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Description

Field of the Invention

[0001] The present invention relates generally to systems and methods for measuring and analyzing data obtained
from a continuous analyte sensor. More particularly, the present invention relates to dynamic and intelligent estimation
of analyte values from a continuous analyte sensor.

Background of the Invention

[0002] Diabetes mellitus is a disorder in which the pancreas cannot create sufficient insulin (Type I or insulin dependent)
and/or in which insulin is not effective (Type 2 or non-insulin dependent). In the diabetic state, the victim suffers from
high blood sugar, which may cause an array of physiological derangements (for example, kidney failure, skin ulcers, or
bleeding into the vitreous of the eye) associated with the deterioration of small blood vessels. A hypoglycemic reaction
(low blood sugar) may be induced by an inadvertent overdose of insulin, or after a normal dose of insulin or glucose-
lowering agent accompanied by extraordinary exercise or insufficient food intake.
[0003] Conventionally, a person with diabetes carries a self-monitoring blood glucose (SMBG) monitor, which typically
comprises uncomfortable finger pricking methods. Due to the lack of comfort and convenience, a person with diabetes
will normally only measure his or her glucose levels two to four times per day. Unfortunately, these time intervals are so
far apart that the person with diabetes will likely find out too late, sometimes incurring dangerous side effects, of a hyper-
or hypo-glycemic condition. In fact, it is not only unlikely that a person with diabetes will take a timely SMBG value, but
the person with diabetes will not know if their blood glucose value is going up (higher) or down (lower) based on
conventional methods, inhibiting their ability to make educated insulin therapy decisions.
[0004] Some attempts have been made to continuously measure the glucose concentration in a person with diabetes.
Typically, these continuous glucose sensors have required a reference glucose monitor (for example, SMBG) to provide
reference glucose values in order to calibrate and/or interpret data from the continuous glucose monitor. While the use
of these reference glucose values can be helpful, they can also cause numerous inconsistencies and instabilities in the
data output of the continuous glucose sensor. As one example, a time lag can be caused by an interstitial fluid sample
measured by an implantable glucose sensor as compared with a blood sample measured by an external reference
glucose monitor, which can cause inaccurate calibration, outlier detection, and data output. Additionally, the static use
of algorithms may not adequately represent physiological trends in a human, for example.
[0005] Documents US 6,180,416 B1, WO 02/100266 A1 and US 5,971,922 represent the closest prior art.

Summary of the Invention

[0006] There exists a need for improvements in data processing of continuous glucose sensors in order to better
handle the inconsistencies and instabilities that occur in glucose measurements and associated data analysis.
[0007] Accordingly, a method for estimating an analyte value from a continuous analyte sensor is provided.

Brief Description of the Drawings

[0008]

Fig. 1 is a block diagram that illustrates the configuration of the medical device in one embodiment, including a
continuous analyte sensor, a receiver, and an external device.
Fig. 2 is a flow chart that illustrates the process of measurement and calibration of the continuous analyte sensor
in one embodiment.
Fig. 3 is a flow chart that illustrates the process of estimation of analyte values based on measured analyte values
in one embodiment.
Fig. 4 is a graph that illustrates the case where estimation is triggered by an event wherein a patient’s blood glucose
concentration passes above a predetermined threshold.
Fig. 5 is a graph that illustrates a raw data stream and corresponding reference analyte values.
Fig. 6 is a flow chart that illustrates the process of compensating for a time lag associated with a continuous analyte
sensor to provide real-time estimated analyte data output in one embodiment.
Fig. 7 is a graph that illustrates the data of Fig. 5, including reference analyte data and corresponding calibrated
sensor analyte and estimated sensor analyte data, showing compensation for time lag using estimation.
Fig. 8 is a flow chart that illustrates the process of matching data pairs from a continuous analyte sensor and a
reference analyte sensor in one embodiment.
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Fig. 9 is a flow chart that illustrates the process of dynamic and intelligent estimation algorithm selection in one
embodiment.
Fig. 10 is a graph that illustrates one case of dynamic and intelligent estimation applied to a data stream, showing
first order estimation, second order estimation, and the measured values for a time period, wherein the second order
estimation shows a closer correlation to the measured data than the first order estimation.
Fig. 11 is a flow chart that illustrates the process of estimating analyte values within physiological boundaries in one
embodiment.
Fig. 12 is a graph that illustrates one case wherein dynamic and intelligent estimation is applied to a data stream,
wherein the estimation performs regression and further applies physiological constraints to the estimated analyte
data.
Fig. 13 is a flow chart that illustrates the process of dynamic and intelligent estimation and evaluation of analyte
values in one embodiment.
Fig. 14 is a graph that illustrates a case wherein the selected estimative algorithm is evaluated in one embodiment,
wherein a correlation is measured to determine a deviation of the measured analyte data with the selected estimative
algorithm, if any.
Fig. 15 is a flow chart that illustrates the process of evaluating a variation of estimated future analyte value possibilities
in one embodiment.
Fig. 16 is a graph that illustrates a case wherein a variation of estimated analyte values is based on physiological
parameters.
Fig. 17 is a graph that illustrates a case wherein a variation of estimated analyte values is based on statistical
parameters.
Fig. 18 is a flow chart that illustrates the process of estimating, measuring, and comparing analyte values in one
embodiment.
Fig. 19 is a graph that illustrates a case wherein a comparison of estimated analyte values to time corresponding
measured analyte values is used to determine correlation of estimated to measured analyte data.
Fig. 20 is an illustration of the receiver in one embodiment showing an analyte trend graph, including measured
analyte values, estimated analyte values, and a zone of clinical risk.
Fig. 21 is an illustration of the receiver in one embodiment showing a gradient bar, including measured analyte
values, estimated analyte values, and a zone of clinical risk.
Fig. 22 is an illustration of the receiver in one embodiment showing an analyte trend graph, including measured
analyte values and one or more clinically acceptable target analyte values.
Fig. 23 is an illustration of the receiver of Fig. 22, further including estimated analyte values on the same screen.
Fig. 24 is an illustration of the receiver of Fig. 23, further including a variation of estimated analyte values and therapy
recommendations on the same screen to help the user obtain the displayed target analyte values.
Fig. 25 is an illustration of the receiver in one embodiment, showing measured analyte values and a dynamic visual
representation of a range of estimated analyte values based on a variation analysis.
Fig. 26 is an illustration of the receiver in another embodiment, showing measured analyte values and a visual
representation of range of estimated analyte values based on a variation analysis.
Fig. 27 is an illustration of the receiver in another embodiment, showing a numerical representation of the most
recent measured analyte value, a directional arrow indicating rate of change, and a secondary numerical value
representing a variation of the measured analyte value.
Fig. 28 depicts a conventional display of glucose data (uniform y-axis), 9-hour trend graph.
Fig. 29 depicts a utility-driven display of glucose data (non-uniform y-axis), 9-hour trend graph.
Fig. 30 depicts a conventional display of glucose data, 7-day glucose chart.
Fig. 31 depicts a utility-driven display of glucose data, 7-day control chart, median (interquartile range) of daily
glucose.
Fig. 32 is an illustration of a receiver in one embodiment that interfaces with a computer.
Fig. 33 is an illustration of a receiver in one embodiment that interfaces with a modem.
Fig. 34 is an illustration of a receiver in one embodiment that interfaces with an insulin pen.
Fig. 35 is an illustration of a receiver in one embodiment that interfaces with an insulin pump.

Detailed Description of Certain Embodiments

[0009] The following description and examples illustrate some exemplary embodiments of the disclosed invention in
detail. Those of skill in the art will recognize that there are numerous variations and modifications of this invention that
are encompassed by its scope. Accordingly, the description of a certain exemplary embodiment should not be deemed
to limit the scope of the present invention.
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Definitions

[0010] In order to facilitate an understanding of the disclosed invention, a number of terms are defined below.
[0011] The term "analyte," as used herein, is a broad term and is used in its ordinary sense, including, without limitation,
to refer to a substance or chemical constituent in a biological fluid (for example, blood, interstitial fluid, cerebral spinal
fluid, lymph fluid or urine) that can be analyzed. Analytes can include naturally occurring substances, artificial substances,
metabolites, and/or reaction products. In some embodiments, the analyte for measurement by the sensor heads, devices,
and methods is analyte. However, other analytes are contemplated as well, including but not limited to acarboxypro-
thrombin; acylcarnitine; adenine phosphoribosyl transferase; adenosine deaminase; albumin; alpha-fetoprotein; amino
acid profiles (arginine (Krebs cycle), histidine/urocanic acid, homocysteine, phenylalanine/tyrosine, tryptophan); an-
drenostenedione; antipyrine; arabinitol enantiomers; arginase; benzoylecgonine (cocaine); biotinidase; biopterin; c-re-
active protein; carnitine; carnosinase; CD4; ceruloplasmin; chenodeoxycholic acid; chloroquine; cholesterol; cholineste-
rase; conjugated 1-β hydroxy-cholic acid; cortisol; creatine kinase; creatine kinase MM isoenzyme; cyclosporin A; d-
penicillamine; de-ethylchloroquine; dehydroepiandrosterone sulfate; DNA (acetylator polymorphism, alcohol dehydro-
genase, alpha 1-antitrypsin, cystic fibrosis, Duchenne/Becker muscular dystrophy, analyte-6-phosphate dehydrogenase,
hemoglobin A, hemoglobin S, hemoglobin C, hemoglobin D, hemoglobin E, hemoglobin F, D-Punjab, beta-thalassemia,
hepatitis B virus, HCMV, HIV-1, HTLV-1, Leber hereditary optic neuropathy, MCAD, RNA, PKU, Plasmodium vivax,
sexual differentiation, 21-deoxycortisol); desbutylhalofantrine; dihydropteridine reductase; diptheria/tetanus antitoxin;
erythrocyte arginase; erythrocyte protoporphyrin; esterase D; fatty acids/acylglycines; free β-human chorionic gonado-
tropin; free erythrocyte porphyrin; free thyroxine (FT4); free triiodothyronine (FT3); fumarylacetoacetase; galactose/gal-
1-phosphate; galactose-1-phosphate uridyltransferase; gentamicin; analyte-6-phosphate dehydrogenase; glutathione;
glutathione perioxidase; glycocholic acid; glycosylated hemoglobin; halofantrine; hemoglobin variants; hexosaminidase
A; human erythrocyte carbonic anhydrase I; 17-alpha-hydroxyprogesterone; hypoxanthine phosphoribosyl transferase;
immunoreactive trypsin; lactate; lead; lipoproteins ((a), B/A-1, ß); lysozyme; mefloquine; netilmicin; phenobarbitone;
phenytoin; phytanic/pristanic acid; progesterone; prolactin; prolidase; purine nucleoside phosphorylase; quinine; reverse
triiodothyronine (rT3); selenium; serum pancreatic lipase; sissomicin; somatomedin C; specific antibodies (adenovirus,
anti-nuclear antibody, anti-zeta antibody, arbovirus, Aujeszky’s disease virus, dengue virus, Dracunculus medinensis,
Echinococcus granulosus, Entamoeba histolytica, enterovirus, Giardia duodenalisa, Helicobacter pylori, hepatitis B virus,
herpes virus, HIV-1, IgE (atopic disease), influenza virus, Leishmania donovani, leptospira, measles/mumps/rubella,
Mycobacterium leprae, Mycoplasma pneumoniae, Myoglobin, Onchocerca volvulus, parainfluenza virus, Plasmodium
falciparum, poliovirus, Pseudomonas aeruginosa, respiratory syncytial virus, rickettsia (scrub typhus), Schistosoma
mansoni, Toxoplasma gondii, Trepenoma pallidium, Trypanosoma cruzi/rangeli, vesicular stomatis virus, Wuchereria
bancrofti, yellow fever virus); specific antigens (hepatitis B virus, HIV-1); succinylacetone; sulfadoxine; theophylline;
thyrotropin (TSH); thyroxine (T4); thyroxine-binding globulin; trace elements; transferrin; UDP-galactose-4-epimerase;
urea; uroporphyrinogen I synthase; vitamin A; white blood cells; and zinc protoporphyrin. Salts, sugar, protein, fat,
vitamins and hormones naturally occurring in blood or interstitial fluids can also constitute analytes in certain embodi-
ments. The analyte can be naturally present in the biological fluid, for example, a metabolic product, a hormone, an
antigen, an antibody, and the like. Alternatively, the analyte can be introduced into the body, for example, a contrast
agent for imaging, a radioisotope, a chemical agent, a fluorocarbon-based synthetic blood, or a drug or pharmaceutical
composition, including but not limited to insulin; ethanol; cannabis (marijuana, tetrahydrocannabinol, hashish); inhalants
(nitrous oxide, amyl nitrite, butyl nitrite, chlorohydrocarbons, hydrocarbons); cocaine (crack cocaine); stimulants (am-
phetamines, methamphetamines, Ritalin, Cylert, Preludin, Didrex, PreState, Voranil, Sandrex, Plegine); depressants
(barbituates, methaqualone, tranquilizers such as Valium, Librium, Miltown, Serax, Equanil, Tranxene); hallucinogens
(phencyclidine, lysergic acid, mescaline, peyote, psilocybin); narcotics (heroin, codeine, morphine, opium, meperidine,
Percocet, Percodan, Tussionex, Fentanyl, Darvon, Talwin, Lomotil); designer drugs (analogs of fentanyl, meperidine,
amphetamines, methamphetamines, and phencyclidine, for example, Ecstasy); anabolic steroids; and nicotine. The
metabolic products of drugs and pharmaceutical compositions are also contemplated analytes. Analytes such as neu-
rochemicals and other chemicals generated within the body can also be analyzed, such as, for example, ascorbic acid,
uric acid, dopamine, noradrenaline, 3-methoxytyramine (3MT), 3,4-Dihydroxyphenylacetic acid (DOPAC), Homovanillic
acid (HVA), 5-Hydroxytryptamine (5HT), and 5-Hydroxyindoleacetic acid (FHIAA).
[0012] The term "continuous analyte sensor," as used herein, is a broad term and is used in its ordinary sense, including,
but not limited to, a device that continuously or continually measures a concentration of an analyte, for example, at time
intervals ranging from fractions of a second up to, for example, 1, 2, or 5 minutes, or longer. In one exemplary embodiment,
the continuous analyte sensor is a glucose sensor such as described in U.S. Patent 6,001,067, which is incorporated
herein by reference in its entirety.
[0013] The term "continuous analyte sensing," as used herein, is a broad term and is used in its ordinary sense,
including, but not limited to, the period in which monitoring of an analyte is continuously or continually performed, for
example, at time intervals ranging from fractions of a second up to, for example, 1, 2, or 5 minutes, or longer.
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[0014] The terms "reference analyte monitor," "reference analyte meter," and "reference analyte sensor," as used
herein, are broad terms and are used in their ordinary sense, including, but not limited to, a device that measures a
concentration of an analyte and can be used as a reference for the continuous analyte sensor, for example a self-
monitoring blood glucose meter (SMBG) can be used as a reference for a continuous glucose sensor for comparison,
calibration, or the like.
[0015] The term "biological sample," as used herein, is a broad term and is used in its ordinary sense, including, but
not limited to, sample of a host body, for example, blood, interstitial fluid, spinal fluid, saliva, urine, tears, sweat, or the like.
[0016] The term "host," as used herein, is a broad term and is used in its ordinary sense, including, but not limited to,
mammals such as humans.
[0017] The term "processor," as used herein, is a broad term and is used in its ordinary sense, including, but not limited
to, a computer system, state machine, or the like that performs arithmetic and logic operations using logic circuitry that
responds to and processes the basic instructions that drive a computer.
[0018] The term "ROM," as used herein, is a broad term and is used in its ordinary sense, including, but not limited
to, read-only memory, which is a type of data storage device manufactured with fixed contents. ROM is broad enough
to include EEPROM, for example, which is electrically erasable programmable read-only memory (ROM).
[0019] The term "RAM," as used herein, is a broad term and is used in its ordinary sense, including, but not limited
to, a data storage device for which the order of access to different locations does not affect the speed of access. RAM
is broad enough to include SRAM, for example, which is static random access memory that retains data bits in its memory
as long as power is being supplied.
[0020] The term "A/D Converter," as used herein, is a broad term and is used in its ordinary sense, including, but not
limited to, hardware and/or software that converts analog electrical signals into corresponding digital signals.
[0021] The term "RF transceiver," as used herein, is a broad term and is used in its ordinary sense, including, but not
limited to, a radio frequency transmitter and/or receiver for transmitting and/or receiving signals.
[0022] The terms "raw data stream" and "data stream," as used herein, are broad terms and are used in their ordinary
sense, including, but not limited to, an analog or digital signal directly related to the analyte concentration measured by
the analyte sensor. In one example, the raw data stream is digital data in "counts" converted by an A/D converter from
an analog signal (for example, voltage or amps) representative of an analyte concentration. The terms broadly encompass
a plurality of time spaced data points from a substantially continuous analyte sensor, which comprises individual meas-
urements taken at time intervals ranging from fractions of a second up to, for example, 1, 2, or 5 minutes or longer.
[0023] The terms "calibrated data" and "calibrated data stream," as used herein, are broad terms, and are used in
their ordinary sense, including, but not limited to, data that has been transformed from its raw state to another state
using a function, for example a conversion function, to provide a meaningful value to a user. The terms "smoothed data"
and "filtered data," as used herein, are broad terms and are used in their ordinary sense, including, but not limited to,
data that has been modified to make it smoother and more continuous and/or to remove or diminish outlying points, for
example, by performing a moving average of the raw data stream.
[0024] The term "counts," as used herein, is a broad term and is used in its ordinary sense, including, but not limited
to, a unit of measurement of a digital signal. In one example, a raw data stream measured in counts is directly related
to a voltage (for example, converted by an A/D converter), which is directly related to current from a working electrode.
[0025] The term "electronic circuitry," as used herein, is a broad term and is used in its ordinary sense, including, but
not limited to, the components (for example, hardware and/or software) of a device configured to process data. In the
case of an analyte sensor, the data includes biological information obtained by a sensor regarding the concentration of
the analyte in a biological fluid. U.S. Patent Nos. 4,757,022, 5,497,772 and 4,787,398, describe suitable electronic
circuits that can be utilized with devices of certain embodiments.
[0026] The term "potentiostat," as used herein, is a broad term and is used in its ordinary, sense, including, but not
limited to, an electrical system that controls the potential between the working and reference electrodes of a two-electrode
cell or three-electrode cell at a preset value. The potentiostat forces whatever current is necessary to flow between the
working and counter electrodes to keep the desired potential, as long as the needed cell voltage and current do not
exceed the compliance limits of the potentiostat.
[0027] The term "electrical potential," as used herein, is a broad term and is used in its ordinary sense, including, but
not limited to, the electrical potential difference between two points in a circuit, which is the cause of the flow of a current.
[0028] The terms "operably connected" and "operably linked," as used herein, are broad terms and are used in their
ordinary sense, including, but not limited to, one or more components being linked to another component(s) in a manner
that allows transmission of signals between the components. For example, one or more electrodes can be used to detect
the amount of glucose in a sample and convert that information into a signal; the signal can then be transmitted to an
electronic circuit. In this case, the electrode is "operably linked" to the electronic circuit. These terms are broad enough
to include wired and wireless connectivity.
[0029] The term "algorithm," as used herein, is a broad term and is used in its ordinary sense, including, but not limited
to, the computational processes (for example, programs) involved in transforming information from one state to another,



EP 1 711 791 B1

6

5

10

15

20

25

30

35

40

45

50

55

for example using computer processing.
[0030] The term "estimation algorithm," as used herein, is a broad term and is used in its ordinary sense, including,
but not limited to, the processing involved in estimating analyte values from measured analyte values for a time period
during which no data exists (e.g., for a future time period or during data gaps). This term is broad enough to include one
or a plurality of algorithms and/or computations. This term is also broad enough to include algorithms or computations
based on mathematical, statistical, clinical, and/or physiological information.
[0031] The term "regression," as used herein, is a broad term and is used in its ordinary sense, including, but not
limited to, finding a line in which a set of data has a minimal measurement (for example, deviation) from that line.
Regression can be linear, non-linear, first order, second order, and so forth. One example of regression is least squares
regression.
[0032] The terms "recursive filter" and "auto-regressive algorithm," as used herein, are broad terms and are used in
their ordinary sense, including, but not limited to, an equation in which includes previous averages are part of the next
filtered output. More particularly, the generation of a series of observations whereby the value of each observation is
partly dependent on the values of those that have immediately preceded it. One example is a regression structure in
which lagged response values assume the role of the independent variables.
[0033] The terms "velocity" and "rate of change," as used herein, are broad terms and are used in their ordinary sense,
including, but not limited to, time rate of change; the amount of change divided by the time required for the change. In
one embodiment, these terms refer to the rate of increase or decrease in an analyte for a certain time period.
[0034] The term "acceleration" as used herein, is a broad term and is used in its ordinary sense, including, but not
limited to, the rate of change of velocity with respect to time. This term is broad enough to include deceleration.
[0035] The term "variation," as used herein, is a broad term and is used in its ordinary sense, including, but not limited
to, a divergence or amount of change from a point, line, or set of data. In one embodiment, estimated analyte values
can have a variation including a range of values outside of the estimated analyte values that represent a range of
possibilities based on known physiological patterns, for example.
[0036] The term "deviation," as used herein, is a broad term and is used in its ordinary sense, including, but not limited
to, a statistical measure representing the difference between different data sets. The term is broad enough to encompass
the deviation represented as a correlation of data.
[0037] The terms "statistical parameters" and "statistical," as used herein, are broad terms and are used in their
ordinary sense, including, but not limited to, information computed from the values of a sampling of data. For example,
noise or variability in data can be statistically measured.
[0038] The term "statistical variation," as used herein, is a broad term and is used in its ordinary sense, including, but
not limited to, divergence or change from a point, line, or set of data based on statistical information. The term "statistical
information" is broad enough to include patterns or data analysis resulting from experiments, published or unpublished,
for example.
[0039] The term "clinical risk," as used herein, is a broad term and is used in its ordinary sense, including, but not
limited to, an identified danger or potential risk to the health of a patient based on a measured or estimated analyte
concentration, its rate of change, and/or its acceleration. In one exemplary embodiment, clinical risk is determined by a
measured glucose concentration above or below a threshold (for example, 80-200 mg/dL) and/or its rate of change.
[0040] The term "clinically acceptable," as used herein, is a broad term and is used in its ordinary sense, including,
but not limited to, an analyte concentration, rate of change, and/or acceleration associated with that measured analyte
that is considered to be safe for a patient. In one exemplary embodiment, clinical acceptability is determined by a
measured glucose concentration within a threshold (for example, 80-200 mg/dL) and/or its rate of change.
[0041] The terms "physiological parameters" and "physiological boundaries," as used herein, are broad terms and are
used in their ordinary sense, including, but not limited to, the parameters obtained from continuous studies of physiological
data in humans and/or animals. For example, a maximal sustained rate of change of glucose in humans of about 4 to
5 mg/dL/min and a maximum acceleration of the rate of change of about 0.1 to 0.2 mg/dL/min2 are deemed physiologically
feasible limits; values outside of these limits would be considered non-physiological. As another example, the rate of
change of glucose is lowest at the maxima and minima of the daily glucose range, which are the areas of greatest risk
in patient treatment, thus a physiologically feasible rate of change can be set at the maxima and minima based on
continuous studies of glucose data. As a further example, it has been observed that the best solution for the shape of
the curve at any point along glucose signal data stream over a certain time period (for example, about 20 to 30 minutes)
is a straight line, which can be used to set physiological limits. These terms are broad enough to include physiological
parameters for any analyte.
[0042] The terms "individual physiological patterns" and "individual historical patterns," as used herein, are broad
terms and are used in their ordinary sense, including, but not limited to, patterns obtained by monitoring a physiological
characteristic, such as glucose concentration, in a mammal over a time period. For example, continual or continuous
monitoring of glucose concentration in humans can recognize a "normal" pattern of turnaround at the human’s lowest
glucose levels.
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[0043] The term "physiological variation," as used herein, is a broad term and is used in its ordinary sense, including,
but not limited to, divergence or change from a point, line, or set of data based on known physiological parameters and/or
patterns.
[0044] The terms "data association" and "data association function," as used herein, are broad terms and are used in
their ordinary sense, including, but not limited to, a statistical analysis of data and particularly its correlation to, or deviation
from, a particular line. A data association function is used to show data association. For example, a measured glucose
data stream as described herein can be analyzed mathematically to determine its correlation to, or deviation from, an
estimated data stream for a corresponding time period; this correlation or deviation is the data association. Examples
of data association functions include, but are not limited to, linear regression, non-linear mapping/regression, rank (for
example, non-parametric) correlation, least mean square fit, mean absolute deviation (MAD), and/or mean absolute
relative difference (MARD).
[0045] The terms "clinical error grid," "clinical error analysis" and "error grid analysis," as used herein, are broad terms
and are used in their ordinary sense, including, but not limited to, an analysis method that assigns a specific level of
clinical risk to an error between two time corresponding analyte measurements. Examples include Clarke Error Grid,
Consensus Grid, mean absolute relative difference, rate grid, or other clinical cost functions.
[0046] The term "Clarke Error Grid," as used herein, is a broad term and is used in its ordinary sense, including, but
not limited to, an error grid analysis, which evaluates the clinical significance of the difference between a reference
glucose value and a sensor generated glucose value, taking into account 1) the value of the reference glucose meas-
urement, 2) the value of the sensor glucose measurement, 3) the relative difference between the two values, and 4) the
clinical significance of this difference. See Clarke et al., "Evaluating Clinical Accuracy of Systems for Self-Monitoring of
Blood Glucose," Diabetes Care, Volume 10, Number 5, September-October 1987, which is incorporated by reference
herein in its entirety.
[0047] The term "rate grid", as used herein, is a broad term and is used in its ordinary sense, including, without limitation,
to refer to an error grid analysis, which evaluates the clinical significance of the difference between a reference glucose
value and a continuous sensor generated glucose value, taking into account both single-point and rate-of-change values.
One example of a rate grid is described in Kovatchev, B. P.; Gonder-Frederick, L. A.; Cox, D. J.; Clarke, W. L. Evaluating
the accuracy of continuous glucose-monitoring sensors: continuous glucose-error grid analysis illustrated by TheraSense
Freestyle Navigator data. Diabetes Care 2004, 27, 1922-1928.
[0048] The term "curvature formula," as used herein, is a broad term and is used in its ordinary sense, including, but
not limited to, a mathematical formula that can be used to define a curvature of a line. Some examples of curvature
formulas include Euler and Rodrigues’ curvature formulas.
[0049] The term "time period," as used herein, is a broad term and is used in its ordinary sense, including, but not
limited to, an amount of time including a single point in time and a path (for example, range of time) that extends from
a first point in time to a second point in time.
[0050] The term "measured analyte values," as used herein, is a broad term and is used in its ordinary sense, including,
but not limited to, an analyte value or set of analyte values for a time period for which analyte data has been measured
by an analyte sensor. The term is broad enough to include data from the analyte sensor before or after data processing
in the sensor and/or receiver (for example, data smoothing, calibration, or the like).
[0051] The term "estimated analyte values," as used herein, is a broad term and is used in its ordinary sense, including,
but not limited to, an analyte value or set of analyte values, which have been algorithmically extrapolated from measured
analyte values. Typically, estimated analyte values are estimated for a time period during which no data exists. However,
estimated analyte values can also be estimated during a time period for which measured data exists, but is to be replaced
by algorithmically extrapolated data due to a time lag in the measured data, for example.
[0052] The term "alarm," as used herein, is a broad term and is used in its ordinary sense, including, but not limited
to, audible, visual, or tactile signals that are triggered in response to detection of clinical risk to a patient. In one embod-
iment, hyperglycemic and hypoglycemic alarms are triggered when present or future clinical danger is assessed based
on continuous analyte data.
[0053] The terms "target analyte values" and "analyte value goal," as used herein, are broad terms and are used in
their ordinary sense, including, but not limited to, an analyte value or set of analyte values that are clinically acceptable.
In one example, a target analyte value is visually or audibly presented to a patient in order to aid in guiding the patient
in understanding how they should avoid a clinically risky analyte concentration.
[0054] The terms "therapy" and "therapy recommendations," as used herein, are broad terms and are used in their
ordinary sense, including, but not limited to, the treatment of disease or disorder by any method. In one exemplary
embodiment, a patient is prompted with therapy recommendations such as "inject insulin" or "consume carbohydrates"
in order to avoid a clinically risky glucose concentration.
[0055] The terms "customize" and "customization," as used herein, are broad terms and are used in their ordinary
sense, including, but not limited to, to make changes or specifications to a program so that it meets an individual’s needs.
[0056] The term "computer," as used herein, is broad term and is used in its ordinary sense, including, but not limited
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to, machine that can be programmed to manipulate data.
[0057] The term "modem," as used herein, is a broad term and is used in its ordinary sense, including, but not limited
to, an electronic device for converting between serial data from a computer and an audio signal suitable for transmission
over a telecommunications connection to another modem.
[0058] The term "insulin pen," as used herein, is a broad term and is used in its ordinary sense, including, but not
limited to, an insulin injection device generally the size of a pen that includes a needle and holds a vial of insulin. It can
be used instead of syringes for giving insulin injections.
[0059] The term "insulin pump," as used herein, is a broad term and is used in its ordinary sense, including, but not
limited to, a device that delivers a continuous supply of insulin into the body. The insulin flows from the pump through
a plastic tube (called a catheter) that is connected to a needle inserted into the skin and taped in place, for example.

Overview

[0060] Certain embodiments provide a continuous analyte sensor that measures a concentration of analyte within a
host and provides a data stream representative of the concentration of the analyte in the host, and a receiver that
processes the data stream received from the analyte sensor for output as a meaningful value to a user or device. In
some embodiments, the analyte sensor is integral with the receiver, while in other embodiments, the analyte sensor is
operatively linked to the receiver, for example, via a wired link or a wireless link.
[0061] Data processing associated with various embodiments calculates estimated analyte values from measured
analyte values that can be useful to 1) compensate for a time lag associated with the analyte concentration measured
sensor as compared to a reference source, for example, 2) estimate approaching clinical risk and warn a patient or
doctor in an effort to avoid the clinical risk, 3) ensure accurate calibration of sensor data with reference data by dynamically
and intelligently matching reference data with corresponding sensor data, for example, 4) replace data during periods
of high signal noise or inaccurate data, and/or 5) provide future estimated analyte values that encourage more timely
proactive behavior by a patient. The systems and methods calculate estimated analyte values based on algorithms that
dynamically and intelligently determine which estimative algorithm best fits the present data stream, for example, using
first or second order regression, considering physiological boundaries, evaluating the estimative algorithm for data
association, determining possible variations around the estimated analyte values due to statistical, clinical, or physio-
logical considerations, and/or comparing the estimated analyte values with time corresponding measured analyte values.
[0062] Some embodiments further generate data output, which can be in the form of real-time output to a user on
screen or other user interface, for example, on the receiver. Data output can include real-time measured analyte values,
estimated analyte values, possible variations of estimated analyte values, targets or goals for analyte values, or the like.
Additionally or alternatively, data output can be sent to a device external from the receiver, for example, a computer,
modem, or medical device. In some embodiments, input from the user or from another device, such as insulin injections
(time and amount), meal times, exercise, personalized therapy recommendations, or the like, can be input into the
receiver and processed to provide more customized data analysis and/or data output.
[0063] Accordingly, the systems and methods calculate estimated analyte values in a timely, accurate, and reliable
manner based on measured analyte values, which can be helpful for proactively caring for a patient’s condition. Estimated
analyte values can provide information useful in warning a patient of upcoming clinical risk. Additionally, targets and/or
goals set for a patient’s analyte values, based on present analyte conditions, and can be useful in proactively avoiding
clinical risk. Furthermore, therapy recommendations can be provided that are useful in guiding a patient away from
clinical risk.

Continuous Analyte Sensor

[0064] The systems and methods of the preferred embodiments provide an analyte sensor that measures a concen-
tration of analyte of interest or a substance indicative of the concentration or presence of the analyte. The analyte sensor
uses any known method, including invasive, minimally invasive, and non-invasive sensing techniques, to provide an
output signal indicative of the concentration of the analyte of interest. In some embodiments, the analyte sensor is a
continuous device, for example a subcutaneous, transdermal, or intravascular device. In some embodiments, the device
can take a plurality of intermittent measurements. The analyte sensor can use any method of analyte-measurement,
including enzymatic, chemical, physical, electrochemical, spectrophotometric, polarimetric, calorimetric, radiometric, or
the like. Generally, the analyte sensor can be any sensor capable of determining the level of any analyte in the body,
for example glucose, oxygen, lactase, hormones, cholesterol, medicaments, viruses, or the like. It should be understood
that the devices and methods described herein can be applied to any device capable of continually or continuously
detecting a concentration of analyte and providing an output signal that represents the concentration of that analyte.
[0065] In one preferred embodiment, the analyte sensor is an implantable glucose sensor, such as described with
reference to U.S. Patent 6,001,067 and co-pending U.S. Patent Application No. 10/633,367 entitled, "SYSTEM AND
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METHODS FOR PROCESSING ANALYTE SENSOR DATA," filed August 1, 2003. In another preferred embodiment,
the analyte sensor is a transcutaneous glucose sensor, such as described with reference to U.S. Provisional Patent
Application 60/587,787 and 60/614,683. In one alternative embodiment, the continuous glucose sensor comprises a
transcutaneous sensor such as described in U.S. Patent 6,565,509 to Say et al., for example. In another alternative
embodiment, the continuous glucose sensor comprises a subcutaneous sensor such as described with reference to
U.S. Patent 6,579,690 to Bonnecaze et al. or U.S. Patent 6,484,046 to Say et al., for example. In another alternative
embodiment, the continuous glucose sensor comprises a refillable subcutaneous sensor such as described with reference
to U.S. Patent 6,512,939 to Colvin et al., for example. In another alternative embodiment, the continuous glucose sensor
comprises an intravascular sensor such as described with reference to U.S. Patent 6,477,395 to Schulman et al., for
example. In another alternative embodiment, the continuous glucose sensor comprises an intravascular sensor such
as described with reference to U.S. Patent 6,424,847 to Mastrototaro et al.
[0066] Fig. 1 is a block diagram that illustrates the configuration of the medical device in one embodiment, including
a continuous analyte sensor, a receiver, and an external device. In general, the continuous analyte sensor (10) is any
sensor configuration that provides an output signal indicative of a concentration of an analyte. The output signal is sent
to a receiver (12) and received by an input module (14), which is described in more detail below. The output signal is
typically a raw data stream that is used to provide a useful value of the measured analyte concentration to a patient or
doctor, for example. In some embodiments, the raw data stream can be continuously or periodically algorithmically
smoothed or otherwise modified to diminish outlying points that do not accurately represent the analyte concentration,
for example due to signal noise or other signal artifacts, such as described in co-pending U.S. Patent Application No.
10/632,537 entitled, "SYSTEMS AND METHODS FOR REPLACING SIGNAL ARTIFACTS IN A GLUCOSE SENSOR
DATA STREAM," filed August 22, 2003.

Receiver

[0067] Referring again to Fig. 1, the receiver (12), which is operatively linked to the sensor (10), receives a data stream
from the sensor (10) via the input module (14). In one embodiment, the input module includes a quartz crystal operably
connected to an RF transceiver (not shown) that together function to receive and synchronize data streams from the
sensor (10). However, the input module (14) can be configured in any manner that is capable of receiving data from the
sensor. Once received, the input module (14) sends the data stream to a processor (16) that processes the data stream,
such as described in more detail below.
[0068] The processor (16) is the central control unit that performs the processing, such as storing data, analyzing data
streams, calibrating analyte sensor data, estimating analyte values, comparing estimated analyte values with time cor-
responding measured analyte values, analyzing a variation of estimated analyte values, downloading data, and controlling
the user interface by providing analyte values, prompts, messages, warnings, alarms, or the like. The processor includes
hardware and software that performs the processing described herein, for example read-only memory (ROM) provides
permanent or semi-permanent storage of data, storing data such as sensor ID, receiver ID, and programming to process
data streams (for example, programming for performing estimation and other algorithms described elsewhere herein)
and random access memory (RAM) stores the system’s cache memory and is helpful in data processing.
[0069] An output module (18), which is integral with and/or operatively connected with the processor (16), includes
programming for generating output based on the data stream received from the sensor (10) and its processing incurred
in the processor (16). In some embodiments, output is generated via a user interface (20).
[0070] The user interface (20) comprises a keyboard (22), speaker (24), vibrator (26), backlight (28), liquid crystal
display (LCD) screen (30), and one or more buttons (32). The components that comprise the user interface (20) include
controls to allow interaction of the user with the receiver. The keyboard (22) can allow, for example, input of user
information about himself/herself, such as mealtime, exercise, insulin administration, customized therapy recommen-
dations, and reference analyte values. The speaker (24) can produce, for example, audible signals or alerts for conditions
such as present and/or estimated hyper- and hypoglycemic conditions in a person with diabetes. The vibrator (26) can
provide, for example, tactile signals or alerts for reasons such as described with reference to the speaker, above. The
backlight (28) can be provided, for example, to aid the user in reading the LCD (30) in low light conditions. The LCD
(30) can be provided, for example, to provide the user with visual data output, such as described in more detail below
with reference to Figs. 20 to 26, however other screen formats are possible. In some embodiments, the LCD is a touch-
activated screen. The buttons (32) can provide for toggle, menu selection, option selection, mode selection, and reset,
for example. In some alternative embodiments, a microphone can be provided to allow for voice-activated control.
[0071] In some embodiments, estimated analyte values, such as described, for example with reference to Figs. 3 to
14, can be displayed on the LCD (30). In some embodiments, a variation of estimated analyte values, such as described,
for example with reference to Figs. 15 to 17, can be displayed on the LCD (30). In some embodiments, target analyte
values, such as described, for example with reference to Figs. 22 to 24, can be displayed on the LCD (30). In some
embodiments, therapy recommendations, such as described in the preferred embodiments, for example with reference



EP 1 711 791 B1

10

5

10

15

20

25

30

35

40

45

50

55

to Fig. 24, can be displayed on the screen (30).
[0072] In some embodiments, prompts or messages can be displayed on the user interface to convey information to
the user, such as reference outlier values, requests for reference analyte values, therapy recommendations, deviation
of the measured analyte values from the estimated analyte values, or the like. Additionally, prompts can be displayed
to guide the user through calibration or trouble-shooting of the calibration.
[0073] Additionally, data output from the output module (18) can provide wired or wireless, one- or two-way commu-
nication between the receiver (12) and an external device (34). The external device (34) can be any device that wherein
interfaces or communicates with the receiver (12). In some embodiments, the external device (34) is a computer, and
the receiver (12) is able to download historical data for retrospective analysis by the physician, for example. In some
embodiments, the external device (34) is a modem, and the receiver (12) is able to send alerts, warnings, emergency
messages, or the like, via telecommunication lines to another party, such as a doctor or family member. In some em-
bodiments, the external device (34) is an insulin pen, and the receiver (12) is able to communicate therapy recommen-
dations, such as insulin amount and time to the insulin pen. In some embodiments, the external device (34) is an insulin
pump, and the receiver (12) is able to communicate therapy recommendations, such as insulin amount and time to the
insulin pump. The external device (34) can include other technology or medical devices, for example pacemakers,
implanted analyte sensor patches, other infusion devices, telemetry devices, or the like.
[0074] The user interface (20) including keyboard (22), buttons (32), a microphone (not shown), and the external
device (34) can be configured to allow input of data. Data input can be helpful in obtaining information about the patient
(for example, meal time, exercise, or the like), receiving instructions from a physician (for example, customized therapy
recommendations, targets, or the like), and downloading software updates, for example. Keyboard, buttons, touch-
screen, and microphone are all examples of mechanisms by which a user can input data directly into the receiver. A
server, personal computer, personal digital assistant, insulin pump, and insulin pen are examples of external devices
that can provide useful information to the receiver. Other devices internal or external to the sensor that measure other
aspects of a patient’s body (for example, temperature sensor, accelerometer, heart rate monitor, oxygen monitor, or the
like) can be used to provide input helpful in data processing. In one embodiment, the user interface can prompt the
patient to select an activity most closely related to their present activity, which can be helpful in linking to an individual’s
physiological patterns, or other data processing. In another embodiment, a temperature sensor and/or heart rate monitor
can provide information helpful in linking activity, metabolism, and glucose excursions of an individual. While a few
examples of data input have been provided here, a variety of information can be input, which can be helpful in data
processing as will be understood by one skilled in the art.

Calibration

[0075] Reference is now made to Fig. 2, which is a flow chart that illustrates the process (38) of calibration and data
output of measured analyte values in one embodiment. Calibration of the analyte sensor (10) generally includes data
processing that converts the data stream received from the continuous analyte sensor into measured analyte values
that are meaningful to a user. In one embodiment, the analyte sensor is a continuous glucose sensor and one or more
reference glucose values are used to calibrate the data stream from the sensor (10). The calibration can be performed
on a real-time basis and/or retrospectively recalibrated. However in alternative embodiments, other calibration techniques
can be utilized, for example using another constant analyte (for example, folic acid, ascorbate, urate, or the like) as a
baseline, factory calibration, periodic clinical calibration, oxygen calibration (for example, using a plurality of sensor
heads), or the like can be used.
[0076] At a block (40), the calibration process (38) receives continuous sensor data (for example, a data stream),
including one or more time-spaced sensor data points, hereinafter referred to as "data stream," "sensor data," or "sensor
analyte data." The calibration process (38) receives the sensor data from the continuous analyte sensor (10), which can
be in communication (for example, wired or wireless) with the receiver (12). Some or all of the sensor data point(s) can
be smoothed or replaced by estimated signal values such as described with reference to co-pending U.S. Patent Appli-
cation No. 10/632,537 entitled, "SYSTEMS AND METHODS FOR REPLACING SIGNAL ARTIFACTS IN A GLUCOSE
SENSOR DATA STREAM," filed August 22, 2003. During the initialization of the sensor, for example, prior to initial
calibration, the receiver (12) receives and stores the sensor data, however it may not display any data to the user until
initial calibration and optionally stabilization of the sensor (10) has been determined.
[0077] At a block (42), the calibration process (38), receives analyte values from a reference analyte monitor, including
one or more reference glucose data points, hereinafter referred as "reference data" or "reference analyte data." In an
example wherein the analyte sensor is a continuous glucose sensor, the reference analyte monitor can be a self-
monitoring blood glucose (SMBG) meter. However, in alternative embodiments, the reference analyte monitor can be
any source capable of providing a corresponding analyte value. Additionally, in some alternative embodiments, wherein
the continuous analyte sensor is self-calibrating, a calibrating reference value can be provided by a source internal to
the continuous sensor, for example oxygen, folic acid, or other subcutaneous fluid constants.
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[0078] In some embodiments, the calibration process (38) monitors the continuous analyte sensor data stream to
determine a preferred time for capturing reference analyte concentration values for calibration of the continuous sensor
data stream. In an example wherein the analyte sensor is a continuous glucose sensor, when data (for example, observed
from the data stream) changes too rapidly, the reference glucose value may not be sufficiently reliable for calibration
due to unstable glucose changes in the host. In contrast, when sensor glucose data are relatively stable (for example,
relatively low rate of change), a reference glucose value can be taken for a reliable calibration. In one embodiment, the
calibration process (38) can prompt the user via the user interface to "calibrate now" when the analyte sensor is considered
stable.
[0079] In some embodiments, the calibration process (38) can prompt the user via the user interface (20) to obtain a
reference analyte value for calibration at intervals, for example when analyte concentrations are at high and/or low
values. In some additional embodiments, the user interface (20) can prompt the user to obtain a reference analyte value
for calibration based upon certain events, such as meals, exercise, large excursions in analyte levels, faulty or interrupted
data readings, or the like. In some embodiments, the estimative algorithms can provide information useful in determining
when to request a reference analyte value. For example, when estimated analyte values indicate approaching clinical
risk, the user interface (20) can prompt the user to obtain a reference analyte value.
[0080] In some embodiments, certain acceptability parameters can be set for reference values. In an example wherein
the analyte sensor is a glucose sensor, the receiver may only accept reference glucose data between about 40 and
about 400 mg/dL.
[0081] In some embodiments, the calibration process (38) performs outlier detection on the reference data and time
corresponding sensor data. Outlier detection compares a reference analyte value with a time corresponding measured
analyte value to ensure a predetermined statistically, physiologically, or clinically acceptable correlation between the
corresponding data exists. In an example wherein the analyte sensor is a glucose sensor, the reference glucose data
is matched with substantially time corresponding calibrated sensor data and the matched data are plotted on a Clarke
Error Grid to determine whether the reference analyte value is an outlier based on clinical acceptability, such as described
in more detail with reference U.S. Patent Application No. 10/633,367 entitled, "SYSTEM AND METHODS FOR
PROCESSING ANALYTE SENSOR DATA," filed August 1, 2003. In some embodiments, outlier detection compares a
reference analyte value with a corresponding estimated analyte value, such as described in more detail with reference
to Figs. 7 and 8, and the matched data is evaluated using statistical, clinical, and/or physiological parameters to determine
the acceptability of the matched data pair. In alternative embodiments, outlier detection can be determined by other
clinical, statistical, and/or physiological boundaries.
[0082] At a block (44), the calibration process (38) matches reference analyte data (for example, one or more reference
glucose data points) with substantially time corresponding sensor analyte data (for example, one or more sensor glucose
data points) to provide one or more matched data pairs. In one embodiment, one reference data point is matched to
one time corresponding sensor data point to form a matched data pair. In another embodiment, a plurality of reference
data points are averaged (for example, equally or non-equally weighted average, mean-value, median, or the like) and
matched to one time corresponding sensor data point to form a matched data pair. In another embodiment, one reference
data point is matched to a plurality of time corresponding sensor data points averaged to form a matched data pair. In
yet another embodiment, a plurality of reference data points are averaged and matched to a plurality of time corresponding
sensor data points averaged to form a matched data pair.
[0083] In one embodiment, a time corresponding sensor data comprises one or more sensor data points that occur,
for example, 15 6 5 min after the reference glucose data timestamp (for example, the time that the reference glucose
data is obtained). In this embodiment, the 15 minute time delay has been chosen to account for an approximately 10
minute delay introduced by the filter used in data smoothing and an approximately 5 minute membrane-related time lag
(for example, the time necessary for the glucose to diffuse through a membrane(s) of a glucose sensor). In alternative
embodiments, the time corresponding sensor value can be more or less than in the above-described embodiment, for
example 6 60 minutes. Variability in time correspondence of sensor and reference data can be attributed to, for example,
a longer or shorter time delay introduced during data smoothing, or if the configuration of the glucose sensor (10) incurs
a greater or lesser physiological time lag. In some embodiments, estimated sensor data can be used to provide data
points that occur about 1 second to about 60 minutes, or more, after a reference analyte value is obtained, which data
can be used to match with reference analyte data, such as described in more detail below with reference to Figs. 7 and 8.
[0084] At a block (46) the calibration process (38) forms an initial calibration set from a set of one or more matched
data pairs, which are used to determine the relationship between the reference analyte data and the sensor analyte
data, such as described in more detail with reference to a block (48), below.
[0085] The matched data pairs, which make up the initial calibration set, can be selected according to predetermined
criteria. In some embodiments, the number (n) of data pair(s) selected for the initial calibration set is one. In other
embodiments, n data pairs are selected for the initial calibration set wherein n is a function of the frequency of the
received reference glucose data points. In one exemplary embodiment, six data pairs make up the initial calibration set.
In another embodiment, the calibration set includes only one data pair.
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[0086] In some embodiments, the data pairs are selected only within a certain glucose value threshold, for example
wherein the reference glucose value is between about 40 and about 400 mg/dL. In some embodiments, the data pairs
that form the initial calibration set are selected according to their time stamp.
[0087] At the block (48), the calibration process (38) calculates a conversion function using the calibration set. The
conversion function substantially defines the relationship between the reference analyte data and the sensor analyte
data. A variety of known methods can be used with the preferred embodiments to create the conversion function from
the calibration set. In one embodiment, wherein a plurality of matched data points form the initial calibration set, a linear
least squares regression is performed on the initial calibration set. Co-pending U.S. Patent Application 10/633,367
entitled, "SYSTEM AND METHODS FOR PROCESSING ANALYTE SENSOR DATA," filed August 1, 2003, describes
methods for calibration.
[0088] In one embodiment, the conversion function can be used to estimate analyte values for a future time period by
forward projection. In alternative preferred embodiments, such as described with reference to the flow chart of Fig. 2
and with reference to Figs. 3 to 19, the processor can provide intelligent estimation, including dynamic determination of
an algorithm, physiological boundaries, evaluation of the estimative algorithm, analysis of variations associated with the
estimation, and comparison of measured analyte values with time corresponding estimated analyte values.
[0089] At a block (50), the calibration process (38) uses the conversion function to transform sensor data into sub-
stantially measured analyte values, also referred to as calibrated data, as sensor data is continuously (or intermittently)
received from the sensor. For example, the offset value at any given point in time can be subtracted from the raw value
(for example, in counts) and divided by the slope to obtain a measured glucose value: 

[0090] In some alternative embodiments, the sensor and/or reference glucose data are stored in a database for
retrospective analysis. The calibrated data can be used to compare with the estimated analyte values, such as described
in more detail with reference to Fig. 10 in order to determine a deviation of the measure value from the estimated analyte
values for the corresponding time period.
[0091] At a block (52), the calibration process (38) generates output via the user interface (20) and/or the external
device (34). In one embodiment, the output is representative of measured analyte values, which are determined by
converting the sensor data into a meaningful analyte value such as described in more detail with reference to block (50),
above. User output can be in the form of a numeric estimated analyte value, an indication of directional trend of analyte
concentration, and/or a graphical representation of the measured analyte data over a period of time, for example. Other
representations of the measured analyte values are also possible, for example audio and tactile. Additionally or alter-
natively, the output is representative of estimated analyte values, such as described in more detail with reference to
Figs. 20 to 26.
[0092] In one embodiment, the measured analyte value is represented by a numeric value. In other exemplary em-
bodiments, the user interface graphically represents the measured analyte trend values over a predetermined time
period (for example, one, three, and nine hours, respectively). In alternative embodiments, other time periods can be
represented. In alternative embodiments, pictures, animation, charts, graphs, and numeric data can be selectively dis-
played.
[0093] Accordingly, after initial calibration of the sensor, continuous analyte values can be displayed on the user
interface (20) so that the user can regularly and proactively care for his/her diabetic condition within the bounds set by
his/her physician. Both the reference analyte data and the sensor analyte data from the continuous analyte sensor can
be displayed to the user. In an embodiment wherein the continuous analyte sensor functions as an adjunctive device to
a reference analyte monitor, the user interface (20) can display numeric reference analyte data, while showing the sensor
analyte data only in a graphical representation so that the user can see the historical and present sensor trend information
as well as the most recent reference analyte data value. In an embodiment wherein the continuous analyte sensor
functions as a non-adjunctive device to the reference analyte monitor, the user interface can display the reference analyte
data and/or the sensor analyte data. The user can toggle through menus and screens using the buttons in order to view
alternate data and/or screen formats, for example.
[0094] In alternative embodiments, the output module displays the estimated analyte values in a manner such as
described in more detail with reference to Figs. 20 to 26, for example. In some embodiments, the measured analyte
value, an estimated future analyte value, a rate of change, and/or a directional trend of the analyte concentration is used
to control the administration of a constituent to the user, including an appropriate amount and time, in order to control
an aspect of the user’s biological system. One such example is a closed loop glucose sensor and insulin pump, wherein
the glucose data (for example, estimated glucose value, rate of change, and/or directional trend) from the glucose sensor
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is used to determine the amount of insulin, and time of administration, that can be given to a person with diabetes to
evade hyperglycemic and hypoglycemic conditions. Output to external devices is described in more detail with reference
to Figs. 27 to 30, for example.

Dynamic and Intelligent Analyte Value Estimation

[0095] Estimative algorithms can be applied continuously, or selectively turned on/off based on conditions. Conven-
tionally, a data stream received from a continuous analyte sensor can provide an analyte value and output the same to
the host, which can be used to warn a patient or doctor of existing clinical risk. Conventionally, a data stream received
from an analyte sensor can provide historical trend analyte values, which can be used to educate a patient or doctor of
individual historical trends of the patient’s analyte concentration. However, the data stream cannot, without additional
processing, provide future analyte values, which can be useful in preventing clinically risky analyte values, compensating
for time lag, and ensuring proper matching of sensor and reference analyte, for example such as described below.
Timelier reporting of analyte values and prevention of clinically risky analyte values, for example, prevention of hyper-
and hypoglycemic conditions in a person with diabetes, can decrease health complications that can result from clinically
risky situations.
[0096] Fig. 3 is a flow chart that illustrates the process (54) of estimating analyte values and outputting estimated
analyte values in one embodiment. In contrast to the process of Fig. 2, estimation is used to calculate analyte data for
time during which no data exists (for example, data gaps or future data) or to replace data when large inaccuracies are
believed to exist within data (for example, signal noise due to transient ischemia). Estimation of analyte values can be
performed instead of, or in combination with, calibration of measured analyte values, such as described with reference
to Fig. 2, above.
[0097] The estimating analyte values process (54) can be applied continuously, or selectively turned on/off based on
conditions. The determination of when to apply estimative algorithms is discussed in more detail below. In some em-
bodiments, estimation can be applied only during approaching clinical risk to warn a patient or doctor in an effort to avoid
the clinical risk, for example when the measured glucose concentration is outside of a clinically acceptable threshold
(for example, 100 to 200 mg/dL) and/or the glucose concentration is increasing or decreasing at a certain rate of change
(for example, 3 mg/dL/min), such as described in more detail with reference to Fig. 4, for example. In some embodiments
estimation can be applied continuously, dynamically, or intermittently to compensate for a time lag associated with the
analyte sensor, which time lag can be consistent, dynamic, and/or intermittent, such as described in more detail below
with reference to Figs. 5 to 6, for example. In some embodiments, estimation can be applied to aid in dynamically and
intelligently matching reference data with corresponding sensor data to ensure accurate outlier detection and/or calibra-
tion of sensor data with reference data, such as described in more detail with reference to Figs. 7 and 8, for example.
In some embodiments, estimation can be applied continuously (or intermittently) in order to provide analyte data that
encourages more timely proactive behavior in preempting clinical risk.
[0098] At a block (56), the estimate analyte values process (54) obtains sensor data, which can be raw, smoothed,
and/or otherwise processed. In some embodiments, estimation can be applied to a raw data stream received from an
analyte sensor, such as described at the block (40). In some embodiments, estimation can be applied to calibrated data,
such as described at the block (50).
[0099] At a block (58), the estimate analyte values process (54) dynamically and intelligently estimates analyte values
based on measured analyte values using estimative algorithms. In some embodiments, dynamic and intelligent estimation
includes selecting an algorithm from a plurality of algorithms to determine an estimative algorithm (for example, first or
second order regression) that best fits the present measured analyte values, such as described in more detail with
reference to Figs. 9 and 10, for example. In some embodiments, dynamic and intelligent estimation further includes
constraining and/or expanding estimated analyte values using physiological parameters, such as described in more
detail with reference to Figs. 11 and 12, for example. In some embodiments, dynamic and intelligent estimation further
includes evaluating the selected estimative algorithms, for example using a data association function, such as described
in more detail with reference to Figs. 9, 10, 13, and 14. In some embodiments, dynamic and intelligent estimation includes
analyzing a possible variation associated with the estimated analyte values, for example using statistical, clinical, or
physiological variations, such as described in more detail with reference to Figs. 15 to 17. In some embodiments, dynamic
and intelligent estimation includes comparing previously estimated analyte values with measured analyte values for a
corresponding time period, determining the deviation, such as described with reference to Figs. 18 and 19, for example.
In some embodiments, the resulting deviation from the comparison can be used to determine a variation for future
estimated analyte values. In some embodiments, the resulting deviation from the comparison can be used to determine
a confidence level in the estimative algorithms. In some embodiments, the resulting deviation from the comparison can
be used to show evidence of the benefits of displaying estimated analyte values on patient behavior, namely how well
the patient responds to the estimated analyte values and alters his/her behavior in order to better control analyte levels.
[0100] At a block (60), the output module (18) provides output to the user interface (20) and/or the external device
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(34). In some embodiments, output of estimated analyte values is combined with output of measured analyte values,
such as described at the block (52), for example combined on an LCD screen, or by toggling between screens. In some
embodiments, a target analyte value or range of analyte values is output to the user interface alone, or in combination
with the estimated analyte values, in order to provide a goal towards which the user can aim, such as described with
reference to Figs. 22 to 24, for example. In some embodiments, an approaching clinical risk is output in the form of a
visual, audible, or tactile prompt, such as described with reference to Figs. 20 to 22, for example. In some embodiments,
therapy recommendations are output to aid the user in determining corrective action that can be performed in an effort
to avoid or minimize clinical risk such as described with reference to Fig. 24, for example. In some embodiments, a
visual representation of possible variations of the estimated analyte values, which variation can be due to statistical,
clinical, or physiological considerations, such as described with reference to Figs. 24 to 26, for example. In some
embodiments, the output prompts a user to obtain a reference analyte value (not shown). In some embodiments, output
is sent to an external device such as described with reference to Figs. 27 to 30, for example.
[0101] Fig. 4 is a graph that illustrates one embodiment, wherein estimation is triggered by an event such as a patient’s
blood glucose concentration rising above a predetermined threshold (for example, 180 mg/dL). The x-axis represents
time in minutes; the y-axis represents glucose concentration in mg/dL. The graph shows an analyte trend graph, partic-
ularly, the graph shows measured glucose data (62) for about 90 minutes up to time (t)=0. In this embodiment, the
measured glucose data (62) has been smoothed and calibrated, however smoothing and/or calibrating may not be
required in some embodiments. At t=0, estimation of the preferred embodiments is invoked and 15-minute estimated
glucose data (64) indicates that the glucose concentration will likely rise above 220 mg/dL. The estimated glucose data
(64) can be useful in providing alarms (e.g., hyper- and hypoglycemic alerts) and/or displaying on the user interface of
the receiver, for example. Alarms may not require estimative algorithms in some embodiments, for example when zero,
first, and/or second order calculations can be made to dynamically assess the static value, rate of change, and/or rate
of acceleration of the analyte data in some embodiment.
[0102] In some embodiments, estimative algorithms are selectively applied when the reference and/or sensor analyte
data indicates that the analyte concentration is approaching clinical risk. The concentration of the analyte values, the
rate of change of the analyte values, and/or the acceleration of the analyte values can provide information indicative of
approaching clinical risk. In an example wherein the analyte sensor is a glucose sensor, thresholds (for example, 100
to 200 mg/dL) can be set that selectively turn on estimative algorithms that then dynamically and intelligently estimate
upcoming glucose values, and optionally possible variations of those estimated glucose values, to appropriately forewarn
of an upcoming patient clinical risk (for example, hypo- or hyperglycemia). Additionally, the rate of change and/or ac-
celeration can be considered to more intelligently turn on and calculate necessary estimation and for alarms (e.g., hyper-
and hypoglycemic alarms). For example, if a person with diabetes has a glucose concentration of 100 mg/dL, but is
trending upwardly, has slow or no rate of change, or is decelerating downwardly, estimation and/or alarms may not be
necessary.
[0103] Fig. 5 is a graph that illustrates a raw data stream and the corresponding reference analyte values. The x-axis
represents time in minutes, the first y-axis represents sensor glucose data measured in counts, and the second y-axis
represents reference glucose data in mg/dL. A raw data stream (66) was obtained for a host from a continuous glucose
sensor over a 4-hour time period. In this example, the raw data stream (66) has not been smoothed, calibrated, or
otherwise processed and is represented in counts. Reference glucose values (68) were obtained from the host using a
reference glucose monitor during the same 4-hour time period. The raw data stream (66) and reference glucose values
(68) were plotted on the graph of Fig. 5 accordingly during the 4-hour time period. While not wishing to be bound by
theory, the visible difference between the reference and sensor glucose data is believed to be caused at least in part
by a time lag, such as described in more detail below.
[0104] A data stream received from an analyte sensor can include a time lag within the measured analyte concentration,
for example, as compared to corresponding reference analyte values. In some embodiments, a time lag can be associated
with a difference in measurement samples (for example, an interstitial fluid sample measured by an implantable analyte
sensor as compared with a blood sample measured by an external reference analyte monitor). In some embodiments,
a time lag can be associated with diffusion of the analyte through a membrane system, for example such as has been
observed in some implantable electrochemically-based glucose sensors. Additionally in some embodiments, a time lag
can be associated with processing of the data stream, for example, a finite impulse response filter (FIR) or infinite impulse
response (IIR) filter can be applied intermittently) or continuously to a raw data stream in the sensor (or in the receiver)
in order to algorithmically smooth the data stream, which can produce a time lag (for example, as shown in measured
glucose data (68) of Fig. 4B). In some embodiments, wherein the analyte sensor is a subcutaneously implantable sensor,
there may be a variable time lag associated with the tissue ingrowth at the biointerface at the tissue-device interface.
Additionally, time lags can be variable upon a host’s metabolism. In some embodiments, a time lag of the reference
analyte data may be associated with an amount of time a user takes to test and report a reference analyte value.
Accordingly, the preferred embodiments provide for estimation of analyte values based on measured analyte values,
which can be used to compensate for a time lag such as described above, allow for output of analyte values that represent
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estimated present analyte values without a time lag.
[0105] Accordingly, some embodiments selectively apply estimative algorithms based on a measured, estimated, or
predetermined time lag associated with the continuous analyte sensor. In some embodiments, estimative algorithms
continuously run in order to continuously compensate for a time lag between reference and sensor data, such as described
in more detail below. In some embodiments, estimative algorithms run during outlier detection in order to intelligently
and dynamically match corresponding reference and sensor data for more accurate outlier inclusion or exclusion, such
as described in more detail below. In some embodiments, estimative algorithms run during matching of data pairs for
consideration in the calibration set in order to intelligently and dynamically match corresponding reference and sensor
glucose data for better calibration, such as described in more detail below.
[0106] Fig. 6 is a flow chart that illustrates the process (70) of compensating for a time lag associated with a continuous
analyte sensor to provide real-time estimated analyte data output in one embodiment. For the reasons described above,
the system includes programming that continuously or periodically (e.g., when a user activates the LCD screen) com-
pensates for a time lag in the system to provide a better real-time estimate to the user, for example.
[0107] At block (72), the time lag compensation process (70) obtains sensor data, which can be raw, smoothed, and/or
otherwise processed. In some embodiments, estimation can be applied to a raw data stream received from an analyte
sensor, such as described at the block (40). In some embodiments, estimation can be applied to calibrated data, such
as described at the block (50).
[0108] At block (74), the time lag compensation process (70) continuously or periodically estimates analyte values for
a present time period to compensate for a physiological or computational time lag in the sensor data stream. For example,
if a 20-minute time lag is known inherent within the continuous analyte sensor, the compensation can be a 20-minute
projected estimation to provide true present time (or "real time") analyte values. Some embodiments can continuously
run estimation to compensate for time lag, while other embodiments can perform time lag compensation estimation only
when the user interface (e.g., LCD screen) is activated by a user. Known estimation algorithms and/or the dynamic and
intelligent estimation algorithms of the preferred embodiments (e.g., such as described with reference to block (58) and
Figs. 9 to 19) can be used in estimating analyte values herein.
[0109] At block (76), the time lag compensation process (70) continuously or periodically provides output of the present
time estimated analyte values, such as described in more detail above. Output can be sent to the user interface (20) or
to an external device (34).
[0110] Referring now to Fig. 7, which is a graph that illustrates the data of Fig. 5, including reference analyte data,
corresponding calibrated sensor analyte data, and corresponding estimated analyte data, showing compensation for
time lag using estimation. The x-axis represents time in minutes and the y-axis represents glucose concentration in
mg/dL. Reference glucose values (68) were obtained from the host from the reference glucose monitor during the 4-
hour time period and correspond to Fig. 5. Measured glucose data (80) was obtained by smoothing and calibrating the
raw data stream (66) of Fig. 5 using reference glucose values (68), such as described in more detail with reference to
Fig. 2. Estimated glucose data (82) was obtained by estimating using dynamic and intelligent estimation of the preferred
embodiments, which is described in more detail below.
[0111] The measured glucose data (80) has been smoothed and thereby includes a data processing-related time lag,
which may be in addition to physiological or membrane-related time lag, for example. Therefore, the measured glucose
data (80) visibly lags behind the reference glucose values (68) on the graph. The estimated glucose data (82) includes
dynamic and intelligent estimation of the preferred embodiments in order to compensate for the time lag, thereby better
correlating with the reference glucose values (68). In this embodiment, the time lag compensation (estimation) is 15
minutes, however in other embodiments the time lag compensation (estimation) can be more or less.
[0112] In some embodiments, the estimation can be programmed to compensate for a predetermined time lag (for
example, 0 to 60 minutes, or more). In some alternative embodiments, the estimation can be dynamically adjusted based
on a measured time lag; for example, when estimation is used to dynamically match sensor analyte data with reference
analyte data such as described below, the time difference between best corresponding sensor analyte data and reference
analyte data can be used to determine the time lag.
[0113] Fig. 8 is a flow chart that illustrates the process (84) of matching data pairs from a continuous analyte sensor
and a reference analyte sensor in one embodiment. Estimative algorithms of the preferred embodiments are useful when
selectively applied during the process of matching corresponding sensor and reference analyte data, for example during
outlier detection, such as described in more detail with reference to Fig. 2 at block (42), and/or matching data pairs for
calibration, such as described in more detail with reference to Fig. 2 at block (44). For the reasons stated above with
reference to Figs. 5 to 7, for example, a time lag associated with the continuous analyte sensor and/or the reference
analyte monitor can hinder the ability to accurately match data from the analyte sensor with corresponding data from
the reference analyte monitor using time-correspondence only.
[0114] At block (86), the data matching process (84) obtains sensor data, which can be raw, smoothed, and/or otherwise
processed. In some embodiments, data matching can use data from a raw data stream received from an analyte sensor,
such as described at the block (40). In some embodiments, data matching can use calibrated data, such as described
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at the block (50).
[0115] At block (88), the data matching process (84), receives analyte values from a reference analyte monitor, including
one or more reference glucose data points, hereinafter referred as "reference data" or "reference analyte data." In an
example wherein the analyte sensor is a continuous glucose sensor, the reference analyte monitor can be a self-
monitoring blood glucose (SMBG) meter. Other examples are described with reference to block (42), above.
[0116] At block (90), the data matching process (84) estimates one or more analyte values for a time period during
which no data exists (or when data is unreliable or inaccurate, for example) based on the data stream. For example, the
estimated analyte values can include values at intervals from about 30 seconds to about 5 minutes, and can be estimated
for a time period of about 5 minutes to about 60 minutes in the future. In some embodiments, the time interval and/or
time period can be more or less. Known estimation algorithms and/or the dynamic and intelligent estimation algorithms
of the preferred embodiments (e.g., such as described with reference to block (58) and Figs. 9 to 19) can be used in
estimating analyte values herein.
[0117] At block (92), the data matching process (84) creates at least one matched data pair by matching reference
analyte data to a corresponding analyte value from the one or more estimated analyte values. In some embodiments,
the best matched pair can be evaluated by comparing a reference data point against individual sensor values over a
predetermined time period (for example, +/- 0 to 60 minutes). In one such embodiment, the reference data point is
matched with sensor data points at intervals (for example, 5- minute intervals of measured historical analyte values and
estimated future analyte values) and each matched pair is evaluated. The matched pair with the best correlation (for
example, based on statistical deviation, clinical risk analysis, or the like) can be selected as the best matched pair and
should be used for data processing. In some alternative embodiments, matching a reference data point with an average
of a plurality of sensor data points over a time period can be used to form a matched pair.
[0118] Therefore, the preferred embodiments provide for estimation of analyte values based on measured analyte
values that can be helpful in more accurately and/or appropriately matching sensor and reference analyte values that
represent corresponding data. By increasing the accuracy of matched data pairs, true real-time estimated analyte values
(for example, without a time lag) can be provided, calibration can be improved, and outlier detection can be more accurate
and convenient, thereby improving overall patient safety and convenience.
[0119] While any of the above uses and applications can be applied using conventional algorithms that provide con-
ventional projection based on first or second order regression, for example, it has been found that analyte value estimation
can be further improved by adaptively applying algorithms, for example using dynamic intelligence such as described
in more detail below. The dynamic and intelligent algorithms described herein can be applied to the uses and applications
described above, or for estimating analyte values at any time for any use or application.
[0120] Fig. 9 is a flow chart that illustrates the dynamic and intelligent estimation algorithm selection process (96) in
one embodiment.
[0121] At block (98), the dynamic and intelligent estimation algorithm selection process (96) obtains sensor data, which
can be raw, smoothed, and/or otherwise processed. In some embodiments, data matching can use data from a raw data
stream received from an analyte sensor, such as described at block (40). In some embodiments, data matching can use
calibrated data, such as described at block (50).
[0122] At block (100), the dynamic and intelligent estimation algorithm selection process (96) includes selecting one
or more algorithms from a plurality of algorithms that best fits the measured analyte values. In some embodiments, the
estimative algorithm can be selected based on physiological parameters; for example, in an embodiment wherein the
analyte sensor is a glucose sensor, a first order regression can be selected when the rate of change of the glucose
concentration is high, indicating correlation with a straight line, while a second order regression can be selected when
the rate of change of the glucose concentration is low, indicating correlation with a curved line. In some embodiments,
a first order regression can be selected when the reference glucose data is within a certain threshold (for example, 100
to 200 mg/dL), indicating correlation with a straight line, while a second order regression can be selected when the
reference glucose data is outside of a certain threshold (for example, 100 to 200 mg/dL), indicating correlation with a
curved line because the likelihood of the glucose concentration turning around (for example, having a curvature) is
greatest at high and low values.
[0123] Generally, algorithms that estimate analyte values from measured analyte values include any algorithm that
fits the measured analyte values to a pattern, and/or extrapolates estimated values for another time period (for example,
for a future time period or for a time period during which data needs to be replaced). In some embodiments, a polynomial
regression (for example, first order, second order, third order, etc.) can be used to fit measured analyte values to a
pattern, and then extrapolated. In some embodiments, autoregressive algorithms (for example, IIR filter) can be used
to fit measured analyte values to a pattern, and then extrapolated. In some embodiments, measured analyte values can
be filtered by frequency before projection (for example, by converting the analyte values with a Fourier transform, filtering
out high frequency noise, and converting the frequency data back to time values by using an inverse Fourier transform);
this data can then be projected forward (extrapolated) along lower frequencies. In some embodiments, measured analyte
values can be represented with a Wavelet transform (for example filtering out specific noise depending on wavelet
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function), and then extrapolate forward. In some alternative embodiments, computational intelligence (for example,
neural network-based mapping, fuzzy logic based pattern matching, genetic-algorithms based pattern matching, or the
like) can be used to fit measured analyte values to a pattern, and/or extrapolate forward. In yet other alternative embod-
iments, time-series forecasting, using methods such as moving average (single or double), exponential smoothing
(single, double, or triple), time series decomposition, growth curves, Box-Jenkins, or the like. The plurality of algorithms
of the preferred embodiments can utilize any one or more of the above-described algorithms, or equivalents, in order to
intelligently select estimative algorithms and thereby estimate analyte values.
[0124] In some embodiments, estimative algorithms further include parameters that consider external influences, such
as insulin therapy, carbohydrate consumption, or the like. In one such example, these additional parameters can be
user input via the user interface (20) or transmitted from an external device (34), such as described in more detail with
reference to Fig. 1. By including such external influences in additional to historical trend data (measured analyte values),
analyte concentration changes can be better anticipated.
[0125] At block (102), the selected one or more algorithms are evaluated based on statistical, clinical, or physiological
parameters. In some embodiments, running each algorithm on the data stream tests each of the one or more algorithms,
and the algorithmic result with the best correlation to the measured analyte values is selected. In some embodiments,
the pluralities of algorithms are each compared for best correlation with physiological parameters (for example, within
known or expected rates of change, acceleration, concentration, etc). In some embodiments, the pluralities of algorithms
are each compared for best fit within a clinical error grid (for example, within "A" region of Clarke Error Grid). Although
first and second order algorithms are exemplified herein, any two or more algorithms such as described in more detail
below could be programmed and selectively used based on a variety of conditions, including physiological, clinical,
and/or statistical parameters.
[0126] At block (104), the algorithm(s) selected from the evaluation step is employed to estimate analyte values for a
time period. Accordingly, analyte values are more dynamically and intelligently estimated to accommodate the dynamic
nature of physiological data. Additional processes, for example applying physiological boundaries (Fig. 11), evaluation
of the estimation algorithms after employing the algorithms (Fig. 13), evaluating a variation of estimated analyte values
(Fig. 15), measuring and comparing analyte values (Fig. 18), or the like can be applied to the dynamic and intelligent
estimative algorithms described with reference to Fig. 9.
[0127] Fig. 10 is a graph that illustrates dynamic and intelligent estimation algorithm selection applied to a data stream
in one embodiment showing first order estimation, second order estimation, and the measured glucose values for the
time period, wherein the second order estimation shows a better correlation to the measured glucose data than the first
order estimation. The x-axis represents time in minutes. The y-axis represents glucose concentration in mg/dL.
[0128] In the data of Fig. 10, measured (calibrated) sensor glucose data (106) was obtained up to time t=0. At t=0, a
first order regression (108)) was performed on the measured data (106) to estimate the upcoming 15-minute time period.
A second order regression (110) was also performed on the data to estimate the upcoming 15-minute time period. The
intelligent estimation of the preferred embodiments, such as described in more detail below, chose the second order
regression (110) as the preferred algorithm for estimation based on programmed conditions (at t=0). The graph of Fig.
10 further shows the measured glucose values (112) from t=0 to t=15 to illustrate that second order regression (110)
does in fact more accurately correlate with the measured glucose data (112) than first order regression (108) from t=0
to t=15.
[0129] In the example of Fig. 10, the dynamic and intelligent estimation algorithm selection determined that the second
order regression (110) was the preferred algorithm for estimation at t=0 based on conditions. A first condition was based
on a set threshold that considers second order regression a better fit when measured glucose values are above 200
mg/dL and trending upwardly. A second condition verifies that the curvature of the second order regression line appro-
priately shows a deceleration above 200 mg/dL. Although two specific examples of conditions are described herein,
dynamic and intelligent estimation can have as many or as few conditions programmed therein as can be imagined or
contrived. Some additional examples of conditions for selecting from a plurality of algorithms are listed above, however
the scope of this aspect of dynamic and intelligent estimation includes any conditional statements that can be programmed
and applied to any algorithms that can be implemented for estimation.
[0130] Fig. 11 is a flow chart that illustrates the process (114) of estimating analyte values within physiological bound-
aries in one embodiment. The embodiment described herein is provided because the estimative algorithms such as
described with reference to Fig. 9 consider mathematical equations, which may or may not be sufficient to accurately
estimate analyte values based on measured analyte values.
[0131] At block (116), the analyte value estimation with physiological boundaries process (114) obtains sensor data,
which can be raw, smoothed, calibrated and/or otherwise processed.
[0132] At block (118), the analyte value estimation with physiological boundaries process (114) estimates one or more
analyte values using one or more estimation algorithms. In some embodiments, this analyte value estimation uses
conventional projection using first or second order regression, for example. In some embodiments, dynamically and
intelligently selecting of one or more algorithms from a plurality of algorithms (Fig. 9), evaluating estimation algorithms
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after employing the algorithms (Fig. 13), evaluating a variation of estimated analyte values (Fig. 15), measuring and
comparing analyte values (Fig. 18), or the like can be applied to the dynamic and intelligent estimative algorithms
described with reference to Fig. 9.
[0133] At block (120), the analyte value estimation with physiological boundaries process (114) applies physiological
boundaries to the estimated analyte values of block (118). In some circumstances, physiological changes in a host and
associated sensor data stream follow a relatively mathematical curvature. However there are additional considerations
that are not inherently included in the mathematical calculation of estimative algorithms, such as physiological boundaries.
One example of a circumstance or consideration that can occur is signal noise or signal artifact on the data stream, for
example due to transient ischemia, signal from an interfering species, or the like. In such circumstances, normal math-
ematical calculations can result in estimated analyte values that fall outside of physiological boundaries. For example,
a first order regression can produce a line that exceeds a known physiological rate of change of glucose in humans (for
example, about 4 to 5 mg/dL/min). As another example, a second order regression can produce a curvature that exceeds
a known physiological acceleration in humans (for example, about 0.1 to 0.2 mg/dL/min2). As yet another example, it
has been observed that the best solution for the shape of the curve at any point along a glucose signal data stream over
a certain time period (for example, about 20 to 30 minutes) is a straight line, which can be used to set physiological
boundaries. As yet another example, a curvature defined by a second order regression at low glucose values (for
example, below 80 mg/dL) generally decelerates as it goes down and accelerates as it goes up, while a curvature defined
by a second order regression at high glucose values generally decelerates as it goes up and accelerates as it goes
down. As yet another example, an individual’s physiological patterns can be monitored over a time period (for example,
from about one day to about one year) and individual’s physiological patterns quantified using pattern recognition algo-
rithms; the individual’s physiological patterns could be used to increase the intelligence of the estimation by applying
the quantified patterns to the estimated analyte values.
[0134] Accordingly, physiological boundaries, includes those described above, or other measured or known physio-
logical analyte boundaries, can compliment an estimative algorithm to ensure that the estimated analyte values fall within
known physiological parameters. However, in some alternative embodiments, physiological boundaries can be applied
to raw and/or smoothed data, thereby eliminating the need for the estimation step (block (118)).
[0135] Fig. 12 is a graph that illustrates physiological boundaries applied to a data stream in one embodiment, wherein
the dynamic and intelligent estimation includes performing an estimative algorithm and further applies physiological
boundaries to the estimated analyte data. The x-axis represents time in minutes. The y-axis represents glucose con-
centration in mg/dL. Measured glucose data (122) is shown for about 90 minutes up to t=0. At t=0, an estimative algorithm
performs estimation using a second order regression of the previous 40 minutes to generate a slope and acceleration,
which are used to extrapolate the estimated glucose data (124) beginning at the measured analyte data at t=0. At the
same time (t=0), the system uses known physiological parameters to determine physiologically feasible boundaries of
glucose concentration over the estimated 15-minute period. In this example, the system uses a slope and intercept
defined by a first order regression using 25 minutes of data up to t=0, from which the system sets physiological boundaries
using a maximum acceleration of glucose of 0.2 mg/dL/min2 and a maximum rate of change of glucose of 4 mg/dL/min
for the upcoming 15 minutes. Using the above-described physiological parameters, an upper physiological boundary
(126) and a lower physiological boundary (128) are set. Interestingly, the estimated glucose data (124) falls outside of
the physiological-boundaries, namely above the upper physiological boundary (126). In this case, the second order
regression estimated glucose data (124) has either a rate of change greater than 4 mg/dL/min and/or acceleration greater
than 0.2 mg/dL/min2. Such circumstances can be caused by noise on the signal, artifact of performing regression over
a predetermined time period during which a change in analyte concentration is not best described by a regression line,
or numerous other such affects.
[0136] In this case, estimated glucose values (124) can be adjusted to be the upper limit (126) in order to better
represent physiologically feasible estimated analyte values. In some embodiments, some or all of the estimated analyte
values falling outside of the physiological parameters can trigger the dynamic and intelligent estimative algorithms to
re-select an algorithm, or to adjust the parameters of the algorithm (for example, increase and/or decrease the number
of data points considered by the algorithm) to better estimate during that time period. In some alternative embodiments,
statistical and or clinical boundaries can be used to bound estimated analyte values and/or adjust the parameters that
drive those algorithms.
[0137] Fig. 13 is a flow chart that illustrates the process (130) of dynamic and intelligent estimation and evaluation of
analyte values in one embodiment, wherein the estimation algorithms are continuously, periodically, or intermittently
evaluated based on statistical, clinical, or physiological parameters to maintain accuracy of estimation.
[0138] At block (132), the dynamic and intelligent estimation and evaluation process (130) obtains sensor data, which
can be raw, smoothed, calibrated and/or otherwise processed.
[0139] At block (134), the dynamic and intelligent estimation and evaluation process (130) estimates one or more
analyte values using one or more estimation algorithms. In some embodiments, this analyte value estimation uses
conventional projection using first or second order regression, for example. In some embodiments, dynamically and
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intelligently selecting of one or more algorithms from a plurality of algorithms (Fig. 9), dynamically and intelligently
estimating analyte values within physiological boundaries (Fig. 11), evaluating a variation of estimated analyte values
(Fig. 15), measuring and comparing analyte values (Fig. 18), or the like can be applied to the dynamic and intelligent
estimation and evaluation process described herein with reference to Fig. 13.
[0140] The estimative algorithms described elsewhere herein consider mathematical equations (Fig. 9) and optionally
physiological parameters (Fig. 11), which may or may not be sufficient to accurately estimate analyte values in some
circumstances due to the dynamic nature of mammalian behavior. For example, in a circumstance where a patient’s
glucose concentration is trending upwardly at a constant rate of change (for example, 120 mg/dL at 2 mg/dL/min), an
expected physiological pattern would likely estimate a continued increase at substantially the same rate of change over
the upcoming approximately 40 minutes, which would fall within physiological boundaries. However, if a person with
diabetes were to engage in heavy aerobic exercise, which may not be known by the estimative algorithm, a slowing of
the upward trend, and possibly a change to a downward trend can possibly result, leading to inaccuracies in the estimated
analyte values. Numerous such circumstances can occur in the lifestyle of a person with diabetes. However, although
analyte values can sometimes be estimated under "normal" circumstances, other circumstances exist that are not
"normal" or "expected" and can result in estimative algorithms that produce apparently erroneous results, for example,
if they are based solely on mathematical calculations and/or physiological patterns. Accordingly, evaluation of the esti-
mative algorithms can be performed to ensure the accuracy or quantify a measure of confidence in the estimative
algorithms.
[0141] At block (136), the dynamic and, intelligent estimation and evaluation process (130) evaluates the estimation
algorithms employed at block (134) to evaluate a "goodness" of the estimated analyte values. The evaluation process
performs an evaluation of the measured analyte data with the corresponding estimated analyte data (e.g., by performing
the algorithm on the data stream and comparing the measured with the corresponding analyte data for a time period).
In some embodiments, evaluation can be performed continually or continuously so that the dynamic and intelligent
algorithms are continuously adapting to the changing physiological analyte data. In some embodiments, the evaluation
can be performed periodically so that the dynamic and intelligent algorithms are periodically and systematically adapting
to the changing physiological analyte data. In some embodiments, evaluation can be performed intermittently, for example
when an estimative algorithm is initiated or other such triggers, so that the dynamic and intelligent algorithms can be
evaluated when new or updated data or algorithms are being processed.
[0142] This evaluation process (130) uses any known evaluation method, for example based on statistical, clinical, or
physiological standards. One example of statistical evaluation is provided below with reference to Fig. 14; however other
methods are also possible. In some embodiments, the evaluation process (130) determines a correlation coefficient of
regression. In some embodiments wherein the sensor is a glucose sensor, the evaluation process (130) determines if
the selected estimative algorithm shows that analyte values fall with the "A" and "B" regions of the Clarke Error Grid.
Other parameters or methods for evaluation are considered within the scope of the preferred embodiments. In some
embodiments, the evaluation process (130) includes performing a curvature formula to determine fiducial information
about the curvature, which results in an evaluation of the amount of noise on the signal.
[0143] In some embodiments, the evaluation process (130) calculates physiological boundaries to evaluate whether
the estimated analyte values fall within known physiological constraints. This evaluation is particularly helpful when
physiological constraints, such as described with reference to Fig. 11 above, have not been applied to the estimative
algorithm. In this embodiment, the estimative algorithm(s) are evaluated to ensure that they do not allow estimated
analyte values to fall outside of physiological boundaries, some examples of which are described in more detail with
reference to Fig. 11 above, and in the definitions section, for example. In some alternative embodiments, clinical or
statistical parameters can be used in a similar manner to bound estimated analyte values.
[0144] If the result of the evaluation is satisfactory (for example, 10% average deviation, correlation coefficient above
0.79, all estimated analyte values within A or B region of the Clarke Error Grid, all estimated analyte values within
physiological boundaries, or the like), the processing continues to the next step, using the selected estimative algorithm.
However, if the result of the evaluation is unsatisfactory, the process can start the algorithm selection process again,
optionally considering additional information, or the processor can determine that estimation is not appropriate for a
certain time period. In one alternative embodiment, a signal noise measurement can be evaluated, and if the signal to
noise ratio is unacceptable, the processor can modify its estimative algorithm or other action that can help compensate
for signal noise (e.g., signal artifacts, such as described in co-pending U.S. Appl. No. 10/632,537 filed August 22, 2003
and entitled, "SYSTEMS AND METHODS FOR REPLACING SIGNAL ARTIFACTS IN A GLUCOSE SENSOR DATA
STREAM."
[0145] Fig. 14 is a graph that illustrates an evaluation of the selected estimative algorithm in one embodiment, wherein
a correlation is measured to determine a deviation of the measured glucose data with the selected estimative algorithm,
if any. The x-axis represents time in minutes. The y-axis represents glucose concentration in mg/dL. Measured glucose
values (140) are shown for about 90 minutes up to t=0. At t=0, the selected algorithm is performed on 40 minutes of the
measured glucose values (140) up to t=0, which is represented by a regression line (142) in this embodiment. A data



EP 1 711 791 B1

20

5

10

15

20

25

30

35

40

45

50

55

association function is used to determine a goodness of fit of the estimative algorithm on the measured glucose data
(140); namely, the estimative algorithm is performed retrospectively on the measured glucose data (140), and is here-
inafter referred to as retrospectively estimated glucose data (142) (e.g., estimation prior to t=0), after which a correlation
(or deviation) with the measured glucose data is determined. In this example, the goodness of fit shows a mean absolute
relative difference (MARD) of 3.3% between the measured glucose data (140) and the retrospectively estimated glucose
data (142). While not wishing to be bound to theory, it is believed that this correlation of the measured glucose data
(140) to the retrospectively estimated glucose data (142) can be indicative of the correlation of future estimated glucose
data to the measured glucose data for that estimated time period.
[0146] Reference is now made to Fig. 15, which is a flow chart that illustrates the process (150) of analyzing a variation
of estimated future analyte value possibilities in one embodiment. This embodiment takes into consideration that analyte
values are subject to a variety of external influences, which can cause the measured analyte values to alter from the
estimated analyte values as the time period that was estimated passes. External influences include, but are not limited
to, exercise, sickness, consumption of food and alcohol, injections of insulin, other medications, or the like. For a person
with diabetes, for example, even when estimation does not accurately predict the upcoming measured analyte values,
the estimated analyte values can be valuable to a patient in treatment and in fact can even alter the estimated path by
encouraging proactive patient behavior that can cause the patient to avoid the estimated clinical risk. In other words,
the deviation of measured analyte values from their corresponding estimated analyte values may not be an "error" in
the estimative algorithm, and is in fact one of the benefits of the continuous analyte sensor of the preferred embodiments,
namely encouraging patient behavior modification and thereby improving patient health through minimizing clinically
risky analyte values. Proactive behavior modification (for example, therapies such as insulin injections, carbohydrate
consumption, exercise, or the like) can cause the patient’s measured glucose to change from the estimated path, and
analyzing a variation that can be associated with the estimated analyte values can encompass many of these changes.
Therefore, in addition to estimated analyte values, a variation can be calculated or estimated based on statistical, clinical,
and/or physiological parameters that provides a range of values in which the estimated analyte values can fall.
[0147] At block (152), the variation of possible estimated analyte values analysis process (150) obtains sensor data,
which can be raw, smoothed, calibrated and/or otherwise processed.
[0148] At block (154), the variation of possible estimated analyte values analysis process (150) estimates one or more
analyte values using one or more estimation algorithms. In some embodiments, this analyte values estimation uses
conventional projection using first or second order regression, for example. In some embodiments, dynamically and
intelligently selecting of one or more algorithms from a plurality of algorithms (Fig. 9), dynamically and intelligently
estimating analyte values within physiological boundaries (Fig. 11), dynamic and intelligent estimation and evaluation
of estimated analyte values (Fig. 13), measuring and comparing analyte values (Fig. 18), or the like can be applied to
the dynamic and intelligent estimation and evaluation process described herein with reference to Fig. 15.
[0149] At block (156), the variation of possible estimated analyte values evaluation process (150) analyzes a variation
of the estimated analyte data. Particularly, a statistical, clinical, and/or physiological variation of estimated analyte values
can be calculated when applying the estimative algorithms and/or can be calculated at regular intervals to dynamically
change as the measured analyte values are obtained. In general, analysis of trends and their variation allows the
estimation of the preferred embodiments to dynamically and intelligently anticipate upcoming conditions, by considering
internal and external influences that can affect analyte concentration.
[0150] In some embodiments, physiological boundaries for analytes in mammals can be used to set the boundaries
of variation. For example, known physiological boundaries of glucose in humans are discussed in detail herein, with
reference to Fig. 11, and in the definitions section, however any physiological parameters for any measured analyte
could be implemented here to provide this variation of physiologically feasible analyte values.
[0151] In some embodiments, statistical variation can be used to determine a variation of possible analyte values.
Statistical variation can be any known divergence or change from a point, line, or set of data based on statistical
information. Statistical information includes patterns or data analysis resulting from experiments, published or unpub-
lished, for example. In some embodiments, statistical information can include normal patterns that have been measured
statistically in studies of analyte concentrations in mammals, for example. In some embodiments, statistical information
can include errors observed and measured statistically in studies of analyte concentrations in mammals, for example.
In some embodiments, statistical information can include predetermined statistical standards, for example, deviation
less than or equal to 5% on the analyte value. In some embodiments, statistical variation can be a measured or otherwise
known signal noise level.
[0152] In some embodiments, a variation is determined based on the fact that the conventional blood glucose meters
are known to have up to a +/-20% error in glucose values (namely, on average in the hands of a patient). For example,
gross errors in glucose readings are known to occur due to patient error in self-administration of the blood glucose test.
In one such example, if the user has traces of sugar on his/her finger while obtaining a blood sample for a glucose
concentration test, then the measured glucose value will likely be much higher than the measured glucose value in the
blood. Additionally, it is known that self-monitored blood glucose tests (for example, test strips) are occasionally subject
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to manufacturing error. In view of this statistical information, in an embodiment wherein a continuous glucose sensor
relies upon a conventional blood glucose meter for calibration, this +/-20% error should be considered because of the
potential for translated effect on the calibrated sensor analyte data. Accordingly, this exemplary embodiment would
provide for a +/-20%, variation of estimated glucose values based on the above-described statistical information.
[0153] In some embodiments, a variation of estimated analyte values can be analyzed based on individual physiological
patterns. Physiological patterns are affected by a combination of at least biological mechanisms, physiological bound-
aries, and external influences such as exercise, sickness, consumption of food and alcohol, injections of insulin, other
medications, or the like. Advantageously, pattern recognition can be used with continuous analyte sensors to characterize
an individual’s physiology; for example the metabolism of a person with diabetes can be individually characterized, which
has been difficult to quantify with conventional glucose sensing mechanisms due to the unique nature of an individual’s
metabolism. Additionally, this information can be advantageously linked with external influences (for example, patient
behavior) to better understand the nature of individual human physiology, which can be helpful in controlling the basal
rate in a person with diabetes, for example.
[0154] While not wishing to be bound to theory, it is believed that monitoring of individual historical physiological analyte
data can be used to recognize patterns that can be used to estimate analyte values, or ranges of values, in a mammal.
For example, measured analyte data for a patient can show certain peaks of glucose levels during a specific time of
day, "normal" AM and PM eating behaviors (for example, that follow a pattern), weekday versus weekend glucose
patterns, individual maximum rate of change, or the like, that can be quantified using patient-dependent pattern recognition
algorithms, for example. Pattern recognition algorithms that can be used in this embodiment include, but are not limited
to, stochastic nonlinear time-series analysis, exponential (non-linear) autoregressive model, process feedback nonlinear
autoregressive (PFNAR) model, neural networks, or the like.
[0155] Accordingly, statistically calculated patterns can provide information useful in analyzing a variation of estimated
analyte values for a patient that includes consideration of the patient’s normal physiological patterns. Pattern recognition
enables the algorithmic analysis of analyte data to be customized to a user, which is useful when analyte information is
variable with each individual user, such as has been seen in glucose in humans, for example.
[0156] In some embodiments, a variation of estimated analyte values is on clinical risk analysis. Estimated analyte
values can have higher clinical risk in certain ranges of analyte values, for example analyte values that are in a clinically
risky zone or analyte values that are changing at a clinically risky rate of change. When a measured analyte value or
an estimated analyte value shows existing or approaching clinical risk, it can be important to analyze the variation of
estimated analyte values in view of the clinical risk to the patient. For example, in an effort to aid a person with diabetes
in avoiding clinically risky hyper- or hypoglycemia, a variation can be weighted toward the clinically risk zone, which can
be used to emphasize the pending danger to the patient, doctor, or care taker, for example. As another example, the
variation of measured or estimated analyte values can be based on values that fall within the "A" and/or "B" regions of
an error grid Analysis Method.
[0157] In case of variation analysis based on clinical risk, the estimated analyte values are weighted in view of pending
clinical risk. For example, if estimated glucose values show a trend toward hypoglycemia at a certain rate of change, a
variation of possible trends toward hypoglycemia are weighted to show how quickly the glucose concentration could
reach 40 mg/dL, for example. As another example, if estimated glucose values show a trend toward hyperglycemia at
a certain acceleration, a variation of possible trends toward hyperglycemia are weighted to show how quickly the glucose
concentration could reach 200 mg/dL, for example.
[0158] In some embodiments, when a variation of the estimated analyte values shows higher clinical risk as a possible
path within that variation analysis as compared to the estimated analyte path, the estimated analyte values can be
adjusted to show the analyte values with the most clinical risk to a patient. While not wishing to be bound by theory,
adjusting the estimated analyte values for the highest variation of clinical risk exploits the belief that by showing the
patient the "worst case scenario," the patient is more likely to address the clinical risk and make timely behavioral and
therapeutic modifications and/or decisions that will slow or reverse the approaching clinical risk.
[0159] At block (158), the variation of possible estimated analyte values evaluation process (150) provides output
based on the variation analysis. In some embodiments, the result of this variation analysis provides a "zone" of possible
values, which can be displayed to the user, considered in data analysis, and/or used in evaluating of performance of
the estimation, for example. A few examples of variation analysis display are shown in Figs. 24 to 26; however other
methods of formatting or displaying variation analysis data are contemplated within the scope of the invention.
[0160] Fig. 16 is a graph that illustrates variation analysis of estimated glucose values in one embodiment, wherein a
variation of the estimated glucose values is analyzed and determined based on known physiological parameters. The
x-axis represents time in minutes. The y-axis represents glucose concentration in mg/dL. In this embodiment, the known
maximum rate of change and acceleration of glucose in humans are used to provide the variation about the estimated
glucose path.
[0161] The measured glucose values (160) are shown for about 90 minutes up to t=0. At t=0, intelligent and dynamic
estimation of the preferred embodiments is performed to obtain estimated glucose values (162). A variation of estimated
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glucose values is then determined based on physiological parameters, including an upper limit (164) and a lower limit
(166) of variation defined by known physiological parameters, including rate of change and acceleration of glucose
concentration in humans.
[0162] Fig. 17 is a graph that illustrates variation of estimated analyte values in another embodiment, wherein the
variation is based on statistical parameters. The x-axis represents time in minutes and the y-axis represents glucose
concentration in mg/dL. The measured glucose values (170) are shown for about 160 minutes up to t=0. At t=0, intelligent
and dynamic estimation of the preferred embodiments is employed to obtain estimated glucose values (172). A variation
is defined by upper and lower limits (174) that were determined using 95% confidence intervals. Bremer, T.; Gough, D.
A. "Is blood glucose predictable from previous values? A solicitation for data." Diabetes 1999, 48, 445-451, teaches a
method of determining a confidence interval in one embodiment.
[0163] Although some embodiments have been described for a glucose sensor, any measured analyte pattern, data
analysis resulting from an experiment, or otherwise known statistical information, whether official or unofficial, published
or unpublished, proven or anecdotal, or the like, can be used to provide the statistical variation described herein.
[0164] Fig. 18 is a flow chart that illustrates the process (180) of estimating, measuring, and comparing analyte values
in one embodiment.
[0165] At block (182), the estimating, measuring, and comparing analyte values process (180) obtains sensor data,
which can be raw, smoothed, calibrated and/or otherwise processed.
[0166] At block (184), the estimating, measuring, and comparing analyte values process (180) estimates one or more
analyte values for a time period. In some embodiments, this analyte values estimation uses conventional projection
using first or second order regression, for example. In some embodiments, dynamically and intelligently selecting of one
or more algorithms from a plurality of algorithms (Fig. 9), dynamically and intelligently estimating analyte values within
physiological boundaries (Fig. 11), dynamic and intelligent estimation and evaluation of estimated analyte values (Fig.
13), variation analysis (Fig. 15), or the like can be applied to the process described herein with reference to Fig. 18.
[0167] At block (186), the estimating, measuring, and comparing analyte values process (180) obtains sensor data
for the time period for which the estimated analyte values were calculated at block (184). In some embodiments, the
measured analyte data can be raw, smoothed, calibrated and/or otherwise processed.
[0168] At block (188), the estimating, measuring, and comparing analyte values process (180) compares the estimated
analyte data to the measured analyte data for that estimated time period. In general, it can be useful to compare the
estimated analyte data to the measured analyte data for that estimated time period after estimation of analyte values.
This comparison can be performed continuously, namely, at regular intervals as data streams are processed into meas-
ured analyte values. Alternatively, this comparison can be performed based on events, such as during estimation of
measured analyte values, selection of a estimative algorithm, evaluation of estimative algorithms, variation analysis of
estimated analyte values, calibration and transformation of sensor analyte data, or the like.
[0169] One embodiment is shown in Fig. 19, wherein MARD is used to determine a correlation (or deviation), if any,
between the estimated and measured data sets. In other embodiments, other methods, such as linear regression, non-
linear mapping/regression, rank (for example, non-parametric) correlation, least mean square fit, mean absolute deviation
(MAD), or the like, can be used to compare the estimated analyte data to the measured analyte data to determine a
correlation (or deviation), if any.
[0170] In one embodiment, wherein estimation is used in outlier detection and/or in matching data pairs for a continuous
glucose sensor (see Figs. 6 and 7), the estimated glucose data can be plotted against reference glucose data on a
clinical error grid (for example, Clarke Error Grid or rate grid) and then compared to the measured glucose data for that
estimated time period plotted against the same reference analyte data on the same clinical error grid. In alternative
embodiments, other clinical error analysis methods can be used, such as Consensus Error Grid, rate of change calcu-
lation, consensus grid, and standard clinical acceptance tests, for example. The deviation can be quantified by percent
deviation, or can be classified as pass/fail, for example.
[0171] In some embodiments, the results of the comparison provide a quantitative deviation value, which can be used
to provide a statistical variation; for example, if the % deviation is calculated as 8%, then the statistical variation such
as described with reference to Fig. 15 can be updated with a +/-8% variation. In some alternative embodiments, the
results of the comparison can be used to turn on/off the estimative algorithms, estimative output, or the like. In general,
the comparison produces a confidence interval (for example, +/- 8% of estimated values) which can be used in data
analysis, output of data to a user, or the like.
[0172] A resulting deviation from this comparison between estimated and corresponding measured analyte values
may or may not imply error in the estimative algorithms. While not wishing to be bound by theory, it is believed that the
deviation between estimated and corresponding measured analyte values is due, at least in part, to behavioral changes
by a patient, who observes estimated analyte values and determines to change the present trend of analyte values by
behavioral and/or therapeutic changes (for example, medication, carbohydrate consumption, exercise, rest, or the like).
Accordingly, the deviation can also be used to illustrate positive changes resulting from the educational aspect of providing
estimated analyte values to the user, which is described in more detail with reference to Figs. 20 to 26.
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[0173] Fig. 19 is a graph that illustrates comparison of estimated analyte values in one embodiment, wherein previously
estimated analyte values are compared to time corresponding measured analyte values to determine a correlation (or
deviation), if any. The x-axis represents time in minutes. The y-axis represents glucose concentration in mg/dL. The
measured glucose values (192) are shown for about 105 minutes up to t=15. The estimated analyte values (194), which
were estimated at t=0 for 15 minutes, are shown superimposed over the measured analyte values (192). Using a 3-point
MARD for t=0 to t=15, the estimated analyte values (194) can be compared with the measured analyte values (192) to
determine a 0.55% average deviation.

Input and Output

[0174] In general, the above-described estimative algorithms, including estimation of measured analyte values and
variation analysis of the estimated analyte values are useful when provided to a patient, doctor, family member, or the
like. Even more, the estimative algorithms are useful when they are able to provide information helpful in modifying a
patient’s behavior so that they experience less clinically risky situations and higher quality of life than may otherwise be
possible. Therefore, the above-described data analysis can be output in a variety of forms useful in caring for the health
of a patient.
[0175] Output can be provided via a user interface, including but not limited to, visually on a screen, audibly through
a speaker, or tactilely through a vibrator. Additionally, output can be provided via wired or wireless connection to an
external device, including but not limited to, computer, laptop, server, personal digital assistant, modem connection,
insulin delivery mechanism, medical device, or other device that can be useful in interfacing with the receiver.
[0176] Output can be continuously provided, or certain output can be selectively provided based on events, analyte
concentrations or the like. For example, an estimated analyte path can be continuously provided to a patient on an LCD
screen, while audible alerts can be provided only during a time of existing or approaching clinical risk to a patient. As
another example, estimation can be provided based on event triggers (for example, when an analyte concentration is
nearing or entering a clinically risky zone). As yet another example, analyzed deviation of estimated analyte values can
be provided when a predetermined level of variation (for example, due to Known error or clinical risk) is known.
[0177] In contrast to alarms that prompt or alert a patient when a measured or projected analyte value or rate of change
simply passes a predetermined threshold, the clinical risk alarms of the preferred embodiments combine intelligent and
dynamic estimative algorithms to provide greater accuracy, more timeliness in pending danger, avoidance of false alarms,
and less annoyance for the patient. In general, clinical risk alarms of the preferred embodiments include dynamic and
intelligent estimative algorithms based on analyte value, rate of change, acceleration, clinical risk, statistical probabilities,
known physiological constraints, and/or individual physiological patterns, thereby providing more appropriate, clinically
safe, and patient-friendly alarms.
[0178] In some embodiments, clinical risk alarms can be activated for a predetermined time period to allow for the
user to attend to his/her condition. Additionally, the clinical risk alarms can be deactivated when leaving a clinical risk
zone so as not to annoy the patient by repeated clinical risk alarms, when the patient’s condition is improving.
[0179] In some embodiments, the dynamic and intelligent estimation of the preferred embodiments determines a
possibility of the patient avoiding clinical risk, based on the analyte concentration, the rate of change, and other aspects
of the dynamic and intelligent estimative algorithms of the preferred embodiments. If there is minimal or no possibility
of avoiding the clinical risk, a clinical risk alarm will be triggered. However, if there is a possibility of avoiding the clinical
risk, the system can wait a predetermined amount of time and re-analyze the possibility of avoiding the clinical risk. In
some embodiments, when there is a possibility of avoiding the clinical risk, the system will further provide targets, therapy
recommendations, or other information that can aid the patient in proactively avoiding the clinical risk.
[0180] In some embodiments, a variety of different display methods are used, such as described in the preferred
embodiments, which can be toggled through or selectively displayed to the user based on conditions or by selecting a
button, for example. As one example, a simple screen can be normally shown that provides an overview of analyte data,
for example present analyte value and directional trend. More complex screens can then be selected when a user desired
more detailed information, for example, historical analyte data, alarms, clinical risk zones, or the like.
[0181] Fig. 20 is an illustration of the receiver in one embodiment showing an analyte trend graph, including measured
analyte values, estimated analyte values, and a clinical risk zone. The receiver (12) includes an LCD screen (30), buttons
(32), and a speaker (24) and/or microphone. The screen (30) displays a trend graph in the form of a line representing
the historical trend of a patient’s analyte concentration. Although axes may or may not be shown on the screen (30), it
is understood that a theoretical x-axis represents time and a theoretical y-axis represents analyte concentration.
[0182] In some embodiments such as shown in Fig. 20, the screen shows thresholds, including a high threshold (200)
and a low threshold (202), which represent boundaries between clinically safe and clinically risky conditions for the
patients. In one exemplary embodiment, a normal glucose threshold for a glucose sensor is set between about 100 and
160 mg/dL, and the clinical risk zones (204) are illustrated outside of these thresholds. In alternative embodiments, the
normal glucose threshold is between about 80 and about 200 mg/dL, between about 55 and about 220 mg/dL, or other
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threshold that can be set by the manufacturer, physician, patient, computer program, or the like. Although a few examples
of glucose thresholds are given for a glucose sensor, the setting of any analyte threshold is not limited by the preferred
embodiments.
[0183] In some embodiments, the screen (30) shows clinical risk zones (204), also referred to as danger zones, through
shading, gradients, or other graphical illustrations that indicate areas of increasing clinical risk. Clinical risk zones (204)
can be set by a manufacturer, customized by a doctor, and/or set by a user via buttons (32), for example. In some
embodiments, the danger zone (204) can be continuously shown on the screen (30), or the danger zone can appear
when the measured and/or estimated analyte values fall into the danger zone (204). Additional information that can be
displayed on the screen, such as an estimated time to clinical risk. In some embodiments, the danger zone can be
divided into levels of danger (for example, low, medium, and high) and/or can be color-coded (for example, yellow,
orange, and red) or otherwise illustrated to indicate the level of danger to the patient. Additionally, the screen or portion
of the screen can dynamically change colors or illustrations that represent a nearness to the clinical risk and/or a severity
of clinical risk.
[0184] In some embodiments, such as shown in Fig. 20, the screen (30) displays a trend graph of measured analyte
data (206). Measured analyte data can be smoothed and calibrated such as described in more detail elsewhere herein.
Measured analyte data can be displayed for a certain time period (for example, previous 1 hour, 3 hours, 9 hours, etc.)
In some embodiments, the user can toggle through screens using buttons (32) to view the measured analyte data for
different time periods, using different formats, or to view certain analyte values (for example, highs and lows).
[0185] In some embodiments such as shown in Fig. 20, the screen (30) displays estimated analyte data (208) using
dots. In this illustration, the size of the dots can represent the confidence of the estimation, a variation of estimated
values, or the like. For example, as the time gets farther away from the present (t=0) the confidence level in the accuracy
of the estimation can decline as is appreciated by one skilled in the art. In some alternative embodiments, dashed lines,
symbols, icons, or the like can be used to represent the estimated analyte values. In some alternative embodiments,
shaded regions, colors, patterns, or the like can also be used to represent the estimated analyte values, a confidence
in those values, and/or a variation of those values, such as described in more detail in preferred embodiments.
[0186] Axes, including time and analyte concentration values, can be provided on the screen, however are not required.
While not wishing to be bound by theory, it is believed that trend information, thresholds, and danger zones provide
sufficient information to represent analyte concentration and clinically educate the user. In some embodiments, time can
be represented by symbols, such as a sun and moon to represent day and night. In some embodiments, the present or
most recent measured analyte concentration, from the continuous sensor and/or from the reference analyte monitor can
be continually, intermittently, or selectively displayed on the screen.
[0187] The estimated analyte values (208) of Fig. 20 include a portion, which extends into the danger zone (204). By
providing data in a format that emphasizes the possibility of clinical risk to the patient, appropriate action can be taken
by the user (for example, patient or caretaker) and clinical risk can be preempted.
[0188] Fig. 21 is an illustration of the receiver in another embodiment showing a representation of analyte concentration
and directional trend using a gradient bar. In this embodiment, the screen illustrates the measured analyte values and
estimated analyte values in a simple but effective manner that communicates valuable analyte information to the user.
[0189] In this embodiment, a gradient bar (210) is provided that includes thresholds (212) set at high and lows such
as described in more detail with reference to Fig. 20, above. Additionally, colors, shading, or other graphical illustration
can be present to represent danger zones (214) on the gradient bar (210) such as described in more detail with reference
to Fig. 20, above.
[0190] The measured analyte value is represented on the gradient bar (210) by a marker (216), such as a darkened
or colored bar. By representing the measured analyte value with a bar (216), a low-resolution analyte value is presented
to the user (for example, within a range of values). For example, each segment on the gradient bar (210) can represent
about 10 mg/dL of glucose concentration. As another example, each segment can dynamically represent the range of
values that fall within the "A" and "B" regions of the Clarke Error Grid. While not wishing to be bound by theory, it is
believe that inaccuracies known both in reference analyte monitors and/or continuous analyte sensors are likely due to
known variables such as described in more detail elsewhere herein, and can be de-emphasized such that a user focuses
on proactive care of the condition, rather than inconsequential discrepancies within and between reference analyte
monitors and continuous analyte sensors.
[0191] Additionally, the representative gradient bar communicates the directional trend of the analyte concentration
to the user in a simple and effective manner, namely by a directional arrow (218). For example, in conventional diabetic
blood glucose monitoring, a person with diabetes obtains a blood sample and measures the glucose concentration using
a test strip, or the like. Unfortunately, this information does not tell the person with diabetes whether the blood glucose
concentration is rising or falling. Rising or falling directional trend information can be particularly important in a situation
such as illustrated in Fig. 21, wherein if the user does not know that the glucose concentration is rising, he/she may
assume that the glucose concentration is falling and not attend to his/her condition. However, because rising directional
trend information (218) is provided, the person with diabetes can preempt the clinical risk by attending to his/her condition
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(for example, administer insulin). Estimated analyte data can be incorporated into the directional trend information by
characteristics of the arrow, for example, size, color, flash speed, or the like.
[0192] In some embodiments, the gradient bar can be a vertical instead of horizontal bar. In some embodiments, a
gradient fill can be used to represent analyte concentration, variation, or clinical risk, for example. In some embodiments,
the bar graph includes color, for example the center can be green in the safe zone that graduates to red in the danger
zones; this can be in addition to or in place of the divided segments. In some embodiments, the segments of the bar
graph are clearly divided by lines; however color, gradation, or the like can be used to represent areas of the bar graph.
In some embodiments, the directional arrow can be represented by a cascading level of arrows to a represent slow or
rapid rate of change. In some embodiments, the directional arrow can be flashing to represent movement or pending
danger.
[0193] The screen (30) of Fig. 21 can further comprise a numerical representation of analyte concentration, date, time,
or other information to be communicated to the patient. However, a user can advantageously extrapolate information
helpful for his/her condition using the simple and effective representation of this embodiment shown in Fig. 21, without
reading a numeric representation of his/her analyte concentration.
[0194] In some alternative embodiments, a trend graph or gradient bar, a dial, pie chart, or other visual representation
can provide analyte data using shading, colors, patterns, icons, animation, or the like.
[0195] Fig. 22 is an illustration of a receiver in one embodiment, which includes measured analyte values and a target
analyte value(s). Fig. 23 is an illustration of the receiver of (22) further including estimated analyte values. Fig. 24 is an
illustration of the receiver of (23) further including variations of estimated analyte values and including therapy recom-
mendations to aid a user in obtaining the target analyte value.
[0196] Fig. 22 is an illustration of the receiver (12) in one embodiment, wherein the screen (30) shows measured
analyte values (220) and one (or more) clinically acceptable target analyte values (222). The measured analyte values
(220) are illustrated as a trend graph, such as described with reference to Fig. 20, however other representations are
also possible.
[0197] Additionally, one or more clinically acceptable target analyte values (222) are provided as output, for example
such as shown in Fig. 22. In some embodiments, the clinically acceptable target analyte values can be obtained from
a variation analysis of clinical, physiological, or statistical variation, such as described in more detail elsewhere herein.
Namely, the variation analysis provides the analyzed variation of the estimated analyte values, and the output module
(18) (or processor (16)) further analyzes the variation of estimated analyte values for those that are clinically acceptable
and optionally also ensures physiological feasibility. For example, analysis of clinical risk can visually direct a patient to
aim for an analyte value in a safe zone (for example, outside of the clinically risky zone).
[0198] In some embodiments, the output displays a point representing a target analyte value. In some embodiments,
the output displays an object representing a general target analyte area. In some embodiments, the output displays a
path of target analyte values. In some embodiments, the output displays a range of target analyte values along that path.
[0199] Humans are generally particularly responsive to targets, namely, able to understand the intention of targets
and desire to obtain them. Advantageously, the output of target analyte values provides a goal towards which the user
will aim. In the example shown on Fig. 20, the measured analyte values (220) indicate an upward trend of analyte
concentration, and a user can likely visualize that the trend of the measured analyte values (220) will not likely hit the
target (222) without intervention or action. Therefore, a user will be prompted to proactively care for his/her analyte
concentration in an effort to hit the target analyte value(s) (222) (for example, administer insulin).
[0200] In some embodiments, the manufacturer, physician, patient, computer program, or the like can set the target
analyte values. In some embodiments, a physician can set static target analyte values based on age, time of day, meal
time, severity of medical condition, or the like; in such embodiments, the targets can be regularly or intermittently displayed
in an effort to modify patient behavior through habitual reminders and training. Targets can be continually maintained
on the screen or selectively displayed, for example when clinical risk is estimated, but can be avoided. In some embod-
iments, the target values can be dynamic targets, namely, targets that are dependent upon variable parameters such
as age, time of day, meal time, severity of medical condition, medications received (for example, insulin injections) or
the like, which can be input by a user or external device.
[0201] In one example of targets useful for a person with diabetes monitoring glucose concentration, the target glucose
levels for a person with diabetes are typically between about 80 and about 130 mg/dL before meals and less than about
180 mg/dL one to two hours after a meal. In another exemplary embodiment, the amount and timing of insulin injections
can be considered in determining the estimation of and target glucose ranges for a person with diabetes.
[0202] Fig. 23 is an illustration of the receiver (12) in another embodiment showing the measured analyte values (220)
and clinically acceptable target analyte value(s) (222) of Fig. 22 and further showing estimated analyte values (224) on
the same screen. In some embodiments, the data can be separated onto different screens that can be selectively viewed.
However, viewing both estimated analyte values and the target analyte values can be useful in educating the patient
regarding control of his/her analyte levels, since estimated and target analyte values are physiologically feasible in view
of known physiological parameters described elsewhere herein. Estimated analyte values can be calculated and dis-
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played in any manner described in the preferred embodiments.
[0203] Fig. 24 is an illustration of a receiver in another embodiment, including measured analyte values (220), target
analyte values (222), estimated analyte values (224), such as described in more detail above with reference to Figs. 22
and (23), and further including variations of estimated analyte values (226) and therapy recommendations (228) on the
screen to help the user obtain the displayed target analyte values (222). The variations of estimated analyte values are
calculated such as described in more detail with reference to Fig. 15.
[0204] The target analyte values presented should be physiologically feasible; therefore, type and/or amount of therapy
can be determined (or estimated) to aid the patient in obtaining those therapy goals. In some embodiments, the therapy
recommendations are representative icons, such as the injection icon (228) shown in Fig. 24. In alternative embodiments,
icons can include an apple, orange juice, candy bar, or any icon representative of eating, drinking, or medicating, for
example. In some embodiments, the therapy recommendations are preset alphanumeric messages (for example, "con-
sume carbohydrates", "inject insulin", or "no therapy required"). In some embodiments therapy recommendations can
be customized (for example, by a manufacturer, physician, patient, computer program, and/or the like) in order to provide
more reliable, accurate, clinically safe, and/or individualized goals. For example, a physician can input information helpful
in determining therapy recommendations using individual physiological considerations. As another example, data can
be input via the user interface or via a wired or wireless connection to the receiver, such as age, time of day, meal time,
severity of medical condition, medications received (for example, insulin injections) or the like, which can be used to
determine the appropriate therapy recommendations.
[0205] In some embodiments, the therapy recommendations include a variety of scenarios, which the viewer can view
and/or select. In these embodiments, the patient is given more control and able to make decisions based that fits best
with their lifestyle or present circumstance, or considering external influences of which the system was unaware.
[0206] In some embodiments, therapy recommendations are sent to an external device (for example, insulin delivery
mechanism), which is described in more detail with reference to Figs. 27 to 30.
[0207] Figs. 25 and 26 are views of the receiver showing an analyte trend graph, including measured analyte values
and dynamic visual representation of range of estimated analyte values based on a variation analysis, such as described
in more detail with reference to Fig. 15.
[0208] Fig. 25 is an illustration of a receiver (12) in another embodiment, including a screen (30) that shows the
measured analyte values (230) and a variation of estimated analyte values (232) in one exemplary embodiment. In this
embodiment, the visual representation of the variation of estimated analyte values (232) includes exemplary paths
representative of the analyzed variation of estimated analyte values that illustrates a range of possible future analyte
values. In some embodiments, the variation of estimated analyte values (232) is represented by a shape that begins at
the most recently measured analyte value (234) and includes boundaries (236) that represent the range of possible
variations of estimated analyte values for a future time period. The shape can be static or dynamic depending on the
type of variation analyzed by the estimative algorithm, for example a fan, teardrop, or other shaped object.
[0209] Fig. 26 is an illustration of a receiver (12) in another embodiment, including a screen (30) that shows the
measured analyte values (238) and a variation of estimated analyte values (240) in another exemplary embodiment. In
this embodiment, the variation can include an estimated path and boundaries, for example, which can be obtained from
a variation analysis and/or from physiological parameters, for example. In some alternative embodiments, color or other
illustrative representation of levels of safety or danger can be provided on the screen.
[0210] Fig. 27 is an illustration of a receiver (12) in another embodiment, including a screen (30) that shows a numerical
representation of the most recent measured analyte value (242). This numerical value (242) is preferably a calibrated
analyte value, such as described in more detail with reference to Fig. 2. Additionally, this embodiment preferably provides
an arrow (244) on the screen (30), which represents the rate of change of the host’s analyte concentration. A bold "up"
arrow is shown on the drawing, which preferably represents a relatively quickly increasing rate of change. The arrows
shown with dotted lines illustrate examples of other directional arrows (for example, rotated by 45 degrees), which can
be useful on the screen to represent various other positive and negative rates of change. Although the directional arrows
shown have a relative low resolution (45 degrees of accuracy), other arrows can be rotated with a high resolution of
accuracy (for example one degree of accuracy) to more accurately represent the rate of change of the host’s analyte
concentration. In some alternative embodiments, the screen provides an indication of the acceleration of the host’s
analyte concentration.
[0211] A second numerical value (246) is shown, which is representative of a variation of the measured analyte value
(242). The second numerical value is preferable determined from a variation analysis based on statistical, clinical, or
physiological parameters, such as described in more detail elsewhere herein. In one embodiment, the second numerical
value (246) is determined based on clinical risk (for example, weighted for the greatest possible clinical risk to a patient).
In another embodiment, the second numerical representation (246) is an estimated analyte value extrapolated to com-
pensate for a time lag, such as described in more detail elsewhere herein. In some alternative embodiments, the receiver
displays a range of numerical analyte values that best represents the host’s estimated analyte value (for example, +/-
10%). In some embodiments, the range is weighted based on clinical risk to the patient. In some embodiments, the
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range is representative of a confidence in the estimated analyte value and/or a variation of those values. In some
embodiments, the range is adjustable.

Patient Display

[0212] The potential of continuous glucose monitoring as an aid to both diabetic patients and their caregivers is well
recognized. For the patient, continuous monitoring provides hour-to-hour glucose information that enables intensive
therapy: it can be used to reduce the extent of hyperglycemic excursions without increasing the risk of hypoglycemic
events. For caregivers of patients with diabetes, continuous monitoring provides day-to-day glucose information that
can be used to optimize therapy. Despite these differences in purpose/perspective (hour-to-hour data for the patient,
day-to-day information for the caregiver), the conventional display of continuous glucose data has heretofore not been
adapted to the intended use/user. Accordingly, continuous glucose display methods that are utility-driven, and that allow
the data to be easily perceived and interpreted is desirable.
[0213] Glucose data are typically displayed on a graph with y-axis that spans a physiologic range of glucose (e.g.
40-400 mg/dl) and is uniform, i.e. the distance on the graph between 60 and 80 mg/dl is the same as the distance
between 160 and 180 mg/dl, even though the clinical meanings of these two differences are significantly different. An
alternative display uses a non-uniform y-axis that makes differences at low glucose levels easier to perceive. The
difference in appearance of these two graphs is depicted in Fig. 28, which illustrates the conventional display of a 9-
hour trend graph; Fig. 29 illustrates a display with a y-axis that has been equally divided into three zones (low, medium,
and high glucose) though the glucose range (max - min) of each zone is different (40-90 mg/dl, 90-180 mg/dl, 180-400
mg/dl). The non-uniform y-axis in Fig. 29 appears to cause distortion to the glucose trend but does not appear to be
misleading. More importantly, the dynamics at low glucose are more easily perceived in Fig. 29 than in Fig. 28.
[0214] Physicians use continuous glucose monitoring primarily for therapy optimization. Though the hour-to-hour
dynamics of glucose can contain information related to therapy adjustment, a longer-term/summary perspective is per-
haps easier perceive and interpret, and more reflective of changes in a patient’s glycemic control. In this way, physician
monitoring of a patient’s glycemic control is similar to process monitoring used in quality control of manufactured products:
the aim of both is to rapidly detect when the system/process is in or out of control, or to detect trends that can indicate
changes in control. Control charts, which plot averages and ranges of process parameters over time, are a well-estab-
lished and powerful illustration of process control and can be applicable to continuous glucose monitoring. Figs. 30 and
31 illustrate the difference in how well the data reflect changes in glycemic control. Fig. 30 is a conventional plot of
glucose over one week; Fig. 31 is a plot of the 24-hour (12)AM-12AM) median (+/- interquartile range) glucose.
[0215] The display provides improved utility of continuous glucose data, enabling improved clinical outcomes, and
offers advantages over prior art displays wherein the display of continuous glucose data is not tailored to the intended use.
[0216] Fig. 32 is an illustration of a receiver that interfaces with a computer. A receiver (12) is provided that is capable
of communication with a computer (280). The communication can include one-way or two-way wired or wireless trans-
missions (282). The computer (280) can be any system that processes information, such as a PC, server, personal
digital assistant (PDA), or the like.
[0217] In some embodiments, the receiver sends information to the computer, for example, measured analyte data,
estimated analyte data, target analyte data, therapy recommendations, or the like. The computer can include software
that processes the data in any manner known in the art.
[0218] In some embodiments, the computer sends information to the receiver; for example, updating software, cus-
tomizing the receiver programming (for example, setting individualized parameters), providing real time information (for
example, mealtime and exercise that has been entered into a PDA), or the like.
[0219] Fig. 33 is an illustration of a receiver (12) that interfaces with a modem (290), wherein data is transmitted via
wireless transmissions (292) between the receiver and a modem in order to interface with a telecommunications line
(for example, phone, pager, internet, network, etc). By providing an interface with a telecommunications line, the receiver
can send and receive information from parties remote from the receiver, such as at a hospital, doctor’s office, caretaker’s
computer, nationally-based server, or the like.
[0220] In some embodiments, the modem allows the receiver to send emergency messages to an emergency contact,
such as a family member, hospital, Public Safety Answering Point (PSAP), or the like when analyte concentration are
in a zone of extreme clinical risk. In some embodiments, a patient’s doctor monitors his/her analyte concentration remotely
and is able to request an appointment when certain conditions are not being met with the patient’s analyte concentration.
Numerous other uses can be contrived for communicating information via a modem (290) between the receiver (12)
and another party, all of which are encompassed in the preferred embodiments.
[0221] Fig. 34 is an illustration of a receiver (12) that interfaces with an insulin pen (300), wherein data is transmitted
via wireless transmission (302) between the receiver and the insulin pen (300). In some embodiments, the receiver
sends therapy recommendations to the insulin pen, such as amount and time of insulin injection. In some embodiments,
the insulin pen sends amount of therapy administered by a patient, such as type, amount, and time of administration.
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Such information can be used in data analysis, including estimation of analyte values, output of therapy recommendations,
and trend analysis, for example.
[0222] Fig. 35 is an illustration of a receiver (12) that interfaces with an insulin pump (310), wherein data is transmitted
via wireless transmission (312) between the receiver (12) and the insulin pump (310). In some embodiments, the receiver
sends therapy recommendations to the insulin pump (310), such as amount and time of insulin administration. In some
embodiments, the insulin pump (310) sends information regarding therapy to be administered such as type, amount,
and time of administration. Such information can be used in data analysis, including estimation of analyte values, output
of therapy recommendations, and trend analysis, for example.
[0223] In general, any of the above methods of data input and output can be combined, modified, selectively viewed,
selectively applied, or otherwise altered without departing from the scope of the present invention.
[0224] Methods and devices that can be suitable for use in conjunction with aspects of the preferred embodiments
are disclosed in copending applications including U.S. Appl. No. 10/695,636 filed October 28, 2003 and entitled, "SILI-
CONE COMPOSITION FOR BIOCOMPATIBLE MEMBRANE"; U.S. Appl. No. 10/632,537 filed August 22, 2003 and
entitled, "SYSTEMS AND METHODS FOR REPLACING SIGNAL ARTIFACTS IN A GLUCOSE SENSOR DATA
STREAM"; U.S. Appl. No. 10/646,333 filed August 22, 2003 entitled, "OPTIMIZED SENSOR GEOMETRY FOR AN
IMPLANTABLE GLUCOSE SENSOR"; U.S. Appl. No. 10/647,065 filed August 22, 2003 entitled, "POROUS MEM-
BRANES FOR USE WITH IMPLANTABLE DEVICES"; U.S. Appl. No. 10/633,367 filed August 1, 2003 entitled, "SYSTEM
AND METHODS FOR PROCESSING ANALYTE SENSOR DATA"; U.S. Appl. No. 09/916,386 filed July 27, 2001 and
entitled "MEMBRANE FOR USE WITH IMPLANTABLE DEVICES"; U.S. Appl. No. 09/916,711 filed July 27, 2001 and
entitled "SENSOR HEAD FOR USE WITH IMPLANTABLE DEVICE"; U.S. Appl. No.. 09/447,227 filed November 22,
1999 and entitled "DEVICE AND METHOD FOR DETERMINING ANALYTE LEVELS"; U.S. Appl. No. 10/153,356 filed
May 22, 2002 and entitled "TECHNIQUES TO IMPROVE POLYURETHANE MEMBRANES FOR IMPLANTABLE GLU-
COSE SENSORS"; U.S. Appl. No. 09/489,588 filed January 21, 2000 and entitled "DEVICE AND METHOD FOR DE-
TERMINING ANALYTE LEVELS"; U.S. Appl. No. 09/636,369 filed August 11, 2000 and entitled "SYSTEMS AND METH-
ODS FOR REMOTE MONITORING AND MODULATION OF MEDICAL DEVICES"; and U.S. Appl. No. 09/916,858 filed
July 27, 2001 and entitled "DEVICE AND METHOD FOR DETERMINING ANALYTE LEVELS," as well as issued patents
including U.S. 6,001,067 issued December 14, 1999 and entitled "DEVICE AND METHOD FOR DETERMINING ANA-
LYTE LEVELS"; U.S. 4,994,167 issued February 19, 1991 and entitled "BIOLOGICAL FLUID MEASURING DEVICE";
and U.S. 4,757,022 filed July 12, 1988 and entitled "BIOLOGICAL FLUID MEASURING DEVICE."
[0225] The above description provides several methods and materials of the invention. This invention is susceptible
to modifications in the methods and materials, as well as alterations in the fabrication methods and equipment. Such
modifications will become apparent to those skilled in the art from a consideration of this application or practice of the
invention provided herein. Consequently, it is not intended that this invention be limited to the specific embodiments
provided herein, but that it cover all modifications and alternatives coming within the true scope of the invention as
embodied in the attached claims.
[0226] All numbers expressing quantities of ingredients, reaction conditions, and so forth used in the specification and
claims are to be understood as being modified in all instances by the term "about." Accordingly, unless indicated to the
contrary, the numerical parameters set forth in the specification and attached claims are approximations that may vary
depending upon the desired properties sought to be obtained by the present invention. At the very least, and not as an
attempt to limit the application of the doctrine of equivalents to the scope of the claims, each numerical parameter should
be construed in light of the number of significant digits and ordinary rounding approaches.

Claims

1. A method for estimating an analyte value from a continuous analyte sensor, the method comprising:

receiving a data stream from the continuous analyte sensor for a first time period, thereby obtaining a measured
analyte value; and
estimating at least one analyte value for a second time period based on the data stream, characterised in that
the step of estimating at least one analyte value further comprises selecting an algorithm from a plurality of
algorithms based on an analysis of the data stream prior to estimating the at least one analyte value, and in that
the step of selecting an algorithm is conditional upon at least one value selected from the group consisting of
analyte concentration, rate of change, acceleration, and an individual historical pattern of the data stream.

2. The method of Claim 1, wherein the at least one value is the analyte concentration.

3. The method of Claim 1, wherein the at least one value is the rate of change.
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4. The method of Claim 1, wherein the at least one value is the acceleration.

5. The method of Claim 1, wherein the at least one value is the individual historical pattern of the data stream.

6. The method of any one of Claims 1-5, further comprising evaluating the selected algorithm by applying an evaluation
function prior to employing the selected algorithm to estimate the analyte value, wherein the evaluation function is
selected from the group consisting of a data association function, a curvature formula, and a physiological boundary.

7. The method of Claim 1, further comprising recognizing the individual historical pattern by monitoring a physiological
parameter over time.

8. The method of any one of Claims 1-7, further comprising comparing the estimated analyte value with the measured
analyte value.

9. The method of Claim 8, wherein the step of comparing comprises determining a deviation between the estimated
analyte value and the measured analyte value.

10. The method of Claim 1, wherein the plurality of algorithms comprise a first order regression algorithm and a second
order regression algorithm.

11. The method of Claim 10, wherein the first order regression is selected when the analyte concentration is within a
threshold range, and wherein the second order regression is selected when the analyte concentration is outside of
the threshold range.

12. The method of any one of Claims 1-11, wherein the second time period is a future time period.

13. The method of any of Claims 1-11, wherein the second time period is a time period in which data of the data stream
needs to be replaced.

14. The method of any of Claims 1-5, 7 and 10-13, wherein the analysis of the data stream includes running each of
the plurality of algorithms on the data stream and selecting the algorithm with the best correlation to measured
analyte values.

Patentansprüche

1. Verfahren zum Abschätzen eines Analytwerts von einem Daueranalytsensor, das Verfahren mit:

Empfangen eines Datenstroms von dem Daueranalytsensor über einen ersten Zeitraum, wodurch ein gemes-
sener Analytwert erhalten wird; und
Abschätzen mindestens eines Analytwerts über einen zweiten Zeitraum basierend auf dem Datenstrom, da-
durch gekennzeichnet, dass
der Schritt des Abschätzens von mindestens einem Analytwert ferner ein Auswählen eines Algorithmus aus
einer Vielzahl an Algorithmen basierend auf einer Analyse des Datenstroms vor dem Abschätzen des mindestens
einen Analytwerts umfasst, und dadurch, dass
der Schritt des Auswählens eines Algorithmus von mindestens einem Wert abhängt, der aus der Gruppe aus-
gewählt ist, die aus einer Analytkonzentration, einer Änderungsgeschwindigkeit, einer Beschleunigung und
einem individuellen historischen Muster des Datenstroms besteht.

2. Verfahren nach Anspruch 1, bei dem der mindestens eine Wert die Analytkonzentration ist.

3. Verfahren nach Anspruch 1, bei dem der mindestens eine Wert die Änderungsgeschwindigkeit ist.

4. Verfahren nach Anspruch 1, bei dem der mindestens eine Wert die Beschleunigung ist.

5. Verfahren nach Anspruch 1, bei dem der mindestens eine Wert das individuelle historische Muster des Datenstroms
ist.
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6. Verfahren nach einem der Ansprüche 1 bis 5, ferner mit einem Bewerten des ausgewählten Algorithmus durch
Anwenden einer Bewertungsfunktion vor dem Einsetzen des ausgewählten Algorithmus, um den Analytwert abzu-
schätzen,
wobei die Bewertungsfunktion aus der Gruppe ausgewählt ist, die aus einer Datenverknüpfungsfunktion, einer
Krümmungsformel und einer physiologischen Grenze besteht.

7. Verfahren nach Anspruch 1, ferner mit einem Erkennen des individuellen historischen Musters durch Überwachen
eines physiologischen Parameters über die Zeit.

8. Verfahren nach einem der Ansprüche 1 bis 7, ferner mit einem Vergleichen des abgeschätzten Analytwerts mit dem
gemessenen Analytwert.

9. Verfahren nach Anspruch 8, bei dem der Schritt des Vergleichens ein Bestimmen einer Abweichung zwischen dem
abgeschätzten Analytwert und dem gemessenen Analytwert umfasst.

10. Verfahren nach Anspruch 1, bei dem die Vielzahl an Algorithmen einen Regressionsalgorithmus erster Ordnung
und einen Regressionsalgorithmus zweiter Ordnung umfasst.

11. Verfahren nach Anspruch 10, bei dem die Regression erster Ordnung ausgewählt wird, wenn die Analytkonzentration
innerhalb eines Grenzbereichs ist und wobei die Regression zweiter Ordnung ausgewählt wird, wenn die Analyt-
konzentration außerhalb des Grenzbereichs ist.

12. Verfahren nach einem der Ansprüche 1 bis 11, bei dem der zweite Zeitraum ein zukünftiger Zeitraum ist.

13. Verfahren nach einem der Ansprüche 1 bis 11, bei dem der zweite Zeitraum ein Zeitraum ist, in dem Daten des
Datenstroms ersetzt werden müssen.

14. Verfahren nach einem der Ansprüche 1 bis 5, 7 und 10 bis 13, bei dem die Analyse des Datenstroms ein Ausführen
von jedem der Vielzahl an Algorithmen an dem Datenstrom und das Auswählen des Algorithmus mit der besten
Korrelation zu gemessenen Analytwerten einschließt.

Revendications

1. Procédé permettant d’estimer une valeur d’analyte provenant d’un capteur d’analyte continu, le procédé comprenant
les étapes qui consistent :

à recevoir un flux de données à partir du capteur d’analyte continu au cours d’une première durée, ce qui permet
d’obtenir une valeur d’analyte mesurée ; et
à estimer au moins une valeur d’analyte au cours d’une deuxième durée sur la base du flux de données,
caractérisé en ce que
l’étape d’estimation d’au moins une valeur d’analyte comprend en outre une étape de sélection d’un algorithme
parmi une pluralité d’algorithmes sur la base d’une analyse du flux de données avant l’estimation de l’au moins
une valeur d’analyte, et en ce que
l’étape de sélection d’un algorithme est conditionnée à au moins une valeur sélectionnée dans le groupe constitué
de la concentration d’analyte, du taux de changement, de l’accélération et d’un schéma historique individuel
du flux de données.

2. Procédé de la revendication 1, dans lequel l’au moins une valeur est la concentration d’analyte.

3. Procédé de la revendication 1, dans lequel l’au moins une valeur est le taux de changement.

4. Procédé de la revendication 1, dans lequel l’au moins une valeur est l’accélération.

5. Procédé de la revendication 1, dans lequel l’au moins une valeur est le schéma historique individuel du flux de
données.

6. Procédé de l’une quelconque des revendications 1 à 5, comprenant en outre une étape d’évaluation de l’algorithme
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sélectionné en appliquant une fonction d’évaluation avant l’utilisation de l’algorithme sélectionné pour estimer la
valeur d’analyte,
dans lequel la fonction d’évaluation est sélectionnée dans le groupe constitué d’une fonction d’association de don-
nées, d’une formule de courbure et d’une limite physiologique.

7. Procédé de la revendication 1, comprenant en outre une étape de reconnaissance du schéma historique individuel
en surveillant un paramètre physiologique au cours du temps.

8. Procédé de l’une quelconque des revendications 1 à 7, comprenant en outre l’étape de comparaison de la valeur
d’analyte estimée avec la valeur d’analyte mesurée.

9. Procédé de la revendication 8, dans lequel l’étape de comparaison comprend une étape de détermination d’un écart
entre la valeur d’analyte estimée et la valeur d’analyte mesurée.

10. Procédé de la revendication 1, dans lequel la pluralité d’algorithmes comprennent un algorithme de régression du
premier ordre et un algorithme de régression du second ordre.

11. Procédé de la revendication 10, dans lequel la régression du premier ordre est sélectionnée lorsque la concentration
d’analyte est dans une plage seuil, et dans lequel la régression du second ordre est sélectionnée lorsque la con-
centration d’analyte est à l’extérieur de la plage seuil.

12. Procédé de l’une quelconque des revendications 1 à 11, dans lequel la deuxième durée est une durée future.

13. Procédé de l’une des revendications 1 à 11, dans lequel la deuxième durée est une durée au cours de laquelle des
données du flux de données doivent être remplacées.

14. Procédé de l’une des revendications 1 à 5, 7 et 10 à 13, dans lequel l’analyse du flux de données comporte l’exécution
de chacun de la pluralité d’algorithmes sur le flux de données et la sélection de l’algorithme ayant la meilleure
corrélation avec les valeurs d’analyte mesurées.
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摘要(译)

用于动态和智能地估计来自连续分析物传感器的分析物数据的系统和方
法，包括接收数据流，选择多个算法中的一个，以及采用所选择的算法
来估计分析物值。估计可用于补偿时滞，将传感器数据与相应的参考数
据匹配，警告即将发生的临床风险，替换错误的传感器数据信号，并提
供更及时的分析物信息以鼓励主动行为和抢占临床风险。该方法可用于
医疗装置，包括提供指示分析物浓度的输出信号的连续分析物传感器
（10），信号被发送到的接收器（12），以及输入模块（14）。收到信
号。
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