

(11) EP 2 602 302 B1

(12)

EUROPEAN PATENT SPECIFICATION

(45) Date of publication and mention of the grant of the patent: 29.06.2016 Bulletin 2016/26

(51) Int Cl.: C09K 11/06 (2006.01) C07F 15/00 (2006.01)

H01L 51/00 (2006.01)

(21) Application number: 12196136.1

(22) Date of filing: 07.12.2012

(54) NOVEL ORGANIC LIGHT EMITTING MATERIALS

NEUARTIGE ORGANISCHE LICHTEMITTIERENDE MATERIALIEN NOUVEAU DISPOSITIF ÉLECTROLUMINESCENT ORGANIQUE

(84) Designated Contracting States:

AL AT BE BG CH CY CZ DE DK EE ES FI FR GB

GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO
PL PT RO RS SE SI SK SM TR

- (30) Priority: **09.12.2011 US 201113316162**
- (43) Date of publication of application: 12.06.2013 Bulletin 2013/24
- (73) Proprietor: Universal Display Corporation Ewing, NJ 08618 (US)
- (72) Inventors:
 - Ma, Bin Ewing, NJ 08618 (US)

- DeAngelis, Alan Ewing, NJ 08618 (US)
- Xia, Chuanjun Ewing, NJ 08618 (US)
- (74) Representative: Maiwald Patentanwalts GmbH Engineering Elisenhof Elisenstrasse 3 80335 München (DE)
- (56) References cited:

EP-A2- 1 535 981 WO-A1-2010/033550 KR-A- 20110 077 350 US-A1- 2008 074 033

P 2 602 302 B1

Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).

Description

[0001] The claimed invention was made by, on behalf of, and/or in connection with one or more of the following parties to a joint university corporation research agreement: Regents of the University of Michigan, Princeton University, The University of Southern California, and the Universal Display Corporation. The agreement was in effect on and before the date the claimed invention was made, and the claimed invention was made as a result of activities undertaken within the scope of the agreement.

FIELD OF THE INVENTION

[0002] The present invention relates to metal complexes containing heterocyclic ligands with at least two substituents on the heterocyclic ligand. These metal complexes are suitable for use in OLED devices.

BACKGROUND

10

15

20

30

35

40

45

50

55

[0003] Opto-electronic devices that make use of organic materials are becoming increasingly desirable for a number of reasons. Many of the materials used to make such devices are relatively inexpensive, so organic opto-electronic devices have the potential for cost advantages over inorganic devices. In addition, the inherent properties of organic materials, such as their flexibility, may make them well suited for particular applications such as fabrication on a flexible substrate. Examples of organic opto-electronic devices include organic light emitting devices (OLEDs), organic phototransistors, organic photovoltaic cells, and organic photodetectors. For OLEDs, the organic materials may have performance advantages over conventional materials. For example, the wavelength at which an organic emissive layer emits light may generally be readily tuned with appropriate dopants.

[0004] OLEDs make use of thin organic films that emit light when voltage is applied across the device. OLEDs are becoming an increasingly interesting technology for use in applications such as flat panel displays, illumination, and backlighting. Several OLED materials and configurations are described in U.S. Pat. Nos. 5,844,363, 6,303,238, and 5,707,745.

[0005] One application for phosphorescent emissive molecules is a full color display. Industry standards for such a display call for pixels adapted to emit particular colors, referred to as "saturated" colors. In particular, these standards call for saturated red, green, and blue pixels. Color may be measured using CIE coordinates, which are well known to the art.

[0006] One example of a green emissive molecule is tris(2-phenylpyridine) iridium, denoted $lr(ppy)_3$, which has the following structure:

[0007] In this, and later figures herein, we depict the dative bond from nitrogen to metal (here, Ir) as a straight line.

[0008] As used herein, the term "organic" includes polymeric materials as well as small molecule organic materials that may be used to fabricate organic opto-electronic devices. "Small molecule" refers to any organic material that is not a polymer, and "small molecules" may actually be quite large. Small molecules may include repeat units in some circumstances. For example, using a long chain alkyl group as a substituent does not remove a molecule from the "small molecule" class. Small molecules may also be incorporated into polymers, for example as a pendent group on a polymer backbone or as a part of the backbone. Small molecules may also serve as the core moiety of a dendrimer, which consists of a series of chemical shells built on the core moiety. The core moiety of a dendrimer may be a fluorescent or phosphorescent small molecule emitter. A dendrimer may be a "small molecule," and it is believed that all dendrimers currently used in the field of OLEDs are small molecules.

[0009] As used herein, "top" means furthest away from the substrate, while "bottom" means closest to the substrate. Where a first layer is described as "disposed over" a second layer, the first layer is disposed further away from substrate. There may be other layers between the first and second layer, unless it is specified that the first layer is "in contact with" the second layer. For example, a cathode may be described as "disposed over" an anode, even though there are various organic layers in between.

[0010] As used herein, "solution processible" means capable of being dissolved, dispersed, or transported in and/or deposited from a liquid medium, either in solution or suspension form.

[0011] A ligand may be referred to as "photoactive" when it is believed that the ligand directly contributes to the photoactive properties of an emissive material. A ligand may be referred to as "ancillary" when it is believed that the ligand does not contribute to the photoactive properties of an emissive material, although an ancillary ligand may alter the properties of a photoactive ligand.

[0012] As used herein, and as would be generally understood by one skilled in the art, a first "Highest Occupied Molecular Orbital" (HOMO) or "Lowest Unoccupied Molecular Orbital" (LUMO) energy level is "greater than" or "higher than" a second HOMO or LUMO energy level if the first energy level is closer to the vacuum energy level. Since ionization potentials (IP) are measured as a negative energy relative to a vacuum level, a higher HOMO energy level corresponds to an IP having a smaller absolute value (an IP that is less negative). Similarly, a higher LUMO energy level corresponds to an electron affinity (EA) having a smaller absolute value (an EA that is less negative). On a conventional energy level diagram, with the vacuum level at the top, the LUMO energy level of a material is higher than the HOMO energy level of the same material. A "higher" HOMO or LUMO energy level appears closer to the top of such a diagram than a "lower" HOMO or LUMO energy level.

[0013] As used herein, and as would be generally understood by one skilled in the art, a first work function is "greater than" or "higher than" a second work function if the first work function has a higher absolute value. Because work functions are generally measured as negative numbers relative to vacuum level, this means that a "higher" work function is more negative. On a conventional energy level diagram, with the vacuum level at the top, a "higher" work function is illustrated as further away from the vacuum level in the downward direction. Thus, the definitions of HOMO and LUMO energy levels follow a different convention than work functions.

[0014] More details on OLEDs, and the definitions described above, can be found in US Pat. No. 7,279,704.

SUMMARY OF THE INVENTION

[0015] In one aspect, a compound having the formula:

$$R_1$$
 N
 $M [L]_{(m-2n)/d}$

Formula I is provided.

[0016] In the compound of Formula I, M is a metal having an atomic weight higher than 40, L is a second ligand, m is the maximum coordination number of the metal M, d is the denticity of L, and n is at least 1. R₁ is independently selected for each ligand and represents di, tri, tetra, or penta substitutions. Each of R₁ is independently selected from the group consisting of hydrogen, deuterium, halide, alkyl, cycloalkyl, heteroalkyl, arylalkyl, alkoxy, aryloxy, amino, silyl, germyl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, acyl, carbonyl, carboxylic acids, ester, nitrile, isonitrile, sulfanyl, sulfonyl, phosphino, and combinations thereof.

[0017] At least two of R_1 is independently selected from two to six carbon containing alkyl, silyl, germyl, cycloalkyl, and combinations thereof. R_2 may represent mono, di, tri, tetra substitutions, or no substitution, and each of R_2 is independently selected from the group consisting of hydrogen, deuterium, halide, alkyl, cycloalkyl, heteroalkyl, arylalkyl, alkoxy, aryloxy, amino, silyl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, acyl, carboxylic acids, ester, nitrile, isonitrile, sulfanyl, sulfonyl, phosphino, and combinations thereof.

[0018] In one aspect, R_1 represents di-substitution. In one aspect, R_1 represents di-alkyl substitution. In another aspect, R_1 represents silyl or germyl substitution.

[0019] In one aspect, the compound has the formula:

55

10

15

20

25

30

35

40

45

$$R_1$$
 M L $(m-2n)/d$ R_3 R_4 n , Formula II,

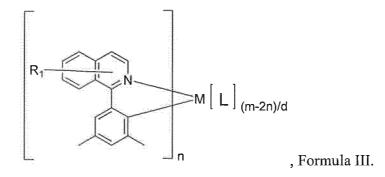
wherein R₃ and R₄ are alkyl.

5

10

15

20


25

30

35

40

[0020] In one aspect, the compound has the formula:

[0021] In one aspect, R_1 is independently selected from the group consisting of $CH(CH_3)_2$, $CH_2CH(CH_3)_2$, $CH_2C(CH_3)_3$, cyclopentyl, cyclohexyl, ethyl, trimethylsilyl, triisopropylsilyl, trimethylgermyl, triethylgermyl, and triisopropylgermyl.

[0022] In one aspect, n M is Ir. In one aspect, n is 2. In one aspect, L is a monoanionic bidentate ligand. In one aspect, L is

$$O = R_x$$
 R_z
 R_y

and R_x , R_y , and R_z are each independently selected from the group consisting of hydrogen, deuterium, halide, alkyl, cycloalkyl, heteroalkyl, arylalkyl, alkoxy, aryloxy, amino, silyl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, acyl, carbonyl, carboxylic acids, ester, nitrile, isonitrile, sulfanyl, sulfinyl, sulfonyl, phosphino, and combinations thereof. [0023] In one aspect, R_x , R_y , and R_z are independently selected from the group consisting of alkyl, hydrogen, deuterium, and combinations thereof.

[0024] In one aspect, R_z is hydrogen or deuterium, and R_x and R_y are independently selected from the group consisting of methyl, $CH(CH_3)_2$, and $CH_2CH(CH_3)_2$.

[0025] In one aspect, the compound has the formula:

[0026] In one aspect, the compound is selected from Compound 1 - Compound 50.

[0027] In one aspect, a first device is provided. The first device comprises a first organic light emitting device, further comprising an anode, a cathode, and an organic layer, disposed between the anode and the cathode, comprising a compound having the formula:

5

10

15

20

25

30

$$R_1$$
 M L $(m-2n)/d$

Formula I.

In the compound of Formula I, M is a metal having an atomic weight higher than 40, L is a second ligand, m is the maximum coordination number of the metal M, d is the denticity of L, and n is at least 1. R_1 is independently selected for each ligand and represents di, tri, tetra, penta substitutions, or no substitution. Each of R_1 is independently selected from the group consisting of hydrogen, deuterium, halide, alkyl, cycloalkyl, heteroalkyl, arylalkyl, alkoxy, aryloxy, amino, silyl, germyl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, acyl, carbonyl, carboxylic acids, ester, nitrile, isonitrile, sulfanyl, sulfonyl, phosphino, and combinations thereof.

[0028] At least two of R_1 is independently selected from two to six carbon containing alkyl, silyl, germyl, cycloalkyl, and combinations thereof. R_2 may represent mono, di, tri, tetra substitutions, or no substitution, and each of R_2 is independently selected from the group consisting of hydrogen, deuterium, halide, alkyl, cycloalkyl, heteroalkyl, arylalkyl, alkoxy, aryloxy, amino, silyl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, acyl, carbonyl, carboxylic acids, ester, nitrile, isonitrile, sulfanyl, sulfinyl, sulfonyl, phosphino, and combinations thereof.

[0029] In one aspect, the first device is a consumer product. In one aspect, the first device is an organic light-emitting device. In one aspect, the organic layer is an emissive layer and the compound is a non-emissive dopant. In one aspect, the organic layer further comprises a host.

[0030] In one aspect, the host is a metal 8-hydroxyquinolate.

[0031] In one aspect, the host is selected from the group consisting of:

35

40

45

55

50 and combinations thereof. BRIEF DESCRIPTION OF THE DRAWINGS

[0032] FIG. 1 shows an organic light emitting device.

[0033] FIG. 2 shows an inverted organic light emitting device that does not have a separate electron transport layer.

[0034] FIG. 3 shows a compound of Formula I.

DETAILED DESCRIPTION

[0035] Generally, an OLED comprises at least one organic layer disposed between and electrically connected to an anode and a cathode. When a current is applied, the anode injects holes and the cathode injects electrons into the

organic layer(s). The injected holes and electrons each migrate toward the oppositely charged electrode. When an electron and hole localize on the same molecule, an "exciton," which is a localized electron-hole pair having an excited energy state, is formed. Light is emitted when the exciton relaxes via a photoemissive mechanism. In some cases, the exciton may be localized on an excimer or an exciplex. Non-radiative mechanisms, such as thermal relaxation, may also occur, but are generally considered undesirable.

[0036] The initial OLEDs used emissive molecules that emitted light from their singlet states ("fluorescence") as disclosed, for example, in U.S. Pat. No. 4,769,292. Fluorescent emission generally occurs in a time frame of less than 10 nanoseconds.

[0037] More recently, OLEDs having emissive materials that emit light from triplet states ("phosphorescence") have been demonstrated. Baldo et al., "Highly Efficient Phosphorescent Emission from Organic Electroluminescent Devices," Nature, vol. 395, 151-154, 1998; ("Baldo-I") and Baldo et al., "Very high-efficiency green organic light-emitting devices based on electrophosphorescence," Appl. Phys. Lett., vol. 75, No. 3, 4-6 (1999) ("Baldo-II"). Phosphorescence is described in more detail in US Pat. No. 7,279,704 at cols. 5-6.

10

20

30

35

40

45

50

55

[0038] FIG. 1 shows an organic light emitting device 100. The figures are not necessarily drawn to scale. Device 100 may include a substrate 110, an anode 115, a hole injection layer 120, a hole transport layer 125, an electron blocking layer 130, an emissive layer 135, a hole blocking layer 140, an electron transport layer 145, an electron injection layer 150, a protective layer 155, and a cathode 160. Cathode 160 is a compound cathode having a first conductive layer 162 and a second conductive layer 164. Device 100 may be fabricated by depositing the layers described, in order. The properties and functions of these various layers, as well as example materials, are described in more detail in US 7,279,704 at cols. 6-10.

[0039] More examples for each of these layers are available. For example, a flexible and transparent substrate-anode combination is disclosed in U.S. Pat. No. 5,844,363. An example of a p-doped hole transport layer is m-MTDATA doped with F.sub.4-TCNQ at a molar ratio of 50:1, as disclosed in U.S. Patent Application Publication No. 2003/0230980.

Examples of emissive and host materials are disclosed in U.S. Pat. No. 6,303,238 to Thompson et al. An example of an n-doped electron transport layer is BPhen doped with Li at a molar ratio of 1:1, as disclosed in U.S. Patent Application Publication No. 2003/0230980. U.S. Pat. Nos. 5,703,436 and 5,707,745, disclose examples of cathodes including compound cathodes having a thin layer of metal such as Mg:Ag with an overlying transparent, electrically-conductive, sputter-deposited ITO layer. The theory and use of blocking layers is described in more detail in U.S. Pat. No. 6,097,147 and U.S. Patent Application Publication No. 2003/0230980. Examples of injection layers are provided in U.S. Patent Application Publication No. 2004/0174116. A description of protective layers may be found in U.S. Patent Application Publication No. 2004/0174116.

[0040] FIG. 2 shows an inverted OLED 200. The device includes a substrate 210, a cathode 215, an emissive layer 220, a hole transport layer 225, and an anode 230. Device 200 may be fabricated by depositing the layers described, in order. Because the most common OLED configuration has a cathode disposed over the anode, and device 200 has cathode 215 disposed under anode 230, device 200 may be referred to as an "inverted" OLED. Materials similar to those described with respect to device 100 may be used in the corresponding layers of device 200. FIG. 2 provides one example of how some layers may be omitted from the structure of device 100.

[0041] The simple layered structure illustrated in FIGS. 1 and 2 is provided by way of non-limiting example, and it is understood that embodiments of the invention may be used in connection with a wide variety of other structures. The specific materials and structures described are exemplary in nature, and other materials and structures may be used. Functional OLEDs may be achieved by combining the various layers described in different ways, or layers may be omitted entirely, based on design, performance, and cost factors. Other layers not specifically described may also be included. Materials other than those specifically described may be used. Although many of the examples provided herein describe various layers as comprising a single material, it is understood that combinations of materials, such as a mixture of host and dopant, or more generally a mixture, may be used. Also, the layers may have various sublayers. The names given to the various layers herein are not intended to be strictly limiting. For example, in device 200, hole transport layer 225 transports holes and injects holes into emissive layer 220, and may be described as a hole transport layer or a hole injection layer. In one embodiment, an OLED may be described as having an "organic layer" disposed between a cathode and an anode. This organic layer may comprise a single layer, or may further comprise multiple layers of different organic materials as described, for example, with respect to FIGS. 1 and 2.

[0042] Structures and materials not specifically described may also be used, such as OLEDs comprised of polymeric materials (PLEDs) such as disclosed in U.S. Pat. No. 5,247,190 to Friend et al. By way of further example, OLEDs having a single organic layer may be used. OLEDs may be stacked, for example as described in U.S. Pat. No. 5,707,745 to Forrest et al. The OLED structure may deviate from the simple layered structure illustrated in FIGS. 1 and 2. For example, the substrate may include an angled reflective surface to improve out-coupling, such as a mesa structure as described in U.S. Pat. No. 6,091,195 to Forrest et al., and/or a pit structure as described in U.S. Pat. No. 5,834,893 to Bulovic et al.

[0043] Unless otherwise specified, any of the layers of the various embodiments may be deposited by any suitable

method. For the organic layers, preferred methods include thermal evaporation, ink-jet, such as described in U.S. Pat. Nos. 6,013,982 and 6,087,196, organic vapor phase deposition (OVPD), such as described in U.S. Pat. No. 6,337,102 to Forrest et al., and deposition by organic vapor jet printing (OVJP), such as described in U.S. patent application Ser. No. 10/233,470. Other suitable deposition methods include spin coating and other solution based processes. Solution based processes are preferably carried out in nitrogen or an inert atmosphere. For the other layers, preferred methods include thermal evaporation. Preferred patterning methods include deposition through a mask, cold welding such as described in U.S. Pat. Nos. 6,294,398 and 6,468,819, and patterning associated with some of the deposition methods such as ink-jet and OVJD. Other methods may also be used. The materials to be deposited may be modified to make them compatible with a particular deposition method. For example, substituents such as alkyl and aryl groups, branched or unbranched, and preferably containing at least 3 carbons, may be used in small molecules to enhance their ability to undergo solution processing. Substituents having 20 carbons or more may be used, and 3-20 carbons is a preferred range. Materials with asymmetric structures may have better solution processibility than those having symmetric structures, because asymmetric materials may have a lower tendency to recrystallize. Dendrimer substituents may be used to enhance the ability of small molecules to undergo solution processing.

[0044] Devices fabricated in accordance with embodiments of the invention may be incorporated into a wide variety of consumer products, including flat panel displays, computer monitors, medical monitors, televisions, billboards, lights for interior or exterior illumination and/or signaling, heads up displays, fully transparent displays, flexible displays, laser printers, telephones, cell phones, personal digital assistants (PDAs), laptop computers, digital cameras, camcorders, viewfinders, micro-displays, vehicles, a large area wall, theater or stadium screen, or a sign. Various control mechanisms may be used to control devices fabricated in accordance with the present invention, including passive matrix and active matrix. Many of the devices are intended for use in a temperature range comfortable to humans, such as 18 degrees C. to 30 degrees C., and more preferably at room temperature (20-25 degrees C.).

[0045] The materials and structures described herein may have applications in devices other than OLEDs. For example, other optoelectronic devices such as organic solar cells and organic photodetectors may employ the materials and structures. More generally, organic devices, such as organic transistors, may employ the materials and structures.

[0046] The terms halo, halogen, alkyl, cycloalkyl, alkenyl, alkynyl, arylkyl, heterocyclic group, aryl, aromatic group, and heteroaryl are known to the art, and are defined in US 7,279,704 at cols. 31-32.

[0047] In one embodiment, a compound having the formula:

30

35

40

45

50

55

10

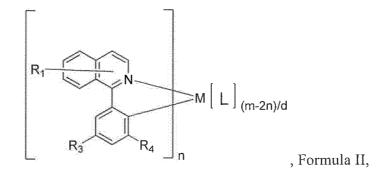
20

$$R_1$$
 M L $(m-2n)/d$

Formula I is provided.

In the compound of Formula I, M is a metal having an atomic weight higher than 40, L is a second ligand, m is the maximum coordination number of the metal M, d is the denticity of L, and n is at least 1. By "denticity" it is meant that d numerically represents the number of bonds a second ligand L makes with metal M. Thus, if L is a monodentate ligand, then d is 1, if L is a bidentate ligand, d is 2, etc. L can be one or more ligands, and when L represents more than one ligand, the ligands can be the same or different.

[0048] R_1 is independently selected for each ligand and represents di, tri, tetra, penta substitutions, or no substitution. Each of R_1 is independently selected from the group consisting of hydrogen, deuterium, halide, alkyl, cycloalkyl, heteroalkyl, arylalkyl, alkoxy, aryloxy, amino, silyl, germyl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, acyl, carboxylic acids, ester, nitrile, isonitrile, sulfanyl, sulfonyl, phosphino, and combinations thereof.


[0049] At least two of R_1 is independently selected from two to six carbon containing alkyl, silyl, germyl, cycloalkyl, and combinations thereof. R_2 may represent mono, di, tri, tetra substitutions, or no substitution, and each of R_2 is independently selected from the group consisting of hydrogen, deuterium, halide, alkyl, cycloalkyl, heteroalkyl, arylalkyl, alkoxy, aryloxy, amino, silyl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, acyl, carboxylic acids, ester, nitrile, isonitrile, sulfanyl, sulfonyl, phosphino, and combinations thereof.

[0050] It has been unexpectedly discovered that substitution at two or more of positions (i.e. R₁ represents at least di-substitution) on the heterocyclic ring in the compound of Formula I results in compounds with desirable properties. These properties enable OLED devices that incorporate compounds of Formula I to have improved properties such as

higher efficiency and longer lifetime. Substitution of two or more positions as described above also results in compounds with lowered sublimation temperatures despite the fact that these compounds have higher molecular weights than unsubstituted or mono-substituted compounds, where the mono-substitution is on the heterocyclic ring. Without being bound by theory, it is believed that this decrease in sublimation temperature may be the result of decreased or less efficient molecular stacking in the solid state, thereby decreasing the energy required to disrupt the crystal lattice and resulting in decreased sublimation temperatures. Lower sublimation temperatures advantageously allow for easier purification of compounds of Formula I and better thermal stability in manufacturing.

[0051] In one embodiment, R_1 represents di-substitution. In one embodiment, R_1 represents di-alkyl substitution. In another embodiment, R_1 represents silyl or germyl substitution.

[0052] In one embodiment, the compound has the formula:

wherein R_3 and R_4 are alkyl.

5

10

15

20

25

30

35

40

45

50

55

[0053] In one embodiment, the compound has the formula:

$$R_1$$
 M L m -2n)/d M Formula III.

[0054] In one embodiment, R_1 is independently selected from the group consisting of $CH(CH_3)_2$, $CH_2CH(CH_3)_2$, $CH_2C(CH_3)_3$, cyclopentyl, cyclohexyl, ethyl, trimethylsilyl, triethylsilyl, triisopropylsilyl, trimethylgermyl, and triisopropylgermyl.

[0055] In one embodiment, n M is Ir. In one embodiment, n is 2. In one embodiment, L is a monoanionic bidentate ligand. In one embodiment, L is

$$O = \begin{pmatrix} R_x \\ R_z \\ R_y \end{pmatrix}$$

and R_x , R_y , and R_z are each independently selected from the group consisting of hydrogen, deuterium, halide, alkyl, cycloalkyl, heteroalkyl, arylalkyl, alkoxy, aryloxy, amino, silyl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, acyl, carbonyl, carboxylic acids, ester, nitrile, isonitrile, sulfanyl, sulfonyl, phosphino, and combinations thereof.

[0056] In one embodiment, R_x , R_y , and R_z are independently selected from the group consisting of alkyl, hydrogen, deuterium, and combinations thereof.

[0057] In one embodiment, R_z is hydrogen or deuterium, and R_x and R_y are independently selected from the group consisting of methyl, $CH(CH_3)_2$, and $CH_2CH(CH_3)_2$.

[0058] In one embodiment, the compound has the formula:

5

10

15

50

55

[0059] In one embodiment, the compound is selected from the group consisting of:

[0060] In one embodiment, a first device is provided. The first device comprises a first organic light emitting device, further comprising an anode, a cathode, and an organic layer, disposed between the anode and the cathode, comprising a compound having the formula:

Compound 50

55

50

Compound 49

Formula I.

In the compound of Formula I, M is a metal having an atomic weight higher than 40, L is a second ligand, m is the maximum coordination number of the metal M, d is the denticity of L, and n is at least 1. R₁ is independently selected for each ligand and represents di, tri, tetra, or penta substitutions. Each of R₁ is independently selected from the group consisting of hydrogen, deuterium, halide, alkyl, cycloalkyl, heteroalkyl, arylalkyl, alkoxy, aryloxy, amino, silyl, germyl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, acyl, carbonyl, carboxylic acids, ester, nitrile, isonitrile, sulfanyl, sulfinyl, sulfonyl, phosphino, and combinations thereof.

[0061] At least two of R₁ is independently selected from two to six carbon containing alkyl, silyl, germyl, cycloalkyl, and combinations thereof. R_2 may represent mono, di, tri, tetra substitutions, or no substitution, and each of R_2 is independently selected from the group consisting of hydrogen, deuterium, halide, alkyl, cycloalkyl, heteroalkyl, arylalkyl, alkoxy, aryloxy, amino, silyl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, acyl, carbonyl, carboxylic acids, ester, nitrile, isonitrile, sulfanyl, sulfonyl, phosphino, and combinations thereof.

[0062] In one embodiment, the first device is a consumer product. In one embodiment, the first device is an organic light-emitting device. In one embodiment, the organic layer is an emissive layer and the compound is a non-emissive dopant. In one embodiment, the organic layer further comprises a host.

[0063] In one embodiment, the host is a metal 8-hydroxyguinolate.

In one embodiment, the host is selected from the group consisting of:

30

5

10

15

20

$$\begin{bmatrix} 0 \\ N \end{bmatrix}_2 Al-O - \begin{bmatrix} 0 \\ 0 \end{bmatrix}_2$$

40

45

50

55

35

$$\left[\begin{array}{c} \\ \\ \\ \\ \end{array}\right]_{0}^{AI-O} - \left[\begin{array}{c} \\ \\ \\ \end{array}\right]_{0}$$

and combinations thereof.

Device Examples

[0065] All example devices were fabricated by high vacuum (<10-7 Torr) thermal evaporation (VTE). The anode electrode is 1200 Å of indium tin oxide (ITO). The cathode consisted of 10 Å of LiF followed by 1000 Å of Al. All devices are encapsulated with a glass lid sealed with an epoxy resin in a nitrogen glove box (<1 ppm of H₂O and O₂) immediately after fabrication, and a moisture getter was incorporated inside the package.

[0066] The organic stack of the device examples consisted of sequentially, from the ITO surface, 100 Å of Compound A as the hole injection layer (HIL), 400 Å of 4,4'-bis[N-(1-naphthyl)-N-phenylamino]biphenyl (NPD) as the hole transporting layer (HTL), 300 Å of the compound of Formula I doped in with BAIq as host with from 4 to 12 wt% of an iridium-containing phosphorescent compound as the emissive layer (EML), 450 or 550 Å of Alq₃ (tris-8-hydroxyquinoline aluminum) as the electron transport layer (ETL). Comparative Examples with Compound B and C were fabricated similarly to the Device

Examples except that the Compound B and C were used as the emitters in the EML.

[0067] The device results and data are summarized in Tables 1, 2, and 3 from those devices. As used herein, Compounds A, B, and C have the following structures:

TABLE 1: Device structures of invention compounds and comparative compounds

Example	HIL	HTL	EML ((300 Å, doping %)	BL	ETL
Comparative Example 1	Compound A 100 Å	NPD 400Å	BAlq	Compound B 6%	None	Alq 550Å
Comparative Example 2	Compound A 100 Å	NPD 400Å	BAlq	Compound B 9%	None	Alq 550Å
Comparative Example 3	Compound A 100 Å	NPD 400Å	BAlq	Compound B 12%	None	Alq 550Å
Comparative Example 4	Compound A 100 Å	NPD 400Å	BAlq	Compound C 6%	None	Alq 550Å
Comparative Example 5	Compound A 100 Å	NPD 400Å	BAlq	Compound C 9%	None	Alq 550Å
Comparative Example 6	Compound A 100 Å	NPD 400Å	BAlq	Compound C 12%	None	Alq 550Å
Example 1	Compound A 100 Å	NPD 400Å	BAlq	Compound 1 4%	None	Alq 550Å
Example 2	Compound A 100 Å	NPD 400Å	BAlq	Compound 1 6%	None	Alq 550Å
Example 3	Compound A 100 Å	NPD 400Å	BAlq	Compound 1 8%	None	Alq 550Å
Example 4	Compound A 100 Å	NPD 400Å	BAlq	Compound 1 6%	BAlq 100 Å	Alq 450Å
Example 5	Compound A 100 Å	NPD 400Å	BAlq	Compound 2 5%	None	Alq 550Å
Example 6	Compound A 100 Å	NPD 400Å	BAlq	Compound 2 7%	None	Alq 550Å
Example 7	Compound A 100 Å	NPD 400Å	BAlq	Compound 2 10%	None	Alq 550Å
Example 8	Compound A 100 Å	NPD 400Å	BAlq	Compound 2 7%	BAlq 100 Å	Alq 450Å
Example 9	Compound A 100 Å	NPD 400Å	BAlq	Compound 3 5%	None	Alq 550Å
Example 10	Compound A 100 Å	NPD 400Å	BAlq	Compound 3 7%	None	Alq 550Å
Example 11	Compound A 100 Å	NPD 400Å	BAlq	Compound 3 10 %	None	Alq 550Å
Example 12	Compound A 100 Å	NPD 400Å	BAlq	Compound 3 7 %	BAlq 100 Å	Alq 450Å
Example 13	Compound A 100 Å	NPD 400Å	BAlq	Compound 22 4%	None	Alq 550Å
Example 14	Compound A 100 Å	NPD 400Å	BAlq	Compound 22 6%	None	Alq 550Å

(continued)

Example	HIL	HTL	EML ((300 Å, doping %)	BL	ETL
Example 15	Compound A 100 Å	NPD 400Å	BAlq	Compound 22 8%	None	Alq 550Å
Example 16	Compound A 100 Å	NPD 400Å	BAlq	Compound 22 6%	BAlq 100 Å	Alq 450Å

TABLE 2: VTE device results

TABLE 2. VIE device results									
	х	у	λ _{max} (nm)	FWH M (nm)	Voltage (V)	LE (Cd/A)	EQE (%)	PE (Im/W)	LT80% (h)
Comparative Example 1 Compound B	0.693	0.304	635	63	10	10.8	18.3	3.4	606
Comparative Example 2 Compound B	0.695	0.303	637	66	9.9	10.5	18.5	3.3	799
Comparative Example 3 Compound B	0.693	0.304	637	66	9.5	10.0	17.7	3.3	948
Comparative Example 4 Compound C	0.690	0.306	633	63	10.3	12.2	19.1	3.7	650
Comparative Example 5 Compound C	0.692	0.306	635	65	9.4	11.8	19.3	3.9	475
Comparative Example 6 Compound C	0.691	0.306	635	66	8.9	11.5	19.0	4.1	700
Example 1 Compound 1	0.687	0.309	628	52	10.1	12.5	17.8	3.9	178
Example 2 Compound 1	0.689	0.307	630	56	9.9	12.6	18.7	4.0	174
Example 3 Compound 1	0.691	0.306	632	56	9.5	12.4	19.0	4.1	171
Example 4 Compound 1	0.690	0.307	630	56	10.9	12.5	18.6	3.6	160
Example 5 Compound 2	0.687	0.311	630	58	9.5	13.8	19.6	4.6	350
Example 6 Compound 2	0.688	0.310	630	60	9.5	13.8	19.9	4.5	360
Example 7 Compound 2	0.688	0.310	632	62	8.8	13.1	19.4	4.7	400
Example 8 Compound 2	0.687	0.309	630	58	10.5	12.9	18.7	3.9	360
Example 9 Compound 3	0.685	0.313	626	58	9.5	14.8	19.8	4.9	232
Example 10 Compound 3	0.687	0.311	628	62	8.9	14.5	20.5	5.1	260
Example 11 Compound 3	0.688	0.310	630	64	8.1	14.0	20.3	5.4	235
Example 12 Compound 3	0.687	0.311	628	60	9.7	14.5	20.2	4.7	280
Example 13 Compound 22	0.684	0.313	626	48	9.3	14.8	18.8	5.0	192
Example 14 Compound 22	0.686	0.311	626	52	8.8	14.3	19.1	5.1	170
Example 15 Compound 22	0.686	0.311	628	52	8.2	14.2	19.2	5.4	122
Example 16 Compound 22	0.686	0.312	626	50	9.3	14.8	19.6	5.0	210

[0068] Table 2 is a summary of the device data. The luminous efficiency (LE), external quantum efficiency (EQE) and power efficiency (PE) were measured at 1000 nits, while the lifetime (LT $_{80\%}$) was defined as the time required for the device to decay to 80% of its initial luminance under a constant current density of 40 mA/cm².

5

10

15

[0069] From Table 2, it can be seen that the EQE, LE and PE of Compounds 1, 2, 3, and 22, which are compounds of Formula I, at three different doping concentrations (without a hole blocking layer) are all higher than those of Comparative Compounds B and C. For example, when the device has the same 6% emitter doping concentration without the hole blocking layer, Compound 22 has EQE of 19.1%, LE of 14.3 Cd/A, and PE of 5.1 lm/W, respectively. This compares to Comparative Compounds B and C which have EQE of 18.3 and 19.1%, LE of 10.8 and 12.2 Cd/A, and PE of 3.4 and 3.7 lm/W, respectively. The device results indicate that, surprisingly, the di- alkyl substituted Compounds 1, 2, 3 and 22 are more efficient than comparative compound B and mono-substituted compound C. It can also been seen from Table 2 that the FWHM (full width at half maximum) values of Compound 1, 2, 3, and 22 under different device structures are in the range of 48-64 nm, which is significantly narrower than those of Compounds B and C, which are in the range of 63-66 nm. Smaller FWHM values are often desirable in display applications. Thus, the use of compounds of Formula I, which are at least di-substituted on the heterocyclic ring contained therein can improve device performance, because these compounds have high EQE, LE, PE values and low FWHM values.

TABLE 3: Comparison of Sublimation Temperatures

	Compounds	Sublimation Temperature (°C)	Temperature Difference Relative to Compound B
25	Compound B	210	
30	Compound B	218	-8
35	lir o=		
	Compound C		
40		197	13
	Compound 1		
50		202	8
55			

(continued)

Compounds	Sublimation Temperature (°C)	Temperature Difference Relative to Compound B
Compound 2		
	204	6
Compound 3		
	194	16
Compound 22		

[0070] It can be seen that di- substitution on the heteroaromatic ring in compounds of Formula I can decreases the sublimation temperature of complex as shown in Table 3. It was surprisingly discovered that di-substituted compounds of Formula I had lower sublimation temperatures than un-substituted or mono-substituted compounds. For example, Compound 22 had a significantly lower sublimation temperature than Comparative Compound B (194 °C vs 210 °C) despite the fact that Compound 22 has a higher molecular weight than Comparative Compound B.

COMBINATION WITH OTHER MATERIALS

[0071] The materials described herein as useful for a particular layer in an organic light emitting device may be used in combination with a wide variety of other materials present in the device. For example, emissive dopants disclosed herein may be used in conjunction with a wide variety of hosts, transport layers, blocking layers, injection layers, electrodes and other layers that may be present. The materials described or referred to below are non-limiting examples of materials that may be useful in combination with the compounds disclosed herein, and one of skill in the art can readily consult the literature to identify other materials that may be useful in combination.

45 HIL/HTL:

5

10

15

20

25

35

40

50

55

[0072] A hole injecting/transporting material to be used in the present invention is not particularly limited, and any compound may be used as long as the compound is typically used as a hole injecting/transporting material. Examples of the material include, but not limit to: a phthalocyanine or porphryin derivative; an aromatic amine derivative; an indolocarbazole derivative; a polymer containing fluorohydrocarbon; a polymer with conductivity dopants; a conducting polymer, such as PEDOT/PSS; a self-assembly monomer derived from compounds such as phosphonic acid and sliane derivatives; a metal oxide derivative, such as MoO_x; a p-type semiconducting organic compound, such as 1,4,5,8,9,12-Hexaazatriphenylenehexacarbonitrile; a metal complex, and a cross-linkable compounds.

[0073] Examples of aromatic amine derivatives used in HIL or HTL include, but not limit to the following general structures:

5

$$Ar^{2}$$
 Ar^{3}
 Ar^{3}
 Ar^{4}
 Ar^{4}
 Ar^{4}
 Ar^{5}
 Ar^{5}
 Ar^{6}
 Ar^{6}
 Ar^{7}
 Ar^{8}
 Ar^{7}
 Ar^{8}
 Ar^{7}
 Ar^{8}
 Ar^{8}
 Ar^{1}
 Ar^{4}
 Ar^{4}
 Ar^{4}
 Ar^{4}
 Ar^{5}
 Ar^{6}
 Ar^{6}
 Ar^{7}
 Ar^{8}
 Ar^{8}

[0074] Each of Ar¹ to Ar⁹ is selected from the group consisting aromatic hydrocarbon cyclic compounds such as benzene, biphenyl, triphenyl, triphenylene, naphthalene, anthracene, phenalene, phenanthrene, fluorene, pyrene, chrysene, perylene, azulene; group consisting aromatic heterocyclic compounds such as dibenzothiophene, dibenzofuran, dibenzoselenophene, furan, thiophene, benzofuran, benzothiophene, benzoselenophene, carbazole, indolocarbazole, pyridylindole, pyrrolodipyridine, pyrazole, imidazole, triazole, oxazole, thiazole, oxadiazole, oxatriazole, dioxazole, thiadiazole, pyridine, pyridazine, pyrimidine, pyrazine, triazine, oxatine, oxathiazine, oxadiazine, indole, benzimidazole, indazole, indoxazine, benzoxazole, benzisoxazole, benzothiazole, quinoline, isoquinoline, cinnoline, quinazoline, quinoxaline, naphthyridine, phthalazine, pteridine, xanthene, acridine, phenazine, phenothiazine, phenoxazine, benzofuropyridine, furodipyridine, benzothienopyridine, thienodipyridine, benzoselenophenopyridine, and selenophenodipyridine; and group consisting 2 to 10 cyclic structural units which are groups of the same type or different types selected from the aromatic hydrocarbon cyclic group and the aromatic heterocyclic group and are bonded to each other directly or via at least one of oxygen atom, nitrogen atom, sulfur atom, silicon atom, phosphorus atom, boron atom, chain structural unit and the aliphatic cyclic group. Wherein each Ar is further substituted by a substituent selected from the group consisting of hydrogen, deuterium, halide, alkyl, cycloalkyl, heteroalkyl, arylalkyl, alkoxy, aryloxy, amino, silyl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, acyl, carbonyl, carboxylic acids, ester, nitrile, isonitrile, sulfanyl, sulfinyl, sulfonyl, phosphino, and combinations thereof.

[0075] In one aspect, Ar¹ to Ar⁹ is independently selected from the group consisting of:

[0076] k is an integer from 1 to 20; X¹ to X8 is C (including CH) or N; Ar¹ has the same group defined above.
 [0077] Examples of metal complexes used in HIL or HTL include, but not limit to the following general formula:

$$\begin{bmatrix} \begin{pmatrix} Y^1 \\ Y^2 \end{pmatrix}_{m} M - L \end{bmatrix}$$

20

25

30

35

50

[0078] M is a metal, having an atomic weight greater than 40; (Y^1-Y^2) is a bidentate ligand, Y^1 and Y^2 are independently selected from C, N, O, P, and S; L is an ancillary ligand; m is an integer value from 1 to the maximum number of ligands that may be attached to the metal; and m+n is the maximum number of ligands that may be attached to the metal.

[0079] In one aspect, (Y1-Y2) is a 2-phenylpyridine derivative.

[0080] In another aspect, (Y¹-Y²) is a carbene ligand.

[0081] In another aspect, M is selected from Ir, Pt, Os, and Zn.

[0082] In a further aspect, the metal complex has a smallest oxidation potential in solution vs. Fc⁺/Fc couple less than about 0.6 V.

10 Host:

5

[0083] The light emitting layer of the organic EL device of the present invention preferably contains at least a metal complex as light emitting material, and may contain a host material using the metal complex as a dopant material. Examples of the host material are not particularly limited, and any metal complexes or organic compounds may be used as long as the triplet energy of the host is larger than that of the dopant. While the Table below categorizes host materials as preferred for devices that emit various colors, any host material may be used with any dopant so long as the triplet criteria is satisfied.

[0084] Examples of metal complexes used as host are preferred to have the following general formula:

20

15

$$\begin{bmatrix} Y^3 \\ Y^4 \end{bmatrix}_m$$
 M-Ln

25

[0085] M is a metal; (Y³-Y⁴) is a bidentate ligand, Y³ and Y⁴ are independently selected from C, N, O, P, and S; L is an ancillary ligand; m is an integer value from 1 to the maximum number of ligands that may be attached to the metal; and m+n is the maximum number of ligands that may be attached to the metal.

[0086] In one aspect, the metal complexes are:

30

$$\begin{bmatrix} O \\ N \end{bmatrix}_{m} Al-L_{3-m} \begin{bmatrix} O \\ N \end{bmatrix}_{m} Zn-L_{2-m}$$

35

40

45

50

55

[0087] (O-N) is a bidentate ligand, having metal coordinated to atoms O and N.

[0088] In another aspect, M is selected from Ir and Pt.

[0089] In a further aspect, (Y^3-Y^4) is a carbene ligand.

[0090] Examples of organic compounds used as host are selected from the group consisting aromatic hydrocarbon cyclic compounds such as benzene, biphenyl, triphenyl, triphenylene, naphthalene, anthracene, phenalene, phenanthrene, fluorene, pyrene, chrysene, perylene, azulene; group consisting aromatic heterocyclic compounds such as dibenzothiophene, dibenzofuran, dibenzoselenophene, furan, thiophene, benzofuran, benzothiophene, benzoselenophene, carbazole, indolocarbazole, pyridylindole, pyrrolodipyridine, pyrazole, imidazole, triazole, oxazole, thiazole, oxadiazole, oxatriazole, dioxazole, thiadiazole, pyridine, pyridazine, pyrimidine, pyrazine, triazine, oxazine, oxathiazine, oxadiazine, indole, benzimidazole, indoxazine, benzoxazole, benzisoxazole, benzothiazole, quinoline, isoquinoline, cinnoline, quinazoline, quinoxaline, naphthyridine, phthalazine, pteridine, xanthene, acridine, phenazine, phenothiazine, phenoxazine, benzofuropyridine, furodipyridine, benzothienopyridine, thienodipyridine, benzoselenophenopyridine, and selenophenodipyridine; and group consisting 2 to 10 cyclic structural units which are groups of the same type or different types selected from the aromatic hydrocarbon cyclic group and the aromatic heterocyclic group and are bonded to each other directly or via at least one of oxygen atom, nitrogen atome, sulfur atom, silicon atom, phosphorus atom, boron atom, chain structural unit and the aliphatic cyclic group. Wherein each group is further substituted by a substituent selected from the group consisting of hydrogen, deuterium, halide, alkyl, cycloalkyl, heteroalkyl, arylalkyl, alkoxy, aryloxy, amino, silyl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, acyl, carbonyl, carboxylic acids, ester, nitrile,

[0091] In one aspect, host compound contains at least one of the following groups in the molecule:

isonitrile, sulfanyl, sulfinyl, sulfonyl, phosphino, and combinations thereof.

15

$$X^{1}$$
 X^{1}
 X^{2}
 X^{3}
 X^{4}
 X^{5}
 X^{5}
 X^{6}
 X^{7}
 X^{8}
 X^{5}
 X^{6}
 X^{7}
 X^{8}
 X^{5}
 X^{6}
 X^{7}
 X^{8}
 X^{7}
 X^{8}
 X^{7}
 X^{8}
 X^{7}
 X^{8}
 X^{7}
 X^{8}
 X^{8}

[0092] R¹ to R⁷ is independently selected from the group consisting of hydrogen, deuterium, halide, alkyl, cycloalkyl, heteroalkyl, arylalkyl, alkoxy, aryloxy, amino, silyl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, acyl, carbonyl, carboxylic acids, ester, nitrile, isonitrile, sulfanyl, sulfinyl, sulfonyl, phosphino, and combinations thereof, when it is aryl or heteroaryl, it has the similar definition as Ar's mentioned above.

[0093] k is an integer from 0 to 20.

[0094] X^1 to X^8 is selected from C (including CH) or N.

[0095] Z^1 and Z^2 is selected from NR¹, O, or S.

40 HBL:

35

45

50

55

5

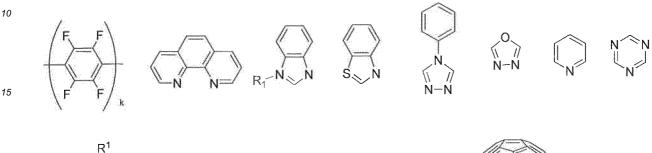
10

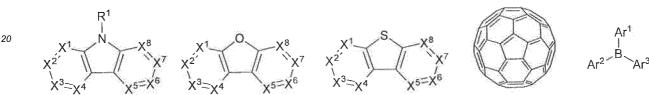
[0096] A hole blocking layer (HBL) may be used to reduce the number of holes and/or excitons that leave the emissive layer. The presence of such a blocking layer in a device may result in substantially higher efficiencies as compared to a similar device lacking a blocking layer. Also, a blocking layer may be used to confine emission to a desired region of an OLED.

[0097] In one aspect, compound used in HBL contains the same molecule or the same functional groups used as host described above.

[0098] In another aspect, compound used in HBL contains at least one of the following groups in the molecule:

[0099] k is an integer from 0 to 20; L is an ancillary ligand, m is an integer from 1 to 3.


ETL:


5

30

[0100] Electron transport layer (ETL) may include a material capable of transporting electrons. Electron transport layer may be intrinsic (undoped), or doped. Doping may be used to enhance conductivity. Examples of the ETL material are not particularly limited, and any metal complexes or organic compounds may be used as long as they are typically used to transport electrons.

[0101] In one aspect, compound used in ETL contains at least one of the following groups in the molecule:

[0102] R¹ is selected from the group consisting of hydrogen, deuterium, halide, alkyl, cycloalkyl, heteroalkyl, arylalkyl, alkoxy, aryloxy, amino, silyl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, acyl, carbonyl, carboxylic acids, ester, nitrile, isonitrile, sulfanyl, sulfinyl, sulfonyl, phosphino, and combinations thereof, when it is aryl or heteroaryl, it has the similar definition as Ar's mentioned above.

[0103] Ar¹ to Ar³ has the similar definition as Ar's mentioned above.

[0104] k is an integer from 0 to 20.

[0105] X^1 to X^8 is selected from C (including CH) or N.

[0106] In another aspect, the metal complexes used in ETL contains, but not limit to the following general formula:

[0107] (O-N) or (N-N) is a bidentate ligand, having metal coordinated to atoms O, N or N, N; L is an ancillary ligand; m is an integer value from 1 to the maximum number of ligands that may be attached to the metal.

[0108] In any above-mentioned compounds used in each layer of the OLED device, the hydrogen atoms can be partially or fully deuterated.

[0109] In addition to and / or in combination with the materials disclosed herein, many hole injection materials, hole transporting materials, host materials, dopant materials, exiton/hole blocking layer materials, electron transporting and electron injecting materials may be used in an OLED. Non-limiting examples of the materials that may be used in an OLED in combination with materials disclosed herein are listed in Table 4 below. Table 4 lists non-limiting classes of materials, non-limiting examples of compounds for each class, and references that disclose the materials.

TABLE 4

MATERIAL	EXAMPLES OF MATERIAL	PUBLICATIONS
Hole injection materials		

55

	MATERIAL	EXAMPLES OF MATERIAL	PUBLICATIONS
5	Phthalocyanine and porphryin compounds		Appl. Phys. Lett. 69, 2160 (1996)
	Starburst triarylamines		J. Lumin. 72-74, 985
15	olar barot triar y la rimino		(1997)
20			
25	CF _X Fluorohydrocarbon polymer	-{-CH _x F _y -} _n	Appl.Phys.Lett.78,673 (2001)
	Conducting polymers	SO ₃ (H ⁺)	Synth. Met. 87, 171 (1997)
30	(e.g., PEDOT:PSS, polyaniline, polypthiophene)	s + I	WO2007002683
35	Phosphonic acid and sliane SAMs	$N - \left(\begin{array}{c} \\ \\ \end{array} \right) - SiCl_3$	US20030162053
40	Triarylamine or polythiophene polymers with conductivity dopants		EP1725079A1
45 50		Br. N. O. T. N.	
55			

	MATERIAL	EXAMPLES OF MATERIAL	PUBLICATIONS
5	Organic compounds with conductive inorganic compounds, such as molybdenum and tungsten oxides	+ MoO _x	US20050123751 SID Symposium Digest, 37, 923 (2006) WO2009018009
10	n-type semiconducting organic complexes	NC CN	US20020158242
15		NC N CN	
20 25	Metal organometallic complexes	lr 3	US20060240279
30	Cross-linkable compounds		US20080220265
35 40		N N	
45	Polythiophene based polymers and copolymers		WO 2011075644 EP2350216
	Hole transporting materials	<i>↑</i> _s <i>↑</i> _s	
55	L		

	MATERIAL	EXAMPLES OF MATERIAL	PUBLICATIONS
5	Triarylamines (e.g., TPD, α-NPD)		Appl.Phys.Lett.51,913 (1987)
10 15			US5061569
20			EP650955
25			J. Mater. Chem. 3, 319 (1993)
30			
35			
40			Appl. Phys. Lett. 90, 183503 (2007)
45		<u> </u>	Appl Phys Lett 90
50			Appl. Phys. Lett. 90, 183503 (2007)
55			

	MATERIAL	EXAMPLES OF MATERIAL	PUBLICATIONS
5	Triaylamine on spirofluorene core	Ph ₂ N NPh ₂	Synth. Met. 91, 209 (1997)
10	Arylamine carbazole compounds		Adv. Mater. 6, 677 (1994), US20080124572
15 20		8008	
25	Triarylamine with (di)benzothiophene/(di)benz ofuran	SN-O-N-S	US20070278938, US20080106190 US20110163302
	Indolocarbazoles		Synth. Met. 111, 421 (2000)
30			
35	Isoindole compounds		Chem. Mater. 15, 3148 (2003)
40			
45			
50	Metal carbene complexes		US20080018221
oo		N 3	
55	Phosphorescent OLED host ma	<u> </u> aterials	
	Red hosts		
	·		

(continued)

	MATERIAL	EXAMPLES OF MATERIAL	PUBLICATIONS
5	Arylcarbazoles		Appl. Phys. Lett. 78, 1622 (2001)
10	Metal 8-hydroxyquinolates (e.g., Alq ₃ , BAlq)	$\left[\begin{array}{c} N \\ -o \end{array}\right]_3^{AI}$	Nature 395, 151 (1998)
15		$\left[\begin{array}{c} \\ \\ \\ \\ \end{array}\right]_{2}^{AI-O} - \left(\begin{array}{c} \\ \\ \\ \end{array}\right)$	US20060202194
20		$\left[\begin{array}{c c} & & \\ & & \\ & & \\ \end{array}\right]_2^{AI-O} - \left[\begin{array}{c c} & & \\ & & \\ \end{array}\right]_2^{AI-O}$	WO2005014551
25 30		$\left[\begin{array}{c} N \\ -O \end{array}\right]_2^{AI-O} - \left(\begin{array}{c} N \\ -O \end{array}\right)_2^{AI-O}$	WO2006072002
35	Metal phenoxybenzothiazole compounds	$\begin{bmatrix} \\ \\ \\ \\ \end{bmatrix}$ $\begin{bmatrix} \\ $	Appl. Phys. Lett. 90, 123509 (2007)
40	Conjugated oligomers and polymers (e.g., polyfluorene)	C ₈ H ₁₇ C ₈ H ₁₇	Org. Electron. 1, 15 (2000)
45	Aromatic fused rings		WO2009066779, WO2009066778, WO2009063833, US20090045731, US20090045730,
50			WO2009008311, US20090008605, US20090009065

(continued)

	MATERIAL	EXAMPLES OF MATERIAL	PUBLICATIONS
5	Zinc complexes	No Zn N	WO2010056066
15	Chrysene based compounds		WO2011086863
20	Green hosts		
25	Arylcarbazoles		Appl. Phys. Lett. 78, 1622 (2001)
30		SNOW	US20030175553
35			WO2001039234
40 45	Aryltriphenylene compounds		US20060280965
50			US20060280965

(continued)

	MATERIAL	EXAMPLES OF MATERIAL	PUBLICATIONS
5			WO2009021126
	Poly-fused heteroaryl compounds		US20090309488
15	compounds		US20090302743 US20100012931
20			
			W0000050740
25	Donor acceptor type molecules		WO2008056746
30		N N N	
35			WO2010107244
40		N N N	

	MATERIAL	EXAMPLES OF MATERIAL	PUBLICATIONS
5	Aza-carbazole/DBT/DBF		JP2008074939
10			
15			US20100187984
20			
25	Polymers (e.g., PVK)		Appl. Phys. Lett. 77, 2280(2000)
30 35	Spirofluorene compounds		WO2004093207
40	Metal phenoxybenzooxazole compounds		WO2005089025
45			WO2006132173
50 55		$\begin{bmatrix} O & N & \\ & & \\ & & \\ & & \end{bmatrix}_2 Zn$	JP200511610

	MATERIAL	EXAMPLES OF MATERIAL	PUBLICATIONS
5	Spirofluorene-carbazole compounds	Story Constitution of the Story Constitution	JP2007254297
			JP2007254297
15			
20 25	Indolocabazoles		WO2007063796
			WO2007063754
30			
35	5-member ring electron deficient heterocycles (e.g., triazole, oxadiazole)		J. Appl. Phys. 90, 5048 (2001)
40			WO2004107822
45	Tetraphenylene complexes		US20050112407
50 55			

(continued)

	MATERIAL	EXAMPLES OF MATERIAL	PUBLICATIONS
5	Metal phenoxypyridine compounds	$\begin{bmatrix} \\ \\ \\ \\ \end{bmatrix}_2^{Zn}$	WO2005030900
10 15	Metal coordination complexes (e.g., Zn, Al with N^N ligands)	Zn 2	US20040137268, US20040137267
	Blue hosts		
20	Arylcarbazoles	Su Cur	Appl. Phys. Lett, 82, 2422(2003)
2530			US20070190359
35	Dibenzothiophene/Dibenzof uran-carbazole compounds		WO2006114966, US20090167162
40 45			US20090167162
50			WO2009086028

34

(continued)

	MATERIAL	EXAMPLES OF MATERIAL	PUBLICATIONS
5		S D S D S D S D S D S D S D S D S D S D	US20090030202, US20090017330
15 20			US20100084966
25	Silicon aryl compounds		US20050238919
3 <i>0</i> 35			WO2009003898
40 45	Silicon/Germanium aryl compounds	Si-Si-Si-Si-Si-Si-Si-Si-Si-Si-Si-Si-Si-S	EP2034538A
50	Aryl benzoyl ester	jodojo	WO2006100298

	MATERIAL	EXAMPLES OF MATERIAL	PUBLICATIONS
5	Carbazole linked by non- conjugated groups		US20040115476
15	Aza-carbazoles		US20060121308
20 25	High triplet metal organometallic complex		US7154114
	Phosphorescent dopants		
	Red dopants		
30 35	Heavy metal porphyrins (e.g., PtOEP)	Et Et Et Et Et	Nature 395, 151 (1998)
40	Iridium(III) organometallic complexes		Appl. Phys. Lett. 78, 1622 (2001)
45 50			US2006835469
55			US2006835469

(continued)

	MATERIAL	EXAMPLES OF MATERIAL	PUBLICATIONS
5			US20060202194
15			US20060202194
20			US20070087321
30			US20080261076 US20100090591
35 40			US20070087321
45		H ₁₇ Ca	Adv. Mater. 19, 739 (2007)

37

50

	MATERIAL	EXAMPLES OF MATERIAL	PUBLICATIONS
5			WO2009100991
10 15		Ir(acac)	
20			WO2008101842
25 30		PPh ₃ Ir-Cl PPh ₃	US7232618
35	Platinum(II) organometallic complexes	Pt O	WO2003040257
40		Pt N	US20070103060
50	Osminum(III) complexes	F ₃ C N Os(PPhMe ₂) ₂	Chem. Mater. 17, 3532 (2005)
55		L J ₂	

(continued)

	MATERIAL	EXAMPLES OF MATERIAL	PUBLICATIONS
5	Ruthenium(II) complexes	Ru(PPhMe ₂) ₂	Adv. Mater. 17, 1059 (2005)
10	Rhenium (I), (II), and (III) complexes	Re-(CO) ₄	US20050244673
	Green dopants		
20	Iridium(III) organometallic complexes		Inorg. Chem. 40, 1704 (2001)
25		and its derivatives	
30			US20020034656
35 40			US7332232
45			US20090108737

	MATERIAL	EXAMPLES OF MATERIAL	PUBLICATIONS
5			WO2010028151
10			
15			EP1841834B
20			
25		Ir N	US20060127696
30			US20090039776
35		N Ir	0020000000770
40			US6921915
45		S Ir	
50 55			US20100244004

	MATERIAL	EXAMPLES OF MATERIAL	PUBLICATIONS
5			US6687266
15			Chem. Mater. 16, 2480 (2004)
20			US20070190359
25			US 20060008670 JP2007123392
30 35			WO2010086089, WO2011044988
40			Adv. Mater. 16, 2003 (2004)
45		JN 3	Angew. Chem. Int. Ed. 2006,45,7800
50			
55		N-S NN-S NN-S NN-S	WO2009050290

(continued)

	MATERIAL	EXAMPLES OF MATERIAL	PUBLICATIONS
5		S-N Ir	US20090165846
15			US20080015355
20		Ir (PF ₆) ₃	US20010015432
30			US20100295032
354045	Monomer for polymeric metal organometallic compounds		US7250226, US7396598
50	Pt(II) organometallic complexes, including polydentated ligands	N Pr-ci	Appl. Phys. Lett. 86, 153505 (2005)

	MATERIAL	EXAMPLES OF MATERIAL	PUBLICATIONS
5		Pro S	Appl. Phys. Lett. 86, 153505 (2005)
15		N PI Fs	Chem. Lett. 34, 592 (2005)
20		N O O	WO2002015645
30		Ph Ph	US20060263635
35			US20060182992 US20070103060
40		N Pt N	
45			
50 55	Cu complexes	P Cu N N N	WO2009000673

(continued)

	MATERIAL	EXAMPLES OF MATERIAL	PUBLICATIONS
5		(iBu) ₂ P N P(iBu) ₂	US20070111026
15		(iBu) ₂ P N P(iBu) ₂	
20	Gold complexes	N-Au-	Chem. Commun. 2906 (2005)
25 30	Rheium(III) complexes	F ₃ C N OC Re OC CO	Inorg. Chem. 42, 1248 (2003)
35	Osmium(II) complexes	Os Nos	US7279704
45	Deuterated organometallic complexes		US20030138657
50		D D D D D	

(continued)

	MATERIAL	EXAMPLES OF MATERIAL	PUBLICATIONS
5	Organometallic complexes with two or more metal centers		US20030152802
10			
15		F	US7090928
20		F F F F F F F F F F F F F F F F F F F	
	Blue dopants		
30	Iridium(III) organometallic complexes		WO2002002714
35 40			WO2006009024
45			US20060251923 US20110057559 US20110204333
50			US7393599, WO2006056418, US20050260441, WO2005019373

	MATERIAL	EXAMPLES OF MATERIAL	PUBLICATIONS
5		N Ir	US7534505
15			WO2011051404
25 30		N Ir	US7445855
35		Ir Ir	US20070190359, US20080297033 US20100148663
45		3 N.N.	US7338722
50 55			US20020134984

(continued)

	MATERIAL	EXAMPLES OF MATERIAL	PUBLICATIONS
5			Angew. Chem. Int. Ed. 47, 1 (2008)
15			Chem. Mater. 18, 5119 (2006)
20		E STATE OF THE STA	Inorg. Chem. 46, 4308 (2007)
25 30			WO2005123873
35			WO20051238
40			WO2007004380
45			WO2006082742
50			

	MATERIAL	EXAMPLES OF MATERIAL	PUBLICATIONS
5	Osmium(II) complexes		US7279704
15		Os(PPh ₃)	Organometallics 23, 3745(2004)
20	Gold complexes	Ph ₂ P PPh ₂ Cl Au Au Cl	Appl. Phys. Lett.74,1361 (1999)
25	Platinum(II) complexes	PI N-N B N-N	WO2006098120, WO2006103874
30	Pt tetradentate complexes with at least one metal-carbene bond	N PH N	US7655323
40	Exciton/hole blocking layer mat	erials	
45	Bathocuprine compounds (e.g., BCP, BPhen)		Appl Phys. Lett. 75, 4 (1999)
50			Appl.Phys.Lett.79,449 (2001)
55	Metal 8-hydroxyquinolates (e.g., BAlq)		Appl.Phys.Lett.81,162 (2002)

(continued)

	MATERIAL	EXAMPLES OF MATERIAL	PUBLICATIONS
5	5-member ring electron deficient heterocycles such as triazole, oxadiazole, imidazole, benzoimidazole		Appl.Phys.Lett.81,162 (2002)
15	Triphenylene compounds		US20050025993
20			
25	Fluorinated aromatic compounds	F F F F	Appl. Phys. Lett. 79,156 (2001)
30 35		F F F F F F F F F F F F F F F F F F F	
40	Phenothiazine-S-oxide		WO2008132085
45	Silylated five-membered nitrogen, oxygen, sulfur or phosphorus dibenzoheterocycles		WO2010079051
50			

49

	MATERIAL	EXAMPLES OF MATERIAL	PUBLICATIONS
5	Aza-carbazoles	2-0+0+02	US20060121308
10	Electron transporting materials		
15	Anthracene-benzoimidazole compounds		WO2003060956
20			
25			US20090179554
30		1750	
30	Aza triphenylene derivatives		US20090115316
35			
40	Anthracene-benzothiazole compounds		Appl. Phys. Lett. 89, 063504 (2006)
45	Metal 8-hydroxyquinolates (e.g., Alq ₃ , Zrq ₄)	$\begin{bmatrix} N \\ O \end{bmatrix}_3^{Al}$	Appl.Phys.Lett.51,913 (1987) US7230107
50	Metal hydroxybenoquinolates	Be 2	Chem. Lett. 5, 905 (1993)
55		-61	

	MATERIAL	EXAMPLES OF MATERIAL	PUBLICATIONS
5	Bathocuprine compounds such as BCP, BPhen, etc		Appl. Phys. Lett. 91, 263503 (2007)
15			Appl.Phys.Lett.79,449 (2001)
20	5-member ring electron deficient heterocycles (e.g.,triazole, oxadiazole, imidazole, benzoimidazole)		Appl.Phys.Lett.74,865 (1999)
25		N-N	Appl. Phys. Lett. 55,
30		000	1489 (1989)
35		00000	Jpn. J. Apply. Phys. 32, L917 (1993)
40	Silole compounds	N N SSI N N	Org. Electron. 4, 113 (2003)
45 50	Arylborane compounds	B-S-B	J. Am. Chem. Soc. 120, 9714(1998)
55	Fluorinated aromatic compounds		J. Am. Chem. Soc. 122, 1832 (2000)

(continued)

	MATERIAL	EXAMPLES OF MATERIAL	PUBLICATIONS
5	Fullerene (e.g., C60)		US20090101870
15	Triazine complexes	F F F F F F F F F F F F F F F F F F F	US20040036077
20		F F F F F F F F F F F F F F F F F F F	
25	Zn (N^N) complexes	Zn Zn	US6528187
30			

EXPERIMENTAL

[0110] Chemical abbreviations used throughout this document are as follows: Cy is cyclohexyl, dba is dibenzylidene-acetone, EtOAc is ethyl acetate, DME is dimethoxyethane, dppe is 1,2-bis(diphenylphosphino)ethane, THF is tetrahydrofuran, DCM is dichloromethane, DMF is dimethylformamide, S-Phos is dicyclohexyl(2',6'-dimethoxy-[1,1'-biphenyl]-2-yl)phosphine.

Synthesis of Compound 1

45 **[0111]**

35

40

55

[0112] Synthesis of N-(3,5-dichlorobenzylidene)-2,2-diethoxyethanamine. 3,5-dichlorobenzaldehyde (51.2 g, 284 mmol), 2,2-diethoxyethanamine (38.6 g, 284 mmol) and 270 mL toluene were charged in a 500 mL three-necked flask. The mixture was heated to reflux for 24 hours under N_2 with Dean-Stark apparatus to collect water by-product. 86 g (100%) light yellow liquid was obtained after evaporated solvent. The product was confirmed by GC-MS and NMR and

taken on to the next step without further purification.

[0113] Synthesis of 5, 7-dichloroisoquinoline. Trifluoromethanesulfonic acid (15.83 g, 103 mmol) was charged in a three-necked 100 mL flask which was equipped with a Dean-Stark apparatus and and addition funnel. The trifluoromethanesulfonic acid was first heated to 120 °C and to the acid, *N*-(3,5-dichlorobenzylidene)-2,2-diethoxyethanamine (4 g, 13.78 mmol) dissolved in 4 mL DCM was added dropwise. After addition, the mixture was heated for another 2 hours at 120 °C, then cooled to room temperature, and 8 mL of MeOH was added to quench the reaction. The reaction mixture was poured into aqueous ammonium hydroxide (120 mmol) solution, made basic with additional aqueous ammonium hydroxide, and stirred and filtered. A white solid (2.1 g, 77%) was obtained after distillation. The identity of the product was confirmed by GC and HPLC. A larger scale reaction with 32.2 g of *N*-(3,5-dichlorobenzylidene)-2,2-diethoxyethanamine was conducted in a same way and 16.5 g (75%) of the product was obtained for next step.

[0114] Synthesis of 5,7-diisobutylisoquinoline. 5,7-Dichloroisoquinoline (5.8 g, 29.3 mmol), isobutylboronic acid (8.96 g, 88 mmol), dicyclohexyl(2',6'-dimethoxy-[1,1'-biphenyl]-2-yl)phosphine (0.962 g, 2.34 mmol), $Pd_2(dba)_3$ (0.536 g, 0.586 mmol), $Pd_3(dba)_3$ (0.536 mmol), $Pd_3(dba)_3$ (0.596 mmol),

[0115] Synthesis of 1-(3,5-dimethylphenyl)-5,7-diisobutylisoquinoline. 5,7-Diisobutylisoquinoline (7.4 g, 30.7 mmol) in 50 mL dry THF and was added to (3,5-dimethylphenyl)magnesium bromide (100 mL, 50.0 mmol) dropwise at room temperature and allowed to stir for 16 hours, after which the reaction mixture was heated to reflux for 5 hours. GC and HPLC analysis indicated the reaction was complete, but contained a small amount of reduced byproducts which were converted to the desired product by treatment with DDQ in THF for few minutes. After aqueous workup, 6.5 g (61.4%) of product was obtained.

[0116] Synthesis of iridium dimer. 1-(3,5-dimethylphenyl)-5,7-diisobutylisoquinoline (6.0 g, 17.37 mmol) and $IrCl_3.H_2O$ (2.57 g, 6.95 mmol), 90 mL 2-ethoxylethanol and 30 mL water were charged in a 250 mL flask. The reaction mixture was heated to reflux under nitrogen for 19 hours. 3.1 g (24.3%) of dimer was obtained after filtration and washing with methanol, which was used for next step without further purification.

[0117] Synthesis of Compound 1 2-(3,5-dimethylphenyl)-5,7-diisobutylquinoline iridium dimer (1.5 g, 0.82 mmol), 2,4-pentanedione (1.63 g, 16.36 mmol), Na₂CO₃ (1.73 g,16.36 mmol) and 2-ethoxyethanol (60 mL) were charged in a 250 flask and stirred at room temperature for 72 hours. The resulting precipitate was filtered and washed with methanol. The solid was further purified by passing it through a silica gel plug (that was pretreated with 15% triethylamine in hexanes). 0.55 g (34.3%) of product was obtained after workup. The identity of the product was confirmed by LC-MS.

Synthesis of Compound 2

[0118]

15

40

CI

$$Pd_2(dba)_3/S-Phos$$

toluene/water

[0119] Synthesis of 5,7-di(prop-1-en-2-yl)isoquinoline: 5,7-Dichloroisoquinoline (5.1 g, 25.8 mmol), 4,4,5,5-tetramethyl-2-(prop-1-en-2-yl)-1,3,2-dioxaborolane (9.95 g, 59.2 mmol), dicyclohexyl(2',6'-dimethoxy-[1,1'-biphenyl]-2-yl)phosphine (0.846 g, 2.06 mmol), $Pd_2(dba)_3$ (0.472 g, 0.515 mmol), R_3PO_4 (19.13 g, 90 mmol), 100 mL toluene and 10 mL water were charged in a flask. The reaction mixture was purged by bubbling R_2 for 30 minutes then heated to reflux overnight. GC-MS analysis showed that the reaction was complete. 5.1 g (91%) of product was obtained after silica gel column chromatography and confirmed by GC-MS.

55

$$_{5}$$
 $_{N}$ $_{N}$ $_{N}$

10

25

30

45

[0120] Synthesis of 5,7-diisopropyl)isoquinoline: 5,7-Di(prop-1-en-2-yl)isoquinoline (5.1 g, 24.37 mmol) was dissolved in 50 mL EtOH in a glass bottle and purged with N₂ for 30 minutes. To the solution, 10% Pd/C (1.3 g, 1.218 mmol) was added into the bottle under nitrogen. Hydrogenation was conducted for 4 hours, after which GC-MS analysis indicated the reaction was complete.

[0121] Synthesis of 1-(3,5-dimethylphenyl)-5,7-diisopropylisoquinoline. 5,7-diisopropylisoquinoline (3.1 g, 14.5 mmol) in 50 mL dry THF and was added with 0.5 M (3,5-dimethylphenyl)magnesium bromide THF solution (50 mL, 25.0 mmol) dropwise at room temperature and allowed to stir for 16 hours, after which the reaction mixture was heated to reflux for 5 hours. GC and HPLC analysis indicated the reaction was complete, but contained a small amount of reduced byproducts which were converted to the desired product by treatment with DDQ in THF for few minutes. After aqueous workup, 2.4 g (52%) of product was obtained.

[0122] Synthesis of iridium dimer. 1-(3,5-Dimethylphenyl)-5,7-diisopropylisoquinoline (2.4 g, 7.56 mmol) and IrCl₃.H₂O (1.167 g, 3.15 mmol), 45 mL 2-ethoxylethanol and 15 mL water were charged in a 250 mL flask. The reaction mixture was heated to reflux under nitrogen for 19 hours. After cooling the reaction, filtration, and washing with methanol, 1.2 g (44.2%) of dimer was obtained, which was used for next step without further purification.

[0123] Synthesis of Compound 2 2-(3,5-Dimethylphenyl)-5,7-diisopropylquinoline iridium dimer (1.2 g, 0.697 mmol), 2,4-pentanedione (0.697 g, 6.97 mmol), Na_2CO_3 (0.739 g, 6.97 mmol) and 2-ethoxyethanol (40 mL) were stirred at room temperature for 48 hours. The precipitate was filtered and washed with methanol. The solid was further purified by passing it through a silica gel plug (pretreated with 15% tryethylamine in hexanes). After workup of the reaction 0.68 g (52.8%) of product was obtained , which was confirmed by LC-MS.

Synthesis of Compound 3

[0124]

5

10

15

20

25

30

35

40

45

50

55

[0125] Synthesis of 4-Chloro-2-methylbenzoyl chloride. To a mixture of 4-chloro-2-methylbenzoic acid (24.0g, 141 mmol) in dichloromethane (20 mL) and dimethylformamide (4 mL) at room temperature was added dropwise oxalyl chloride (26.8 g, 258 mmol). The reaction was stirred room temperature for 2 hours. Hexanes were added and the reaction mass was concentrated to give 4-chloro-2-methylbenzoyl chloride (26.6 g, quantitative) and used in the next step without purification.

[0126] Synthesis of 4-Chloro-2-methylbenzamide. 30% Ammonium hydroxide (300 mL, 4.76 mol) was cooled in a salt ice bath. 4-chloro-2-methylbenzoyl chloride (26.4 g, 140 mmol) in tetrahydrofuran (150 mL) added and stirred for 1 hr. Water was added. Crystals were filtered off and washed with water and dried under vacuum to give 4-chloro-2-methylbenzamide (20.0 g, 84% yield).

[0127] Synthesis of 4-Chloro-N-((dimethylamino)methylene)-2-methylbenzamide. A mixture of 4-chloro-2-methylbenzamide (20.8 g, 123 mmol) and 1,1-dimethylmethaneamine (17.5g, 147 mmol) in tetrahydrofuran (250 mL) was refluxed for 2.5 hours and then concentrated. The resulting crystals were triturated in hexanes and filtered to give 4-chloro-N-((dimethylamino)methylene)-2-methylbenzamide (25.7 g, 93% yield).

[0128] Synthesis of 6-Chloroisoquinolin-1-ol. A mixture of 4-chloro-N-((dimethylamino)methylene)-2-methylbenzamide (25.7 g, 114 mmol), sodium *tert*-butoxide (25.7 g, 267 mmol) and tetrahydrofuran (450 mL) was refluxed under N₂ for 3 hours and then poured into water (1L). The pH was adjusted to 4 with aqueous HCl. The solids were filtered off and washed with water and dried under vacuum to give 6-chloroisoquinolin-1-ol (14.7g, 71.6% yield).

[0129] Synthesis of 4,6-Dichloroisoquinolin-1-ol. A mixture of 6-chloroisoquinolin-1-ol (13.5 g, 75 mmol) and acetonitrile (400 mL) was heated to reflux. N-Chlorosuccinimide (10.57g, 79 mmol) in acetonitrile (110 mL) was added dropwise. The mixture was refluxed overnight. Crystals were filtered off. The filtrate was concentrated and the resulting crystals were washed with water and combined with the above crystals and dried under vacuum to give 4,6-dichloroisoquinolin-1-ol (14.2 g, 88% yield). It was taken on without analysis to the next step.

[0130] Synthesis of 4,6-Dichloroisoquinolin-1-yl trifluoromethanedsulfonate. A mixture of 4, 6-dichloroisoquinolin-1-ol (14.2 g, 66.5 mmol), pyridine (10.8 mL, 133 mmol) and dichloromethane (200 mL) was cooled in an ice bath. Trifluoromethanesulfonic anhydride (22.4 mL, 133 mmol) was added dropwise. The mixture was stirred overnight at room temperature. Water was added and NaHCO $_3$ (20 g) was added slowly. The organic layer was dried over Na $_2$ SO $_4$, concentrated and flash chromatographed using silica gel chromatography (4:1 hexanes:dichloromethane, v/v) to give 4,6-dichloroisoquinolin-1-yl trifluoromethanedsulfonate (3.7 g, 16% yield).

CI
$$K_2CO_3$$
 toluene/water

[0131] Synthesis of 4,6-Dichloro-1-(3,5-dimethylphenyl)isoquinoline. A mixture of 4,6-dichloroisoquinolin-1-yl trifluoromethanesulfonate (4.0 g, 11.6 mmol), 3,5-dimthylphenyl)boronic acid (1.6 g, 10.8 g), $Pd(PPh_3)_4$ (0.67g, 0.58 mmol), potassium carbonate (4.79, 34.7 mmol), toluene (100 mL) and water (10 mL) was purged with nitrogen and refluxed overnight. The concentrated toluene layer was chromatographed using silica gel chromatography (2:1 hexanes: dichloromethane, v/v) to give 4,6-dichloro-1-(3,5-dimethylphenyl)isoquinoline (3.0 g, 92% yield).

[0132] Synthesis of 1-(3,5-Dimethylphenyl)isoquinoline. A mixture of 4,6-dichloro-1-(3,5-dimethylphenyl)isoquinoline (3.2 g, 10.59 mmol), isobutylboronic acid (4.32 g, 42.4 mmol), Pd₂(dba)₃ (0.388 g, 0.424 mmol), dicyclohexyl(2',6'-dimethoxy-[1,1'-biphenyl]-2-yl)phosphine (0.696 g, 1.694 mmol), K₃PO₄.H₂O (24.38 g, 106 mmol), toluene (133 mL) and water (11 mL) were purged with nitrogen for 30 minutes and refluxed overnight. The toluene layer was chromatographed using silica gel chromatography (100% dichloromethane to 4:1 dichloromethane:ethyl acetate, v/v) to give

1-(3,5-dimethylphenyl)isoquinoline (3.3 g, 90% yield).

[0133] Synthesis of 1-(3,5-Dimethylphenyl)isoquinoline Iridium dimer. A mixture of 1-(3,5-dimethylphenyl)-4,6-diisobutylisoquinoline (3.3 g, 9.55 mmol), IrCl₃.3H₂O (1.475 g, 3.98 mmol), 2-ethoxyethanol (45 mL) and water (15 mL) were refluxed overnight and then filtered and washed with methanol to give 1-(3,5-dimethylphenyl)isoquinoline iridium dimer (2.0 g, 54.8% yield).

[0134] Synthesis of Compound 3 A mixture of 1-(3,5-dimethylphenyl)isoquinoline iridium dimer (1.2 g, 0.655 mmol), pentane-2,4-dione (0.655 g, 6.55 mmol), potassium carbonate (0.905 g, 6.55 mmol) and 2-ethoxyethanol (60 mL) was stirred at room temperature overnight and filtered, washed with methanol and chromaographed using silica gel chromatography (4:1 hexanes:dichloromethane, v/v, silica gel pre-treated with triethylamine). The residue was dissolved in dichloromethane and 2-propanol. The dichloromethane was removed on a rotoevaporator and 0.68g of crystals were filtered off and then sublimed at 230 °C to give Compound 3 (0.32 g, 24.9%), which was confirmed by LC-MS.

Synthesis of Compound 22

[0135]

15

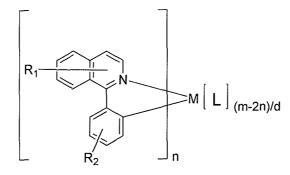
35

40

55

$$\begin{array}{c|c}
45 \\
\hline
50 \\
\end{array}$$

[0136] Synthesis of Compound 22 A mixture of 1-(3,5-dimethylphenyl)isoquinoline iridium dimer (0.8 g, 0.436 mmol), 2,6-dimethylheptane-3,5-dione (0.682 g, 4.36 mmol), potassium carbonate (0.603 g, 4.36 mmol) and 2-ethoxyethanol (60 mL) were stirred at room temperature overnight and filtered, washed with methanol and chromaographed on silica gel (4:1 hexanes:dichloromethane, v/v, silica gel pre-treated with triethylamine). The residue was dissolved in dichlo-


romethane and 2-propanol. The dichloromethane was removed on a rotoevaporator and 0.60 g of crystals were obtained after filtration. It was confirmed by LC-MS.

5 Claims

1. A compound having the formula:

10

15

Formula I;

20

25

30

35

wherein M is a metal having an atomic weight higher than 40;

wherein L is a second ligand;

wherein m is the maximum coordination number of the metal M;

wherein d is the denticity of L;

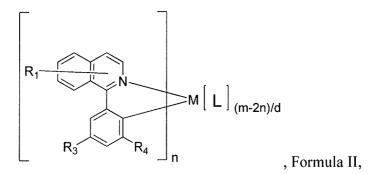
wherein n is at least 1;

wherein R₁ is independently selected for each ligand and represents di, tri, tetra, or penta substitutions;

wherein each of R_1 is independently selected from the group consisting of hydrogen, deuterium, halide, alkyl, cycloalkyl, heteroalkyl, arylalkyl, alkoxy, aryloxy, amino, silyl, germyl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, acyl, carboxylic acids, ester, nitrile, isonitrile, sulfanyl, sulfinyl, sulfonyl, phosphino, and combinations thereof;

wherein at least two of R_1 is independently selected from two to six carbon containing alkyl, silyl, germyl, cycloalkyl, and combinations thereof;

wherein R_2 may represent mono, di, tri, tetra substitutions, or no substitution; and


wherein each of R_2 is independently selected from the group consisting of hydrogen, deuterium, halide, alkyl, cycloalkyl, heteroalkyl, arylalkyl, alkoxy, aryloxy, amino, silyl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, acyl, carboxylic acids, ester, nitrile, isonitrile, sulfanyl, sulfinyl, sulfonyl, phosphino, and combinations thereof.

2. The compound of claim 1, wherein R₁ represents di-substitution, di-alkyl substitution, or silyl or germyl substitution.

40

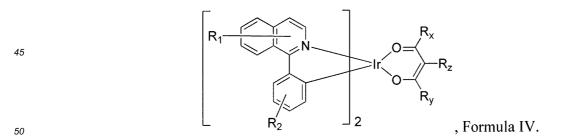
3. The compound of claim 1, wherein the compound has the formula:

45

50

55

wherein R_3 and R_4 are alkyl.


4. The compound of claim 1, wherein the compound has the formula:

$$R_1$$
 M L m -2n)/d N , Formula III.

- 5. The compound of claim 1, wherein R₁ is independently selected from the group consisting of: CH(CH₃)₂, CH₂CH(CH₃)₂, CH₂C(CH₃)₃, cyclopentyl, cyclohexyl, ethyl, trimethylsilyl, triethylsilyl, triisopropylsilyl, trimethylgermyl, triethylgermyl, and triisopropylgermyl.
- 6. The compound of claim 1, wherein M is Ir.
- 7. The compound of claim 1, wherein n is 2.
- 8. The compound of claim 1, wherein L is a monoanionic bidentate ligand.
- 9. The compound of claim 8, wherein L is

and wherein R_x , R_y , and R_z are each independently selected from the group consisting of hydrogen, deuterium, halide, alkyl, cycloalkyl, heteroalkyl, arylalkyl, alkoxy, aryloxy, amino, silyl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, acyl, carboxylic acids, ester, nitrile, isonitrile, sulfanyl, sulfinyl, sulfonyl, phosphino, and combinations thereof, preferably R_x , R_y , and R_z are independently selected from the group consisting of alkyl, hydrogen, deuterium, and combinations thereof, and more preferably R_z is hydrogen or deuterium, and R_x and R_y are independently selected from the group consisting of methyl, $CH(CH_3)_2$, and $CH_2CH(CH_3)_2$.

10. The compound of claim 9, wherein the compound has the formula:

11. The compound of claim 1, wherein the compound is selected from the group consisting of:

5

10

15

20

25

30

35

10	Compound 1	Compound 2
15 20	N Ir O	N Ir O
25	Compound 3	Compound 4
30	N O =	N O=
35	Compound 5	Compound 6
40 45		
50	Compound 7	Compound 8

5	N Ir O	N O O
10	Compound 33	Compound 34
15	Si	Ge
20	Si N Ir O	Ge N Ir O
25	Compound 35	Compound 36
30	Si N Ir O	Ge N O
35	Compound 37	Compound 38
40		
45	N Ir O	
50	Compound 39	Compound 40

15 **12.** A first device comprising a first organic light emitting device, further comprising:

an anode;

20

25

a cathode; and

- an organic layer, disposed between the anode and the cathode, comprising a compound of any one of claims 1 to 11.
- 13. The first device of claim 12, wherein the first device is an organic light-emitting device.
- 14. The first device of claim 12, wherein the organic layer is an emissive layer and the compound is a non-emissive dopant.
- **15.** The first device of claim 12, wherein the organic layer further comprises a host, preferably the host is a metal 8-hydroxyquinolate or the host is selected from the group consisting of:

and combinations thereof.

Patentansprüche

1. Eine Verbindung mit folgender Formel:

55

45

$$R_1$$
 M L $(m-2n)/d$ Formel I;

wobei M ein Metall mit einem Atomgewicht von höher als 40 ist;

wobei L ein zweiter Ligand ist;

wobei m die maximale Koordinationszahl des Metalls M ist;

wobei d die Zähnigkeit von L ist;

wobei n mindestens 1 ist;

wobei R_1 unabhängig für jeden Liganden ausgewählt ist und für di-, tri-, tetra-, oder penta-Substitutionen steht; wobei jedes R_1 unabhängig voneinander ausgewählt ist aus der Gruppe bestehend aus Wasserstoff, Deuterium, Halogen, Alkyl, Cycloalkyl, Heteroalkyl, Arylalkyl, Alkoxy, Aryloxy, Amino, Silyl, Germyl, Alkenyl, Cycloalkenyl, Heteroalkenyl, Alkinyl, Aryl, Heteroaryl, Acyl, Carbonyl, Carbonsäuren, Ester, Nitril, Isonitril, Sulfanyl, Sulfinyl, Sulfonyl, Phosphino, und deren Kombinationen;

wobei mindestens zwei von R₁ unabhängig voneinander ausgewählt sind aus zwei bis sechs Kohlenstoffe enthaltendem Alkyl, Silyl, Germyl, Cycloalkyl, und Kombinationen davon;

wobei R_2 für mono-, di-, tri-, tetra-Substitutionen oder keine Substitution stehen kann; und wobei jedes der R_2 unabhängig voneinander ausgewählt ist aus der Gruppe bestehend aus Wasserstoff, Deuterium, Halogen, Alkyl, Cycloalkyl, Heteroalkyl, Arylalkyl, Alkoxy, Aryloxy, Amino, Silyl, Alkenyl, Cycloalkenyl, Heteroalkenyl, Alkinyl, Aryl, Heteroaryl, Acyl, Carbonyl, Carbonsäuren, Ester, Nitril, Isonitril, Sulfanyl, Sulfinyl, Sulfonyl, Phosphino und deren Kombinationen.

30

5

10

15

20

25

- 2. Verbindung nach Anspruch 1, wobei R₁ für di-Substitution, di-Alkyl-Substitution, oder Silyl- oder Germylsubstitution steht.
- 3. Verbindung nach Anspruch 1, wobei die Verbindung die folgende Formel aufweist:

35

40

$$R_1$$
 M L $(m-2n)/d$ R_3 R_4 n Formel II.

45

wobei R₃ und R₄ Alkyl sind.

50 **4.** Verbindung nach Anspruch 1, wobei die Verbindung die folgende Formel aufweist:

$$R_1$$
 M L $(m-2n)/d$, Formel III.

- Verbindung nach Anspruch 1, wobei R₁ unabhängig voneinander ausgewählt ist aus der Gruppe bestehend aus: CH(CH₃)₂, CH₂CH(CH₃)₂, CH₂C(CH₃)₃, Cyclopentyl, Cyclohexyl, Ethyl, Trimethylsilyl, Triethylsilyl, Triisopropylsilyl, Trimethylgermyl, Triethylgermyl und Triisopropylgermyl.
- 6. Verbindung nach Anspruch 1, wobei M für Iridium steht.
- 7. Verbindung nach Anspruch 1, wobei n für 2 steht.
- 8. Verbindung nach Anspruch 1, wobei L ein monoanionischer Bidentatligand ist.
- 9. Verbindung nach Anspruch 8, wobei L

ist, und wobei R_x , R_y und R_z jeweils unabhängig voneinander ausgewählt sind aus der Gruppe bestehend aus Wasserstoff, Deuterium, Halogen, Alkyl, Cycloalkyl, Heteroalkyl, Arylalkyl, Alkoxy, Aryloxy, Amino, Silyl, Alkenyl, Cycloalkenyl, Heteroalkenyl, Alkinyl, Aryl, Heteroaryl, Acyl, Carbonyl, Carbonsäuren, Ester, Nitril, Isonitril, Sulfanyl, Sulfinyl, Sulfonyl, Phosphino und deren Kombinationen, vorzugsweise sind R_x , R_y und R_z unabhängig voneinander ausgewählt aus der Gruppe bestehend aus Alkyl, Wasserstoff, Deuterium und deren Kombinationen, und insbesondere bevorzugt ist R_z Wasserstoff oder Deuterium, und R_x und R_y sind unabhängig voneinander ausgewählt aus der Gruppe bestehend aus Methyl, $CH(CH_3)_2$, und $CH_2CH(CH_3)_2$.

10. Verbindung nach Anspruch 9, wobei die Verbindung die folgende Formel aufweist:

$$R_1$$
 N
 $O = R_x$
 R_y
 R_y

11. Verbindung nach Anspruch 1, wobei die Verbindung ausgewählt ist aus der Gruppe bestehend aus:

55

5

10

15

20

25

30

35

40

45

5	Verbindung 17	Verbindung 18
	verbilidulig 17	verbinding to
15		
20		
25	Verbindung 19	Verbindung 20
30 35	Verbindung 21	Verbindung 22
40		
45		
	Verbindung 23	Verbindung 24

5	Ir, O	N O O O O O O O O O O O O O O O O O O O
	Verbindung 25	Verbindung 26
15		
20	Verbindung 27	Verbindung 28
25	Volumening 27	verbinding 20
30 35	Ir O	
	Verbindung 29	Verbindung 30
40		
45	N Ir	N O
50	∠	Verbindung 32

	,
Verbindung 33 Verbindung 34	
15 Si Ge	
20 Si N Ir O Ir	\ ,
Verbindung 35 Verbindung 36	
30 Si Si Si Ge N Ir O Ir	
	,
Verbindung 37 Verbindung 38	
45 N Ir O Ir O 2	
Verbindung 39 Verbindung 40	

15 **12.** Eine erste Vorrichtung umfassend eine erste organische lichtemittierende Vorrichtung, ferner umfassend:

eine Anode;

eine Kathode; und

eine organische Schicht, angeordnet zwischen der Anode und der Kathode und umfassend eine Verbindung nach einem der Ansprüche 1 bis 11.

- 13. Erste Vorrichtung nach Anspruch 12, wobei die erste Vorrichtung eine organische lichtemittierende Vorrichtung ist.
- **14.** Erste Vorrichtung nach Anspruch 12, wobei die organische Schicht eine emittierende Schicht und die Verbindung ein nicht-emittierender Dotand ist.
- **15.** Erste Vorrichtung nach Anspruch 12, wobei die organische Schicht ferner einen Wirt umfasst, vorzugsweise ist der Wirt ein Metall-8-hydroxychinolinat, oder der Wirt ist ausgewählt aus der Gruppe bestehend aus:

45 und deren Kombinationen.

Revendications

50 **1.** Composé ayant la formule :

55

20

$$R_1$$
 M L $(m-2n)/d$

Formule I,

dans laquelle M est un métal ayant une masse atomique supérieure à 40,

dans laquelle L est un second ligand,

dans laquelle m est l'indice de coordination maximal du métal M.

dans laquelle d est la denticité de L,

dans laquelle n est au moins égal à 1,

dans laquelle R₁ est indépendamment choisi pour chaque ligand et représente des di-, tri-, tétra- ou pentasubstitutions,

dans laquelle chaque élément de R_1 est indépendamment choisi parmi le groupe constitué de l'hydrogène, du deutérium, d'un halogénure, d'un alkyle, d'un cycloalkyle, d'un hétéroalkyle, d'un arylalkyle, d'un alcoxy, d'un aryloxy, d'un amino, d'un silyle, d'un germyle, d'un alcényle, d'un cycloalcényle, d'un hétéroalcényle, d'un hétéroalcényle, d'un alcynyle, d'un aryle, d'un hétéroaryle, d'un acyle, d'un carbonyle, d'acides carboxyliques, d'un ester, d'un nitrile, d'un isonitrile, d'un sulfanyle, d'un sulfinyle, d'un phosphino et de combinaisons de ceux-ci, dans laquelle au moins deux éléments de R_1 sont indépendamment choisis parmi deux à six atomes de carbone contenant un alkyle, un silyle, un germyle, un cycloalkyle et des combinaisons de ceux-ci, dans laquelle R_2 peut représenter des mono-, di-, tri-, tétra-substitutions, ou aucune substitution, et dans laquelle chaque élément de R_2 est indépendamment choisi parmi le groupe constitué de l'hydrogène, du deutérium, d'un halogénure, d'un alkyle, d'un cycloalkyle, d'un hétéroalkyle, d'un arylalkyle, d'un alcoxy, d'un aryloxy, d'un amino, d'un silyle, d'un alcényle, d'un cycloalcényle, d'un hétéroalcényle, d'un alcynyle, d'un aryle, d'un hétéroaryle, d'un nitrile, d'un isonitrile, d'un

2. Composé selon la revendication 1, dans lequel R₁ représente une di-substitution, une substitution di-alkyle, ou une substitution silyle ou germyle.

sulfanyle, d'un sulfinyle, d'un sulfonyle, d'un phosphino et de combinaisons de ceux-ci.

3. Composé selon la revendication 1, dans lequel le composé a la formule :

$$R_1$$
 $M [L]_{(m-2n)/d}$

Formule II

dans laquelle R₃ et R₄ sont un alkyle.

4. Composé selon la revendication 1, dans lequel le composé a la formule :

55

5

10

15

20

25

30

35

40

45

Formule III

- 5. Composé selon la revendication 1, dans lequel R₁ est indépendamment choisi dans le groupe constitué de . CH(CH₃)₂, CH₂CH(CH₃)₂, CH₂C(CH₃)₃, cyclopentyle, cyclohexyle, éthyle, triméthylsilyle, triéthylsilyle, triisopropylsilyle, triméthylgermyle, triéthylgermyle et triisopropylgermyle.
- 6. Composé selon la revendication 1, dans lequel M est Ir.
- 7. Composé selon la revendication 1, dans lequel n est égal à 2.
- 20 8. Composé selon la revendication 1, dans lequel L est un ligand bidenté monoanionique.
 - 9. Composé selon la revendication 8, dans lequel L est

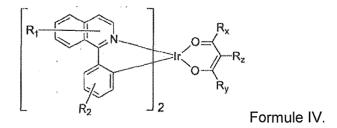
et

5

10

15

35


40

45

50

dans lequel R_x , R_y et R_z sont chacun indépendamment choisis parmi le groupe constitué de l'hydrogène, du deutérium, d'un halogénure, d'un alkyle, d'un cycloalkyle, d'un hétéroalkyle, d'un arylalkyle, d'un alcoxy, d'un aryloxy, d'un amino, d'un silyle, d'un alcényle, d'un cycloalcényle, d'un hétéroalcényle, d'un alcynyle, d'un aryle, d'un hétéroaryle, d'un acyle, d'un carbonyle, d'acides carboxyliques, d'un ester, d'un nitrile, d'un isonitrile, d'un sulfanyle, d'un sulfinyle, d'un sulfonyle, d'un phosphino et de combinaisons de ceux-ci, de préférence R_x , R_y et R_z sont indépendamment choisis parmi le groupe constitué d'un alkyle, de l'hydrogène, du deutérium et de combinaisons de ceux-ci, et de manière plus préférée, R_z est l'hydrogène ou le deutérium, et R_x et R_y sont indépendamment choisis parmi le groupe constitué d'un méthyle, de $CH(CH_3)_2$ et de $CH_2CH(CH_3)_2$.

10. Composé selon la revendication 9, dans lequel le composé a la formule :

11. Composé selon la revendication 1, dans lequel le composé est choisi parmi le groupe constitué de :

- 15 **12.** Premier dispositif comportant un premier dispositif émetteur de lumière organique, comportant en outre :
 - une anode,

20

30

35

45

50

55

- une cathode, et
- une couche organique, disposée entre l'anode et la cathode, comportant un composé selon l'une quelconque des revendications 1 à 11.
- **13.** Premier dispositif selon la revendication 12, dans lequel le premier dispositif est un dispositif émetteur de lumière organique.
- 25 **14.** Premier dispositif selon la revendication 12, dans lequel la couche organique est une couche émissive et le composé est un dopant non émissif.
 - **15.** Premier dispositif selon la revendication 12, dans lequel la couche organique comporte en outre un hôte, de préférence l'hôte est un 8-hydroxyquinolate de métal ou l'hôte est choisi parmi le groupe constitué de :

$$\left[\begin{array}{c} \\ \\ \\ \\ \end{array}\right]_{2}^{N-O} - \left[\begin{array}{c} \\ \\ \\ \end{array}\right]_{2}^{N}$$

et des combinaisons de ceux-ci.

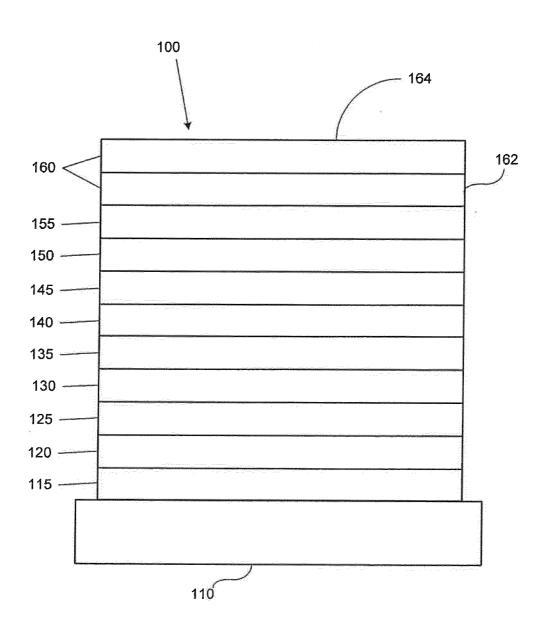


FIGURE 1

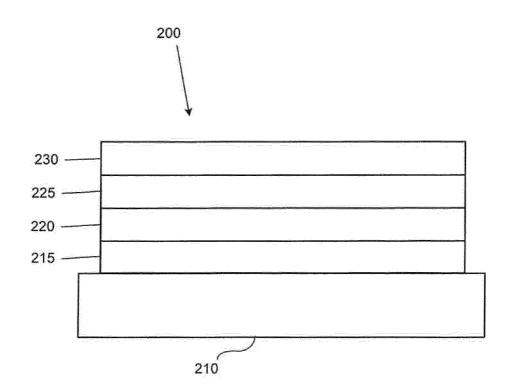


FIGURE 2

$$R_1$$
 M L $m-2n$ / d

Formula I

FIGURE 3

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- US 5844363 A [0004] [0039]
- US 6303238 B [0004] [0039]
- US 5707745 A [0004] [0039] [0042]
- US 7279704 B [0014] [0037] [0038] [0046] [0109]
- US 4769292 A [0036]
- US 20030230980 A [0039]
- US 5703436 A [0039]
- US 6097147 A [0039]
- US 20040174116 A [0039]
- US 5247190 A, Friend [0042]
- US 6091195 A, Forrest [0042]
- US 5834893 A, Bulovic [0042]
- US 6013982 A [0043]
- US 6087196 A [0043]
- US 6337102 B, Forrest [0043]
- US 233470 A [0043]
- US 6294398 B [0043]
- US 6468819 B [0043]
- WO 2007002683 A [0109]
- US 20030162053 A [0109]
- EP 1725079 A1 [0109]
- US 20050123751 A [0109]
- WO 2009018009 A [0109]
- US 20020158242 A [0109]
- US 20060240279 A **[0109]**
- US 20080220265 A **[0109]**
- WO 2011075644 A **[0109]**
- EP 2350216 A [0109]
- US 5061569 A [0109]
- EP 650955 A [0109]
- US 20080124572 A [0109]
- US 20070278938 A [0109]
- US 20080106190 A [0109]
- US 20110163302 A [0109]
- US 20080018221 A [0109]
 US 20060202194 A [0109]
- WO 2005014551 A [0109]
- WO 2006072002 A [0109]
- WO 2000072002 A [0109]
 WO 2009066779 A [0109]
- WO 2009066778 A [0109]
- WO 2009063833 A [0109]
- US 20090045731 A [0109]
- US 20090045730 A [0109]
- WO 2009008311 A [0109]
- US 20090008605 A [0109]
- US 20090009065 A [0109]
- WO 2010056066 A [0109]
- WO 2011086863 A [0109]
- US 20030175553 A [0109]

- WO 2001039234 A [0109]
- US 20060280965 A [0109]
- WO 2009021126 A [0109]
- US 20090309488 A [0109]
- US 20090302743 A [0109]
- US 20100012931 A [0109]
- WO 2008056746 A [0109]
- WO 2010107244 A [0109]
- JP 2008074939 B [0109]
- US 20100187984 A [0109]
- WO 2004093207 A [0109]
- WO 2005089025 A [0109]
- WO 2006132173 A [0109]
- JP 200511610 B [0109]
- JP 2007254297 B [0109]
- WO 2007063796 A [0109]
- WO 2007063754 A [0109]
- WO 2004107822 A [0109]
- US 20050112407 A [0109]
- WO 2005030900 A [0109]
- US 20040137268 A [0109]
- US 20040137267 A [0109]
- US 20070190359 A [0109]
- WO 2006114966 A [0109]
- US 20090167162 A [0109]
- WO 2009086028 A **[0109]**
- US 20090030202 A [0109]
- US 20090017330 A [0109]
- US 20100084966 A [0109]
- US 20050238919 A [0109]
- WO 2009003898 A **[0109]**
- EP 2034538 A [0109]
- WO 2006100298 A [0109]
- US 20040115476 A [0109]
- US 20060121308 A [0109]
- US 7154114 B [0109]
- US 2006835469 A [0109]
- US 20070087321 A [0109]
- US 20080261076 A [0109]
- US 20100090591 A [0109]
- WO 2009100991 A [0109]
- WO 2008101842 A [0109]
- US 7232618 B [0109]
- WO 2003040257 A [0109]
 US 20070103060 A [0109]
- US 20050244673 A [0109]
- US 20020034656 A [0109]
- US 7332232 B [0109]
- US 20090108737 A [0109]

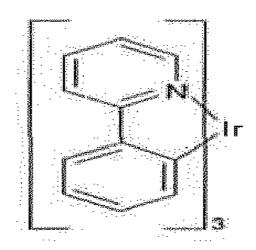
- WO 2010028151 A [0109]
- EP 1841834 B [0109]
- US 20060127696 A [0109]
- US 20090039776 A [0109]
- US 6921915 B [0109]
- US 20100244004 A [0109]
- US 6687266 B [0109]
- US 20060008670 A [0109]
- JP 2007123392 B [0109]
- WO 2010086089 A [0109]
- WO 2011044988 A [0109]
- WO 2009050290 A [0109]
- US 20090165846 A [0109]
- US 20080015355 A [0109]
- US 20010015432 A [0109]
- US 20100295032 A [0109]
- 00 20 100230002 // **[010**
- US 7250226 B [0109]
- US 7396598 B [0109]
- WO 2002015645 A [0109]
- US 20060263635 A [0109]
- US 20060182992 A [0109]
- WO 2009000673 A [0109]
- US 20070111026 A [0109]
- US 20030138657 A [0109]
- US 20030152802 A [0109]
- US 7090928 B [0109]
- WO 2002002714 A [0109]
- WO 2006009024 A [0109]
- US 20060251923 A [0109]
- US 20110057559 A [0109]

- US 20110204333 A [0109]
- US 7393599 B [0109]
- WO 2006056418 A [0109]
- US 20050260441 A [0109]
- WO 2005019373 A [0109]
- US 7534505 B [0109]
- WO 2011051404 A [0109]
- US 7445855 B [0109]
- US 20080297033 A [0109]
- US 20100148663 A [0109]
- US 7338722 B [0109]
- US 20020134984 A [0109]
- WO 2005123873 A [0109]
- WO 20051238 A [0109]
- WO 2007004380 A [0109]
- WO 2006082742 A [0109]
- WO 2006098120 A [0109]
- WO 2006103874 A [0109]
- US 7655323 B [0109]
- US 20050025993 A [0109]
- WO 2008132085 A [0109]
- WO 2010079051 A [0109]
- WO 2003060956 A [0109]
- US 20090179554 A [0109]
- US 20090115316 A [0109]
- US 7230107 B [0109]
- US 20090101870 A [0109]
- US 20040036077 A [0109]
- US 6528187 B [0109]

Non-patent literature cited in the description

- BALDO et al. Highly Efficient Phosphorescent Emission from Organic Electroluminescent Devices. *Nature*, 1998, vol. 395, 151-154 [0037]
- BALDO et al. Very high-efficiency green organic light-emitting devices based on electrophosphorescence. Appl. Phys. Lett., 1999, vol. 75 (3), 4-6 [0037]
- Appl. Phys. Lett., 1996, vol. 69, 2160 [0109]
- J. Lumin., 1997, vol. 72-74, 985 [0109]
- Appl. Phys. Lett., 2001, vol. 78, 673 [0109]
- Synth. Met., 1997, vol. 87, 171 [0109]
- SID Symposium Digest, 2006, vol. 37, 923 [0109]
- Appl. Phys. Lett., 1987, vol. 51, 913 [0109]
- J. Mater. Chem., 1993, vol. 3, 319 [0109]
- Appl. Phys. Lett., 2007, vol. 90, 183503 [0109]
- Synth. Met., 1997, vol. 91, 209 [0109]
- Adv. Mater., 1994, vol. 6, 677 [0109]
- Synth. Met., 2000, vol. 111, 421 [0109]
- Chem. Mater., 2003, vol. 15, 3148 [0109]
- Appl. Phys. Lett., 2001, vol. 78, 1622 [0109]
- Nature, 1998, vol. 395, 151 [0109]
- Appl. Phys. Lett., 2007, vol. 90, 123509 [0109]
- Org. Electron., 2000, vol. 1, 15 [0109]
- Appl. Phys. Lett., 2000, vol. 77, 2280 [0109]
- J. Appl. Phys., 2001, vol. 90, 5048 [0109]

- Appl. Phys. Lett, 2003, vol. 82, 2422 [0109]
- Adv. Mater., 2007, vol. 19, 739 [0109]
- Chem. Mater., 2005, vol. 17, 3532 [0109]
- Adv. Mater., 2005, vol. 17, 1059 [0109]
- Inorg. Chem., 2001, vol. 40, 1704 [0109]
- Angew. Chem. Int. Ed., 2006, vol. 45, 7800 [0109]
- Appl. Phys. Lett., 2005, vol. 86, 153505 [0109]
- Chem. Lett., 2005, vol. 34, 592 [0109]
- Chem. Commun., 2005, 2906 [0109]
- Inorg. Chem., 2003, vol. 42, 1248 [0109]
- Angew. Chem. Int. Ed., 2008, vol. 47, 1 [0109]
- Chem. Mater., 2006, vol. 18, 5119 [0109]
- Inorg. Chem., 2007, vol. 46, 4308 [0109]
- Appl. Phys. Lett., 1999, vol. 74, 1361 [0109]
- Appl Phys. Lett., 1999, vol. 75, 4 [0109]
- Appl. Phys. Lett., 2001, vol. 79, 449 [0109]
 Appl. Phys. Lett., 2002, vol. 81, 162 [0109]
- Appl. Phys. Lett., 2001, vol. 79, 156 [0109]
- Appl. Phys. Lett., 2006, vol. 89, 063504 [0109]
- Chem. Lett., 1993, vol. 5, 905 [0109]
- Appl. Phys. Lett., 2007, vol. 91, 263503 [0109]
- Appl. Phys. Lett., 1999, vol. 74, 865 [0109]
- Appl. Phys. Lett., 1989, vol. 55, 1489 [0109]
- Jpn. J. Apply. Phys., 1993, vol. 32, L917 [0109]


- Org. Electron., 2003, vol. 4, 113 [0109]
- J. Am. Chem. Soc., 1998, vol. 120, 9714 [0109]
- J. Am. Chem. Soc., 2000, vol. 122, 1832 [0109]

专利名称(译)	新型有机发光材料			
公开(公告)号	EP2602302B1	公开(公告)日	2016-06-29	
申请号	EP2012196136	申请日	2012-12-07	
[标]申请(专利权)人(译)	环球展览公司			
申请(专利权)人(译)	通用显示器公司			
当前申请(专利权)人(译)	通用显示器公司			
[标]发明人	MA BIN DEANGELIS ALAN XIA CHUANJUN			
发明人	MA, BIN DEANGELIS, ALAN XIA, CHUANJUN			
IPC分类号	C09K11/06 H01L51/00 C07F15/00)		
CPC分类号	C07F15/0033 C09K11/025 C09K11/06 C09K2211/185 H01L51/0085 H05B33/14 C09K2211/1029 H01L51/0072 H01L51/5016 H01L51/5024 H01L51/5056 H01L51/5072 H01L51/5088 H01L51/5092 H01L51/5096			
代理机构(译)	MAIWALD专利ADVOCATE GMBH	1		
优先权	13/316162 2011-12-09 US			
其他公开文献	EP2602302A3 EP2602302A2			
外部链接	Espacenet			

摘要(译)

提供了含有2-噻吩基异喹啉配体的新型磷光金属配合物,其在异喹啉环上具有至少两个取代基。所公开的化合物具有低升华温度,其允许易于纯化和制造成各种OLED装置。

