(19)

(11) **EP 2 423 209 B1**

(12)

EUROPEAN PATENT SPECIFICATION

- (45) Date of publication and mention of the grant of the patent:05.08.2015 Bulletin 2015/32
- (21) Application number: 11770992.3
- (22) Date of filing: 19.04.2011

(51) Int Cl.: H01L 51/30 ^(2006.01) C07D 403/14 ^(2006.01) H01L 51/50 ^(2006.01)

C07D 401/14^(2006.01) C09K 11/06^(2006.01)

- (86) International application number: PCT/JP2011/059657
- (87) International publication number: WO 2011/132683 (27.10.2011 Gazette 2011/43)

(54) BIS-CARBAZOLE DERIVATIVE, MATERIAL FOR ORGANIC ELECTROLUMINESCENT ELEMENT AND ORGANIC ELECTROLUMINESCENT ELEMENT USING SAME

BISCARBAZOLDERIVAT, MATERIAL FÜR EIN ORGANISCHES ELEKTROLUMINESZENZELEMENT UND ORGANISCHES ELEKTROLUMINESZENZELEMENT DAMIT

DÉRIVÉ DE BIS-CARBAZOLE, MATÉRIAU POUR ÉLÉMENT ÉLECTROLUMINESCENT ORGANIQUE, ET ÉLÉMENT ÉLECTROLUMINESCENT ORGANIQUE L'UTILISANT

(84)	Designated Contracting States: AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR	•	NISHIMURA, Kazuki Sodegaura-shi Chiba 299-0293 (JP) OGIWARA, Toshinari Sodegaura-shi			
(30)	Priority: 20.04.2010 JP 2010097317 27.12.2010 JP 2010291138	•	Sodegaura-sni Chiba 299-0293 (JP) IKEDA, Kiyoshi Sodegaura-shi Chiba 299-0293 (JP)			
(43)	Date of publication of application: 29.02.2012 Bulletin 2012/09					
		(74)	Representative: Gille Hr	abal		
(73)	Proprietor: Idemitsu Kosan Co., Ltd.		Brucknerstrasse 20			
	Chiyoda-ku		40593 Düsseldorf (DE)			
	Tokyo 100-8321 (JP)					
		(56)	References cited:			
(72)	Inventors:		EP-A1- 1 486 550	EP-A2- 2 332 911		
•	INOUE, Tetsuya		EP-A2- 2 497 811	WO-A1-03/080760		
	Sodegaura-shi		WO-A1-2004/018588	WO-A1-2007/119816		
	Chiba 299-0293 (JP)		WO-A1-2008/062636	WO-A1-2008/149968		
•	ITO, Mitsunori		WO-A1-2008/156105	WO-A1-2009/008360		
	Sodegaura-shi		WO-A1-2009/008361	WO-A1-2009/008364		
	Chiba 299-0293 (JP)		WO-A1-2009/020095	WO-A1-2010/044342		
•	YOSHIDA, Kei		WO-A1-2010/136109	WO-A1-2010/136109		
	Sodegaura-shi		WO-A1-2011/019156	WO-A1-2011/019156		
	Chiba 299-0293 (JP)		WO-A2-2011/055934	JP-A- 2004 171 860		
•	HIBINO, Kumiko		JP-A- 2007 194 241	JP-A- 2008 135 498		
	Sodegaura-shi		JP-A- 2008 135 498	JP-A- 2010 241 801		
	Chiba 299-0293 (JP)		JP-A- 2010 270 245	JP-A- 2011 008 991		
			US-A1- 2004 086 745	US-A1- 2006 046 172		
			US-A1- 2006 180 806	US-A1- 2009 302 745		

Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).

- QIN-DE LIU ET AL: "Design and Synthesis of Phosphorescent Iridium Containing Dendrimers for Potential Applications in Organic Light-Emitting Diodes", MACROMOLECULAR CHEMISTRY AND PHYSICS, vol. 209, no. 18, 12 August 2008 (2008-08-12), pages 1931-1941, XP055048970, ISSN: 1022-1352, DOI: 10.1002/macp.200800222
- V. VAITKEVICIENE ET AL.: SYNTHETIC METALS, vol. 158, 2008, pages 383-390, XP22732268,
- V. VAITKEVICIENE ET AL. SYNTHETIC METALS vol. 158, 2008, pages 383 390

Description

TECHNICAL FIELD

⁵ **[0001]** The present invention relates to a biscarbazole derivative, a material for an organic electroluminescence device, and an organic electroluminescence device using those.

BACKGROUND ART

- 10 [0002] A known organic electroluminescence device includes an organic thin-film layer between an anode and a cathode, the organic thin-film layer including an emitting layer, and emits light using exciton energy generated by a recombination of holes and electrons injected into the emitting layer (see Patent Literatures 1 to 7). [0003] Such an organic EL device, which has the advantages as a self-emitting device, is expected to serve as an emitting device excellent in luminous efficiency, image guality, power consumption and thin design.
- [0004] In forming the emitting layer, a doping method, according to which an emitting material (dopant) is doped to a host, has been known as a usable method.
 [0005] The emitting layer formed by the doping method can efficiently generate excitons from electric charges injected into the host. With the exciton energy generated by the excitons being transferred to the dopant, the dopant can emit
- light with high efficiency.
 [0006] Recently, in order to improve performance of the organic electroluminescence device (hereinafter, occasionally referred to as an organic EL device), a doping method has been further studied to find a suitable host material.
 [0007] Such a host material is disclosed in, for instance, Patent Literatures 1 to 7. Patent Literatures 1 to 7 disclose a compound including a carbazole skeleton and a nitrogen-containing aromatic ring in the same molecule and a compound including a plurality of carbazole skeletons in the same molecule, as shown in the following compounds I to VIII.
- [0008] The compounds I and II disclosed in Patent Literature 1 each have a structure in which a carbazole skeleton is bonded to a benzene ring and an electron-deficient nitrogen-containing hetero aromatic ring structure. A carbazole skeleton, which is represented by polyvinyl carbazole, has been known as a main skeleton of a hole transporting material. In contrast, the electron-deficient nitrogen-containing hetero aromatic ring structure has been known as a structure having a high electron transporting capability. In other words, the compounds I and II disclosed in Patent Literature 1
- ³⁰ are materials for balancing charge transportation by combining a hole transporting skeleton and an electron transporting skeleton.

Compound I

[Chemical Formula 1]

45

35

40

50

55

Compound VI

The Patent Literature 8 which is prior art under Article 54(3) EPC discloses the following compounds:

15

30

40

CITATION LIST

PATENT LITERATURE

50

[0009]

Patent Literature 1: WO2003-080760

55 Patent Literature 2: Japanese Patent No. 3139321

Patent Literature 3: Japanese Patent No. 4357781

Patent Literature 4: JP-A-2003-151774

Patent Literature 5: JP-A-2008-135498

⁵ Patent Literature 6: JP-A-2009-21336

Patent Literature 7: JP-A-2008-214307

Patent Literature 8: EP-A-2497811

10

SUMMARY OF THE INVENTION

PROBLEMS TO BE SOLVED BY THE INVENTION

- 15 [0010] The compound I has only a single carbazole skeleton and lacks a hole transporting capability, so that a favorable luminescence property cannot be obtained. The compound II has two carbazolyl groups that are branched to left and right relative to a bond axis of a pyrimidine ring and a benzene ring (two conjugated aromatic ring). Accordingly, an overlapping margin of the carbazole skeleton between molecules is impaired, so that a hole transporting capability is insufficient and a re-bonding position of charges is likely to be closer to the anode. Consequently, favorable luminescence property and lifetime property cannot be obtained.
- ²⁰ property and lifetime property cannot be obtained.
 [0011] In order to enlarge the overlapping margin between the molecules and exhibit a sufficient hole transporting capability, it has been proposed to incorporate a structure in which carbazole skeletons are linked in the molecules. For instance, the compounds III to VI disclosed in Patent Literatures 2 to 5 have a structure in which two carbazole skeletons are linked. However, since none of the compounds III to VI has an electron-deficient nitrogen-containing hetero aromatic
- ²⁵ ring structure, adjustment of carrier balance between holes and electrons is difficult, so that a favorable luminescence property cannot be obtained.

[0012] The compound VII disclosed in Patent Literature 6 has an electron-deficient nitrogen-containing hetero aromatic ring structure and a carbazole-linking structure. However, two carbazole skeletons are bonded to a carbon atom at 3-position by a nitrogen atom. In this structure, the two carbazole skeletons are twisted to each other to lose flatness.

- Accordingly, the overlapping margin between the molecules becomes small and a hole transporting capability becomes insufficient, so that favorable luminescence property and lifetime property cannot be obtained.
 [0013] The compound VIII disclosed in Patent Literature 7 has a structure in which a bipyridyl group (a nitrogen-containing aromatic heterocyclic group) is bonded to a benzene ring of a carbazole skeleton. The compound is not disclosed as a phosphorescent host material although being used as a material for an electron transporting layer.
- ³⁵ However, since the compound is considered to exhibit a high electron transporting capability, when used as a host material, the compound provides a poor carrier balance within the emitting layer and fails to exhibit a favorable lumines-cence property.

[0014] Accordingly, an object of the invention is to provide a novel biscarbazole derivative having a hole transporting capability and an electron transporting capability and exhibiting an excellent carrier balance, a material for an organic

⁴⁰ EL device (hereinafter, referred to as an organic-EL-device material) and a phosphorescent and long-life organic EL device using those.

MEANS FOR SOLVING THE PROBLEMS

⁴⁵ **[0015]** After dedicated study to achieve the above object, the inventors found that a compound including two carbazolyl groups and a nitrogen-containing heterocyclic group effectively works for optimizing a carrier balance in the emitting layer of an organic EL device, and achieved the invention.

[0016] Specifically, a biscarbazole derivative according to an aspect of the invention is represented by the formula (2) below. Herein, "hydrogen" is meant to also include deuterium.

50

In the formula (2): A¹ is selected from the group consisting of a substituted or unsubstituted pyridine ring, a substituted or unsubstituted pyrimidine ring and a substituted or unsubstituted triazine ring;

- A² represents a substituted or unsubstituted aromatic hydrocarbon group having 6 to 30 ring carbon atoms, or substituted or unsubstituted nitrogen-containing heterocyclic group having 1 to 30 ring carbon atoms;
- X¹ and X² each are a linking group and independently represent a single bond, substituted or unsubstituted aromatic hydrocarbon group having 6 to 30 ring carbon atoms, substituted or unsubstituted fused aromatic hydrocarbon group having 6 to 30 ring carbon atoms, substituted aromatic heterocyclic group having 2 to 30 ring carbon atoms, or substituted or unsubstituted fused aromatic heterocyclic group having 2 to 30 ring carbon atoms.
- Y¹ to Y⁴ independently represent a hydrogen atom, fluorine atom, cyano group, substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, substituted or unsubstituted alkoxy group having 1 to 20 carbon atoms, substituted or unsubstituted haloalkyl group having 1 to 20 carbon atoms, substituted or unsubstituted haloalkoxy group having 1 to 20 carbon atoms, substituted or unsubstituted arylsilyl having 1 to 20 carbon atoms, substituted or unsubstituted arylsilyl having 6 to 30 carbon atoms, substituted or unsubstituted aromatic hydrocarbon group having 6 to 30 ring carbon atoms, substituted fused aromatic hydrocarbon group having 6 to 30 ring carbon atoms, substituted or unsubstituted o
- ³⁵ adjacent ones of Y¹ to Y⁴ may be bonded to each other to form a ring structure; p and q represent an integer of 1 to 4; r and s represent an integer of 1 to 3; and when p and q are an integer of 2 to 4 and r and s are an integer of 2 to 3, a plurality of Y¹ to Y⁴ may be the same or different.
- ⁴⁰ **[0017]** When Y¹ to Y⁴ are bonded to each other to form a ring structure, the ring structure is exemplified by structures represented by the following formulae.

[Chemical Formula 3]

45

5

10

15

20

50

5

10

15

[0018] Moreover, in the biscarbazole derivative according to the above aspect of the invention, A¹ is selected from the group consisting of a substituted or unsubstituted pyridine ring, substituted or unsubstituted pyrimidine ring and substituted or unsubstituted triazine ring, preferably selected from a substituted or unsubstituted pyrimidine ring or substituted or unsubstituted triazine ring, more preferably a substituted or unsubstituted pyrimidine ring.

²⁵ **[0019]** The biscarbazole derivative according to the aspect of the invention is preferably represented by a formula (3) below in the formula (2)

[Chemical Formula 5]

40

35

30

⁴⁵ [0020] In the formula (3): A², X¹, Y¹ to Y⁴, p, q, r and s represent the same as A², X¹, Y¹ to Y⁴, p, q, r and s of the formula (2); Y⁵ represent the same as Y¹ to Y⁴ of the formula (2); t represents an integer from 1 to 3; and when t is an integer of 2 to 3, a plurality of Y⁵ may be the same or different.
[0021] The organic EL device material according to another aspect of the invention contains the above biscarbazole.

[0021] The organic-EL-device material according to another aspect of the invention contains the above biscarbazole derivative.

- ⁵⁰ **[0022]** The organic EL device according to still another aspect of the invention includes: a cathode; an anode; and a plurality of organic thin-film layers provided between the cathode and the anode, and the organic thin-film layer including an emitting layer, in which at least one layer of the organic thin-film layers contains the above-described organic-EL-device material.
- [0023] In the organic EL device according to the above aspect of the invention, the emitting layer preferably contains the organic-EL-device material according to the aspect of the invention as a host material.

[0024] Also preferably in the organic EL device according to the above aspect of the invention, the emitting layer includes a phosphorescent material.

[0025] The phosphorescent material is preferably an ortho-metalated complex of a metal atom selected from iridium (Ir), osmium (Os) and platinum (Pt).

[0026] The organic EL device according to further aspect of the invention includes: a cathode; an anode; and a plurality of organic thin-film layers provided between a cathode and an anode, and the organic thin-film layer includes an emitting layer, in which at least one of the organic thin-film layers is the emitting layer containing a first host material, a second

⁵ layer, in which at least one of the organic thin-film layers is the emitting layer containing a first host material, a second host material and a phosphorescent material providing phosphorescence, the first host material being a compound represented by a formula (4) below.

In the formula (4): A¹ is selected from the group consisting of a substituted or unsubstituted pyridine ring, a substituted or unsubstituted pyrimidine ring and a substituted or unsubstituted triazine ring;

- A² represents a substituted or unsubstituted aromatic hydrocarbon group having 6 to 30 ring carbon atoms, or
 substituted or unsubstituted nitrogen-containing heterocyclic group having 1 to 30 ring carbon atoms;
 X¹ and X² each are a linking group and independently represent a single bond, substituted or unsubstituted aromatic hydrocarbon group having 6 to 30 ring carbon atoms, substituted or unsubstituted or unsubstituted aromatic hydrocarbon group having 6 to 30 ring carbon atoms, substituted aromatic heterocyclic group having 2 to 30 ring carbon
- atoms, or substituted or unsubstituted fused aromatic heterocyclic group having 2 to 30 ring carbon atoms; Y¹ to Y⁴ independently represent a hydrogen atom, fluorine atom, cyano group, substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, substituted or unsubstituted alkoxy group having 1 to 20 carbon atoms, substituted or unsubstituted haloalkyl group having 1 to 20 carbon atoms, substituted or unsubstituted or unsubstituted or unsubstituted 1 to 20 carbon atoms, substituted or unsubstituted alkylsilyl having 1 to 10 carbon atoms, substituted arylsilyl having 6 to 30 carbon atoms, substituted or unsubstituted aromatic hydrocarbon group having 6 to 30 ring
- carbon atoms, substituted or unsubstituted fused aromatic hydrocarbon group having 6 to 30 ring carbon atoms, substituted or unsubstituted aromatic heterocyclic group having 2 to 30 ring carbon atoms, or substituted or unsubstituted fused aromatic heterocyclic group having 2 to 30 ring carbon atoms; adjacent ones of Y¹ to Y⁴ may be bonded to each other to form a ring structure;
 - p and q represent an integer of 1 to 4; r and s represent an integer of 1 to 3; and
- ⁴⁵ when p and q are an integer of 2 to 4 and r and s are an integer of 2 to 3, a plurality of Y¹ to Y⁴ may be the same or different.

[0027] When Y¹ to Y⁴ are bonded to each other to form a ring structure, the ring structure is exemplified by the same structures as ones listed when Y¹ to Y⁴ are bonded to each other to form a ring structure in the formula (2).

50 [0028] In the organic EL device according to the above aspect of the invention, the second host material is preferably represented by either one of a formula (5) or (6) below.
[Chemical Formula 7]

(Cz ⁻) _a A ³	(5)
Cz(-A ³) _b	(6)

55

In the formula (5) or (6): Cz represents a substituted or unsubstituted arylcarbazolyl group or carbazolylaryl group;

A³ represents a group represented by a formula (7A) or (7B) below; and a and b each represent an integer of 1 to 3.

[Chemical Formula 8]

$$(M^{1})_{c}^{-}(L^{5})_{d}^{-}(M^{2})_{e} \dots (7A)$$

10 In the formula (7A): M¹ and M² each independently represent a substituted or unsubstituted nitrogen-containing aromatic heterocyclic ring or nitrogen-containing fused aromatic heterocyclic ring having 2 to 40 ring carbon atoms; M^1 and M^2 may be the same or different;

L⁵ represents a single bond, substituted or unsubstituted aromatic hydrocarbon group having 6 to 30 carbon atoms, substituted or unsubstituted fused aromatic hydrocarbon group having 6 to 30 carbon atoms, substituted or unsubstituted cycloalkylene group having 5 to 30 carbon atoms, substituted or unsubstituted aromatic heterocyclic group having 2 to 30 carbon atoms, or substituted or unsubstituted fused aromatic heterocyclic group having 2 to 30 carbon atoms;

c represents an integer of 0 to 2; d represents an integer of 1 to 2; e represents an integer of 0 to 2; and c+e represents 1 or more.

20

15

5

[Chemical Formula 9]

25
 (M³)_c⁻ (L⁶)_d⁻ (M⁴)_e(7B)

In the formula (7B): M³ and M⁴ each independently represent a substituted or unsubstituted aromatic hydrocarbon group having 6 to 40 ring carbon atoms; M³ and M⁴ may be the same or different;

L⁶ represents a single bond, substituted or unsubstituted aromatic hydrocarbon group having 6 to 30 carbon atoms, substituted or unsubstituted fused aromatic hydrocarbon group having 6 to 30 carbon atoms, or substituted or unsubstituted cycloalkylene group having 5 to 30 carbon atoms;

c represents an integer of 0 to 2; d represents an integer of 1 to 2; e represents an integer of 0 to 2; and c+e represents 1 or more.

35

40

45

30

[0029] In the organic EL device according to the above aspect of the invention, the second host material is preferably represented by a formula (8) below.

[Chemical Formula 10]

In the formula (8): R¹⁰¹ to R¹⁰⁶ each independently represent a hydrogen atom, halogen atom, substituted or 50 unsubstituted alkyl group having 1 to 40 carbon atoms, substituted or unsubstituted cycloalkyl group having 3 to 15 carbon atoms, substituted or unsubstituted heterocyclic group having 3 to 20 carbon atoms, substituted or unsubstituted alkoxy group having 1 to 40 carbon atoms, substituted or unsubstituted aryl group having 6 to 40 carbon atoms, substituted or unsubstituted aryloxy group having 6 to 20 carbon atoms, substituted or unsubstituted aralkyl group having 7 to 20 carbon atoms, substituted or unsubstituted arylamino group having 6 to 40 carbon atoms, substituted or unsubstituted alkylamino group having 1 to 40 carbon atoms, substituted or unsubstituted aralkylamino group having 7 to 60 carbon atoms, substituted or unsubstituted arylcarbonyl group having 7 to 40 carbon atoms, substituted or unsubstituted arylthio group having 6 to 20 carbon atoms, substituted or unsubstituted halogenated

alkyl group having 1 to 40 carbon atoms or cyano group;

at least one of R¹⁰¹ to R¹⁰⁶ is a substituted or unsubstituted 9-carbazolyl group, substituted or unsubstituted azacarbazolyl group having 2 to 5 nitrogen atoms, or -L-9-carbazolyl group;

- L represents a substituted or unsubstituted alkyl group having 1 to 40 carbon atoms, substituted or unsubstituted cycloalkyl group having 3 to 15 carbon atoms, substituted or unsubstituted heterocyclic group having 3 to 20 carbon atoms, substituted or unsubstituted alkoxy group having 1 to 40 carbon atoms, substituted or unsubstituted aryl group having 6 to 40 carbon atoms, substituted or unsubstituted aryloxy group having 6 to 20 carbon atoms, substituted or unsubstituted aralkyl group having 7 to 20 carbon atoms, substituted or unsubstituted arylamino group having 6 to 40 carbon atoms, substituted or unsubstituted alkylamino group having 1 to 40 carbon atoms, substituted
- 10 or unsubstituted aralkylamino group having 7 to 60 carbon atoms, substituted or unsubstituted arylcarbonyl group having 7 to 40 carbon atoms, substituted or unsubstituted arylthio group having 6 to 20 carbon atoms, or substituted or unsubstituted halogenated alkyl group having 1 to 40 carbon atoms; Xa represents a sulfur atom, oxygen atom or N-R¹⁰⁸; and

 R^{108} represents the same as R^{101} to R^{106} .

15

[0030] In the organic EL device according to the aspect of the invention, the second host material is preferably a compound selected from the group consisting of polycyclic aromatic compounds represented by formulae (9A), (9B) and (9C) below.

20 Ra-Ar¹⁰¹-Rb (9A) Ra-Ar¹⁰¹-Ar¹⁰²-Rb (9B) Ra-Ar¹⁰¹-Ar¹⁰²-Ar¹⁰³-Rb (9C)

25

30

[0031] In the formulae (9A) to (9C): Ar¹⁰¹, Ar¹⁰², Ar¹⁰³, Ra and Rb represent a polycyclic aromatic skeleton having 6 to 60 ring carbon atoms selected from a substituted or unsubstituted benzene ring, substituted or unsubstituted naph-thalene ring, substituted or unsubstituted chrysene ring, substituted fluoranthene ring, substituted or unsubstituted dibenzophenanthrene ring, substituted or unsubstituted or unsubstituted benzophenanthrene ring, substituted benzo[a]triphe-nylene ring, substituted or unsubstituted benzochrysene ring, substituted or unsubstituted benzo[b]fluoranthene ring,

substituted or unsubstituted fluorene ring and substituted or unsubstituted picene ring. **[0032]** Moreover, in the organic EL device according to the aspect of the invention, in the formulae (9A) to (9C), either one or both of Ra and Rb are preferably selected from the group consisting of a substituted or unsubstituted phenanthrene

³⁵ ring, substituted or unsubstituted benzo[c]phenanthrene ring and substituted or unsubstituted fluoranthene ring. [0033] In the organic EL device according to the above aspect of the invention, the second host material is preferably a monoamine derivative represented by any one of formulae (10) to (12) below.

50

[0034] Ar¹¹¹, Ar¹¹² and Ar¹¹³ are a substituted or unsubstituted aryl group or heteroaryl group.

[Chemical Formula 12]

15

[0035] At¹¹⁴, Ar¹¹⁵ and Ar¹¹⁷ are a substituted or unsubstituted aryl group or heteroaryl group.
 [0036] Ar¹¹⁶ is a substituted or unsubstituted arylene group or heteroarylene group.

[Chemical Formula 13]

[0037] Ar¹¹⁸, Ar¹¹⁹ and Ar¹²¹ are a substituted or unsubstituted aryl group or heteroaryl group.

[0038] Ar¹²⁰ is a substituted or unsubstituted arylene group or heteroarylene group.

³⁰ [0039] n is an integer of 2 to 5: when n is 2 or more, Ar¹²⁰ may be the same or different.
 [0040] In the organic EL device according to the aspect of the invention, the second host material is represented by a formula (13) or (14) below.

[Chemical Formula 14]

45

40

35

[0041] In the formula (13): X^3 represents a substituted or unsubstituted arylene group having 10 to 40 ring carbon atoms; and A^3 to A^6 represent a substituted or unsubstituted aryl group having 6 to 60 ring carbon atoms, or heteroaryl group having 6 to 60 ring atoms.

[0042] In the formula (14), A⁷ to A⁹ represent a substituted or unsubstituted aryl group having 6 to 60 ring carbon atoms, or heteroaryl group having 6 to 60 ring atoms.

[0043] In the organic EL device according to the above aspect of the invention, the second host material is more preferably represented by any one of formulae (15) to (19) below.

,20

A¹⁶ •••(18) 18 23 ••(19) A¹⁹

 Y^{21}

19

15

25

5

10

15

20

In the formulae (15) to (19): A¹⁰ to A¹⁹ each represent a substituted or unsubstituted aryl group having 6 to 40 carbon atoms, substituted or unsubstituted aromatic heterocyclic group having 2 to 40 carbon atoms, substituted or unsubstituted aryl group having 8 to 40 carbon atoms bonded with an aromatic amino group, or substituted or unsubstituted aryl group having 8 to 40 carbon atoms bonded with an aromatic heterocyclic group;

30

35

X⁴ to X⁹ represent a single bond or a linking group having 1 to 30 carbon atoms; Y⁶ to Y²⁴ represent a hydrogen atom, halogen atom, substituted or unsubstituted alkyl group having 1 to 40 carbon atoms, substituted or unsubstituted heterocyclic group having 3 to 20 carbon atoms, substituted or unsubstituted aryl group having 6 to 40 carbon atoms, substituted or unsubstituted aralkyl group having 7 to 20 carbon atoms, substituted or unsubstituted alkenyl group having 2 to 40 carbon atoms, substituted or unsubstituted alkylamino group having 1 to 40 carbon atoms, substituted or unsubstituted aralkylamino group having 7 to 60 carbon atoms, substituted or unsubstituted alkylsilyl group having 3 to 20 carbon atoms, substituted or unsubstituted arylsilyl group having 8 to 40 carbon atoms, substituted or unsubstituted aralkylsilyl group having 8 to 40 carbon atoms, or substituted or unsubstituted halogenated alkyl group having 1 to 40 carbon atoms; and

A¹⁰, A¹³, A¹⁵ and A¹⁷ are adapted to be respectively bonded to A¹¹, A¹⁴, A¹⁶ and A¹⁸ to form a ring;

40 X_A, X_B, X_C, X_D, X_F each represent a sulfur atom, an oxygen atom or a monoaryl-substituted nitrogen atom.

[0044] In the organic EL device according to the above aspect of the invention, it is preferable that the emitting layer includes a host material and a phosphorescent material, the phosphorescent material being an ortho-metalated complex of a metal atom selected from iridium (Ir), osmium (Os) and platinum (Pt).

- 45 [0045] In the organic EL device according to the above aspect of the invention, it is preferable that an electron injecting layer is provided between the cathode and the emitting layer and includes a nitrogen-containing cyclic derivative. [0046] In the organic EL device according to the above aspect of the invention, it is preferable that an electron transporting layer is provided between the cathode and the emitting layer and includes the above-described organic-ELdevice material.
- 50 [0047] In the organic EL device according to the above aspect of the invention, it is preferable that a reduction-causing dopant is present at an interfacial region between the cathode and the organic thin-film layer. [0048] The organic EL device according to the above aspect of the invention preferably includes a cathode, an anode, and an organic layer between the cathode and the anode, in which the organic layer include the biscarbazole derivative represented by the formulae (2) or (3).
- 55 [0049] In the organic electroluminescence device according to the above aspect of the invention, the organic layer preferably includes a phosphorescent material, the phosphorescent material being an ortho-metalated complex of a metal atom selected from iridium (Ir), osmium (Os) and platinum (Pt).

[0050] According to the above aspect of the invention, since the biscarbazole derivative is used as the organic-EL-

device material, a long-life organic electroluminescence device can be provided. Moreover, the organic-EL-device material is effective as organic-electron-device material for an organic solar cell, an organic semiconductor laser, a sensor using an organic substance and an organic TFT.

5 BRIEF DESCRIPTION OF DRAWINGS

[0051]

10

Fig. 1 schematically shows an exemplary arrangement of an organic electroluminescence device according to an exemplary embodiment of the invention.

Fig. 2A shows an energy diagram of an emitting layer in an organic EL device according to Examples of the invention. Fig. 2B shows an energy diagram of an emitting layer in an organic EL device according to Examples of the invention.

DESCRIPTION OF EXEMPLARY EMBODIMENTS

15

30

35

45

[0052] The invention will be described below in detail.

First Exemplary Embodiment

20 Arrangement of Organic EL Device

[0053] First of all, arrangement(s) of an organic EL device will be described below.

- [0054] The followings are representative arrangement examples of an organic EL device:
- ²⁵ (1) anode / emitting layer / cathode;
 - (2) anode / hole injecting layer / emitting layer / cathode;
 - (3) anode / emitting layer / electron injecting transporting layer / cathode;
 - (4) anode / hole injecting layer / emitting layer / electron injecting transporting layer / cathode;
 - (5) anode / organic semiconductor layer / emitting layer / cathode;
 - (6) anode / organic semiconductor layer / electron blocking layer / emitting layer / cathode;
 - (7) anode / organic semiconductor layer / emitting layer / adhesion improving layer / cathode;
 - (8) anode / hole injecting transporting layer / emitting layer / electron injecting transporting layer / cathode;
 - (9) anode / insulating layer / emitting layer / insulating layer / cathode;
 - (10) anode / inorganic semiconductor layer / insulating layer / emitting layer / insulating layer / cathode;
 - (11) anode / organic semiconductor layer / insulating layer / emitting layer / insulating layer / cathode;
 - (12) anode / insulating layer / hole injecting transporting layer / emitting layer / insulating layer / cathode; and
 - (13) anode / insulating layer / hole injecting transporting layer / emitting layer / electron injecting transporting layer / cathode.
- ⁴⁰ **[0055]** While the arrangement (8) is preferably used among the above, the arrangement of the invention is not limited to the above arrangements.

[0056] Fig. 1 schematically shows an exemplary arrangement of an organic EL device according to a first exemplary embodiment of the invention.

[0057] The organic EL device 1 includes a transparent substrate 2, an anode 3, a cathode 4 and an organic thin-film layer 10 positioned between the anode 3 and the cathode 4.

[0058] The organic thin-film layer 10 includes a phosphorescent-emitting layer 5 containing a phosphorescent host (a host material) and a phosphorescent dopant (a phosphorescent material). A layer such as a hole injecting/transporting layer 6 may be provided between the phosphorescent-emitting layer 5 and the anode 3 while a layer such as an electron injecting/transporting layer 7 may be provided between the phosphorescent-emitting layer 5 and the cathode 4.

- [0059] In addition, an electron blocking layer may be provided to the phosphorescent-emitting layer 5 adjacent to the anode 3 while a hole blocking layer may be provided to the phosphorescent-emitting layer 5 adjacent to the cathode 4.
 [0060] With this arrangement, electrons and holes can be trapped in the phosphorescent-emitting layer 5, thereby enhancing probability of exciton generation in the phosphorescent-emitting layer 5.
- [0061] It should be noted that a "fluorescent host" and a "phosphorescent host" herein respectively mean a host combined with a fluorescent dopant and a host combined with a phosphorescent dopant, and that a distinction between the fluorescent host and phosphorescent host is not unambiguously derived only from a molecular structure of the host in a limited manner.

[0062] In other words, the fluorescent host herein means a material for forming a fluorescent-emitting layer containing

a fluorescent dopant, and does not mean a host that is only usable as a host of a fluorescent material.

[0063] Likewise, the phosphorescent host herein means a material for forming a phosphorescent-emitting layer containing a phosphorescent dopant, and does not mean a host that is only usable as a host of a phosphorescent material. [0064] It should be noted that the "hole injecting/transporting layer" herein means "at least either one of a hole injecting

⁵ layer and a hole transporting layer" while the "electron injecting/transporting layer" herein means "at least either one of an electron injecting layer and an electron transporting layer."

Transparent Substrate

- ¹⁰ **[0065]** The organic EL device according to this exemplary embodiment is formed on a light-transmissive substrate. The light-transmissive plate, which supports the organic EL device, is preferably a smoothly-shaped substrate that transmits 50% or more of light in a visible region of 400 nm to 700 nm.
 - [0066] Specifically, a glass plate, a polymer plate, and the like are preferable.
 - **[0067]** For the glass plate, materials such as soda-lime glass, barium/strontium-containing glass, lead glass, aluminosilicate glass, borosilicate glass, barium borosilicate glass and quartz can be used.
- **[0068]** For the polymer plate, materials such as polycarbonate, acryl, polyethylene terephthalate, polyether sulfide and polysulfone can be used.

Anode and Cathode

20

15

[0069] The anode of the organic EL device is used for injecting holes into the hole injecting layer, the hole transporting layer or the emitting layer. It is effective that the anode has a work function of 4.5 eV or more.

[0070] Exemplary materials for the anode are alloys of indium-tin oxide (ITO), tin oxide (NESA), indium zinc oxide, gold, silver, platinum and copper.

²⁵ **[0071]** The anode may be made by forming a thin film from these electrode materials through methods such as vapor deposition and sputtering.

[0072] When light from the emitting layer is to be emitted through the anode as in this embodiment, the anode preferably transmits more than 10% of the light in the visible region. Sheet resistance of the anode is preferably several hundreds Ω / square or lower. Although depending on the material of the anode, thickness of the anode is typically in a range of 10 nm to 1 μ m, and preferably in a range of 10 to 200 nm.

[0073] The cathode is preferably formed of a material with smaller work function in order to inject electrons into the electron injecting layer, the electron transporting layer and the emitting layer.

[0074] Although a material for the cathode is subject to no specific limitation, examples of the material are indium, aluminum, magnesium, alloy of magnesium and indium, alloy of magnesium and aluminum, alloy of aluminum and lithium, alloy of aluminum, scandium and lithium, alloy of magnesium and silver and the like.

[0075] Like the anode, the cathode may be made by forming a thin film from the above materials through a method such as vapor deposition or sputtering. In addition, the light may be emitted through the cathode.

Emitting Layer

40

50

30

[0076] The emitting layer of the organic EL device is an organic thin-film layer having a function for providing conditions for recombination of the electrons and the holes to emit light.

[0077] Injectability of the holes may differ from that of the electrons and transporting capabilities of the hole and the electrons (represented by mobilities of the holes and the electrons) may differ from each other.

⁴⁵ **[0078]** As a method of forming the emitting layer, known methods such as vapor deposition, spin coating and an LB method may be employed.

[0079] The emitting layer is preferably a molecular deposit film.

[0080] The molecular deposit film means a thin film formed by depositing a material compound in gas phase or a film formed by solidifying a material compound in a solution state or in liquid phase. The molecular deposit film is typically distinguished from a thin film formed by the LB method (molecular accumulation film) by differences in aggregation structures, higher order structures and functional differences arising therefrom.

[0081] As disclosed in JP-A-57-51781, the emitting layer can be formed from a thin film formed by spin coating or the like, the thin film being formed from a solution prepared by dissolving a binder (e.g. a resin) and a material compound in a solvent.

⁵⁵ **[0082]** An organic EL device according to this exemplary embodiment includes: a cathode; an anode; and a single or a plurality of organic thin-film layers provided between the cathode and the anode, in which the organic thin-film layer(s) includes at least one emitting layer, and at least one of the organic thin-film layers includes at least one phosphorescent material and, as an organic-EL-device material, at least one biscarbazole derivative according to this exemplary em-

bodiment (described later). It is also preferable that at least one emitting layer includes the biscarbazole derivative as the organic-EL-device material according to this exemplary embodiment and at least one phosphorescent material.

Biscarbazole Derivative

5

[0083] The biscarbazole derivative according to this exemplary embodiment is represented by the formula (2) below.

In the formula (2): A¹ is selected from the group consisting of a substituted or unsubstituted pyridine ring, a substituted or unsubstituted pyrimidine ring and a substituted or unsubstituted triazine ring;

A² represents a substituted or unsubstituted aromatic hydrocarbon group having 6 to 30 ring carbon atoms, or substituted or unsubstituted nitrogen-containing heterocyclic group having 1 to 30 ring carbon atoms;

- ³⁰ X¹ and X² each are a linking group and independently represent a single bond, substituted or unsubstituted aromatic hydrocarbon group having 6 to 30 ring carbon atoms, substituted or unsubstituted fused aromatic hydrocarbon group having 6 to 30 ring carbon atoms, substituted or unsubstituted aromatic heterocyclic group having 2 to 30 ring carbon atoms, or substituted or unsubstituted fused aromatic heterocyclic group having 2 to 30 ring carbon atoms;
- Y¹ to Y⁴ independently represent a hydrogen atom, fluorine atom, cyano group, substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, substituted or unsubstituted alkoxy group having 1 to 20 carbon atoms, substituted or unsubstituted haloalkyl group having 1 to 20 carbon atoms, substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, substituted or unsubstituted arylsilyl having 1 to 20 carbon atoms, substituted or unsubstituted arylsilyl having 6 to 30 carbon atoms, substituted or unsubstituted aromatic hydrocarbon group having 6 to 30 ring carbon atoms, substituted fused aromatic hydrocarbon group having 6 to 30 ring carbon atoms, substituted or unsubstituted or unsubstited or unsubstited or unsubstituted or unsubstituted or unsubst
- stituted fused aromatic heterocyclic group having 2 to 30 ring carbon atoms; adjacent ones of Y^1 to Y^4 may be bonded to each other to form a ring structure; p and q represent an integer of 1 to 4; r and s represent an integer of 1 to 3; and when p and q are an integer of 2 to 4 and r and s are an integer of 2 to 3, a plurality of Y^1 to Y^4 may be the same
- 45 or different.

[0084] When Y¹ to Y⁴ are bonded to each other to form a ring structure, the ring structure is exemplified by structures represented by the following formulae.

[Chemical Formula 19]

55

30

35

40

50

5

10

15

[0085] In the formula (2), A² is preferably a nitrogen-containing heterocyclic group. More preferably, A² is a substituted or unsubstituted aromatic heterocyclic group having 2 to 30 ring carbon atoms, or substituted or unsubstituted fused aromatic heterocyclic group having 2 to 30 ring carbon atoms.

[0086] Moreover, A¹ in the formula (2) is selected from the group consisting of a substituted or unsubstituted pyridine ring, substituted or unsubstituted pyrimidine ring and substituted or unsubstituted triazine ring, preferably selected from a substituted or unsubstituted pyrimidine ring or substituted or unsubstituted triazine ring.

[0087] A¹ in the formula (2) is further preferably a substituted or unsubstituted pyrimidine ring and is particularly preferably represented by a formula (3) below.

In the formula (3), A², X¹, Y¹ to Y⁴, p, q, r and s are the same as those in the formula (2); Y⁵ represents the same as Y¹ to Y⁴ of the formula (1); t represents an integer from 1 to 3; and when t is an integer of 2 to 3, a plurality of Y⁵ may be the same or different.

[0089] In the formula (3), A² is preferably a nitrogen-containing heterocyclic group. More preferably, A² is a substituted or unsubstituted aromatic heterocyclic group having 2 to 30 ring carbon atoms, or substituted or unsubstituted fused aromatic heterocyclic group having 2 to 30 ring carbon atoms.

[0090] In the formulae (2) and (3), X¹ is preferably a single bond or a substituted or unsubstituted divalent aromatic hydrocarbon group having 6 to 30 ring carbon atoms, more preferably a substituted or unsubstituted divalent aromatic hydrocarbon group having 6 to 30 ring carbon atoms, particularly preferably a benzene ring or naphthalene ring.

[0091] When X¹ is a substituted or unsubstituted benzene ring in the formulae (2) and (3), A¹ and the carbazolyl group, which are bonded to X¹, are preferably in meta positions or para positions. Particularly preferably, X¹ is unsubstituted para-phenylene.

[0092] In the formula (2), the pyridine ring, pyrimidine ring and triazine ring are more preferably represented by the following formulae. In the formulae, Y and Y' represent a substituent. Examples of the substituent are the same groups

as those represented by Y¹ to Y⁴ as described above. Y and Y' may be the same or different. Preferred examples thereof are the substituted or unsubstituted aromatic hydrocarbon group or fused aromatic hydrocarbon group having 6 to 30 ring carbon atoms, and the substituted or unsubstituted aromatic heterocyclic group or fused aromatic heterocyclic group having 2 to 30 ring carbon atoms. In the following formulae, * represents a bonding position to X¹ or X².

5

10

15

30

40

[0093] In the formulae (2) and (3), the alkyl group, alkoxy group, haloalkyl group, haloalkoxy group and alkylsilyl group, which are represented by Y¹ to Y⁵, may be linear, branched or cyclic.

- [0094] In the formulae (2) and (3), examples of the alkyl group having 1 to 20 carbon atoms are a methyl group, ethyl group, propyl group, isopropyl group, n-butyl group, s-butyl group, isobutyl group, t-butyl group, n-hexyl group, n-heptyl group, n-octyl group, n-nonyl group, n-decyl group, n-undecyl group, n-dodecyl group, n-tridecyl group, n-tetradecyl group, n-pentadecyl group, n-hexadecyl group, n-heptadecyl group, n-octadecyl group, neopentyl group,
- 20 1-methylpentyl group, 2-methylpentyl group, 1-pentylhexyl group, 1-butylpentyl group, 1-heptyloctyl group, 3-methylpentyl group, cyclopentyl group, cyclohexyl group, cycloheptyl group, cyclooctyl group and 3,5-tetramethylcyclohexyl group. Examples of the alkyl group having 1 to 10 carbon atoms are a methyl group, ethyl group, propyl group, isopropyl group, n-butyl group, s-butyl group, isobutyl group, t-butyl group, cyclopentyl group, cyclohexyl group and cycloheptyl aroup.
- 25 [0095] As the alkoxy group having 1 to 20 carbon atoms, an alkoxy group having 1 to 6 carbon atoms is preferable and specific examples thereof are a methoxy group, ethoxy group, propoxy group, butoxy group, pentyloxy group, and hexyloxy group.

[0096] The haloalkyl group having 1 to 20 carbon atoms is exemplified by an haloalkyl group provided by substituting the alkyl group having 1 to 20 carbon atoms with one or more halogen atoms. Preferred one of the halogen atoms is fluorine. The haloalkyl group is exemplified by a trifluoromethyl group and a 2,2,2-trifluoroethyl group.

- [0097] The haloalkoxy group having 1 to 20 carbon atoms is exemplified by a haloalkoxy group provided by substituting the alkoxy group having 1 to 20 carbon atoms with one or more halogen atoms.
- [0098] Examples of the alkylsilyl group having 1 to 10 carbon atoms are a trimethylsilyl group, triethylsilyl group, tributylsilyl group, dimethylethylsilyl group, dimethylisopropylsilyl group, dimethylpropylsilyl group, dimethylbutylsilyl 35 group, dimethyl-tertiary-butylsilyl group and diethylisopropylsilyl group.
 - [0099] Examples of the arylsilyl group having 6 to 30 carbon atoms are a phenyldimethylsilyl group, diphenylmethylsilyl group, diphenyl-tertiary-butylsilyl group and triphenylsilyl group.

[0100] Examples of the aromatic heterocyclic group or fused aromatic heterocyclic group having 2 to 30 ring carbon atoms are a pyroryl group, pyrazinyl group, pyridinyl group, indolyl group, isoindolyl group, furyl group, benzofuranyl group, isobenzofuranyl group, dibenzofuranyl group, dibenzothiophenyl group, quinolyl group, isoquinolyl group, quinoxalinyl group, carbazolyl group, phenantridinyl group, acridinyl group, phenanthrolinyl group, thienyl group and a group formed from a pyridine ring, pyrazine ring, pyrimidine ring, pyridazine ring, triazine ring, indol ring, quinoline ring, acridine

ring, pirrolidine ring, dioxane ring, piperidine ring, morpholine ring, piperadine ring, carbazole ring, furan ring, thiophene ring, oxazole ring, oxadiazole ring, benzooxazole ring, thiazole ring, thiadiazole ring, benzothiazole ring, triazole ring, 45 imidazole ring, benzoimidazole ring, pyrane ring and dibenzofuran ring. Among the above, the aromatic heterocyclic group or fused aromatic heterocyclic group having 2 to 10 ring carbon atoms is preferable.

[0101] Examples of the aromatic hydrocarbon group or fused aromatic hydrocarbon group having 6 to 30 ring carbon atoms are a phenyl group, naphthyl group, phenanthryl group, biphenyl group, terphenyl group, quarterphenyl group, fluoranthenyl group, triphenylenyl group, phenanthrenyl group, pyrenyl group, chrysenyl group, fluorenyl group, and 9,9dimethylfluorenyl group. Among the above, the aromatic hydrocarbon group or fused aromatic hydrocarbon group having

- 50 6 to 20 ring carbon atoms is preferable. [0102] When A¹, A², X¹, X² and Y¹ to Y⁵ of the formulae (2) and (3) each have one or more substituents, the substituents are preferably a linear, branched or cyclic alkyl group having 1 to 20 carbon atoms; linear, branched or cyclic alkoxy group having 1 to 20 carbon atoms; linear, branched or cyclic haloalkyl group having 1 to 20 carbon atoms; linear,
- 55 branched or cyclic alkylsilyl group having 1 to 10 carbon atoms; arylsilyl group having 6 to 30 ring carbon atoms; cyano group; halogen atom; aromatic hydrocarbon group or fused aromatic hydrocarbon group having 6 to 30 ring carbon atoms; or aromatic heterocyclic group or fused aromatic heterocyclic group having 2 to 30 ring carbon atoms. [0103] Examples of the linear, branched or cyclic alkyl group having 1 to 20 carbon atoms; linear, branched or cyclic

alkoxy group having 1 to 20 carbon atoms; linear, branched or cyclic haloalkyl group having 1 to 20 carbon atoms; linear, branched or cyclic alkylsilyl group having 1 to 10 carbon atoms; arylsilyl group having 6 to 30 ring carbon atoms; aromatic hydrocarbon group or fused aromatic hydrocarbon group having 6 to 30 ring carbon atoms; and aromatic heterocyclic group or fused aromatic heterocyclic group having 2 to 30 ring carbon atoms are the above-described groups. The halogen atom is exemplified by a fluorine atom.

[0104] Examples of compounds for the biscarbazole derivative according to this exemplary embodiment represented by the formulae (2) and (3) are as follows.

40

45

50

5

[Chemical Formula 25]

[Chemical Formula 27]

[Chemical Formula 29]

[Chemical Formula 30]

[Chemical Formula 33]

[Chemical Formula 34]

[Chemical Formula 36]

Ņ

Õ

15

[Chemical	Formula	37]
-----------	---------	-----

55

40

45

⁵⁰ **[0105]** An organic-EL-device material according to this exemplary embodiment contains the above biscarbazole derivative.

[0106] The organic-EL-device material according to this exemplary embodiment includes the biscarbazole derivative represented by any one of the above formulae (2) and (3).

[0107] The organic EL device according to this exemplary embodiment includes a cathode, an anode, and an organic layer between the cathode and the anode, in which the organic layer include the biscarbazole derivative any one of the above formulae (2) and (3).

[0108] In the organic EL device according to this exemplary embodiment, the emitting layer may preferably contain the organic-EL-device material according to this exemplary embodiment.

[0109] The organic EL device according to this exemplary embodiment may preferably contain the electron injecting / transporting layer, in which the electron injecting / transporting layer may preferably contain the organic-EL-device material according to this exemplary embodiment.

[0110] The organic EL device according to this exemplary embodiment may preferably contain at least one of the 5 electron injecting / transporting layer and the hole blocking layer that contains the organic-EL-device material according to this exemplary embodiment.

[0111] The organic EL device according to this exemplary embodiment may preferably include the hole transporting layer (hole injecting layer) that contains the organic-EL-device material according to this exemplary embodiment.

10 **Phosphorescent Material**

[0112] According to this exemplary embodiment, the phosphorescent material preferably contains a metal complex, and the metal complex preferably has a metal atom selected from Ir, Pt, Os, Au, Cu, Re and Ru, and a ligand. Particularly, the ligand preferably has an ortho-metal bond.

- 15 [0113] The phosphorescent material is preferably a compound containing a metal selected from iridium (Ir), osmium (Os) and platinum (Pt) because such a compound, which exhibits high phosphorescence quantum yield, can further enhance external quantum efficiency of the emitting device. The phosphorescent material is more preferably a metal complex such as an iridium complex, osmium complex or platinum complex, among which an iridium complex and platinum complex are more preferable and ortho metalation of an iridium complex is the most preferable.
- 20 [0114] Examples of such a preferable metal complex are shown below.

25			
30			
35			
40			
45			
50			
55			

[Chemical Formula 39]

[Chemical Formula 41]

[0115] According to this exemplary embodiment, at least one of the phosphorescent material contained in the emitting layer preferably emits light with the maximum wavelength of 450 nm to 720 nm.

[0116] By doping the phosphorescent material (phosphorescent dopant) having such an emission wavelength to the
specific host material used in this exemplary embodiment so as to form the emitting layer, the organic EL device can exhibit high efficiency.

Reduction-causing Dopant

5

15

20

[0117] In the organic EL device according to this exemplary embodiment, a reduction-causing dopant may be preferably contained in an interfacial region between the cathode and the organic thin-film layer.

[0118] With this arrangement, the organic EL device can emit light with enhanced luminance intensity and have a longer lifetime.

¹⁰ **[0119]** The reduction-causing dopant may be at least one compound selected from an alkali metal, alkali metal complex, alkali metal compound, alkali earth metal, alkali earth metal complex, alkali earth metal compound, rare-earth metal, rare-earth metal compound and the like.

[0120] Examples of the alkali metal are Na (work function: 2.36 eV), K (work function: 2.28 eV), Rb (work function: 2.16 eV), Cs (work function: 1.95 eV) and the like, among which a substance having a work function of 2.9 eV or less is particularly preferable. Among the above, the reduction-causing dopant is preferably K, Rb or Cs, more preferably Rb or Cs, the most preferably Cs.

[0121] Examples of the alkali earth metal are Ca (work function: 2.9 eV), Sr (work function: 2.0 to 2.5 eV), Ba (work function: 2.52 eV) and the like, among which a substance having a work function of 2.9 eV or less is particularly preferable. **[0122]** Examples of the rare-earth metal are Sc, Y, Ce, Tb, Yb and the like, among which a substance having a work function of 2.9 eV or less is particularly preferable.

[0123] Since the above preferable metals have particularly high reducibility, addition of a relatively small amount of the metals to an electron injecting zone can enhance luminance intensity and lifetime of the organic EL device.

[0124] Examples of the alkali metal compound include an alkali oxide such as Li_2O , Cs_2O and K_2O , and an alkali halide such as LiF, NaF, CsF and KF. LiF, Li_2O , and NaF are preferable.

[0125] Examples of the alkali earth metal compound include BaO, SrO, CaO and their mixture such as Ba_xSr_{1-x}O (0<x<1) and Ba_xCa_{1-x}O (0<x<1). BaO, SrO, and CaO are preferable.
 [0126] Examples of the rare earth metal compound include YbF₃, ScF₃, ScO₃, Y₂O₃, Ce₂O₃, GdF₃ and TbF₃. YbF₃,

ScF₃, and TbF₃ are preferable.

- [0127] The alkali metal complex, alkali earth metal complex and rare earth metal complex are not specifically limited as long as they contain at least one metal ion of an alkali metal ion, an alkali earth metal ion and a rare earth metal ion. A ligand for each of the complexes is preferably quinolinol, benzoquinolinol, acridinol, phenanthridinol, hydroxyphenyl oxazole, hydroxyphenyl thiazole, hydroxydiaryl oxadiazole, hydroxydiaryl thiadiazole, hydroxyphenyl pyridine, hydroxy phenyl benzoimidazole, hydroxybenzo triazole, hydroxy fluborane, bipyridyl, phenanthroline, phthalocyanine, porphyrin, cyclopentadiene, β-diketones, azomethines, or a derivative thereof, but the ligand is not limited thereto.
- ³⁵ **[0128]** The reduction-causing dopant is added to preferably form a layer or an island pattern in the interfacial region. The layer of the reduction-causing dopant or the island pattern of the reduction-causing dopant is preferably formed by depositing the reduction-causing dopant by resistance heating deposition while an emitting material for forming the interfacial region or an organic substance as an electron-injecting material are simultaneously deposited, so that the reduction-causing dopant is dispersed in the organic substance. Dispersion concentration at which the reduction-causing
- dopant is dispersed in the organic substance is a mole ratio (organic substance to reduction-causing dopant) of 100:1 to 1:100, preferably 5:1 to 1:5.
 [0129] When the reduction-causing dopant forms the layer, the emitting material or the electron injecting material for

[0129] When the reduction-causing dopant forms the layer, the emitting material or the electron injecting material for forming the organic layer of the interfacial region is initially layered, and the reduction-causing dopant is subsequently deposited singularly thereon by resistance heating deposition to form a preferably 0.1 to 15 nm-thick layer.

- ⁴⁵ **[0130]** When the reduction-causing dopant forms the island pattern, the emitting material or the electron injecting material for forming the organic layer of the interfacial region is initially formed in an island shape, and the reduction-causing dopant is subsequently deposited singularly thereon by resistance heating deposition to form a preferably 0.05 to 1 nm-thick island shape.
- [0131] A ratio of the main component to the reduction-causing dopant in the organic EL device according to this exemplary embodiment is preferably a mole ratio (main component to reduction-causing dopant) of 5:1 to 1:5, more preferably 2:1 to 1:2.

Electron Injecting Layer and Electron Transporting Layer

⁵⁵ **[0132]** The electron injecting layer or the electron transporting layer, which aids injection of the electrons into the emitting layer, has a large electron mobility. The electron injecting layer is provided for adjusting energy level, by which, for instance, sudden changes of the energy level can be reduced.

[0133] The organic EL device according to this exemplary embodiment preferably includes the electron injecting layer

between the emitting layer and the cathode, and the electron injecting layer preferably contains a nitrogen-containing cyclic derivative as the main component. The electron injecting layer may serve as the electron transporting layer. [0134] It should be noted that "as the main component" means that the nitrogen-containing cyclic derivative is contained in the electron injecting layer at a content of 50 mass% or more.

- ⁵ **[0135]** A preferable example of an electron transporting material for forming the electron injecting layer is an aromatic heterocyclic compound having in the molecule at least one heteroatom. Particularly, a nitrogen-containing cyclic derivative is preferable. The nitrogen-containing cyclic derivative is preferably an aromatic ring having a nitrogen-containing sixmembered or five-membered ring skeleton, or a fused aromatic cyclic compound having a nitrogen-containing sixmembered or five-membered ring skeleton.
- ¹⁰ **[0136]** A preferable example of the nitrogen-containing cyclic derivative is a nitrogen-containing cyclic metal chelate complex represented by the following formula (A).

М

2

 \cap

[Chemical Formula 43]

 \cap

 \mathbb{R}^2

R⁵

 \mathbb{R}^4

 \mathbb{R}^3

20

25

[0137] R² to R⁷ in the formula (A) each independently represent a hydrogen atom, a halogen atom, an oxy group, an amino group, a hydrocarbon group having 1 to 40 carbon atoms, an alkoxy group, an aryloxy group, an alkoxycarbonyl group, or an aromatic heterocyclic group. These groups may be substituted or unsubstituted.

(A)

- 30 [0138] Examples of the halogen atom include fluorine, chlorine, bromine, and iodine. In addition, examples of the substituted or unsubstituted amino group include an alkylamino group, an arylamino group, and an aralkylamino group. [0139] The alkoxycarbonyl group is represented by -COOY'. Examples of Y' are the same as the examples of the alkyl group. The alkylamino group and the aralkylamino group are represented by -NQ¹Q². Examples for each of Q¹ and Q² are the same as the examples described in relation to the alkyl group and the aralkyl group, and preferable examples
- ³⁵ for each of Q¹ and Q² are also the same as those described in relation to the alkyl group and the aralkyl group. Either one of Q¹ and Q² may be a hydrogen atom. **101401** The analysis group is represented by NAr¹ Ar². Examples for each of Ar¹ and Ar² are the same as the

[0140] The arylamino group is represented by $-NAr^1 Ar^2$. Examples for each of Ar^1 and Ar^2 are the same as the examples described in relation to the non-fused aromatic hydrocarbon group and the fused aromatic hydrocarbon group. Either one of Ar^1 and Ar^2 may be a hydrogen atom.

- 40 [0141] M represents aluminum (Al), gallium (Ga) or indium (In), among which In is preferable.
 - [0142] L in the formula (A) represents a group represented by the following formula (A') or the following formula (A").

45

[Chemical Formula 44]

30 [0143] In the formula (A'), R⁸ to R¹² each independently represent a hydrogen atom or a substituted or unsubstituted hydrocarbon group having 1 to 40 carbon atoms. Adjacent groups may form a cyclic structure. In the formula (A"), R¹³ to R²⁷ each independently represent a hydrogen atom or a substituted or unsubstituted hydrocarbon group having 1 to 40 carbon atoms. Adjacent groups may form a cyclic structure.

[0144] Examples of the hydrocarbon group having 1 to 40 carbon atoms represented by each of R⁸ to R¹² and R¹³ to R^{27} in the formulae (A') and (A") are the same as those of R^2 to R^7 in the formula (A).

[0145] Examples of a divalent group formed when an adjacent set of R⁸ to R¹² and R¹³ to R²⁷ forms a cyclic structure are a tetramethylene group, a pentamethylene group, a hexamethylene group, a diphenylmethane-2,2'-diyl group, a diphenylethane-3,3'-diyl group, a diphenylpropane-4,4'-diyl group and the like.

[0146] Moreover, in this exemplary embodiment, the electron transporting layer may contain the biscarbazole deriv-40 atives represented by the formulae (2) and (3) (or the formulae (4) to (6)).

[0147] As an electron transporting compound for the electron injecting layer or the electron transporting layer, 8hydroxyquinoline or a metal complex of its derivative, an oxadiazole derivative and a nitrogen-containing heterocyclic derivative are preferable. An example of the 8-hydroxyquinoline or the metal complex of its derivative is a metal chelate oxinoid compound containing a chelate of oxine (typically 8-quinolinol or 8-hydroxyquinoline). For instance, tris(8-quin-

45 olinol) aluminum can be used. Examples of the oxadiazole derivative are as follows.

[Chemical Formula 45]

50

35

5

15

20

[0148] In the formula, Ar¹⁷, Ar¹⁸, Ar¹⁹, Ar²¹, Ar²² and Ar²⁵ each represent a substituted or unsubstituted aromatic hydrocarbon group or fused aromatic hydrocarbon group having 6 to 40 ring carbon atoms. Ar¹⁷, Ar¹⁹ and Ar²² may be the same as or different from Ar¹⁸, Ar²¹ and Ar²⁵ respectively. Examples of the aromatic hydrocarbon group or fused aromatic hydrocarbon group having 6 to 40 ring carbon atoms are a phenyl group, biphenyl group, anthranil group, perylenyl group and pyrenyl group. Examples of the substituent therefor are an alkyl group having 1 to 10 carbon atoms, alkoxy group having 1 to 10 carbon atoms and cyano group.

[0149] Ar²⁰, Ar²³ and Ar²⁴ each represent a substituted or unsubstituted divalent aromatic hydrocarbon group or fused aromatic hydrocarbon group having 6 to 40 ring carbon atoms. Ar²³ and Ar²⁴ may be mutually the same or different.

- 25 [0150] Examples of the divalent aromatic hydrocarbon group or fused aromatic hydrocarbon group having 6 to 40 ring carbon atoms are a phenylene group, naphthylene group, biphenylene group, anthranylene group, perylenylene group and pyrenylene group. Examples of the substituent therefor are an alkyl group having 1 to 10 carbon atoms, alkoxy group having 1 to 10 carbon atoms and cyano group.
- [0151] Such an electron transport compound is preferably an electron transport compound that can be favorably 30 formed into a thin film(s). Examples of the electron transporting compounds are as follows.

[Chemical Formula 46]

[0152] An example of the nitrogen-containing heterocyclic derivative as the electron transporting compound is a nitrogen-containing compound that is not a metal complex, the derivative being formed of an organic compound represented by one of the following general formulae. Examples of the nitrogen-containing heterocyclic derivative are a five-membered ring or six-membered ring derivative having a skeleton represented by the following formula (A) and a derivative having a structure represented by the following formula (B).

[0153] In the formula (B), X represents a carbon atom or a nitrogen atom. Z_1 and Z_2 each independently represent a group of atoms capable of forming a nitrogen-containing heterocycle.

[0154] Preferably, the nitrogen-containing heterocyclic derivative is an organic compound having a nitrogen-containing aromatic polycyclic group having a five-membered ring or six-membered ring. When the nitrogen-containing heterocyclic derivative includes such nitrogen-containing aromatic polycyclic series having plural nitrogen atoms, the nitrogen-containing heterocyclic derivative may be a nitrogen-containing aromatic polycyclic organic compound having a skeleton formed by a combination of the skeletons respectively represented by the formulae (A) and (B), or by a combination of the skeletons respectively the formulae (A) and (C).

[Chemical Formula 48]

(0)

35

5

45

50

55

[0156] In the formulae: R represents an aromatic hydrocarbon group or fused aromatic hydrocarbon group having 6 to 40 ring carbon atoms; aromatic heterocyclic group or fused aromatic heterocyclic group having 2 to 40 ring carbon atoms; alkyl group having 1 to 20 carbon atoms or alkoxy group having 1 to 20 carbon atoms; and n represents an integer in a range of 0 to 5. When n is an integer of 2 or more, plural R may be mutually the same or different.
 [0157] A preferable specific compound is a nitrogen-containing heterocyclic derivative represented by the following formula.

HAr-L¹-Ar¹-Ar²

[0158] In the formula: HAr represents a substituted or unsubstituted nitrogen-containing heterocyclic group having 1 to 40 ring carbon atoms; L¹ represents a single bond, substituted or unsubstituted aromatic hydrocarbon group or fused

5

aromatic hydrocarbon group having 6 to 40 ring carbon atoms, or substituted or unsubstituted aromatic heterocyclic group or fused aromatic heterocyclic group having 2 to 40 ring carbon atoms; Ar¹ represents a substituted or unsubstituted divalent aromatic hydrocarbon group having 6 to 40 ring carbon atoms; and Ar² represents a substituted or unsubstituted aromatic hydrocarbon group or fused aromatic hydrocarbon group having 6 to 40 ring carbon atoms; and Ar² represents a substituted or unsubstituted aromatic hydrocarbon group or fused aromatic hydrocarbon group having 6 to 40 ring carbon atoms, or substituted or unsubstituted or unsubstituted aromatic hydrocarbon group or fused aromatic heterocyclic group having 2 to 40 ring carbon atoms.

[0159] HAr is exemplarily selected from the following group.

[Chemical Formula 50] 10 1 11 15 N N N 20 Ň N ħ 25 =N Ň N 30 35 N 40

45

[Chemical Formula 51]

[Chemical Formula 52]

[0162] In the formulae: R¹ to R¹⁴ each independently represent a hydrogen atom, halogen atom, alkyl group having 1 to 20 carbon atoms, alkoxy group having 1 to 20 carbon atoms, aryloxy group having 6 to 40 ring carbon atoms, substituted or unsubstituted aromatic hydrocarbon group or fused aromatic hydrocarbon group having 2 to 40 ring carbon atoms; and Ar³ represents aromatic hydrocarbon group or fused aromatic hydrocarbon group having 6 to 40 ring carbon atoms, or aromatic heterocyclic group or fused aromatic hydrocarbon group having 6 to 40 ring carbon atoms; and Ar³ represents aromatic hydrocarbon group or fused aromatic hydrocarbon group having 6 to 40 ring carbon atoms, or aromatic heterocyclic group or fused aromatic hydrocarbon group having 2 to 40 ring carbon atoms.

- **[0163]** All of R¹ to R⁸ of a nitrogen-containing heterocyclic derivative may be hydrogen atoms.
- 30 [0164] Ar² is exemplarily selected from the following group.

[Chemical Formula 53]

[0165] Other than the above, the following compound (see JP-A-9-3448) can be favorably used for the nitrogencontaining aromatic polycyclic organic compound as the electron transporting compound.

50

15

20

5

[0166] In the formula: R_1 to R_4 each independently represent a hydrogen atom, substituted or unsubstituted aliphatic group, substituted or unsubstituted alicyclic group, substituted or unsubstituted acrossication or substituted or unsubstituted heterocyclic group; and X_1 and X_2 each independently represent an oxygen atom, sulfur atom or dicyanomethylene group.

 R_3

 X_1

[0167] The following compound (see JP-A-2000-173774) can also be favorably used for the electron transporting compound.

[Chemical Formula 55]

25

30

[0168] In the formula, R¹, R², R³ and R⁴, which may be mutually the same or different, each represent an aromatic hydrocarbon group or fused aromatic hydrocarbon group represented by the following formula.

35

[Chemical Formula 56] $R^7 \xrightarrow{R^6} R^5$ $R^8 R^9$

40

- ⁴⁵ [0169] In the formula, R⁵, R⁶, R⁷, R⁸ and R⁹, which may be mutually the same or different, each represent a hydrogen atom, a saturated or unsaturated alkoxyl group, alkyl group, amino group or alkylamino group. At least one of R⁵, R⁶, R⁷, R⁸ and R⁹ represents a saturated or unsaturated alkoxyl group, alkyl group, alkyl group, amino group or alkylamino group.
 [0170] A polymer compound containing the nitrogen-containing heterocyclic group or a nitrogen-containing heterocyclic derivative may be used for the electron transporting compound.
- ⁵⁰ **[0171]** The electron transporting layer preferably contains at least one of nitrogen-containing heterocycle derivatives respectively represented by the following formulae (201) to (203).

[Chemical Formula 57]

In the formulae (201) to (203): R represents a hydrogen atom, substituted or unsubstituted aromatic hydrocarbon group or fused aromatic hydrocarbon group having 6 to 60 ring carbon atoms, substituted or unsubstituted pyridyl group, substituted or unsubstituted quinolyl group, substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, or substituted or unsubstituted alkoxy group having 1 to 20 carbon atoms; n is an integer in a range of 0 to 4; R¹ represents a substituted or unsubstituted aromatic hydrocarbon group having 6 to 60 ring carbon atoms, substituted or unsubstituted or unsubstituted aromatic hydrocarbon group having 6 to 60 ring carbon atoms, substituted or unsubstituted or unsubstituted or unsubstituted pyridyl group, substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, <<nret>> or alkoxy group having 1 to 20 carbon atoms;

R² and R³ each independently represent a hydrogen atom, substituted or unsubstituted aromatic hydrocarbon group or fused aromatic hydrocarbon group having 6 to 60 ring carbon atoms, substituted or unsubstituted pyridyl group, substituted or unsubstituted quinolyl group, substituted or unsubstituted alkyl group having 1 to 20 carbon atoms,

- 40 or a substituted or unsubstituted alkoxy group having 1 to 20 carbon atoms; L represents a substituted or unsubstituted aromatic hydrocarbon group or fused aromatic hydrocarbon group having 6 to 60 ring carbon atoms, substituted or unsubstituted pyridinylene group, substituted or unsubstituted quinolylene group, or substituted or unsubstituted fluorenylene group;
- Ar¹ represents a substituted or unsubstituted aromatic hydrocarbon group or fused aromatic hydrocarbon group having 6 to 60 ring carbon atoms, substituted or unsubstituted pyridinylene group, substituted or unsubstituted quinolyl group. Ar² represents a substituted or unsubstituted aromatic hydrocarbon group or fused aromatic hydrocarbon group having 6 to 60 ring carbon atoms, substituted or unsubstituted pyridyl group, substituted or unsubstituted quinolyl group, substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, or substituted or unsubstituted alkoxy group having 1 to 20 carbon atoms; and
- ⁵⁰ Ar³ represents a substituted or unsubstituted aromatic hydrocarbon group or fused aromatic hydrocarbon group having 6 to 60 ring carbon atoms, substituted or unsubstituted pyridyl group, substituted or unsubstituted quinolyl group, substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, substituted or unsubstituted alkoxy group having 1 to 20 carbon atoms or group represented by -Ar¹-Ar² (Ar¹ and Ar² may be the same as the above).
- ⁵⁵ **[0172]** In the formulae (201) to (203), R represents a hydrogen atom, a substituted or unsubstituted aromatic hydrocarbon group or fused aromatic hydrocarbon group having 6 to 60 ring carbon atoms, substituted or unsubstituted pyridyl group, substituted or unsubstituted quinolyl group, substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, or substituted or unsubstituted alkoxy group having 1 to 20 carbon atoms.

[0173] Although a thickness of the electron injecting layer or the electron transporting layer is not specifically limited, the thickness is preferably 1 nm to 100 nm.

[0174] The electron injecting layer preferably contains an inorganic compound such as an insulator or a semiconductor in addition to the nitrogen-containing cyclic derivative. Such an insulator or a semiconductor, when contained in the

electron injecting layer, can effectively prevent a current leak, thereby enhancing electron capability of the electron injecting layer.

[0175] As the insulator, it is preferable to use at least one metal compound selected from the group consisting of an alkali metal chalcogenide, an alkali earth metal chalcogenide, a halogenide of alkali metal and a halogenide of alkali earth metal. By forming the electron injecting layer from the alkali metal chalcogenide or the like, the electron injecting

- ¹⁰ capability can preferably be further enhanced. Specifically, preferable examples of the alkali metal chalcogenide are Li₂O, K₂O, Na₂S, Na₂Se and Na₂O, while preferable example of the alkali earth metal chalcogenide are CaO, BaO, SrO, BeO, BaS and CaSe. Preferable examples of the halogenide of the alkali metal are LiF, NaF, KF, LiCl, KCl and NaCl. Preferable examples of the halogenide of the alkali earth metal are fluorides such as CaF₂, BaF₂, SrF₂, MgF₂ and BeF₂, and halogenides other than the fluoride.
- ¹⁵ **[0176]** Examples of the semiconductor are one of or a combination of two or more of an oxide, a nitride or an oxidized nitride containing at least one element selected from Ba, Ca, Sr, Yb, Al, Ga, In, Li, Na, Cd, Mg, Si, Ta, Sb and Zn. An inorganic compound for forming the electron injecting layer is preferably a microcrystalline or amorphous semiconductor film. When the electron injecting layer is formed of such insulator film, more uniform thin film can be formed, thereby reducing pixel defects such as a dark spot. Examples of such an inorganic compound are the above-described alkali
- ²⁰ metal chalcogenide, alkali earth metal chalcogenide, halogenide of the alkali metal and halogenide of the alkali earth metal.

[0177] When the electron injecting layer contains such an insulator or such a semiconductor, a thickness thereof is preferably in a range of approximately 0.1 nm to 15 nm. The electron injecting layer in this exemplary embodiment may preferably contain the above-described reduction-causing dopant.

25

5

Hole Injecting Layer and Hole Transporting Layer

[0178] The hole injecting layer or the hole transporting layer (including the hole injecting/transporting layer) may contain an aromatic amine compound such as an aromatic amine derivative represented by the following (I).

30

35

- ⁴⁰ **[0179]** In the above (I), Ar¹ to Ar⁴ each represent a substituted or unsubstituted aromatic hydrocarbon group or fused aromatic hydrocarbon group having 6 to 50 ring carbon atoms, substituted or unsubstituted aromatic heterocyclic group or fused aromatic heterocyclic group having 2 to 40 ring carbon atoms, or a group formed by combining the aromatic hydrocarbon group or the fused aromatic hydrocarbon group with the aromatic heterocyclic group or fused aromatic heterocyclic group.
- ⁴⁵ **[0180]** Examples of the compound represented by the formula (I) are shown below. However, the compound represented by the formula (I) is not limited thereto.

[Chemical Formula 59]

50

[0181] Aromatic amine represented by the following (II) can also be preferably used for forming the hole injecting layer or the hole transporting layer.

[Chemical Formula 60]

5

10 [0182] In the above (II), Ar¹ to Ar³ each represent the same as Ar¹ to Ar⁴ of the above (I). Examples of the compound represented by the general formula (II) are shown below. However, the compound represented by the formula (II) is not limited thereto.

15	[Chemical Formula 61]
20	
25	
30	
35	
40	
45	
50	
55	

for forming the layers. The organic thin-film layer containing the compound represented by the formula (1), which is used in the organic EL device according to this exemplary embodiment, may be formed by a conventional coating method such as vacuum deposition, molecular beam epitaxy (MBE method) and coating methods using a solution such as a dipping, spin coating, casting, bar coating, and roll coating.

- ⁵ **[0184]** Although the thickness of each organic layer of the organic EL device according to this exemplary embodiment is not particularly limited, the thickness is generally preferably in a range of several nanometers to 1 μm because an excessively-thinned film likely entails defects such as a pin hole while an excessively-thickened film requires high voltage to be applied and deteriorates efficiency.
- 10 Second Exemplary Embodiment

15

40

[0185] Next, an organic EL device according to a second exemplary embodiment will be described below.
 [0186] The organic EL device according to the second exemplary embodiment is different in that the emitting layer includes the first host material, the second host material and the phosphorescent material. In this case, the first host material is the biscarbazole derivative according to the exemplary embodiment represented by the formula (4).

wherein A¹ is selected from the group consisting of a substituted or unsubstituted pyridine ring, a substituted or unsubstituted pyrimidine ring and a substituted or unsubstituted triazine ring;

- ³⁵ A² represents a substituted or unsubstituted aromatic hydrocarbon group having 6 to 30 ring carbon atoms, or substituted or unsubstituted nitrogen-containing heterocyclic group having 1 to 30 ring carbon atoms;
 - X¹ and X² each are a linking group and independently represent a single bond, substituted or unsubstituted aromatic hydrocarbon group having 6 to 30 ring carbon atoms, substituted or unsubstituted fused aromatic hydrocarbon group having 6 to 30 ring carbon atoms, substituted or unsubstituted aromatic heterocyclic group having 2 to 30 ring carbon atoms, or substituted or unsubstituted fused aromatic heterocyclic group having 2 to 30 ring carbon atoms;
- Y¹ to Y⁴ independently represent a hydrogen atom, fluorine atom, cyano group, substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, substituted or unsubstituted alkoxy group having 1 to 20 carbon atoms, substituted or unsubstituted or unsubstituted haloalkyl group having 1 to 20 carbon atoms, substituted alkyl at the 20 carbon atoms, substituted alkyl at the 20 carbon atoms, substituted alkyl group having 1 to 20 carbon atoms, substituted alkyl group having 1 to 20 carbon atoms, substituted alkyl group having 1 to 20 carbon atoms, substituted or unsubstituted or unsubstituted alkyl group having 1 to 20 carbon atoms, substituted alkyl group having 1 to 20 carbon atoms, substituted or unsubstituted alkyl alkyl group having 1 to 20 carbon atoms, substituted or unsubstituted alkyl alkyl group having 1 to 20 carbon atoms, substituted or unsubstituted alkyl alkyl group having 1 to 20 carbon atoms, substituted or unsubstituted alkyl alkyl group having 1 to 20 carbon atoms, substituted or unsubstituted alkyl alkyl group having 1 to 20 carbon atoms, substituted or unsubstituted alkyl alkyl group having 1 to 20 carbon atoms, substituted or unsubstituted alkyl alkyl group having 1 to 20 carbon atoms, substituted or unsubstituted alkyl alkyl group having 1 to 20 carbon atoms, substituted or unsubstituted alkyl alkyl group having 1 to 20 carbon atoms, substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, substituted alkyl group having 1 to 20 carbon atoms, substituted alkyl group having 1 to 20 carbon atoms, substituted alkyl group having 1 to 20 carbon atoms, substituted alkyl group having 1 to 20 carbon atoms, substituted alkyl group having 1 to 20 carbon atoms, substituted alkyl group having 1 to 20 carbon atoms, substituted alkyl group having 1 to 20 carbon atoms, substituted alkyl group having 1 to 20 carbon atoms, substituted alkyl group having
- 45 arylsilyl having 6 to 30 carbon atoms, substituted or unsubstituted aromatic hydrocarbon group having 6 to 30 ring carbon atoms, substituted or unsubstituted fused aromatic hydrocarbon group having 6 to 30 ring carbon atoms, substituted or unsubstituted aromatic heterocyclic group having 2 to 30 ring carbon atoms, or substituted or unsubstituted fused aromatic heterocyclic group having 2 to 30 ring carbon atoms, or substituted or unsubstituted fused aromatic heterocyclic group having 2 to 30 ring carbon atoms, or substituted or unsubstituted fused aromatic heterocyclic group having 2 to 30 ring carbon atoms;
 - adjacent ones of Y¹ to Y⁴ are allowed to be bonded to each other to form a ring structure;
- ⁵⁰ p and q represent an integer of 1 to 4; r and s represent an integer of 1 to 3; and when p and q are an integer of 2 to 4 and r and s are an integer of 2 to 3, a plurality of Y¹ to Y⁴ are allowed to be the same or different.
- [0187] Preferred embodiments of the compounds of the formula (4) are the compounds of the formulae (2) and (3).
 [0188] The organic-EL-device material represented by the formula (4) has a biscarbazole skeleton having an excellent hole transporting capability and a heterocyclic skeleton having an excellent electron transporting capability, which leads to a bi-polar performance sufficient for functioning as a single host. However, a luminous efficiency and a lifetime of the multilayered organic EL device depend on a carrier balance of an entire organic EL device. Main factors for controlling

the carrier balance are carrier transporting capability of each of the organic layers and carrier injecting capability in the interfacial region of separate organic layers. In order to balance the carrier injecting capability to neighboring layers in the emitting layer (recombination region), it is preferable to adjust the carrier balance not by a single host material but by a plurality of host materials. Specifically, it is preferable that, in addition to the first host material, the second host material is suitably selected as a cohost and used in the emitting layer.

[0189] When a material having a poor electron injecting capability (e.g., metal chelate complex) is used as the cathode, a carrier balance in the emitting layer becomes shifted toward the cathode. For improving such a disadvantage, it is preferable to select a material having a high electron transporting capability as the second host material. Specifically, the host material of this exemplary embodiment is preferably represented by a formula (5) or (6).

¹⁰ [Chemical Formula 62]

(Cz⁻)_aA³ ... (5)

Cz(⁻A³)_b ... (6)

In the formula (5) or (6): Cz represents a substituted or unsubstituted arylcarbazolyl group or carbazolylaryl group; A³ represents a group represented by a formula (7A) below; and a and b each represent an integer of 1 to 3.

[Chemical Formula 63]

$$(M^{1})_{c}^{-}(L^{5})_{d}^{-}(M^{2})_{e} \dots (7A)$$

25

35

5

15

20

In the formula (7A): M¹ and M² each independently represent a substituted or unsubstituted nitrogen-containing aromatic heterocyclic ring or nitrogen-containing fused aromatic heterocyclic ring having 2 to 40 ring carbon atoms; M¹ and M² may be the same or different;

L⁵ represents a single bond, substituted or unsubstituted aromatic hydrocarbon group having 6 to 30 carbon atoms, substituted or unsubstituted fused aromatic hydrocarbon group having 6 to 30 carbon atoms, substituted or unsubstituted or unsubstituted cycloalkylene group having 5 to 30 carbon atoms, substituted or unsubstituted aromatic heterocyclic group having 2 to 30 carbon atoms, or substituted or unsubstituted fused aromatic heterocyclic group having 2 to 30 carbon atoms;

c represents an integer of 0 to 2; d represents an integer of 1 to 2; e represents an integer of 0 to 2; and c+e represents 1 or more.

Compounds Represented by Formulae (5) and (6)

[0190] Cz is a substituted or unsubstituted arylcarbazolyl group or substituted or unsubstituted carbazolylaryl group.

⁴⁰ **[0191]** An arylcarbazolyl group means a carbazolyl group having at least one aryl group or heteroaryl group as a substituent, in which a position where the aryl group or heteroaryl group is substituted does not matter.

[0192] Specific examples are as follows. In the following chemical formulae, Ar represents an aryl group or heteroaryl group. * represents a position where another group is bonded.

position where the aryl group is substituted does not matter.

5

10

40

[0194] Specific examples are as follows. In the following chemical formulae, Ar represents an aryl group. * represents a position where another group is bonded.

[Chemical Formula 65]

[0195] A substituted arylcarbazolyl group means the arylcarbazolyl group having at least one substituent irrespective of a substitution position. A substituted carbazolylaryl group means the carbazolylaryl group having at least one substituent irrespective of a substitution position.

[0196] In the formulae (5) and (6), a and b each represent an integer of 1 to 3.

[0197] An aryl group in the arylcarbazolyl group or carbazolylaryl group preferably has 6 to 30 carbon atoms. Examples of the aryl group are a phenyl group, naphthyl group, anthryl group, phenanthryl group, naphthacenyl group, pyrenyl group, fluorenyl group, biphenyl group and terphenyl group, among of which a phenyl group, naphthyl group, biphenyl group, biphenyl group and terphenyl group.

Examples of the heteroaryl group in the arylcarbazolyl group are groups formed based on rings of pyridine, pyrimidine, pyrazine, triazine, aziridine, azaindolizine, indolizine, imidazoles, indole, isoindole, indazole, purine, pteridine, â-carboline, naphthyridine, quinoxaline, terpyridine, bipyridine, acridine, phenanthroline, phenazine and imidazopyridine, among which rings of pyridine, terpyridine, pyrimidine, imidazopyridine and triazine are preferable.

which rings of pyridine, terpyridine, pyrimidine, imidazopyridine and triazine are preferable.
 [0198] A in the formulae (5) and (6) is a group represented by the formula (7A).

[0199] In the formula (7A), M^1 and M^2 each independently represent a substituted or unsubstituted nitrogen-containing heterocyclic group having 2 to 40 ring carbon atoms. M^1 and M^2 may be the same or different.

[0200] Examples of the nitrogen-containing heterocyclic ring in the arylcarbazolyl group are groups formed based on rings of pyridine, pyrimidine, pyrazine, triazine, aziridine, azaindolizine, indolizine, imidazoles, indole, isoindole, indazole, purine, pteridine, â-carboline, naphthyridine, quinoxaline, terpyridine, bipyridine, acridine, phenanthroline, phenazine and imidazopyridine, among which rings of pyridine, terpyridine, pyrimidine, imidazopyridine and triazine are preferable.
 [0201] L⁵ represents a single bond, substituted or unsubstituted aromatic hydrocarbon group or fused aromatic hydrocarbon group having 6 to 30 carbon atoms, substituted or unsubstituted cycloalkylene group having 5 to 30 carbon

³⁵ atoms, or substituted or unsubstituted aromatic heterocyclic group or fused aromatic heterocyclic group having 2 to 30 carbon atoms.

[0202] c represents an integer of 0 to 2; d represents an integer of 1 to 2; e represents an integer of 0 to 2; and c+e represents 1 or more.

[0203] Examples of the aromatic hydrocarbon group or fused aromatic hydrocarbon group having 6 to 30 carbon atoms are a phenyl group, biphenyl group, terphenyl group, naphthyl group, anthranil group, phenanthryl group, pyrenyl group, crycenyl group, fluoranthenyl group and perfluoroaryl group, fluorenyl group, and 9,9-dimethylfluorenyl group, among which a phenyl group, biphenyl group, terphenyl group and perfluoroaryl group are preferable.

[0204] Examples of the cycloalkylene group having 5 to 30 carbon atoms are cyclopentyl group, cyclohexylene group, and cyclohepthylene group, among which a cyclohexylene group is preferable.

- 45 [0205] Examples of the aromatic heterocyclic group or fused aromatic heterocyclic group having 2 to 30 carbon atoms are 1-pyrrolyl group, 2-pyrrolyl group, 3-pyrrolyl group, pyrazinyl group, 2-pyridinyl group, 3-pyridinyl group, 4-pyridinyl group, 1-indolyl group, 2-indolyl group, 3-indolyl group, 4-indolyl group, 5-indolyl group, 6-indolyl group, 7-indolyl group, 1-isoindolyl group, 2-isoindolyl group, 3-isoindolyl group, 4-isoindolyl group, 5-isoindolyl group, 6-isoindolyl group, 7isoindolyl group, 2-furyl group, 3-furyl group, 2-benzofuranyl group, 3-benzofuranyl group, 4-benzofuranyl group, 5-
- ⁵⁰ benzofuranyl group, 6-benzofuranyl group, 7-benzofuranyl group, 1-isobenzofuranyl group, 3-isobenzofuranyl group, 4isobenzofuranyl group, 5-isobenzofuranyl group, 6-isobenzofuranyl group, 7-isobenzofuranyl group, 2-quinolyl group, 3-quinolyl group, 4-quinolyl group, 5-quinolyl group, 6-quinolyl group, 7-quinolyl group, 8-quinolyl group, 1-isoquinolyl group, 3-isoquinolyl group, 4-isoquinolyl group, 5-isoquinolyl group, 6-isoquinolyl group, 7-isoquinolyl group, 8-isoquinolyl group, 2-quinoxalinyl group, 5-quinoxalinyl group, 6-quinoxalinyl group, 1-carbazolyl group, 2-carbazolyl group, 3-car-
- ⁵⁵ bazolyl group, 4-carbazolyl group, 9-carbazolyl group, 1-phenanthridinyl group, 2-phenanthridinyl group, 3-phenanthridinyl group, 4-phenanthridinyl group, 6-phenanthridinyl group, 7-phenanthridinyl group, 8-phenanthridinyl group, 9-phenanthridinyl group, 10-phenanthridinyl group, 1-acridinyl group, 2-acridinyl group, 3-acridinyl group, 4-acridinyl group, 9acridinyl group, 1,7-phenanthrolin-2-yl group, 1,7-phenanthrolin-3-yl group, 1,7-phenanthrolin-4-yl group, 1,7-phenan-

throlin-5-yl group, 1,7-phenanthrolin-6-yl group, 1,7-phenanthrolin-8-yl group, 1,7-phenanthrolin-9-yl group, 1,7-phenanthrolin-10-yl group, 1,8-phenanthrolin-2-yl group, 1,8-phenanthrolin-3-yl group, 1,8-phenanthrolin-5-yl group, 1,8-phenanthrolin-6-yl group, 1,8-phenanthrolin-7-yl group, 1,8-phenanthrolin-9-yl group, 1,8-phenanthrolin-2-yl group, 1,9-phenanthrolin-3-yl group, 1,9-phenanthrolin-4-yl group, 1,9-phenanthrolin-2-yl group, 1,9-phenanthrolin-3-yl group, 1,9-phenanthrolin-4-yl group, 1,9-phenanthrolin-4-yl group, 1,9-phenanthrolin-3-yl group, 1,9-phenanthrolin-4-yl group, 1,9-phenanthrolin-3-yl group, 1,9-phenanthrolin-4-yl group, 1,9-phenanthrolin-3-yl group, 1,9-phenanthrolin-4-yl group, 1,9-phenanthrolin-4-yl group, 1,9-phenanthrolin-4-yl group, 1,9-phenanthrolin-3-yl group, 1,9-phenanthrolin-4-yl group, 1,9-phenanthrolin-3-yl group, 1,9-phenanthrolin-4-yl group, 1,9-phenanthrolin-3-yl group, 1,9-phenanthrolin-4-yl group, 1,9-phenanthrolin-3-yl group, 1,9-phenanthrolin-4-yl group, 1,9-phenanthrol

- ⁵ phenanthrolin-5-yl group, 1,9-phenanthrolin-6-yl group, 1,9-phenanthrolin-7-yl group, 1,9-phenanthrolin-8-yl group, 1,9-phenanthrolin-3-yl group, 1,10-phenanthrolin-4-yl group, 1,10-phenanthrolin-3-yl group, 2,9-phenanthrolin-5-yl group, 2,9-phenanthrolin-6-yl group, 2,9-phenanthrolin-7-yl group, 2,9-phenanthrolin-5-yl group, 2,9-phenanthrolin-6-yl group, 2,9-phenanthrolin-7-yl group, 2,9-phenanthrolin-8-yl group, 2,9-phenanthrolin-1-yl group, 2,8-phenanthrolin-3-yl group, 2,8-phenanthrolin-4-yl group, 2,9-phenanthrolin-1-yl group, 2,8-phenanthrolin-1-yl group, 2,8-phenanthrolin-3-yl group, 2,8-phenanthrolin-4-yl group, 2,8-phenanthrolin-3-yl group, 2,8-phenanthrolin-4-yl group, 2,8-phenanthrolin-1-yl group, 2,8-phenanthrolin-4-yl group, 2,8-phenanthrolin-1-yl group, 2,8-phenanthrolin-4-yl group, 2,8-phenanthrolin-1-yl group, 2,8-phenanthrolin-1-yl group, 2,8-phenanthrolin-1-yl group, 2,8-phenanthrolin-4-yl group, 2,8-phenanthrolin-1-yl group, 2,8-phenanthrolin-4-yl group, 2,8-phenanthrolin-1-yl group, 2,8-phenanthrolin-1-yl group, 2,8-phenanthrolin-1-yl group, 2,8-phenanthrolin-4-yl group, 2,8-phenanthrolin-1-yl group, 2,8-phenanthrolin-4-yl group, 2,8-phenanthrolin-1-yl group, 2,8-phenanthrolin-4-yl group, 2,8-phenanthrolin-1-yl group, 2,8-phenanthrolin-4-yl group, 2
- 10 2,8-phenanthrolin-5-yl group, 2,8-phenanthrolin-6-yl group, 2,8-phenanthrolin-7-yl group, 2,8-phenanthrolin-9-yl group, 2,7-phenanthrolin-1-yl group, 2,7-phenanthrolin-3-yl group, 2,7-phenanthrolin-6-yl group, 2,7-phenanthrolin-8-yl group, 2,7-phenanthrolin-9-yl group, 2,7-phenanthrolin-10-yl group, 1-phenazinyl group, 2,7-phenanthrolin-10-yl group, 1-phenazinyl group, 2-phenazinyl group, 2-phenothiazinyl group, 2-phenothiazinyl group, 2-phenothiazinyl group, 2-phenothiazinyl group, 2-phenothiazinyl group, 1-phenothiazinyl group, 1-phenothiazinyl
- ¹⁵ 3-phenoxazinyl group, 4-phenoxazinyl group, 10-phenoxazinyl group, 2-oxazolyl group, 4-oxazolyl group, 5-oxazolyl group, 2-oxadiazolyl group, 5-oxadiazolyl group, 3-furazanyl group, 2-thienyl group, 3-thienyl group, 2-methylpyrrol-1-yl group, 2-methylpyrrol-3-yl group, 2-methylpyrrol-4-yl group, 2-methylpyrrol-5-yl group, 3-methylpyrrol-1-yl group, 3-methylpyrrol-2-yl group, 3-methylpyrrol-4-yl group, 3-methylpyrrol-5-yl group, 2-thutylpyrrol-4-yl group, 3-methylpyrrol-3-indolyl group, 3-methylpyrrol-3-indolyl group, 4-methyl-1-indolyl group, 4-methyl-3-indolyl group, 2-methyl-3-indolyl group, 4-methyl-3-indolyl group, 4-methy
- group, 2-t-butyl-1-indolyl group, 4-t-butyl-1-indolyl group, 2-t-butyl-3-indolyl group, and 4-t-butyl-3-indolyl group, among which a pyridinyl group and quinolyl group are preferable.
 [0206] Examples of the substituents for Cz, M¹ and M² in the formulae (5), (6) and (7A) are a halogen atom such as chlorine, bromine and fluorine, carbazole group, hydroxyl group, substituted or unsubstituted amino group, nitro group, cyano group, silyl group, trifluoromethyl group, carbonyl group, carboxyl group, substituted or unsubstituted alkyl group,
- ²⁵ substituted or unsubstituted alkenyl group, substituted or unsubstituted or unsubstituted or unsubstituted aromatic hydrocarbon group or fused aromatic hydrocarbon group, substituted or unsubstituted aromatic heterocyclic group or fused aromatic heterocyclic group, substituted or unsubstituted or unsubstituted or unsubstituted aryloxy group, and substituted or unsubstituted alkyloxy group. Among these, a fluorine atom, methyl group, perfluor-ophenylene group, phenyl group, naphthyl group, pyridyl group, pyrazil group, pyrimidyl group, adamantyl group, benzyl group, cyano group and silyl group are preferable.
- **[0207]** Bonding patterns of the compound represented by the formula (5) or (6) are shown in Table 1 below in accordance with values of a and b.

35

30

40

a = b = 1	a = 2	a = 3	b = 2	b = 3
Cz- A ³	Cz-A ³ -Cz	Cz-A ³ -Cz	A ³ - Cz-A ³	$A^3 - Cz - A^3$

[Table 1]

[0208] Bonding patterns of the compound represented by the formula (7A) are shown in Tables 2 and 3 below in accordance with values of c, d and e.

[Table 2]

45

d **Bonding Patterns** No С е [1] 0 1 1 15 - M² 1 2 L⁵-M²-M², M²-L⁵-M² 0 [2] L⁵-L⁵-M², L⁵-M²-L⁵ [3] 2 1 0 [4] 2 2 0 $L^{5} - M^{2} - M^{2} M^{2} - L^{5} - L^{5} - L^{5}$ $M^2 - M^2 - L^5 - M^2 - L^5 - M^2 - L^5 - M^2$ Ĺ5 M2 5 the same as [1] (M² is replaced with M¹) 1 1 0 [5]

50

(continued)
(contantaca)

	No	с	d	е	Bonding Patterns
5	[6]	1	1	1	M ¹ -L ⁵ -M ²
Ũ	[7]	1	1	2	$M^1 - L^5 - M^2$
					$M^1 - L^5 - M^2 - M^2$, M^2
10	[8]	1	2	0	the same as [3] (M^2 is replaced with M^1)
	[9]	1	2	1	M ¹ -L ⁵ -L ⁵ -M ² L ⁵ -M ¹ -L ⁵ - M ² L ⁵ -M ¹ -L ⁵ - M ²
	[10]	1	2	2	$M^{1}-L^{5}-L^{5}-M^{2}-M^{2}$, $M^{2}-L^{5}-M^{1}-L^{5}-M^{2}$,
15					$M^{1}-L^{5}-L^{5}$
					$M^2 - M^2 - L^5 - M^1 - L^5$, $M^2 M^2$,
					$M^1 - L^5 - L^5 - M^2$
20					M ² ,
					VI VI VI VI VI VI VI VI
25					M^1 , M^2 , M^2
	[11]	2	1	0	the sane as [2] (M^2 is replaced with M^1)
	[12]	2	1	1	the same as [7] (M ² is replaced with M ¹)
30	[13]	2	1	2	M ²
					$M^{1} = 1^{5} = M^{1} = M^{1} = M^{2} = M^{2}$
					$M^{1} - M^{1} - L^{5} - M^{2} - M^{2} - M^{2} - M^{1}$
					1945 381 Emu 585 785 100 168
0.5					

[Table 3]

No	С	d	с	Bonding Patterns
[14]	2	2	0	the same as [41 (M^2 is replaced with M^1)
[15]	2	2	1	the same as [10] (M ² is replaced with M ¹)

		۰.
1	nontinuad	۱
	continueu	,

No d с **Bonding Patterns** С [16] 2 2 2 -L^{5.} -M²- M² M¹---M¹- $M^{1} - L^{5} - L^{5} - M^{2} - M^{2}$ L⁵ M¹-L⁵-M² h $M^2 - M^2$ - 15 M^{1} - M^1 - Ļ⁵ - L⁵ - M² L⁵ -M2 M1 --M1--L⁶-- L⁵---M¹ I I M² M² M^1 -

[0209] Cz bonded to A may be bonded to any one of M¹, L⁵ and M² of the formula (7A) representing A.
[0210] For instance, when a=b=1 and Cz-A³-Cz are given in the formula (5) or (6) and [6] (c=d=e=1) of Table 2 is given in the formula (7A), three bonding patterns of Cz-M¹-L⁵-M², M¹-L⁵(Cz)-M², and M¹-L⁵-M²-Cz are listed.
[0211] Moreover, for instance, when a=2 and Cz-A³-Cz are given in the formula (5) and [7] (c=d=1,e=2) Table 2 is given in the formula (7A), the following bonding patterns are listed.

[Chemical Formula 66]

2- M2

$$\begin{array}{cccc} Cz & Cz \\ I & I \\ Cz - M^{1} - L^{5} - M^{2} - M^{2} - Cz & M^{1} - L^{5} - M^{2} - M^{2} & M^{1} - L^{5} - M^{2} \\ I & I \\ Cz & Cz & Cz \end{array}$$

0-

5

10

15

20

25

30

35

[0212] In the bonding patterns of the formulae (5), (6) and (7A) and exemplary combinations of the groups as described above, compounds represented by [1] to [4] below are preferable.

a=1 is given in the formula (5) and c=1 and d=0 are given in the formula (7A).

[0213] [1] In the formula (5), Cz is a substituted or unsubstituted arylcarbazolyl group or substituted or unsubstituted carbazolylaryl group.

[0214] In the formula (7A): M¹ is a substituted or unsubstituted nitrogen-containing six-membered or seven-membered hetero ring having 4 to 5 ring carbon atoms, substituted or unsubstituted nitrogen-containing five-membered hetero ring

- ¹⁰ having 2 to 4 ring carbon atoms, substituted or unsubstituted nitrogen-containing hetero ring having 8 to 11 ring carbon atoms, substituted or unsubstituted imidazopyridinyl ring; and L⁵ is a substituted or unsubstituted aryl group or aromatic hydrocarbon group or fused aromatic hydrocarbon group having 6 to 30 carbon atoms and substituted or unsubstituted aromatic heterocyclic group or fused aromatic heterocyclic group having 2 to 30 carbon atoms.
- ¹⁵ a=2 is given in the formula (5) and c=1 and e=0 are given in the formula (7A).

[0215] [2] In the formula (5), Cz is a substituted or unsubstituted arylcarbazolyl group or substituted or unsubstituted carbazolylaryl group.

- [0216] In the formula (7A): M¹ is a substituted or unsubstituted nitrogen-containing six-membered or seven-membered hetero ring having 4 to 5 ring carbon atoms, substituted or unsubstituted nitrogen-containing five-membered hetero ring having 2 to 4 ring carbon atoms, substituted or unsubstituted nitrogen-containing hetero ring having 8 to 11 ring carbon atoms, substituted or unsubstituted or unsubstituted or unsubstituted aryl group or aromatic hydrocarbon group or fused aromatic heterocyclic group having 2 to 30 carbon atoms.
- 25

5

[3] a=1 is given in the formula (5) and c=2 and e=0 are given in the formula (7A).

[0217] In the formula (5), Cz is a substituted or unsubstituted arylcarbazolyl group or substituted or unsubstituted carbazolylaryl group.

- 30 [0218] In the formula (7A): M¹ is a substituted or unsubstituted nitrogen-containing six-membered or seven-membered hetero ring having 4 to 5 ring carbon atoms, substituted or unsubstituted nitrogen-containing five-membered hetero ring having 2 to 4 ring carbon atoms, substituted or unsubstituted nitrogen-containing hetero ring having 8 to 11 ring carbon atoms, substituted or unsubstituted or unsubstituted or unsubstituted or unsubstituted atoms, substituted or unsubstituted or unsubstituted or unsubstituted aryl group or aromatic hydrocarbon group or fused aromatic hydrocarbon group having 6 to 30 carbon atoms and substituted or unsubstituted
- ³⁵ aromatic heterocyclic group or fused aromatic heterocyclic group having 2 to 30 carbon atoms.

b=2 is given in the formula (6) and c=d=1 is given in the formula (7A).

[0219] [4] In the formula (6), Cz is a substituted or unsubstituted arylcarbazolyl group or substituted or unsubstituted carbazolylaryl group.

[0220] In the formula (7A): M^1 is a substituted or unsubstituted nitrogen-containing six-membered or seven-membered hetero ring having 4 to 5 ring carbon atoms, substituted or unsubstituted nitrogen-containing five-membered hetero ring having 2 to 4 ring carbon atoms, substituted or unsubstituted nitrogen-containing hetero ring having 8 to 11 ring carbon atoms, substituted or unsubstituted or unsubstituted or unsubstituted ary group or aromatic

⁴⁵ hydrocarbon group or fused aromatic hydrocarbon group having 6 to 30 carbon atoms and substituted or unsubstituted aromatic heterocyclic group or fused aromatic heterocyclic group having 2 to 30 carbon atoms.
 [0221] In the formulae (5) and (6), Cz is preferably a substituted or unsubstituted arylcarbazolyl group, more preferably phenylcarbozolyl group. Moreover, an aryl site of the arylcarbazolyl group is preferably substituted by a carbazolyl group.
 [0222] Specific examples of the compound represented by the formula (5) according to this exemplary embodiment

⁵⁰ are shown below, but the compound represented by the formula (25) is not limited thereto.

[Chemical Formula 67]

[Chemical Formula 68]

[Chemical Formula 69]

[Chemical Formula 71]

(A109)

20

30

15

(A113)

(A108)

(A111)

45

[0223] Specific examples of the compound represented by the formula (6) are shown below, but the compound represented by the formula (6) is not limited thereto.

(A114)

50

[Chemical Formula 74]

45 [0224] The compound represented by the formula (5) or (6) in this exemplary embodiment has triplet energy gap of 2.5 eV to 3.3 eV, preferably 2.5 eV to 3.2 eV.
[0225] The compound represented by the formula (5) or (6) in this exemplary embodiment has singlet energy gap of

[0225] The compound represented by the formula (5) or (6) in this exemplary embodiment has singlet energy gap of 2.8 eV to 3.8 eV, preferably 2.9 eV to 3.7 eV.

50 Third Exemplary Embodiment

[0226] An organic EL device according to a third exemplary embodiment is different from the organic EL device according to the second exemplary embodiment in that a material having a poor electron capability is used as the second material.

⁵⁵ **[0227]** When a material having an excellent electron injecting capability from the electrode (e.g., LiF) is used as the cathode, a carrier balance in the emitting layer becomes shifted toward the anode. For improving such a disadvantage, it is preferable to select a material having a poor electron injecting capability as the second host material. Specifically, the second host material of this exemplary embodiment is preferably a compound in which A³ is a group represented

by the following formula (7B) in the formula (5) or (6).

[Chemical Formula 75]

5

$$(M^3)_c^- (L^6)_d^- (M^4)_e \dots (7B)$$

- In the formula (7B): M³ and M⁴ each independently represent a substituted or unsubstituted aromatic hydrocarbon group having 6 to 40 ring carbon atoms; M³ and M⁴ may be the same or different; L⁶ represents a single bond, substituted or unsubstituted aromatic hydrocarbon group having 6 to 30 carbon atoms, substituted or unsubstituted fused aromatic hydrocarbon group having 6 to 30 carbon atoms, or substituted or unsubstituted cycloalkylene group having 5 to 30 carbon atoms;
- c represents an integer of 0 to 2; d represents an integer of 1 to 2; e represents an integer of 0 to 2; and c+e represents 1 or more.

[0228] In the formula (7B), as the aromatic hydrocarbon group for M³ and M⁴ and the aromatic hydrocarbon group, fused aromatic hydrocarbon group and cycloalkylene group for L⁶, those represented by the formula (26A) can be used. As bonding patterns of the groups represented by the formula (27B), the same bonding patterns as those of the formula

20 (7A) can be used. Specifically, in the bonding patterns of the formula (7A), M¹, L⁵ and M² may be respectively replaced with M³, L⁶ and M⁴.

[0229] In the bonding patterns of the formulae (5), (6) and (7B) and exemplary combinations of the groups as described above, compounds represented by [5] to [8] below are preferable.

²⁵ a=1 is given in the formula (5) and c=1 and d=0 are given in the formula (7B).

[0230] [5] In the formula (5), Cz is a substituted or unsubstituted arylcarbazolyl group or substituted or unsubstituted carbazolylaryl group.

- [0231] In the formula (7B): M³ is a substituted or unsubstituted nitrogen-containing six-membered or seven-membered hetero ring having 4 to 5 ring carbon atoms, substituted or unsubstituted nitrogen-containing five-membered hetero ring having 2 to 4 ring carbon atoms, substituted or unsubstituted nitrogen-containing hetero ring having 8 to 11 ring carbon atoms, substituted or unsubstituted or unsubstituted or unsubstituted aryl group or aromatic hydrocarbon group or fused aromatic heterocyclic group having 2 to 30 carbon atoms.
- 35

50

a=2 is given in the formula (5) and c=1 and e=0 are given in the formula (7B).

[0232] [6] In the formula (5), Cz is a substituted or unsubstituted arylcarbazolyl group or substituted or unsubstituted carbazolylaryl group.

- 40 [0233] In the formula (7B): M³ is a substituted or unsubstituted nitrogen-containing six-membered or seven-membered hetero ring having 4 to 5 ring carbon atoms, substituted or unsubstituted nitrogen-containing five-membered hetero ring having 2 to 4 ring carbon atoms, substituted or unsubstituted nitrogen-containing hetero ring having 8 to 11 ring carbon atoms, substituted or unsubstituted or unsubstituted or unsubstituted or unsubstituted or unsubstituted atoms, substituted aromatic hydrocarbon group or fused aromatic hydrocarbon group having 6 to 30 carbon atoms and substituted or unsubstituted aromatic
- ⁴⁵ heterocyclic group or fused aromatic heterocyclic group having 2 to 30 carbon atoms.

[7] a=1 is given in the formula (5) and c=2 and e=0 are given in the formula (7B).

[0234] In the formula (5), Cz is a substituted or unsubstituted arylcarbazolyl group or substituted or unsubstituted carbazolylaryl group.

[0235] In the formula (7B): M^3 is a substituted or unsubstituted nitrogen-containing six-membered or seven-membered hetero ring having 4 to 5 ring carbon atoms, substituted or unsubstituted nitrogen-containing five-membered hetero ring having 2 to 4 ring carbon atoms, substituted or unsubstituted nitrogen-containing hetero ring having 8 to 11 ring carbon atoms, substituted imidazopyridinyl ring; and L^6 is a substituted or unsubstituted aromatic hydrocarbon

⁵⁵ group or fused aromatic hydrocarbon group having 6 to 30 carbon atoms and substituted or unsubstituted aromatic heterocyclic group or fused aromatic heterocyclic group having 2 to 30 carbon atoms.

b=2 is given in the formula (6) and c=d=1 is given in the formula (7B).

[0236] [8] In the formula (6), Cz is a substituted or unsubstituted arylcarbazolyl group or substituted or unsubstituted carbazolylaryl group.

- ⁵ [0237] In the formula (7B): M³ is a substituted or unsubstituted nitrogen-containing six-membered or seven-membered hetero ring having 4 to 5 ring carbon atoms, substituted or unsubstituted nitrogen-containing five-membered hetero ring having 2 to 4 ring carbon atoms, substituted or unsubstituted nitrogen-containing hetero ring having 8 to 11 ring carbon atoms, substituted or unsubstituted or unsubstituted or unsubstituted or unsubstituted aromatic hydrocarbon group or fused aromatic hydrocarbon group having 6 to 30 carbon atoms and substituted or unsubstituted aromatic heterocyclic group or fused aromatic heterocyclic group having 2 to 30 carbon atoms.
- heterocyclic group or fused aromatic heterocyclic group having 2 to 30 carbon atoms.
 [0238] In the formulae (5) and (6), Cz is preferably a substituted or unsubstituted arylcarbazolyl group, more preferably phenylcarbozolyl group. Moreover, an aryl site of the arylcarbazolyl group is preferably substituted by a carbazolyl group.
 [0239] Examples of the compound in which A³ is a group represented by the following formula (7B) in the formula (5) or (6) are listed below.

15

[Chemical Formula 76]

50

[0240] As the second host material of this exemplary embodiment, a compound represented by a formula (8) below may be used.

[Chemical Formula 78]

- In the formula (8): R¹⁰¹ to R¹⁰⁶ each independently represent a hydrogen atom, halogen atom, substituted or unsubstituted alkyl group having 1 to 40 carbon atoms, substituted or unsubstituted cycloalkyl group having 3 to 15 carbon atoms, substituted or unsubstituted heterocyclic group having 3 to 20 carbon atoms, substituted or unsubstituted or unsubstituted alkoxy group having 1 to 40 carbon atoms, substituted or unsubstituted aryl group having 6 to 40 carbon atoms, substituted or unsubstituted aryloxy group having 6 to 20 carbon atoms, substituted aralkyl group having 7 to 20 carbon atoms, substituted or unsubstituted arylamino group having 6 to 40 carbon atoms, substituted arylamino group having 7 to 60 carbon atoms, substituted or unsubstituted arylcarbonyl group having 7 to 40 carbon atoms, substituted or unsubstituted arylcarbonyl group having 7 to 40 carbon atoms, substituted or unsubstituted arylcarbonyl group having 7 to 40 carbon atoms, substituted arylcarbonyl group having 7 to 40 carbon atoms, substituted or unsubstituted arylcarbonyl group having 7 to 40 carbon atoms, substituted arylcarbonyl group having 7 to 40 carbon atoms, substituted arylcarbonyl group having 7 to 40 carbon atoms, substituted arylcarbonyl group having 7 to 40 carbon atoms, substituted arylcarbonyl group having 1 to 40 carbon atoms, substituted or unsubstituted arylcarbonyl group having 7 to 40 carbon atoms, substituted arylcarbonyl group having 7 to 40 carbon atoms, substituted arylcarbonyl group having 7 to 40 carbon atoms, substituted arylcarbonyl group having 7 to 40 carbon atoms, substituted arylcarbonyl group having 7 to 40 carbon atoms, substituted arylcarbonyl group having 1 to 40 carbon atoms, substituted arylcarbonyl group having 7 to 40 carbon atoms, substituted arylcarbonyl group having 1 to 40 carbon atoms, substituted arylcarbonyl group having 1 to 40 carbon atoms, substituted arylcarbonyl group having 50 carbon atoms, substituted arylcarbonyl group having 50 carbon atoms, substituted arylcarbonyl group hav
- at least one of R¹⁰¹ to R¹⁰⁶ is a substituted or unsubstituted 9-carbazolyl group, substituted or unsubstituted azacarbazolyl group having 2 to 5 nitrogen atoms, or -L-9-carbazolyl group;
 L represents a substituted or unsubstituted alkyl group having 1 to 40 carbon atoms, substituted or unsubstituted cycloalkyl group having 3 to 15 carbon atoms, substituted or unsubstituted heterocyclic group having 3 to 20 carbon

atoms, substituted or unsubstituted alkoxy group having 1 to 40 carbon atoms, substituted or unsubstituted aryl group having 6 to 40 carbon atoms, substituted or unsubstituted aryloxy group having 6 to 20 carbon atoms, substituted or unsubstituted aralkyl group having 7 to 20 carbon atoms, substituted or unsubstituted arylamino group having 6 to 40 carbon atoms, substituted or unsubstituted alkylamino group having 1 to 40 carbon atoms, substituted or unsubstituted aralkylamino group having 7 to 60 carbon atoms, substituted or unsubstituted arylcarbonyl group having 7 to 40 carbon atoms, substituted or unsubstituted arylthio group having 6 to 20 carbon atoms, or substituted

or unsubstituted halogenated alkyl group having 1 to 40 carbon atoms; Xa represents a sulfur atom, oxygen atom or $N-R^{108}$; and

 R^{108} represents the same as R^{101} to R^{106} .

10

5

[0241] Specific examples of the substituted or unsubstituted azacarbazolyl group having 2 to 5 nitrogen atoms are shown below (in which any substituent is omitted), but the substituted or unsubstituted azacarbazolyl group is not limited thereto.

15

[Chemical Formula 79]

[Chemical Formula 80]

²⁵ Examples of the halogen atom include fluorine, chlorine, bromine, and iodine.

30

[0242] Examples of the substituted or unsubstituted alkyl group having 1 to 40 carbon atoms include a methyl group, an ethyl group, an ethyl group, an n-butyl group, an n-butyl group, an s-butyl group, an isobutyl group, at -butyl group, an n-pentyl group, an n-hexyl group, an n-

- an hepetity group, an n-decyl group, an n-tridecyl group, an n-tetradecyl group, an n-pentadecyl group, an n-hexadecyl group, a n-hexadecyl gro
- ³⁵ group, a 2-chloroethyl group, a 2-chloroisobutyl group, a 1,2-dichloroethyl group, a 1,3-dichloroisopropyl group, a 2,3dichloro-t-butyl group, a 1,2,3-trichloropropyl group, a bromomethyl group, a 1-bromoethyl group, a 2-bromoethyl group, a 2-bromoisobutyl group, a 1,2-dibromoethyl group, a 1,3-dibromoisopropyl group, a 2,3-dibromo-t-butyl group, a 1,2,3tribromopropyl group, an iodomethyl group, a 1-iodoethyl group, a 2-iodoethyl group, a 2-iodoisobutyl group, a 1,2diiodoethyl group, a 1,3-diiodoisopropyl group, a 2,3-diiodo-t-butyl group, a 1,2,3-triiodopropyl group, an aminomethyl
- ⁴⁰ group, a 1-aminoethyl group, a 2-aminoethyl group, a 2-aminoisobutyl group, a 1,2-diaminoethyl group, a 1,3-diaminoisopropyl group, a 2,3-diamino-t-butyl group, a 1,2,3-triaminopropyl group, a cyanomethyl group, a 1-cyanoethyl group, a 2-cyanoethyl group, a 2-cyanoisobutyl group, a 1,2-dicyanoethyl group, a 1,3-dicyanoisopropyl group, a 2,3-dicyano-t-butyl group, a 1,2,3-tricyanopropyl group, a nitromethyl group, a 1-nitroethyl group, a 2-nitroethyl group, a 1,2-dinitroethyl group, a 2,3-dinitro-t-butyl group, a 1,2,3-trinitropropyl group, a mong of which a methyl group, an ethyl group, a
- ⁴⁵ propyl group, an isopropyl group, an n-butyl group, an s-butyl group, an isobutyl group, a t-butyl group, an n-pentyl group, an n-hexyl group, an n-hexyl group, an n-hexyl group, an n-hexyl group, an n-tridecyl group, an n-tetradecyl group, an n-pentadecyl group, an n-hexadecyl group, an n-heptadecyl group, an n-beptadecyl group, an n-heptadecyl group, an n
- ⁵⁰ **[0243]** Examples of the substituted or unsubstituted cycloalkyl group having 3 to 15 carbon atoms include a cyclopentyl group, cyclohexyl group, cyclohexyl group, and 3,5,5,5-tetramethylcyclohexyl group. A cyclohexyl group, cyclooctyl group, and 3,5-tetramethylcyclohexyl group (excluding a substituent) preferably has 3 to 12 carbon atoms.
- [0244] Examples of the substituted or unsubstituted heterocyclic group having 3 to 20 carbon atoms are a 1-pyroryl group, 2-pyroryl group, 3-pyroryl group, pyrazinyl group, 2-pyridinyl group, 1-imidazolyl, 2-imidazolyl, 1-pyrazolyl, 1-indolidinyl, 2-indolidinyl, 3-indolidinyl, 5-indolidinyl, 6-indolidinyl, 7-indolidinyl, 8-indolidinyl, 2-imidazopyridinyl, 3-imidazopyridinyl, 5-imidazopyridinyl, 6-imidazopyridinyl, 8-imidazopyridinyl, 8-imidazopyridinyl, 3-pyridinyl group, 4-pyridinyl

group, 1-indolyl group, 2-indolyl group, 3-indolyl group, 4-indolyl group, 5-indolyl group, 6-indolyl group, 7-indolyl group, 1-isoindolyl group, 2-isoindolyl group, 3-isoindolyl group, 4-isoindolyl group, 5-isoindolyl group, 6-isoindolyl group, 7-isoindolyl group, 2-furyl group, 3-furyl group, 2-benzofuranyl group, 3-benzofuranyl group, 4-benzofuranyl group, 5-benzofuranyl group, 6-benzofuranyl group, 7-benzofuranyl group, 1-isobenzofuranyl group, 3-isobenzofuranyl group, 4-isobenzofuranyl group, 4-benzofuranyl group, 4-b

- ⁵ isobenzofuranyl group, 5-isobenzofuranyl group, 6-isobenzofuranyl group, 7-isobenzofuranyl group, 2-quinolyl group, 2-quinolyl group, 3-isoquinolyl group, 4-isoquinolyl group, 5-isoquinolyl group, 6-isoquinolyl group, 7-isoquinolyl group, 7-isoquinolyl group, 8-isoquinolyl group, 8-isoquinolyl group, 2-quinoxalinyl group, 5-isoquinolyl group, 6-quinoxalinyl group, 1-carbazolyl group, 2-carbazolyl group, 3-carbazolyl group, 4-carbazolyl group, 9-carbazolyl group, azacarbazolyl-1-yl, azacarbazolyl-2-yl, azacarbazolyl-3-yl, azacarbazolylyl-3-yl, azacarbazolyl-3-yl,
- ¹⁰ bazolyl-4-yl, azacarbazolyl-5-yl, azacarbazolyl-6-yl, azacarbazolyl-7-yl, azacarbazolyl-8-yl, azacarbazolyl-9-yl, 1-phenanthrydinyl group, 2-phenanthrydinyl group, 3-phenanthrydinyl group, 4-phenanthrydinyl group, 6-phenanthrydinyl group, 7-phenanthrydinyl group, 8-phenanthrydinyl group, 9-phenanthrydinyl group, 10-phenanthrydinyl group, 1-acridinyl group, 2-acridinyl group, 3-acridinyl group, 4-acridinyl group, 9-acridinyl group, 1,7-phenanthroline-2-yl group, 1,7phenanthroline-3-yl group, 1,7-phenanthroline-4-yl group, 1,7-phenanthroline-5-yl group, 1,7-phenanthroline-6-yl group,
- 15 1,7-phenanthroline-8-yl group, 1,7-phenanthroline-9-yl group, 1,7-phenanthroline-10-yl group, 1,8-phenanthroline-2-yl group, 1,8-phenanthroline-3-yl group, 1,8-phenanthroline-5-yl group, 1,8-phenanthroline-6-yl group, 1,8-phenanthroline-7-yl group, 1,8-phenanthroline-9-yl group, 1,8-phenanthroline-10-yl group, 1,9-phenanthroline-2-yl group, 1,9-phenanthroline-3-yl group, 1,9-phenanthroline-3-yl group, 1,9-phenanthroline-6-yl group, 1,9-phenanthroline-7-yl group, 1,9-phenanthroline-7-yl group, 1,9-phenanthroline-7-yl group, 1,9-phenanthroline-7-yl group, 1,9-phenanthroline-7-yl group, 1,9-phenanthroline-7-yl group, 1,9-phenanthroline-8-yl group, 1,9-phenanthroline-10-yl group, 1,9-phenanthroline-7-yl group, 1,9-phenanthroline-7-yl group, 1,9-phenanthroline-8-yl group, 1,9-phenanthroline-10-yl group, 1,9-phenanthroline-10-yl group, 1,9-phenanthroline-7-yl group, 1,9-phenanthroline-7-yl group, 1,9-phenanthroline-8-yl group, 1,9-phenanthroline-10-yl group, 1,9-phenanthrolin
- 20 group, 1,10-phenanthroline-2-yl group, 1,10-phenanthroline-3-yl group, 1,10-phenanthroline-4-yl group, 1,10-phenanthroline-5-yl group, 2,9-phenanthroline-3-yl group, 2,9-phenanthroline-4-yl group, 2,9-phenanthroline-5-yl group, 2,9-phenanthroline-6-yl group, 2,9-phenanthroline-7-yl group, 2,9-phenanthroline-8-yl group, 2,9-phenanthroline-3-yl group, 2,8-phenanthroline-4-yl group, 2,8-phenanthroline-7-yl group, 2,8-phenanthroline-4-yl group, 2,8-phenanthroline-7-yl group, 2,8-phenanthroline-4-yl group, 2,8-phenanthroline-7-yl group, 2,8-phenanthroline-4-yl group, 2,8-phenanthroline-7-yl group, 2,8-phenanthro
- ²⁵ 9-yl group, 2,8-phenanthroline-10-yl group, 2,7-phenanthroline-1-yl group, 2,7-phenanthroline-3-yl group, 2,7-phenanthroline-4-yl group, 2,7-phenanthroline-5-yl group, 2,7-phenanthroline-6-yl group, 2,7-phenanthroline-9-yl group, 2,7-phenanthroline-10-yl group, 1-phenazinyl group, 2-phenazinyl group, 3-phenothiazinyl group, 4-phenothiazinyl group, 10-phenothiazinyl group, 2-oxazolyl group, 3-phenoxazinyl group, 4-phenoxazinyl group, 10-phenoxazinyl group, 2-oxazolyl group, 10-phenoxazinyl group, 2-oxazolyl group, 10-phenoxazinyl group, 10-phenoxazinyl group, 2-oxazolyl group, 10-phenoxazinyl group, 2-oxazolyl group, 10-phenoxazinyl group, 2-oxazolyl group, 10-phenoxazinyl group, 10-phenoxazinyl group, 2-oxazolyl group, 10-phenoxazinyl grouphenoxazinyl group
- ³⁰ 4-oxazolyl group, 5-oxazolyl group, 2-oxadiazolyl group, 5-oxadiazolyl group, 3-furazanyl group, 2-thienyl group, 3thienyl group, 2-methylpyrrole-1-yl group, 2-methylpyrrole-3-yl group, 2-methylpyrrole-4-yl group, 2-methylpyrrole-5-yl group, 3-methylpyrrole-1-yl group, 3-methylpyrrole-2-yl group, 3-methylpyrrole-4-yl group, 3-methylpyrrole-5-yl group, 2-t-butylpyrrole-4-yl group, 3-(2-phenylpropyl)pyrrole-1-yl group, 2-methyl-1-indolyl group, 4-methyl-1-indolyl group, 2-t-butyl-3-indolyl group, 4-methyl-3-indolyl group, 2-t-butyl-1-indolyl group, 4-methyl-3-indolyl group, 2-t-butyl-1-indolyl group, 4-methyl-3-indolyl
- ³⁵ group, 4-t-butyl-3-indolyl group, 1-dibenzofuranyl group, 2-dibenzofuranyl group, 3-dibenzofuranyl group, 4-dibenzofuranyl group, 1-dibenzothiophenyl group, 2-dibenzothiophenyl group, 3-dibenzothiophenyl group, 4-dibenzothiophenyl group, 1-silafluorenyl group, 2-silafluorenyl group, 3-silafluorenyl group, 4-silafluorenyl group, 1-germafluorenyl group, 3-germafluorenyl group, 3-germafluorenyl group, 3-germafluorenyl group, 3-germafluorenyl group, 4-dibenzothiophenyl group, 2-germafluorenyl group, 3-germafluorenyl group, 3
- [0245] Among the above, the heterocyclic group is preferably a 2-pyridinyl group, 1-indolidinyl, 2-indolidinyl, 3-indolidinyl, 5-indolidinyl, 6-indolidinyl, 7-indolidinyl, 8-indolidinyl, 2-imidazopyridinyl, 3-imidazopyridinyl, 5-imidazopyridinyl, 6-imidazopyridinyl, 7-imidazopyridinyl, 8-imidazopyridinyl, 3-pyridinyl group, 4-pyridinyl group, 1-indolyl group, 2-indolyl group, 3-indolyl group, 4-indolyl group, 5-indolyl group, 6-indolyl group, 7-indolyl group, 1-isoindolyl group, 2-isoindolyl group, 3-isoindolyl group, 4-isoindolyl group, 5-isoindolyl group, 6-isoindolyl group, 7-isoindolyl group, 9-carbazolyl group, 1-dibenzofuranyl group, 2-dibenzofuranyl group, 3-dibenzofuranyl group, 4-dibenzofuranyl group, 1-dibenzothiophenyl
- ⁴⁵ group, 2-dibenzothiophenyl group, 3-dibenzothiophenyl group, 4-dibenzothiophenyl group, 1-silafluorenyl group, 2-silafluorenyl group, 3-silafluorenyl group, 4-silafluorenyl group, 1-germafluorenyl group, 2-germafluorenyl group, 3-germafluorenyl group, 4-germafluorenyl group, azacarbazolyl-1-yl group, azacarbazolyl-2-yl group, azacarbazolyl-3-yl group, azacarbazolyl-4-yl group, azacarbazolyl-5-yl group, azacarbazolyl-6-yl group, azacarbazolyl-7-yl group, azacarbazolyl-8-yl group, and azacarbazolyl-9-yl group. The heterocyclic group (excluding a substituent) preferably has 3 to 14 carbon atoms.

[0246] The substituted or unsubstituted alkoxy group having 1 to 40 carbon atoms is a group represented by -OY. Examples of Y are the same as those described in relation to the alkyl group. Preferred examples are also the same.
[0247] Examples of the substituted or unsubstituted aryl group having 6 to 40 carbon atoms (including a fused aromatic hydrocarbon group) are a phenyl group, 2-biphenylyl group, 3-biphenylyl

⁵⁵ group, 4-biphenylyl group, p-terphenyl-4-yl group, p-terphenyl-3-yl group, p-terphenyl-2-yl group, m-terphenyl-4-yl group, m-terphenyl-3-yl group, m-terphenyl-2-yl group, o-tolyl group, m-tolyl group, p-tolyl group, p-t-butylphenyl group, p-(2phenylpropyl)phenyl group, 4'-methylbiphenylyl group, 4"-t-butyl-p-terphenyl-4-yl group, o-cumenyl group, m-cumenyl group, p-cumenyl group, 2,3-xylyl group, 3,4-xylyl group, 2,5-xylyl group, mesityl group and m-quarter-phenyl group.

Among the above, the substituted or unsubstituted aryl group is preferably a phenyl group, 2-biphenylyl group, 3-biphenylyl group, 4-biphenylyl group, m-terphenyl-4-yl group, m-terphenyl-3-yl group, m-terphenyl-2-yl group, p-tolyl group, 3,4-xylyl group, m-quarter-phenyl-2-yl group, 1-naphtyl group, 2-naphtyl group, 1-phenanthrenyl group, 2-phenanthrenyl group, 2-triphenylenyl group, 2-triphenylenyl group, 2-triphenylenyl group, 1-triphenylenyl group, 2-triphenylenyl

- ⁵ group, 3-triphenylenyl group, 4-triphenylenyl group, 1-chrysenyl group, 2-chrysenyl group, 3-chrysenyl group, 4-chrysenyl group, 5-chrysenyl group, and 6-chrysenyl group. The aryl group (excluding a substituent) preferably has 6 to 24 carbon atoms. The aryl group preferably further includes a 9-carbazolyl group as a substituent.
 [0248] The substituted or unsubstituted aryloxy group having 6 to 20 carbon atoms is a group represented by -OAr. Examples of Ar are the same as those described in relation to the aryl group. Preferred examples are also the same.
- ¹⁰ **[0249]** Examples of the substituted or unsubstituted aralkyl group having 7 to 20 carbon atoms are a benzyl group, 1phenylethyl group, 2-phenylethyl group, 1-phenylisopropyl group, 2-phenylisopropyl group, phenyl-t-butyl group, α -naphthylmethyl group, 1- α -naphthylethyl group, 2- α -naphthylethyl group, 1- α -naphthylisopropyl group, 2- α -naphthylethyl group, 2- β -naphthylethyl group, 1- β -naphthylethyl group, 2- β -naphthylethyl group, 2- β -naphthylethyl group, 1- β -naphthylisopropyl group, 2- β -naphthylethyl group, 1- β -naphthylisopropyl group, 2- β -naphthylethyl group, 1- β -naphthylisopropyl group, 2- β -naphthylisopropyl group, 2- β -naphthylisopropyl group, 1- β -naphthylisopropyl group, 2- β -naphthylisopropyl group, 1- β -naphthylisopropyl group, 2- β -naphthylisopropyl group, 1- β -naphthylisopropyl group, 2- β -naphthylisopropyl group, 2- β -naphthylisopropyl group, 1- β -naphthylisopropyl group, 2- β -naphthylisopropyl group, 1- β -naphthylisopropyl group, 2- β -naphthylisopr
- ¹⁵ o-methylbenzyl group, p-chlorobenzyl group, m-chlorobenzyl group, o-chlorobenzyl group, p-bromobenzyl group, mbromobenzyl group, o-bromobenzyl group, p-iodobenzyl group, m-iodobenzyl group, o-iodobenzyl group, p-hydroxybenzyl group, m-hydroxybenzyl group, o-hydroxybenzyl group, p-aminobenzyl group, m-aminobenzyl group, o-aminobenzyl group, p-nitrobenzyl group, m-nitrobenzyl group, o-nitrobenzyl group, p-cyanobenzyl group, m-cyanobenzyl group, o-cyanobenzyl group, 1-hydroxy-2-phenylisopropyl group, 1-chloro-2-phenylisopropyl group and the like. Among
- these, preferred are a benzyl group, a p-cyanobenzyl group, m-cyanobenzyl group, o-cyanobenzyl group, 1-phenylethyl group, 2-phenylethyl group, 1-phenylisopropyl group, and 2-phenylisopropyl group. An alkyl portion of the aralkyl group preferably has 1 to 8 carbon atoms. An aryl portion thereof (including heteroaryl) preferably has 6 to 18 carbon atoms. [0250] The substituted or unsubstituted arylamino group having 6 to 40 carbon atoms, the substituted or unsubstituted alkylamino group having 1 to 40 carbon atoms, and the substituted or unsubstituted aralkylamino group having 7 to 60
- ²⁵ carbon atoms each are represented by -NQ¹Q². Examples of Q¹ and Q² each are independently the same as those described in relation to the alkyl group, aryl group and aralkyl group. Preferred examples are also the same.
 [0251] The substituted or unsubstituted arylcarbonyl group having 7 to 40 carbon atoms is represented by -COAr². Examples of Ar² are the same as those described in relation to the aryl group. Preferred examples are also the same.
 [0252] The substituted or unsubstituted arylthio group having 6 to 20 carbon atoms is exemplified by a group obtained
- 30 by replacing an oxygen atom of the aryloxy group represented by -OAr with a sulfur atom. Preferred examples are also the same.

[0253] The substituted or unsubstituted halogenated alkyl group having 1 to 40 carbon atoms is exemplified by a halogenated alkyl group in which at least one hydrogen atom of the alkyl group is substituted by a halogen atom. Preferred examples are also the same.

³⁵ **[0254]** The compound represented by the general formula (8) preferably has triplet energy gap of 2.2 eV to 3.2 eV. Specific examples of the formula (8) are shown below.

[Chemical Formula 81]

45 50

[Chemical Formula 82]

55

No.1

No.12

[Chemical Formula 84]

[Chemical Formula 85]

[Chemical Formula 87]

40

Fourth Exemplary Embodiment

[0255] An organic EL device according to a fourth exemplary embodiment is different from the organic EL devices according to the second and third exemplary embodiments in being a red phosphorescent device.

⁵⁰ **[0256]** The compound according to this exemplary embodiment is not disclosed as a phosphorescent host material of which color is specified. However, since having a high resistance against oxidation and reduction, the compound is also applicable to a red phosphorescent device. As a red phosphorescent device, a hydrocarbon material, which exhibits a small triplet energy and broad ð electron clouds compared with a green phosphorescent material, can be used. Although the hydrocarbon material is difficult to be used as a green phosphorescent material because of its small triplet energy,

⁵⁵ the hydrocarbon material is highly appropriate as a red phosphorescent host material because of its high oxidation and reduction. Accordingly, by using the hydrocarbon material as the second host material, a red phosphorescent device can become highly efficient.

[0257] The second host material is preferably a compound selected from the group consisting of polycyclic aromatic

compounds represented by formulae (9A), (9B) and (9C) below.

Ra-Ar¹⁰¹-Rb ... (9A)

Ra-Ar¹⁰¹-Ar¹⁰²-Rb ... (9B)

Ra-Ar¹⁰¹-Ar¹⁰²-Ar¹⁰³-Rb ... (9C)

[0258] In the formulae (9A) to (9C), Ar^{101} , Ar^{102} , Ar^{103} , Ra and Rb represent a substituted or unsubstituted aryl group having 6 to 60 ring carbon atoms.

[0259] Ar¹⁰¹, Ar¹⁰², Ar¹⁰³, Ra and Rb preferably represent a polycyclic aromatic skeleton selected from a substituted or unsubstituted benzene ring, substituted or unsubstituted or unsubstited or unsubstituted or unsubs

¹⁵ triphenylene ring, substituted or unsubstituted benzo[a]triphenylene ring, substituted or unsubstituted benzochrysene ring, substituted or unsubstituted benzo[b]fluoranthene ring, substituted or unsubstituted fluorene ring and substituted or unsubstituted picene ring.

[0260] It is further preferable that substituents for Ra and Rb are not aryl groups; and Ar^{101} , Ar^{102} , Ar^{103} , Ra and Rb are not substituted or unsubstituted benzene ring at the same time.

²⁰ **[0261]** Moreover, in the formulae (9A) to (9C), either one or both of Ra and Rb are preferably selected from the group consisting of a substituted or unsubstituted phenanthrene ring, substituted or unsubstituted benzo[c]phenanthrene ring and substituted or unsubstituted fluoranthene ring.

[0262] The polycyclic aromatic skeleton of the polycyclic aromatic compound may be substituted.

[0263] Examples of the substituent for the polycyclic aromatic skeleton are a halogen atom, hydroxyl group, substituted or unsubstituted amino group, nitro group, cyano group, substituted or unsubstituted alkyl group, substituted or unsubstituted alkenyl group, substituted or unsubstituted or unsubstituted alkoxy group, substituted or unsubstituted aromatic hydrocarbon group, substituted or unsubstituted aromatic heterocyclic group, substituted or unsubstituted aralkyl group, substituted or unsubstituted aromatic heterocyclic group, substituted or unsubstituted aralkyl group, substituted or unsubstituted aromatic heterocyclic group, substituted or unsubstituted aromatic heterocyclic group, substituted or unsubstituted aralkyl group, substituted or unsubstituted aryloxy group, substituted alkoxycarbonyl group, and carboxyl group. Preferred examples of the aromatic hydrocarbon group are naphthalene, phenanthrene, fluorene, chrysene, fluoranthene and triphenylene.

[0264] When the polycyclic aromatic skeleton has a plurality of substituents, the substituents may form a ring.[0265] The polycyclic aromatic skeleton is preferably any one selected from the group consisting of compounds represented by formulae (9-1) to (9-4) below.

[Chemical Formula 88]

40

35

5

45

50

[0266] In the formulae (9-1) to (9-4), Ar^1 to Ar^5 each represent a substituted or unsubstituted fused ring structure having 4 to 16 ring carbon atoms.

[0267] Examples of the compound represented by the formula (9-1) are elementary substances or derivatives of substituted or unsubstituted phenanthrene and chrysene.

⁴⁵ **[0268]** Examples of the compound represented by the formula (9-2) are elementary substances or derivatives of substituted or unsubstituted acenaphthylene, acenaphthene and fluoranthene.

[0269] Examples of the compound represented by the formula (9-3) are elementary substances or derivatives of substituted or unsubstituted benzofluoranthene.

[0270] Examples of the compound represented by the formula (9-4) are elementary substances or derivatives of substituted or unsubstituted benzofluoranthene.

[0271] The naphthalene derivative is exemplified by a formula (9-5) below.

55

[Chemical Formula 89]

15 [0272] In the formula (9-5), R1 to R8 each independently represent a hydrogen atom, or a substituent consisting of one of or a combination of two or more of substituted or unsubstituted aryl group having 5 to 30 ring carbon atoms, branched or linear alkyl group having 1 to 30 carbon atoms and substituted or unsubstituted cycloalkyl group having 3 to 20 carbon atoms.

[0273] The naphthalene derivative is exemplified by a formula (9-6) below.

20

5

[Chemical Formula 90]

35

[0274] In the formula (9-6), R1 to R10 each independently represent a hydrogen atom, or a substituent consisting of one of or a combination of two or more of substituted or unsubstituted aryl group having 5 to 30 ring carbon atoms, branched or linear alkyl group having 1 to 30 carbon atoms and substituted or unsubstituted cycloalkyl group having 3 to 20 carbon atoms.

40 [0275] The chrysene derivative is exemplified by a formula (9-7) below.

45

[Chemical Formula 91]

20

5

10

15

[0276] In the formula (9-7), R_1 to R_{12} each independently represent a hydrogen atom, or a substituent consisting of one of or a combination of two or more of substituted or unsubstituted aryl group having 5 to 30 ring carbon atoms, branched or linear alkyl group having 1 to 30 carbon atoms and substituted or unsubstituted cycloalkyl group having 3 to 20 carbon atoms.

²⁵ **[0277]** The polyaromatic skeleton is preferably benzo[c]phenanthrene or its derivative. The benzo[c]phenanthrene derivative is exemplified by a formula (9-8) below.

[Chemical Formula 92]

40

35

30

[0278] In the formula (9-8), R₁ to R₉ each independently represent a hydrogen atom, or a substituent consisting of one of or a combination of two or more of substituted or unsubstituted aryl group having 5 to 30 ring carbon atoms, branched or linear alkyl group having 1 to 30 carbon atoms and substituted or unsubstituted cycloalkyl group having 3 to 20 carbon atoms.

[0279] The polycyclic aromatic skeleton is preferably benzo[c]chrysene or its derivative. The benzo[c]phenanthrene derivative is exemplified by a formula (9-9) below.

50

[Chemical Formula 93]

[0280] In the formula (9-9), R₁ to R₁₁ each independently represent a hydrogen atom, or a substituent consisting of one of or a combination of two or more of substituted or unsubstituted aryl group having 5 to 30 ring carbon atoms, branched or linear alkyl group having 1 to 30 carbon atoms and substituted or unsubstituted cycloalkyl group having 3 to 20 carbon atoms.

[0281] The polycyclic aromatic skeleton is preferably dibenzo[c,g]phenanthrene represented by a formula (9-10) below or its derivative.

20

25

30

5

10

[Chemical Formula 94]

...(9-10)

[Chemical Formula 95]

 X_{13}

X₁₈

X₁₂

X₁₉

 X_{21}

X₂₀

35

[0282] The polycyclic aromatic skeleton is preferably fluoranthene or its derivative. The fluoranthene derivative is exemplified by a formula (9-11) below.

 χ_{15}

X₁₆

•••(9-11)

X₁₄

X17

40

55

[0283] In the formula (9-11), X_{12} to X_{21} each represent a hydrogen atom; halogen atom; linear, branched or cyclic alkyl group; linear, branched or cyclic alkoxy group; substituted or unsubstituted aryl group; or substituted or unsubstituted heteroaryl group.

[0284] The polycyclic aromatic skeleton is preferably triphenylene or its derivative. The triphenylene derivative is exemplified by a formula (9-12) below.

[Chemical Formula 96]

[0285] In the formula (9-12), R₁ to R₆ each independently represent a hydrogen atom, or a substituent consisting of one of or a combination of two or more of substituted or unsubstituted aryl group having 5 to 30 ring carbon atoms, branched or linear alkyl group having 1 to 30 carbon atoms and substituted or unsubstituted cycloalkyl group having 3 to 20 carbon atoms.

[0286] The polycyclic aromatic compound may be represented by a formula (9-13) below.

40

20

[0287] In the formula (9-13), Ra and Rb represent the same as Ra and Rb in the formulae (9A) to (9C). When Ra, Rb and the naphthalene ring have a single or plural substituent(s), the single or plural substituent(s) are an alkyl group having 1 to 20 carbon atoms, haloalkyl group having 1 to 20 carbon atoms, cycloalkyl group having 5 to 18 carbon atoms, silyl group having 3 to 20 carbon atoms, cyano group or halogen atom, while substituents for the naphthalene rings other than Ra and Rb are further allowed to be an aryl group having 6 to 22 carbon atoms.

than Ra and Rb are further allowed to be an aryl group having 6 to 22 carbon atoms.
 [0288] In the formula (9-13), Ra and Rb each preferably represent a group selected from fluorene ring, phenanthrene ring, triphenylene ring, benzophenanthrene ring, dibenzophenanthrene ring, benzotriphenylene ring, fluoranthene ring, benzochrysene ring, benzo[b]fluoranthene ring and picene ring.

50 Fifth Exemplary Embodiment

[0289] The second host material is preferably a monoamine derivative represented by any one of formulae (10) to (12) below.

[Chemical Formula 98]

10

15

25

30

[0290] In the formula (10), Ar¹¹¹, Ar¹¹² and Ar¹¹³ each are a substituted or unsubstituted aryl group or heteroaryl group. [0291] The aryl group has 6 to 50 ring carbon atoms (preferably 6 to 30 ring carbon atoms, more preferably 6 to 20 ring carbon atoms). Examples of the aryl group are a phenyl group, naphthyl group, phenanthrenyl group, benzophenanthrenyl group, dibenzophenanthrenyl group, benzochrysenyl group, dibenzochrysenyl group, fluoranthenyl group, benzofluoranthenyl group, triphenylenyl group, benzotriphenylenyl group, dibenzotriphenylenyl group, picenyl group, benzopicenyl group, dibenzopicenyl group, phenalenyl group, acenaphthenyl group, and diazaphenanthrenyl group.

Among the above, a phenyl group or naphthyl group is preferable.

Ar¹¹⁵

20 [0292] The heteroaryl group has 5 to 50 ring atoms (preferably 6 to 30 ring atoms, more preferably 6 to 20 ring atoms). Examples of the heteroaryl group are a pyrimidyl group and diazaphenanthrenyl group. [0293] At least one of Ar¹¹¹, Ar¹¹² and Ar¹¹³ is preferably a fused aromatic hydrocarbon group selected from a phen-

anthrenyl group, benzophenanthrenyl group, dibenzophenanthrenyl group, benzochrysenyl group, dibenzochrysenyl group, fluoranthenyl group, benzofluoranthenyl group, triphenylenyl group, benzotriphenylenyl group, dibenzotriphenylenyl group, picenyl group, benzopicenyl group, dibenzopicenyl group, phenalenyl group, and diazaphenanthrenyl group. Among the above, a benzochrysenyl group, triphenylenyl group, or phenanthrenyl group is more preferable. Preferably, the fused aromatic hydrocarbon group is unsubstituted.

[0294] In the monoamine derivative represented by the formula (10), Ar¹¹¹ and Ar¹¹² each are preferably a phenyl group or naphthyl group, and Ar¹¹³ is preferably a benzochrysenyl group, triphenylenyl group, or phenanthrenyl group.

[Chemical Formula 99]

35

40

45

[0295] In the formula (11), Ar¹¹⁴, Ar¹¹⁵ and Ar¹¹⁷ each are a substituted or unsubstituted aryl group or heteroaryl group. [0296] Examples of the aryl group or heteroaryl group are the same as those defined as the aryl group or heteroaryl group for Ar¹¹¹, among which a phenyl group or naphthyl group is preferable.

 Ar^{114} N Ar^{116} Ar^{117} ... (11)

[0297] Ar¹¹⁶ is a substituted or unsubstituted arylene group or heteroarylene group.

[0298] The arylene group has 6 to 50 ring carbon atoms (preferably 6 to 30 ring carbon atoms, more preferably 6 to 20 ring carbon atoms). Examples of the arylene group are a phenylene group, naphthylene group, phenanthrenylene group, naphthacenylene group, pyrenylene group, biphenylene group, terphenylene group, benzophenanthrenylene

- 50 group, dibenzophenanthrenylene group, benzochrysenylene group, dibenzochrysenylene group, fluoranthenylene group, benzofluoranthenylene group, triphenylenylene group, benzotriphenylenylene group, dibenzotriphenylenylene group, picenylene group, benzopicenylene group, and dibenzopicenylene group. Among the above, a phenylene group or naphthylene group is preferable.
- [0299] The heteroaryl group has 5 to 50 ring atoms (preferably 6 to 30 ring atoms, more preferably 6 to 20 ring atoms). 55 Examples of the heteroaryl group are a pyridylene group, pyrimidylene group, dibenzofuranylene group, and dibenzothiophenylene group.

[0300] Ar¹¹⁷ is preferably a fused aromatic hydrocarbon group selected from a phenanthrenyl group, benzophenanthrenyl group, dibenzophenanthrenyl group, benzochrysenyl group, dibenzochrysenyl group, fluoranthenyl group, ben-

zofluoranthenyl group, triphenylenyl group, benzotriphenylenyl group, dibenzotriphenylenyl group, picenyl group, benzopicenyl group, and dibenzopicenyl group. Among the above, a benzochrysenyl group, triphenylenyl group, or phenanthrenyl group is more preferable. Preferably, the fused aromatic hydrocarbon group is unsubstituted.

[0301] In the monoamine derivative of the formula (11), more preferably, Ar¹¹⁴ and Ar¹¹⁵ each are a phenyl group or naphthyl group, Ar¹¹⁶ is a phenyl group or naphthyl group, and Ar¹¹⁷ is a benzochrysenyl group, triphenylenyl group, or phenanthrenyl group.

[Chemical Formula 100]

10

15

 Ar^{118} $N + (Ar^{120}) - Ar^{121} \cdots (12)$ Ar^{119}

[0302] In the formula (12), Ar¹¹⁸, Ar¹¹⁹ and Ar¹²¹ are a substituted or unsubstituted aryl group or heteroaryl group.
 [0303] Examples of the aryl group or heteroaryl group are the same as those defined as the aryl group or heteroaryl group for Ar¹¹¹ and are preferably a phenyl group.

[0304] Ar¹²⁰ is a substituted or unsubstituted arylene group or heteroarylene group and the same as those defined as the arylene group or heteroarylene group for Ar^{116} .

[0305] Ar¹²⁰ is preferably a phenylene group or naphthylene group.
 [0306] n is an integer of 2 to 5, preferably 2 to 4, more preferably 2 to 3. When n is 2 or more, Ar¹²⁰ may be mutually the same or different.

[0307] Ar¹²¹ is preferably a fused aromatic hydrocarbon group selected from a phenyl group, naphthyl group, phenanthrenyl group, benzophenanthrenyl group, dibenzophenanthrenyl group, benzochrysenyl group, dibenzochrysenyl group, dibenzotriphenyl group, benzotriphenyl group, dibenzotriphenyl group, benzotriphenyl group, dibenzotriphenyl group, benzotriphenyl group, dibenzotriphenyl group, benzotriphenyl group,

- ³⁰ group, fluoranthenyl group, benzofluoranthenyl group, triphenylenyl group, benzotriphenylenyl group, dibenzotriphenylenyl group, picenyl group, benzopicenyl group, dibenzopicenyl group, phenalenyl group, and diazaphenanthrenyl group. Among the above, a benzochrysenyl group, triphenylenyl group, or phenanthrenyl group is more preferable. [0308] In the exemplary embodiment, for the second host material in the formula (12), Ar¹¹⁸ and Ar¹¹⁹ each are preferably a phenyl group or naphthyl group; Ar¹²⁰ is preferably a phenylene group or naphthylene group; and Ar¹²¹ is
- ³⁵ preferably a benzochrysenyl group, triphenylenyl group, or phenanthrenyl group. [0309] When Ar¹⁰¹ to Ar¹²¹ have substituent(s), the substituent(s) is preferably an alkyl group having 1 to 20 carbon atoms, haloalkyl group having 1 to 20 carbon atoms, cycloalkyl group having 3 to 18 carbon atoms, aryl group having 6 to 30 ring carbon atoms, sill group having 3 to 20 carbon atoms, cyano group, and halogen atom.
- [0310] Examples of the alkyl group are a methyl group, ethyl group, propyl group, isopropyl group, n-butyl group, 1-40 methylpropyl group and 1-propylbutyl group.
 - **[0311]** Examples of the aryl group are the same as those for Ar¹⁰¹.

[0312] The haloalkyl group is exemplified by a 2,2,2-trifluoroethyl group.

[0313] Examples of the cycloalkyl group are a cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group and cyclooctyl group.

- [0314] Examples of the silyl group are a trimethylsilyl group and triethylsilyl group.
- **[0315]** Examples of the halogen atom are fluorine, chlorine, bromine, and iodine.

[0316] When the monoamine derivatives represented by the formulae (10) to (12) do not have a substituent, it is meant that a hydrogen atom is substituted. The hydrogen atom of the monoamine derivatives represented by the formulae (10) to (12) includes light hydrogen and deuterium. "Carbon atoms forming a ring (ring carbon atoms)" mean carbon atoms

forming a saturated ring, unsaturated ring, or aromatic ring. "Atoms forming a ring (ring atoms)" mean carbon atoms and hetero atoms forming a ring including a saturated ring, unsaturated ring, or aromatic ring.
 [0317] Specific examples of the monoamine derivatives represented by the formula (10) are shown below.

[Chemical Formula 101]

55

[Chemical Formula 103]

[Chemical Formula 105]

Sixth Exemplary Embodiment

[0320] In an organic EL device according to a sixth exemplary embodiment, an aromatic amine compound is used as the second host material.

[0321] An example of the aromatic amine compound is preferably a compound represented by the formula (13) or (14).

[Chemical Formula 110]

55

40

45

50

In the formula (13): X^3 represents a substituted or unsubstituted arylene group having 10 to 40 ring carbon atoms; and A^3 to A^6 represent a substituted or unsubstituted aryl group having 6 to 60 ring carbon atoms, or heteroaryl group

15

20

5

having 6 to 60 ring atoms.

[0322] In the formula (14), A⁷ to A⁹ represent a substituted or unsubstituted aryl group having 6 to 60 ring carbon atoms, or heteroaryl group having 6 to 60 ring atoms.

[0323] The second host material represented by the formula (13) or (14) is preferably represented by formulae (15) to (19).

[Chemical Formula 112]

[Chemical Formula 113]

In the formulae (15) to (19): A¹⁰ to A¹⁹ each represent a substituted or unsubstituted aryl group having 6 to 40 carbon atoms, substituted or unsubstituted aromatic heterocyclic group having 2 to 40 carbon atoms, substituted or unsubstituted aryl group having 8 to 40 carbon atoms bonded with an aromatic amino group, or substituted or unsubstituted aryl group having 8 to 40 carbon atoms bonded with an aromatic heterocyclic group; A¹⁰ A¹³, A¹⁵ and A¹⁷ are adapted to be respectively bonded to A¹¹, A¹⁴, A¹⁶ and A¹⁸ to form a ring;

 X^4 to X^9 represent a single bond or a linking group having 1 to 30 carbon atoms;

35 Y⁶ to Y²⁴ represent a hydrogen atom, halogen atom, substituted or unsubstituted alkyl group having 1 to 40 carbon atoms, substituted or unsubstituted heterocyclic group having 3 to 20 carbon atoms, substituted or unsubstituted aryl group having 6 to 40 carbon atoms, substituted or unsubstituted aralkyl group having 7 to 20 carbon atoms, substituted or unsubstituted alkenyl group having 2 to 40 carbon atoms, substituted or unsubstituted alkylamino group having 1 to 40 carbon atoms, substituted or unsubstituted at kylamino group having 1 to 40 carbon atoms, substituted or unsubstituted aralkylamino group having 7 to 60 carbon atoms, substituted or unsubstituted at kylamino group having 7 to 60 carbon atoms, substituted or unsubstituted at kylamino group having 7 to 60 carbon atoms, substituted or unsubstituted aryl group having 3 to 20 carbon atoms, substituted or unsubstituted aryligil group having 3 to 20 carbon atoms, substituted aryligil group having 3 to 20 carbon atoms, substituted or unsubstituted aryligil group having 3 to 20 carbon atoms, substituted aryligil group having 3 to 20 carbon atoms, substituted aryligil group having 3 to 20 carbon atoms, substituted aryligil group having 3 to 20 carbon atoms, substituted or unsubstituted aryligil group having 3 to 20 carbon atoms, substituted aryligil group having 3 to 20 carbon atoms, substituted aryligil group having 3 to 20 carbon atoms, substituted aryligil group having 3 to 20 carbon atoms, substituted aryligil group having 3 to 20 carbon atoms, substituted aryligil group having 3 to 20 carbon atoms, substituted aryligil group having 3 to 20 carbon atoms, substituted aryligil group having 3 to 20 carbon atoms, substituted aryligil group having 3 to 20 carbon atoms, substituted aryligil group having 3 to 20 carbon atoms, substituted aryligil group having 3 to 20 carbon atoms, substituted aryligil group having 3 to 20 carbon atoms, substituted aryligil group having 3 to 20 carbon atoms, substituted aryligil group having 3 to 20 carbon atoms, subst

having 8 to 40 carbon atoms, substituted or unsubstituted aralkylsilyl group having 8 to 40 carbon atoms, or substituted or unsubstituted halogenated alkyl group having 1 to 40 carbon atoms; and X_A, X_B, X_C, X_D, X_E each represent a sulfur atom, an oxygen atom or a monoaryl-substituted nitrogen atom.

- ⁴⁵ **[0324]** Examples of compounds represented by the formulae (13), (14), and (15) to (19) are as follows.
- 50

Seventh Exemplary Embodiment

[0325] The second host material may be compounds represented by the above formula (4) and having a different structure from that of the first host material.

³⁵ **[0326]** It should be noted that the invention is not limited to the above description but may include any modification as long as such modification stays within a scope and a spirit of the invention.

[0327] For instance, the following is a preferable example of such modification made to the invention.

[0328] In the invention, the emitting layer may also preferably contain an assistance material for assisting injection of charges.

⁴⁰ **[0329]** When the emitting layer is formed of a host material that exhibits a wide energy gap, a difference in ionization potential (Ip) between the host material and the hole injecting/transporting layer etc. becomes so large that injection of the holes into the emitting layer becomes difficult, which may cause a rise in a driving voltage required for providing sufficient luminance.

[0330] In the above instance, introducing a hole-injectable/transportable assistance material for assisting injection of charges in the emitting layer can contribute to facilitation of the injection of the holes into the emitting layer and to reduction of the driving voltage.

[0331] As the assistance material for assisting the injection of charges, for instance, a typical hole injecting/transporting material or the like can be used.

- **[0332]** Specific examples of the assistance material for assisting the injection of charges are a triazole derivative, oxadiazole derivative, imidazoles derivative, polyarylalkane derivative, pyrazoline derivative, pyrazolone derivative, phenylenediamine derivative, arylamine derivative, amino-substituted chalcone derivative, oxazole derivative, styrylanthracene derivative, fluorenone derivative, hydrazone derivative, silazane derivative, polysilane copolymer, aniline copolymer, and conductive polymer oligomer (particularly, a thiophene oligomer).
- [0333] The hole injecting material is exemplified by the above. The hole injecting material is preferably a porphyrin compound, aromatic tertiary amine compound and styryl amine compound, particularly preferably aromatic tertiary amine compound.

[0334] In addition, 4,4'-bis(N-(1-naphthyl)-N-phenylamino)biphenyl (hereinafter, abbreviated as NPD) having two fused aromatic rings in a molecule, or 4,4',4"-tris(N-(3-methylphenyl)-N-phenylamino)triphenylamine (hereinafter, abbreviated as NPD) having two fused aromatic rings in a molecule, or 4,4',4"-tris(N-(3-methylphenyl)-N-phenylamino)triphenylamine (hereinafter, abbreviated as NPD) having two fused aromatic rings in a molecule, or 4,4',4"-tris(N-(3-methylphenyl)-N-phenylamino)triphenylamine (hereinafter, abbreviated as NPD) having two fused aromatic rings in a molecule, or 4,4',4"-tris(N-(3-methylphenyl)-N-phenylamino)triphenylamine (hereinafter, abbreviated aromatic rings) have a molecule of the triphenylamine (hereinafter, abbreviated aromatic rings) have a molecule of the triphenylamine (hereinafter, abbreviated aromatic rings) have a molecule of the triphenylamine (hereinafter, abbreviated aromatic rings) have a molecule of the triphenylamine (hereinafter, abbreviated aromatic rings) have a molecule of the triphenylamine (hereinafter, abbreviated aromatic rings) have a molecule of the triphenylamine (hereinafter, abbreviated aromatic rings) have a molecule of the triphenylamine (hereinafter, abbreviated aromatic rings) have a molecule of the triphenylamine (hereinafter, abbreviated aromatic rings) have a molecule of the triphenylamine (hereinafter, abbreviated aromatic rings) have a molecule of the triphenylamine (hereinafter, abbreviated aromatic rings) have a molecule of the triphenylamine (hereinafter, abbreviated aromatic rings) have a molecule of the triphenylamine (hereinafter, abbreviated aromatic rings) have a molecule of the triphenylamine (hereinafter, abbreviated aromatic rings) have a molecule of triphenylamine (hereinafter, abbreviated aromatic rings) have a molecule of triphenylamine (hereinafter, abbreviated aromatic rings) have a molecule of triphenylamine (hereinafter, abbreviated aromatic rings) have a molecule of triphenylamine (hereinafter, abbreviated aromatic rings) have a mole

as MTDATA) in which three triphenylamine units are bonded in a starburst form as disclosed and the like may also be used. [0335] Moreover, a hexaazatriphenylene derivative and the like may be also preferably used as the hole injecting material.

[0336] Alternatively, inorganic compounds such as p-type Si and p-type SiC can also be used as the hole-injecting material.

Examples

5

15

[0337] Next, the invention will be described in further detail by exemplifying Example(s) and Comparison(s). However, the invention is not limited by the description of Example(s).

Synthesis Example 1 (Synthesis of Compound 1)

[0338] A synthesis scheme is shown below.

[Chemical Formula 129]

Synthesis of Intermediate Body 1-1

[0339] 4-bromobenzaldehyde (25 g, 135 mmol) and acetophenone (16.2 g, 135 mmol) were added to ethanole (200 mL). An aqueous solution of 3M potassium hydrate (60 mL) was further added thereto and stirred at room temperature for 7 hours. A precipitated solid was separated by filtration. Then, the obtained solid was washed with methanol. A white solid intermediate body 1-1 (28.3g, a yield rate 73%) was obtained.

Synthesis of Intermediate Body 1-2

- ¹⁰ **[0340]** The intermediate body 1-1 (20 g, 69.7 mmol) and benzamidine hydrochloride (10.8 g, 69.7 mmol) were added to ethanole (300 mL). Sodium hydroxide (5.6 g, 140 mmol) was further added thereto and heated to reflux at room temperature for 8 hours. A precipitated solid was separated by filtration. Then, the obtained solid was washed with hexane. A white solid intermediate body 1-2 (10.3 g, a yield rate 38%) was obtained.
- ¹⁵ Synthesis of Intermediate Body 1-3

[0341] Carbazole (15 g, 92.6 mmol) was added to ethanol (70 mL). Sulfuric acid (6 mL), water (3 mL), $HIO_4 \cdot 2H_2O$ (8.2 g, 35.9 mmol) and I_2 (9.1 g, 35.9 mmol) were added thereto and stirred at room temperature for 4 hours. Water was added to the reaction solution and a precipitated solid was separated by filtration. Then, the obtained solid was washed with methanol. By dissolving the obtained solid in heated toluene for recrystallization, an intermediate body 1-3 (5.1 g,

a yield rate 18.8%) was obtained.

Synthesis of Intermediate Body 1-4

[0342] Under an argon gas atmosphere, N-phenylcarbazolyl-3-boronic acid (2.0 g, 7.0 mmol), the intermediate body 1-3 (2.05 g, 7.0 mmol), Pd(PPh₃)₄ (0.15 g, 0.14 mmol), toluene (20 mL) and an aqueous solution of 2M sodium carbonate (10.5 mL) were added together, and stirred at 80 degrees C for 7 hours. Water was added to the reaction solution to precipitate solid. Then, the obtained solid was washed with methanol. By washing the obtained solid by heated toluene, an intermediate body 1-4 (2.43 g, a yield rate 84%) was obtained.

30

35

55

20

5

Synthesis of Compound 1

[0343] Under an argon gas atmosphere, to a three-necked flask, the intermediate body 1-2 (2.28 g, 5.88 mmol), the intermediate body 1-4 (2.4 g, 5.88 mmol), Cul (0.56 g, 2.9 mmol), tripotassium phosphate (2.5 g, 11.8 mmol), anhydrous dioxane (30 mL) and cyclohexane diamine (0.33 g, 2.9 mmol) were added together in sequential order, and stirred at

100 degrees C for 8 hours.

[0344] Water was added to the reaction solution to precipitate solid. Then, the obtained solid was washed with hexane, followed by methanol. The obtained solid was refined by silica-gel column chromatography, whereby a white solid compound 1 (2.7 g, a yield rate 65%) was obtained.

40 **[0345]** FD-MS analysis consequently showed that m/e was equal to 714 while a calculated molecular weight was 714.

Synthesis Example 2 (Synthesis of Compound 2)

- **[0346]** The intermediate body 1-1 (6.49 g, 22.6 mmol), phenacylpyridinium bromide (12.7 g, 45.6 mmol), ammonium acetate (45 g), acetic acid (200 mL), and N,N-dimethylformamide (200 mL) were heated to reflux and stirred for 8 hours. The reaction solution was put into an ice water and a precipitated solid was separated by filtration. Then, the obtained solid was washed with methanol. The obtained solid was refined by silica-gel column chromatography (dissolving solvent: hexane/methylene chloride), whereby an intermediate body 2-1 (3.7 g, a yield rate 42%) was obtained.
- [0347] Subsequently, under an argon gas atmosphere, to a three-necked flask, the intermediate body 2-1 (2.81 g, 7.3 mmol), the intermediate body 1-4 (3.0 g, 7.3 mmol), Cul (1.4 g, 7.3 mmol), tripotassium phosphate (2.3 g, 11 mmol), anhydrous dioxane (30 mL) and cyclohexane diamine (0.84 g, 7.3 mmol) were added together in sequential order, and stirred at 100 degrees C for 8 hours.

[0348] Water was added to the reaction solution to precipitate solid. Then, the obtained solid was washed with hexane, followed by methanol. The obtained solid was refined by silica-gel column chromatography, whereby a compound 2 (3.4 g, a yield rate 65%) was obtained.

[0349] FD-MS analysis consequently showed that m/e was equal to 713 while a calculated molecular weight was 713.[0350] A synthesis scheme of the compound 2 is shown below.

[Chemical Formula 130]

Synthesis Example 3 (Synthesis of Compound 3)

- [0351] Under a nitrogen gas atmosphere, trichloropyrimidine (8 g, 43.4 mmol), phenylboronic acid (11.6 g, 95.4 mmol), tetrakis(triphenylphosphine)palladium (1.83 g, 1.74 mmol), toluene (300 mL) and an aqueous solution of 2M sodium carbonate (130 mL) were added together in sequential order, and heated to reflux for 8 hours. After the reaction solution was cooled down to the room temperature, an organic layer was removed and an organic solvent was distilled away under reduced pressure. The obtained residue was refined by silica-gel column chromatography, whereby an intermediate body 3-1 (8.2g, a yield of 71 %) was obtained.
 - [0352] Subsequently, under a nitrogen gas atmosphere, intermediate body 3-1 (8 g, 29.9 mmol), p-chlorophenylboronic acid (5.1 g, 32.9 mmol), tetrakis(triphenylphosphine)palladium (0.63 g, 0.6 mmol), toluene (60 mL) and an aqueous solution of 2M sodium carbonate (30 mL) were added together in sequential order, and heated to reflux for 8 hours.
- [0353] After the reaction solution was cooled down to the room temperature, an organic layer was removed and an organic solvent was distilled away under reduced pressure. The obtained residue was refined by silica-gel column chromatography, whereby an intermediate body 3-2 (7.0g, a yield of 68%) was obtained.
 [0354] Under an argon gas atmosphere, the intermediate body 3-2 (6.5 g, 18.9 mmol), the intermediate body 1-4 (7.7 g, 18.9 mmol), palladium acetate (0.085 g, 0.38 mmol), sodium t-butoxide (2.72 g, 28.4 mmol), anhydrous toluene (60 mL), and tri-t-butyl phosphine (0.077 g, 0.38 mmol) were sequentially mixed, and stirred at 90 degrees C for 8 hours.
- [0355] After the reaction solution was cooled down to the room temperature, an organic layer was removed and an organic solvent was distilled away under reduced pressure. The obtained residue was refined by silica-gel column chromatography, whereby a compound 3 (7.8g, a yield of 58%) was obtained.
 - [0356] FD-MS analysis consequently showed that m/e was equal to 715 while a calculated molecular weight was 715.[0357] A synthesis scheme of the compound 3 is shown below.
- 40

50

Synthesis Example 4 (Synthesis of Compound 4)

35

40

- **[0358]** 3,3'-dicarbazolyl was synthesized by a method disclosed in WO2006-25186.
- ³⁰ **[0359]** Under an argon gas atmosphere, to a three-necked flask, 3,3'-dicarbazolyl (2.4 g, 7.3 mmol), the intermediate body 1-2 (5.6 g, 14.6 mmol), Cul (1.4g, 7.3 mmol), tripotassium phosphate (6.4 g, 30 mmol), anhydrous dioxane (50 mL) and cyclohexane diamine (0.84 g, 7.3 mmol) were added together in sequential order, and stirred at 100 degrees C for 8 hours.

[0360] Water was added to the reaction solution to precipitate solid. Then, the obtained solid was washed with hexane, followed by methanol. The obtained solid was refined by silica-gel column chromatography, whereby a compound 4 (3.1g, a yield rate 45%) was obtained.

- [0361] FD-MS analysis consequently showed that m/e was equal to 945 while a calculated molecular weight was 945.[0362] A synthesis scheme of the compound 4 is shown below.
- [0362] A synthesis scheme of the compound 4 is shown below

[Chemical Formula 132]

45 Intermediate body 1-2 Br Cul-cyclohexenediamine 50 K_3PO_4 dioxane Compound 4 55

Synthesis Example 5 (Synthesis of Compound 5)

[0363] Under an argon gas atmosphere, the intermediate body 3-1 (1.0g, 3.9 mmol), the intermediate body 1-4 (1.6 g, 3.9 mmol), tris(dibenzylideneacetone)dipalladium (0.071 g, 0.078 mmol), tri-t-butylphosphonium tetrafluoroborate (0.091 g, 0.31 mmol), sodium t-butoxide (0.53g, 5.5 mmol), and anhydrous toluene (20 mL) were sequentially mixed, and heated to reflux for 8 hours.

[0364] After the reaction solution was cooled down to the room temperature, an organic layer was removed and an organic solvent was distilled away under reduced pressure. The obtained residue was refined by silica-gel column chromatography, whereby a compound 5 (1.8g, a yield of 74%) was obtained.

¹⁰ FD-MS analysis consequently showed that m/e was equal to 639 while a calculated molecular weight was 639. [0365] A synthesis scheme of the compound 5 is shown below.

Synthesis Example 6 (Synthesis of Compound 6)

- ³⁵ **[0366]** 3-bromobenzaldehyde (18.4 g, 100 mmol) was dissolved in dimethylformamide (300 mL). Benzamidine hydrochloride (31.2 g, 200 mmol) and potassium carbonate (41 g, 300 mmol) were added thereto and heated to reflux at 80 degrees C for 8 hours. After the reaction solution was cooled down to the room temperature, an organic layer was removed and an organic solvent was distilled away under reduced pressure. The obtained residue was refined by silicagel column chromatography, whereby an intermediate body 6-1 (12 g, a yield of 32%) was obtained.
- ⁴⁰ **[0367]** Under an argon gas atmosphere, the intermediate body 6-1 (1.5 g, 3.9 mmol), the intermediate body 1-4 (1.6 g, 3.9 mmol), tris(dibenzylideneacetone)dipalladium (0.071 g, 0.078 mmol), tri-t-butylphosphonium tetrafluoroborate (0.091 g, 0.31 mmol), sodium t-butoxide (0.53g, 5.5 mmol), and anhydrous toluene (20 mL) were sequentially mixed, and heated to reflux for 8 hours.

[0368] After the reaction solution was cooled down to the room temperature, an organic layer was removed and an organic solvent was distilled away under reduced pressure. The obtained residue was refined by silica-gel column chromatography, whereby a compound 6 (2.3g, a yield of 82%) was obtained.

[0369] FD-MS analysis consequently showed that m/e was equal to 715 while a calculated molecular weight was 715.

[0370] A synthesis scheme of the compound 6 is shown below.

50

5

[Chemical Formula 134]

Synthesis Example 7 (Synthesis of Compound 7) (not part opf the invention)

20

40

[0371] For synthesis of Compound 7, an intermediate body 7-1 was firstly synthesized by applying a method described in a document (J. Bergman, A. Brynolf, B. Elman and E. Vuorinen, Tetrahedron, 42,3697-3706(1986)). Specifically, to a three-necked flask (500 ml), 1M tetrahydrofuran solution of phenylmagnesium bromide (100 ml, 100 mmol) was added. Dry ether (100 ml) was further added and heated to reflux in an oil bath at 45 degrees C. A dry ether solution (50 ml) of

- 25 2-cyanoaniline (5.91 g, 50 mmol) was dropped in for 30 minutes After refluxed for another 1.5 hours, the reaction solution was cooled down to 0 degree C in an ice water bath. Subsequently, a dry ether solution (100ml) of 4-bromobenzoate chloride (13.2g, 60 mmol) was dropped in the reaction solution for 10 minutes and heated to reflux for 2 hours in a 45-degree-C oil bath. After reaction, the reaction solution was cooled down to 0 degree C in an ice water bath. A saturated ammonium chloride aqueous solution was added. A precipitated solid was separated by filtration. Then, the obtained
- ³⁰ was washed with a small amount of methanol and vacuum-dried to obtain an intermediate body 7-1 (10.8 g, a yield of 60%). [0372] Subsequently, under a nitrogen atmosphere, the intermediate body 7-1 (1.4g, 3.9 mmol), the intermediate body 1-4 (1.6 g, 3.9 mmol), tris(dibenzylideneacetone)dipalladium (0.071 g, 0.078 mmol), tri-t-butylphosphonium tetrafluor-oborate (0.091 g, 0.31 mmol), sodium t-butoxide (0.53g, 5.5 mmol), and anhydrous toluene (20 mL) were sequentially mixed, and heated to reflux for 8 hours. After the reaction solution was cooled down to the room temperature, an organic
- ³⁵ layer was removed and an organic solvent was distilled away under reduced pressure. The obtained residue was refined by silica-gel column chromatography, whereby a compound 7 (2.0g, a yield of 75%) was obtained.
 [0373] FD-MS analysis consequently showed that m/e was equal to 688 while a calculated molecular weight was 688.
 [0374] A synthesis scheme of the compound 7 is shown below.

[Chemical Formula 135]

Synthesis Example 8 (Synthesis of Compound 8) (not part of the invention)

[0375] Specifically, to a three-necked flask (500 ml), 1M tetrahydrofuran solution of phenylmagnesium bromide (100 ml, 100 mmol) was added. Dry ether (100 ml) was further added and heated to reflux in an oil bath at 45 degrees C. A

- ⁵ dry ether solution (50 ml) of 2-cyanoaniline (5.91 g, 50 mmol) was dropped in for 30 minutes After refluxed for another 1.5 hours, the reaction solution was cooled down to 0 degree C in an ice water bath. Subsequently, a dry ether solution (100ml) of 3-bromobenzoate chloride (13.2g, 60 mmol) was dropped in the reaction solution for 10 minutes and heated to reflux for 2 hours in a 45-degree-C oil bath. After reaction, the reaction solution was cooled down to 0 degree C in an ice water bath. A saturated ammonium chloride aqueous solution was added. A precipitated solid was separated by
- ¹⁰ filtration. Then, the obtained was washed with a small amount of methanol and vacuum-dried to obtain an intermediate body 8-1 (8.5 g, a yield of 47%).

[0376] Subsequently, under a nitrogen atmosphere, the intermediate body 8-1 (1.4g, 3.9 mmol), the intermediate body 1-4 (1.6 g, 3.9 mmol), tris(dibenzylideneacetone)dipalladium (0.071 g, 0.078 mmol), tri-t-butylphosphonium tetrafluor-oborate (0.091 g, 0.31 mmol), sodium t-butoxide (0.53g, 5.5 mmol), and anhydrous toluene (20 mL) were sequentially mixed, and heated to reflux for 8 hours. After the reaction solution was cooled down to the room temperature, an organic layer was removed and an organic solvent was distilled away under reduced pressure. The obtained residue was refined

by silica-gel column chromatography, whereby a compound 8 (1.9 g, a yield of 71 %) was obtained.

[0377] FD-MS analysis consequently showed that m/e was equal to 688 while a calculated molecular weight was 688.[0378] A synthesis scheme of the compound 8 is shown below.

20

15

[Chemical Formula 136]

40 Example 1 (Manufacture of Organic EL Device)

[0379] A glass substrate (size: 25 mm \times 75 mm \times 1.1 mm) having an ITO transparent electrode (manufactured by GEOMATEC Co., Ltd.) was ultrasonic-cleaned in isopropyl alcohol for five minutes, and then UV (Ultraviolet)/ozone-cleaned for 30 minutes.

- 45 [0380] After the glass substrate having the transparent electrode was cleaned, the glass substrate was mounted on a substrate holder of a vacuum deposition apparatus, and a hole injecting layer was initially formed by depositing a compound A onto the substrate to be 40 nm thick to cover a surface of the glass substrate where a transparent electrode line was provided. Next, a compound B was deposited onto the hole injecting layer to be 20 nm thick, and a hole transporting layer was obtained.
- ⁵⁰ **[0381]** A phosphorescent-emitting layer was obtained by co-depositing the compound 1 used as a phosphorescent host material and Ir(Ph-ppy)₃ used as a phosphorescent dopant material onto the hole transporting layer to be 40 nm thick. The concentration of Ir(Ph-ppy)₃ was 20 mass%.

[0382] Subsequently, a 30-nm-thick compound C, 1-nm-thick LiF and 80-nm-thick metal AI are sequentially layered to obtain a cathode. LiF, which is an electron injectable electrode, was formed at a speed of 1 Å/min.

Examples 2 to 6 (Manufacture of Organic EL Devices 2 to 6)

[0383] In Example 1, the compounds 2 to 6 below were used in place of the compound 1 to manufacture organic EL devices 2 to 6.

[Chemical Formula 138]

Compound 4

[Chemical Formula 139]

Comparisons 1 to 4

20

5

10

15

[0384] The organic EL devices according respectively to Comparisons 1 to 4 were formed in the same manner as in Example 1 except that the following comparative compounds D to G were respectively used as a host material in place of the compound 1 in Example 1.

25 Evaluation of Organic EL Device

Compound D

[0385] The organic EL devices manufactured in Examples 1 to 6 and Comparisons 1 to 4 were driven by direct-current electricity to emit light, where luminescent performance was evaluated and time elapsed until an initial luminescence intensity of 20,000cd/m² was reduced to the half and luminous efficiency were measured. The results are shown in Table 4.

30

[Chemical Formula 140]

Compound E

Compound F

45

	[Table 4]						
		Host Material	Voltage (V) @1mA/cm ²	Luminous Efficiency (cd/A) @ 1mA/cm ²	Luminance half-life (hrs)		
50	Example 1	Compound 1	4.0	61	950		
	Example 2	Compound 2	4.1	63	750		
55	Example 3	Compound 3	4.0	65	730		
	Example 4	Compound 4	4.3	62	670		
	Example 5	Compound 5	4.1	61	1100		
	Example 6	Compound 6	4.3	64	1000		

(continued)

		Host Material	Voltage (V) @1mA/cm ²	Luminous Efficiency (cd/A) @ 1mA/cm ²	Luminance half-life (hrs)
5	Comparison 1	Compound D	4.2	38	310
	Comparison 2	Compound E	4.5	54	450
	Comparison 3	Compound F	5.1	50	210
10	Comparison 4	Compound G	4.6	48	350

[0386] Table 4 shows that the compounds of the invention used in Examples 1 to 6 have a significantly long luminance half-life and a high luminous efficiency while being capable of low-voltage drive compared with those of Comparisons 1 to 4.

- 15 [0387] In Comparison 1, since the compound D has a single carbazolyl group and is poor in hole transporting performance, luminance half-life is short. In Comparison 2, although having two carbazolyl groups, the compound E has a poor hole transporting performance and a short luminance half-life, presumably because of small overlapping margin between the molecules. In Comparison 3, since the compound F has a nitrogen-containing heterocyclic ring only in a carbazolyl group, electrons are difficult to be injected, so that the compound F has a low luminous efficiency and a short
- 20 luminance half-life. In Comparison 4, although having two carbazolyl groups, the compound G has a poor hole transporting capability and a short luminance half-life, presumably because of small overlapping margin between the molecules.

Example 7 (Manufacture of Organic EL Device 7)

25 [0388] A glass substrate (size: 25 mm × 75 mm × 1.1mm thick) having an ITO transparent electrode (manufactured by GEOMATEC Co., Ltd.) was ultrasonic-cleaned in isopropyl alcohol for five minutes, and then UV/ozone-cleaned for 30 minutes.

[0389] After the glass substrate having the transparent electrode line was cleaned, the glass substrate was mounted on a substrate holder of a vacuum deposition apparatus, so that the following electron accepting compound (C-1) was

- 30 deposited to form a 5-nm thick C-1 film on a surface of the glass substrate where the transparent electrode line was provided so as to cover the transparent electrode. On the C-1 film, the following aromatic amine derivative (X1) was deposited as a first hole transporting material to form a 50-nm thick first hole transporting layer. After film formation of the first hole transporting layer, the following aromatic amine derivative (X2) was deposited as a second hole transporting material to form a 60-nm thick second hole transporting layer.
- 35 [0390] Further on the second hole transporting layer, the compound 1 obtained in Synthesis Example 1 was deposited to form a 45-nm thick emitting layer. Simultaneously, the following compound (D3) was co-deposited as a phosphorescent material. A concentration of the compound D3 was 8.0 mass%. This co-deposited film serves as the emitting layer. [0391] After the film formation of the emitting layer, a 30-nm thick film of the following compound (ET1) was formed.

The ET1 film serves as the electron transporting layer.

40 [0392] Next, a 1-nm thick film of LiF was formed as an electron-injecting electrode (cathode) at a film-forming speed of 0.1 Å/min. Metal (AI) was deposited on the LiF film to form an 80-nm thick metal cathode, thereby providing an organic electroluminescence device.

[0393] For each of the obtained organic EL devices, luminous efficiency was measured when the device was driven by DC constant current at the initial luminescence of 2000 cd/m² at the room temperature, and the time elapsed until a

45 half-life of emission was measured when the device was driven by DC constant current at the initial luminescence of 5000 cd/m² at the room temperature. The results are shown in Table 5.

50
[Chemical Formula 141]

Examples 8 to 14 (Manufacture of Organic EL Devices 8 to 14)

25

30

[0394] The organic EL devices according to Examples 8 to 14 were manufactured in the same manner as that in Example 7 except that the compounds 2 to 8 were used in place of the compound 1 as materials for the emitting layer. For each of the obtained organic EL devices, luminous efficiency was measured when the device was driven by DC constant current at the initial luminescence of 2000 cd/m² at the room temperature, and the time elapsed until a half-life of emission was measured when the device was driven by DC constant current at the initial luminescence of 5000 cd/m² at the room temperature. The results are shown in Table 5.

Comparisons 5 and 6

- 35 [0395] The organic EL devices according to Comparisons 5 and 7 were manufactured in the same manner as that in Example 7 except that the comparative compounds D and F were used in place of the compound 1 as materials for the emitting layer. For each of the obtained organic EL devices, luminous efficiency was measured when the device was driven by DC constant current at the initial luminescence of 2000 cd/m² at the room temperature, and the time elapsed until a half-life of emission was measured when the device was driven by DC constant current at the initial luminescence 40 of 5000 cd/m² at the room temperature.
- The results are shown in Table 5.

	Host Material	Voltage (V)	Luminous Efficiency (cd/A)	Luminance half-life (hrs)
Example 7	Compound 1	4.1	11	400
Example 8	Compound 2	4.3	10	350
Example 9	Compound 3	4.2	12	540
Example 10	Compound 4	4.4	12	350
Example 11	Compound 5	4.1	12	450
Example 12	Compound 6	4.2	12	450
Example 13 *	Compound 7	4.2	11	400
Example 14 *	Compound 8	4.1	10	350
Comparison 5	Compound D	4.1	7	200
	Example 7 Example 8 Example 9 Example 10 Example 11 Example 12 Example 13 * Example 14 * Comparison 5	Host MaterialExample 7Compound 1Example 8Compound 2Example 9Compound 3Example 10Compound 4Example 11Compound 5Example 12Compound 6Example 13*Compound 7Example 14*Compound 8Comparison 5Compound D	Host MaterialVoltage (V)Example 7Compound 14.1Example 8Compound 24.3Example 9Compound 34.2Example 10Compound 44.4Example 11Compound 54.1Example 12Compound 64.2Example 13*Compound 74.2Example 14*Compound 84.1Comparison 5Compound D4.1	Host MaterialVoltage (V)Luminous Efficiency (cd/A)Example 7Compound 14.111Example 8Compound 24.310Example 9Compound 34.212Example 10Compound 44.412Example 11Compound 54.112Example 12Compound 64.212Example 13*Compound 74.211Example 14*Compound 84.110Comparison 5Compound D4.17

[Table 5]

1		
100	ntini	1en

	Host Material	Voltage (V)	Luminous Efficiency (cd/A)	Luminance half-life (hrs)
Comparison 6	Compound F	5.2	6.5	220
*: not part of the	e invention			

[0396] The table 5 shows that the compounds of the invention also function as a red phosphorescent host material.

¹⁰ Examples 15 to 18 and Comparison 7

[0397] The organic EL devices according respectively to Examples 15 to 18 and Comparison 7 were formed in the same manner as in Example 1 except that the materials, a thickness of each of the layers and a concentration of each of the emitting materials were changed as shown in Table 6. In Table 6, figures in parentheses without a unit indicate a thickness of each of the layers (unit: nm). A structure of HT-7 is shown below.

[Chemical Formula 142]

20

15

5

25

[0398] Table 7 shows physical properties of the host materials used in Examples 15 to 18 and Comparison 7.[0399] A method for measuring each of the physical properties is as follows.

³⁰ (1) Ionization Potential (Ip)

[0400] Ionization potential was measured in the atmosphere by using a photoelectron spectrometer (AC-1 manufactured by Riken Keiki Co., Ltd.). Specifically, ionization potential was measured by irradiating the materials with light and measuring the amount of electrons generated by charge separation at that time.

35

(2) Affinity (Af)

[0401] Affinity was calculated based on measurement values of ionization potential lp and energy gap Eg. A calculation equitation is as follows.

40

Af=Ip-Eg

[0402] The energy gap was measured from an absorption end of absorption spectrum of benzene. Specifically, the absorption spectrum is measured with a commercially available ultraviolet-visible spectrophotometer, and the energy gap is calculated from a wavelength at which the absorption spectrum appears.

(3) Singlet Energy (S1) and Triplet Energy (T1)

- ⁵⁰ **[0403]** The optical energy gap S1 (also referred to as singlet energy) is a difference between a conduction level and a valence level. The optical energy gap was obtained by converting into energy a wavelength value at an intersection of a long-wavelength-side tangent line in an absorbing spectrum of a toluene-diluted solution of each material and a base line in the absorbing spectrum (zero absorption).
- [0404] The triplet energy gap T1 of the material may be exemplarily defined based on the phosphorescence spectrum. The triplet energy gap T1 was defined as follows in Examples.

[0405] Specifically, each material was dissolved in an EPA solvent (diethylether:isopentane:ethanol = 5:5:2 in volume ratio) with a concentration of 10 μ mol/L, thereby forming a sample for phosphorescence measurement.

[0406] Then, the sample for phosphorescence measurement was put into a quartz cell, cooled to 77K and irradiated with exciting light, so that a wavelength of phosphorescence radiated therefrom was measured.

[0407] A tangent line is drawn to be tangent to a rising section adjacent to short-wavelength of the obtained phosphorescence spectrum, a wavelength value at an intersection of the tangent line and a base line is converted into energy value, and the converted energy value is defined as the triplet energy gap T1.

[0408] For the measurement, a measurement machine F-4500 (manufactured by Hitachi) was used.

Evaluation of Organic EL Device

5

15

¹⁰ **[0409]** Voltage was applied to the organic EL device so that a current density becomes 10 mA/cm², and a voltage value (V) at that time was measured. Moreover, current efficiency (L/J) (cd/A), power efficiency (1m/W) and life-time (hrs) were measured.

[0410] As for life-time, after the device was driven by constant current at the initial luminescence, an elapsed time when the luminescence reached 90% of the initial luminescence (LT90) or the luminescence reached 50% of the initial luminescence (LT50) was measured.

[0411] The results are shown in Table 8.

		[Table 6]
20		Arrangement of Organic EL Device
20	Example 15	ITO(70)/Compound A(30)/HT-7(20)/PH1+-Ir(ppy) ₃ (40,90%+10%)/ET2(30)/Liq(1)/AI(80)
	Example 16	ITO(70)/Compound A(30)/HT-7(20)/PH2+Ir(ppy) ₃ (40,90%+10%)/ET2(30)/LiF(1)/AI(80)
	Example 17	ITO(70)/Compound A(30)/HT-7(20)/PH3+Ir(ppy) ₃ (40,90%+10%)/ET2(30)/LiF(1)/AI(80)
25	Example 18	ITO(130)/Compound A(50)/PH2+Ir(piq) ₃ (30,92%+8%)/ET2(30)/LiF(1)/AI(80)
	Comparison 7	ITO(70)/Compound A(30)/HT-7(20)/PH5+Ir(ppy) ₃ (40,90%+10%)/ET2(30)/Liq(1)/AI(80)

30		[Table 7]					
		Host Material	lp(eV)	Af(eV)	S1(eV)	T1(eV)	
35	PH1		5.5	2.4	3.1	2.9	
40	PH2		5.7	2.3	3.3	2.8	
45 50	PH3		5.7	2.7	3.0	2.8	
55	PH5	8080 8080 01500	6.1	2.6	3.5	2.7	

	LT50 (hrs)	ı	500 @10000cd/m ²	800 @10000cd/m ²	1000 @10000cd/m ²	ı	
	LT90 (hrs)	250 @3000cd/m ²	-	ı	-	90 @3000cd/m ²	
	(111/W) և	51.7	20.3	67.3	2.7	2.93	
	L/J (cd/A)	49.4	63.7	57.2	8.5	49.2	
[Table 8]	luminescence (nit)	767	289	572	58	767	
	Current density (mA/cm ²)	1	1	1	1	1	
	Voltage (V)	3.00	2.85	2.67	3.54	2.72	
	Host material	PH1	PH2	PH3	PH2	PH5	
		Example 15	Example 16	Example 17	Example 18	Comparison 7	

Example 19 (Manufacture of Organic EL Device 19)

[0412] A glass substrate (size: $25 \text{ mm} \times 75 \text{ mm} \times 1.1 \text{ mm}$) having an ITO transparent electrode (manufactured by GEOMATEC Co., Ltd.) was ultrasonic-cleaned in isopropyl alcohol for five minutes, and then UV (Ultraviolet)/ozone-cleaned for 30 minutes.

[0413] After the glass substrate having the transparent electrode was cleaned, the glass substrate was mounted on a substrate holder of a vacuum deposition apparatus, and a hole injecting layer was initially formed by depositing a compound A onto the substrate to be 40 nm thick to cover a surface of the glass substrate where a transparent electrode line was provided. Next, a compound B was deposited onto the hole injecting layer to be 20 nm thick, and a hole transparent electrode substrate layer to be 20 nm thick and a hole transparent electrode line was provided. Next, a compound B was deposited onto the hole injecting layer to be 20 nm thick, and a hole transparent electrode substrate layer to be 20 nm thick and a hole transparent electrode substrate was deposited onto the hole injecting layer to be 20 nm thick and a hole transparent electrode substrate was deposited onto the hole injecting layer to be 20 nm thick.

¹⁰ transporting layer was obtained.

[0414] A phosphorescent-emitting layer was obtained by co-depositing the compound 3 used as the first phosphorescent host material, $Ir(Ph-ppy)_3$ used as a phosphorescent dopant material, and HT-5 used as the following second host material onto the hole transporting layer to be 40 nm thick. The concentration of $Ir(Ph-ppy)_3$ was 20 mass% and the concentration of HT-5 was 10 mass%.

¹⁵ [0415] Subsequently, a 30-nm-thick compound C, 1-nm-thick LiF and 80-nm-thick metal A1 are sequentially layered to obtain a cathode. LiF, which is an electron injectable electrode, was formed at a speed of 1 Å/min.
 [0416] With respect to the organic EL devices 19, luminescent performance was evaluated in the same manner as in

Example 1 and time elapsed until an initial luminescence intensity of 20,000cd/m² was reduced to the half and luminous efficiency were measured. The results are shown in Table 9.

[Chemical Formula 143]

35

30

20

25

5

Example 20 (Manufacture of Organic EL Device 20)

[0417] In Example 19, HT-9 was used in place of HT-5 to manufacture an organic EL device 6.

[0418] With respect to the organic EL devices 20, luminescent performance was evaluated in the same manner as in
 Example 1 and time elapsed until an initial luminescence intensity of 20,000cd/m² was reduced to the half and luminous efficiency were measured. The results are shown in Table 9.

[Chemical Formula 144]

55

50

Comparison 8

5

[0419] In Example 19, the compound D was used in place of the compound 3 to manufacture an organic EL device. With respect to the organic EL devices, luminescent performance was evaluated in the same manner as in Example 1 and time elapsed until an initial luminescence intensity of 20,000cd/m² was reduced to the half and luminous efficiency were measured. The results are shown in Table 9.

Comparison 9

10 [0420] In Comparison 8, HT-9 was used in place of HT-5 to manufacture an organic EL device. With respect to the organic EL devices, luminescent performance was evaluated in the same manner as in Example 1 and time elapsed until an initial luminescence intensity of 20,000cd/m² was reduced to the half and luminous efficiency were measured. The results are shown in Table 9.

1	5
	~

15	[Table 9]					
		First / Second host materials	Voltage (V) @1mA/cm ²	Luminous Efficiency (cd/A) @ 1mA/cm ²	Luminance half- life (hrs)	
20	Example 19	Compound 3/HT-5	3.9	72	800	
	Example 20	Compound 3/HT-9	3.9	69	800	
	Comparison 8	Compound D/HT-5	4.0	40	400	
	Comparison 9	Compound D/HT-9	4.1	41	380	

25

[0421] Table 9 shows that the compounds of the invention used in Examples 19 and 20 have a significantly long luminance half-life and a significantly high luminous efficiency as compared with those in Comparisons 8 and 9.

Examples 21 to 26

30

[0422] The organic EL devices according respectively to Examples 21 to 26 were formed in the same manner as in Example 19 except that the materials, a thickness of each of the layers and a concentration of each of the emitting materials were changed as shown in Table 10.

[0423] Table 7 above and Table 11 below show the chemical formulae and physical properties of the host material

35	used in Examples 21 to 26.	
----	----------------------------	--

		[Table 10]
40 45		Arrangement of Organic EL Device
	Example 21	ITO(70)/Compound A(30)/HT-7(20)/PH1+PH5+Ir(ppy) ₃ (40,45%+45%+10%) / ET2(30) /Liq(1)/Al(80)
	Example 22	ITO(70)/Compound A(30)/HT-7(20)/PH2+PH6+Ir(ppy) ₃ (40,45%+45%+10%) / ET2(30) /LiF(1)/AI(80)
	Example 23	ITO(70)/Compound A(30)/HT-7(20)/PH3+PH6+Ir(ppy) ₃ (40,45%+45%+10%) / ET2(30) /LiF(1)/AI(80)
	Example 24	ITO(70)/Compound A(30)/HT-7(20)/PH3+PH7+Ir(ppy) ₃ (40,45%+45%+10%) / ET2(30) /LiF(1)/AI(80)
	Example 25	ITO(130)/Compound A(50)/PH2+PH10+Ir(piq) ₃ (30,50%+42%+8%) /ET2(30) /LiF(1)/AI(80)
	Example 26	ITO(70)/Compound A(30)/HT-7(20)/PH1+PH3+Ir(ppy) ₃ (40,45%+45%+10%) / ET2(30) /LiF(1)/AI(80)

50

	[Table 11]								
	Host Material	lp(eV)	Af(eV)	S1(eV)	T1(eV)				
PH6		6.0	2.5	3.5	3.0				

(0	100	ntir	านย	ed)
•				

		Host Material	lp(eV)	Af(eV)	S1(eV)	T1(eV)
5	PH7		6.0	2.5	3.5	2.8
10	PH10		6.2	3.1	3.1	2.3

Evaluation of Organic EL Device

[0424] The organic EL devices according to Examples 21 to 26 were evaluated in the same manner as in Examples 15 to 18. The results are shown in Table 12.

[0425] Fig. 2(A) shows an energy diagram in the emitting layer in Example 21. Fig. 2(B) shows an energy diagram in the emitting layer in Example 23.

5	LT50 (hrs)	I	900 @10000cd/m ²	1000 @10000cd/m ²	I	1500 @10000cd/m ²	750 @10000cd/m ³	
10 15	LT90 (hrs)	600 @3000cd/m ²	ı	I	40 @20000cd/m ²	I	I	
20	ղ (1m/W)	57.5	62.4	73.6	90.6	7.4	80.9	
25	(A/b) (L/J	51.7	67.3	72.6	88.8	9.2	75.2	
30 4e L	luminescence (nit)	517	673	726	888	92	752	
35	t density (mA/cm ²)		_	1	1	1	1	
40	Current							
45	Voltage (V)	2.83	3.39	3.10	3.08	3.88	2.92	
50	Host material	PH1/PH5	PH2/PH6	РНЗ/РН6	PH3/PH7	PH2/PH10	PH2/PH3	
55		Example 21	Example 22	Example 23	Example 24	Example 25	Example 26	

[0426] In comparison between Table 8 and Table 12, it has been found that the organic EL devices according to Examples 21 to 26, in which the first and second host materials are used, have a long life-time and improved luminous efficiency as compared with the organic EL devices in which a single host material is used.

5 INDUSTRIAL APPLICABILITY

[0427] The invention is applicable to an organic EL device and an organic-EL-device material capable of a long lifetime, high luminous efficiency, and reducing driving voltage and exhibiting high efficiency.

10 EXPLANATION OF CODES

[0428]

- 1 organic EL device
 - 2 substrate
 - 3 anode
 - 4 cathode
 - 5 phosphorescent-emitting layer
 - 6 hole injecting/transporting layer
- 7 electron injecting/transporting layer
- 10 organic thin-film layer

Claims

25

50

55

15

20

1. A biscarbazole derivative represented by the formula (2) below

wherein

A¹ represents a substituted or unsubstituted nitrogen-containing heterocyclic group having 1 to 30 ring carbon atoms;

A² represents a substituted or unsubstituted aromatic hydrocarbon group having 6 to 30 ring carbon atoms, or substituted or unsubstituted nitrogen-containing heterocyclic group having 1 to 30 ring carbon atoms;

X¹ and X² each are a linking group and independently represent a single bond, substituted or unsubstituted aromatic hydrocarbon group having 6 to 30 ring carbon atoms, substituted or unsubstituted fused aromatic hydrocarbon group having 6 to 30 ring carbon atoms, substituted or unsubstituted aromatic heterocyclic group having 2 to 30 ring carbon atoms, or substituted or unsubstituted fused aromatic heterocyclic group having 2 to 30 ring carbon atoms;

Y¹ to Y⁴ independently represent a hydrogen atom, fluorine atom, cyano group, substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, substituted or unsubstituted alkoxy group having 1 to 20 carbon atoms,

substituted or unsubstituted haloalkyl group having 1 to 20 carbon atoms, substituted or unsubstituted haloalkoxy group having 1 to 20 carbon atoms, substituted or unsubstituted alkylsilyl having 1 to 10 carbon atoms, substituted or unsubstituted arylsilyl having 6 to 30 carbon atoms, substituted or unsubstituted aromatic hydrocarbon group having 6 to 30 ring carbon atoms, substituted or unsubstituted fused aromatic hydrocarbon group having 6 to 30 ring carbon atoms, substituted aromatic heterocyclic group having 2 to 30 ring carbon atoms, or substituted fused aromatic heterocyclic group having 2 to 30 ring carbon atoms; adjacent ones of Y¹ to Y⁴ are allowed to be bonded to each other to form a ring structure;

p and q represent an integer of 1 to 4; r and s represent an integer of 1 to 3; and

when p and q are an integer of 2 to 4 and r and s are an integer of 2 to 3, a plurality of Y¹ to Y⁴ are allowed to be the same or different,

characterized in that

A¹ is selected from the group consisting of a substituted or unsubstituted pyridine ring, a substituted or unsubstituted pyrimidine ring and a substituted or unsubstituted triazine ring; and

¹⁵ the biscarbazole derivative is not one of the following compounds:

5

10

50

40

45

- The biscarbazole derivative according to claim 1, wherein
 A¹ is selected from a substituted or unsubstituted pyrimidine ring or a substituted or unsubstituted triazine ring.
- **3.** The biscarbazole derivative according to claim 1 or 2, wherein A¹ is a substituted or unsubstituted pyrimidine ring.
 - **4.** The biscarbazole derivative according to claim 3, wherein the biscarbazole derivative is represented by a formula (3) below:

wherein A², X¹, Y¹ to Y⁴, p, q, r and s represent the same as A², X¹, Y¹ to Y⁴, p, q, r and s of the formula (2); Y⁵ represents the same as Y¹ to Y⁴ of the formula (2);

t represents an integer in a range of 1 to 3; and

50

when t is an integer of 2 to 3, a plurality of Y⁵ are allowed to be the same or different.

- 5. An organic-EL-device material comprising the biscarbazole derivative according to any one of claims 1 to 4.
- **6.** An organic electroluminescence device (1) comprising: a cathode (4); an anode (3) ; and a plurality of organic thinfilm layers provided between the cathode (4) and the anode (3), the organic thin-film layers (10) comprising an emitting layer (5), wherein

at least one of the organic thin-film layers (10) comprises the organic-EL-device material according to claim 5.

- **7.** The organic electroluminescence device 1 according to claim 6, wherein the emitting layer (5) comprises the organic-EL-device material as a host material.
- **8.** The organic electroluminescence device 1 according to claim 6 or 7, wherein the emitting layer (5) comprises a phosphorescent material.
- **9.** An organic electroluminescence device (1) comprising: a cathode (4); an anode (3); and a plurality of organic thin-film layers (10) provided between the cathode (4) and the anode (3), the organic thin-film layers (10) comprising an emitting layer (5), wherein
- ¹⁰ at least one of the organic thin-film layers (10) is the emitting layer (5) comprising a compound represented by the formula (4) below as a host material:

wherein

30

5

A¹ is selected from the group consisting of a substituted or unsubstituted pyridine ring, a substituted or unsubstituted pyrimidine ring and a substituted or unsubstituted triazine ring;

A² represents a substituted or unsubstituted aromatic hydrocarbon group having 6 to 30 ring carbon atoms, or substituted or unsubstituted nitrogen-containing heterocyclic group having 1 to 30 ring carbon atoms;

- ³⁵ X¹ and X² each are a linking group and independently represent a single bond, substituted or unsubstituted aromatic hydrocarbon group having 6 to 30 ring carbon atoms, substituted or unsubstituted fused aromatic hydrocarbon group having 6 to 30 ring carbon atoms, substituted or unsubstituted aromatic heterocyclic group having 2 to 30 ring carbon atoms, or substituted or unsubstituted fused aromatic heterocyclic group having 2 to 30 ring carbon atoms;
- Y¹ to Y⁴ independently represent a hydrogen atom, fluorine atom, cyano group, substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, substituted or unsubstituted alkoxy group having 1 to 20 carbon atoms, substituted or unsubstituted or unsubstituted haloalkyl group having 1 to 20 carbon atoms, substituted or unsubstituted or unsubstituted haloalkoxy group having 1 to 20 carbon atoms, substituted or unsubstituted alkylsilyl having 1 to 10 carbon atoms, substituted or unsubstituted arylsilyl having 6 to 30 carbon atoms, substituted fused aromatic hydrocarbon group having 6 to 30 ring carbon atoms, substituted aromatic heterocyclic group having 2 to 30 ring carbon atoms,

or substituted or unsubstituted fused aromatic heterocyclic group having 2 to 30 ring carbon atoms;

- adjacent ones of Y¹ to Y⁴ are allowed to be bonded to each other to form a ring structure;
- p and q represent an integer of 1 to 4; r and s represent an integer of 1 to 3; and
- ⁵⁰ when p and q are an integer of 2 to 4 and r and s are an integer of 2 to 3, a plurality of Y¹ to Y⁴ are allowed to be the same or different,

characterized in that

the emitting layer (5) comprises a first host material, a second host material and a phosphorescent material providing phosphorescence and the compound of the formula (4) is the first host material.

55

10. The organic electroluminescence device according to claim 9, wherein the second host material is represented by either one of a formula (5) or (6) below:

 $(Cz^{-})_{a}A^{3}...$ (5) $Cz(^{-}A^{3})_{b}...$ (6)

10

15

20

where: Cz represents a substituted or unsubstituted arylcarbazolyl group or carbazolylaryl group; A³ represents a group represented by a formula (7A) or (7B) below; and a and b each represent an integer of 1 to 3;

$$(M^{1})_{c}^{-}(L^{5})_{d}^{-}(M^{2})_{e}$$
 ...(7A)

where: M^1 and M^2 each independently represent a substituted or unsubstituted nitrogen-containing aromatic heterocyclic ring or nitrogen-containing fused aromatic heterocyclic ring having 2 to 40 ring carbon atoms; M^1 and M^2 are allowed to be the same or different;

L⁵ represents a single bond, substituted or unsubstituted aromatic hydrocarbon group having 6 to 30 carbon atoms, substituted or unsubstituted fused aromatic hydrocarbon group having 6 to 30 carbon atoms, substituted or unsubstituted cycloalkylene group having 5 to 30 carbon atoms, substituted or unsubstituted aromatic heterocyclic group having 2 to 30 carbon atoms, or substituted or unsubstituted fused aromatic heterocyclic group having 2 to 30 carbon atoms;

c represents an integer of 0 to 2; d represents an integer of 1 to 2; e represents an integer of 0 to 2; and c+e represents 1 or more;

²⁵
$$(M^3)_c^- (L^6)_d^- (M^4)_e \cdots (7B)$$

where: M³ and M⁴ each independently represent a substituted or unsubstituted aromatic hydrocarbon group having 6 to 40 ring carbon atoms; M³ and M⁴ are allowed to be the same or different;

L⁶ represents a single bond, substituted or unsubstituted aromatic hydrocarbon group having 6 to 30 carbon atoms, substituted or unsubstituted fused aromatic hydrocarbon group having 6 to 30 carbon atoms, or substituted or unsubstituted cycloalkylene group having 5 to 30 carbon atoms;

c represents an integer of 0 to 2; d represents an integer of 1 to 2; e represents an integer of 0 to 2; and c+e represents 1 or more.

35

30

11. The organic electroluminescence device according to claim 9, wherein the second host material is represented by a formula (8) below

50

55

where: R¹⁰¹ to R¹⁰⁶ each independently represent a hydrogen atom, halogen atom, substituted or unsubstituted alkyl group having 1 to 40 carbon atoms, substituted or unsubstituted or unsubstituted or unsubstituted heterocyclic group having 3 to 20 carbon atoms, substituted or unsubstituted alkoxy group having 1 to 40 carbon atoms, substituted or unsubstituted aryl group having 6 to 40 carbon atoms, substituted or unsubstituted aryl group having 6 to 40 carbon atoms, substituted or unsubstituted aryloxy group having 6 to 20 carbon atoms, substituted aralkyl group having 7 to 20 carbon atoms, substituted or unsubstituted arylamino group having 6 to 40 carbon atoms, substituted or unsubstituted arylamino group having 7 to 20 carbon atoms, substituted or unsubstituted arylamino group having 7 to 40 carbon atoms, substituted or unsubstituted arylamino group having 7 to 40 carbon atoms, substituted or unsubstituted arylamino group having 7 to 40 carbon atoms, substituted or unsubstituted arylamino group having 7 to 40 carbon atoms, substituted or unsubstituted arylamino group having 7 to 40 carbon atoms, substituted or unsubstituted arylamino group having 7 to 40 carbon atoms, substituted or unsubstituted arylamino group having 7 to 40 carbon atoms, substituted arylamino group having 1 to 40 carbon atoms, substituted or unsubstituted or unsubstituted or unsubstituted arylamino group having 1 to 40 carbon atoms, substituted or unsubstituted or unsubstituted or unsubstituted or unsubstituted or unsubstituted arylamino group having 1 to 40 carbon atoms, substituted or unsubstituted arylamino group having 1 to 40 carbon atoms, substituted or unsubstituted or unsubstituted or unsubstituted or unsubstituted arylamino group having 1 to 40 carbon atoms, substituted orylamino group;

 (\mathbf{R})

at least one of R¹⁰¹ to R¹⁰⁶ is a substituted or unsubstituted 9-carbazolyl group, substituted or unsubstituted azacarbazolyl group having 2 to 5 nitrogen atoms, or -L-9-carbazolyl group;

L represents a substituted or unsubstituted alkyl group having 1 to 40 carbon atoms, substituted or unsubstituted cycloalkyl group having 3 to 15 carbon atoms, substituted or unsubstituted or unsubstituted or unsubstituted or unsubstituted or unsubstituted alkoxy group having 1 to 40 carbon atoms, substituted or unsubstituted aryl group having 6 to 40 carbon atoms, substituted or unsubstituted aryloxy group having 6 to 20 carbon atoms, substituted aralkyl group having 7 to 20 carbon atoms, substituted or unsubstituted arylamino group having 6 to 40 carbon atoms, substituted or unsubstituted arylamino group having 1 to 40 carbon atoms, substituted or unsubstituted arylamino group having 1 to 40 carbon atoms, substituted or unsubstituted arylamino group having 1 to 40 carbon atoms, substituted or unsubstituted arylamino group having 1 to 40 carbon atoms, substituted or unsubstituted arylcarbonyl group having 7 to 40 carbon atoms, substituted arylcarbon atoms, or substituted or unsubstituted halogenated alkyl group having 1 to 40 carbon atoms; Xa represents a sulfur atom, oxygen atom or N-R¹⁰⁸; and

R¹⁰⁸ represents the same as R¹⁰¹ to R¹⁰⁶.

12. The organic electroluminescence device according to claim 9, wherein the second host material is a compound selected from the group consisting of polycyclic aromatic compounds represented by formulae (9A), (9B) and (9C) below

 Ra-Ar¹⁰¹-Rb····
 (9A)

 Ra-Ar¹⁰¹-Ar¹⁰²-Rb····
 (9B)

 Ra-Ar¹⁰¹-Ar¹⁰²-Ar¹⁰³-Rb····
 (9C)

where: Ar¹⁰¹, Ar¹⁰², Ar¹⁰³, Ra and Rb represent a polycyclic aromatic skeleton having 6 to 60 ring carbon atoms selected from a substituted or unsubstituted benzene ring, substituted or unsubstituted naphthalene ring, substituted or unsubstituted chrysene ring, substituted or unsubstituted fluoranthene ring, substituted or unsubstituted phenanthrene ring, substituted or unsubstituted benzophenanthrene ring, substituted or unsubstituted or unsubstituted benzophenanthrene ring, substituted benzophenanthrene ring, substituted benzophenanthrene ring, substituted benzophene ring, substituted or unsubstituted benzophene ring, substituted benzo[a]triphenylene ring, substituted or unsubstituted benzo[b]fluoranthene ring, substituted or unsubstituted or unsubstituted or unsubstituted or unsubstituted or unsubstituted or unsubstituted benzo[b]fluoranthene ring, substituted or unsubstituted benzo[b]fluoranthene ring, substituted or unsubstituted or unsubstituted or unsubstituted or unsubstituted or unsubstituted benzo[b]fluoranthene ring, substituted or unsubstituted picene ring.

30

5

10

15

20

25

- **13.** The organic electroluminescence device according to claim 12, wherein either one or both of Ra and Rb in the formulae (9A) to (9C) are selected from the group consisting of a substituted or unsubstituted phenanthrene ring, substituted or unsubstituted benzo[c]phenanthrene ring and substituted or unsubstituted fluoranthene ring.
- 14. The organic electroluminescence device according to claim 9, wherein the second host material is a monoamine derivative represented by any one of formulae (10) to (12) below:

45

40

where: Ar¹¹¹, Ar¹¹² and Ar¹¹³ are a substituted or unsubstituted aryl group or heteroaryl group;

50
$$Ar^{114}$$
 $N^{-}Ar^{116}$ Ar^{117} ...(11)
55 Ar^{115}

where: Ar¹¹⁴, Ar¹¹⁵ and Ar¹¹⁷ are a substituted or unsubstituted aryl group or heteroaryl group; and Ar¹¹⁶ is a substituted or unsubstituted arylene group or heteroarylene group;

15

20

25

10

5

where: Ar^{118} , Ar^{119} and Ar^{121} are a substituted or unsubstituted aryl group or heteroaryl group; Ar¹²⁰ is a substituted or unsubstituted arylene group or heteroarylene group; and n is an integer of 2 to 5: when n is 2 or more, Ar^{120} is allowed to be the same or different.

15. The organic electroluminescence device according to claim 9, wherein the second host material is represented by either one of a formula (13) or (14) below

³⁰ where: X³ represents a substituted or unsubstituted arylene group having 10 to 40 ring carbon atoms; and A³ to A⁶ represent a substituted or unsubstituted aryl group having 6 to 60 ring carbon atoms, or heteroaryl group having 6 to 60 ring atoms;

> A⁷ N—A⁹ ...(14) A⁸

40

45

35

where: A⁷ to A⁹ represent a substituted or unsubstituted aryl group having 6 to 60 ring carbon atoms, or heteroaryl group having 6 to 60 ring atoms.

16. The organic electroluminescence device according to claim 9, wherein the second host material is represented by any one of formulae (15) to (19) below

50

where: A¹⁰ to A¹⁹ each represent a substituted or unsubstituted aryl group having 6 to 40 carbon atoms, substituted or unsubstituted aromatic heterocyclic group having 2 to 40 carbon atoms, substituted or unsubstituted aryl group having 8 to 40 carbon atoms bonded with an aromatic amino group, or substituted or unsubstituted aryl group having 8 to 40 carbon atoms bonded with an aromatic heterocyclic group;

A¹⁰, A¹³, A¹⁵ and A¹⁷ are adapted to be respectively bonded to A¹¹, A¹⁴, A¹⁶ and A¹⁸ to form a ring;

 X^4 to X^9 represent a single bond or a linking group having 1 to 30 carbon atoms;

 Y^6 to Y^{24} represent a hydrogen atom, halogen atom, substituted or unsubstituted alkyl group having 1 to 40 carbon atoms, substituted or unsubstituted or unsubstituted or unsubstituted or unsubstituted or unsubstituted aryl group having 6 to 40 carbon atoms, substituted or unsubstituted aralkyl group having 7 to 20 carbon atoms, substituted or unsubstituted aralkylsilyl group having 8 to 40 carbon atoms, substituted halogenated alkyl group having 1 to 40 carbon atoms; and X_A, X_B, X_C, X_D, X_F each represent a sulfur atom, an oxygen atom or a monoaryl-substituted nitrogen atom.

Patentansprüche

15

5

10

1. Biscarbazol-Derivat dargestellt durch die nachfolgende Formel (2)

worin

35

40

45

A¹ eine substituierte oder unsubstituierte Stickstoff-enthaltende heterocyclische Gruppe mit 1 bis 30 Kohlenstoffatomen ist;

A² eine substituierte oder unsubstituierte aromatische Kohlenwasserstoffgruppe mit 6 bis 30 Ringkohlenstoffatomen oder eine substituierte oder unsubstituierte Stickstoffenthaltende heterocyclische Gruppe mit 1 bis 30 Kohlenstoffatomen ist;

X¹ und X² jeweils eine verbindende Gruppe sind und unabhängig voneinander eine Einfachbindung, eine substituierte oder unsubstituierte aromatische Kohlenwasserstoffgruppe mit 6 bis 30 Ringkohlenstoffatomen, eine substituierte oder unsubstituierte miteinander verbundene aromatische Kohlenwasserstoffgruppe mit 6 bis 30 Ringkohlenstoffatomen, eine substituierte oder unsubstituierte aromatische heterocyclische Kohlenwasserstoffgruppe mit 2 bis 30 Ringkohlenstoffatomen oder eine substituierte oder unsubstituierte miteinander verbundene aromatische heterocyclische Kohlenwasserstoffgruppe mit 2 bis 30 Ringkohlenstoffatomen sind;

Y¹ bis Y⁴ jeweils unabhängig voneinander ein Wasserstoffatom, ein Fluoratom, eine Cyanogruppe, eine substituierte oder unsubstituierte Alkylgruppe mit 1 bis 20 Kohlenstoffatomen, eine substituierte oder unsubstituierte Alkoxygruppe mit 1 bis 20 Kohlenstoffatomen, eine substituierte Haloalkylgruppe mit 1 bis 20 Kohlenstoffatomen, eine substituierte Haloalkoxygruppe mit 1 bis 20 Kohlenstoffatomen, eine substituierte Haloalkoxygruppe mit 1 bis 20 Kohlenstoffatomen, eine substituierte Alkylsilylgruppe mit 1 bis 10 Kohlenstoffatomen, eine substituierte oder unsubstituierte aromatische Kohlenstoffatomen, eine substituierte oder unsubstituierte mit ⁵⁵ tuierte oder unsubstituierte aromatische heterocyclische Kohlenwasserstoffgruppe mit 2 bis 30 Ringkohlenstoffatomen, eine substituierte heterocyclische Kohlenwasserstoffgruppe mit 2 bis 30 Ringkohlenstoffatomen verbundene aromatische heterocyclische Kohlenwasserstoffgruppe mit 2 bis 30 Ringkohlenstoffatomen verbundene aromatische heterocyclische Kohlenwasserstoffgruppe mit 2 bis 30 Ringkohlenstoffatomen verbundene aromatische heterocyclische Kohlenwasserstoffgruppe mit 2 bis 30 Ringkohlenstoffatomen verbundene aromatische heterocyclische Kohlenwasserstoffgruppe mit 2 bis 30 Ringkohlenstoffatomen sind;

benachbarte Gruppen von Y¹ bis Y⁴ miteinander verbunden sein können, um eine Ringstruktur zu bilden;

p und q eine ganze Zahl von 1 bis 4 sind; r und s eine ganze Zahl von 1 bis 3 sind; und wenn p und q eine ganze Zahl von 2 bis 4 und r und s eine ganze Zahl von 2 bis 3 sind, mehrere von Y^1 bis Y^4 gleich oder verschieden voneinander sein können,

A¹ aus der Gruppe ausgewählt wird, bestehend aus einem substituierten oder unsubstituierten Pyridin-Ring, einem substituierten oder unsubstituierten Pyrimidin-Ring und einem substituierten oder unsubstituierten Tria-

das Biscarbazol-Derivat keine der folgenden Verbindungen ist:

dadurch gekennzeichnet, dass

zin-Ring; und

5

40

45

50

- 2. Das Biscarbazol-Derivat nach Anspruch 1, worin A¹ ausgewählt wird aus einem substituierten oder unsubstituierten Pyrimidin-Ring und einem substituierten oder unsubstituierten Triazin-Ring.
- 3. Das Biscarbazol-Derivat nach Anspruch 1, worin A¹ ein substituierter oder unsubstituierter Pyrimidin-Ring ist.
- 4. Das Biscarbazol-Derivat nach Anspruch 3, worin das Biscarbazol-Derivat durch die nachfolgende Formel (3) dargestellt ist:

20

5

10

15

worin A², X¹, Y¹ bis Y⁴, p, q, r und s jeweils das gleiche sind wie A², X¹, Y¹ bis Y⁴, p, q, r und s der Formel (2); Y⁵ das gleiche ist wie Y¹ bis Y⁴ in Formel (2); t eine ganze Zahl von 1 bis 3; und

- wenn t eine ganze Zahl von 2 bis 3 ist, mehrere Y⁵ gleich oder unterschiedlich voneinander sein können.
- 5. Organisches EL-Bauteil-Material, welches das Biscarbazol-Derivat nach einem der Ansprüche 1 bis 4 umfasst.
- Organisches Elektrolumineszenz-Bauteil (1) umfassend: eine Kathode (4); eine Anode (3); und eine Vielzahl von organischen Dünnschichten (10) die zwischen der Kathode (4) und der Anode (3) angeordnet sind, die organischen Dünnschichten umfassen eine emittierende Schicht (5), worin mindestens eine der organischen Dünnschichten (10) das organische EL-Bauteil-Material nach Anspruch 5 umfasst.
 - 7. Das organische Elektrolumineszenz-Bauteil (1) nach Anspruch 6, worin die emittierende Schicht (5) das organische EL-Bauteil-Material als Trägermaterial umfasst.
 - 8. Das organische Elektrolumineszenz-Bauteil (1) nach Anspruch 6 oder 7, worin die emittierende Schicht (5) eine phosphoreszierendes Material umfasst.
- 9. Organisches Elektrolumineszenz-Bauteil (1) umfassend: eine Kathode (4); eine Anode (3); und eine Vielzahl von organischen Dünnschichten (10) die zwischen der Kathode (4) und der Anode (3) angeordnet sind, die organischen Dünnschichten umfassen eine emittierende Schicht (5), worin mindestens eine der organischen Dünnschichten (10) die emittierende Schicht (5) ist, umfassend eine Verbindung als Trägermaterial, die durch die nachfolgende Formel (4) dargestellt ist:

45

35

50

5

15

20

worin

A¹ aus der Gruppe ausgewählt wird, bestehend aus einem substituierten oder unsubstituierten Pyridin-Ring, einem substituierten oder unsubstituierten Pyrimidin-Ring und einem substituierten oder unsubstituierten Triazin-Ring;

A² eine substituierte oder unsubstituierte aromatische Kohlenwasserstoffgruppe mit 6 bis 30 Ringkohlenstoffatomen oder eine substituierte oder unsubstituierte Stickstoff-enthaltende heterocyclische Gruppe mit 1 bis 30 Ringkohlenstoffatomen ist;

- X¹ und X² jeweils eine verbindende Gruppe sind und unabhängig voneinander eine Einfachbindung, eine substituierte oder unsubstituierte aromatische Kohlenwasserstoffgruppe mit 6 bis 30 Ringkohlenstoffatomen, eine substituierte oder unsubstituierte miteinander verbundene aromatische Kohlenwasserstoffgruppe mit 6 bis 30 Ringkohlenstoffatomen, eine substituierte oder unsubstituierte aromatische heterocyclische Kohlenwasserstoff gruppe mit 2 bis 30 Ringkohlenstoffatomen oder eine substituierte oder unsubstituierte miteinander verbundene
 aromatische heterocyclische Kohlenwasserstoffgruppe mit 2 bis 30 Ringkohlenstoffatomen sind;
- Y¹ bis Y⁴ jeweils unabhängig voneinander ein Wasserstoffatom, ein Fluoratom, eine Cyanogruppe, eine substituierte oder unsubstituierte Alkylgruppe mit 1 bis 20 Kohlenstoffatomen, eine substituierte oder unsubstituierte Alkoxygruppe mit 1 bis 20 Kohlenstoffatomen, eine substituierte Haloalkylgruppe mit 1 bis 20 Kohlenstoffatomen, eine substituierte Haloalkylgruppe mit 1 bis 20 Kohlenstoffatomen, eine substituierte Haloalkoxygruppe mit 1 bis 20 Kohlenstoffatomen, eine substituierte Haloalkoxygruppe mit 1 bis 20 Kohlenstoffatomen, eine substituierte oder unsubstituierte Alkylsilylgruppe mit 1 bis 10 Kohlenstoffatomen, eine substituierte oder unsubstituierte oder unsubstituierte oder unsubstituierte oder unsubstituierte aromatische Kohlenwasserstoffgruppe mit 6 bis 30 Ringkohlenstoffatomen, eine substituierte oder unsubstituierte miteriander verbundene aromatische Kohlenwasserstoffgruppe mit 6 bis 30 Ringkohlenstoffatomen, eine substituierte oder unsubstituierte aromatische heterocyclische Kohlenwasserstoffgruppe mit 2 bis 30 Ringkohlenstoffatomen,

lenwasserstoffgruppe mit 2 bis 30 Ringkohlenstoffatomen sind; benachbarte Gruppen von Y¹ bis Y⁴ miteinander verbunden sein können, um eine Ringstruktur zu bilden; p und q eine ganze Zahl von 1 bis 4 sind; r und s eine ganze Zahl von 1 bis 3 sind; und wenn p und q eine ganze Zahl von 2 bis 4 und r und s eine ganze Zahl von 2 bis 3 sind, mehrere von Y¹ bis Y⁴ gleich oder verschieden voneinander sein können,

dadurch gekennzeichnet, dass

die emittierende Schicht (5) ein erstes Trägermaterial, ein zweites Trägermaterial und ein phosphoreszierendes Material, welches für die Phosphoreszenz sorgt, umfasst und die Verbindung der Formel (4) das erste Trägermaterial ist.

50

55

45

10. Das organische Elektrolumineszenz-Bauteil nach Anspruch 9, worin das zweite Trägermaterial eine der Verbindung der nachfolgenden Formel (5) oder (6) ist:

 $(Cz^{-})_{a}A^{3}...$ (5) $Cz(^{-}A^{3})_{b}...$ (6)

worin Cz eine substituierte oder unsubstituierte Arylcarbazolylgruppe oder Carbazoylarylgruppe ist;

A³ eine Gruppe entsprechend den nachfolgenden Formeln (7A) oder (7B) ist; und a und b jeweils eine ganze Zahl von 1 bis 3 sind;

$$(M^{1})_{c}^{-}(L^{5})_{d}^{-}(M^{2})_{e}$$
 ...(7A)

worin M¹ und M² jeweils unabhängig voneinander eine substituierte oder unsubstituierte Stickstoff-enthaltende aromatische heterocyclische Gruppe oder Stickstoff-enthaltende miteinander verbundene aromatische heterocyclische Gruppe mit 2 bis 40 Ringkohlenstoffatomen sind; M¹ und M² gleich oder verschieden voneinander sein können;

L⁵ eine Einfachbindung, eine substituierte oder unsubstituierte aromatische Kohlenwasserstoffgruppe mit 6 bis 30 Ringkohlenstoffatomen, eine substituierte oder

unsubstituierte miteinander verbundene aromatische Kohlenwasserstoffgruppe mit 6 bis 30 Ringkohlenstoffatomen, eine substituierte oder unsubstituierte aromatische heterocyclische Kohlenwasserstoffgruppe mit 2 bis 30 Ringkohlenstoffatomen oder

eine substituierte oder unsubstituierte miteinander verbundene aromatische heterocyclische Kohlenwasserstoffgruppe mit 2 bis 30 Ringkohlenstoffatomen ist;

20 c eine ganze Zahl von 0 bis 2 ist, d eine ganze Zahl von 1 bis 2 ist; e eine ganze Zahl von 0 bis 2 ist und c+e 1 oder mehr ist;

²⁵
$$(M^3)_c^- (L^6)_d^- (M^4)_e^- \cdots (7B)$$

worin M³ und M⁴ jeweils unabhängig voneinander eine substituierte oder unsubstituierte aromatische Kohlenwasserstoffgruppe mit 2 bis 40 Ringkohlenstoffatomen sind; M³ und M⁴ gleich oder verschieden voneinander sein können;

L⁶ eine Einfachbindung, eine substituierte oder unsubstituierte aromatische Kohlenwasserstoffgruppe mit 6 bis 30 Ringkohlenstoffatomen, eine substituierte oder

unsubstituierte miteinander verbundene aromatische Kohlenwasserstoffgruppe mit 6 bis 30 Ringkohlenstoffatomen oder eine substituierte oder unsubstituierte Cycloalkylengruppe mit 5 bis 30 Ringkohlenstoffatomen ist; c eine ganze Zahl von 0 bis 2 ist, d eine ganze Zahl von 1 bis 2 ist; e eine ganze Zahl von 0 bis 2 ist und c+e 1 oder mehr ist.

11. Das organische Elektrolumineszenz-Bauteil nach Anspruch 9, worin das zweite Trägermaterial durch die folgende Formel (8) dargestellt ist:

50

55

5

10

15

30

35

40

45

worin R¹⁰¹ bis R¹⁰⁶ jeweils unabhängig voneinander ein Wasserstoffatom, ein Halogenatom, eine substituierte oder unsubstituierte Alkylgruppe mit 1 bis 40 Kohlenstoffatomen, eine substituierte oder unsubstituierte oder unsubstituierte Cycloalkylgruppe mit 3 bis 15 Kohlenstoffatomen, eine substituierte oder unsubstituierte heterocyclische Gruppe mit 3 bis 20 Kohlenstoffatomen, eine substituierte oder unsubstituierte Alkoxygruppe mit 1 bis 40 Kohlenstoffatomen, eine substituierte oder unsubstituierte Arylgruppe mit 6 bis 20 Kohlenstoffatomen, eine substituierte oder unsubstituierte oder unsubstituierte Arylgruppe mit 7 bis 20 Kohlenstoffatomen, eine substituierte oder unsubstituierte Alkylgruppe mit 6 bis 40 Kohlenstoffatomen, eine substituierte oder unsubstituierte Arylaminogruppe mit 6 bis 40 Kohlenstoffatomen, eine substituierte oder unsubstituierte Arylaminogruppe mit 6 bis 40 Kohlenstoffatomen, eine substituierte oder unsubstituierte Arylaminogruppe mit 6 bis 40 Kohlenstoffatomen, eine substituierte oder unsubstituierte Alkylaminogruppe mit 6 bis 40 Kohlenstoffatomen, eine substituierte oder unsubstituierte Arylaminogruppe mit 6 bis 40 Kohlenstoffatomen, eine substituierte oder unsubstituierte Alkylaminogruppe mit 6 bis 40 Kohlenstoffatomen, eine substituierte oder unsubstituierte Alkylaminogruppe mit 6 bis 40 Kohlenstoffatomen, eine substituierte oder unsubstituierte Alkylaminogruppe mit 6 bis 40 Kohlenstoffatomen, eine substituierte oder unsubstituierte Alkylaminogruppe mit 6 bis 40 Kohlenstoffatomen, eine substituierte oder unsubstituierte Alkylaminogruppe mit 6 bis 40 Kohlenstoffatomen, eine substituierte Alkylaminogruppe mit 6 bis 40 Kohlenstoffatomen, eine substituierte Alkylaminogruppe mit 6 bis 40 Kohlenstoffatomen, eine substi

substituierte oder unsubstituierte Aralkylaminogruppe mit 7 bis 60 Kohlenstoffatomen, eine substituierte oder unsubstituierte Arylcarbonylgruppe mit 7 bis 40 Kohlenstoffatomen, eine substituierte oder unsubstituierte Arylthiogruppe mit 6 bis 20 Kohlenstoffatomen oder eine substituierte oder unsubstituierte Alkylgruppe mit 1 bis 40 Kohlenstoffatomen oder eine Cyanogruppe sind;

- mindestens einer von R¹⁰¹ bis R¹⁰⁶ eine substituierte oder unsubstituierte 9-Carbazolylgruppe, eine substituierte oder unsubstituierte Azacarbazolylgruppe mit 2 bis 5 Stickstoffatomen oder eine L-9-Carbazolylgruppe ist;
 L eine substituierte oder unsubstituierte Alkylgruppe mit 1 bis 40 Kohlenstoffatomen, eine substituierte oder unsubstituierte heterocyclische Gruppe mit 3 bis 20 Kohlenstoffatomen, eine substituierte oder unsubstituierte 1
- ¹⁰ bis 40 Kohlenstoffatomen, eine substituierte oder unsubstituierte Arylgruppe mit 6 bis 40 Kohlenstoffatomen, eine substituierte oder unsubstituierte Aryloxygruppe mit 6 bis 20 Kohlenstoffatomen, eine substituierte oder unsubstituierte oder unsubstituierte Arylgruppe mit 7 bis 20 Kohlenstoffatomen, eine substituierte oder unsubstituierte Arylgruppe mit 6 bis 40 Kohlenstoffatomen, eine substituierte oder unsubstituierte Arylgruppe mit 1 bis 40 Kohlenstoffatomen, eine substituierte oder unsubstituierte Arylgruppe mit 1 bis 40 Kohlenstoffatomen, eine substituierte Arylcarbonylgruppe mit 7 bis 40 Kohlenstoffatomen, eine substituierte oder unsubstituierte Arylcarbonylgruppe mit 7 bis 40 Kohlenstoffatomen, eine substituierte Arylcarbonylgruppe mit 6 bis 20 Kohlenstoffatomen oder eine substituierte oder unsubstituierte Arylcarbonylgruppe mit 6 bis 20 Kohlenstoffatomen oder eine substituierte oder unsubstituierte Arylcarbonylgruppe mit 6 bis 20 Kohlenstoffatomen oder eine substituierte oder unsubstituierte Alkylgruppe mit 1 bis 40 Kohlenstoffatomen ist;
 - Xa ein Schwefelatom, eine Sauerstoffatom oder N-R¹⁰⁸ ist, und
 - R^{108} das gleiche ist wie R^{101} bis R^{106} .
- 20
- Das organische Elektrolumineszenz-Bauteil nach Anspruch 9, worin das zweite Trägermaterial eine Verbindung ist, die aus der Gruppe ausgewählt ist, bestehend aus polycyclischen aromatischen Verbindungen entsprechend der nachfolgenden Formeln (9A), (9B) und (9C)

(9B)

²⁵ Ra-Ar¹⁰¹-Rb ... (9A)

Ra-Ar¹⁰¹-Ar¹⁰²-Rb ...

Ra-Ar¹⁰¹-Ar¹⁰²-Ar¹⁰³-Rb ... (9C)

30

35

worin Ar¹⁰¹, Ar¹⁰², Ar¹⁰³, Ra und Rb ein polycyclisches aromatisches Skelett mit 6 bis 60 Ringkohlenstoffatomen ist, ausgewählt aus einem substituierten oder unsubstituierten Benzol-Ring, einem substituierten oder unsubstituierten Naphthalen-Ring, einem substituierten oder unsubstituierten Chrysen-Ring, einem substituierten oder unsubstituierten Fluoranthen-Ring, einem substituierten oder unsubstituierten Phenanthren-Ring, einem substituierten oder unsubstituierten Benzophenanthren-Ring, einem substituierten oder unsubstituierten Dibenzophenanthren-Ring, einem substituierten oder unsubstituierten Triphenylen-Ring, einem substituierten oder unsubstituierten Benzophenanthren-Ring, einem substituierten oder unsubstituierten Triphenylen-Ring, einem substituierten oder unsubstituierten Benzo zo[a]triphenylen-Ring, einem substituierten oder unsubstituierten Benzochrysen-Ring, einem substituierten oder unsubstituierten Benzo[b]fluoranthren-Ring, einem substituierten oder unsubstituierten Fluoren-Ring und einem substituierten oder unsubstituierten Picen-Ring.

- 40
- 13. Das organische Elektrolumineszenz-Bauteil nach Anspruch 12, worin entweder einer von oder beide von Ra und Rb in den Formeln (9A) bis (9C) ausgewählt sind aus der Gruppe, bestehend aus einem substituierten oder unsubstituierten Phenanthren-Ring, einem substituierten oder unsubstituierten Benzo[c]phenanthren-Ring oder einem substituierten oder unsubstituierten Fluoranthren-Ring.
- 45
- 14. Das organische Elektrolumineszenz-Bauteil nach Anspruch 9, worin das zweite Trägermaterial ein Monoamin-Derivat entsprechend einer der nachfolgenden Formeln (10) bis (12) ist:

50

N-Ar¹¹³ •••(10)

worin Ar¹¹¹, Ar¹¹² und Ar¹¹³ eine substituierte oder unsubstituierte Arylgruppe oder Heteroarylgruppe sind;

worin Ar¹¹⁴, Ar¹¹⁵ und Ar¹¹⁷ eine substituierte oder unsubstituierte Arylgruppe oder Heteroarylgruppe sind; und Ar¹¹⁶ eine substituierte oder unsubstituierte Arylengruppe oder Heteroarylengruppe ist;

25

30

35

5

10

15

20

worin Ar¹¹⁸, Ar¹¹⁹ und Ar¹²¹ eine substituierte oder unsubstituierte Arylgruppe oder Heteroarylgruppe sind; Ar¹²⁰ eine substituierte oder unsubstituierte Arylengruppe oder Heteroarylengruppe ist; und n eine ganze Zahl von 2 bis 5 ist; wenn n 2 oder mehr ist, die Ar¹²⁰ gleich oder unterschiedlich voneinander sein können.

15. Das organische Elektrolumineszenz-Bauteil nach Anspruch 9, worin das zweite Trägermaterial durch eine der nachfolgenden Formeln (13) und (14) dargestellt ist

A³ A⁴ A⁶ A⁶ ...(13)

40

worin X³ eine substituierte oder unsubstituierte Arylengruppe mit 10 bis 40 Ringkohlenstoffatomen ist; und A³ bis A⁶ eine substituierte oder unsubstituierte Arylgruppe mit 6 bis 60 Ringkohlenstoffatomen oder Heteroarylgruppe mit 6 bis 60 Ringatomen sind;

50

45

- ⁵⁵ worin A⁷ bis A⁹ eine substituierte oder unsubstituierte Arylgruppe mit 6 bis 60 Ringkohlenstoffatomen oder Heteroarylgruppe mit 6 bis 60 Ringatomen sind.
 - 16. Das organische Elektrolumineszenz-Bauteil nach Anspruch 9, worin das zweite Trägermaterial durch eine der nach-

folgenden Formeln (15) bis (19) dargestellt ist

20

10

5

worin A¹⁰ bis A¹⁹ jeweils eine substituierte oder unsubstituierte Arylgruppe mit 6 bis 40 Kohlenstoffatomen, eine substituierte oder unsubstituierte aromatische heterocyclische Gruppe mit 2 bis 40 Kohlenstoffatomen, eine substituierte oder unsubstituierte Arylgruppe mit 8 bis 40 Kohlenstoffatomen, an die eine aromatische Aminogruppe gebunden ist, oder eine substituierte oder unsubstituierte Arylgruppe mit 8 bis 40 Kohlenstoffatomen, an die eine aromatische heterocyclische Gruppe gebunden ist; A¹⁰ A¹³ A¹⁵ und A¹⁷ inweits geeignet eind an A¹¹ A¹⁴ A¹⁶ und A¹⁸ zu binden, um einen Bing zu bilden;

A¹⁰, A¹³, A¹⁵ und A¹⁷ jeweils geeignet sind, an A¹¹, A¹⁴, A¹⁶ und A¹⁸ zu binden, um einen Ring zu bilden; X⁴ bis X⁹ eine Einfachbindung oder eine verbindende Gruppe mit 1 bis 30 Kohlenstoffatomen sind;

Y⁶ bis Y²⁴ ein Wasserstoffatom, ein Halogenatom, eine substituierte oder unsubstituierte Alkylgruppe mit 1 bis
 40 Kohlenstoffatomen, eine substituierte oder unsubstituierte heterocyclische Gruppe mit 3 bis 20 Kohlenstoffatomen, eine substituierte oder unsubstituierte Arylgruppe mit 6 bis 40 Kohlenstoffatomen, eine substituierte Aralkylgruppe mit 7 bis 20 Kohlenstoffatomen, eine substituierte Alkylgruppe mit 7 bis 20 Kohlenstoffatomen, eine substituierte Alkylgruppe mit 2 bis 40 Kohlenstoffatomen, eine substituierte oder unsubstituierte oder unsubstituierte Alkylgruppe mit 1 bis 40 Kohlenstoffatomen, eine substituierte oder unsubstituierte Aralkylaminogruppe mit 7 bis 60 Kohlenstoffato men, eine substituierte oder unsubstituierte Alkylsilylgruppe mit 3 bis 20 Kohlenstoffatomen, eine substituierte oder unsubstituierte Aralkylsilylgruppe mit 3 bis 20 Kohlenstoffatomen, eine substituierte oder unsubstituierte Alkylsilylgruppe mit 3 bis 20 Kohlenstoffatomen, eine substituierte oder unsubstituierte Alkylsilylgruppe mit 3 bis 20 Kohlenstoffatomen, eine substituierte oder unsubstituierte Aralkylsilylgruppe mit 3 bis 40 Kohlenstoffatomen, eine substituierte oder unsubstituierte Aralkylsilylgruppe mit 8 bis 40 Kohlenstoffatomen oder eine substituierte oder unsubstituierte halogenierte Alkylgruppe mit 1 bis 40 Kohlenstoffatomen sind;

 X_A, X_B, X_C, X_D, X_E jeweils ein Schwefelatom, ein Sauerstoffatom oder ein Monoaryl-substituiertes Stickstoffatom sind.

Revendications

40 **1.** Dérivé de bis-carbazole représenté par la formule (2) dessous

45

50

dans laquelle

5

10

A¹ représente un groupe hétérocyclique substitué ou non substitué contenant de l'azote ayant de 1 à 30 atomes de carbone ;

- A² représente un groupe hydrocarboné aromatique substitué ou non substitué ayant de 6 à 30 atomes de carbone de cycle ou un groupe hétérocyclique substitué ou non substitué contenant de l'azote ayant de 1 à 30 atomes de carbone de cycle ;
- chacun de X¹ et X² est un groupe de liaison et représente indépendamment une liaison simple, un groupe hydrocarboné aromatique substitué ou non substitué ayant de 6 à 30 atomes de carbone de cycle, un groupe hydrocarboné aromatique condensé substitué ou non substitué ayant de 6 à 30 atomes de carbone de cycle, un groupe hétérocyclique aromatique substitué ou non substitué ayant de 2 à 30 atomes de carbone de cycle ou un groupe hétérocyclique aromatique condensé substitué ou non substitué ayant de 2 à 30 atomes de carbone de cycle carbone de cycle ou un groupe hétérocyclique aromatique condensé substitué ou non substitué ayant de 2 à 30 atomes de carbone de cycle ou un groupe hétérocyclique aromatique condensé substitué ou non substitué ayant de 2 à 30 atomes de carbone de cycle carbone de cycle ;
- Y¹ à Y⁴ représentent indépendamment un atome d'hydrogène, un atome de fluor, un groupe cyano, un groupe alkyle substitué ou non substitué ayant de 1 à 20 atomes de carbone, un groupe alcoxy substitué ou non substitué ayant de 1 à 20 atomes de carbone, un groupe haloalkyle substitué ou non substitué ayant de 1 à 20 atomes de carbone, un groupe haloalkyle substitué ayant de 1 à 20 atomes de carbone, un alkylsilyle substitué ou non substitué ayant de 1 à 10 atomes de carbone, un arylsilyle substitué ou non substitué ayant de 6 à 30 atomes de carbone, un groupe hydrocarboné aromatique substitué ou non substitué ayant de 6 à 30 atomes de carbone de cycle, un groupe hydrocarboné aromatique substitué ou non substitué ayant de 6 à 30 atomes de carbone de cycle, un groupe hydrocarboné aromatique substitué ou non substitué ayant de 6 à 30 atomes de carbone de cycle, un groupe hydrocarboné aromatique substitué ou non substitué ayant de 6 à 30 atomes de carbone de cycle, un groupe hydrocarboné aromatique substitué ou non substitué ayant de 6 à 30 atomes de carbone de cycle, un groupe hydrocarboné aromatique substitué ou non substitué ayant de 6 à 30 atomes de carbone de cycle ou un groupe hétérocyclique aromatique condensé substitué ou non substitué ayant de 2 à 30 atomes de carbone de cycle ou un groupe hétérocyclique aromatique condensé substitué ou
 - non substitué ayant de 2 à 30 atomes de carbone de cycle ; des Y¹ à Y⁴ adjacents sont permis d'être liés l'un à l'autre pour former une structure de cycle ;
- 25 p et q représentent un entier de 1 à 4 ; r et s représentent un entier de 1 à 3 ; et
 - lorsque p et q sont un entier de 2 à 4 et r et s sont un entier de 2 à 3, une pluralité de Y¹ à Y⁴ est permise d'être identique ou différente,

caractérisé en ce que

A¹ est sélectionné parmi le groupe consistant en un cycle de pyridine substitué ou non substitué, un cycle de
 ³⁰ pyrimidine substitué ou non substitué et un cycle de triazine substitué ou non substitué ; et
 le dérivé de bis-carbazole n'est pas l'un des composés suivants :

50

- 2. Dérivé de bis-carbazole selon la revendication 1, dans lequel A¹ est sélectionné parmi un cycle de pyrimidine substitué ou non substitué ou un cycle de triazine substitué ou non substitué.
- **35 3.** Dérivé de bis-carbazole selon l'une des revendications 1 ou 2, dans lequel A¹ est un cycle de pyrimidine substitué ou non substitué.
 - **4.** Dérivé de bis-carbazole selon la revendication 3, dans lequel le dérivé de bis-carbazole est représenté par une formule (3) dessous :

45

- dans laquelle A², X¹, Y¹ à Y⁴, p, q, r et s représentent les mêmes que A², X¹, Y¹ à Y⁴, p, q, r et s de la formule (2),
 Y⁵ représente le même que Y¹ à Y⁴ de la formule (2);
 t représente un entier dans une gamme de 1 à 3 ; et
 lorsque t est un entier de 2 à 3, une pluralité de Y⁵ est permise d'être identique ou différente.
 - 5. Matériau de dispositif organique EL comprenant le dérivé de bis-carbazole selon l'une des revendications 1 à 4.
 - 6. Dispositif organique électroluminescent (1) comprenant : une cathode (4), une anode (3) ; et une pluralité de couches organiques de film mince prévue entre la cathode (4) et l'anode (3), les couches organiques de film mince (10) comprenant une couche émettrice (5), dans lequel

au moins l'une des couches organiques de film mince (10) comprend le matériau de dispositif organique EL selon la revendication 5.

- 7. Dispositif organique électroluminescent 1 selon la revendication 6, dans lequel la couche émettrice (5) comprend le matériau de dispositif organique EL comme un matériau hôte.
- 40 8. Dispositif organique électroluminescent 1 selon l'une des revendications 6 ou 7, dans lequel la couche émettrice
 (5) comprend un matériau phosphorescent.
 - 9. Dispositif organique électroluminescent (1) comprenant : une cathode (4), une anode (3) ; et une pluralité de couches organiques de film mince (10) prévue entre la cathode (4) et l'anode (3), les couches organiques de film mince (10) comprenant une couche émettrice (5), dans lequel
 - au moins l'une des couches organiques de film mince (10) est la couche émettrice (5) comprenant un composé représenté par la formule (4) dessous comme un matériau hôte :

50

45

30

35

20

10

5

dans lequel

A¹ est sélectionné parmi le groupe consistant en un cycle de pyridine substitué ou non substitué, un cycle de pyrimidine substitué ou non substitué et un cycle de triazine substitué ou non substitué ;

A² représente un groupe hydrocarboné aromatique substitué ou non substitué ayant de 6 à 30 atomes de carbone de cycle ou un groupe hétérocyclique substitué ou non substitué contenant de l'azote ayant de 1 à 30 atomes de carbone de cycle ;

- chacun de X¹ et X² est un groupe de liaison et représente indépendamment une liaison simple, un groupe
 hydrocarboné aromatique substitué ou non substitué ayant de 6 à 30 atomes de carbone de cycle, un groupe
 hydrocarboné aromatique condensé substitué ou non substitué ayant de 6 à 30 atomes de carbone de cycle,
 un groupe hétérocyclique aromatique substitué ou non substitué ayant de 2 à 30 atomes de carbone de cycle
 ou un groupe hétérocyclique aromatique condensé substitué ou non substitué ayant de 2 à 30 atomes de carbone de cycle
 carbone de cycle ;
- Y¹ à Y⁴ représentent indépendamment un atome d'hydrogène, un atome de fluor, un groupe cyano, un groupe alkyle substitué ou non substitué ayant de 1 à 20 atomes de carbone, un groupe alcoxy substitué ou non substitué ayant de 1 à 20 atomes de carbone, un groupe haloalkyle substitué ou non substitué ayant de 1 à 20 atomes de carbone, un groupe haloalkyle substitué ayant de 1 à 20 atomes de carbone, un alkylsilyle substitué ou non substitué ayant de 1 à 10 atomes de carbone, un arylsilyle substitué ou non substitué ayant de 1 à 30 atomes de carbone, un groupe hydrocarboné aromatique substitué ou non substitué ayant de 6 à 30 atomes de carbone, un groupe hydrocarboné aromatique substitué ou non substitué ayant de
- 6 à 30 atomes de carbone de cycle, un groupe hydrocarboné aromatique substitué ou non substitué ayant de 6 à 30 atomes de carbone de cycle, un groupe hydrocarboné aromatique condensé substitué ou non substitué ayant de 6 à 30 atomes de carbone de cycle, un group hétérocyclique aromatique substitué ou non substitué ayant de 2 à 30 atomes de carbone de cycle ou un groupe hétérocyclique aromatique condensé substitué ou non substitué ayant de 2 à 30 atomes de carbone de cycle ;
- des Y¹ à Y⁴ adjacents sont permis d'être liés l'un à l'autre pour former une structure de cycle ;
 p et q représentent un entier de 1 à 4 ; r et s représentent un entier de 1 à 3 ; et
 lorsque p et q sont un entier de 2 à 4 et r et s sont un entier de 2 à 3, une pluralité de Y¹ à Y⁴ est permise d'être identique ou différente,

caractérisé en ce que 45 la couche émettrice (5)

- la couche émettrice (5) comprend un premier matériau hôte, un deuxième matériau hôte et un matériau phosphorescent fournissant de la phosphorescence et le composé de la formule (4) est le premier matériau hôte.
- 10. Dispositif organique électroluminescent selon la revendication 9, dans lequel le deuxième matériau hôte est représenté par l'un ou l'autre d'une formule (5) ou (6) dessous :

50

(Cz ⁻) _a A ³	(5)
Cz(⁻ A ³) _b	(6)

55

dans lesquelles Cz représente un groupe arylcarbazolyle carazolylaryle substitué ou non substitué ou; A³ représente un groupe représenté par un formule (7A) ou (7B) dessous ; et chacun de a et b représente un entier de 1 à 3 ;

$$(M^{1})_{c}^{-}(L^{5})_{d}^{-}(M^{2})_{e}$$
 ...(7A)

dans laquelle : chacun de M¹ et M² représente indépendamment un cycle hétérocyclique aromatique substitué ou non substitué contenant de l'azote ou un cycle hétérocyclique aromatique condensé substitué ou non substitué contenant de l'azote ayant de 2 à 40 atomes de carbone de cycle ; M¹ et M² sont permis d'être identiques ou différents ;

L⁵ représente une liaison simple, un groupe hydrocarboné aromatique substitué ou non substitué ayant de 6 à 30 atomes de carbone, un groupe hydrocarboné aromatique condensé substitué ou non substitué ayant de 6 à 30 atomes de carbone, un groupe cycloalkylène substitué ou non substitué ayant de 5 à 30 atomes de carbone, un groupe aromatique substitué ou non substitué ayant de 2 à 30 atomes de carbone ou un groupe hétérocyclique aromatique condensé non substitué ayant de 2 à 30 atomes de carbone ;

c représente un entier de 0 à 2 ; d représente un entier de 1 à 2 ; e représente un entier de 0 à 2 ; et c+e représente 1 ou plus ;

$$(M^{3})_{c}^{-}(L^{6})_{d}^{-}(M^{4})_{e}$$

dans laquelle : chacun de M³ et M⁴ représente indépendamment un group hydrocarboné aromatique substitué ou non substitué ayant de 6 à 40 atomes de carbone de cycle ; M³ et M⁴ sont permis d'être identiques ou différents ;

•••(7B)

• • • (8)

L⁶ représente une liaison simple, un groupe hydrocarboné aromatique substitué ou non substitué ayant de 6 à 30 atomes de carbone, un groupe hydrocarboné aromatique condensé substitué ou non substitué ayant de 6 à 30 atomes de carbone ou un groupe cycloalkylène substitué ou non substitué ayant de 5 à 30 atomes de carbone ;

R¹⁰⁵

c représente un entier de 0 à 2 ; d représente un entier de 1 à 2 ; e représente un entier de 0 à 2 ; et c+e représente 1 ou plus.

11. Dispositif organique électroluminescent selon la revendication 9, dans lequel le deuxième matériau hôte est représenté par une formule (8) dessous :

35

5

10

15

20

25

30

40

dans laquelle : chacun de R¹⁰¹ à R¹⁰⁶ représente indépendamment un atome d'hydrogène, un atome d'halogè ne, un groupe alkyle substitué ou non substitué ayant de 1 à 40 atomes de carbone, un groupe cycloalkyle substitué ou non substitué ayant de 3 à 15 atomes de carbone, un groupe hétérocyclique substitué ou non substitué ayant de 3 à 20 atomes de carbone, un groupe alcoxy substitué ou non substitué ayant de 1 à 40 atomes de carbone, un groupe aryloxy substitué ou non substitué ayant de 6 à 20 atomes de carbone, un groupe aryloxy substitué ou non substitué ayant de 6 à 20 atomes de carbone, un groupe aryloxy substitué ou non substitué ayant de 6 à 20 atomes de carbone, un groupe aryloxy substitué ayant de 7 à 20 atomes de carbone, un groupe arylamino substitué ou non substitué ayant de 6 à 40 atomes de carbone, un groupe alkylamino substitué ou non substitué ayant de 7 à 60 atomes de carbone, un groupe arylcarbonyle substitué ou non substitué ayant de 7 à 40 atomes de carbone, un groupe arylchio substitué ou non substitué ayant de 6 à 20 atomes de carbone, un groupe arylcarbonyle substitué ou non substitué ayant de 7 à 40 atomes de carbone, un groupe arylchio substitué ayant de 1 à 40

R103p104

au moins l'un de R¹⁰¹ à R¹⁰⁶ est un groupe 9-carbazolyle substitué ou non substitué, un groupe azacarbozolyle substitué ou non substitué ayant de 2 à 5 atomes d'azote ou un groupe -L-9-carbazolyle ;

L représente un groupe alkyle substitué ou non substitué ayant de 1 à 40 atomes de carbone, un groupe

cycloalkyle substitué ou non substitué ayant de 3 à 15 atomes de carbone, un groupe hétérocyclique substitué ou non substitué ayant de 3 à 20 atomes de carbone, un groupe alcoxy substitué ou non substitué ayant de 1 à 40 atomes de carbone, un groupe aryle substitué ou non substitué ayant de 6 à 40 atomes de carbone, un groupe aryloxy substitué ou non substitué ayant de 6 à 20 atomes de carbone, un groupe aralkyle substitué ou non substitué ayant de 7 à 20 atomes de carbone, un groupe arylamino substitué ayant de 7 à 20 atomes de carbone, un groupe arylamino substitué ou non substitué ayant de 6 à 40 atomes de carbone, un groupe arylamino substitué ayant de 7 à 40 atomes de carbone, un groupe arylamino substitué ayant de 1 à 40 atomes de carbone, un groupe aralkylamino substitué ou non substitué ayant de 7 à 60 atomes de carbone, un groupe arylcarbonyle substitué ou non substitué ayant de 7 à 40 atomes de carbone, un groupe arylthio substitué ayant de 1 à 40 atomes de carbone ou un groupe alkyle halogéné substitué ou non substitué ayant de 1 à 40 atomes de carbone ; Xa représente un atome de souffre, un atome d'oxygène ou N-R¹⁰⁸; et R¹⁰⁸ représente le même que R¹⁰¹ à R¹⁰⁶.

12. Dispositif organique électroluminescent selon la revendication 9, dans lequel le deuxième matériau hôte est un composé sélectionné parmi le groupe consistant en des composés aromatiques polycycliques représentés par les formules (9A), (9B) et (9C) dessous :

	Ra-Ar ¹⁰¹ -Rb	(9A)	
20	Ra-Ar ¹⁰¹ -Ar ¹⁰² -Rb	(9B)	
20	Ra-Ar ¹⁰¹ -Ar ¹⁰² -Ar ¹⁰³ -Rb		(9C)

dans lesquelles : Ar¹⁰¹, Ar¹⁰², Ar¹⁰³, Ra et Rb représentent une squelette aromatique polycyclique ayant de 6 à 60 atomes de carbone de cycle sélectionnée parmi un cycle de benzène substitué ou non substitué, un cycle de naphtalène substitué ou non substitué, un cycle de chrysène substitué ou non substitué, un cycle de fluoranthène substitué ou non substitué, un cycle de phenanthrène substitué ou non substitué, un cycle de dibenzophenanthrène substitué ou non substitué, un cycle de dibenzophenanthrène substitué ou non substitué, un cycle de benzo[a]triphenylène substitué ou non substitué, un cycle de benzo[a]triphenylène substitué ou non substitué, un cycle de benzo[b]fluoranthène substitué ou non substitué, un cycle de fluorène substitué ou non substitué, un cycle de benzo[b]fluoranthène substitué ou non substitué, un cycle de fluorène substitué ou non substitué, un cycle de benzo[b]fluoranthène substitué ou non substitué, un cycle de fluorène

- 13. Dispositif organique électroluminescent selon la revendication 12, dans lequel l'un ou les deux de Ra et Rb dans les formules (9A) à (9C) sont sélectionnés parmi le groupe consistant en un cycle de phenanthrène substitué ou non substitué, un cycle de benzo[c]phenanthrène substitué ou non substitué ou un cycle de fluoranthène substitué ou non substitué.
- 14. Dispositif organique électroluminescent selon la revendication 9, dans lequel le deuxième matériau hôte est un dérivé de monoamine représenté par l'une des formules (10) à (12) dessous :

⁵⁰ dans laquelle : Ar¹¹¹, Ar¹¹² et Ar¹¹³ sont un groupe aryle substitué ou non substitué ou un groupe hétéroaryle ;

55

5

10

15

5

dans laquelle : Ar¹¹⁴, Ar¹¹⁵ et Ar¹¹⁶ sont un groupe aryle substitué ou non substitué ou un groupe hétéroaryle ; et Ar¹¹⁶ est un groupe arylène substitué ou non substitué ou un groupe hétéroarylène ;

- dans laquelle : Ar¹¹⁸, Ar¹¹⁹ et Ar¹²¹ sont un groupe aryle substitué ou non substitué 1ou un groupe hétéroaryle ; 25 Ar¹²⁰ est un groupe arylène substitué ou non substitué ou un groupe hétéroarylène ; et n est un entier de 2 à 5 ; lorsque n est 2 ou plus, Ar¹²⁰ est permis d'être identique ou différent.
 - 15. Dispositif organique électroluminescent selon la revendication 9, dans lequel le deuxième matériau hôte est représenté par l'une des formules (13) ou (14) dessous :

30

40

<u></u>Δ5

A³ à A⁶ représentent un groupe aryle substitué ou non substitué ayant de 6 à 60 atomes de carbone de cycle ou un groupe hétéroaryle ayant de 6 à 60 atomes de cycle ;

45

50

-A9(14)

- dans laquelle : A⁷ à A⁹ représentent un groupe aryle substitué ou non substitué ayant de 6 à 60 atomes de carbone de cycle ou un groupe hétéroaryle ayant de 6 à 60 atomes de cycle.
- 16. Dispositif organique électroluminescent selon la revendication 9, dans lequel le deuxième matériau hôte est représenté par l'une des formules (15) à (19) dessous :

20

10

5

dans lesquelles : chacun de A¹⁰ à A¹⁹ représente un groupe aryle substitué ou non substitué ayant de 6 à 40 atomes de carbone, un groupe hétérocyclique aromatique substitué ou non substitué ayant de 2 à 40 atomes de carbone, un groupe aryle substitué ou non substitué ayant de 8 à 40 atomes de carbone lié à un groupe amino aromatique ou un groupe aryle substitué ou non substitué ayant de 8 à 40 atomes de carbone lié à un groupe hétérocyclique aromatique ;

A¹⁰, A¹³, A¹⁵ et A¹⁷ sont adaptés à être lié à A¹¹, A¹⁴, A¹⁶ et A¹⁸ respectivement pour former un cycle,

X⁴ à X⁹ représentent une liaison simple ou un groupe de liaison ayant de 1 à 30 atomes de carbone ;

Y⁶ à Y²⁴ représentent un atome d'hydrogène, un atome d'halogène, un groupe alkyle substitué ou non substitué ayant de 1 à 40 atomes de carbone, un groupe hétérocyclique substitué ou non substitué ayant de 3 à 20 atomes de carbone, un groupe aryle substitué ou non substitué ayant de 6 à 40 atomes de carbone, un groupe aralkyle substitué ou non substitué ayant de 7 à 20 atomes de carbone, un groupe alkényle substitué ou non substitué ayant de 2 à 40 atomes de carbone, un groupe alkylamino substitué ou non substitué ayant de 1 à 40 atomes de carbone, un groupe aralkylamino substitué ou non substitué ayant de 7 à 60 atomes de carbone, un groupe alkylsilyle substitué ou non substitué ayant de 3 à 20 atomes de carbone, un groupe arylsilyle substitué ou non substitué ayant de 8 à 40 atomes de carbone, un groupe aralkylsilyle substitué ou non substitué ayant de 8 à 40 atomes de carbone ou un groupe alkyle halogéné substitué ou non substitué ayant de 1 à 40 atomes de carbone ; et

35

chacun de X_A, X_B, X_C, X_D, X_E représente un atome de souffre, un atome d'oxygène ou un atome d'azote substitué par un monoaryle.

40

45

50

FIG.1

- 1

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- WO 2003080760 A [0009]
- JP 3139321 B [0009]
- JP 4357781 B [0009]
- JP 2003151774 A [0009]
- JP 2008135498 A [0009]
- JP 2009021336 A [0009]

- JP 2008214307 A [0009]
- EP 2497811 A [0009]
- JP 57051781 A [0081]
- JP 9003448 A [0165]
- JP 2000173774 A [0167]
- WO 200625186 A [0358]

Non-patent literature cited in the description

• J. BERGMAN ; A. BRYNOLF ; B. ELMAN ; E. VU-ORINEN. *Tetrahedron*, 1986, vol. 42, 3697-3706 [0371]

patsnap

专利名称(译) 双咔唑衍生物,有机电致发光元件用材料和使用它的有机电致发光元件

公开(公告)号	EP2423209B1	公开(公告)日	2015-08-05
申请号	EP2011770992	申请日	2011-04-19
[标]申请(专利权)人(译)	出光兴产株式会社		
申请(专利权)人(译)	出光兴产股份有限公司.		
当前申请(专利权)人(译)	出光兴产股份有限公司.		
[标]发明人	INOUE TETSUYA ITO MITSUNORI YOSHIDA KEI HIBINO KUMIKO NISHIMURA KAZUKI OGIWARA TOSHINARI IKEDA KIYOSHI		
发明人	INOUE, TETSUYA ITO, MITSUNORI YOSHIDA, KEI HIBINO, KUMIKO NISHIMURA, KAZUKI OGIWARA, TOSHINARI IKEDA, KIYOSHI		
IPC分类号	H01L51/30 C07D401/14 C07D403/14 C09K11/06 H01L51/50		
CPC分类号	C07D209/82 C07D401/14 C07D403/14 C09B57/00 C09K11/06 C09K2211/1007 C09K2211/1029 C09K2211/1044 C09K2211/1059 H01L51/0072 H01L51/5016 H01L2251/5384 H05B33/20 Y10S428 /917 H01L51/0067 H01L51/0085 H01L51/5072 H01L51/5012 H01L51/5024 H01L51/5076 H01L51/5092		
优先权	2010097317 2010-04-20 JP 2010291138 2010-12-27 JP		
其他公开文献	EP2423209A1 EP2423209A4		
外部链接	Espacenet		

摘要(译)

本发明的双咔唑衍生物由下式(1)表示。在式(1)中:A1表示具有1 至30个环碳原子的取代或未取代的含氮杂环基;A2表示取代或未取代的 成环碳原子数6~30的芳香族烃基,或取代或未取代的成环碳原子数1~30 的含氮杂环基。X1和X2各自为连接基团;Y1至Y4各自代表取代基;p和q 表示1至4的整数;r和s代表1到3的整数。

