0067] The patient undergoes a surgical procedure in order
to accomplish the implantation and initialization stage. The
following steps are used as part of the implantation proce-
dure.

[0068] Step 1: Determination of focus region for correct
installation of the implanted brain electrodes.

[0069] Step 2: Appropriate installation of the electrodes
and other sensors. The sensors can be selected from the
group of (a) intracranial electrodes; (b) epidural electrodes,
such as bone screw electrodes; (c) scalp electrodes; (d)
sphenoidal electrodes; (¢) foramen ovale electrodes; (f)
intravascular electrodes; (g) chemical sensors; (h) pupil
dilation sensing systems; (i) eye movement sensors; () heart
rate sensors; and (k) body temperature sensors.

[0070] Step 3: Implantation of the electronic device into
the brain. Once the implantation is completed, the initial-
ization of the system is the next part of the implantation and
initialization stage. In one embodiment of the invention, the
initialization is performed by the implantable device in
combination with an external PC or notebook or equiva-
lently by the regulatory and the coordination layers, respec-
tively. This is possible because the system has an optional
external portable module 500 that contains an external
communication unit 510, a settings adjustment unit with
display and keypad 570, an intermediate storage device 560,
a battery recharger 550, patient input channels 540, and data
output channel 540 as shown in FIG. 4. The external
communication unit 5§10 creates a data flow path from the
internal communication unit 280 such that the data acquired
by the implantable device, blocks 100, 200, and 300, is
transferred to the intermediate storage device 560 within the
external portable module 500. In this embodiment, at the
initialization stage data must be collected to select and tune
the features appropriately according to the patient. This
implies that one or more brain disturbances or seizures must
have been recorded to carry out the parameter tuning and/or
feature selection. Therefore, the patient may walk out of the
hospital with the external portable module 500 activated,
while the system is still in the initialization stage and the
forecasting has not started, and then return later for param-
eter tuning and/or feature selection. The recording time
autonomy of the system depends on the final memory
capacity achieved in the intermediate storage device, which
can be based on a flash memory card that can store 160
Mbytes or more, or on any other type of memory device
suitable for this portable module. Using a sampling rate of
200 Hz in the A/D converters and assuming an intermediate
storage device of 140 Mbytes which may evolve into a
higher capacity device as the technology advances, the
portable module confers the equipment with a two-day
recording time autonomy for two channels or more as new
higher memory devices become available. This means the
patient either has to be back in the hospital or have the
system connected to an external PC at home every two days
for data downloading from the intermediate storage device
into that external PC, or into a remote PC that can be located
at the doctor’s office and where the information can be
loaded via the Internet. In either case, the information is
transferred onto the designated hard disk. An output signal

1. First Stage: Implantation and Initialization
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is triggered by the external portable module before the
intermediate storage device is full, reminding the patient that
it is time for data downloading. If the patient does not
download the data stored, then the intermediate storage
device starts operating in a first in first out (FIFO) mode,
such that once the download is accomplished only the last
two days of data are available. With the continuous improve-
ments in technology, the time between data downloadings
can become longer as higher memory capacity devices are
developed. When four or five brain episodes are recorded
and downloaded into the high level controller, a feature
selection process can then take place in the external PC or
notebook if the feature/parameter approach is used, other-
wise this step is skipped. The implantable device is based on
a microprocessor, a digital signal processor (DSP), a field
programmable gate array (FPGA), or an application specific
integrated circuit (ASIC) processor 290, and the specific
block of the implantable device that operates during the
initialization is the intelligent data processing unit 200
whose major function is forecasting the brain event or
seizure once the feature vector is established. FIG. 4 illus-
trates a diagram of the intelligent data processing unit 200.
The initialization part can be split out in the following steps.

[0071] Step 4: Installation of the external portable module
500.

[0072] Step 5: Continuous data recording into the inter-
mediate storage device 560 and downloading into the exter-
nal PC or notebook 400 until around five or more brain
disturbances or seizures are recorded. Ideally at least five
brain disturbances should be recorded, however depending
on the specific case, fewer or more brain disturbances may
be required before proceeding with the next step.

[0073] Step 6: Sensor data preprocessing and fusion fol-
lowed by feature extraction and selection at the high super-
visory level in the external PC 400 where the data has been
stored after downloading.

[0074] Step 7: Selection of the best feature set according
to the procedure sketched in FIG. § by the coordination
layer 400. The final product of this step is the establishment
of the feature vector. This step can be skipped when the
parameter-tuning approach is used.

[0075] Step 8: Transference and setting of the selected
feature programs into the implantable device.

[0076] In this embodiment of the invention the feature/
parameter approach is used, and therefore, the initial param-
eter tuning for each of the features selected and for the other
system blocks is completed in the external PC or notebook
400. However, if the parameter-tuning approach is used in
combination with the external portable module 500 for data
recording, then either the external PC or notebook 400 or the
implantable device processor performs the initial parameter
tuning.

[0077] In another embodiment of the invention, a manual
parameter tuning is accomplished by the doctor or autho-
rized individual through the external portable module 500
via the settings adjustment unit 570, based on previous
knowledge information of the patient, on historical infor-
mation available from other patients, and on the specialist
experience. In other embodiments of the invention, the
initial parameter tuning is performed automatically by new
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generations of the implantable device based on the devel-
opment of new devices and technology advancements.

[0078] To summarize, in the default embodiment of the
invention, the initialization part of this stage is performed by
the implantable device 200, 300 and by the external com-
puter 400. The core of the supervisory control that resides in
the external computer 400 located within the coordination
layer can be assisted by a doctor or specialist to establish
desired setpoints, so that the system parameters can be tuned
properly for the patient.

[0079]

[0080] The second stage is the system core, in which the
forecasting takes place. FIG. 4 shows a block diagram of
this stage. It encompasses the on-line implementation of the
forecasting system 200, which includes components for
pre-processing 210, analog to digital conversion 225, 235,
real time analog and/or digital feature extraction or process-
ing 245, 220, respectively, the feature vector generator 250,
the intelligent prediction analysis/classification 260 for esti-
mation of the probability of having a seizure within certain
time frames and alerting when a seizure is approaching, the
internal communication unit 280 and the external portable
module 500. The closed-loop feedback control that resides
in the implantable device is not activated at this point. A
description of the sequential tasks performed in this stage
follows.

[0081] Step 1: Real time pre-processing of the input
signals from different sensors. In the case of sensors cap-
turing the brain electrical activity, typical preprocessing
includes subtracting the focus channel signal from the
adjacent channel and filtering when necessary (FIG. 1,
block 200; FIG. 4, blocks 211, 213). FIGS. 6A-6B present
the effects of adjacent channel subtraction on the IEEG
signal. FIG. 6A presents a higher quality signal since a lot
of artifacts present in FIG. 6B were abated by the subtrac-
tion. This is done to remove any noise common to both
channels. As a result, any common mode cortically gener-
ated signals are also eliminated. However, this is not felt to
affect adversely the seizure onset forecasting, since the
seizure onset patterns are highly localized to the focus
channel. IEEG data have been processed both with and
without channel subtraction. Results by Esteller et al.
(“Fractal dimension characterizes seizure onset in epileptic
patients”, ICASSP 1999) have demonstrated better detection
and forecasting with channel subtraction for specific fea-
tures. This shows that for those particular features the spatial
separation between the electrodes inside the brain is short
enough to cancel the common noise in that region, and long
enough to capture a voltage difference between the focus and
its adjacent electrode. Of note, each of these electrodes
records the global activity of many thousands of neurons.

[0082] Step 2: Depending on the type of processing
required by each particular feature, they are extracted either
at an analog level (level T or 220) or at a digital level (level
IT or 245), whichever is more suitable for the specific feature
considering computational requirements, hardware capacity,
and time constraints. The analog level of feature extraction
is indicated in block 220 of FIG. 4.

[0083] Step 3: Digitizing 225, 235 and recording 230, 240,
270 the preprocessed and processed sensor signals with
optional downloading of the recorded data into the computer
400 or into the intermediate storage device 560.

2. Second Stage: Forecasting
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[0084] Step 4: Extraction of the features at the digital level
as indicated in block 245 of FIG. 4.

[0085] Step 5: Generation of the feature vector or feature
vectors 250 if more than one time frame is used. Features
extracted at levels I and II are combined following a
running-window methodology. This methodology is utilized
for the generation of the feature vector(s) as sketched in
FIG. 7. For a pre-established window length, the features
within the feature vector are computed. Subsequently, the
window is shifted over the input signal or signals allowing
some overlap and the feature is computed again. The feature
sampling period is given by the shifting for which reason-
able values are around half a second.

[0086] Step 6: The intelligent prediction analysis/classifi-
cation can have an additional processor if the need arises and
the processing time of the central processor 310 is not
sufficient for the computations required by the implantable
device. Before describing the intelligent prediction analysis/
classification step 260, a feature normalization step is nec-
essary. Typically the normalization involves subtracting the
mean and dividing by the standard deviation. This is per-
formed directly by the feature vector generator 250. Logi-
cally, the feature mean and standard deviation have to be
estimated. The estimation of these parameters is conducted
through a longer time window, which implies that a succes-
sion of feature vectors has to be generated and stored to
estimate the values for these parameters. This procedure is
performed by the implantable device, and more specifically
by the central processor 310 or the additional processor if
this is available. Once the parameters have been determined,
the features are normalized appropriately. The parameters
are updated as new feature values are computed in an on-line
mode of operation, providing adaptability at this inner layer
of the system. These parameters are also estimated by the
high level supervisory control 400.

[0087] Step 7: Intelligent analysis of the feature vector, for
each time frame considered, is performed through a fuzzy
system or a neural network (NN) such as the probabilistic
NN, the k-nearest neighbor, the wavelet NN or any combi-
nation of these, to provide an estimation of the probability
of having a seizure for one or more time frames. This
analysis is performed by the block denoted as intelligent
prediction analysis/classification 260 illustrated in FIGS. 1,
4 and 8. The implanted processor 310 guides this analysis,
however if an additional processor is used, this will take the
leadership for this block. An in-depth presentation on how
the probability of having a seizure is estimated can be found
in the co-pending patent application Ser. No. 09/693423.
The coordination layer of the supervisory control 400 must
be connected periodically or as required or indicated by the
doctor through the external portable module 500 with the
goal of re-tuning the system parameters or adjusting the set
points according to physiological and environmental
changes. It is expected that as time progresses the actions
required from the supervisory control will lessen, and there-
fore, the external connection to a PC, for further analysis and
inspection of the system or for data recording may be needed
rarely or occasionally. The ideal scenario is that the system
reaches a steady-state equilibrium where brain episodes are
prevented by the brain stimulations such that they do not
occur at all, and a clear measure of this is given by the
seizure frequency of the patient. Thus, a combination of this
adaptive implantable device with a complex system like the
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brain should exhibit zero or very near zero seizure frequency
to consider that it has reached the ideal equilibrium.

[0088] Step 8: The probability output of having a seizure
for one or more time frames is shown on a portable display
520 contained within the external portable module 500.
When this probability is higher than an adaptive threshold,
a sound, visual, and/or tactile alarm(s) is(are) activated to
alert the patient of the oncoming seizure. A more detailed
description of this probability output and its operation is
presented in the co-pending patent application Ser. No.
09/693423.

[0089] Step 9: This step utilizes the external portable
module 500 and the internal and external communication
units 280, 510, respectively). The external portable module
500 has its own preprogrammed processor with specific
tasks that include scheduling and control of data download-
ing into the intermediate storage device, data transference
from the intermediate storage device to an external PC with
the option of transference through the Internet, battery
recharger, display and keypad, patient input channels, output
channel with the alarm(s) that indicate the probability of
having a seizure, external programming control or settings
adjustment unit 570 whose function is the programming of
the different options that the apparatus offers via the keypad,
and data transference from the external PC to the external
portable module to establish the supervisory control actions
and communicate them to the implantable device. The
settings adjustment unit 570 is password-activated such that
it is protected and only authorized personnel can access it.

[0090] Step 10: The communication link is accomplished
by a direct electrical connection, by telemetry, by magnetic
induction, by optical or ultrasound connection as indicated
in FIG. 4. In cither case, internal and external bi-directional
communication units 280, 510, respectively are used to
manage the information transference between the central
processor 310 within the implantable device and the external
portable module 500. The implantable device and the exter-
nal portable module processors can write or read the internal
and external communication units 280, 510, respectively,
any time that it is necessary. Every time the internal 280 or
the external communication unit 510 receives information
from the other end, it sends an interrupt to the processor
within the implantable device or within the external portable
module, respectively. Interrupt priorities are assigned
according to the importance of the information transmitted.

[0091] Step 11: The system records input signals in several
possible modalities. One modality records the physiological
input signals during approximately one hour or more
depending on the on-board memory capability 270 finally
achieved in the implantable device. In this modality the
recording starts some time before the probability threshold
for approaching seizures is reached, by utilizing a set of
buffers available for the task of temporarily storing the data.
This modality is permanently activated and provides infor-
mation to the internal adaptation loop of the low level
controller when it is activated. A second modality utilizes the
external portable module 500 and is activated upon connec-
tion of the module to the system. It has the option of
recording continuously the input signals, the feature vector,
and/or the controlled variables into the intermediate storage
device 560 via the communication link. Depending on the
data option selected, the recording time autonomy will
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change. It will be the longest when only the controlled
variables are recorded, and the shortest when the input
signals, the features, and the controlled variables are
selected for recording. The external portable module 500
indicates when the intermediate storage device requires
downloading of its stored data into an external PC repre-
senting the third storage modality. These downloading times
are required to keep memory available in the intermediate
storage device for incoming data. Three levels of data
downloading are possible, one from the implantable device
200, 300 to the external portable device 500, and the others
from the external portable device 500 to the external PC 400.
The communication link for the first level of data down-
loading from the implantable device into the intermediate
storage device is established by either a telemetry unit, a
special hook up, magnetic induction, ultrasound or optical
connection. The third storage modality has two options or
levels of data downloading. One level of data downloading
from the intermediate storage device to the external PC is
established by a direct electrical connection in the form of a
USB port, a serial port, or a parallel port. The information
downloaded into the external PC is stored on a hard disk
specific for this purpose. The second level of data down-
loading from the intermediate storage device to the external
PC is accomplished through the Internet. In this form the
information can be downloaded into a computer that can be
at a different physical location, either at the doctor’s office,
laboratory, etc. The information recorded on that disk can be
retrieved by the supervisory control at the coordination
layer. At the automatic level of operation of the supervisory
control, the information is retrieved by an intelligent master
program that is running in the background; and at the
semiautomatic level of operation, the information is
retrieved by the doctor, the patient, or an authorized indi-
vidual, via the software user interface that allows the inter-
action with the master program. Any of these recording
modalities can be manually deactivated by the doctor or an
authorized individual.

[0092] Step 12: Before proceeding with the activation of
the implanted close-loop control (i.e., the starting step of the
next stage), an adaptation time must be allowed for the
forecasting block to reach a finer tuning. The time required
for this initial adaptation procedure highly depends on the
seizure frequency of the patient. At least five to ten seizures
must have occurred after the forecasting is activated to
warrant proper adjustment of this stage. The adaptation
requires the use of the external portable module 500 for data
recording and communication with the supervisory control.
The initial adaptation is performed at periodically discrete
times when the patient connects the external portable mod-
ule 500 to the high level supervisory control 400, either as
a direct connection to the computer where the master
supervisory program that manages the high level control
resides, or to another external device or computer that will
transmit and receive information to and from the supervisory
control computer via the Internet. The initial time spans
between consecutive communications with the supervisory
control may be around two days. After this initial adaptation/
learning procedure the system can start the third stage or
controlling stage, where the implantable close-loop control
is activated. The adaptation will continue but at longer time
spans that can be linked to a doctor or a specialist check-up
appointment where the supervisory control re-tunes set-
points and readjusts parameters according to the most recent
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information archived in the knowledge base. Occasionally,
the doctor or specialist can request at his discretion that the
patient stores the data into the supervisory control at the
coordination layer continuously for a week or the time they
considered, or only at the specific times brain events or
seizures occur, in which case, the patient is permanently
wearing the external portable module, but he only down-
loads the data when a brain disturbance occurs, either a
seizure, an aura, or any other brain event. In this form, the
brain event and two days of consecutive data before the
event occurred are stored in the intermediate storage device.
This allows the master program and/or the specialist to
reexamine the scenario, to consider new variables not
observed previously, and to re-tune the system in a similar
way that a car tune-up is conducted. This adaptation ability
accounts for long-term physiological changes and for envi-
ronmental changes, which assures the long lasting capacity
of the apparatus. Furthermore, the highest layer (rescarch
layer) 600 allows the specialist to conduct innovative
research and explore new horizons regarding brain events
that can provide new evidence to explain the mechanisms
that operate during these disturbances and brain diseases. In
other words, this invention also acts as a research tool for the
particular brain events that are being forecasted, without
modifications to the apparatus or additional burden to the
patient.

[0093]

[0094] The third stage is basically concerned with the
control part of the system. It comprises a multi-level control
illustrated in FIG. 2, that includes a regulatory (low level)
control, a coordinating (high level) control, and a research
(development level) layer from which modifications to the
control laws in the lower layers can be derived. The high
level control is provided by the supervisory control at the
coordination layer that operates in two levels, i.e., an auto-
matic and a semiautomatic level. The low level control is
provided by a supervisory-regulatory control 300 that
resides within the implantable device and whose main tasks
are the internal parameter adjustments or tuning 320, and the
brain feedback stimulation 330, 340 to avoid or mitigate
seizures. The brain feedback stimulation is provided by the
stimulation unit 340 shown in FIG. 8. In this figure, the
outputs of the stimulation unit 340 (electrical, magnetic,
chemical, sensorial or cognitive stimulation variables) are
directly fed back into the brain, altering the net brain activity
and becoming the manipulated variables 341-345. These
manipulated variables are adjusted dynamically to keep the
controlled variables at their set points or below the set
points. The controlled or output variables, which quantify
the performance or quality of the final product are the
probability of having a seizure in one or more time frames
and the overall system performance metric. The probability
of having a seizure can be a vector if more than one time
frame is used to estimate this probability. The stimulation
block 340 can be manually deactivated by the doctor or an
authorized individual. When this block is deactivated, the
apparatus becomes a pure forecasting/warning device,
which is the state it has at initialization. Two levels of
stimulation are available in the stimulation block 340
depending on whether the control action or manipulated
signal is activated by the patient or by the device. Stimula-
tions at the patient level include sensory/perceptive and
cognitive stimulations, and at the device level include elec-

3. Third Stage: Controlling
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trical, chemical, magnetic, and certain types of sensory
stimulation. This stage comprises the following steps.

[0095] Step 1: The low level supervisory control or
implanted closed-loop control 300 is activated manually
from the external portable module 500 or automatically via
the high level supervisory control 400 through the external
portable module.

[0096] Step 2: The controlled variables given by the
probability of having a seizure for one or more time frames
and the overall system performance metric are used as
control feedback signals by the low level controller to
prevent seizures by producing an intermittent electrical,
chemical and/or magnetic stimulation 341-343, or by
instructing the patient to go into a previously specified
sensory or cognitive procedure 344, 345. The duration,
magnitude, type, and frequency of the electrical, chemical,
or magnetic stimulation is adjusted to maintain the con-
trolled variables at their set-points or range-points, as well as
the duration, intensity, and type of sensory or cognitive
stimulation. Prediction times on the order of minutes to an
hour can be obtained with this invention (see FIGS. 15-17,
25-26), and in the worst cases on the order of seconds
(FIGS. 20). This represents ample time to avoid a seizure by
releasing small quantities of a drug (chemical stimulation),
by electrically stimulating focal points to ward off synchro-
nized nerve impulses, by wearing a special helmet that
provides a magnetic stimulation, by solving high cognitive
problems, or by experimenting with sensory stimulation
such as music, flavors, images, tactile sensations, or odors.
The intensity as well as the level of invasiveness of the
stimulus gradually increases with the probability of having
a seizure. This multi-therapeutic approach is described in
more detail in the co-pending patent application Ser. No.
09/693423. However, a description of several invasive inter-
vention measures is also described herein.

[0097] The intelligence structure of this invention is
coupled to an array of interventions based upon electrical
stimulation, chemical infusion and synthesis of artificial
neuronal signals to counteract developing seizures as pre-
cursors build over time. The intensity of intervention,
modality of therapy and spatial distribution of therapy are all
adjusted as the probability of seizures increases over time. A
guiding principle of these interventions is that the most
benign forms of therapy are initiated relatively early in
seizure generation and over a relatively small region of the
brain, so as to cause little or minimal disruption of normal
activity when the probability of seizure onset is relatively
low. This will allow intervention to be triggered by predic-
tion thresholds with high sensitivity (e.g., very low false
negative rate) at the cost of a relatively low specificity (e.g.,
relatively high false positive rate). As the probability of
seizures increases, therapeutic stimuli are increased in inten-
sity, duration, frequency of delivery, and are delivered over
a wider area of the brain. Since patterns of seizure precursors
and their spread in space and time leading up to seizures are
mapped and used to train the device on each individual
patient, therapy is delivered over broader areas, just ahead of
the anticipated region of spread, as seizure precursors
develop, if they do not respond to earlier treatment. In this
scheme, therapy can be delivered locally, in the region of
onset, in a distribution surrounding the region of onset,
isolating it from recruiting adjacent regions of the brain and
spreading. Therapy can also be delivered locally and/or
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remotely in subcortical regions such as the thalamus, basal
ganglia, or other deep nuclei and regions, escalating in
intensity, type of stimulus and distribution of action, as
seizures progress. This same principle is applied to thera-
peutic intervention if electrical seizure onset takes place,
effecting treatment in the general region of onset, in deep
brain structures which modulate the behavior of the seizure
focus, or both simultaneously.

[0098] Interventions can include the following: (1) rhyth-
mic electrical pacing, which changes in frequency, intensity
and distribution as the probability of seizure onset reaches a
threshold and increases; (2) chaos control pacing; (3) ran-
dom electrical stimulation to interfere with developing
coherence in activity in the region of and surrounding the
epileptic focus; and (4) depolarization or hyperpolarization
stimuli to silence or suppress activity in actively discharging
regions or regions at risk for seizure spread. This activity can
also be delivered to numerous electrode sites to create a type
of “surround inhibition” to prevent progression of seizure
precursors. These stimuli can also be delivered sequentially
in a “wave” that sweeps over a region of tissue, so as to
progressively inhibit normal or pathological neuronal func-
tion in a given region(s) or tissue, including cortical and
subcortical regions.

[0099] The principle of altering and developing therapy in
response to the changing probability of seizure, and/or the
detection of specific events in seizure evolution, including
electrical seizure onset and spread, is also applied to the
delivery of chemical therapy. In this fashion, active thera-
peutic agents are infused or otherwise released in the brain
regions where seizures are generated, or to where seizures
may spread. As seizures become more likely, the amount,
concentration or spatial distribution through which a chemi-
cal agent is delivered are all increased. As with electrical or
other therapeutic interventions, patterns of delivery can
include infusing a drug directly in the epileptic focus, in an
area surrounding it, or to regions involved in early spread, or
to more central or deep brain regions, which may modulate
seizure propagation. These same therapeutic principles
apply to distribution of maximal therapy when electrical
seizure onset is detected, including distributing therapy to
regions where seizures are known to spread and propagate.
Last-minute treatment may include release of larger amounts
of drug into the cerebrospinal fluid (CSF) space for circu-
lation over wide regions of the brain or into the cerebral
circulation. Other types of pharmacological agents may also
be used in this scheme, such as agents which are activated
by oxidative stress, which may themselves increase the
concentration and distribution of an active therapeutic agent
as seizure precursors evolve and the probability of seizures
increases.

[0100] Therapy may also include delivery of stimuli,
electrical, chemical or other, to peripheral or central nerves
or blood vessels, in a graded fashion, as the probability of
seizures increases, building up to therapy of maximal inten-
sity at the detection of electrical seizure onset. Therapy may
also include sensory stimulation (touch, temperature, visual,
auditory etc.).

[0101] Finally, therapy may consist of synthesized, artifi-
cial neuronal signals delivered in such a way as to disrupt
electrochemical traffic on the appropriate neuronal networks
including or communicating with the ictal onset zone.
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Examples of such interventions might include transmission
of synthesized signals which increase the output of specific
cell populations, such as inhibitory interneurons, specific
nuclear regions in the thalamus or other deep structures.

[0102] Using any or all of these methods singly, or in
combination, therapy is directed toward preventing seizure
onset, or isolating the development of seizures and their
propagation so as to prevent or minimize clinical symptoms
and the impact of these events.

[0103] Step 3: An evaluation is accomplished by the
intelligent prediction analysis/classification block 260
within the intelligent data processing unit 200, to estimate
the prediction performance, by measuring when possible,
key parameters such as prediction time frame threshold error
(PTFTE), false negatives (FNs), false positives (FPs), aver-
age prediction time achieved (APTA), seizure duration
(Dg,), etc. The PTFTE is directly quantified from the num-
ber of FPs and FNs. It can be measured only when either the
controlling block 300 is deactivated (no low level control/no
stimulation), or when it completely fails due to a general
system failure, which implies that no electrical, chemical,
magnetic, sensory, or cognitive stimulation is performed.
When the stimulating system is deactivated, the apparatus is
used for forecasting and not for controlling seizures. The
prediction time frame threshold is the adaptive probability
threshold used to declare an oncoming seizure for a particu-
lar time frame. In order to quantify a fault in the prediction
time frame threshold, a measure of the achieved prediction
time is needed, and therefore, the seizure UEQ detection is
required. The achieved prediction time is measured as the
elapsed time between the moment the adaptive probability
threshold that declares a seizure or brain disturbance is
reached and the moment the UEO detection occurs. Among
the several errors typically committed in this type of mea-
surement, the biggest error in the achieved prediction time
is due to the error in the UEO detection, but this error is
within the range of seconds. Fortunately, the seizure UEO
detection does not entail any additional circuitry or pro-
gramming, since the prediction algorithms used to compute
the feature vector also have the capability of seizure onset
detection. The effects sensed and monitored through the
selected features typically exhibit a more drastic variation as
the seizure approaches, reaching their maximum change
during the ictal period near to the UEO. This is logical and
experiments conducted have proven that in most cases, the
feature vector can be used efficiently for seizure prediction
as well as seizure detection (“Accumulated Energy Is a
State-Dependent Predictor of Seizures in Mesial Temporal
Lobe Epilepsy,” Proceedings of American Epilepsy Society,
1999, and “Fractal dimension characterizes seizure onset in
epileptic patients,” IEEE Int. Conf. on Acoustics, Speech, &
Signal Proc., 1999). The probability of having a seizure is a
continuously changing function of the time and the time
frame under consideration P(Sz, t). If for a particular time
frame (TF) considered, the probability of having a seizure
P(Sz, t) reaches the adaptive probability threshold value
P that declares an approaching scizure, then a false positive
(EFP) is declared when a time identical to the TF under
consideration has elapsed and no seizure has occurred,
provided that the low level control is deactivated, and
disregarding if there are oscillations of P(Sz, t) around P,,.
Even if P Sz, t) for that TF goes above the threshold and
right immediately goes below, a FP must still be quantified.
If Pre(Sz, t) is above the threshold during time T,, longer

Aug. 1,2002

than TF, then the number of consecutive and non-overlap-
ping segments of TF duration that fits into T,,+TF is
equivalent to the total number of FPs that should be quan-
tified for that TF. Note that rather than fitting these consecu-
tive and non-overlapping segments of TF duration into T,
they are fitted into T, +TF because the FPs are measured
into this prediction framework such that the longer time
P(Sz, t) is above P, without a seizure occurrence, the more
FPs must be quantified. One FP is defined in the ideal case,
when P (Sz, t) is above P, for an instant at time t,, which
mathematically will be described as a P (Sz, t)=ad(t-t,),
where d(t—to) is a delta function at time t, and aZP,; in this
case, one FP is quantified. If Prp(Sz, t)=aH(t-t,, t-t -T,),
indicating that P (Sz, t) is a pulse of amplitude a, such that
aZP,, and duration T, , such that T, ,=1.25 TF then the
number of FPs is quantified as 2.25. Considering the usual
definition of a FP, it should be an integer number; however,
the definition provided in this invention penalizes this type
of error with more accuracy. Otherwise, T, =1.25 TF and
T,,0.65 TF would yield the same integer number of FPs. If
P1(Sz, t) is again a pulse as mathematically described
earlier, with amplitude a, such that a=Py, and duration T,
such that T, =125 TF, but this time a seizure indeed
occurred at time t=ty+t; such that ty+t;=1.1 TF, then one FP
has to be quantified even though the seizure occurred,
because from the beginning of the pulse until time TF no
seizure had occurred. FPs are quantified only when the
controlling block is deactivated; otherwise, the activated
control produces a stimulation to avoid the seizures or brain
disturbances and the FPs will be unnoticed since they will be
confused with avoided seizures. The FNs are quantified in
three different ways. The first way occurs when the achieved
prediction time as defined earlier is zero or less than one
tenth of the time frame TF/10 for which P_ is activated. The
second way occurs when P(Sz, t)>P,, but a seizure occur-
rence is indicated by the patient through the patient input
channel via the external portable module. The third way
occurs when the supervisory control at the semiautomatic
level indicates a seizure occurrence from direct inspection of
the stored data by a specialist or doctor. The false negatives
(FNs) are quantified over time to determine the prediction
performance.

[0104] Step 4: The overall system performance metric is
computed from the prediction performance and from the
prevention performance. Along with the prediction perfor-
mance, a prevention performance is determined by counting
and storing the number of prediction-stimulations that were
performed but failed to stop a seizure with respect to the
total number of prediction-stimulations. This provides an
indication of the failure and success rates of the stimulation
block (lower level control) 340. In addition, the seizure
frequency over time, the average seizure duration over time,
the “aura” frequency over time, etc. are used to quantify the
prevention performance. This is an important statistic since
a reduction in the patient frequency of seizures after the
device is implanted determines the apparatus performance.
The overall apparatus performance is quantified in a metric
that is a linear or a nonlinear combination of at least one of
the performance measures assessed and is used in combi-
nation with the probability of having a seizure as feedback
control signals. Also the system can utilize each of the
measures that are used to compute the overall system
performance (FPs if the stimulation unit is deactivated, FNs,
patient seizure frequency, aura frequency, prediction-stimu-
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lation failures, total number of prediction-stimulations, Dy,
APTA, etc.), or the prediction performance and the preven-
tion performance as a feedback vector, rather than using the
overall apparatus performance directly.

[0105] Step 5: The stimulation block 330 and 340, con-
tained in the low level controller 300 receives as input, the
control feedback signals or probability of having a seizure
within one or more chosen time frames produced in the
forecasting section as well as the different measures used to
compute the prediction and prevention performances. The
information contained in this feedback vector is used to
adjust each of the stimulation block 340 parameters (inten-
sity, duration, and frequency) and to determine the start time
and the type of stimulation depending on the patient and on
the seizure probability time frame activated and the prob-
ability value itself, and the type of stimulation within that
kind, i.e., if a sensory stimulation of a visual kind is used, the
types can be relaxing movie or picture, funny movie or
picture, scary movie or picture, suspense, etc. Similarly, for
each of the kinds of stimulations available 341-345. Note
that the sensory/perceptive and cognitive kinds of stimula-
tions have sub-kinds such as visual, auditory, tactile, smell,
and taste, within the first category or kind; and reading,
mathematical computation, and logic reasoning problems,
within the cognitive kind.

[0106] Step 6: Initially, the feedback control law and the
knowledge base update law are determined as a basic linear
relationship between the variables that are fed back and the
parameters that need to be adjusted according to the desired
goal of a seizure-free patient with minimum invasion.
Through the subsequent on-line tunings the parameters
within the control laws, as well as the control laws them-
selves, will be updated as time progresses. Using intuition,
logic, and previous available knowledge, mild interventions
will be used first for longer TF. As the TF activated becomes
smaller and/or the mild interventions do not decrease the
probability of seizure, stronger interventions/stimulations
have to be used. Mild interventions are the non-invasive
kinds such as cognitive or sensory/perceptive stimulations.
The duration of the mild stimulation or intervention D, will
initially be proportional to the weighted average of the
probabilities of having a seizure for each TF, where the
weighting factor in each case is given by a stimulus factor.
Mathematically, D, can be expressed as

1
Dy = 5= Dk Prr (82, 0/ TF,
TF TF

[0107] where NTF is the number of TFs utilized in the
probability vector, and k, 1 is a specific stimulus factor
initially determined as a function of previous available
information such as the frequency of seizures, frequency of
auras (if available), seizure duration, and type of seizure.
Note that K, 1 depends on the TF and on the kind and type
of stimulus used (st). Once the on-line operation is started
and the controlling section is activated, this specific stimulus
factor is updated using FNs, updated frequency of seizures,
updated frequency of auras (if available), prediction-stimu-
lation failures, total number of prediction-stimulations, Dg,
achieved, APTA. The number of stimulation kinds available
depends on the patient’s evolution, initially all the stimula-
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tions proposed are used, but the adaptation procedure at all
the control layers will progressively reduce and withdraw
those stimulations with a high rate of failure. If more than
one kind of stimulation is maintained, simultaneous stimu-
lations can be applied according to the co-pending patent
application Ser. No. 09/693423. For stronger or invasive
stimulations, a similar control law is used initially for each
of the parameters required. For example, the electrical
stimulation requires five parameters to be assessed. The
intensity and duration are determined using the same expres-
sion for the duration of a mild intervention, the difference is
in the specific stimulus factor that changes in each case. The
other parameters are starting stimulation time, type of elec-
trical wave to apply, and frequency (if there is a frequency
associated with the type of waveform). The type of wave-
form is initially decided as a basic waveform that is easily
generated and preferably with discrete values. In most cases,
a pulse or half period of a square wave is used as the initial
shape, but as the system gathers information from the
patient, other waveforms can be tested if results are not
satisfactory with the initial waveform. A similar criteria
applies for the frequency of the waveform, initiating the
control with a half wave per chosen duration. The starting
stimulation time is determined by the time an adaptive
probability threshold is reach by the actual probability of
having a seizure for each specific TF. Each TF adaptive
probability threshold is specific for each stimulus and is a
function of the FNs, updated frequency of seizures, updated
frequency of auras (if available), prediction-stimulation fail-
ures, total number of prediction-stimulations, Dy, achieved,
type of seizure, and APTA.

[0108] Step 7: Relying on the research and coordination
layers of the supervisory control 600 and 400 respectively,
it is expected that the control laws will adapt to internal and
external changes and evolve over time to accomplish the
desired optimal equilibrium point where the seizure fre-
quency reaches zero with less invasive and minimal stimu-
lation, such as sensory/perceptive and cognitive. However,
there are still many obscure issues regarding how the
stimulations influence the patient. As the research and coor-
dination layers (FIG. 2) update the incoming information,
the interaction of the doctor, specialist and/or scientist with
these two layers progresses, and the development level 600
(FIG. 2) provides enhanced control schemes to the lower
layers, the equipment performance is enhanced over time.

[0109] Step 8: Subsequent adaptive tunings of the internal
system feature parameters, additional features (in case they
are available), and analysis/classification parameters are
performed in this step, based on the combined information
of the control feedback signal and the overall performance
measures achieved by the system (FIGS. 8, 9, and 10).

[0110] Step 9: The device has the option of reading
information introduced by the patient by using the external
portable module via the communication link shown in FIG.
4. The patient input channels 540 can be activated via the
keypad, allowing the entrance of important patient informa-
tion through different channels designated for each specific
task. When information supplied by the patient is available,
it is incorporated as an additional feature into the feature
vector. In this form, the patient can provide additional
information to the system through these channels. When he
feels an aura he can press a button; when he or an individual
observing him considers that a seizure is occurring, another
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button or combination of buttons can be pressed. The patient
input channels 540 can be activated or deactivated directly
in the external portable module 500, as well as many other
options that the system offers.

[0111] Step 10: When the input channel of the external
portable module 500 that provides the information regarding
the patient aura sensation is activated, the system automati-
cally adjusts itself to consider the new available information
for the seizure probability assessment, according to pre-
programmed parameters adjusted to each individual patient
automatically by the control feedback signals, or manually
by the doctor or expert.

[0112] Step 11: If the channel of the external communi-
cation unit 510 receiving the information regarding the
occurrence of a seizure is activated, then this information is
used in conjunction with the preictal and ictal data recorded
to evaluate the system prediction performance. Among oth-
ers the false positives, false negatives, and prediction times
are used to assess the system performance.

[0113] Step 12: The system performance evaluation is
always an option that can be activated by an authorized
person. Two different system performance evaluations are
accomplished automatically. One at the regulatory feedback
control level and the other at the supervisory control level.

[0114] Another embodiment of the invention includes
using other input signals in the system such as blood
pressure, heart rate, body temperature, level of certain
chemical substances in important organs, dilation of pupils,
eye movements, and other significant physiological mea-
sures.

[0115] System Processing

[0116] The present invention delineates a patient-specific
systematic approach for seizure prediction or early detection
of UEO. The methodology followed is a typical approach
used in artificial intelligence and pattern recognition. But in
this invention, these methods are applied to the computa-
tional neuroscience field with adaptations to the specific
conditions of the brain event or seizure prediction/detection
problem, the detection as a consequence of the prediction
and for performance evaluation purposes.

[0117] FIG. 1 depicts the architecture on which this inven-
tion is based. As can be observed in this figure, once the data
is generated, a preprocessing stage is required to reduce the
noise and enhance the signal for better class discrimination
with minimum distortion and for appropriate data fusion.
The preprocessed and fused data goes into the processing
block, where the feature extraction and selection is per-
formed. After appropriate features have been extracted and
selected (optimized), an intelligent tool such as a neural
network, fuzzy logic, or a combination of both achieves the
intelligent prediction classification/analysis. Following this,
a closed-loop control is activated and driven by the prob-
ability of having a seizure and by the overall system per-
formance measures.

[0118] In prediction/detection problems the feature extrac-
tion and selection is considered to be the key aspect neces-
sary to achieve a correct classification and usually is the
most critical. The intelligent prediction analysis/classifica-
tion possesses a general and well defined operation once an
effective set of features is found (see co-pending application
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Ser. No. 09/693423), but there is no straightforward proce-
dure for determining the best set of features. However, FIG.
5 presents a flow chart with the procedure used in this
invention for the selection of the best-feature vector.

[0119]

[0120] The feature extraction is performed through a run-
ning window method, as illustrated in FIG. 7. The shaded
area is the sliding observation window, which moves
through the data as the features are computed. The data
points inside this sliding window are used for feature
gencration as the window moves through the data. There-
fore, this observation window is continually collapsed into
a feature vector by means of formulas and algorithms that
take preprocessed and fused input signals and produce scalar
quantities as outputs, which then become the components of
the feature vector.

[0121] A feature library consisting of a large set of can-
didate features has been developed for feature extraction and
selection. When following the feature parameter-tuned
approach, an initial pre-selection of the features to be
extracted is performed, guided by a combination of knowl-
edge characteristics, intuition, and brainstorming. Once a
large group of features is pre-selected, the features are
computed. Two levels of features are defined at this point:
instantaneous features and historical features, which are
sketched in FIG. 12. The instantaneous or historical features
can be limited to the focus region or can be derived, as a
spatial feature arising from the combination of different
regions within the brain, and not restricted to the focal area.

[0122] Instantaneous features are computed directly from
the preprocessed and fused input signals through a running
observation window. Historical features are “features of
features” that require a second level of feature extraction,
which entails the historical evolution of features through
time. From this large set of instantaneous and historical
features that are extracted (i.c., candidate features), the
feature selection takes place.

[0123] The feature library developed contains more than
20 features. It includes a collection of custom routines to
compute the features. Features from different areas or
domains are extracted to explore a wide spectrum of possi-
bilities. Among the domains analyzed are time, frequency,
wavelet, fractal geometry, stochastic analysis, statistics,
information theory, etc. In the following, a description of the
algorithms, assumptions, and mathematical formulation for
determining these features is presented in combination with
some of the results.

[0124]

[0125] The power, power derivative, fourth-power indica-
tor (FPI), and accumulated energy (AE) are amplitude-based
features. The nonlinear energy, thresholded nonlinear energy
and duration of the thresholded nonlinear energy are based
on an AM-FM demodulation idea first introduced by P.
Maragos, et al. (“On Amplitude and Frequency Demodula-
tion Using Energy Operators”, IEEE Trans. on Signal Pro-
cessing, vol. 41, No. 4, pp. 1532-50). Their calculations are
provided below.

[0126]

[0127] Let the sequence x(n) be a preprocessed and fused
input signal, then the instantaneous power of x(n) is given by

Feature Extraction

Time Domain Features

Average Power or Moving Average Power
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x*(n). Considering that a sliding window is used, the power
of the signal becomes the average power over the window
mathematically defined as,

Ny
Plil=— > xf,
i=(n-1)V) +1

[0128] where:

[0129] N, is the size of the sliding window expressed
in number of points, and

[0130] nistheset1,2,3,...

[0131] The moving average of the power defined above is
with zero overlap. If an overlap of D points is allowed, then
the average power becomes:

Ny —D)+D
Polnl= - > x(F
L i=14(n=TXN, -D)

[0132] where:

[0133] P is the average power or moving average of
the power with D points of overlap.

[0134] FIG. 13 illustrates the average power for one
seizure record from an epileptic patient. Similar results were
found in another patients. This feature was obtained using a
window length of 1.25 sec. or equivalently 250 points with
an overlap of 0.45 sec. (90 points); however, these param-
eters can be changed or adjusted to the patient.

[0135] Derivative of Power

[0136] The subtraction of consecutive samples of P, (n)
corresponds to a discrete derivative of the average power,
which can be expressed as

AP[n]=Ppln]-Pplr-1]
[0137] Accumulated Energy (AE)

[0138] The AE contains historical information and repre-
sents a discrete integral of the power moving average over
time. From the power records obtained from the expression
for Pp[n], a new moving average window of N,=10 points
or any other value determined to be suitable for the particu-
lar patient, is slid through the power record with a 50%
overlap or equivalently Da=5 points, and a new sequence is
derived as the cumulative sum of these values. The follow-
ing equation summarizes the mathematical computation of
the accumulated energy or integral of the power for the
specified band of time:

k(NZ _Da) +Da

1
ALK = 5 > Polil
J=1+(k=1N: - Dy)

+AE[k - 1].

[0139] This feature shows promising results for seizure
prediction of UEQ, as can be seen from FIGS. 14, 15, and
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16. These figures present the accumulated energies for
several one-hour records of IEEG as if they had occurred at
the same time (same time axis), but this is just a way to
compare the behavior of one-hour baseline and pre-seizure
records from different time moments. Note that the time
labeled zero corresponds to the UEO and the horizontal
scale is in minutes. FIG. 14 illustrates the AE trajectories for
all the awake IEEG records from an epileptic patient. The
continuous lines of higher final amplitude correspond to
seizure records, and the dotted lines of lower ending ampli-
tude correspond to baseline records. A clear separability
between the seizure and baselines records is observed from
around 18 minutes before the UEO in most of the records.
FIG. shows the AE trajectories after a normalization. The
one-hour IEEG segments in this figure correspond again to
seizure and baseline records, but this time from both states
awake and asleep. The normalization performed on the AE
trajectories allows comparison of awake and asleep records
within the same reference. Again in this figure the preictal
segments exhibit higher AE than the baseline segments.
Except for the lowest amplitude AE seizure record, a clear
separation can be noticed around 20 minutes before the
UEO. FIG. 16 illustrates the normalized AE trajectories for
80 one-hour segments from five different patients. It is clear
from this figure that the seizure AE trajectories are concen-
trated at the top of the baseline AE trajectories. The observed
behavior is similar in other patients. The normalization
factor used over the AE was tuned for each patient according
to an off-line procedure. The magnitudes of the non-nor-
malized AE trajectories were always higher in asleep records
than in awake records, and also changed from one patient to
another. However, after the normalization, the AE trajecto-
ries became within the same range of values, preserving the
relative differences within each patient.

[0140]

[0141] The fourth power of the time series AP[n] is
computed over a second sliding window to accentuate the
activity of higher-amplitude epochs in the preprocessed and
fused inputs, sufficiently more than the activity of lower-
amplitude epochs. The fourth-power indicator (FPI) is then
given by

Fourth-Power Indicator

Lo
FPIm) = — Z AP,

2 sy +1

[0142] where N2 is the size of the new sliding window
over the time series AP[n]. This second sliding window is
chosen equal to 10 points, but can be another value. FIG. 17
shows the FPI in one of the patients analyzed. The prediction
ability of this feature can be noticed in this figure. In this
figure, the FPI from four preictal and four interictal IEEG
segments is shown from top to bottom respectively. The
dotted horizontal line on each plot represents a hypothetical
threshold that when surpassed is considered as an indication
of pre-seizure stage. The lines with arrows are used to point
out the sleep-awake cycles (sac), the letters in the graph have
the following meaning: a stands for awake, d for drowsy, and
s for asleep. There are moments during the first four preictal
segments when the hypothetical threshold is surpassed sug-
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gesting a relationship between this feature and the oncoming
seizure event. Only one baseline record yields false alarms
(the bottom one).

[0143] Average Nonlinear Energy or Moving Average
Nonlinear Energy

[0144] The nonlinear energy (NE) operator arises in the
area of signal processing and communications. It was first
proposed by Maragos et al. (“On Amplitude and Frequency
Demodulation Using Energy Operators”, IEEE Trans. on
Signal Processing, vol. 41, no. 4, pp. 1532-1550) as an
AM-FM demodulator and later applied as a spike detector.
The square root of the NE operator was shown to approxi-
mately track the product of the amplitude envelope and the
instantaneous frequency of sine wave signals with time-
varying amplitude and frequency. This definition was made
by Maragos et al. under the assumptions of: (1) the band-
width of AM or FM information signals is smaller than the
carrier frequency; (2) noise free signals; (3) AM modulation
is less than 100%, and FM modulation is less than 1
(o, /o >1, where o, is the modulating frequency and w_ is
the carrier frequency). Therefore, implicit assumptions,
when using this feature, are that the brain signals can be
modeled as a summation of sinusoids with different ampli-
tude and frequency modulation, where the bandwidth of
each AM or FM part is smaller than the corresponding
carrier. A possible physiological interpretation is to consider
each brain signal as the sum of several nonlinear time-
varying oscillators within the terminal contact area of the
electrode. As is known, neuron signals are FM modulated;
therefore, the many thousands of neuron voltages recorded
can be divided into groups representing each oscillator.
Neuron signals with the same carrier frequency and FM
message will belong to the same group (same oscillator);
and hence, will add up their tuned signals to produce the
oscillator output. Thus, obviously, each of the oscillators
would represent the response produced by thousands of
neurons oscillating at the same frequency and transmitting
the same FM information. There will be as many oscillators
as there are different carrier frequencies and FM messages
present. The AM component is determined by the number of
neurons contributing to each oscillator. The more neurons
that are tuned to the same frequency, the larger is the
amplitude of the oscillator, creating the effect of an AM
modulation. This hypothesis of multiple neuron responses
adding up to each oscillator output seems reasonable con-
sidering that the NE operator makes no assumptions regard-
ing the source of the AM and FM signals.

[0145] The NE operator is computed according to the
expression:

NE[n)=2{n]-An-1]n+1].

[0146] The NE operator as well as the features derived
from it, are instantaneous features in the sense that they
provide one value for each value of the original data.
Therefore, the values of the nonlinear energy feature are
subject to a second level of extraction where they are
weighted with a rectangular window or any other window
shape; their mean value is then calculated and called average
nonlinear energy. The length of this window is optimized for
the data set of each patient according to the procedure
described in FIG. 18 and illustrated for one of the features
in FIG. 19. The average nonlinear energy is obtained as
follows,
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1 KN-Dy+D
ANE[K] = — NE[n]
n=1+(k—1)N-D)

[0147]

where:

[0148] ANE[K] is the average nonlinear energy at
time K,

[0149] N is the window length optimized for the data
of each particular patient,

[0150] D is the overlap in number of points,

[0151] Kk is a discrete time index equal to 1, 2, 3, . .

[0152] It is observed that instead of using a rectangular
window, by utilizing an exponential window, the results can
be enhanced. This occurs because the feature values nearer
to the seizure onset (more recent ones) are emphasized more
than the values that occurred earlier. The exponentially
weighted average nonlinear energy (WANE) is found by:

1 k(N-D)+D
WANELK] = NE[rIwlnl,
n=1+{k—1)N-D)
wln] = %e*n/ﬂfs)’
[0153] where:

[0154] w[n] is the exponential window used,

[0155] fs is the sampling frequency of the data signal
(typically 200 Hz).

[0156] FIG. 20 shows the WANE signal for a pre-seizure
and baseline record from the same patient. In this figure two
bursts of enery can be observed around 25 and 5 minutes
before the UEO in the preictal segment not present in the
baseline segment. This feature yielded similar results across
the patients studied.

[0157] Thresholded Nonlinear Energy (TNE)

[0158] From the above expression for average nonlinear
energy, the thresholded nonlinear energy (a binary sequence)
is derived as follows:

TNE|n]=0(NE[n]>th,),

[0159] where th, is a threshold that is adjusted depending
on the patient as indicated in the following expression, and
0 is the Heaviside function also known as the step function.

c VB M
thl = NBN,‘,(Z::J ; x.(0)
[0160] where Ny is the number of records, N, is the

number of points in each record, x,(i) is the ith value of the
NE feature on record k, and C is a constant empirically
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selected to be 1.5 after an ad-hoc estimation. This constant
can be adjusted on a patient basis.

[0161] Duration of Thresholded Nonlinear Energy

[0162] The duration in an “on” state of the time series
TNE(n) is determined by counting the number of consecu-
tive ones, and creating a new sequence or feature, whose
values are zero except at the end of stream of ones in the
TNE(n) sequence, where this new sequence takes a value
equal to the number of consecutive ones found in that stream
of the TNE(n) sequence. FIG. 21 illustrates how this feature
can provide encouraging results from its behavior in eleven
one-hour segments that indicate a clear distinguishability
between preictal and no preictal portions of data up to 50
minutes prior to the UEO. Further analysis is required to
determine how long in advance this difference becomes
clear.

[0163] Ratio of Short and Long Term Power or any other
feature

[0164] This feature corresponds to a second level of
feature extraction where once the average power is obtained,
two more moving averages of the power are calculated over
time for different sliding window sizes. In one case the
window length is long and in the other it is short corre-
sponding to the long term power and short term power,
respectively. The ratio of these two is taken and assigned to
the current time the feature is being computed. A variation
of this feature includes determining when the short term
power goes above or below an adaptive threshold obtained
from the long term power. The same ratio or threshold
crossing between a short and a long term feature can be
computed for any other feature from any of the domains
mentioned in this invention. The duration and magnitude by
which the short term feature exceeds the adaptive threshold
can also be quantified in a third level of extraction. FIG. 22
shows the times as well as the magnitude by which the short
term energy of the 4™ wavelet coefficient exceeded the 20%
value of the long term energy of the same coefficient. These
results were computed over five one-hour preictal IEEG
segments from one epileptic patient. The continuous line
indicates how a continuous adaptive threshold classifier
based on a duration and magnitude of the difference between
the short and long term energy can provide a prediction for
a time horizon around two minutes utilizing only this
feature. It is expected that when more features are added into
the analysis, the performance will improve. Twelve one-
hour baselines where also analyzed yielding a total of 8 FPs
under this raw classification scheme, which was used only
for evaluation purposes.

[0165] Fractal Dimension of Analog Signals

[0166] The fractal dimension (FD) of a waveform can be
computed over time by using Katz’s algorithm, with very
good results for early detection of the UEO. The FD of a
curve can be defined as:

Do log; (L)
log; (d)

[0167] where L is the total length of the curve or sum of
distances between successive points, and d is the diameter
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estimated as the distance between the first point of the
sequence and the point of the sequence that provides the
farthest distance. Mathematically speaking, d can be
expressed as:

d=max (x(1), x(#)).

[0168] Considering the distance between each point of the
sequence and the first, point r is the one that maximizes the
distance with respect to the first point.

[0169] The FD compares the actual number of units that
compose a curve with the minimum number of units
required to reproduce a pattern of the same spatial extent.
FDs computed in this fashion depend upon the measurement
units used. If the units are different, then so are the FDs.
Katz’s approach solves this problem by creating a general
unit or yardstick: the average step or average distance
between successive points, a. Normalizing distances in the
equation for D by this average results in,

logy,(L/a)
D= S0 e
IOglo(d /a)
[0170] Defining n as the number of steps in the curve, then

n=L/a, and the previous equation can be written as:

loglo(n)

D= —n
10g10(z] + log (1)

[0171] The previous expression summarizes Katz’s
approach to calculate the FD of a waveform. A great deal of
repeatability has been observed with this feature and with
the FD of binary signals across records from the same
patient and even across patients (“Fractal Dimension char-
acterizes seizure onset in epileptic patients”, 1999 IEEE
International Conference on Acoustics, Speech, and Signal
Processing, by Esteller et al.).

[0172]

[0173] The FD of digital or binary signals is calculated
using Petrosian’s algorithm. It uses a quick estimate of the
FD. Since waveforms are analog signals, a binary signal is
derived from the analog input signal by obtaining the
differences between consecutive waveform values and giv-
ing them the value of one or zero depending on whether or
not their difference exceeds a standard deviation magnitude
or another fixed or adjustable threshold. The FD of the
previous binary sequence is then computed as:

Fractal Dimension of Binary Signals

log, ot
D= &io

n
logon + loglo(n—+ GETR )

[0174] where n is the length of the sequence (number of
points), and N, is the number of sign changes (number of
dissimilar pairs) in the binary sequence generated.
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[0175] Curve Length

[0176] Inspired by Katz’s definition of FD, the curve
length is a feature that resembles the FD but runs faster
because it is easier to implement in real time. It is computed
as follows:

nti

CLi) = Z abslx(k — 1) — x(k)]

k=n

[0177] where CL(n) is the running curve length of time
series x(k), N is the sliding observation window, and n is the
discrete time index. This feature plays an important role for
early detection of seizure onsets.

[0178] Frequency Domain Features

[0179] This category includes all features that contain
some information regarding the frequency domain, such as
frequency content of the signal, frequency content in a
particular frequency band, coherence, ratio of the frequency
energy in one band with respect to another, crossings of the
mean value in the power spectrum or in the time series, etc.

[0180] Power Spectrum

[0181] The spectrum is estimated using Welch’s average
periodogram, which is the most widely used periodogram
estimation approach. Welch’s average periodogram is given
by,

R 1R v
Pwf)= 5, Pa (1),
p=0
D-1

vi(p) 1
Pl = gppl X7 U=T) wial,
n=0

where:

D-1
XPi(f) = TZ P nlexp(— 2xmT), xP[n] = wn]x[n + pS],
n=0

[0182] P is the number of sub-segments analyzed
inside each input segment,

[0183]
[0184]
[0185]
[0186]
[0187]
[0188]
[0189]

[0190] S is the number of samples shifted as the
window moves through the input segment.

O<p<P-1 is the index range of segments,

f is the frequency,

D is the length of the periodogram window,
w[n] is the Hamming window,

x'P[n] is the weighted pth sub-segment,
X[n] is the data segment,

T is the sampling period,

[0191] The power spectrum is computed using the running
observation window to visualize the spectrum changes over
time. Even though this feature is evaluated to characterize
the bandwidth of the IEEG signals and to compare it during
ictal, preictal and interictal epochs, it is really used to derive
the power on different frequency bands as described below.
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[0192]

[0193] Once the power spectrum is estimated, the power
on four frequency bands can be analyzed: delta band (lower
than 4 Hz), theta band (between 4 and 8 Hz), alpha band
(between 8 Hz and 13 Hz) and beta band (between 13 Hz and
30 Hz). The power on each band is computed as the area
under the spectrum for the corresponding frequency band
(ie., the integral of each band). The following equation
represents the computation:

Power on Frequency Bands

[0194] where Piisthe power on the frequency band 1, i can
be either: delta, theta, alpha or beta band, f; and f, are the
low and high frequency indices of the band under consid-
eration, Kk is the discrete frequency index, X(k) is the power
spectrum, and P is the total power (integral of X(k) ). FIG.
23 illustrates the power on the frequency band between 8
and 13 Hz (alpha) for a 50-minute preictal segment and a
baseline segment. There is a clear difference in the power in
this frequency band that between the two segments is also
observed in the other segments analyzed. Around three
minutes before the UEO a peak value is reached in the power
of this frequency band (see FIG. 23).

[0195]

[0196] This is the signal processing name for the cross-
correlation between two frequency spectra. It is calculated to
explore the issue raised by some researchers, regarding a
frequency entrainment or neural synchronization between
the focal area and other cortical sites prior to seizure onset.
Channels from the focal region and other cortical sites of the
brain have been reported to exhibit some alignment in their
phases for different features as the seizure approaches. The
coherence between the focal channel and its homologous
contralateral site is a good method for analyzing neural
synchronization. It is computed using a practical method to
determine the coherence between two signals, as indicated
by

Coherence

Pl Pyy(k)

W= | P @) mas Py ()

k

[0197] where Pxx is the power spectral density of x[n],
and Pyy is the power spectral density of y[n]. Note that C_,
is the vector given by the product of each frequency value
of the maximum normalized power spectral density of x,
max{P, (i)}, and the maximum normalized power spectral
density of y, max{P, (i)}.

[0198]

[0199] This feature counts the number of times the signal
crosses the mean value of the window segment under
analysis. As the running window slides over the data, the
number of crossings is calculated for each window.

Mean Crossings
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[0200] Zero Crossings

[0201] The number of times the input signal crosses the
zero value is counted within a pre-defined sliding observa-
tion window.

[0202] Wavelet Domain Features

[0203] Intuitively, wavelet analysis can be considered as a
variable-length windowing technique. In contrast with the
short-time Fourier transform, wavelet analysis can study
phenomena that is localized in time. This possibility of
associating a particular event characterized by a frequency
component, a disturbance, etc., to a time span, is one of the
major advantages of wavelet analysis. Wavelets are wave-
forms of limited duration with zero average value and a
tendency to be asymmetric. In contrast, sine waves have
smooth and symmetrical shape and infinite duration. The
short-time Fourier analysis uses a time-frequency region
rather than the time-scale region used by wavelet analysis.
While the Fourier approach uses a fixed window length that
determines the resolution, in the wavelet analysis different
window lengths are used (i.e, different scales), such that if
the interest is in low frequencies, long time windows are
appropriate and the opposite holds true for high frequencies.
Another important concept that differentiates both types of
analysis is that the Fourier transform breaks the data signal
into sine waves with different frequencies, and the wavelet
transform breaks the data signal into shifted and scaled
versions of the mother wavelet used.

[0204] Spike Detector

[0205] There has been much discussion in the technical
literature regarding the possibility of a relationship between
the presence of spikes on the EEG signal and the occurrence
of a seizure. Aimed toward testing this hypothesis, a spike
detector has been developed. Initially, the NE operator was
computed, but only high amplitude spikes were detected,
while low amplitude spikes were missed. The spike detector
developed in this invention utilizes a “prototype spike” as
the mother wavelet. A set of spikes is randomly chosen from
the patient, and by aligning and averaging these spikes, a
“prototype spike” is created and denoted as the mother
wavelet. This prototype spike is patient-tuned. Using the
running window method the inner product of this “prototype
spike” and the data is computed; once it reaches a value
higher than a pre-established threshold a spike is detected.
FIG. 24 illustrates the behavior of the spike detector for a
segment of IEEG. From this figure, the spike detection is
clear disregarding the spike amplitude. FIG. 25 shows the
spikes detected over time in eight one-hour records for four
preictal and four baselines. Each vertical line denotes a spike
detected, the amplitude of the vertical line increases in
proportion to the excess of the inner product over the
threshold. From this figure, it is clear how a second level of
extraction computing the density of spikes over another
running window can distinguish between the preictal and
baseline records tens of minutes prior to the seizure.

[0206] Density of Spikes over Time

[0207] Using the spike detector developed, in a second
level of extraction, a threshold is used to count the number
of spikes that fall in the running window over time. Results
presented in FIG. 25 are encouraging to process the pre-
diction of UEO with features of this nature.
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[0208] Absolute Value of the 4th Wavelet Coefficient

[0209] Results with several wavelets have been examined
by visual inspection. Among the mother wavelet results
observed, the one that provided the best visual separation
between classes is the result obtained with Daubechies 4.
The wavelet transform is run over the data for four or more
different scales. The scale that provides the best distinguish-
ability between the preictal and the ictal class is selected.
FIG. 26 presents 3.5-minute epochs of five seizures from the
same patient, extracted for the one-hour preictal records
analyzed. A clear elevation starts between one minute and a
half-minute before the seizure UEQ. Using a basic threshold
classifier a typical prediction time based on only this feature
would be around two minutes. Twelve one-hour baseline
segments were also analyzed using this feature in this patient
with the same simple threshold classifier, yielding only one
FP. This secems to be a good feature to use as part of the
feature library. Similar results were found across patients.
This feature was initially analyzed for 6-minute records
instead of 1-hour records, because it generates one feature
value for each IEEG sample, therefore, it has no data
compression. However, after the second level of extraction
is conducted, where a running window is slid over the
wavelet coefficients and the mean of their absolute value is
calculated for the feature values within each window, it
resulted in data compression, while preserving most of the
feature information and decreasing variability. The window
length varied from patient to patient, depending on the result
of the window size optimization described below.

[0210]

[0211] From the huge variety of features in the statistical
domain, the mean frequency index, the cross-correlation,
and the coeffients of an autoregressive (AR) model are
among the ones included in the feature library of the present
invention.

[0212]

[0213] This is a measure of the centroid frequency, cal-
culated as follows:

Statistics and Stochastic Processes

Mean Frequency Index

N2

D=1
5
mf = N w2 ’
2 X
=

[0214] where fs is the sampling frequency, N is the length
of the IEEG segment, and x; is the magnitude of the power
spectrum.

[0215] FIG. 27 shows the mean frequency index of a
seizure and a baseline record over time for a window length
of 2000 points or equivalently 10 seconds. The vertical line
at time zero emphasizes the UEO time. It is clear from this
figure, that the mean frequency can be a useful feature for
seizure UEO prediction/detection considering the small
elevation of the average frequency as the seizure approaches
which is not observed during baseline periods away from
ictal activity. Note the presence of sudden periodic peaks
above 20 Hz starting around 12 minutes before the seizure
UEO. Other records in the database exhibited a similar
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behavior. This feature may be enhanced to increase the
distinguishability between preictal and no-preictal records,
by either utilizing a different shifting and window length, or
by an additional processing at a third level of extraction,
such as averaging, detection of the maximum value over a
third running window, ratio of short term versus long term
frequency index, etc. The clear issue is that the mean
frequency index may provide a smoother feature with less
variability over time and better results.

[0216] Cross-correlation

[0217] The consideration of this feature is motivated for
the same reasons that encouraged the coherence analysis
between homologous contralateral channels. The cross-cor-
relation can reflect the degree of similarity between different
channels, therefore, if a synchronization takes place, at some
point before the seizure, this feature should be able to sense
a change in that direction. The mathematical expression to
compute the cross-correlation is given by

IN—m—l
Ryy(m) = v Z xn+mlys[n],forO=sm=N-1.
n=0

[0218] The running cross-correlation is computed for each
sliding observation window used according to the window
selection procedure summarized in the flowchart of FIG. 18
and exemplified in FIG. 19. Each time the cross-correlation
is calculated, a sequence of values is obtained for the
different lags, the maximum cross-correlation value from all
the different lags is the one kept over time for the generation
of this feature.

[0219] Autoregressive (AR) Coefficients or Linear Predic-
tion Coefficients

[0220] A time series model often used to approximate
discrete-time processes is the AR model whose time domain
difference equation is:

x[n] = - alklx[n — k] + u[nr],

P
k=1

[0221] where p represents the AR model order. From this
expression, it is clear that the sample at time n is being
estimated from the p previous samples and the present input.
In time series analysis where no input is available, u[n] is
considered as white gaussian noise error between the real
present sample x[n] and the sample estimated without input.
A forward linear predictor is used to estimate the AR
coefficients. Defining the error variance as

p=E{|en]|*}, where enl=x[n]-xTn]

[0222] then, the forward linear prediction estimate is

»
#n] = -Z af [k]x[n - k1.

k=1
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[0223] Computing the error variance from the error defi-
nition above, and substituting the forward linear prediction
estimate yields the following equation

p=rxx[0]+rPHaf+(af)HrP+(af)HRP—1,1 f
[0224]
[0225]

where:
al is a vector with the AR coefficients,

[0226] r,is a vector with the autocorrelation for lags
1 top,

[0227] and R, is the autocorrelation matrix,
[0228] H represents the conjugate transposed.

[0229] The AR coefficients can be found by minimizing
the last equation. Preliminary results suggest this feature has
potential for prediction.

[0230]

[0231] Features from the information theory domain are
available in the feature library, including the entropy as
originally defined by Shannon, and the mutual information
function. It has been hypothesized that the level of organi-
zation changes before, during and after a seizure; thus, these
features must be analyzed to explore this possibility.

[0232]

[0233] Entropy is a measure of “uncertainty,” and is
heavily used in the information theory field. The more
uncertainty there is regarding the outcome of an event, the
higher is the entropy. The entropy is computed by using:

Information Theory Features

Entropy

20

H==)" pdf(Dog(pdf (D),

i=1

[0234] where pdf in this setting stands for the probability
distribution function. It is found by dividing x (i.e., IEEG
data segment) into 20 different amplitude containers, deter-
mining how many values of x are in each container, and
normalizing by the number of values in the observation
window. Thus, the pdf is a 20-bin histogram normalized to
represent discrete probabilities. Note that i in the above
expression indicates the container number. A different num-
ber of containers can be chosen depending on the length of
the sliding observation window used.

[0235]

[0236] This feature is explored with the idea of finding a
relation between the information in the focal channel and the
homologous contralateral channel. This feature is also con-
sidered as a nonlinear cross-correlation function. The math-
ematical expression used for the computation of the average
mutual information is:

Average Mutual Information

Paglai, by) ]

Iap = Z Pupla;, bj)logz[m

aib;
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[0237] where:

[0238] P,y is the joint probability distribution of A
and B,

[0239] P, is the probability distribution of A, and
[0240] Py is the probability distribution of B.
[0241] Window Length Selection

[0242] Several factors are taken into account when deter-
mining the window length to be used in the analysis. Among
them are data stationarity, data length required to compute
the features, sampling frequency, maximizing the distin-
guishability between preictal and ictal segments, and maxi-
mizing the accuracy in the prediction time. A compromise
has to be achieved between the requirement of a window
sufficiently long to compute specific features and a window
short enough to assume data stationarity. An IEEG segment
of tens of seconds can be considered quasi-stationary,
depending on the patient’s behavioral state. This depends
also on the type of input signal under consideration, for
example chemical concentrations may be considered quasi-
stationary over a longer time frames.

[0243] An original methodology for selecting the window
size is introduced here. This methodology arises as an
answer to the issues of how to effectively select the window
size to compute specific features and how to create the
feature vector when the features extracted have different
lengths. These questions emerged during the development of
the feature extraction stage of this invention. The goal of this
technique is to maximize the distinguishability between the
preictal/ictal class and baseline class. The processing logic
of FIG. 18 and results of FIG. 19 summarize the procedure.
In this scheme, each of the features pre-selected is computed
for different sliding window sizes. The k-factor is used as the
performance criteria that guides the window size selection
by quantifying class-separability and variance, however any
other performance measure suitable for this purpose can be
used.

[0244] Ninety different window sizes or less are selected
within the range of 50 points (0.25 seconds) to 9000 points
(45 seconds). This window range is selected to include the
maximum window size to satisfy quasi-stationarity of the
data segments and the minimum window size required to
compute the feature. All these windows are shifted accord-
ing to either of the following two criteria. The windows are
shifted by a fixed shift of 90 points (0.45 seconds) along the
input sequence, or by the shift that corresponds to preserving
a 50% overlap in the running window methodology. The
running window method described earlier is used to generate
the features. These 90-point shifts or 50% of window length
shifts fix the minimum prediction time to 0.45 seconds or to
the time shift that corresponds to the 50% of the window size
used. The maximum delay in the UEO detection is also the
same as the time shift, assuming optimal features, as those
capable of detecting the seizure onset as soon as one sample
of the ictal input data is within the sliding window. There is
also a trade-off between this window shifting or time reso-
lution and the storage capacity of the system. The shorter
this time resolution or the smaller the window shifting, the
greater the memory space required.
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[0245] After each feature is computed for the different
windows, the k-factor in the following equation is computed
as a measure of effectiveness of each feature.

[ = ol

Vet

K=

where:

[0246]

[0247] K is the k-factor (measure of effectiveness of
the feature),

[0248] u, is the mean of feature for class i,
[0249] 0,2 is the variance of feature for class i.

[0250] Around 20% of the available preseizure records are
used to determine the best window length to use. For each
pre-seizure record used, the window size corresponding to
the maximum k-factor is chosen to precede the analysis.
Then, a verification follows to confirm that the window
lengths that maximize the k-factor in each record are clus-
tered around some value. The center of the cluster of
“optimal” window lengths is chosen as the window length
for the feature under consideration. FIG. 19 illustrates the
variation of the k-factor for the fractal dimension feature, as
the window size is changed for four different seizure
records. The so-called “optimal” window length is within
approximately 1000 and 1500 points in this case.

[0251] Typically, the window sizes that maximize the
k-factor are different for each feature. Therefore, a strategy
is required to allow the creation of feature vectors from
features extracted with different sliding window sizes and
sometimes also with different window shiftings, which
implies that the features do not coincide in time and have
different time spans between consecutive values. One way to
obtain a perfect time alignment and identical time span
across features, is by satisfying the following two condi-
tions. The first condition guarantees the same time span for
consecutive values on all the features. This is achieved by
making the observation window displacement equal for all
the window sizes on all the features. The second condition
requires the alignment of all the observation windows with
respect to the right border of the longest window, as shown
in FIG. 28. The effect of applying equal displacement of the
observation window even for features with different window
sizes is that the number of overlapping points on each
observation window will change from feature to feature,
while the shifting points will remain constant. Therefore, as
a way to preserve the percentage of overlap for all the
features or to even have different percentages of overlap and
different shiftings (making the system more general), a
second alternative can be followed. It is to align the features
in time by resampling them. In this form, the features with
less samples can be upsampled by adding as many values as
needed. For example, if the upsampling is by three, then
each value of the feature sequence will be repeated twice.

[0252] Using any of the two approaches described, his-
torical and instantaneous features can be combined by
extracting historical features from the instantaneous features
utilizing a shift of one-feature-sample for the observation
window, upsampling if necessary to achieve a correct time
alignment of the historical features and the instantaneous
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ones. Intuitively, this type of approach can outperform those
that rely only on instantaneous features. An example is the
use of delta features in speech processing.

[0253] When the feature-parameter approach is used, the
feature selection is a required procedure performed by the
supervisory control 400 that involves the extraction of
features within the feature library and the analysis to select
the “optimal” set of features.

[0254] Feature selection deals with determining the small-
est subset of features that satisfies a performance criterion
once the set of candidate features has been extracted. Can-
didate features must be ranked by their effectiveness to
achieve class separability. This implies that feature selection
is also a feature optimization problem, where an optimal
feature subset has to be chosen from the combinatorial
problem of finding a subset with the best M features out of
N original features. Several issues must be considered for
the feature selection, such as minimization of numerical
ill-conditioning, maximization of discrimination among
classes, maximization of orthogonality, selection of classi-
fier topology, and computational loading for real-time
implementation.

[0255] Typical causes of ill-conditioning are large differ-
ences in the orders of magnitude between pairs of features,
statistical correlation between any pair of features, a large
number of features, and a small number of training feature
vectors. To reduce ill-conditioning problems, features must
be normalized so that different scaled feature values will
have the similar mean and variance. A basic normalization
scheme can be achieved by using the expression:

ka(n): fk(")—l-lk’
ox
[0256] where:
[0257] f, (n) is the nth sample from feature k,
[0258]

[0259] u, is the average over all feature samples from all
classes,

v, (n) is the nth sample normalized from feature k,

[0260] o, isthe standard deviation over all feature samples
from all classes.

[0261] Thus, t;, and o, are computed as:

1 N
felD) and oy = /mgl (filh = w)* -

[0262] The implementation of the previous normalization
scheme in an on-line fashion requires the computation of the
average and standard deviation over a long term running
window that covers part of the feature history. The length of
the window for computing the parameters required for
feature normalization depends on the probability time hori-
zon under consideration. A typical window may be ten times
or more the time horizon analyzed. There is a trade-off
between this historical window and the memory available
within the implantable device.

Hie =

o

1
N

i

Aug. 1,2002

[0263] In addition, some correlation studies can be helpful
to select a final group of features that synergistically con-
tributes to the onset detection task. These can be performed
by the supervisory control at the coordination level.

[0264] The feature vector optimization is performed ini-
tially in four major steps following a scheme of multi-
dimensional feature optimization. This procedure can evolve
into a single-dimensional feature optimization, if the corre-
lation and complementary nature of the features involved is
qualitatively acceptable implying that the final feature set
obtained by both procedures (single and multi-dimensional)
is about the same. The fundamental aspects of the multidi-
mensional scheme that can also be used are summarized in
the following steps:

[0265] Step 1: An initial basic pre-selection is used to
discard features with evidently inferior class separability, by
assessing the mean and standard deviation differences in
data segments from preictal and no-preictal conditions.

[0266] Step 2: Individual feature performance is evaluated
using one or more criteria for every feature that is not
discarded during the initial basic pre-selection.

[0267] Step 3: Features are ranked according to their
performance measure by an overlap measure criteria and
then a modified version of an add-on algorithm combined
with heuristics is used to select the final feature set.

[0268] Step 4: Two-dimensional feature spaces are con-
structed and evaluated to validate qualitatively the implicit
assumption of complementarity and low correlation among
the final feature set.

[0269] Considering that the performance of single dimen-
sional feature optimization is slightly lower (typically
between 3 and 8%) than its multidimensional counterpart, it
provides an acceptable optimization. However, if the feature
correlation is such that the features are not complementary,
a multidimensional feature optimization approach is pre-
ferred. A computational assessment of the feature space is
utilized to evaluate the complementarity among the features
involved. The previous steps and considerations are fol-
lowed by the internal program residing in the high level
supervisory control 400 at the coordination layer.

[0270] A measure of overlap between the two classes
involved (pre-seizure and no pre-seizure class) can be
achieved on the estimated conditional probability distribu-
tion function (PDF) of the feature under analysis for each
class. FIGS. 29A and 29B present two examples of curves
proportional to the feature PDFs estimated directly from the
data set for each class in two patients of the database. The
curve with the peak in the left is proportional to the
estimated PDF of the weighted fractal dimension (WFD)
obtained from the actual data values of the WFD in no
pre-seizure segments that include baseline records. This can
be expressed mathematically as p(x|NPS), which means the
PDF of feature x (in this case the WFD) given that the
feature data belongs to the no pre-seizure class (NPS). The
curve whose peak is in the right side of the figure, is
proportional to the estimated PDF of the WFD given data
from the pre-seizure class (p(x|PS) ). The pre-seizure (PS)
class is defined as the segments whose length is identical to
the time horizon under analysis and whose ending point is
right before the seizure UEQ. The two graphs correspond to
two different patients studied. During the analysis of the
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data, it was observed that the PDF depicted by the curve
whose peak is in the right side of FIG. 29B, if plotted
including the whole seizure time (about 3 min.) as if it were
from the preictal class, then the PDF becomes multimodal.
In fact, this can be inferred by looking at the trend of the left
curve for low values of the WFD in FIG. 29B. This was not
always the case in every patient, but it was an interesting
observed behavior.

[0271] The overlap between the two classes is assessed by
integrating the shaded region in FIGS. 29A and 29B, as
stated according to:

ov=[min(p(x|PS),p(x|NPS) )dx,

[0272] where:
[0273] ov is a measure of overlap between the feature
classes,

[0274] (x|NPS) is the PDF of feature x given no
seizure onset class,

[0275] xis avariable representing the feature for both
classes,

[0276] (x|PS) is the PDF of feature x given the
seizure onset class.

[0277] Note that the better the class distinguishability for
a particular feature, the lower this overlap measure. The
overlap measure is very general in the sense that it works
under multi-modal distributions. Using the previous equa-
tion the features can be ranked individually, preparing the
ground to start the multiple-dimension feature optimization.

[0278] Inthose problems where the class boundary is very
complex and a substantial overlap is obtained in the one-
dimensional feature space, a multidimensional feature opti-
mization is the path to follow. This type of approach is
computationally more intensive than single-dimension fea-
ture optimization, but it has the advantage of compensating
for the correlation among features.

[0279] FIGS. 30 and 31 show the qualitative results from
the construction of the 2-D feature space for some of the
final pairs of features in the final feature set of one of the
patients studied. This reinforces the idea that features are
complementary. The top graphs in FIGS. 30 and 31 corre-
spond to the 1-D feature spaces of each of the three features
selected, plotted in a 2-D graph for visualization purposes.
The representation of each 1-D plot as a 2-D plot is achieved
by assigning a random value to correspond with each feature
value. In both figures it is observed how combined features
enhance the performance by decreasing the overlap between
the classes.

[0280] Following the single dimensional feature optimi-
zation approach for all the patients studied, the final feature
set coincided for almost all the patients when using the
overlap measure and when using other performance criteria
such as the Fisher discriminant ratio (FDR). The overlap
criteria provides a more reliable distinguishability measure
between the classes since the FDR is a linear measure based
on the 1st and 2nd statistical moments while the overlap
measure is based on the PDFs that implicitly contain the
information of all the statistical moments. Therefore, even
when the FDR measure suggested a slightly different final
feature set (where at most, one of the features was different),
the overlap measure is chosen as the criterion to determine
the final feature selection.
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[0281]

[0282] In patients where the seizures arise from more than
one focal region, multiple electrodes are implanted in each
region. The approach followed in these cases is the same as
that described above, with two possible variations regarding
the fusion of information. In one variation, the input signals
from adjacent electrodes are subtracted forming a bipolar
signal, and then bipolar signals from different focus regions
are combined at the data level; in the other variation, the
input signals are combined at the feature level. The second
variation implies that features computed with the same
algorithm and perfectly coincident or aligned in time are
combined into a single feature by using a nonlinear proce-
dure. Similarly, the first variation implies the combination of
the intracranial EEG data or any other sensor data, before or
after the preprocessing stage, into a single data stream. A
method for the nonlinear combination of the input signals
either at the data or at the feature level is to take the
maximum of the two or more signals at every sample time.
Besides this nonlinear combination, there are many other
techniques that can be used to combine or fuse these signals
or channels.

[0283] The combination of signals at the data and/or
feature level can also be performed in patients with a unique
focal region, where the complementarity among the signals
or features from electrodes placed in different regions
enhances the prediction results.

[0284]

[0285] A classifier can be viewed as a mapping operator
that projects the M selected features contained in the feature
vector onto a d-dimensional decision space, where d is the
number of classes in the classification problem. In the
classification problem under investigation for this invention,
d=2 and M is chosen typically to be within the range of one
to six. It is definitely true that the feature extraction and
selection plays a crucial role in the classification results;
however, it is highly important to select a classifier archi-
tecture suitable to the underlying feature distribution to
obtain better performance recognition.

[0286] As a benchmark and proof-of-concept, a radial
basis neural network (RBNN), without the usual iterative
training algorithms, has been used. Particularly, a Probabi-
listic Neural Network (PNN) has been used within this
invention for its suitability for classification problems and its
straightforward design. The PNN is a nonparametric clas-
sifier, and as such it does not make assumptions regarding
the statistical distribution of the data. This neural network is
also called kernel discriminant analysis, or the method of
Parzen windows.

[0287] FIG. 32 illustrates the PNN architecture which
corresponds to one of the embodiments of this invention. In
other embodiments, different neural networks can be used or
a combination of a neural network with a fuzzy system can
be utilized. The weights used at the hidden layer of the PNN
are directly the training vectors used. As can be seen in FIG.
32, this type of network requires one node for each training
vector W, which represents a major disadvantage since the
amount of computation involved to reach a classification,
slows down its operation. Increasing the memory capacity
such that the PNN can be wired (run in parallel) can decrease
the computational burden and accelerate the classification.

Patients with Multiple Focus Regions

Analysis/Classification
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On the other hand, an advantage of the PNN is its conver-
gence to an optimal Bayesian classifier provided it is given
enough training vectors, and under equiprobable spherical
class covariances for the particular implementation used in
this invention.

[0288] The architecture illustrated in FIG. 32 corresponds
to the particular case of a two-class problem, with three-
dimensional feature vectors,

x=x 0%, ]

[0289] Every weight W, ; in the hidden layer is the jth
component of the kth feature vector in the training set, where
the kth feature vector is given by

Wk:[wl,kWZ,kWS,k]T

[0290] wherek 1,2, ..., nand n is the number of feature
vectors (patterns) in the training set. The output layer
estimates the probability of having a seizure, given the input
feature vector. This translates into the probability that the
input signals belong to the pre-seizure/seizure class (preictal
class) or to the non-pre-seizure class (baseline class), given
the input feature vector, and is mathematically represented
by:

P,_p(PS|x) and P,=P(NPS|x)

[0291] where PS is the “pre-seizure/seizure class” and
NPS is the “non-pre-seizure class”. Matrix T contains the
weights on the output layer, which indicate the correspond-
ing class of each training feature vector, in the 1-of-k binary
feature format, as typical in supervised learning approaches
like this.

[0292] This architecture can be perceived in two ways. In
one interpretation the Euclidean distance z, between each
input feature vector x and each of the training vectors wy, is
computed at each node |lx-w,]| in the hidden layer and
passed through a Gaussian window ¢ <" ol, where 0% is a
width parameter of the window. The second interpretation is
more from a neural network point of view, and considers that
each input feature vector x is evaluated at n Gaussian
windows with each one centered at a different training
feature vector wy, k=1, . . ., n, and with variance o

[0293] The present invention is realized in a combination
of hardware and software. Any kind of computer system or
other apparatus adapted for carrying out the methods
described herein is suited. A typical combination of hard-
ware and software could be a general purpose computer
system with a computer program that, when loaded and
executed, controls the computer system such that it carries
out the methods described herein. The present invention can
also be embedded in a computer program product which
includes all the feature enabling the implementation of the
methods described herein, and which, when loaded in a
computer system is able to carry out these methods.

[0294] Computer program instructions or computer pro-
gram in the present context means any expression in any
language, code, or notation or a set of instructions intended
to cause a system having an information processing capa-
bility to perform a particular function, either directly or
when either or both of the following occur: (a) conversion to
another language, code, or notation; (2) reproduction in a
different material form.

[0295] In light of the above teachings, those skilled in the
art will recognize that the disclosed methods, formulas,
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algorithms, and embodiments may be replaced, modified, or
adapted without departing from the spirit or essential
attributes of the invention. Therefore, it should be under-
stood that within the scope of the appended claims, this
invention may be practiced otherwise than as exemplified
herein.

What is claimed is:

1. A method for predicting and controlling the electro-
graphic and clinical onset of a seizure and other neurological
events in an individual, comprising the acts of:

generating data that is acquired from a plurality of input
signals obtained from at least one sensor located in or
on the individual,

fusing the data to combine information from the at least
one sensor that is connected to at least one transducer;

selecting and extracting a plurality of features from the
fused data;

determining from the extracted features if a seizure or
other neurological event is likely to occur within a
plurality of specified time frames, and the probability
of having a seizure for each specified time frame;

providing an alarm to the individual to inform him of an
imminent seizure or neurological event when the prob-
ability of seizure is higher than an adaptive threshold;
and

applying a control rule to initiate an intervention measure
that is commensurate with the probability of the elec-
trographical onset of a seizure for each specified time
frame.

2. The method for predicting and controlling the electro-
graphic onset of a seizure of claim 1 further comprising the
act of normalizing the selected features before determining
if a seizure is likely to occur within the specified time frame.

3. The method for predicting and controlling the electro-
graphic onset of a seizure of claim 1 further comprising
preprocessing of the input signals to reduce noise, to
enhance the quality, to compensate for undesireable signal
variations and to emphasize distinguishability between a
pre-seizure class and a non-pre-seizure class.

4. The method for predicting and controlling the electro-
graphic onset of a seizure of claim 1 wherein the interven-
tion measure is an electrical stimulus of a minimally
required duration and intensity that is delivered at a time that
is based on the probability of seizure for a specified time
frame.

5. The method for predicting and controlling the electro-
graphic onset of a seizure of claim 1 wherein the interven-
tion measure is a drug infusion that is activated to deliver a
minimally required amount of a drug into the individual at
a time that is based on the probability of seizure for a
specified time frame.

6. The method for predicting and controlling the electro
graphic onset of a seizure of claim 1 wherein the interven-
tion measure is a magnetic stimulus generated by the wear-
ing of a magnetic helmet at a time that is based on the
probability of seizure for a specified time frame.

7. The method for predicting and controlling the electro-
graphic onset of a seizure of claim 1 wherein the interven-
tion measure is a procedure that includes the solving of
highly cognitive problems.
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8. The method for predicting and controlling the electro-
graphic onset of a seizure of claim 1 wherein the interven-
tion measure is a sensory stimulation including at least one
of music therapy, images, flavors, odors and tactile sensa-
tions.

9. The method for predicting and controlling the electro-
graphic onset of a seizure of claim 1 wherein the interven-
tion measure is delivered in at least one of a region of onset
and a distribution region surrounding the region of offset.

10. The method for predicting and controlling the elec-
trographic onset of a seizure of claim 1 wherein the inter-
vention measure is delivered in subcortical regions including
at least one of the thalamus, basal ganglia, and other deep
nuclei.

11. The method for predicting and controlling the electro
graphic onset of a seizure of claim 1 wherein if the electro-
grahic onset occurs, applying treatment to either at least one
of a general region of onset and deep brain structures to
modulate the behavior of the seizure focus.

12. The method for predicting and controlling the elec-
trographic onset of a seizure of claim 1 wherein the inter-
vention measure application includes at least one of:

rhythmic electrical pacing that changes in frequency,
intensity and distribution as the probability of a seizure
onset reaches and exceeds a threshold;

chaos control pacing;

random electrical stimulation to interfere with developing
coherence in activity in a region of, and surrounding, an
epileptic focus;

depolarization or hyperpolarization stimuli to silence or
suppress activity in actively discharging regions, or
regions at risk for seizure spread.

13. The method for predicting and controlling the electro
graphic onset of a seizure of claim 12 wherein the interven-
tion measure is delivered to a plurality of electrodes to
provide a surround inhibition to prevent a progression of a
SeizZure precursor.

14. The method for predicting and controlling the elec-
trographic onset of a seizure of claim 12 wherein the
intervention measure is delivered sequentially in a wave that
covers a cortical or subcortical region of tissue so as to
progressively inhibit normal or pathological neuronal func-
tion in the covered region.

15. The method for predicting and controlling the elec-
trographic onset of a seizure of claim 1 wherein the inter-
vention measure application is an infusion of a therapeutic
chemical agent into a brain region where seizures are
generated, or to which they may spread.

16. The method for predicting and controlling the elec-
trographic onset of a seizure of claim 15 wherein the
chemical agent is delivered in greater quantity, concentra-
tion or spatial distribution as the probability of seizure
increases.

17. The method for predicting and controlling the elec-
trographic onset of a seizure of claim 15 wherein the
intervention measure is applied to at least one of an epilectic
focus, an area surrounding the epilectic focus, a region
involved in an early spread, and a central or deep brain
region to modulate seizure propagation.

18. The method for predicting and controlling the elec-
trographic onset of a seizure of claim 15 wherein the
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therapeutic chemical agent is activated by oxidative stress
and increases in concentration and distribution as the prob-
ability of seizure increases.

19. The method for predicting and controlling the elec-
trographic onset of a seizure of claim 1 wherein the inter-
vention measure is delivered to central nerves or blood
vessels in a graduated manner as the probability of seizure
increases.

20. The method for predicting and controlling the elec-
trographic onset of a seizure of claim 1 wherein the inter-
vention measure is a plurality of artificial neuronal signals
delivered to disrupt eletrochemical traffic on at least one
neuronal network that includes or communicates with an
ictal onset zone.

21. The method for predicting and controlling the elec-
trographic onset of a seizure of claim 1 wherein the alarm is
any one of a wvisual signal, an audio signal and a tactile
sensation.

22. The method for predicting and controlling the elec-
trographic onset of a seizure of claim 1 wherein the plurality
of features are selected for each individual.

23. The method for predicting and controlling the elec-
trographic onset of a seizure of claim 1 wherein the same
plurality of features are selected for each individual.

24. The method for predicting and controlling the elec-
trographic onset of a seizure of claim 1 wherein parameters
of the selected features are tuned for each individual.

25. The method for predicting and controlling the elec-
trographic onset of a seizure of claim 24 wherein one of the
parameters that is used for each selected feature is a running
window length that is used in feature extraction.

26. The method for predicting and controlling the elec-
trographic onset of a seizure of claim 1 wherein a plurality
of features are extracted at an analog level.

27. The method for predicting and controlling the electro
graphic onset of a seizure of claim 1 wherein a plurality of
features are extracted at a digital level.

28. The method for predicting and controlling the elec-
trographic onset of a seizure of claim 1 wherein the plurality
of features are extracted over a pre-established window
length.

29. The method for predicting and controlling the elec-
trographic onset of a seizure of claim 28 further comprising
shifting of the window over the plurality of input signals to
allow at least a partial overlap with a previous window,
reusing the extracted features in the overlap portion and
repeating the extraction of the plurality of features on a new
input portion within the window.

30. The method for predicting and controlling the elec-
trographic onset of a seizure of claim 1 wherein the act of
fusing the data comprises the act of combining the plurality
of signals from at least one sensor using an intelligent tool
including a neural network or a fuzzy logic algorithm.

31. The method for predicting and controlling the elec-
trographic onset of a seizure of claim 3 wherein the act of
preprocessing of the input signals comprises subtraction of
input signals from spatially adjacent sensors that measure
the same type of activity.

32. The method for predicting and controlling the elec-
trographic onset of a seizure of claim 1 wherein the plurality
of features is selected from a feature library including a
plurality of historical and instantaneous features.

33. The method for predicting and controlling the elec-
trographic onset of a scizure of claim 32 wherein the
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plurality of instantaneous features are generated directly
from preprocessed and fused input signals through a running
observation window.

34. The method for predicting and controlling the elec-
trographic onset of a seizure of claim 32 wherein the
historical features are based on a historical evolution of
features over time.

35. The method for predicting and controlling the electro
graphic onset of a seizure of claim 32 wherein the historical
and instantaneous features are limited to a focus region in
the brain of an individual.

36. The method for predicting and controlling the elec-
trographic onset of a seizure of claim 32 wherein the
historical and instantaneous features are derived as a spatial
feature from a combination of a plurality of regions in the
brain of an individual.

37. The method for predicting and controlling the elec-
trographic onset of a seizure of claim 32 wherein the feature
library includes a collection of custom routines to compute
the features.

38. The method for predicting and controlling the elec-
trographic onset of a seizure of claim 32 wherein the
plurality of features are extracted from different domains.

39. The method for predicting and controlling the elec-
trographic onset of a seizure of claim 38 wherein at least one
feature is a ratio of a short term value and a long term value
of that feature

40. The method for predicting and controlling the elec-
trographic onset of a seizure of claim 38 wherein the
different domains include at least two of time, frequency,
wavelet, fractal geometry, stochastic processes, statistics,
and information theory domains.

41. The method for predicting and controlling the elec-
trographic onset of a seizure of claim 40 wherein the time
domain features include at least one of an average power, a
power derivative, a fourth-power indicator, an accumulated
energy, an average non-linear energy, a thresholded non-
linear energy, a duration of thresholded non-linear energy,
and a ratio of short term and long term power feature.

42. The method for predicting and controlling the elec-
trographic onset of a seizure of claim 41 wherein the fractal
geometry features include at least one of a fractal dimension
of analog signal, a curve length, a fractal dimension of
digital signals, a ratio of short term and long term curve
length, an a ratio of short term and long term fractal
dimensions of digital signals.

43. The method for predicting and controlling the elec-
trographic onset of a seizure of claim 41 wherein the
frequency domain features include at least one of a power
spectrum, a power on frequency bands, a coherence between
intracranial channels, a mean crossings and a zero crossings
feature.

44. The method for predicting and controlling the elec-
trographic onset of a seizure of claim 41 wherein the wavelet
domain features include at least one of a spike detector, a
density of spikes over time, and an absolute value of a
wavelet coefficient.

45. The method for predicting and controlling the electro
graphic onset of a seizure of claim 41 wherein the statistics
and stochastic process domains include at least one of a
mean frequency index, a cross-correlation between different
intracranial channels, and autoregressive coefficients.

46. The method for predicting and controlling the elec-
trographic onset of a seizure of claim 41 wherein the
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information theory features include at least one of an
entropy feature and an average mutual information feature.

47. The method for predicting and controlling the elec-
trographic onset of a seizure of claim 34 wherein at least one
historical feature is generated as a feature of other features
by a second or higher level of feature extraction.

48. The method for predicting and controlling the elec-
trographic onset of a seizure of claim 25 wherein a deter-
mination of the running window length and a starting time
for feature extraction over an input signal for every feature
includes the acts of:

determining 2 window range based on stationarity criteria
and a minimum length to compute a feature under
analysis;

determining a feature value for each of a plurality of
different window sizes;

calculating a feature effectiveness measure based on class
distinguishability for the plurality of different window
sizes used for every feature;

determining the window length that corresponds to a best
class distinguishability as indicated by a maximum
value or minimum value of the feature effectiveness
measure; and

aligning the plurality of windows with the window having
the maximum length such that the right edge of all
windows coincide.

49. The method for predicting and controlling the elec-
trographic onset of a seizure of claim 48 wherein the
maximum or minimum values of the feature effectiveness
measure that provides the best class distinguishability
depends on the feature effectiveness measure in use.

50. The method for predicting and controlling the elec-
trographic onset of a seizure of claim 48 wherein the feature
effectiveness measure determines the window length that
maximizes the distinguishability between a preictal/ictal
class and a baseline class.

51. The method for predicting and controlling the elec-
trographic onset of a seizure of claim 50 wherein the act of
selecting and extracting a plurality of features comprises the
acts of:

extracting a set of candidate features from the feature
library;

ranking the extracted features by the feature effectiveness
measure; and

determining a smallest subset of features that satisfies a
performance criterion.
52. The method for predicting and controlling the elec-
trographic onset of a seizure of claim 51 further comprising
the acts of:

performing an initial pre-selection from the feature library
to discard a plurality of features with inferior class
separability; and

evaluating individual feature performance using at least

one criterion for every feature that is not discarded
during the initial pre-selection.

53. The method for predicting and controlling the elec-

trographic onset of a seizure of claim 51 wherein the act or

ranking the extracted features by the feature effectiveness
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measure uses an overlap measure criterion, a modified
add-on algorithm and heuristics to select a final feature set.

54. The method for predicting and controlling the elec-
trographic onset of a seizure of claim 51 further comprising
the acts of constructing and evaluating two-dimensional
feature spaces to validate qualitatively that the final feature
set is complementary and has low correlation among the
final features.

55. The method for predicting and controlling the elec-
trographic onset of a seizure of claim 53 wherein the overlap
measure criterion is based on functions proportional to the
estimated conditional probability distributions of the fea-
tures under analysis for both a pre-seizure class and a
non-pre-seizure class.

56. The method for predicting and controlling the elec-
trographic onset of a seizure of claim 30 wherein the neural
network or fuzzy logic algorithm include at least one of a
probabilistic neural network, a k-nearest neighbor neural
network, a wavelet network, and a combination probabilis-
tic/k-nearest neighbor neural network.

57. The method for predicting and controlling the elec-
trographic onset of a seizure of claim 3 wherein the act of
preprocessing the input signals comprises classification of
an individual’s awareness state within at least one of the
categories of awake, asleep, and drowsy using algorithms
based on frequency and time information.

58. The method for predicting and controlling the elec-
trographic onset of a seizure of claim 1 further comprising
the act of fusing the selected features to include establishing
an individual-tuned variable normalization level that uses an
individual’s state of awareness to normalize an accumulated
energy or other feature and decide if a seizure is approaching
when a normalized threshold value is exceeded.

59. A computer readable medium containing a computer
program product for predicting and controlling the electro-
graphic and clinical onset of a seizure and other neurological
events in an individual, the computer program product
comprising:

program instructions that generate data acquired from a
plurality of input signals obtained from at least one
sensor located in or on the individual;

program instructions that fuse the data to combine infor-
mation from the at least one sensor that is connected to
at least one transducer;

program instructions that select and extract a plurality of
features from the fused data;

program instructions that determine from the extracted
features if a seizure or other neurological event is likely
to occur within a plurality of specified time frames, and
the probability of having a seizure for each specified
time frame;

program instructions that generate an alarm to the indi-
vidual to inform him of an imminent seizure or neu-
rological event when the probability of seizure is higher
than an adaptive threshold; and

program instructions that apply a control rule to initiate an
intervention measure that is commensurate with the
probability of the electrographical onset of a seizure.

60. The computer program product for predicting and
controlling the electrographic onset of a seizure of claim 59
further comprising program instructions that initiate a pre-
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proccessing of the input signals to reduce noise and to
enhance the quality, and to emphasize distinguisability
between a pre-seizure class and a non-pre-seizure class.

61. The computer program product for predicting and
controlling the electrographic onset of a seizure of claim 59
further comprising program instructions that initiate an
electrical stimulus of a minimally required duration and
intensity that is delivered at a time that is based on the
probability of seizure for a specified time frame.

62. The computer program product for predicting and
controlling the electrographic onset of a seizure of claim 59
further comprising program instructions that initiate activa-
tion of a drug infusion to deliver a minimally required
amount of a drug into the individual at a time that is based
on the probability of a seizure for a specified time frame.

63. The computer program product for predicting and
controlling the electrographic onset of a seizure of claim 59
further comprising program instructions that initiate genera-
tion of a magnetic stimulus through the wearing of a
magnetic helmet at a time that is based on the probability of
seizure for a specified time frame.

64. The computer program product for predicting and
controlling the electrographic onset of a seizure of claim 59
further comprising program instructions that provide an
indication that a cognitive problem should be solved as an
intervention measure.

65. The computer program product for predicting and
controlling the electrographic onset of a seizure of claim 59
further comprising program instructions that provide an
indication that a sensory stimulation should be applied as an
intervention measure.

66. The computer program product for predicting and
controlling the electrographic onset of a seizure of claim 59
further comprising program instructions that initiate activa-
tion of any one of a visual alarm, an audio alarm, and a
tactile sensation.

67. The computer program product for predicting and
controlling the electrographic onset of a seizure of claim 59
further comprising program instructions that select a plural-
ity of features for each individual.

68. The computer program product for predicting and
controlling the electrographic onset of a seizure of claim 59
further comprising program instructions that select the same
plurality of features for each individual.

69. The computer program product for predicting and
controlling the electrographic onset of a seizure of claim 59
further comprising program instructions that tune the param-
eters of the selected features for each individual.

70. The computer program product for predicting and
controlling the electrographic onset of a seizure of claim 59
further comprising program instructions that determine a
running window length which is used in feature extraction
for each selected feature.

71. The computer program product for predicting and
controlling the electrographic onset of a seizure of claim 59
further comprising program instructions that extract a plu-
rality of features at an analog level.

72. The computer program product for predicting and
controlling the electrographic onset of a seizure of claim 59
further comprising program instructions that extract a plu-
rality of features at a digital level.

73. The computer program product for predicting and
controlling the electrographic onset of a seizure of claim 70



US 2002/0103512 Al

further comprising program instructions that extract a plu-
rality of features over a pre-established window length.

74. The computer program product for predicting and
controlling the electrographic onset of a seizure of claim 73
further comprising program instructions that shift the win-
dow over the plurality of input signals to allow at least a
partial overlap with a previous window and repeat the
extraction of the plurality of features.

75. The computer program product for predicting and
controlling the electrographic onset of a seizure of claim 59
further comprising program instructions that combine the
plurality of signals from at least one sensor using an intel-
ligent tool that includes a neural network or a fuzzy logic
algorithm.

76. The computer program product for predicting and
controlling the electrographic onset of a seizure of claim 60
wherein the program instruction for preprocessing of the
input signals further comprises program instructions that
subtract the signals from spatially adjacent sensors that
measure the same type of activity.

77. The computer program product for predicting and
controlling the electrographic onset of a seizure of claim 59
further comprising program instructions that select a plural-
ity of features from a feature library that includes a plurality
of historical and instantaneous features.

78. The computer program product for predicting and
controlling the electrographic onset of a seizure of claim 77
further comprising program instructions that generate a
plurality of instantaneous features directly from pre-pro-
cessed and fused input signals through a running observation
window.

79. The computer program product for predicting and
controlling the electrographic onset of a seizure of claim 77
further comprising program instructions that generate his-
torical features based on a historical evolution of features
over time.

80. The computer program product for predicting and
controlling the electrographic onset of a seizure of claim 77
further comprising program instructions that limit the his-
torical and instantaneous features to a focus region in the
brain of an individual.

81. The computer program product for predicting and
controlling the electrographic onset of a seizure of claim 77
further comprising program instructions that derive histori-
cal and instantancous features as a spatial feature from a
combination of a plurality of regions in the brain of an
individual.

82. The computer program product for predicting and
controlling the electrographic onset of a seizure of claim 77
further comprising program instructions collected as custom
routines within the feature library to compute the features.

83. The computer program product for predicting and
controlling the electrographic onset of a seizure of claim 77
further comprising program instructions that extract a plu-
rality of features from different domains.

84. The computer program product for predicting and
controlling the electrographic onset of a seizure of claim 83
further comprising program instructions that determine at
least one feature as a ratio of a short term value and a long
term value of that feature.

85. The computer program product for predicting and
controlling the electrographic onset of a seizure of claim 83
wherein the different domains include at least two of time,
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frequency, wavelet, fractal geometry, stochastic processes,
statistics, and information theory domains.

86. The computer program product for predicting and
controlling the electrographic onset of a seizure of claim 85
further comprising program instructions that determine at
least one of an average power, a power derivative, a fourth-
power indicator, an accumulated energy, and average non-
linear energy, a thresholded non-linear energy, a duration of
thresholded non-linear energy, and a ratio of short term and
long term power as time domain features.

87. The computer program product for predicting and
controlling the electrographic onset of a seizure of claim 86
further comprising program instructions that determine at
least one of a fractal dimension of analog signals, a curve
length, a fractal dimension of digital signals, a ratio of a
short term and a long term fractal dimension of digital
signals, and a ratio of short term and long term curve length
as fractal geometry features.

88. The computer program product for predicting and
controlling the electrographic onset of a seizure of claim 86
further comprising program instructions that determine at
least one of a power spectrum, a power on frequency bands,
a coherence between intracranial channels, a mean crossings
and a zero crossings feature.

89. The computer program product for predicting and
controlling the electrographic onset of a seizure of claim 86
further comprising program instructions that determine at
least one of a spike detector, a density of spikes over time,
and an absolute value of a wavelet coefficient as wavelet
domain features.

90. The computer program product for predicting and
controlling the electrographic onset of a seizure of claim 86
further comprising program instructions that determine at
least one of a mean frequency index, a cross-correlation
between different intracranial channels, and autoregressive
coefficients as features in the statistics and stochastic process
domains.

91. The computer program product for predicting and
controlling the electrographic onset of a seizure of claim 86
further comprising program instructions that determine at
least one of an entropy feature and an average mutual
information feature as information theory features.

92. The computer program product for predicting and
controlling the electrographic onset of a seizure of claim 70
wherein the program instructions for determining the run-
ning window length further comprise:

program instructions that determine a window range
based on stationarity criteria and a minimum length to
compute a feature under analysis;

program instructions that determine a feature value for
each of a plurality of different window sizes;

program instructions that calculate a feature effectiveness
measure for each feature for the plurality of different
window sizes;

program instructions that determine the optimal window
length for each feature from the plurality of windows
examined that corresponds to a value of the feature
effectiveness measure wherein the distinguisability
between a preictal class and a non-preictal class is
maximized; and

program instructions that align the plurality of optimal
windows determined for each feature with the feature
window having the maximum length.
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93. The computer program product for predicting and
controlling the electrographic onset of a seizure of claim 92
further comprising program instructions that initiate re-
execution of the program instructions that determine a
feature value and the program instructions that calculate a
feature effectiveness measure for each selected feature.

94. The computer program product for predicting and
controlling the electrographic onset of a seizure of claim 92
further comprising program instructions that maximize the
distinguishability between a preictal/ictal class and a base-
line class as the feature effectiveness measure.

95. The computer program product for predicting and
controlling the electrographic onset of a seizure of claim 94
wherein the program instructions that select and extract a
plurality of features comprise:

program instructions that extract a set of candidate fea-
tures from the feature library;

program instructions that rank the extracted features by
the feature effectiveness measure; and

program instructions that determine a smallest subset of
features that satisfies a performance criterion.
96. The computer program product for predicting and
controlling the electrographic onset of a seizure of claim 95
further comprising:

program instructions that perform an initial pre-selection
from the feature library to discard a plurality of features
with inferior class separability; and

program instructions that evaluate individual feature per-
formance using at least one criterion for every feature
that is not discarded during the initial pre-selection.

97. The computer program product for predicting and
controlling the electrographic onset of a seizure of claim 95
wherein the program instructions that rank the extracted
features by the feature effectiveness measure use an overlap
measure criterion, a modified add-on algorithm and heuris-
tics to select a final feature set.

98. The computer program product for predicting and
controlling the electrographic onset of a seizure of claim 97
further comprising program instructions that construct and
evaluate two-dimensional feature spaces to validate quali-
tatively that the final feature set is complementary and has
low correlation among the final features.

99. The computer program product for predicting and
controlling the electrographic onset of a seizure of claim 97
further comprising program instructions that base the over-
lap measure criterion on estimated conditional probability
distributions of each particular feature under analysis for
both a pre-seizure class and non-pre-seizure class.

100. The computer program product for predicting and
controlling the electrographic onset of a seizure of claim 75
further comprising program instructions that determine at
least one of a probabilistic neural network, a k-nearest
neighbor neural network, a wavelet network, and a combi-
nation probabilistic/k-nearest neighbor neural network.

101. The computer program product for predicting and
controlling the electrographic onset of a seizure of claim 60
wherein the program instructions for preprocessing of the
input signals further comprises program instructions that
classify an individual’s awareness state within at least one of
the categories of awake, asleep, and drowsy.

102. The computer program product for predicting and
controlling the electrographic onset of a seizure of claim 101

Aug. 1,2002

wherein the program instructions that classify an individu-
al’s awareness state within the categories of awake, asleep
and drowsy are based on frequency and time information.

103. The computer program product for predicting and
controlling the electrographic onset of a seizure of claim 59
further comprising program instructions that fuse the
selected features to include establishing an individual-tuned
variable normalization level that uses an individual’s state of
awareness to normalize an accumulated energy or other
feature and decide if a seizure is approaching when a
normalized threshold value is exceeded.

104. A system for predicting and controlling the electro-
graphic and clinical onset of a seizure and other neurological
disturbances in an individual, comprising:

a data generation component to acquire physiological
signals from the individual;

an intelligent data processing unit to preprocess the physi-
ological signals, to extract and select a plurality of
features, and to provide an estimation of the probability
of seizure for at least one time frame; and

a low level controller connected to the intelligent data
processing unit to automatically activate a therapeutic
intervention measure to control the onset of a seizure in
the individual in response to the probability of seizure
exceeding a threshold.

105. The system for predicting and controlling the elec-
trographic onset of a seizure of claim 104 further comprising
at least one sensor for detecting physiological signals that
indicate the state of activity in the brain of the individual.

106. The system for predicting and controlling the elec-
trographic onset of a seizure of claim 105 wherein the sensor
is at least one of an implanted intracranial electrode, an
epidural electrode, a scalp electrode, a sphenoidal electrode,
a foramen ovale ¢lectrode, an intravascular electrode, a
chemical sensor, a pupil dilation sensing device, an eye
movement sensor, a heart rate sensor, and a body tempera-
fure sensor.

107. The system for predicting and controlling the elec-
trographic onset of a seizure of claim 104 further comprising
a high level controller that communicates with the intelligent
data processing unit to retune at least one parameter that is
used to extract and select a feature.

108. The system for predicting and controlling the electro
graphic onset of a seizure of claim 104 further comprising an
external portable module including an external communica-
tions unit that enables the transfer of physiological data that
is sensed in the individual to the external portable module
for analysis and storage.

109. The system for predicting and controlling the elec-
trographic onset of a seizure of claim 108 where in the
external portable module further comprises a display device
that shows the probability output from the intelligent data
processing unit for having a seizure in at least one time
frame.

110. The system for predicting and controlling the elec-
trographic onset of a seizure of claim 108 wherein the
external portable module further comprises an alarm device
which is activated to alert the individual of an oncoming
seizure when the probability of having a seizure in at least
one time frame exceeds an adaptive threshold.
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111. The system for predicting and controlling the elec-
trographic onset of a seizure of claim 108 wherein the
external portable module further comprises a battery
recharger.

112. The system for predicting and controlling the elec-
trographic onset of a seizure of claim 108 wherein the
external portable module further comprises at least one of a
microprocessor, a digital signal processor, a field program-
mable gate array, and an application specific integrated
circuit.

113. The system for predicting and controlling the electro
graphic onset of a seizure of claim 108 wherein the external
communications unit communicates with the intelligent data
processing unit by any one of telemetry, magnetic induction,
direct electrical connection, optical communication and
ultrasonic communication.

114. The system for predicting and controlling the elec-
trographic onset of a seizure of claim 108 wherein the
external portable module further comprises a communica-
tions port that enables the external portable module to be
connected to a serial or a parallel port of a computer system,
and that enables the transmission of stored data from the
external portable module through an Internet connection to
another computer system where the transmitted data can be
downloaded and stored.

115. The system for predicting and controlling the elec-
trographic onset of a seizure of claim 104 wherein the
intelligent data processing unit is contained in an implant-
able device.

116. The system for predicting and controlling the elec-
trographic onset of a seizure of claim 115 wherein the
implantable device is implanted in the brain of the indi-
vidual.

117. The system for predicting and controlling the elec-
trographic onset of a seizure of claim 104 wherein the
intelligent data processing unit is programmed into any one
of a microprocessor, a digital signal processor, a field
programmable gate array, and an application specific inte-
grated circuit (ASIC) embedded on a microchip.

118. The system for predicting and controlling the elec-
trographic onset of a seizure of claim 104 wherein the
intelligent data processing unit comprises a preprocessor to
amplify and filter the physiological signals.

119. The system for predicting and controlling the elec-
trographic onset of a seizure of claim 104 wherein the
intelligent data processing unit comprises a first feature
extraction module to extract analog features from the pre-
processed physiological signals.

120. The system for predicting and controlling the elec-
trographic onset of a seizure of claim 119 wherein the
intelligent data processing unit further comprises a second
feature extraction module to extract digital features from the
preprocessed physiological signals.

121. The system for predicting and controlling the elec-
trographic onset of a seizure of claim 120 wherein the
intelligent data processing unit further comprises a feature
vector generator module that combines a plurality of
extracted features based on a running window technique.

122. The system for predicting and controlling the elec-
trographic onset of a seizure of claim 104 wherein the
intelligent data processing unit comprises an on-board
memory to record the physiological signals over a period of
time based on a capacity of the memory.
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123. The system for predicting and controlling the elec-
trographic onset of a seizure of claim 121 wherein the
intelligent data processing unit further comprises an intelli-
gent prediction analysis and classification module operating
on a central processor that analyzes the feature vector to
provide an estimation of the probability of having a seizure
for one or more time frames.

124. The system for predicting and controlling the elec-
trographic onset of a seizure of claim 104 further comprising
a neural network to perform the analysis of the feature
vector.

125. The system for predicting and controlling the elec-
trographic onset of a seizure of claim 124 wherein the neural
network is at least one of a probabilistic neural network, a
k-nearest neighbor neural network, and a wavelet neural
network.

126. The system for predicting and controlling the electro
graphic onset of a seizure of claim 123 further comprising an
internal communications unit to enable the transfer of physi-
ological data that is sensed in the individual by a central
processor in the intelligent data processing unit to an exter-
nal portable module that displays the probability of seizure
for at least one time frame.

127. The system for predicting and controlling the elec-
trographic onset of a seizure of claim 104 further comprising
an internal electrical stimulation unit activated by the low
level controller to electrically stimulate focal points to
prevent synchronized nerve im pulses as the therapeutic
intervention measure.

128. The system for predicting and controlling the elec-
trographic onset of a seizure of claim 104 further comprising
a drug delivery system activated by the low level controller
to provide chemical stimulation as by releasing small quan-
tities of a drug as the therapeutic intervention measure.

129. The system for predicting and controlling the elec-
trographic onset of a seizure of claim 104 further comprising
a special helmet activated by the low level controller to
provide magnetic stimulation as the therapeutic intervention
measure.

130. The system for predicting and controlling the elec-
trographic onset of a seizure of claim 104 wherein the low
level controller activates a stimulation unit to instruct the
individual to initiate a sensory/perceptive stimulus as the
therapeutic intervention measure.

131. The system for predicting and controlling the electro
graphic onset of a seizure of claim 104 wherein the low level
controller activates a stimulation unit to instruct the indi-
vidual to initiate a cognitive stimulus as the therapeutic
intervention measure.

132. The system for predicting and controlling the elec-
trographic onset of a seizure of claim 130 wherein the
sensory/perceptive stimulus is any of a visual, an auditory,
a tactile, a smell and a taste stimulus.

133. The system for predicting and controlling the elec-
trographic onset of a seizure of claim 131 wherein the
cognitive stimulus is any of a reading, a mathematical
computation, and a logic reasoning problem stimulus.

134. An adaptive multi-level hierarchical control system
for predicting and controlling the electrographic onset of a
seizure and other neurological disturbances in an individual,
comprising:

a data generation component that acquires physiological
signals from the individual;
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an intelligent data processing device that processes the
physiological signals to extract features which are
analyzed and classified and selected to form a feedback
vector;

a low level controller including a stimulation device that
is activated to apply an intervention measure in
response to the feedback vector to control the onset of
seizure and to adjust internal parameter settings of the
actuators in the stimulation device; and

a high level supervisory controller including a knowledge
database and a processor that adapts to feedback vector
changes over time and re-tunes the intelligent data
processing device parameter settings dynamically.

135. The adaptive multi-level hierarchical control system
of claim 134 wherein the knowledge base comprises a priori
information for the individual.

136. The adaptive multi-level hierarchical control system
of claim 135 wherein the a priori information for the
individual comprises seizure frequency over time, seizure
duration, type of seizure, and aura frequency collected
before an implantation of the intelligent data processing
device.

137. The adaptive multi-level hierarchical control system
of claim 134 wherein the low level controller determines and
adjusts the parameter settings of the actuators in the stimu-
lation device continuously.

138. The adaptive multi-level hierarchical control system
of claim 134 wherein the high level supervisory controller
can operate in an automatic mode or in a semi-automatic
mode.

139. The adaptive multi-level hierarchical control system
of claim 138 further comprising a master program that
monitors a set of controlled variables and updates the
applied feedback control laws when operating in the auto-
matic mode.

140. The adaptive multi-level hierarchical control system
of claim 138 wherein a physician or specialist inputs param-
eters directly into the intelligent data processing device
through a master program user interface when operating in
a semi-automatic mode.

141. The adaptive multi-level hierarchical control system
of claim 134 wherein the high level supervisory controller is
a computer external to the intelligent data processing device
for providing a coordination layer control.

142. The adaptive multi-level hierarchical control system
of claim 141 wherein the coordination layer of control
returns system parameters including parameters related to
fusion of sensory data, feature extraction, feature normal-
ization, neural network retraining, fuzzy logic adjustments,
and fault diagnoses of actuators, sensors and implantable
device.

143. The adaptive multi-level hierarchical control system
of claim 134 further comprising an external computer for
providing a research layer control to evaluate any new
algorithms for control of seizures or brain disturbances, for
prediction and detection of the unequivocal electrographic
onset of seizure, for control strategies, or for other types of
parameter adjustments.

144. The adaptive multi-level hierarchical control system
of claim 143 wherein the research layer computer analyzes
physiological mechanisms to explain seizure and other brain
disturbances.
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145. The adaptive multi-level hierarchical control system
of claim 143 wherein the research layer collects information
from a plurality of individuals to form a research and
development database.

146. The adaptive multi-level hierarchical control system
of claim 134 wherein the multi-level hierarchical control is
provided by a feedback control law updated by the low level
controller and a knowledge base control law updated by the
high level supervisory controller.

147. The adaptive multi-level hierarchical control system
of claim 146 wherein the adaptive hierarchical control is
provided by the updated knowledge base control law.

148. The adaptive multi-level hierarchical control system
of claim 134 wherein the processor for the high level
supervisory controller operates a logic module that executes
optimization algorithms and determines self-evaluation met-
rics to establish the supervisory controller’s performance
over time, to determine required adjustments in the intelli-
gent data processing device’s set points, and to generate an
updated feedback control law that is downloaded into the
intelligent data processing device.

149. The adaptive multi-level hierarchical control system
of claim 134 wherein the knowledge database is updated at
discrete steps by downloading new information from the
intelligent data processing device.

150. The adaptive multi-level hierarchical control system
of claim 134 further comprising an external portable module
including an external communications unit that enables the
transfer of physiological data that is sensed in the individual
to the external portable module for analysis and storage.

151. The adaptive multi-level hierarchical control system
of claim 150 wherein the external portable module further
comprises a display device that shows the probability from
the intelligent data processing unit for having a seizure in at
least one time frame.

152. The adaptive multi-level hierarchical control system
of claim 150 wherein the external portable module further
comprises an alarm device which is activated to alert the
individual of an oncoming seizure when the probability of
having a seizure in at least one time frame exceeds an
adaptive threshold.

153. The adaptive multi-level hierarchical control system
of claim 134 wherein the intelligent data processing device
is implanted into the individual.

154. The adaptive multi-level hierarchical control system
of claim 153 wherein the intelligent data processing device
includes a learning capability based on artificial intelligence
tools and an analysis of previously stored information that
enables an adaptation of the intelligent data processing
device to the individual in which it is implanted and a
specific state of the individual at any time.

155. The adaptive multi-level hierarchical control system
of claim 134 further comprising at least one sensor for
detecting physiological signals that indicate the state of
activity in the brain of an individual.

156. A method for predicting and controlling the electro-
graphic onset of a seizure in an individual using a multi-level
hierarchical control system including an implanted device,
comprising the acts of:

installing at least one sensor on or in the individual to
detect input signals indicative of brain activity;

implanting the device into the brain of the individual;
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initializing and tuning a plurality of parameters in the
implanted device;

installation of an external portable module that contains
an external communications unit, a settings adjustment
unit with a display and a keypad and an intermediate
storage device;

selecting features to extract from the input signals;

analyzing and classifying the selected features extracted
from the input signals in order to predict the probability
of having a seizure in a plurality of time frames;

activating a closed-loop control system in the implanted
device through the external portable module; and

applying a multi-level control to the implanted device to
initiate an intervention measure that is based on the
probability of having a seizure in a plurality of time
frames.

157. The method for predicting and controlling the onset
of a seizure of claim 156 wherein the implanted device is
feature/parameter-tuned with features that are selected for
each patient based on the features that can capture the
unequivocal electrographic onset of seizure in advance.

158. The method for predicting and controlling the onset
of a seizure of claim 156 wherein the implanted device is
parameter-tuned with the same features used for each indi-
vidual receiving an implanted device in which the param-
eters are tuned on an individual basis.

159. The method for predicting and controlling the onset
of a seizure of claim 156 wherein the act of installing the at
least one sensor includes determining the focus region for
correct installation.

160. The method for predicting and controlling the onset
of a seizure of claim 156 wherein the act of initializing the
parameter settings includes the acts of:

recording sensor data into the intermediate storage device
continuously from a pair of input channels;

downloading the recorded sensor data from the interme-
diate storage device into an external processing device;

preprocessing and fusing the downloaded sensor data by
the external processing device,

extracting and selecting features in the external process-
ing device;

selecting a best feature set by the external processing
device to establish a feature vector; and

transferring and setting the selected feature algorithms
from the external processing device into the implant-
able device.

161. The method for predicting and controlling the onset
of a seizure of claim 156 wherein the acts of analyzing and
classifying the selected features includes the acts of:

performing real-time processing of the input signals from
the at least one sensor by subtracting a focal channel
input signal from an adjacent channel, and filtering the
difference signal;

extracting each selected feature at an analog level or a
digital level based on the characteristics of the selected
feature;
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combining the extracted features using a running-window
technique to generate a feature vector;

normalizing the feature vector by a processor in the
implanted device;

performing analysis of the feature vector for each time
frame using a fuzzy system or a neural network to
provide an estimation of the probability of having a
seizure for at least one time frame.
162. The method for predicting and controlling the onset
of a seizure of claim 161 further comprising the acts of:

displaying a probability output of having a seizure for at
least one time frame on the display of the external
portable module; and

activating an alarm to alert the individual of an oncoming
seizure when the probability output exceeds an adap-
tive threshold.
163. The method for predicting and controlling the onset
of a seizure of claim 161 further comprising the acts of:

scheduling the download of recorded sensor data from a
buffer in the implanted device into the intermediate
storage device by a processor in the external portable
module;

transferring data between the external processing device
and the external portable module to establish supervi-
sory control actions and to communicate the control
actions to the implanted device.

164. The method for predicting and controlling the onset
of a seizure of claim 163 further comprising the act of
establishing a communications link between a central pro-
cessor in the implanted device and the processor in the
external portable module.

165. The method for predicting and controlling the onset
of a seizure of claim 161 further comprising the act of
recording physiological input signals in an internal buffer of
the implanted device for a period of time that depends on the
memory capability of the buffer.

166. The method for predicting and controlling the onset
of a seizure of claim 165 further comprising the act of
downloading physiological input signals, the feature vector
and a plurality of controlled variables from the internal
buffer to the intermediate storage device via a communica-
tions link.

167. The method for predicting and controlling the onset
of a seizure of claim 166 further comprising the act of
downloading data from the intermediate storage device to
the external processing device.

168. The method for predicting and controlling the onset
of a seizure of claim 161 further comprising the act of
performing an initial adaptation of the implanted device at
periodically discrete times by connecting the external por-
table module to a high level supervisory control in the
external processing device.

169. The method for predicting and controlling the onset
of a seizure of claim 156 wherein the act of applying a
multi-level control includes the acts of:

activating the closed-loop control system via a high level
supervisory control through the external portable mod-
ule;

generating feedback control signals by the low level
controller to prevent seizures by producing an inter-
mittent electrical, chemical or a magnetic stimulation;
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estimating prediction and prevention performance by
evaluating a plurality of key parameters;

computing an overall performance metric from the pre-
diction and prevention performance;

adjusting the parameters of a stimulation device and
determining a type of stimulation to apply and a
corresponding start time, intensity, duration and fre-
quency;

updating feedback control and knowledge base laws;

adapting the feedback control laws to internal and exter-
nal changes over time to prevent seizure with less-
invasive intervention measures; and

tuning internal feature parameters and analysis and clas-
sification parameters adaptively based on the combined
information contained in the feedback control signals
and the overall performance measures.
170. The method for predicting and controlling the onset
of a seizure of claim 169 further comprising the acts of:

activating an input channel by the individual via the
keypad in the external portable module;

automatically adjusting the hierarchical control system in
response to the activation of an input channel;

assessing hierarchical control system performance by
using information regarding the probability of seizure
in conjunction with preictal and ictal recorded data.

171. The method for predicting and controlling the onset
of a seizure of claim 170 wherein the hierarchical control
system performance evaluation is performed automatically
at a regulatory feedback control level and at a high level
supervisory controller.

172. The method for predicting and controlling the onset
of a seizure of claim 170 wherein the hierarchical control
system performance is activated by an authorized person.

173. The method for predicting and controlling the elec-
trographic onset of a seizure of claim 1 further comprising
the act of implanting a plurality of electrodes in each focus
region of the individual.

174. The method for predicting and controlling the elec-
trographic onset of a seizure of claim 173 wherein the act of
fusing the data comprises subtracting the input signals from
adjacent electrodes to form a bipolar signal, and combining
the bipolar signals from different focus regions at the data
level.

175. The method for predicting and controlling the elec-
trographic onset of a seizure of claim 173 wherein the act of
fusing the data comprises subtracting the input signals from
adjacent electrodes to form a bipolar signal, and combining
the bipolar signals from different focus regions at the feature
level.

176. The method for predicting and controlling the elec-
trographic onset of a seizure of claim 174 wherein the input
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signals are combined into a signal data stream either before
or after a preprocessing stage.

177. The method for predicting and controlling the elec-
trographic onset of a seizure of claim 176 wherein the input
signals are intracranial electroencephalogram data.

178. The method for predicting and controlling the elec-
trographic onset of a seizure of claim 175 wherein the
features derived from the input signals and coincident or
aligned in time are combined into a single feature using a
nonlinear procedure.

179. The method for predicting and controlling the elec-
trographic onset of a seizure of claim 178 wherein the
nonlinear procedure comprises selecting the maximum
value of the input signals at each sample time.

180. The method for predicting and controlling the elec-
trographic onset of a seizure of claim 1 further comprising
the act of implanting a plurality of electrodes in a unique
focus region and in at least one other region of the brain of
the individual.

181. The method for predicting and controlling the elec-
trographic onset of a seizure of claim 180 wherein the at
least one other region is a focal adjacent channel.

182. The method for predicting and controlling the elec-
trographic onset of a seizure of claim 180 wherein the act of
fusing the data comprises subtracting the input signals from
a pair of electrodes placed in different regions to form a
bipolar signal, and combining a plurality of bipolar signals
at the data level.

183. The method for predicting and controlling the elec-
trographic onset of a seizure of claim 180 wherein the act of
fusing the data comprises subtracting the input signals from
a pair of electrodes placed in different regions to form a
bipolar signal, and combining a plurality of bipolar signals
at the feature level.

184. The method for predicting and controlling the elec-
trographic onset of a seizure of claim 182 wherein the input
signals are combined into a signal data stream either before
or after a preprocessing stage.

185. The method for predicting and controlling the elec-
trographic onset of a seizure of claim 184 wherein the input
signals are intracranial electroencephalogram data.

186. The method for predicting and controlling the elec-
trographic onset of a seizure of claim 183 wherein the
features derived from the input signals and coincident or
aligned in time are combined into a single feature using a
nonlinear procedure.

187. The method for predicting and controlling the elec-
trographic onset of a seizure of claim 186 wherein the
nonlinear procedure comprises selecting the maximum
value of the input signals at each sample time.
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