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MOTION COMPATIBLE SENSOR FOR
NON-INVASIVE OPTICAL BLOOD ANALYSIS

CROSS-REFERENCES TO RELATED
APPLICATIONS

This application is a continuation of U.S. application Ser.
No. 11/827,858, filed on Jul. 11, 2007, which is a continuation
of U.S. application Ser. No. 10/991,111 filed Nov. 16, 2004,
now U.S. Pat. No. 7,260,425, which is a continuation of U.S.
application Ser. No. 10/080,433, filed Feb. 21, 2002, now
U.S. Pat. No. 6,845,256, which is a division of U.S. applica-
tion Ser. No. 09/348,437, filed Jul. 7, 1999, now U S. Pat. No.
6,374,129, which is a division of U.S. application Ser. No.
08/722,443, filed Oct. 10, 1996, now U.S. Pat. No. 6,018,673,
which disclosures are incorporated by reference for all pur-
poses.

BACKGROUND OF THE INVENTION

The present invention relates to optical sensors for non-
invasive determination of physiological characteristics, and
in particular to sensors for making such determinations in the
presence of motion.

Many types of optical sensors are used to measure physi-
ological characteristics of a patient. Typically, an optical sen-
sor provides emitted light which is then scattered through
tissue and detected. Various characteristics of a patient can be
determined from analyzing such light, such as oxygen satu-
ration, pulse rate, pH, etc.

Pulse oximetry is typically used to measure various blood
characteristics including, but not limited to, the blood-oxygen
saturation of hemoglobin in arterial blood, the volume of
individual blood pulsations supplying the tissue, and the rate
of blood pulsations corresponding to each heartbeat of a
patient. Measurement of these characteristics has been
accomplished by use of a non-invasive sensor which scatters
light through a portion of the patient’s tissue where blood
perfuses the tissue, and photoelectrically senses the absorp-
tion of light in such tissue. The amount of light absorbed is
then used to calculate the amount of blood constituent being
measured.

The light scattered through the tissue is selected to be of
one or more wavelengths that are absorbed by the blood in an
amount representative of the amount of the blood constituent
present in the blood. The amount of transmitted light scat-
tered through the tissue will vary in accordance with the
changing amount of blood constituent in the tissue and the
related light absorption. For measuring blood oxygen level,
such sensors have typically been provided with a light source
that is adapted to generate light of at least two different
wavelengths, and with photodetectors sensitive to both of
those wavelengths, in accordance with known techniques for
measuring blood oxygen saturation.

Known non-invasive sensors include devices that are
secured to a portion of the body, such as a finger, an ear or the
scalp. In animals and humans, the tissue of these body por-
tions is perfused with blood and the tissue surface is readily
accessible to the sensor. A photoelectric pulse transducer
from World Precision Instruments is described as even
recording signals through the fingernail.

Optical sensors are typically either reflective or transmis-
sive. Transmissive sensors have the emitter and detector on
opposite sides of a finger, toe, nose or other tissue. They
measure light transmitted through the tissue from one side to
the other. Reflectance sensors, on the other hand, have the
emitter and detector side-by-side, such as placement on the
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forehead, or on a fetus where it is difficult to position a sensor
over a finger, etc. Reflectance sensors detect light which is
scattered back to the same surface.

In pulse oximetry, the goal is to determine the amount of
oxygen in arterial blood, as distinguished from venous blood
or the tissue itself. The light emitted can be absorbed by all
three, however, and they need to be distinguished among.
FIG. 1 illustrates a plot of the logarithm of the detected
intensity signal versus time. Solid line 10 is the detected
infrared signal in a pulse oximeter, shown varying with time.
Dotted line 12 is the detected red wavelength signal. As can be
seen, the value moves up and down with the heartbeat fre-
quency, due to the pulsing of the blood through the arteries.
The portion of the signal below line 14 is representative of
light absorbed by the tissue, venous blood, and a baseline
component of the arterial blood.

Using appropriate signal analysis, the DC portion can be
eliminated, leaving an extracted AC portion which is due to
absorption by arterial blood. As can be seen in FIG. 1, and
more clearly in FIG. 2, the red and infrared signals, although
varying by different amounts, are in phase. FIG. 2 illustrates
a plot over an epoch of time of the red logarithmic signal
versus the infrared logarithmic signal, and is commonly
referred to as a Lissajous plot. As can be seen, a line is formed,
indicating they are in phase.

This characteristic of the red and infrared signals allows the
determination of oxygen saturation through two methods. In
a first method, the “ratio of ratios™ is calculated, which is the
ratio, between red and infrared, of the logarithms ofthe quo-
tients obtained by dividing the maximum signal intensity and
the subsequent minimum signal intensity. This ratio-of-ratios
is then used in a predetermined formula to calculate arterial
oxygen saturation. This is described more fully in U.S. Pat.
No. 4,653,498.

In a second method, referred to here as “least squares,” a
least squares regression analysis is performed on the above-
mentioned Lissajous plot to determine the slope of the
ensemble of data points taken during an epoch of time. This
slope is then used in a predetermined formula to determine
arterial oxygen saturation. Other techniques are set forth ina
co-pending application entitled “Method and Apparatus for
Estimating Physiological Parameters Using Model-Based
Adaptive filtering,” filed Jun. 7, 1996, Ser. No. 08/660,510,
the disclosure of which is hereby incorporated by reference.

In some cases, it is desirable to measure the oxygen satu-
ration of the venous blood in order to get an indication of how
much oxygen is being used by the body. The arterial blood, on
the other hand, gives an indication of how much oxygen is
being delivered to the body. In Shiga U.S. Pat. No. 4,927,264,
the oxygen saturation in venous blood is determined by
inducing a venous pressure with a pressure cuff. This effec-
tively varies line 14 of FIG. 1 at a frequency different from the
heart rate, so that it can be separately filtered and isolated and
compared to the arterial pulse. The non-varying portion is
then assumed to be the tissue absorption and can be distin-
guished from the slowly varying pressure induced venous
blood absorption. An alternate approach can be used in extra-
corporeal monitoring where the blood is actually pumped out
of the body and then back in. Such a technique is set forth in
an article by Odell et al., entitled “Use of Pulse Oximetry to
Monitor Venous Saturation During Extracorporeal Life Sup-
port” Critical Care Medicine, vol. 22, no. 4 (Apr. 4, 1994). In
Odell, the venous blood being pumped out of the body passes
the sensor, and the pumping mechanism provides an artificial
pulse allowing the use of pulse oximetry techniques.

Motion artifact can degrade a pulse oximetry signal relied
upon by a physician, without the physician’s awareness. This
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is especially true if the monitoring of the patient is remote, the
motion is too small to be observed, or the doctor is watching
the instrument or other parts of the patient, and not the sensor
site. Thus, typically techniques are employed to reduce the
effects of motion or compensate for motion.

In one oximeter system described in U.S. Pat. No. 5,025,
791, an accelerometer is used to detect motion. When motion
is detected, readings influenced by motion are either elimi-
nated or indicated as being corrupted. In a typical oximeter,
measurements taken at the peaks and valleys of the blood
pulse signal are used to calculate the desired characteristic.
Motion can cause a false signal peak and valley, resulting in a
measurement having an inaccurate value and one which is
recorded at the wrong time. In U.S. Pat. No. 4,802,486,
assigned to Nellcor Puritan Bennett, the assignee of the
present invention, an EKG signal is monitored and correlated
to the oximeter reading to provide synchronization to limit the
effect of noise and motion artifact pulses on the oximeter
readings. This reduces the chances of the oximeter locking
onto a periodic motion signal. Still other systems, such as the
onedescribed in U.S. Pat. No. 5,078,136, assigned to Nellcor
Puritan Bennett, use signal processing in an attempt to limit
the effect of noise and motion artifact. The *136 patent, for
instance, uses linear interpolation and rate of change tech-
niques to analyze the oximeter signal. U.S. Pat. No. 5,337,744
sets forth sensor modifications used to improve the immunity
of the signal from motion artifacts.

The motion signal impedes the measurement because it
obscures the cardiac signal. The motion signal can have many
components, such as, for example, the emitter or detector
physically moving away from the body, or a volume of venous
and arterial blood sloshing around in response to the motion,
or the signal path being shortened or lengthened by expansion
or compression of the tissue due to motion.

Contrary to conventional practice, signal analysis might be
able to directly use the time-varying motion signal to calcu-
late oxygen saturation. Under some conditions, the ratio-of-
ratios (or least squares) resulting from a motion-induced sig-
nal has the same value as the ratio-of-ratios (or least squares)
for the cardiac induced signal. The red and infrared intensity
signals are often not in phase, and can limit the use of the
motion signal for calculating oxygen saturation. One of the
factors that may cause this is illustrated in FIG. 3. As FIG. 3
illustrates, light from emitter 28 can pass through skin 13, fat
15, muscle 16, and bone 18, on its way to a detector 30. Light
of one wavelength may, on average, take path 32, while light
of another wavelength may penetrate deeper and take path 34.
Motion will cause disproportionate variances in the path
lengths of the two wavelengths of light, resulting in out-of-
phase signals of the detector.

BRIEF SUMMARY OF THE INVENTION

The present invention provides a non-invasive optical sen-
sor which uses the motion signal to calculate the physiologi-
cal characteristic being measured. For pulse oximetry, a least
squares or a ratio-of-ratios technique can be applied to the
slope of the motion signal itself. This is made possible by
selecting a site on the patient where motion produces signals
at two wavelengths which are adequately correlated with each
other. Adequately correlated signals have a “closed” or
“nearly closed” Lissajous. In particular, it has been deter-
mined thata sensor placed on anail, in particular a thumbnail,
exhibits the characteristics of having the red and infrared
signals in phase when used for pulse oximetry.

The present invention also provides an optical sensor
which fits entirely on a nail. No adhesive or other securing
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mechanism around the rest of the finger is necessary, resulting
in the entire sensor moving with the nail. The use of the nail
site reduces the likelihood of out-of-phase motion signals for
red and infrared wavelengths, and takes advantage of the
predominantly arterial blood saturation characteristic of the
blood present beneath the nail. In addition, the nail is an
advantageous surface for adhering the sensor to, and at this
location the method of attachment allows a low profile, low
mass sensor to be used which further limits differential phase
errors due to motion.

Preferably, the sensor on a nail of the present invention is a
reflectance-type sensor. In one embodiment, a closer spacing
is used than in typical prior art sensors, preferably less than 5
mm, more preferably approximately 4 mm. It has been
empirically determined that the physiological characteristics
at a nail site produce an improved signal with closer spacing.
In addition, the sensor preferably has a curvature which con-
forms to the shape of the nail, and is attached with an adhe-
sive.

In alternate embodiments of the invention, artificial motion
may be induced with an air bag or otherwise to produce a
motion signal which can be used with the sensor of the inven-
tion. In particular, this could be used for patients with low
perfusion, a weak heartbeat or no heartbeat such as is the case
during heart bypass surgery.

For a further understanding of the nature and advantages of
the invention, reference should be made to the following
description taken in conjunction with the accompanying
drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG.11s a graph of the log of the infrared and red intensity
signals for pulse oximeters.

FIG. 2 is a graph of the red and IR signals showing corre-
lation.

FIG. 3 is a diagram of the different average paths of differ-
ent wavelength light through a patient.

FIG. 4is aperspective view of a nail sensor according to the
present invention on a thumb.

FIG. 5 is a cross-sectional, cutaway view of a thumb show-
ing its components.

FIG. 6 is a end, cutaway view of one embodiment of a
conformable nail sensor according to the present invention.

FIG. 7 is a diagram of a sensor according to the present
invention placed longitudinally to span the lunula of the nail.

FIGS. 8A-8D are Lissajous plots of the output of a sensor
according to the invention with and without motion, and at
low and high saturation.

FIG. 9A is a plot of the red and infrared frequency distri-
bution (FFT of time signals) showing experimental results
from a thumbnail sensor according to the invention.

FIG. 9B is a plot of the Lissajous for the results of FIG. 9A.

FIG. 10 is a graph showing a plot of oxygen saturation
readings of a sensor according to the present invention com-
pared to a standard prior art sensor.

FIGS. 11A and 11B compare the prior art sensor and the
present invention. The output waveforms and Lissajous plot
are shown for each.

FIG. 12 is a diagram of an alternate embodiment of the
invention showing a combination reflective and transmissive
Sensor.

FIG. 13 is a diagram of an alternate embodiment of the
invention showing a self-contained nail sensor with its own
display.

FIG. 14 is adiagram of a nail sensor with a motion inducing
mechanism according to the present invention.
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FIGS. 15 and 16 are top and side views of the motion
stimulating mechanism of FIG. 14.

FIG. 17 is a flowchart of one embodiment of a program for
responding to whether motion or a cardiac pulse is used for
calculating saturation.

FIG. 18 is a block diagram of one embodiment of portions
of an oximeter using controlled generation of motion.

FIG. 19 is a diagram of an embodiment of the sensor using
a cylindrical lens and a tinted adhesive.

DETAILED DESCRIPTION OF THE INVENTION

FIG. 4 illustrates a sensor 40 according to the present
invention preferably mounted on a nail 42 (a thumbnail or any
other digit may be used). The sensor is held on with adhesive,
and has an emitter 44 and a detector 46. A flexible circuit 48
provides the electrical connections to the emitter and detector,
and may be accordion-shaped between the sensor and a secut-
ing band 50 to provide additional strain relief. This isolates
the sensor from tugging or pulling on the electrical connec-
tion cord from either the sensor side or the other direction.
Band 50 may be, for instance, an elastic band, cloth wrap
secured with Velcro™, or another device. Flexible circuit 48
couldbe electrical wires or fiber optic cables. The different 25
wavelength light could be premixed using the fiber optic
cable.

The placement on the top of the nail allows the cable to
extend along the top of the finger or other digit, without the
sensor or the cable being on the palmar side of the digit where
it would interfere with grasping or other functionality of the
hand.

As can be seen, the emitter 44 and detector 46 are arranged
laterally across the width of the nail. However, a longitudinal
arrangement (discussed more fully below) or any other
arrangement on a nail is possible. The spacing of the emitter
and detector may be varied, but an optimum spacing was
experimentally found to be less than 10 mm, preferably less
than 5 mm, more preferably approximately 4 mm.

The nailbed makes a good site for the sensor because it has
been observed that motion generates artifact signals for the
red and infrared wavelengths that are largely correlated to one
another. The inventors have observed that this results in a
ratio-of-ratios (or least squares) which correlates well with
the arterial oxygen saturation.

Referring to FIG. 5, a cross-sectional view of the thumb is
shown. As can be seen, the thumb includes a bone 52 with a
thin layer of connective tissue 54 between the bone and
thumbnail 56. A number of characteristics may contribute to
the improved signal and the motion induced artifact being in
phase. The different wavelength paths illustrated in FIG. 3
may be limited by the presence of bone 52, preventing one of
the wavelengths from going deeper into tissue and having a
different distance to travel. This effect is provided by the
selection of the thumbnail as a site, and the use of reflectance
oximeter sensor as opposed to a transmissive sensor. In a
transmissive sensor, light would have to travel around the
bone deep through the tissue, and the red and infrared may
travel different lengths and be affected differently by motion.

Connective tissue layer 54 is thin and apparently strongly
connective. Thus, the expansion and compression of tissues,
particularly fatty tissues, which may cause out of phase
motion artifacts for other sites and types of sensors, is appar-
ently greatly reduced here. Because the thumbnail 56 itself
provides a strong mounting platform, the sensor can be
securely attached to it with adhesive, avoiding the emitter and
detector from separating from the patient and causing gaps
that may cause corrupt ratio-of-ratio values.
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The region beneath nail 56 also provides a region which
appears to be concentrated with oxygen saturated blood simi-
lar to the saturation of arterial blood. Oxygen consumption
beneath the nail appears to be small relative to the circulation
there, or the relative volume of venous blood may be negli-
gibly small.

The presence of many small capillaries, rather than large
vessels, makes the region more homogeneous, and thus less-
ens the likelihood that two different light wavelengths would
be affected differently by passing through differing regions.
In the absence of motion, the high perfusion allows a normal
pulse oximetry reading to be made. During the occurrence of
motion, the large amount of blood present allows a strong
motion signal to be obtained, since a lot of blood is moved
around by the motion. In experiments conducted by the inven-
tors, motion artifact signals greater than 50 times that of a
normal pulsatile plethysmograrn signal have been observed.
The nail site also appears to have a nailbed-tissue boundary
that is optically phase-matched for the wavelengths of the
Sensor.

In addition to measuring oxygen saturation, the nailbed is
a good site for other optical sensors. For example, glucose
detection which requires theuse of a near infrared wavelength
could be used. Among the blood properties or constituents
that can be measured are blood gases (CO,, O,), pH, glucose,
drug concentrations, or other analytes (THb, Het, lactate, K*,
Na*, Ca,*, etc.).

FIG. 6 is an end, cutaway view of one embodiment of a
sensor 40 according to the present invention. Emitter 44 and
detector 46 are shown mounted on a flexible circuit board 60.
An electrical cord 62 provides the connection to the electrical
components of circuit board 60. The body of the sensor is
preferably a semi-rigid piece of black poron foam. A metal
strip could be imbedded to give extra rigidity. An adhesive is
attached to underside 64 of the sensor to attach it securely to
the nail. The underside is also curved to conform to the shape
of the nail, but is slightly flexible to allow adaptation to
differing nail shapes. Different curvature sensors could be
provided for different sizes and shapes of nails to provide
optimum fit, or the bottom surface could be fabricated from a
softer, more conforming material.

One characteristic of the nail as a site is that the nail itself
could act as a light pipe, shunting light between the emitter
and the detector. Preferably, the light travels through the
tissue beneath the nail along a path 66. However, some light
could bounce back and forth through the nail itself on a path
68 between the emitter and detector in a manner not unlike a
waveguide. To limit this shunting, the sensor body is made to
absorb light, or at least the region between the emitter and
detector is made at least partially absorbing to the wave-
lengths of interest. In this way, each time light strikes the side
of the nail adjacent the absorbing layer, it will be absorbed,
rather than propagating along the nail.

Shunting can also be limited by recessing the emitter and
detector and providing a narrow numerical aperture. Because
of the rigidity of the sensor body, recessing will not produce
variations in distance during motion. By limiting the numeri-
cal aperture of the emitter and detector to values less than 0.9,
preferably to values less than 0.5, the emitter will not directly
launch light into the nail “waveguide,” and light which does
potentially travel path 68 will be outside the acceptance angle
of the detector.

The nail also provides advantages for adhering the sensor
to the patient since the nail does not have the quantity of oils
or sweat as present on the skin.

FIG. 7 is a diagram of a sensor 700 arranged longitudinally
along a nail 706. The sensor has an emitter 702 and a detector
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704 which are not both on the lunula of the nail. The lunula is
the light colored area of the nail below line 708 in FIG. 7. It is
believed that if both the emitter and detector are located on the
lunula, more undesirable shunting of light will occur.

FIG. 8 has FIGS. 8 A-8D which show the Lissajous plots
and calculated saturations for a sensor according to the
present invention during four conditions: motion and no
motion at high and low saturation. As can be seen in FIGS. 8A
and 8B at high saturation, the calculated saturation 100% is
equivalent with or without motion. In FIG. 8B, the motion
signal is seen to be more than 10 times larger than the cardiac
signal of FIG. 8A (FIGS. 8A and 8C are magnified by 10).
Similar results occur at low saturation as seen in FIGS. 8§C and
8D where the saturation values are calculated to be 70% under
both conditions.

FIG. 9A is a graph of the frequency distribution of the
detected red and infrared signals for a sensor of the present
invention in an experiment with an 8 Hz artificial motion
pulse applied. The cardiac signature can be seen at the lower
frequencies below 5 Hz, while the 8 Hz driven motion signal
is also visible. FIG. 9B is a graph of the red versus infrared
intensity signals for the experiment illustrating that both sig-
nals are correlated and representative of the same saturation.

FIG. 10 illustrates the oxygen saturation readings of a
sensor according to the present invention in experimental
tests without motion comparing it with a standard prior art
transmissive sensor at another site. A close agreement was
noted, indicating the calibration of this sensor on the nailbed
site is similar to a conventional transmission sensor.

FIGS. 11A and 11B show a comparison of the output
waveform and Lissajous, in the presence of motion, of a
sensor according to the present invention (FIG. 11B) with a
standard prior art transmissive sensor at another site (FIG.
11A).

FIG. 12 illustrates an alternate embodiment of the present
invention in which a nail sensor 70 according to the present
invention is attached via a flexible circuit 72 to a transmissive
sensor 74 which wraps around the finger and has an emitter 76
and detector 78 positioned on top and on the bottom of the
finger. Such a combination sensor could allow the oximeter
monitor with its program to choose between the sensors
depending upon motion conditions. When motion is present,
nail sensor 70 could be used, and when motion is not present,
sensor 74, which may be more sensitive to the cardiac pulse
signal, could be used. Alternately, a single pair of red and
infrared emitters could be used, with a reflectance detector on
the nail, and a transmissive detector off the nail. Depending
on the mode, a switch in the sensor, or in an intermediate
amplifier module, or in the oximeter monitor could select
between the detectors. In another embodiment, a single detec-
tor is used, with one pair of emitters on the nail, and another
pair of emitters off the nail. Alternately, a completely separate
transmissive sensor could be used.

In some patients, in particular those with low blood perfu-
sion, it may be difficult to lock onto a pulse waveform. The
additional transmissive sensor could be used to enable lock-
ing on for such patients. In addition, a transmissive sensor
could be used to calibrate the nail sensor “on-the-fly.”
Because of shunting and other unique aspects of the nail site,
a predetermined calibration may be off. A measurement of
saturation using the transmissive and the nail reflectance sen-
sors could be done in the absence of motion, with a correction
factor applied to the reflectance sensor. The correction could
be a constant which is added or a multiplicative factor, or
both. If measurements are done at different saturations, a
calibration line or curve could be determined by the oximeter
to allow adjustments anywhere along the calculated curve.
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Subsequently, in the presence of motion, the nail sensor will
be more accurately calibrated.

FIG. 13 illustrates an alternate embodiment of the inven-
tion in which a self-contained sensor 80 according to the
present invention includes the processing circuitry on one or
more semiconductor chips inside, and has its own display 82,
which may be a liquid crystal display, for instance. In one
embodiment, a button 84 allows switching between modes,
suich as between displaying a pulse and oxygen saturation. In
an alternate embodiment, a flex connection 86 to a module 88
attached on a band 90 may be used. Module 88 might contain
the battery. or alternately the processing circuitry, or the dis-
play. Additionally, either embodiment could be used for a
wireless transmission to an oximeter, with the transmitting
circuit either being in module 88 or sensor body 80.

FIG. 14 illustrates another embodiment of the present
invention in which a stimulator is used to generate an artificial
pulse. A stimulator could electrically stimulate the nerves to
cause motion of an appendage, or could use a pneumatic
pressure cuff to stimulate an artificial pulse; or use electro-
mechanical stimulation or any other mechanism which gen-
erates a pulse characteristically different (e.g., amplitude,
frequency, shape, etc.) than the cardiac pulse so that the
cardiac pulse need not be used. Such an apparatus would be
particularly advantageous for patients with low blood perfu-
sion or a weak heartbeat. F1G. 14 is one embodiment showing
a sensor 92 mounted on a thumbnail, with an airbag 94
mounted to the bottom of the thumb and held in place with a
band 96. A hose 98 to the airbag periodically inflates and
deflates it, causing a pressure wave through the thumb, giving
artificially induced motion. This pressure induced motion
provides the variation needed for sensor 92 to measure the
oxygen saturation using either the ratio-of-ratios or a least
squares technique. If the motion is in the frequency range of
a heartbeat, the sensor can be backward compatible with
existing oximeter monitors, even those that look for a cardiac
signal.

FIG. 15 illustrates airbag 94 in a top view, showing hose 98
connected to a diaphragm pump 100. FIG. 16 shows a side
view of the airbag 94 of FIG. 15, showing that it is wide but
flat.

FIG. 17 is a flowchart of one embodiment of a portion of a
program for operating an oximeter so that either cardiac
pulses or motion pulses can be used to calculate oxygen
saturation. The oxygen saturation is calculated in a known
manner (step A). In a first alternative, the signal is analyzed to
determine if it is a cardiac pulse or a motion pulse (step B).
This can be done using any of the pulse qualification or
motion detection techniques known to those of skill in the art.
If a motion signal is present and used for the oxygen satura-
tion calculation, then in step C only the oxygen saturation
signal is displayed, and not a pulse rate (which would be a
motion pulse rate, and not the patient’s heart rate). Ifa cardiac
pulse is used, the pulse rate is also displayed (step D).

Alternately, a pulse determination step E could be used
where the sensor includes both a reflectance sensor and a
transmittance sensor. If motion is present above a predeter-
mined threshold (such as at least twice the arterial pulse
signal), the reflectance sensor is used, which uses the motion
signal, and alters any motion filtering or motion reduction
techniques (step F). If the motion signal is below the thresh-
old, the transmittance sensor is used (step G), with standard
motion reduction techniques being employed (either hard-
ware or software or both).

Both sensors could be energized in an ongoing manner, and
the saturation and rate could be chosen to come from the
sensor considered most reliable, depending on the instru-
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ment’s assessment of motion. Simultaneous computation
may further allow improved processed signal estimates of
cardiac rate in the presence of motion given knowledge of
estimated saturation.

FIG. 18 is a block diagram of a portion of a pulse oximeter
monitor used in conjunction with an artificial pulse generator,
such as shown in FIGS. 14-16. A frequency generator 110
produces a desired frequency for the motion pulse. This could
be varied to give a frequency which is not interfered with by
other noise, or frequency hopping could be used to isolate the
signal from other sources of motion or noise. A pump con-
troller 112 activates a pump or motor 100 (FIG. 12) at the
generated frequency. Since the driven frequency is known,
optionally other frequencies could be filtered out to reduce
noise. After a signal is captured and converted to digital form
by a circuit 114, a bandpass filter 116 is used to reduce other
frequency signals. A control signal from frequency generator
110 could vary the bandpass frequency. A circuit or processor
118 then calculates the oxygen saturation. A central controller
120 controls the rest of the circuitry, including a sensor driver
circuit 122, which could selectively activate different reflec-
tance and transmittance emitters in one embodiment. Con-
troller 120 could also analyze the signals for the presence of
motion to alternate between motion and cardiac pulse modes
in one embodiment. Alternately, a separate motion sensor
could provide an input to controller 120. Note that other
physical implementations are possible, such as using a single
processor to do the filtering, the frequency generation and the
oxygen saturation calculation.

A calibration resistor (or other active or passive element)
115 encodes the mean wavelength of at least one LED, and
provides it to a calibration reader circuit or CPU 120. The
wavelength indicated is used to select coefficients stored in
the monitor. Such a calibration technique is described in more
detail in U.S. Pat. No. 4,621,643, the disclosure of which is
incorporated herein by reference.

FIG. 19 is a cut-away view of an embodiment of a sensor
130 according to the invention. An emitter 132 is mounted on
a circuit 134 inside the sensor housing. A cylindrical lens 136
is mounted in an aperture 138. The lens directs the light down
through the nail, minimizing the light which hits the nail at an
angle and can be shunted to the detector. An aperture itself can
perform the same function, but the lens insures that more of
the light is used, maintaining a higher intensity at a given
power, or allowing less power to be used. Detector 140 is
recessed in an aperture 142 to avoid shunted light on the
receiving end.

The sensor is secured to a nail 144 using an adhesive layer
146. The adhesive layer can act as a shunt path itself. Accord-
ingly, the adhesive layer may be tinted to be opaque to the
wavelengths used, with preferably transparent windows 148
and 150 for the detector and emitter apertures.

As will beunderstood by those of skill in the art, the present
invention could be embodied in other specific forms without
departing from the spirit or essential characteristics thereof.
For example, a sensor could be placed on a fingernail other
than the thumb nail, and could be placed on toenails. Alter-
nately, a sensor could be placed on the cuticle or the live nail
fold skin extending over the beginning of the nail. The sensor
could be attached with a clip-type sensor, or an elastic wrap,
bandage or adhesive which encircles the appendage could be
used. The sensor could be placed at locations other than the
nailbed where signals at the multiple wavelengths in the pres-
ence of motion are still adequately correlated. The emitter in
the sensor could be fabricated using an optical fiber to carry
the light from a source remotely located, and equivalently the
detector could be an optical light guide to pipe the light to a
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remote detector. Accordingly, reference should be made to
the following claims which set forth the scope of the inven-
tion.

The invention claimed is:

1. An optical sensor comprising:

asensor body configured to attach to a distal end portion of

a patient’s digit, the sensor body housing a light emitter
and a light detector; and

a flexible circuit having a first portion operatively con-

nected to the light emitter and to the light detector,
having a second portion that is accordion-shaped and
that extends over at least one joint of the patient’s digit,
and having a third portion configured to be secured to a
proximal end portion of the patient’s digit, wherein the
accordion-shaped second portion is configured to move
independently of the sensor body.

2. The optical sensor of claim 1, wherein the sensor com-
prises a pulse oximetry sensor.

3. The optical sensor of claim 1, wherein the light emitter is
recessed in a first cavity of the sensor body, the light detector
is recessed in a second cavity of the sensor body, and wherein
the first cavity includes a lens between the light emitter and an
edge of the sensor body, and the second cavity includes an
empty space between the light detector and the edge of the
sensor body.

4. The optical sensor of claim 1, comprising a securing
band for attaching the sensor body to the patient’s digit.

5. The optical sensor of claim 4, wherein the securing band
comprises an elastic band and a hook and loop fastener.

6. The optical sensor of claim 1, wherein the sensor body is
configured to be attached to the patient’s nail such that the
light emitter and the light detector are positioned on the
patient’s nail.

7. The optical sensor defined in claim 1, comprising a
display disposed on the sensor for displaying at least one of a
blood oxygen saturation value or a pulse rate.

8. The optical sensor defined in claim 7, wherein the light
emitter, the light detector, and the display are located in one
housing of the sensor body.

9. The optical sensor defined in claim 7, comprising a
button or switch for alternating between displaying the pulse
rate and the oxygen saturation value.

10. A method of reducing light shunting in an optical
sensor, comprising:

emitting light into a tissue with a light emitter disposed in

a sensor body, the sensor body configured to attach to a
distal end portion of a patient’s digit;

detecting the light from the tissue with the light detector

disposed in the sensor body;

generating a signal based on the detected light; and

transmitting the signal to a monitor via a first portion of a

flexible circuit operatively connected to the light emitter
and to the light detector via a second portion of the
flexible circuit that is accordion-shaped and that extends
over at least one joint of the patient’s digit and via a third
portion of the flexible circuit configured to be secured to
a proximal end portion of the patient’s finger wherein
the accordion-shaped second portion is configured to
move independently of the sensor body.

11. The method of claim 10, comprising determining a
blood oxygen saturation value from the signal.

12. The method of claim 10, comprising displaying the
blood oxygen saturation value on a display located on the
sensor body.

13. The method of claim 10, wherein the light emitter is
recessed in a first cavity of the sensor body having a lens, the
light detector is recessed in a second cavity of the sensor body,
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and wherein the second cavity includes an empty space
between the light detector and a patient contacting surface of
sensor body.

12



LR EH(F)

[ i (S RIR) A ()
e (S IR) A (%)

HAT R E (TR AGE)

FRI& B A

KRN

IPCH%5
CPCHES
H At 2 FF SR
ShEREERE

E)

—MERAXRZELRR  AEASHESRITERN BN EREE.
NTREMENEE  TURRDN AL RERRNATENES
A, XAUBIERBENVERSN  AFEHNBMFERIR
DHEXBEENES. H3litt , EABERBEER LOERSR | 53
RHEKE  RUHIATHRENENENEFEXNIEMNIMESH
B, FESINESEIKmERMERR.

patsnap

EHRBERE , ATHFERARLZMBR D

US8649839 NI(AE)R 2014-02-11
US12/822898 RiEH 2010-06-24
MRRREEE N AL T

NELLCOR PURITAN BENNETT LLC

COVIDIEN LP

CHIN RODNEY
MANNHEIMER PAUL D
FLEWELLING ROSS

CHIN, RODNEY
MANNHEIMER, PAUL D
FLEWELLING, ROSS

A61B5/1455 A61B5/1464 A61B5/00 A61B5/145 A61B5/1495
A61B5/6833 A61B5/14552 A61B5/7207 A61B5/6826 A61B5/6838
US20100261986A1

Espacenet USPTO



https://share-analytics.zhihuiya.com/view/68f014b6-a3dd-4ac3-a88e-fe992d47dac2
https://worldwide.espacenet.com/patent/search/family/024901861/publication/US8649839B2?q=US8649839B2
http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO1&Sect2=HITOFF&d=PALL&p=1&u=%2Fnetahtml%2FPTO%2Fsrchnum.htm&r=1&f=G&l=50&s1=8649839.PN.&OS=PN/8649839&RS=PN/8649839

