(19) **日本国特許庁(JP)**

HO1L 51/50

(51) Int.Cl.

再 公 表 特 許(A1)

HO5B 33/14

FI

(11) 国際公開番号

テーマコード (参考)

W02009/008215

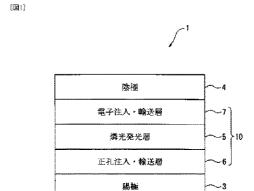
発行日 平成22年9月2日 (2010.9.2)

(2006.01)

(43) 国際公開日 平成21年1月15日(2009.1.15)

В

3K1O7


110 1 - 07700	(E000: 0:) 1100 D	00,11		ORIO,	
CO9K 11/06	(2006.01) HO5B	33/22	В	4H006	
CO7C 13/62	(2006.01) CO9K	11/06 €	660	4H050	
CO7C 15/20	(2006.01) CO9K	11/06 €	390		
CO7F 15/00	(2006.01) CO7C	13/62			
	審査請求 未	請求 予備審	査請求 未請求	(全 90 頁)	最終頁に続く
出願番号	特願2009-522549 (P2009-522549)	(71) 出願人	000183646		
(21) 国際出願番号	PCT/JP2008/059076		出光興産株式会	社	
(22) 国際出願日	平成20年5月16日 (2008.5.16)		東京都千代田区丸の内3丁目1番1号		
(31) 優先権主張番号	PCT/JP2008/057837	(74)代理人	人 110000637		
(32) 優先日	平成20年4月23日 (2008.4.23)		特許業務法人樹之下知的財産事務所		
(33) 優先権主張国	日本国(JP)	(72) 発明者	西村 和樹		
(31) 優先権主張番号	特願2007-179109 (P2007-179109)		千葉県袖ケ浦市	i上泉1280	番地
(32) 優先日	平成19年7月7日 (2007.7.7)	(72)発明者	岩隈 俊裕		
(33) 優先権主張国	日本国(JP)		千葉県袖ケ浦市	i上 泉1280	番地
(31) 優先権主張番号	特願2007-179120 (P2007-179120)	(72) 発明者	福岡 賢一		
(32) 優先日	平成19年7月7日(2007.7.7)		千葉県袖ケ浦市	i上泉1280	番地
(33) 優先権主張国	日本国(JP)	(72) 発明者	細川 地潮		
(31) 優先権主張番号	特願2007-179121 (P2007-179121)		千葉県袖ケ浦市	i上泉1280	番地
(32) 優先日	平成19年7月7日(2007.7.7)	(72) 発明者	河村 昌宏		
(33) 優先権主張国	日本国(JP)		千葉県袖ケ浦市	i上泉1280	番地
				最	終頁に続く

(54) 【発明の名称】有機エレクトロルミネッセンス素子および有機エレクトロルミネッセンス素子用材料

(57)【要約】

陰極と陽極との間に、1層または複数層からなる有機 薄膜層を備え、有機薄膜層は、少なくとも1つの発光層 を有し、発光層の少なくとも1つは、燐光発光を示す燐 光発光材料を少なくとも1種と、下記式(1)で表され るホスト材料と、を含む有機エレクトロルミネッセンス 素子。

Ra-Ar¹-Ar²-Rb (1) (式中、Ar¹, Ar², Ra, Rbは、置換または無 置換のベンゼン環、または、置換または無置換の、ナフ タレン環、クリセン環、フルオランテン環、トリフェニ レン環、フェナントレン環、ベンゾフェナントレン環、 ジベンゾフェナントレン環、ベンゾトリフェニレン環、 ベンゾクリセン環、ピセン環およびベンゾ「b]フルオ ランテン環から選択される縮合芳香族炭化水素基を表す 。)

基核

- 2 SUBSTRATE
- 3 ANODE
- 4 CATHODE
- 5 PHOSPHORESCENT LAYER
- 6 HOLE INJECTION/TRANSPORT LAYER 7 ELECTRON INJECTION/TRANSPORT LAYER

【特許請求の範囲】

【請求項1】

陰極と陽極との間に、1層または複数層からなる有機薄膜層を備え、

前記有機薄膜層は、少なくとも1つの発光層を有し、

前記発光層の少なくとも1つは、

燐光発光を示す燐光発光材料を少なくとも 1 種と、

下記式(1)で表されるホスト材料と、を含む

有機エレクトロルミネッセンス素子。

 $Ra - Ar^{1} - Ar^{2} - Rb$ (1)

(式中、Ar¹,Ar²,Ra,Rbは、置換または無置換のベンゼン環、または、置換または無置換の、ナフタレン環、クリセン環、フルオランテン環、トリフェニレン環、フェナントレン環、ベンゾフェナントレン環、ジベンゾフェナントレン環、ベンゾトリフェニレン環、ベンゾクリセン環、ピセン環およびベンゾ[b]フルオランテン環から選択される縮合芳香族炭化水素基を表す。

 Ar^{-1} が置換または無置換のベンゼン環の場合、 $RaとAr^{-2}$ は置換または無置換の互いに異なる縮合芳香族炭化水素基である。

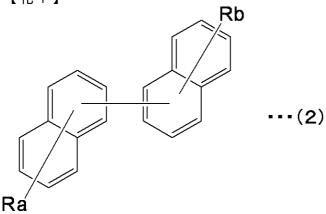
 $A r^2$ が置換または無置換のベンゼン環の場合、 $R b と A r^1$ は置換または無置換の互いに異なる縮合芳香族炭化水素基である。

また、 R a , R b の置換基はアリール基でない。)

【請求項2】

請求項1に記載の有機エレクトロルミネッセンス素子であって、

前記式(1)中、Ra、Rb、Ar 1 またはAr 2 が1つまたは複数の置換基を有する場合、


前記置換基は、炭素数 1 ~ 2 0 のアルキル基、炭素数 1 ~ 2 0 のハロアルキル基、炭素数 5 ~ 1 8 のシクロアルキル基、炭素数 3 ~ 2 0 のシリル基、シアノ基またはハロゲン原子であり、 $A r^1$ または $A r^2$ の置換基はさらに炭素数 6 ~ 2 2 のアリール基でもよい有機エレクトロルミネッセンス素子。

【請求項3】

請求項1または請求項2に記載の有機エレクトロルミネッセンス素子であって、

前記式(1)のホスト材料は、下記式(2)で表される有機エレクトロルミネッセンス素子。

【化1】

【請求項4】

請求項3に記載の有機エレクトロルミネッセンス素子であって、

前記式(2)中、Ra、Rb、ナフタレン環が1つまたは複数の置換基を有する場合、前記置換基は、炭素数1~20のアルキル基、炭素数1~20のハロアルキル基、炭素数5~18のシクロアルキル基、炭素数3~20のシリル基、シアノ基またはハロゲン原子であり、Ra,Rb以外のナフタレン環の置換基はさらに炭素数6~22のアリール基でもよい有機エレクトロルミネッセンス素子。

10

20

【請求項5】

請求項1または請求項2に記載の有機エレクトロルミネッセンス素子であって、

前記式(1)中、Ra、Ar¹は、ナフタレン環であり、

Rbは、フェナントレン環、トリフェニレン環、ベンゾフェナントレン環、ジベンゾフェナントレン環、ベンゾトリフェニレン環、フルオランテン環、ベンゾクリセン環、ベンゾ[b]フルオランテン環およびピセン環から選択される基である有機エレクトロルミネッセンス素子。

【請求項6】

請求項3または請求項4に記載の有機エレクトロルミネッセンス素子であって、

前記式(2)中、Ra、Rbは、フェナントレン環、トリフェニレン環、ベンゾフェナントレン環、ジベンゾフェナントレン環、ベンゾトリフェニレン環、フルオランテン環、ベンゾクリセン環、ベンゾ[b]フルオランテン環およびピセン環から選択される基である有機エレクトロルミネッセンス素子。

【請求項7】

請求項1ないし請求項6のいずれか一項に記載の有機エレクトロルミネッセンス素子であって、

前記ホスト材料の励起3重項エネルギーは、2.0 e V 以上2.8 e V 以下である有機 エレクトロルミネッセンス素子。

【請求項8】

請求項1ないし請求項7のいずれか一項に記載の有機エレクトロルミネッセンス素子であって、

前記燐光発光材料は、金属錯体を含有し、

前記金属錯体は、Ir,Pt,Os,Au,Cu,ReおよびRuから選択される金属原子と、配位子と、を有する有機エレクトロルミネッセンス素子。

【請求項9】

請求項8に記載の有機エレクトロルミネッセンス素子であって、

前記配位子は、オルトメタル結合を有する有機エレクトロルミネッセンス素子。

【請求項10】

請求項1ないし請求項9のいずれか一項に記載の有機エレクトロルミネッセンス素子であって、

前記発光層に含まれる前記燐光発光材料のうち少なくとも 1 種は、発光波長の極大値が 5 2 0 n m 以上 7 2 0 n m 以下である有機エレクトロルミネッセンス素子。

【請求項11】

請求項1ないし請求項10のいずれか一項に記載の有機エレクトロルミネッセンス素子であって、

前記有機薄膜層は、前記陰極と前記発光層との間に電子輸送層または電子注入層を有し

前記電子輸送層または前記電子注入層は、含窒素 6 員環もしくは 5 員環骨格を有する芳香族環または含窒素 6 員環もしくは 5 員環骨格を有する縮合芳香族環化合物を含む有機エレクトロルミネッセンス素子。

【請求項12】

請求項1ないし請求項11のいずれか一項に記載の有機エレクトロルミネッセンス素子であって、

前記陰極と前記有機薄膜層との界面領域に還元性ドーパントが添加されている有機エレクトロルミネッセンス素子。

【請求項13】

下記式(3)で表されるホスト材料を含む有機エレクトロルミネッセンス素子用材料。 Ra-Ar 1 -Ar 2 -Rb (3)

(式中、Ra、Ar¹は、置換または無置換のナフタレン環である。

Rbは、置換または無置換の、フェナントレン環、トリフェニレン環、ベンゾフェナン

30

10

20

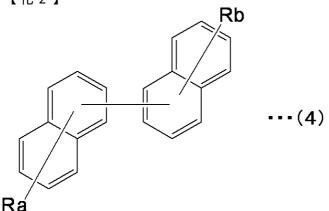
40

トレン環、ジベンゾフェナントレン環、ベンゾトリフェニレン環、フルオランテン環、ベンゾクリセン環、ベンゾ[b]フルオランテン環およびピセン環から選択される縮合芳香族炭化水素基を表す。

Ar²は、置換または無置換の、ベンゼン環、ナフタレン環、クリセン環、フルオランテン環、トリフェニレン環、ベンゾフェナントレン環、ジベンゾフェナントレン環、ベンゾトリフェニレン環、ベンゾクリセン環、ベンゾ[b]フルオランテン環およびピセン環から選択される縮合芳香族炭化水素基を表す。

また、Ra, Rbの置換基はアリール基でなく、Ar 1 またはAr 2 がナフタレン環の場合はAr 1 およびAr 2 の置換基はアリール基でない。)

【請求項14】


請求項13に記載の有機エレクトロルミネッセンス素子用材料であって、

前記式(3)中、Ra、Rb、Ar^¹またはAr^²が1つまたは複数の置換基を有する 場合、

前記置換基は、炭素数 $1 \sim 20$ のアルキル基、炭素数 $1 \sim 20$ のハロアルキル基、炭素数 $5 \sim 18$ のシクロアルキル基、炭素数 $3 \sim 20$ のシリル基、シアノ基またはハロゲン原子であり、 Ar^1 または Ar^2 の置換基はさらに炭素数 $6 \sim 22$ のアリール基でもよい有機エレクトロルミネッセンス素子用材料。

【請求項15】

下記式(4)で表されるホスト材料を含む有機エレクトロルミネッセンス素子用材料。 【化2】

(式中、Ra, Rbは、置換または無置換の、フェナントレン環、トリフェニレン環、ベンゾフェナントレン環、ジベンゾフェナントレン環、ベンゾトリフェニレン環、フルオランテン環、ベンゾクリセン環、ベンゾ[b]フルオランテン環およびピセン環から選択される縮合芳香族炭化水素基を表す。

また、Ra, Rb, Ar¹またはAr²の置換基はアリール基でない。)

【請求項16】

前記請求項15に記載の有機エレクトロルミネッセンス素子用材料であって、

前記式(4)中、Ra、Rbまたはナフタレン環が1つまたは複数の置換基を有する場合、

前記置換基は、炭素数 1 ~ 2 0 のアルキル基、炭素数 1 ~ 2 0 のハロアルキル基、炭素数 5 ~ 1 8 のシクロアルキル基、炭素数 3 ~ 2 0 のシリル基、シアノ基またはハロゲン原子である有機エレクトロルミネッセンス素子用材料。

【請求項17】

請求項13ないし請求項16のいずれか一項に記載の有機エレクトロルミネッセンス素 子用材料であって、

前記ホスト材料の励起3重項エネルギーは、2.0 e V以上2.8 e V以下である有機 エレクトロルミネッセンス素子用材料。

10

20

【発明の詳細な説明】

50

【技術分野】

[0001]

本発明は、有機エレクトロルミネッセンス素子(以下、有機 E L 素子と略記する場合がある。)および有機エレクトロルミネッセンス素子用材料に関する。特に、赤色に発光する発光層を備えた有機エレクトロルミネッセンス素子およびこれに用いる有機エレクトロルミネッセンス素子用材料に関する。

【背景技術】

[0002]

陽極と陰極との間に発光層を含む有機薄膜層を備え、発光層に注入された正孔と電子との再結合によって生じる励起子(エキシトン)エネルギーから発光を得る有機エレクトロルミネッセンス素子が知られている。

このような有機エレクトロルミネッセンス素子は、自発光型素子としての利点を活かし、発光効率、画質、消費電力さらには薄型のデザイン性に優れた発光素子として期待されている。

[0003]

有機エレクトロルミネッセンス素子の更なる改善点としては、例えば、発光効率が挙げられる。

この点、内部量子効率を高めるため、3重項励起子からの発光が得られる発光材料(燐光発光材料)の開発が進められ、最近では燐光発光を示す有機エレクトロルミネッセンス素子が報告されている。

このような燐光発光材料を用いて発光層(燐光発光層)を構成することにより75%以上、理論上100%近い値の内部量子効率を実現でき、高効率、低消費電力の有機エレクトロルミネッセンス素子が得られる。

[0004]

また、発光層を形成するにあたっては、ホスト材料に、ドーパントとして発光材料をドーピングするドーピング法が知られている。

ドーピング法で形成した発光層では、ホスト材料に注入された電荷から効率よく励起子を生成することができる。そして、生成された励起子の励起子エネルギーをドーパントに移動させ、ドーパントから高効率の発光を得ることができる。

ここで、ホスト材料から燐光発光性の燐光ドーパントに分子間エネルギー移動を行うためには、ホスト材料の励起3重項エネルギーEg + が、燐光ドーパントの励起3重項エネルギーEg - よりも大きいことが必要である。

[00005]

励起3重項エネルギーが有効に大きい材料としては、CBP(4,4 'bis(N carbazolyl)biphenyl)が代表的に知られている(例えば、特許文献1参照)。

このCBPをホスト材料とすれば、所定の発光波長(例えば、緑、赤)を示す燐光ドーパントへのエネルギー移動が可能であり、高効率の有機エレクトロルミネッセンス素子を得ることができる。

しかしながら、CBPをホスト材料として使用すると、燐光発光により発光効率は格段に向上する一方、寿命は非常に短く、実用に適さないという問題があった。

これは、CBPの分子構造上の酸化安定性が高くないため、正孔による分子の劣化が激しいためと考えられる。

また、特許文献 2 には、カルバゾール等の含窒素環を含有する縮合環誘導体を、赤色燐光を示す燐光発光層のホスト材料として用いた技術が開示されている。この技術により、発光効率および寿命について改善されているが、実用化には十分でない場合もあった。

[0006]

その一方、蛍光発光を示す蛍光ドーパント用のホスト材料(蛍光ホスト)は種々知られており、蛍光ドーパントとの組み合わせで発光効率、寿命に優れた蛍光発光層を形成できるホスト材料が種々提案されている。

しかし、蛍光ホストでは、励起1重項エネルギーEg(S)は蛍光ドーパントよりも大

20

10

30

40

きいが、励起3重項エネルギーEg(T)は必ずしも大きくないため、単純には燐光発光層のホスト材料(燐光ホスト)として転用できない。

[0007]

例えば、蛍光ホストとしてはアントラセン誘導体が良く知られている。

しかし、アントラセン誘導体は、励起3重項エネルギーEg(T)が1.9eV程度と比較的小さい。このため、520nmから720nmの可視光領域の発光波長を有する燐光ドーパントに対するエネルギー移動が確保できない。また、励起された3重項エネルギーを発光層内に閉じ込めることができない。

したがって、アントラセン誘導体は燐光ホストとして不適切である。

また、ペリレン誘導体、ピレン誘導体およびナフタセン誘導体等も同様の理由で燐光ホストとして好ましくない。

[00008]

また、燐光ホストとして芳香族炭化水素化合物を用いた例が知られている(特許文献3)。ここでは、ベンゼン骨格を中心とし、置換基として2つの芳香族基がメタ位に結合した化合物を、燐光ホストとして用いている。

ただし、特許文献3の芳香族炭化水素化合物は、中心のベンゼン骨格に対し、左右対称に分子を伸張した分子構造になっているため、発光層が結晶化しやすいという問題点がある。

一方、特許文献 4 ~ 9 には、種々の芳香族炭化水素化合物を用いた有機エレクトロルミネッセンス素子が開示されている。しかしながら、燐光ホストとしての有効性についてはなんら言及されていない。

[0009]

【特許文献 1 】 U S 2 0 0 2 / 1 8 2 4 4 1 号公報

【特許文献 2 】 W O 2 0 0 5 / 1 1 2 5 1 9 号公報

【特許文献 3 】特開 2 0 0 3 - 1 4 2 2 6 7 号公報

【特許文献4】WO2007/046658号公報

【特許文献 5 】特開 2 0 0 6 - 1 5 1 9 6 6 号公報

【特許文献 6 】特開 2 0 0 5 - 8 5 8 8 号公報

【特許文献7】特開2005-19219号公報

【特許文献8】特開2005-197262号公報

【特許文献9】特開2004-75567号公報

【発明の開示】

【発明が解決しようとする課題】

[0010]

上記のように、効率よく燐光発光材料にエネルギー移動を行うことができ、かつ、寿命が実用的に長いホスト材料が知られておらず、燐光発光材料を用いた素子の実用化が妨げられていた。

そこで、本発明の目的は、高効率かつ長寿命な燐光発光性の有機エレクトロルミネッセンス素子、および高効率かつ長寿命な燐光発光性の有機エレクトロルミネッセンス素子を与える有機エレクトロルミネッセンス素子用材料を提供することにある。

【課題を解決するための手段】

[0011]

本発明者らは、上記目的を達成するために鋭意研究を重ねた結果、下記式(1)で表されるホスト材料や、または下記式(3)、式(4)のホスト材料を含む有機エレクトロルミネッセンス素子用材料を燐光ホストとして用いることにより、高効率かつ長寿命な燐光発光性の有機エレクトロルミネッセンス素子が得られることを見出し、本発明を完成するに至った。

[0012]

本発明の有機エレクトロルミネッセンス素子は、陰極と陽極との間に、1層または複数層からなる有機薄膜層を備え、前記有機薄膜層は、少なくとも1つの発光層を有し、前記

10

20

30

40

発光層の少なくとも1つは、燐光発光を示す燐光発光材料を少なくとも1種と、下記式(1)で表されるホスト材料と、を含むことを特徴とする。

[0013]

$$Ra - Ar^{1} - Ar^{2} - Rb$$
 (1)

[0014]

前記式(1)中、Ar¹,Ar²,Ra,Rbは、置換または無置換のベンゼン環、または、置換または無置換の、ナフタレン環、クリセン環、フルオランテン環、トリフェニレン環、フェナントレン環、ベンゾフェナントレン環、ベンゾフェナントレン環、ベンゾフェニレン環、ベンゾクリセン環、ピセン環およびベンゾ[b]フルオランテン環から選択される縮合芳香族炭化水素基を表す。

 Ar^{-1} が置換または無置換のベンゼン環の場合、 $RaとAr^{-2}$ は置換または無置換の互いに異なる縮合芳香族炭化水素基である。

 $A r^2$ が置換または無置換のベンゼン環の場合、 $R b と A r^1$ は置換または無置換の互いに異なる縮合芳香族炭化水素基である。

また、Ra, Rbの置換基はアリール基でない。

[0015]

本発明の有機エレクトロルミネッセンス素子用材料は、下記式(3)で表されるホスト 材料を含むことを特徴とする。

[0016]

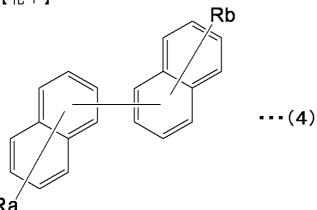
$$Ra - Ar^{1} - Ar^{2} - Rb \qquad (3)$$

[0017]

前記式(3)中、Ra、Ar¹は、置換または無置換のナフタレン環である。

R b は、置換または無置換の、フェナントレン環、トリフェニレン環、ベンゾフェナントレン環、ジベンゾフェナントレン環、ベンゾトリフェニレン環、フルオランテン環、ベンゾクリセン環およびピセン環から選択される縮合芳香族炭化水素基を表す。

Ar²は、置換または無置換の、ベンゼン環、ナフタレン環、クリセン環、フルオランテン環、トリフェニレン環、ベンゾフェナントレン環、ジベンゾフェナントレン環、ベンゾトリフェニレン環、ベンゾクリセン環、ベンゾ[b]フルオランテン環およびピセン環から選択される縮合芳香族炭化水素基を表す。


また、Ra, Rbの置換基はアリール基でなく、Ar 1 またはAr 2 がナフタレン環の場合はAr 1 およびAr 2 の置換基はアリール基でない。

[0018]

また、本発明の有機エレクトロルミネッセンス素子用材料は、下記式(4)で表されるホスト材料を含むことを特徴とする。

[0019]

【化1】

前記式(4)中、Ra,Rbは、置換または無置換の、フェナントレン環、トリフェニレン環、ベンゾフェナントレン環、ジベンゾフェナントレン環、ベンゾトリフェニレン環

10

20

30

、ベンゾ[b]フルオランテン環、フルオランテン環、ベンゾクリセン環およびピセン環 から選択される縮合芳香族炭化水素基を表す。

また、Ra, Rb, Ar¹またはAr²の置換基はアリール基でない。

[0020]

本発明によれば、前記式(1)で表されるホスト材料を燐光ホストとして用いることに より、高効率かつ長寿命な燐光発光性の有機エレクトロルミネッセンス素子を提供するこ とができる。

また、前記式(3)、式(4)のホスト材料を含む有機エレクトロルミネッセンス素子 用材料を燐光ホストとして用いることにより、高効率かつ長寿命な燐光発光性の有機エレ クトロルミネッセンス素子を得ることができる。

【図面の簡単な説明】

[0021]

【図1】本発明の実施形態における有機エレクトロルミネッセンス素子の一例の概略構成 を示す図である。

【符号の説明】

[0022]

- 有機エレクトロルミネッセンス素子
- 2 基板
- 3 陽極
- 4 陰 極
- 5 **燐光発光層**
- 正孔注入・輸送層 6
- 7 電子注入・輸送層
- 1 0 有機薄膜層

【発明を実施するための最良の形態】

[0023]

以下、本発明の実施形態について説明する。

[0024]

(有機エレクトロルミネッセンス素子の構成)

まず、有機エレクトロルミネッセンス素子の素子構成について説明する。 有機エレクトロルミネッセンス素子の代表的な素子構成としては、

- (1)陽極/発光層/陰極
- (2)陽極/正孔注入層/発光層/陰極
- (3)陽極/発光層/電子注入・輸送層/陰極
- (4)陽極/正孔注入層/発光層/電子注入・輸送層/陰極
- (5)陽極/有機半導体層/発光層/陰極
- (6)陽極/有機半導体層/電子障壁層/発光層/陰極
- (7)陽極/有機半導体層/発光層/付着改善層/陰極
- (8)陽極/正孔注入・輸送層/発光層/電子注入・輸送層/陰極
- (9)陽極/絶緣層/発光層/絶緣層/陰極
- (10)陽極/無機半導体層/絶縁層/発光層/絶縁層/陰極
- (11)陽極/有機半導体層/絶緣層/発光層/絶緣層/陰極
- (12)陽極/絶縁層/正孔注入・輸送層/発光層/絶縁層/陰極
- (13)陽極/絶縁層/正孔注入・輸送層/発光層/電子注入・輸送層/陰極 などの構造を挙げることができる。

上記の中で(8)の構成が好ましく用いられるが、もちろんこれらに限定されるもので はない。

[0025]

図1に、本発明の実施形態における有機エレクトロルミネッセンス素子の一例の概略構 成を示す。

10

20

30

40

有機エレクトロルミネッセンス素子1は、透明な基板2と、陽極3と、陰極4と、陽極3と陰極4との間に配置された有機薄膜層10と、を有する。

有機薄膜層10は、燐光ホストおよび燐光ドーパントを含む燐光発光層5を有するが、 燐光発光層5と陽極3との間に正孔注入・輸送層6等、燐光発光層5と陰極4との間に電 子注入・輸送層7等を備えていてもよい。

また、燐光発光層5の陽極3側に電子障壁層を、燐光発光層5の陰極4側に正孔障壁層を、それぞれ設けてもよい。

これにより、電子や正孔を燐光発光層 5 に閉じ込めて、燐光発光層 5 における励起子の生成確率を高めることができる。

[0026]

なお、本明細書において、蛍光ホストおよび燐光ホストの用語は、蛍光ドーパントと組み合わされたときには蛍光ホストと称し、燐光ドーパントと組み合わされたときには燐光ホストと称するものであり、分子構造のみから一義的に蛍光ホストや燐光ホストに限定的に区分されるものではない。

言い換えると、本明細書において、蛍光ホストとは、蛍光ドーパントを含有する蛍光発 光層を構成する材料を意味し、蛍光材料のホストにしか利用できないものを意味している わけではない。

同様に燐光ホストとは、燐光ドーパントを含有する燐光発光層を構成する材料を意味し、燐光発光材料のホストにしか利用できないものを意味しているわけではない。

[0027]

また、本明細書中で「正孔注入・輸送層」は「正孔注入層および正孔輸送層の少なくと もいずれか1つ」を意味し、「電子注入・輸送層」は「電子注入層および電子輸送層の少 なくともいずれか1つ」を意味する。

[0028]

(透光性基板)

有機エレクトロルミネッセンス素子は、透光性の基板上に作製する。ここでいう透光性 基板は有機エレクトロルミネッセンス素子を支持する基板であり、400~700nmの 可視領域の光の透過率が50%以上で平滑な基板が好ましい。

具体的には、ガラス板、ポリマー板等が挙げられる。

ガラス板としては、特にソーダ石灰ガラス、バリウム・ストロンチウム含有ガラス、鉛ガラス、アルミノケイ酸ガラス、ホウケイ酸ガラス、バリウムホウケイ酸ガラス、石英等が挙げられる。

またポリマー板としては、ポリカーボネート、アクリル、ポリエチレンテレフタレート 、ポリエーテルサルファイド、ポリサルフォン等を挙げることができる。

[0029]

(陽極及び陰極)

有機エレクトロルミネッセンス素子の陽極は、正孔を正孔注入層、正孔輸送層又は発光層に注入する役割を担うものであり、4.5 e V以上の仕事関数を有することが効果的である。

陽極材料の具体例としては、酸化インジウム錫合金(ITO)、酸化錫(NESA)、酸化インジウム亜鉛酸化物、金、銀、白金、銅等が挙げられる。

陽極はこれらの電極物質を蒸着法やスパッタリング法等の方法で薄膜を形成させること により作製することができる。

本実施形態のように、発光層からの発光を陽極から取り出す場合、陽極の可視領域の光の透過率を10%より大きくすることが好ましい。また、陽極のシート抵抗は、数百 / 以下が好ましい。陽極の膜厚は、材料にもよるが、通常10nm~1µm、好ましくは10~200nmの範囲で選択される。

[0030]

陰極としては、電子注入層、電子輸送層又は発光層に電子を注入する目的で、仕事関数の小さい材料が好ましい。

10

20

30

40

陰極材料は特に限定されないが、具体的にはインジウム、アルミニウム、マグネシウム、マグネシウム - インジウム合金、マグネシウム - アルミニウム合金、アルミニウム - リチウム合金、アルミニウム - 銀合金等が使用できる。

陰極も、陽極と同様に、蒸着法やスパッタリング法等の方法で薄膜を形成させることにより作製することができる。また、陰極側から、発光を取り出す態様を採用することもできる。

[0031]

(発光層)

有機エレクトロルミネッセンス素子の発光層は以下の機能を併せ持つものである。 すなわち、

(1)注入機能;電界印加時に陽極又は正孔注入層より正孔を注入することができ、陰極 又は電子注入層より電子を注入することができる機能、

- (2)輸送機能;注入した電荷(電子と正孔)を電界の力で移動させる機能、
- (3)発光機能;電子と正孔の再結合の場を提供し、これを発光につなげる機能、 がある。

[0032]

ただし、正孔の注入されやすさと電子の注入されやすさに違いがあってもよく、また、 正孔と電子の移動度で表される輸送能に大小があってもよい。

[0033]

この発光層を形成する方法としては、例えば蒸着法、スピンコート法、LB法等の公知の方法を適用することができる。

発光層は、分子堆積膜であることが好ましい。

ここで分子堆積膜とは、気相状態の材料化合物から沈着され形成された薄膜や、溶液状態又は液相状態の材料化合物から固体化され形成された膜のことであり、通常この分子堆積膜は、LB法により形成された薄膜(分子累積膜)とは凝集構造、高次構造の相違や、それに起因する機能的な相違により区分することができる。

[0034]

また、特開昭 5 7 - 5 1 7 8 1 号公報に開示されているように、樹脂等の結着剤と材料化合物とを溶剤に溶かして溶液とした後、これをスピンコート法等により薄膜化することによっても、発光層を形成することができる。

さらに、発光層の膜厚は、好ましくは5~50nm、より好ましくは7~50nm、最も好ましくは10~50nmである。5nm未満では発光層形成が困難となり、色度の調整が困難となる恐れがあり、50nmを超えると駆動電圧が上昇する恐れがある。

[0035]

本発明において、発光層は、燐光発光を示す燐光発光材料を少なくとも 1 種と、下記式 (1)で表されるホスト材料と、を含む。

[0036]

 $Ra - Ar^{1} - Ar^{2} - Rb$ (1)

[0037]

前記式(1)中、Ar¹,Ar²,Ra,Rbは、置換または無置換のベンゼン環、または、置換または無置換の、ナフタレン環、クリセン環、フルオランテン環、トリフェニレン環、フェナントレン環、ベンゾフェナントレン環、 ジベンゾフェナントレン環、 ベンゾトリフェニレン環、ベンゾクリセン環、ピセン環およびベンゾ [b]フルオランテン環から選択される縮合芳香族炭化水素基を表す。

 Ar^{1} が置換または無置換のベンゼン環の場合、 $RaとAr^{2}$ は置換または無置換の互いに異なる縮合芳香族炭化水素基である。

 $A r^2$ が置換または無置換のベンゼン環の場合、 $R b と A r^1$ は置換または無置換の互いに異なる縮合芳香族炭化水素基である。

また、Ra,Rbの置換基はアリール基でない。

10

20

30

40

[0038]

前記式(1)のホスト材料は、3重項エネルギーギャップ(励起3重項エネルギー)が大きいことから、燐光ドーパントに対してエネルギー移動させて燐光発光させることができる。

また、蛍光ホストとしてよく知られたアントラセン誘導体では赤色発光の燐光ドーパントにもホストとして不適であるが、本発明のホストでは3重項エネルギーギャップが大きいことから、有効に赤色の発光を示す燐光ドーパントを発光させることができる。

ただし、従来よく知られた燐光ホストであるCBPでは緑よりもさらに短波長の燐光ドーパントに対してもホストとして機能するが、本発明のホスト材料では、緑色の発光を示す燐光ドーパントまでしか発光させることができない。

また、本発明では、ホスト材料の骨格を窒素原子を含まない多環式縮合環を部分構造に持つことにより、分子の安定性を高くし素子寿命を長くすることができる。

このとき、骨格部の核原子数が少なすぎると分子の安定性が十分に高くならない。一方、ホスト材料を構成する多環式縮合環の縮合する環数が多くなりすぎるとHOMO・LUMOギャップが狭くなって3重項エネルギーギャップが有用な発光波長に満たなくなる。この点、前記式(1)のホスト材料は、適度な核原子数を有するので、有用な発光波長を示し安定性も高い燐光発光層の燐光ホストとして好適に利用することができる。

[0039]

従来は、緑から赤色までの幅広い波長領域において燐光ドーパントに広く適用できる燐 光ドーパントに対応するホスト材料を選定していたため、3重項エネルギーギャップが広いCBP等をホスト材料としていた。

しかしCBPでは確かに3重項エネルギーギャップEg(T)は広いが、寿命が短いという問題があった。

[0040]

この点、本発明では、青ほどワイドギャップな燐光ドーパントのホストには適用できないが、赤または緑の燐光ドーパントに対してはホストとして機能する。さらには、CBPのように3重項エネルギーギャップが広すぎると、赤色燐光ドーパントに対してはエネルギーギャップの差が大きすぎて分子間エネルギー移動が効率的に行われないという問題があるが、本発明のホストによれば、赤色または緑色燐光ドーパントに対してはエネルギーギャップが適合しているため、効率的にホストの励起子から燐光ドーパントにエネルギー移動させることができ、非常に高効率の燐光発光層を構成することができる。

このように、本発明によれば、高効率かつ長寿命の燐光発光層を構成することができる

[0041]

ここで、有機エレクトロルミネッセンス素子を構成する材料の3重項エネルギーギャップEg(T)は、燐光発光スペクトルに基づいて規定することが例として挙げられ、例えば、本発明にあっては以下のように規定することが例として挙げられる。

すなわち、各材料を EPA溶媒(容積比でジエチルエーテル:イソペンタン:エタノール = 5 : 5 : 2) に 1 0 μ m o 1 / L で溶解 し、燐光測定用試料とする。

そして、燐光測定用試料を石英セルに入れ、77Kに冷却し、励起光を照射し、放射される燐光の波長を測定する。

得られた燐光スペクトルの短波長側の立ちあがりに対して接線を引き、この接線とベースラインとの交点の波長値をエネルギーに換算した値を3重項エネルギーギャップEg(T)とする。

なお、測定には、例えば、市販の測定装置 F - 4 5 0 0 (日立製)を用いることができる。

ただし、このような規定によらず、本発明の趣旨を逸脱しない範囲で3重項エネルギー ギャップとして定義できる値であればよい。

[0042]

前記式(1)中、Ra、Rb、Ar¹またはAr²が1つまたは複数の置換基を有する

10

20

30

40

20

30

40

50

場合、前記置換基は、炭素数 $1 \sim 20$ のアルキル基、炭素数 $1 \sim 20$ のハロアルキル基、炭素数 $5 \sim 18$ のシクロアルキル基、炭素数 $3 \sim 20$ のシリル基、シアノ基またはハロゲン原子であることが好ましい。 Ar 1 または Ar 2 の置換基はさらに炭素数 $6 \sim 22$ のアリール基でもよい。

置換基が窒素原子を有さないので、より一層、ホスト材料の安定性を高くし素子寿命を 長くすることができる。

なお、 Ar^{1} 、 Ar^{2} の複数のアリール置換基の数は好ましくは Ar^{1} , Ar^{2} それぞれ 2 つ以下であり、それぞれ 1 つ以下がより好ましい。

[0043]

炭素数 1 ~ 2 0 のアルキル基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、n - ブチル基、s - ブチル基、イソブチル基、t - ブチル基、n - ペンチル基、n - ヘキシル基、n - ヘプチル基、n - オクチル基、n - ノニル基、n - デシル基、n - ウンデシル基、n - ドデシル基、n - トリデシル基、n - テトラデシル基、n - ペンチデシル基、n - ヘキサデシル基、n - ヘプタデシル基、n - オクタデシル基、ネオペンチル基、1 - メチルペンチル基、2 - メチルペンチル基、1 - ペンチルヘキシル基、1 - ブチルペンチル基、1 - ヘプチルオクチル基、3 - メチルペンチル基等が挙げられる。

[0044]

炭素数 $1 \sim 200$ ハロアルキル基としては、例えば、クロロメチル基、 1 - 200 ハエチル基、 $1 \sim 200$ ハロロエチル基、 $1 \sim 300$ ロロイソプロピル基、 $1 \sim 300$ ロロイソプロピル基、 $1 \sim 200$ ロコー $1 \sim 200$ ロプロピル基、 $1 \sim 200$ ロプロピル基、 $1 \sim 200$ ロー $1 \sim$

[0045]

炭素数5~18のシクロアルキル基としては、例えば、シクロペンチル基、シクロヘキシル基、シクロオクチル基、3,5-テトラメチルシクロヘキシル基等が挙げられ、シクロヘキシル基、シクロオクチル基、3,5-テトラメチルシクロヘキシル基等が挙げられる。

[0046]

炭素数3~20のシリル基としては、例えば、アルキルシリル基、アリールシリル基、 又は、アラルキルシリル基が好ましく、例としては、トリメチルシリル基、トリエチルシ リル基、トリブチルシリル基、トリオクチルシリル基、トリイソブチルシリル基、ジメチ ルエチルシリル基、ジメチルイソプロイルシリル基、ジメチルプロピルシリル基、ジメチ ルブチルシリル基、ジメチルターシャリーブチルシリル基、ジエチルイソプロピルシリル 基、フェニルジメチルシリル基、ジフェニルメチルシリル基、ジフェニルターシャリーブ チルシリル基、トリフェニルシリル基等があげられる。

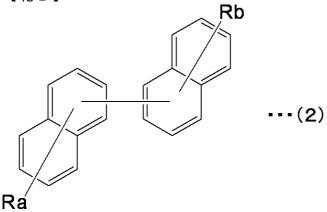
ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。 【 0 0 4 7 】

炭素数6~22のアリール置換基の例としては、フェニル基、ビフェニル基、ターフェニル基、ナフチル基、クリセニル基、フルオランテニル基、9,10‐ジアルキルフルオレニル基、9,10‐ジアリールフルオレニル基、トリフェニレニル基、フェナントレニル基、ベンゾフェナントレニル基、ジベンゾフェナントレニル基、ベンゾトリフェニレニル基、ベンゾクリセニル基、ジベンゾフラニル基が好ましく、より好ましくは炭素数6~18のフェニル基、ビフェニル基、ターフェニル基、ナフチル基、クリセニル基、フルオランテニル基、9,10‐ジメチルフルオレニル基、トリフェニレニル基、フェナントレニル基、ベンゾフェナントレニル基、ジベンゾフラニル基であり、さらにより好ましくは炭素数6~14のフェニル基、ビフェニル基、ナフチル基、フェナントレニル基、ジベン

ゾフラニル基である。

[0048]

前記式(1)中、Ra、Ar¹は、ナフタレン環であり、Rbは、フェナントレン環、トリフェニレン環、ベンゾフェナントレン環、ジベンゾフェナントレン環、ベンゾトリフェニレン環、フルオランテン環、ベンゾクリセン環、ベンゾ[b]フルオランテン環およびピセン環から選択される基であることが好ましい。


このように、環構造を選択することによって、安定性に優れた有機エレクトロルミネッセンス素子用薄膜が形成でき、赤色燐光材料と共に用いた場合、高効率、長寿命な素子を構築できる。

[0049]

また、前記式(1)のホスト材料は、下記式(2)で表されることが好ましい。

[0050]

【化2】

[0051]

このような前記式(2)で表されるホスト材料と、特に赤色燐光発光材料を用いた燐光型有機エレクトロルミネッセンス素子は、高効率で長寿命である。

[0052]

前記式(2)中、Ra、Rbは、フェナントレン環、トリフェニレン環、ベンゾフェナントレン環、ジベンゾフェナントレン環、ベンゾ[b]フルオランテン環、ベンゾトリフェニレン環、フルオランテン環、ベンゾクリセン環およびピセン環から選択される基であることが好ましい。

このように、環構造を選択することによって、安定性に優れた有機エレクトロルミネッセンス素子用薄膜が形成でき、赤色燐光材料と共に用いた場合、高効率、長寿命な素子を構築できる。

[0053]

前記式(2)中、Ra、Rb、ナフタレン環が1つまたは複数の置換基を有する場合、前記置換基は、炭素数1~20のアルキル基、炭素数1~20のハロアルキル基、炭素数5~18のシクロアルキル基、炭素数3~20のシリル基、シアノ基またはハロゲン原子であることが好ましい。Ra,Rb以外のナフタレン環の置換基はさらに炭素数6~22のアリール基でもよい。

置換基が窒素原子を有さないので、より一層、ホスト材料の安定性を高くし素子寿命を 長くすることができる。

[0054]

また、下記式(3)、式(4)のホスト材料を含む有機エレクトロルミネッセンス素子 用材料も、燐光ホストとして好適に用いることができる。

[0055]

本発明の有機エレクトロルミネッセンス素子用材料は、下記式(3)で表されるホスト 材料を含むことを特徴とする。

[0056]

10

30

 $Ra - Ar^{1} - Ar^{2} - Rb$ (3)

[0057]

前記式(3)中、Ra、Ar¹は、置換または無置換のナフタレン環である。

R b は、置換または無置換の、フェナントレン環、トリフェニレン環、ベンゾフェナン トレン環、ジベンゾフェナントレン環、ベンゾトリフェニレン環、フルオランテン環、ベ ンゾクリセン環およびピセン環から選択される縮合芳香族炭化水素基を表す。

Ar²は、置換または無置換の、ベンゼン環、ナフタレン環、クリセン環、フルオラン テン環、トリフェニレン環、ベンゾフェナントレン環、ジベンゾフェナントレン環、ベン ゾトリフェニレン環、ベンゾクリセン環、ベンゾ「bヿフルオランテン環およびピセン環 から選択される縮合芳香族炭化水素基を表す。

また、Ra,Rbの置換基はアリール基でなく、Ar゚またはAr゚がナフタレン環の 場合はAr¹およびAr²の置換基はアリール基でない。

Ar²がベンゼン環の場合、それぞれAr²の両側に結合する環構造の骨格を同一とし ないことによって、安定性に優れた有機エレクトロルミネッセンス素子用薄膜が形成でき 、赤色燐光材料と共に用いた場合、高効率、長寿命な素子を構築できる。

[0058]

前記式(3)中、Ra、Rb、Ar¹またはAr²が1つまたは複数の置換基を有する 場合、前記置換基は、炭素数1~20のアルキル基、炭素数1~20のハロアルキル基、 炭素数5~18のシクロアルキル基、炭素数3~20のシリル基、シアノ基またはハロゲ ン原子であることが好ましい。Ar¹またはAr²の置換基はさらに炭素数6~22のア リール基でもよい。

置換基が窒素原子を有さないので、より一層、ホスト材料の安定性を高くし素子寿命を 長くすることができる。

なお、Ar¹、Ar²の複数のアリール置換基の数は好ましくはAr¹,Ar²それぞ れ2つ以下であり、それぞれ1つ以下がより好ましい。

[0059]

また、本発明の有機エレクトロルミネッセンス素子用材料は、下記式(4)で表される ホスト材料を含むことを特徴とする。

[0060]

【化3】

Rb Rá

[0061]

前記式(4)中、Ra,Rbは、置換または無置換の、フェナントレン環、トリフェニ レン環、ベンゾフェナントレン環、ジベンゾフェナントレン環、ベンゾトリフェニレン環 、フルオランテン環、ベンゾ「blフルオランテン環、ベンゾクリセン環およびピセン環 から選択される縮合芳香族炭化水素基を表す。

また、Ra,Rb,Ar¹またはAr²の置換基はアリール基でない。

このように、環構造を選択することによって、安定性に優れた有機エレクトロルミネッ センス素子用薄膜が形成でき、赤色燐光材料と共に用いた場合、高効率、長寿命な素子を 構築できる。

10

20

30

[0062]

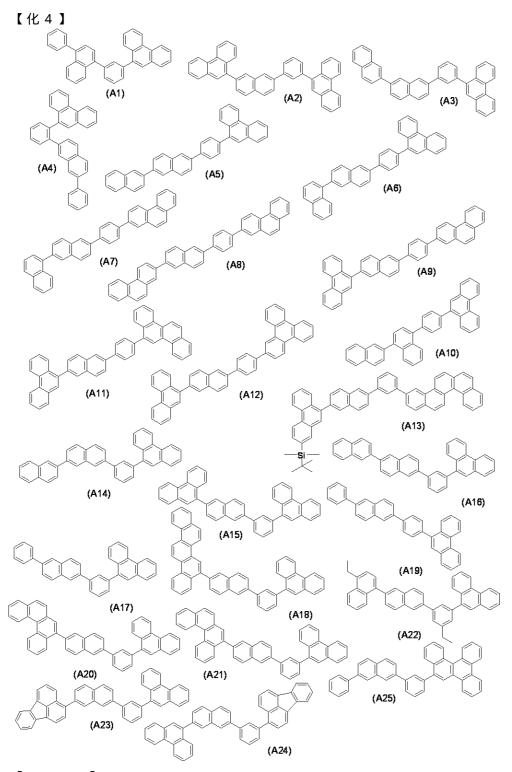
前記式(4)中、Ra、Rbまたはナフタレン環が1つまたは複数の置換基を有する場合、前記置換基は、炭素数1~20のアルキル基、炭素数1~20のハロアルキル基、炭素数5~18のシクロアルキル基、炭素数3~20のシリル基、シアノ基またはハロゲン原子であることが好ましい。

置換基が窒素原子を有さないので、より一層、ホスト材料の安定性を高くし素子寿命を 長くすることができる。

[0063]

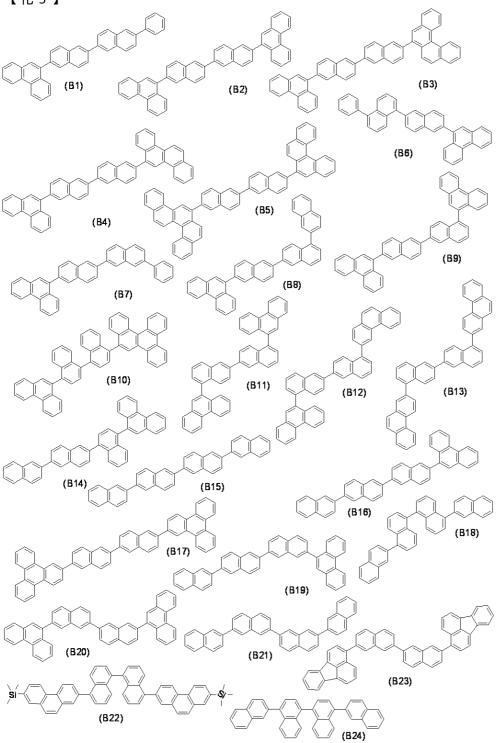
本発明において、前記ホスト材料の励起3重項エネルギーは、2.0 e V 以上2.8 e V 以下であることが好ましい。

励起3重項エネルギーが2.0 e V以上であれば、520 n m以上720 n m以下で発 光する燐光発光材料へのエネルギー移動が可能である。2.8 e V以下であれば、赤色燐 光ドーパントに対してエネルギーギャップの差が大きすぎて発光が効率的に行われないと いう問題を回避できる。

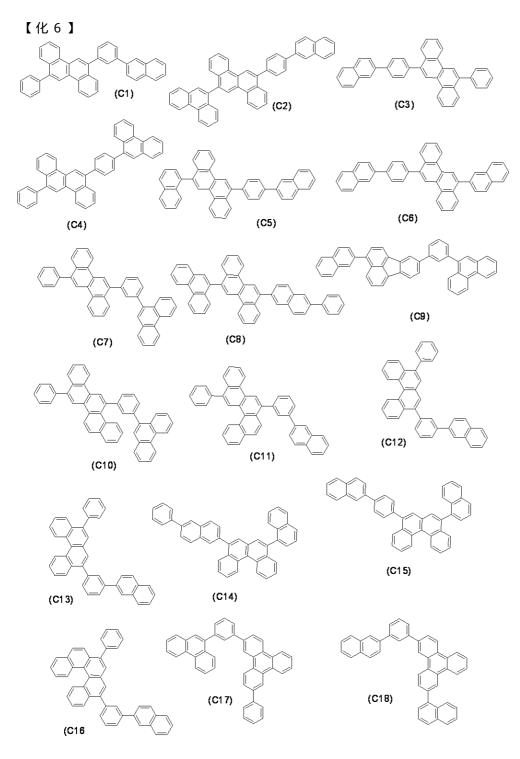

なお、ホスト材料の励起3重項エネルギーは、2.0eV以上2.7eV以下であることがより好ましく、2.1eV以上2.7eV以下であることがさらに好ましい。

[0064]

このような本発明のホスト材料用化合物としては、例えば、次の化合物が具体例として 挙げられる。

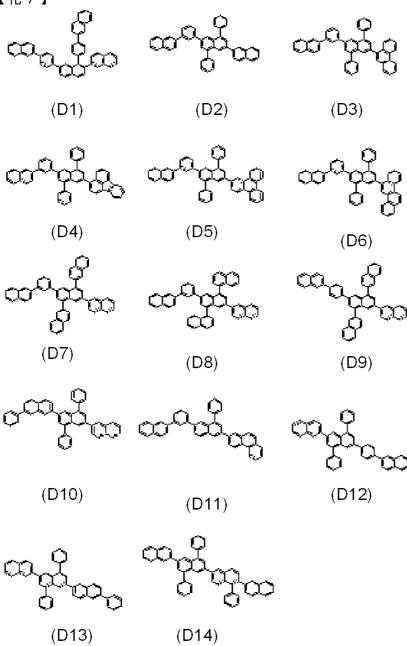

[0065]

20



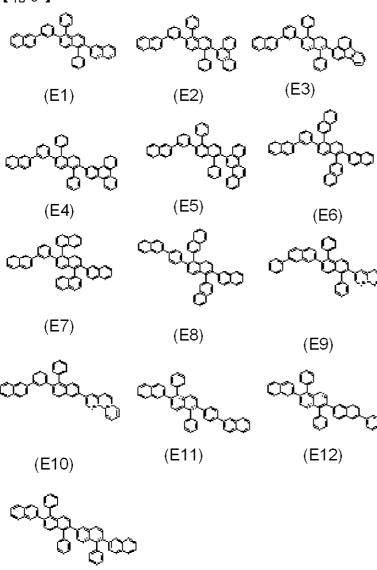
[0 0 6 6]

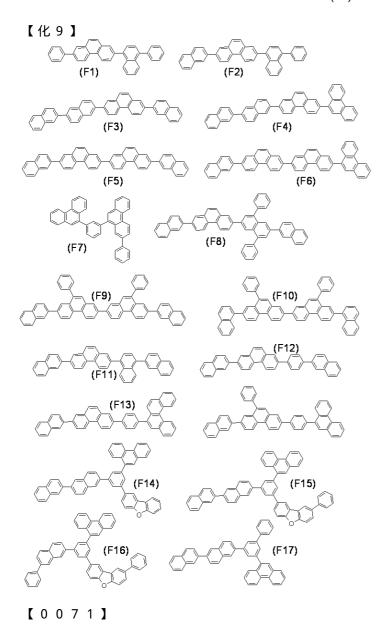
【化5】



[0 0 6 7]

[0068]




[0069]

【化8】

(E13)

[0070]

【化10】

[0072]

本発明において、前記燐光発光材料は、金属錯体を含有し、前記金属錯体は、Ir,Pt,Os,Au,Cu,ReおよびRuから選択される金属原子と、配位子と、を有することが好ましい。特に、前記配位子は、オルトメタル結合を有することが好ましい。

燐光量子収率が高く、発光素子の外部量子効率をより向上させることができるという点で、イリジウム(Ir),オスミウム(Os)および白金(Pt)から選ばれる金属を含有する化合物であると好ましく、イリジウム錯体、オスミウム錯体、白金錯体等の金属錯体であるとさらに好ましく、中でもイリジウム錯体及び白金錯体がより好ましく、オルトメタル化イリジウム錯体が最も好ましい。

好ましい金属錯体の具体例を、以下に示す。

[0073]

【化11】

[0074]

【化12】

[0075]

【化13】

[0076]

本発明では、前記発光層に含まれる前記燐光発光材料のうち少なくとも 1 種は、発光波長の極大値が 5 2 0 n m以上 7 2 0 n m以下であることが好ましい。

発光波長の極大値は、570nm以上720nm以下であることがより好ましい。

このような発光波長の燐光発光材料(燐光ドーパント)を、本発明で用いる特定のホスト材料にドープして発光層を構成することにより、高効率な有機エレクトロルミネッセンス素子とできる。

[0077]

本発明の有機エレクトロルミネッセンス素子は、正孔輸送層(正孔注入層)を有し、該

20

30

50

正孔輸送層(正孔注入層)が本発明の有機エレクトロルミネッセンス素子用材料を含有しても好ましく、本発明の有機エレクトロルミネッセンス素子が電子輸送層及び/又は正孔障壁層を有し、該電子輸送層及び/又は正孔障壁層が、本発明の有機エレクトロルミネッセンス素子用材料を含有しても好ましい。

[0078]

本発明の有機エレクトロルミネッセンス素子は、陰極と有機薄膜層との界面領域に還元性ドーパントを有することも好ましい。

このような構成によれば、有機エレクトロルミネッセンス素子における発光輝度の向上 や長寿命化が図られる。

還元性ドーパントとしては、アルカリ金属、アルカリ金属錯体、アルカリ金属化合物、アルカリ土類金属、アルカリ土類金属は合物、希土類金属、希土類金属錯体、及び希土類金属化合物等から選ばれた少なくとも一種類が挙げられる。

[0079]

アルカリ金属としては、Na(仕事関数:2.36eV)、K(仕事関数:2.28eV)、Rb(仕事関数:2.16eV)、Cs(仕事関数:1.95eV)等が挙げられ、仕事関数が2.9eV以下のものが特に好ましい。これらのうち好ましくはK、Rb、Cs、さらに好ましくはRb又はCsであり、最も好ましくはCsである。

アルカリ土類金属としては、 C a (仕事関数: 2 . 9 e V)、 S r (仕事関数: 2 . 0 ~ 2 . 5 e V)、 B a (仕事関数: 2 . 5 2 e V)等が挙げられ、仕事関数が 2 . 9 e V 以下のものが特に好ましい。

希土類金属としては、Sc、Y、Ce、Tb、Yb等が挙げられ、仕事関数が2.9e V以下のものが特に好ましい。

以上の金属のうち好ましい金属は、特に還元能力が高く、電子注入域への比較的少量の添加により、有機エレクトロルミネッセンス素子における発光輝度の向上や長寿命化が可能である。

[0800]

アルカリ金属化合物としては、LiュO、CsュO、KュO等のアルカリ酸化物、LiF、NaF、CsF、KF等のアルカリハロゲン化物等が挙げられ、LiF、LiュO、NaFが好ましい。

アルカリ土類金属化合物としては、BaO、SrO、CaO及びこれらを混合したBaェSriO(0<x<1)、BaェCaiO(0<x<1)等が挙げられ、BaO、Sr O、CaOが好ましい。

希土類金属化合物としては、YbF₃、ScF₃、ScO₃、Y₂O₃、Ce₂O₃、GdF₃ 、TbF₃等が挙げられ、YbF₃、ScF₃、TbF₃が好ましい。

[0081]

アルカリ金属錯体、アルカリ土類金属錯体、希土類金属錯体としては、それぞれ金属イオンとしてアルカリ金属イオン、アルカリ土類金属イオン、希土類金属イオンの少なくとも一つ含有するものであれば特に限定はない。また、配位子にはキノリノール、ベンゾキノリノール、アクリジノール、フェナントリジノール、ヒドロキシフェニルオキサゾール、ヒドロキシフェニルチアゾール、ヒドロキシジアリールオキサジアゾール、ヒドロキシジアリールオキサジアゾール、ヒドロキシジアリールチアジアゾール、ヒドロキシフェニルピリジン、ヒドロキシフェニルベンゾイミダゾール、ヒドロキシベンゾトリアゾール、ヒドロキシフルボラン、ビピリジル、フェナントロリン、フタロシアニン、ポルフィリン、シクロペンタジエン、 ージケトン類、アゾメチン類、及びそれらの誘導体などが好ましいが、これらに限定されるものではない

[0082]

還元性ドーパントの添加形態としては、界面領域に層状又は島状に形成すると好ましい。形成方法としては、抵抗加熱蒸着法により還元性ドーパントを蒸着しながら、界面領域を形成する発光材料や電子注入材料である有機物を同時に蒸着させ、有機物中に還元ドーパントを分散する方法が好ましい。分散濃度はモル比で有機物:還元性ドーパント = 10

20

40

50

0:1~1:100、好ましくは5:1~1:5である。

還元性ドーパントを層状に形成する場合は、界面の有機層である発光材料や電子注入材料を層状に形成した後に、還元ドーパントを単独で抵抗加熱蒸着法により蒸着し、好ましくは層の厚み 0 . 1 ~ 1 5 n m で形成する。

還元性ドーパントを島状に形成する場合は、界面の有機層である発光材料や電子注入材料を島状に形成した後に、還元ドーパントを単独で抵抗加熱蒸着法により蒸着し、好ましくは島の厚み0.05~1nmで形成する。

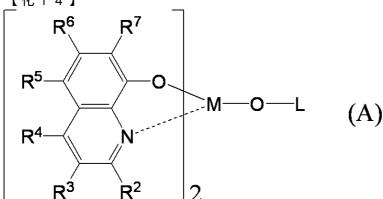
また、本発明の有機エレクトロルミネッセンス素子における、主成分と還元性ドーパントの割合としては、モル比で主成分:還元性ドーパント = 5 : 1 ~ 1 : 5 であると好ましく、2 : 1 ~ 1 : 2 であるとさらに好ましい。

[0083]

本発明の有機エレクトロルミネッセンス素子は、発光層と陰極との間に電子注入層を有し、前記電子注入層は、含窒素環誘導体を主成分として含有することが好ましい。ここで、電子注入層は電子輸送層として機能する層であってもよい。

なお、「主成分として」とは、電子注入層が50質量%以上の含窒素環誘導体を含有していることを意味する。

電子注入層又は電子輸送層は、発光層への電子の注入を助ける層であって、電子移動度が大きい。電子注入層はエネルギーレベルの急な変化を緩和する等、エネルギーレベルを調整するために設ける。


電子注入層に用いる電子輸送性材料としては、分子内にヘテロ原子を1個以上含有する 芳香族ヘテロ環化合物が好ましく用いられ、特に含窒素環誘導体が好ましい。また、含窒 素環誘導体としては、含窒素6員環もしくは5員環骨格を有する芳香族環、または含窒素 6員環もしくは5員環骨格を有する縮合芳香族環化合物が好ましい。

[0084]

この含窒素環誘導体としては、例えば、下記式(A)で表される含窒素環金属キレート 錯体が好ましい。

[0085]

【化14】

[0086]

 $R^{2} \sim R^{3}$ は、それぞれ独立に、水素原子、ハロゲン原子、オキシ基、アミノ基、炭素数 1 ~ 4 0 の炭化水素基、アルコキシ基、アリールオキシ基、アルコキシカルボニル基、または、複素環基であり、これらは置換されていてもよい。

ハロゲン原子としては、例えば、フッ素、塩素、臭素、ヨウ素等が挙げられる。また、 置換されていてもよいアミノ基の例としては、アルキルアミノ基、アリールアミノ基、ア ラルキルアミノ基が挙げられる。

炭素数 1 ~ 4 0 の炭化水素基としては、置換もしくは無置換のアルキル基、アルケニル基、シクロアルキル基、アリール基、アラルキル基等が挙げられる。

[0087]

アルキル基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、n

20

30

40

50

- ブチル基、 s - ブチル基、イソブチル基、 t - ブチル基、 n - ペンチル基、 n - ヘキシ ル基、n-ヘプチル基、n-オクチル基、n-ノニル基、n-デシル基、n-ウンデシル 基、n-ドデシル基、n-トリデシル基、n-テトラデシル基、n-ペンタデシル基、n - ヘキサデシル基、 n - ヘプタデシル基、 n - オクタデシル基、ネオペンチル基、 1 - メ チルペンチル基、2・メチルペンチル基、1・ペンチルヘキシル基、1・ブチルペンチル 基、1-ヘプチルオクチル基、3-メチルペンチル基、ヒドロキシメチル基、1-ヒドロ キシエチル基、2-ヒドロキシエチル基、2-ヒドロキシイソブチル基、1,2-ジヒド ロキシエチル基、1,3-ジヒドロキシイソプロピル基、2,3-ジヒドロキシ・t-ブ チル基、1,2,3-トリヒドロキシプロピル基、クロロメチル基、1-クロロエチル基 、2-クロロエチル基、2-クロロイソブチル基、1,2-ジクロロエチル基、1,3-ジクロロイソプロピル基、 2 , 3 ‐ ジクロロ‐ t ‐ ブチル基、 1 , 2 , 3 ‐ トリクロロプ ロピル基、ブロモメチル基、1-ブロモエチル基、2-ブロモエチル基、2-ブロモイソ ブチル基、1,2‐ジブロモエチル基、1,3‐ジブロモイソプロピル基、2,3‐ジブ ロモ・t‐ブチル基、1,2,3‐トリブロモプロピル基、ヨードメチル基、1‐ヨード エチル基、2-ヨードエチル基、2-ヨードイソブチル基、1,2-ジョードエチル基、 1 , 3 - ジヨードイソプロピル基、 2 , 3 - ジヨード - t - ブチル基、 1 , 2 , 3 - トリ ヨードプロピル基、アミノメチル基、1-アミノエチル基、2-アミノエチル基、2-ア ミノイソブチル基、1,2-ジアミノエチル基、1,3-ジアミノイソプロピル基、2, 3 - ジアミノ - t - ブチル基、1 , 2 , 3 - トリアミノプロピル基、シアノメチル基、1 - シアノエチル基、2 - シアノエチル基、2 - シアノイソプチル基、1 , 2 - ジシアノエ チル基、1,3-ジシアノイソプロピル基、2,3-ジシアノ-t-ブチル基、1,2, 3 - トリシアノプロピル基、ニトロメチル基、1 - ニトロエチル基、2 - ニトロエチル基 、 1 , 2 - ジニトロエチル基、 2 , 3 - ジニトロ - t - プチル基、 1 , 2 , 3 - トリニト ロプロピル基等が挙げられる。

[0088]

これらの中でも好ましくは、メチル基、エチル基、プロピル基、イソプロピル基、 n - ブチル基、 s - ブチル基、イソブチル基、 t - ブチル基、 n - ペンチル基、 n - ヘキシル基、 n - ヘプチル基、 n - オクチル基、 n - ノニル基、 n - デシル基、 n - ウンデシル基、 n - ドデシル基、 n - トリデシル基、 n - テトラデシル基、 n - ペンタデシル基、 n - ヘナザジル基、 n - ペンタデシル基、 n - オクタデシル基、 ネオペンチル基、 1 - メチルペンチル基、 1 - ペンチルヘキシル基、 または、 1 - ブチルペンチル基、 1 - ヘプチルオクチル基である。

[0089]

アルケニル基としては、例えば、ビニル基、アリル基、1- ブテニル基、2- ブテニル基、3- ブテニル基、1, 3- ブタンジエニル基、1- メチルビニル基、スチリル基、2- ジフェニルビニル基、1- メチルアリル基、1, 1- ジメチルアリル基、1- フェニルアリル基、1- フェニルアリル基、1- フェニルアリル基、1- フェニルアリル基、1- フェニルアリル基、1- フェニルアリル基、1- フェニル・1- ブテニル基、1- フェニル・1- ブテニル基、1- ブテニル基等が挙げられ、好ましくは、スチリル基、1- フェニルビニル基等が挙げられる。

[0090]

シクロアルキル基としては、例えば、シクロペンチル基、シクロヘキシル基、シクロオクチル基、3,5-テトラメチルシクロヘキシル基等が挙げられ、シクロヘキシル基、シクロオクチル基、および、3,5-テトラメチルシクロヘキシル基が好ましい。

アルコキシ基は - OYと表される基である。Yの具体例としては、前記アルキル基で説明したものと同様のものが挙げられ、好ましい例も同様である。

[0091]

非縮合アリール基としては、例えば、フェニル基、ビフェニル - 2 - イル基、ビフェニル - 3 - イル基、ビフェニル - 4 - イル基、 p - ターフェニル - 4 - イル基、 p - ターフ

20

30

40

50

ェニル - 3 - イル基、 p - ターフェニル - 2 - イル基、 m - ターフェニル - 4 - イル基、 m - ターフェニル - 3 - イル基、 m - ターフェニル - 2 - イル基、 o - トリル基、 m - トリル基、 p - (2 - フェニルプロピル)フェニル基、 4 ' - メチルビフェニルイル基、 4 " - ナーブチル - p - ターフェニル - 4 - イル基、 o - クメニル基、 m - クメニル基、 p - クメニル基、 2 , 3 - キシリル基、 3 , 4 - キシリル基、 2 , 5 - キシリル基、 メシチル基、 および、 m - クウォーターフェニル基等が挙げられる。

[0092]

これらの中でも好ましくは、フェニル基、ビフェニル - 2 - イル基、ビフェニル - 3 - イル基、ビフェニル - 4 - イル基、m - ターフェニル - 4 - イル基、m - ターフェニル - 3 - イル基、m - ターフェニル - 2 - イル基、p - トリル基、3 , 4 - キシリル基、m - クウォーターフェニル - 2 - イル基である。

縮合アリール基としては、例えば、1-ナフチル基、2-ナフチル基が挙げられる。

[0093]

複素環基は、単環又は縮合環であり、好ましくは核炭素数1~20、より好ましくは核炭素数1~12、さらに好ましくは核炭素数2~10の複素環基であり、窒素原子、酸素原子、硫黄原子、セレン原子の少なくとも一つのヘテロ原子を含む芳香族複素である。この複素環基の例としては、例えば、ピロリジン、ピペリジン、ピペラジン、モルフォリン、チオフェン、セレノフェン、フラン、ピロール、イミダゾール、ピラゾール、ピリジン、ピリダジン、トリアゾール、トリアジン、インドール、インダゾール、プリン、チアゾリン、チアゾール、チアジアゾール、オキサゾリン、オーリン、オーリン、カリジン、ナフチリジン、ナフチロリン、オーナジリン、デーリン、プテリジン、アクリジン、フェナントロリン、インゾール、ベンゾオキサゾール、ベンゾチール、ベンゾール、ベンゾール、ベンゾール、ベンゾール、グリリミジン、ピリジン、ピリジン、ピリミジン、ピリジン、ピリミジン、ピリジン、ピリミジン、ピリジン、カルがジン、トリアジン、キノリン、フタラジン、ナフチリジン、キノキサリン、キナゾリンであり、より好ましくはフラン、チオフェン、ピリジン、および、キノリンから誘導される基であり、さらに好ましくはキノリニル基である。

[0094]

アラルキル基としては、例えば、ベンジル基、1 - フェニルエチル基、2 - フェニルエチル基、1 - フェニルイソプロピル基、2 - フェニルイソプロピル基、フェニル・t - ブチル基、1 - フェニルイソプロピル基、2 - ナフチルエチル基、1 - ナフチルイソプロピル基、2 - ナフチルイソプロピル基、 - ナフチルメチル基、1 - ナフチルエチル基、1 - ナフチルエチルメチル基、1 - ナフチルエチル基、1 - ナフチルイソプロピル基、 - ナフチルイソプロピル基、 - ナフチルイソプロピル基、 - ナフチルイソプロピル基、 - ナフチルイソプロピル基、 - ナフチルイソジル基、 - カロロベンジル基、 - アミノベンジル基、 - カロロベンジル基、 - アミノベンジル基、 - カロロベンジル基、 - カロロ・ジル基、 - カロロベンジル基、 - カロロ・シベンジル基、 - カロロ・シアノベンジル基、 - カロロ・フェニルイソプロピル基等が挙げられる。

[0095]

これらの中でも好ましくは、ベンジル基、 p - シアノベンジル基、 m - シアノベンジル基、 o - シアノベンジル基、 1 - フェニルエチル基、 2 - フェニルエチル基、 1 - フェニルイソプロピル基、 2 - フェニルイソプロピル基である。

[0096]

アリールオキシ基は、-OY'と表され、Y'の例としてはフェニル基、1-ナフチル

20

30

40

50

基、2 - ナフチル基、1 - アントリル基、2 - アントリル基、9 - アントリル基、1 - フェナントリル基、2 - フェナントリル基、3 - フェナントリル基、4 - フェナントリル基、9 - ナフタセニル基、9 - ナフタセニル基、9 - ナフタセニル基、9 - ナフタセニル基、1 - ピレニル基、2 - ピレニル基、2 - ビフェニルイル基、3 - ビフェニルイル基、4 - ビフェニルイル基、p - ターフェニル - 4 - イル基、p - ターフェニル - 3 - イル基、p - ターフェニル - 2 - イル基、m - ターフェニル - 4 - イル基、m - ターフェニル - 3 - イル基、m - ターフェニル - 2 - イル基、0 - トリル基、m - トリル基、p - トリル基、p - t - ブチルフェニル基、p - (2 - フェニルプロピル)フェニル基、3 - メチル - 2 - ナフチル基、4 - メチル - 1 - ナフチル基、4 - メチル - 1 - アントリル基、4 ' - メチルビフェニルイル基、4 " - t - ブチル - p - ターフェニル - 4 - イル基等が挙げられる。

[0097]

アリールオキシ基のうちヘテロアリールオキシ基は、 - OZ'と表され、Z'の例とし ては2-ピロリル基、3-ピロリル基、ピラジニル基、2-ピリジニル基、3-ピリジニ ル基、4-ピリジニル基、2-インドリル基、3-インドリル基、4-インドリル基、5 - インドリル基、6 - インドリル基、7 - インドリル基、1 - イソインドリル基、3 - イ ソインドリル基、4-イソインドリル基、5-イソインドリル基、6-イソインドリル基 、7.イソインドリル基、2.フリル基、3.フリル基、2.ベンゾフラニル基、3.ベ ンゾフラニル基、4‐ベンゾフラニル基、5‐ベンゾフラニル基、6‐ベンゾフラニル基 、7.ベンゾフラニル基、1.イソベンゾフラニル基、3.イソベンゾフラニル基、4. イソベンゾフラニル基、5.イソベンゾフラニル基、6.イソベンゾフラニル基、7.イ ソベンゾフラニル基、2-キノリル基、3-キノリル基、4-キノリル基、5-キノリル 基、6-キノリル基、7-キノリル基、8-キノリル基、1-イソキノリル基、3-イソ キノリル基、4-イソキノリル基、5-イソキノリル基、6-イソキノリル基、7-イソ キノリル基、8-イソキノリル基、2-キノキサリニル基、5-キノキサリニル基、6-キノキサリニル基、1・カルバゾリル基、2・カルバゾリル基、3・カルバゾリル基、4 - カルバゾリル基、 1 - フェナンスリジニル基、 2 - フェナンスリジニル基、 3 - フェナ ンスリジニル基、4-フェナンスリジニル基、6-フェナンスリジニル基、7-フェナン スリジニル基、8-フェナンスリジニル基、9-フェナンスリジニル基、10-フェナン スリジニル基、1-アクリジニル基、2-アクリジニル基、3-アクリジニル基、4-ア クリジニル基、9-アクリジニル基、1,7-フェナンスロリン-2-イル基、1,7-フェナンスロリン・3・イル基、1,7・フェナンスロリン・4・イル基、1,7・フェ ナンスロリン・5 - イル基、1,7-フェナンスロリン・6 - イル基、1,7-フェナン スロリン・8・イル基、1,7・フェナンスロリン・9・イル基、1,7・フェナンスロ リン - 1 0 - イル基、 1 , 8 - フェナンスロリン - 2 - イル基、 1 , 8 - フェナンスロリ ン - 3 - イル基、1,8-フェナンスロリン - 4 - イル基、1,8-フェナンスロリン -5 - イル基、1,8-フェナンスロリン-6-イル基、1,8-フェナンスロリン-7-イル基、1,8-フェナンスロリン-9-イル基、1,8-フェナンスロリン-10-イ ル基、1,9-フェナンスロリン-2-イル基、1,9-フェナンスロリン-3-イル基 、1,9-フェナンスロリン-4-イル基、1,9-フェナンスロリン-5-イル基、1 , 9 - フェナンスロリン - 6 - イル基、 1 , 9 - フェナンスロリン - 7 - イル基、 1 , 9 - フェナンスロリン - 8 - イル基、 1 , 9 - フェナンスロリン - 1 0 - イル基、 1 , 1 0 - フェナンスロリン - 2 - イル基、1 , 1 0 - フェナンスロリン - 3 - イル基、1 , 1 0 - フェナンスロリン - 4 - イル基、 1 , 1 0 - フェナンスロリン - 5 - イル基、 2 , 9 -フェナンスロリン・1・イル基、2,9・フェナンスロリン・3・イル基、2,9・フェ ナンスロリン・4 - イル基、2,9-フェナンスロリン・5-イル基、2,9-フェナン スロリン・6・イル基、2,9・フェナンスロリン・7・イル基、2,9・フェナンスロ リン・8-イル基、2,9-フェナンスロリン・10-イル基、2,8-フェナンスロリ ン - 1 - イル基、 2 , 8 - フェナンスロリン - 3 - イル基、 2 , 8 - フェナンスロリン -4 - イル基、 2 , 8 - フェナンスロリン - 5 - イル基、 2 , 8 - フェナンスロリン - 6 -

イル基、2,8-フェナンスロリン-7-イル基、2,8-フェナンスロリン-9-イル 基、2,8-フェナンスロリン-10-イル基、2,7-フェナンスロリン-1-イル基 、 2 , 7 - フェナンスロリン - 3 - イル基、 2 , 7 - フェナンスロリン - 4 - イル基、 2 ,7-フェナンスロリン-5-イル基、2,7-フェナンスロリン-6-イル基、2,7 - フェナンスロリン - 8 - イル基、 2 , 7 - フェナンスロリン - 9 - イル基、 2 , 7 - フ ェナンスロリン・10・イル基、1・フェナジニル基、2・フェナジニル基、1・フェノ チアジニル基、2.フェノチアジニル基、3.フェノチアジニル基、4.フェノチアジニ ル基、1-フェノキサジニル基、2-フェノキサジニル基、3-フェノキサジニル基、4 - フェノキサジニル基、2 - オキサゾリル基、4 - オキサゾリル基、5 - オキサゾリル基 、2・オキサジアゾリル基、5・オキサジアゾリル基、3・フラザニル基、2・チエニル 基、3-チエニル基、2-メチルピロール-1-イル基、2-メチルピロール-3-イル 基、2-メチルピロール-4-イル基、2-メチルピロール-5-イル基、3-メチルピ ロール・1 - イル基、3 - メチルピロール・2 - イル基、3 - メチルピロール・4 - イル 基、3-メチルピロール-5-イル基、2-t-ブチルピロール-4-イル基、3-(2 - フェニルプロピル)ピロール - 1 - イル基、2 - メチル - 1 - インドリル基、4 - メチ ル - 1 - インドリル基、2 - メチル - 3 - インドリル基、4 - メチル - 3 - インドリル基 、2-t-プチル1-インドリル基、4-t-ブチル1-インドリル基、2-t-ブチル 3-インドリル基、4-t-ブチル3-インドリル基等が挙げられる。

[0098]

アルコキシカルボニル基は - COOY ' と表され、Y ' の例としては前記アルキル基と同様のものが挙げられる。

[0099]

アルキルアミノ基およびアラルキルアミノ基は・NQ'Q'と表される。Q'及びQ'の具体例としては、それぞれ独立に、前記アルキル基、前記アラルキル基で説明したものと同様のものが挙げられ、好ましい例も同様である。Q'およびQ'の一方は水素原子であってもよい。

アリールアミノ基は - NAr 1 Ar 2 と表され、Ar 1 およびAr 2 の具体例としては、それぞれ独立に前記非縮合アリール基および縮合アリールで説明した基と同様である。Ar 1 およびAr 2 の一方は水素原子であってもよい。

[0100]

Mは、アルミニウム(A 1) 、ガリウム(G a) 又はインジウム(I n) であり、I n であると好ましい。

上記式(A)のLは、下記式(A')又は(A'')で表される基である。

[0101]

10

20

$$R^{14}$$
 R^{15}
 R^{16}
 R^{17}
 R^{18}
 R^{19}
 R^{20}
 R^{20}

[0102]

前記式中、 $R^3 \sim R^3$ は、それぞれ独立に、水素原子又は置換もしくは無置換の炭素数 $1 \sim 40$ の炭化水素基であり、互いに隣接する基が環状構造を形成していてもよい。また、 $R^3 \sim R^3$ は、それぞれ独立に、水素原子又は置換もしくは無置換の炭素数 $1 \sim 40$ の 炭化水素基であり、互いに隣接する基が環状構造を形成していてもよい。

[0103]

前記式(A')及び式(A'')のR¹~ R¹及びR¹~ R¹が示す炭素数 1 ~ 4 0 の 炭化水素基としては、R¹~ R¹の具体例と同様のものが挙げられる。

[0104]

前記式(A)で表される含窒素環金属キレート錯体の具体例を以下に示すが、これら例示化合物に限定されるものではない。

[0105]

30

[0106]

【化17】

[0107]

【化18】

$$\begin{bmatrix} A_{3} & A_{1} & A_{2} & A_{3} & A_{4} & A_{5} & A_$$

[0108]

本発明では、電子注入層や電子輸送層は、含窒素複素環誘導体を含むことが好ましい。 【 0 1 0 9 】

電子注入層又は電子輸送層は、発光層への電子の注入を助ける層であって、電子移動度が大きい。電子注入層はエネルギーレベルの急な変化を緩和する等、エネルギーレベルを調整するために設ける。電子注入層又は電子輸送層に用いられる材料としては、8・ヒドロキシキノリン又はその誘導体の金属錯体、オキサジアゾール誘導体、含窒素複素環誘導体が好適である。上記8・ヒドロキシキノリン又はその誘導体の金属錯体の具体例としては、オキシン(一般に8・キノリノール又は8・ヒドロキシキノリン)のキレートを含む金属キレートオキシノイド化合物、例えばトリス(8・キノリノール)アルミニウムを用いることができる。そして、オキサジアゾール誘導体としては、下記のものを挙げることができる。

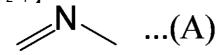
[0110]

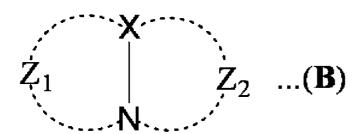
[0111]

前記式中、A r^{17} 、A r^{18} 、A r^{19} 、A r^{21} 、A r^{22} 及びA r^{25} は、それぞれ置換基を有する若しくは有しないアリール基を示し、A r^{17} とA r^{18} 、A r^{19} とA r^{21} 、A r^{22} とA r^{25} は、たがいに同一でも異なっていてもよい。A r^{20} 、A r^{23} 及びA r^{24} は、それぞれ置換基を有する若しくは有しないアリーレン基を示し、A r^{23} とA r^{24} は、たがいに同一でも異なっていてもよい。

また、アリーレン基としては、フェニレン基、ナフチレン基、ビフェニレン基、アントラニレン基、ペリレニレン基、ピレニレン基などが挙げられる。そして、これらへの置換基としては炭素数 1 ~ 1 0 のアルキル基、炭素数 1 ~ 1 0 のアルコキシ基またはシアノ基等が挙げられる。この電子伝達化合物は、薄膜形成性の良好なものが好ましく用いられる。そして、これら電子伝達性化合物の具体例としては、下記のものを挙げることができる

[0112]

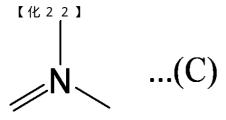

(35)


[0113]

含窒素複素環誘導体としては、以下の一般式を有する有機化合物からなる含窒素複素環 誘導体であって、金属錯体でない含窒素化合物が挙げられる。例えば、(A)に示す骨格 を含有する5員環もしくは6員環や、(B)に示す構造のものが挙げられる。

[0114]

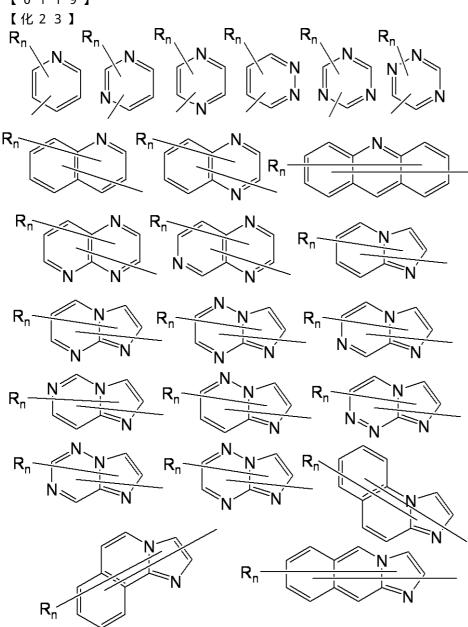
【化21】



[0115]

前記(B)中、X は炭素原子もしくは窒素原子を表す。 Z_1 ならびに Z_2 は、それぞれ独立に含窒素ヘテロ環を形成可能な原子群を表す。

[0116]


[0117]

好ましくは、5員環もしくは6員環からなる含窒素芳香多環族を有する有機化合物。さらには、このような複数窒素原子を有する含窒素芳香多環族の場合は、上記(A)と(B)もしくは(A)と(C)を組み合わせた骨格を有する含窒素芳香多環有機化合物。

[0118]

含窒素有機化合物の含窒素基は、例えば、以下の一般式で表される含窒素複素環基から 選択される。

[0119]

[0120]

前記各式中、 R は、炭素数 6 ~ 4 0 のアリール基、炭素数 3 ~ 4 0 のヘテロアリール基、炭素数 1 ~ 2 0 のアルキル基又は炭素数 1 ~ 2 0 のアルコキシ基であり、 n は 0 ~ 5 の

20

50

整数であり、nが2以上の整数であるとき、複数のRは互いに同一又は異なっていてもよ い。

[0121]

さらに、好ましい具体的な化合物として、下記式で表される含窒素複素環誘導体が挙げ られる。

[0122]

【化24】

-I ¹—Ar¹—Ar²

[0123]

前記式中、HArは、置換基を有していても良い炭素数3~40の含窒素複素環であり 、L¹は単結合、置換基を有していてもよい炭素数6~40のアリーレン基又は置換基を 有していてもよい炭素数3~40のヘテロアリーレン基であり、Ar¹は置換基を有して いても良い炭素数 6~40の2価の芳香族炭化水素基であり、Ar²は置換基を有してい ても良い炭素数6~40のアリール基又は置換基を有していてもよい炭素数3~40のへ テロアリール基である。

[0124]

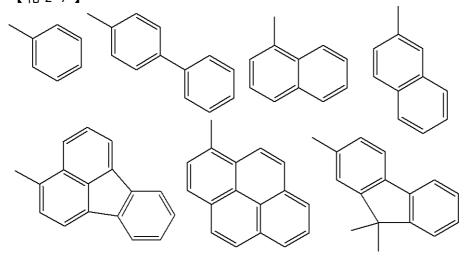
HArは、例えば、下記の群から選択される。

[0125]

[0126]

L¹は、例えば、下記の群から選択される。

[0127]


【化26】

[0128]

Ar²は、例えば、下記の群から選択される。

[0129]

【化27】

[0130]

Ar¹は、例えば、下記のアリールアントラニル基から選択される。

[0131]

[代28]
$$R^{1}$$
 R^{2}
 R^{3}
 R^{4}
 R^{5}
 R^{6}
 R^{6}
 R^{10}
 R^{10}
 R^{10}
 R^{11}
 R^{13}
 R^{12}

[0132]

前記式中、 $R^1 \sim R^{14}$ は、それぞれ独立して、水素原子、ハロゲン原子、炭素数 $1 \sim 20$ のアルキル基、炭素数 $1 \sim 20$ のアルコキシ基、炭素数 $1 \sim 20$ のアルコキシ基、置換基を有していてもよい炭素数 $1 \sim 20$ 0のアリール基又は炭素数 $1 \sim 20$ 0のヘテロアリール基であり、 $1 \sim 20$ 0のヘテロアリール基であり、 $1 \sim 20$ 0のヘテロアリール基である。

また、上記式で表される A $\, {
m r}^{\, 1}$ において、 $\, {
m R}^{\, 1} \sim \, {
m R}^{\, 8}$ は、いずれも水素原子である含窒素複素環誘導体。

[0133]

この他、下記の化合物(特開平9-3448号公報参照)も好適に用いられる。

[0134]

10

[0135]

前記式中、R₁~R₄は、それぞれ独立に、水素原子、置換もしくは未置換の脂肪族基、置換もしくは未置換の脂肪族式環基、置換もしくは未置換の炭素環式芳香族環基、置換もしくは未置換の複素環基を表し、X₁、X₂は、それぞれ独立に、酸素原子、硫黄原子もしくはジシアノメチレン基を表す。

(39)

[0136]

また、下記の化合物(特開2000・173774号公報参照)も好適に用いられる。

[0137]

【化30】

[0138]

前記式中、 R^1 、 R^2 、 R^3 及び R^4 は互いに同一の又は異なる基であって、下記式で表わされるアリール基である。

[0139]

【化31】

[0140]

前記式中、 R^5 、 R^6 、 R^7 、 R^8 及び R^9 は互いに同一の又は異なる基であって、水素原子、或いはそれらの少なくとも 1 つが飽和または不飽和アルコキシル基、アルキル基、アミノ基又はアルキルアミノ基である。

[0141]

さらに、該含窒素複素環基もしくは含窒素複素環誘導体を含む高分子化合物であっても よい。

[0142]

また、電子輸送層は、下記式(201)~(203)で表される含窒素複素環誘導体の 少なくともいずれか1つを含有することが好ましい。

[0143]

10

$$(R)_{n}$$

$$R^{2}$$

$$(202)$$

$$Ar^{3}$$

$$Ar^3 - L \qquad \cdots \quad (2 \ 0 \ 3)$$

[0144]

前記式(201)~(203)中、Rは、水素原子、置換基を有していてもよい炭素数 6~60のアリール基、置換基を有していてもよいピリジル基、置換基を有していてもよ いキノリル基、置換基を有していてもよい炭素数1~20のアルキル基又は置換基を有し ていてもよい炭素数1~20のアルコキシ基で、nは0~4の整数であり、R¹は、置換 基を有していてもよい炭素数6~60のアリール基、置換基を有していてもよいピリジル 基、置換基を有していてもよいキノリル基、置換基を有していてもよい炭素数1~20の アルキル基又は炭素数1~20のアルコキシ基であり、R²及びR³は、それぞれ独立に 、水素原子、置換基を有していてもよい炭素数6~60のアリール基、置換基を有してい てもよいピリジル基、置換基を有していてもよいキノリル基、置換基を有していてもよい 炭素数1~20のアルキル基又は置換基を有していてもよい炭素数1~20のアルコキシ 基であり、Lは、置換基を有していてもよい炭素数6~60のアリーレン基、置換基を有 していてもよいピリジニレン基、置換基を有していてもよいキノリニレン基又は置換基を 有していてもよいフルオレニレン基であり、Ar¹は、置換基を有していてもよい炭素数 6~60のアリーレン基、置換基を有していてもよいピリジニレン基又は置換基を有して いてもよいキノリニレン基であり、Ar²は、置換基を有していてもよい炭素数6~60 のアリール基、置換基を有していてもよいピリジル基、置換基を有していてもよいキノリ ル基、置換基を有していてもよい炭素数1~20のアルキル基又は置換基を有していても よい炭素数1~20のアルコキシ基である。

 Ar^3 は、置換基を有していてもよい炭素数 $6 \sim 60$ のアリール基、置換基を有していてもよいピリジル基、置換基を有していてもよいキノリル基、置換基を有していてもよい炭素数 $1 \sim 20$ のアルコキシ基、又は $-Ar^1 - Ar^2$ で表される基(Ar^1 及び Ar^2 は、それぞれ前記と同じ)である。

[0145]

なお、前記式(201)~(203)において、Rは、水素原子、置換基を有していて もよい炭素数6~60のアリール基、置換基を有していてもよいピリジル基、置換基を有 30

50

していてもよいキノリル基、置換基を有していてもよい炭素数 1 ~ 2 0 のアルキル基又は 置換基を有していてもよい炭素数 1 ~ 2 0 のアルコキシ基である。

[0146]

前記炭素数 6 ~ 6 0 のアリール基としては、炭素数 6 ~ 4 0 のアリール基が好ましく、 炭素数 6 ~ 2 0 のアリール基がさらに好ましく、具体的には、フェニル基、ナフチル基、 アントリル基、フェナントリル基、ナフタセニル基、クリセニル基、ピレニル基、ビフェニル基、ターフェニル基、トリル基、 t - ブチルフェニル基、(2 - フェニルプロピル) フェニル基、フルオランテニル基、フルオレニル基、スピロビフルオレンからなる 1 価の 基、パーフルオロフェニル基、パーフルオロナフチル基、パーフルオロアントリル基、パーフルオロビフェニル基、 9 - フェニルアントラセンからなる 1 価の基、 9 - (2 ' - ナフチル) アントラセンからなる 1 価の基、 9 - (2 ' - ナフチル) アントラセンからなる 1 価の基、 9 - [4 - (ジフェニルアミノ)フェニル] アントラセンからなる 1 価の基等が挙げられ、フェニル基、ナフチル基、ビフェニル基、ターフェニル基、 9 - (1 0 - フェニル) アントリル基、 9 - [1 0 - (2 ' - ナフチル)] アントリル基等が好ましい。

[0147]

炭素数 1 ~ 2 0 のアルキル基としては、炭素数 1 ~ 6 のアルキル基が好ましく、具体的には、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基等の他、トリフルオロメチル基等のハロアルキル基が挙げられ、炭素数が 3 以上のものは直鎖状、環状又は分岐を有するものでもよい。

炭素数 1 ~ 2 0 のアルコキシ基としては、炭素数 1 ~ 6 のアルコキシ基が好ましく、具体的には、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基等が挙げられ、炭素数が 3 以上のものは直鎖状、環状又は分岐を有するものでもよい。

[0148]

Rの示す各基の置換基としては、ハロゲン原子、置換基を有していてもよい炭素数 1 ~ 2 0 のアルキル基、置換基を有していてもよい炭素数 1 ~ 2 0 のアルコキシ基、置換基を有していてもよい炭素数 6 ~ 4 0 のアリールオキシ基、置換基を有していてもよい炭素数 6 ~ 4 0 のアリール基又は置換基を有していてもよい炭素数 3 ~ 4 0 のヘテロアリール基等が挙げられる。

ハロゲン原子としては、フッ素、塩素、臭素、ヨウ素等が挙げられる。

炭素数1~20のアルキル基、炭素数1~20のアルコキシ基、炭素数6~40のアリール基としては、前記と同様のものが挙げられる。

[0149]

炭素数6~40のアリールオキシ基としては、例えば、フェノキシ基、ビフェニルオキシ基等が挙げられる。

炭素数3~40のヘテロアリール基としては、例えば、ピローリル基、フリル基、チエニル基、シローリル基、ピリジル基、キノリル基、イソキノリル基、ベンゾフリル基、イミダゾリル基、ピリミジル基、カルバゾリル基、セレノフェニル基、オキサジアゾリル基、トリアゾーリル基等が挙げられる。

nは0~4の整数であり、0~2であると好ましい。

[0150]

前記式(201)において、R¹は、置換基を有していてもよい炭素数6~60のアリール基、置換基を有していてもよいピリジル基、置換基を有していてもよいキノリル基、 置換基を有していてもよい炭素数1~20のアルキル基又は炭素数1~20のアルコキシ基である。

これら各基の具体例、好ましい炭素数及び置換基としては、前記Rについて説明したものと同様である。

[0151]

10

20

30

40

前記式(202) 及び(203)において、 R^2 及び R^3 は、それぞれ独立に、水素原子、置換基を有していてもよい炭素数6~60のアリール基、置換基を有していてもよいピリジル基、置換基を有していてもよいキノリル基、置換基を有していてもよい炭素数1~20のアルキル基又は置換基を有していてもよい炭素数1~20のアルコキシ基である。

これら各基の具体例、好ましい炭素数及び置換基としては、前記Rについて説明したものと同様である。

[0152]

前記式(201)~(203)において、Lは、置換基を有していてもよい炭素数6~60のアリーレン基、置換基を有していてもよいピリジニレン基、置換基を有していてもよいオリニレン基又は置換基を有していてもよいフルオレニレン基である。

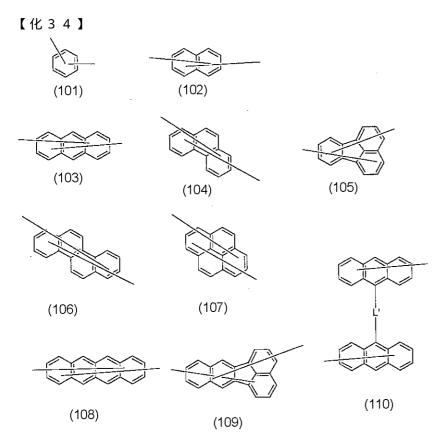
炭素数6~60のアリーレン基としては、炭素数6~40のアリーレン基が好ましく、 炭素数6~20のアリーレン基がさらに好ましく、具体的には、前記Rについて説明した アリール基から水素原子1個を除去して形成される2価の基が挙げられる。Lの示す各基 の置換基としては、前記Rについて説明したものと同様である。

[0153]

また、Lは、下記からなる群から選択される基であると好ましい。

[0154]

【化33】

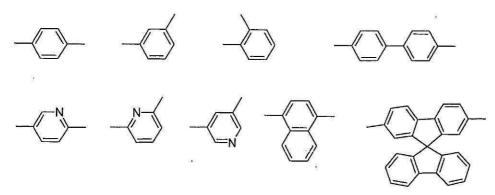

[0155]

前記式(201)において、Ar 1 は、置換基を有していてもよい炭素数6~60のアリーレン基、置換基を有していてもよいピリジニレン基又は置換基を有していてもよいキノリニレン基である。Ar 1 及びAr 3 の示す各基の置換基としては、それぞれ前記Rについて説明したものと同様である。

また、Ar 1 は、下記式(101)~(110)で表される縮合環基から選択されるいずれかの基であると好ましい。

[0156]

10


[0157]

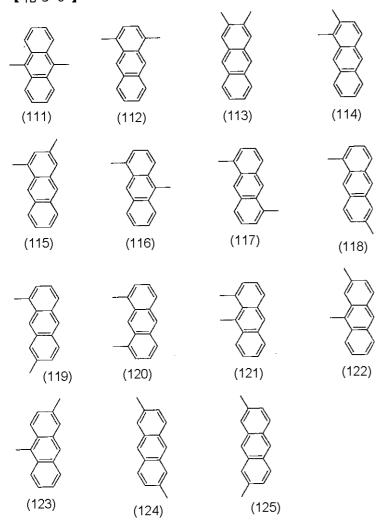
前記式(101)~(110)中、それぞれの縮合環は、ハロゲン原子、置換基を有していてもよい炭素数1~20のアルキル基、置換基を有していてもよい炭素数1~20のアルコキシ基、置換基を有していてもよい炭素数6~40のアリールオキシ基、置換基を有していてもよい炭素数6~40のアリール基又は置換基を有していてもよい炭素数3~40のヘテロアリール基からなる結合基が結合していてもよく、該結合基が複数ある場合は、該結合基は互いに同一でも異なっていてもよい。これら各基の具体例としては、前記と同様のものが挙げられる。

前記式(110)において、L'は、単結合、又は下記からなる群から選択される基である。

[0158]

【化35】

[0159]


 Ar^{-1} の示す前記式(103)が、下記式(111)~(125)で表される縮合環基であると好ましい。

[0160]

40

50

【化36】

[0161]

前記式(111)~(125)中、それぞれの縮合環は、ハロゲン原子、置換基を有していてもよい炭素数1~20のアルキル基、置換基を有していてもよい炭素数1~20のアルコキシ基、置換基を有していてもよい炭素数6~40のアリールオキシ基、置換基を有していてもよい炭素数6~40のアリール基又は置換基を有していてもよい炭素数3~40のヘテロアリール基からなる結合基が結合していてもよく、該結合基が複数ある場合は、該結合基は互いに同一でも異なっていてもよい。これら各基の具体例としては、前記と同様のものが挙げられる。

[0162]

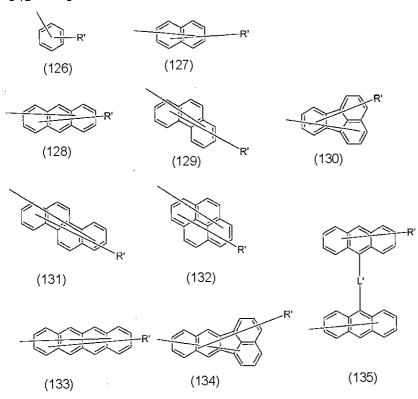
前記式(201)において、Ar 2 は、置換基を有していてもよい炭素数6~60のアリール基、置換基を有していてもよいピリジル基、置換基を有していてもよいキノリル基、置換基を有していてもよい炭素数1~20のアルキル基又は置換基を有していてもよい炭素数1~20のアルコキシ基である。

これら各基の具体例、好ましい炭素数及び置換基としては、前記R について説明した ものと同様である。

[0163]

前記式(202)及び(203)において、A r^3 は、置換基を有していてもよい炭素数 6~60のアリール基、置換基を有していてもよいピリジル基、置換基を有していてもよいキノリル基、置換基を有していてもよい炭素数 1~20のアルコキシ基、又は - A r^1 - A r^2 で表される基(A r^1 - A r^2 で表される基(A r^2 - A r^2 は、それぞれ前記と同じ)である。

これら各基の具体例、好ましい炭素数及び置換基としては、前記Rについて説明したも


40

のと同様である。

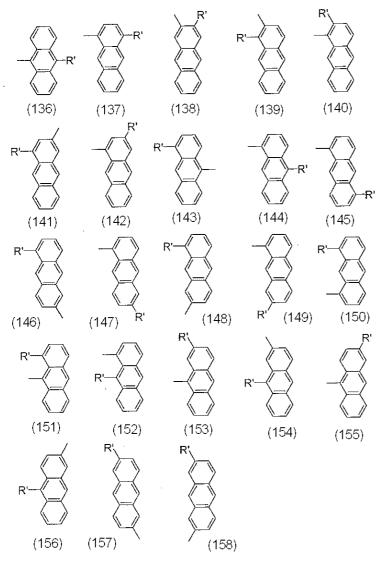
また、Ar 3 は、下記式(126)~(135)で表される縮合環基から選択されるいずれかの基であると好ましい。

[0164]

【化37】

[0165]

前記式(126)~(135) 中、それぞれの縮合環は、ハロゲン原子、置換基を有していてもよい炭素数1~20のアルキル基、置換基を有していてもよい炭素数1~20のアルコキシ基、置換基を有していてもよい炭素数6~40のアリールオキシ基、置換基を有していてもよい炭素数6~40のアリール基とは置換基を有していてもよい炭素数3~40のヘテロアリール基からなる結合基が結合していてもよく、該結合基が複数ある場合は、該結合基は互いに同一でも異なっていてもよい。これら各基の具体例としては、前記と同様のものが挙げられる。


前記式(135) において、L'は、前記と同じである。

前記式(126)~(135)において、R'は、水素原子、置換基を有していてもよい炭素数1~20のアルキル基、置換基を有していてもよい炭素数6~40のアリール基又は置換基を有していてもよい炭素数3~40のヘテロアリール基である。これら各基の具体例としては、前記と同様のものが挙げられる。

 Ar^3 の示す一般式(128)が、下記式(136)~(158)で表される縮合環基であると好ましい。

[0166]

【化38】

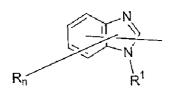
[0167]

前記式(136)~(158)中、それぞれの縮合環は、ハロゲン原子、置換基を有していてもよい炭素数1~20のアルキル基、置換基を有していてもよい炭素数1~20のアルコキシ基、置換基を有していてもよい炭素数6~40のアリールオキシ基、置換基を有していてもよい炭素数6~40のアリール基又は置換基を有していてもよい炭素数3~40のヘテロアリール基からなる結合基が結合していてもよく、該結合基が複数ある場合は、該結合基は互いに同一でも異なっていてもよい。これら各基の具体例としては、前記と同様のものが挙げられる。R'は、前記と同じである。

また、 Ar^2 及び Ar^3 は、それぞれ独立に、下記からなる群から選択される基であると好ましい。

[0168]

【化39】

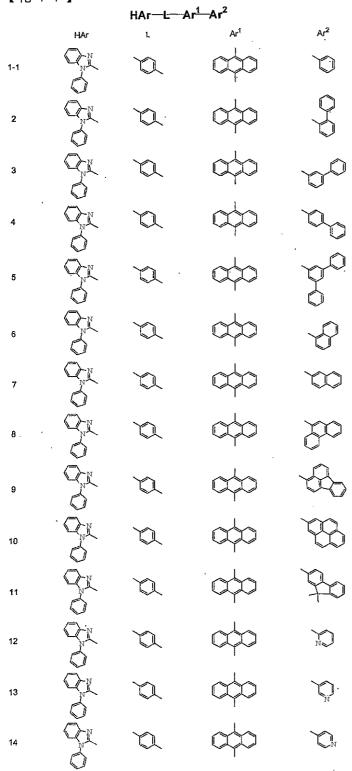

[0169]

本発明の前記式(201)~(203)で示される含窒素複素環誘導体の具体例を下記に示すが、本発明はこれらの例示化合物に限定されるものではない。

なお、下記表において、HArは、前記式(201)~(203)における、下記構造を示す。

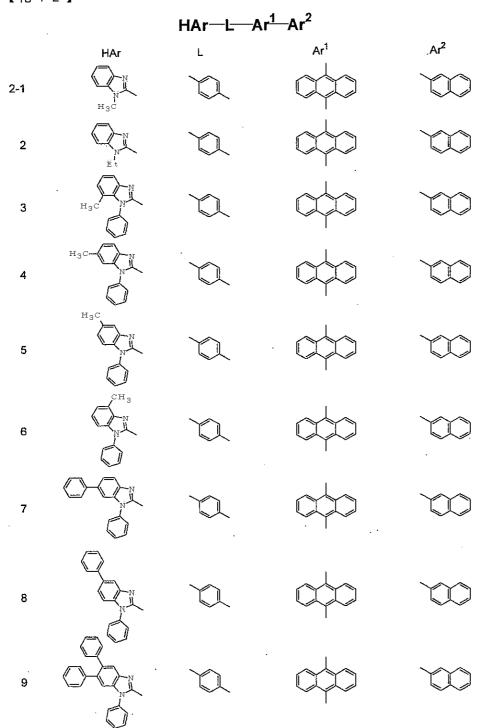
[0170]

【化40】

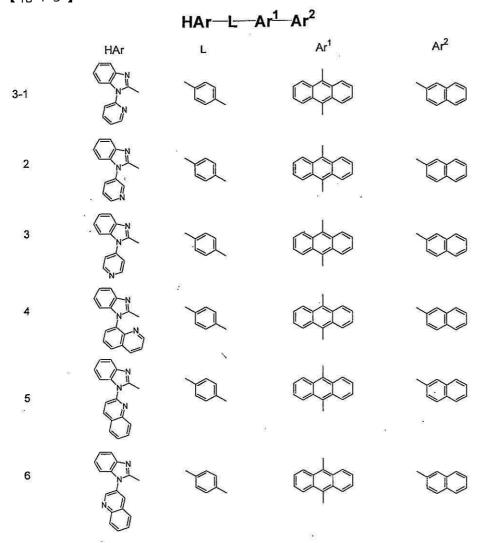


$$R_n$$

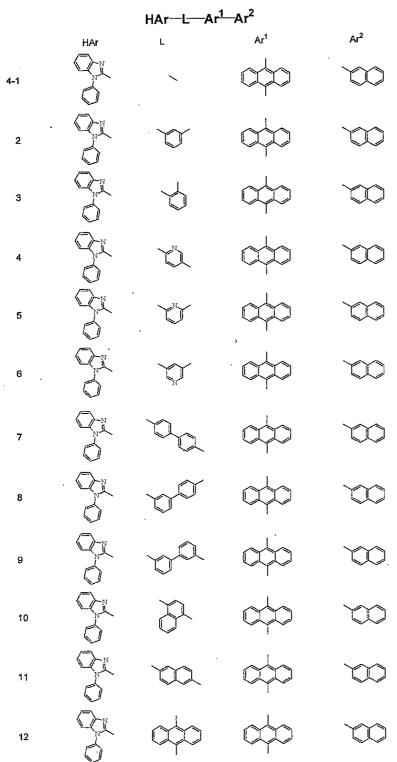
$$\mathbb{R}^3$$


[0171]

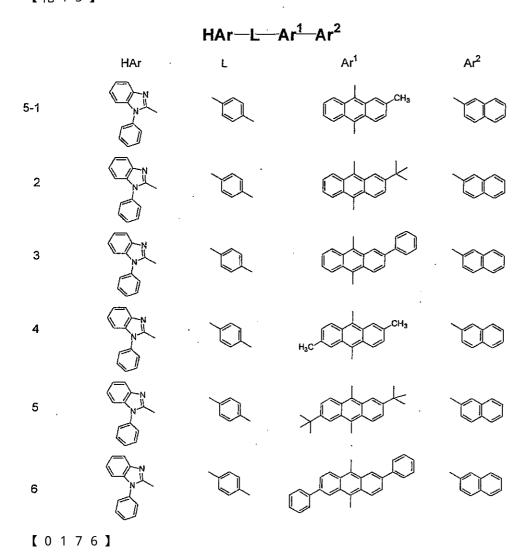
【化41】


[0172]

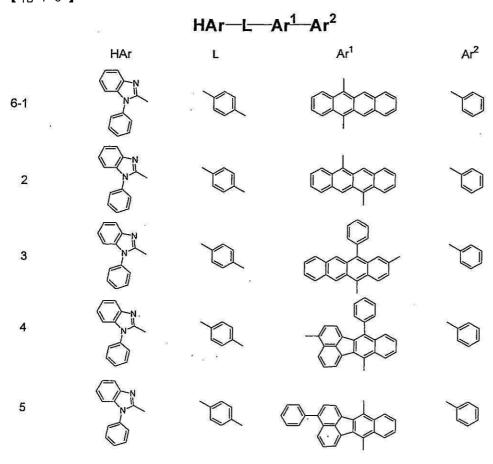
【化42】


[0173]

【化43】

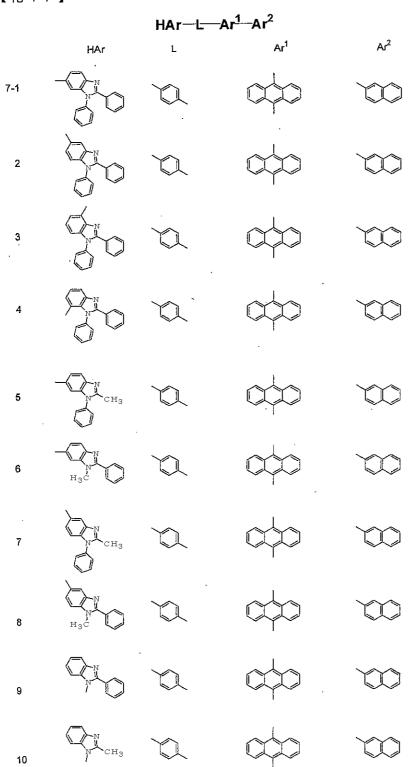

[0174]

【化44】

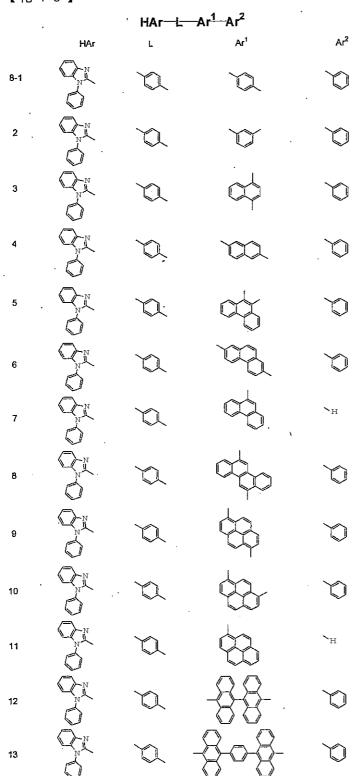


[0175]

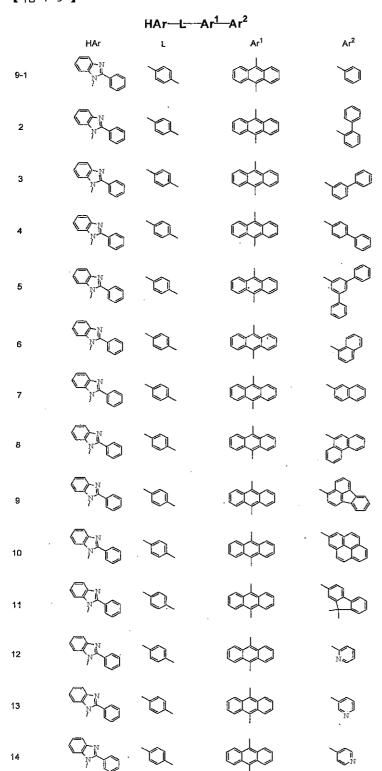
【化45】



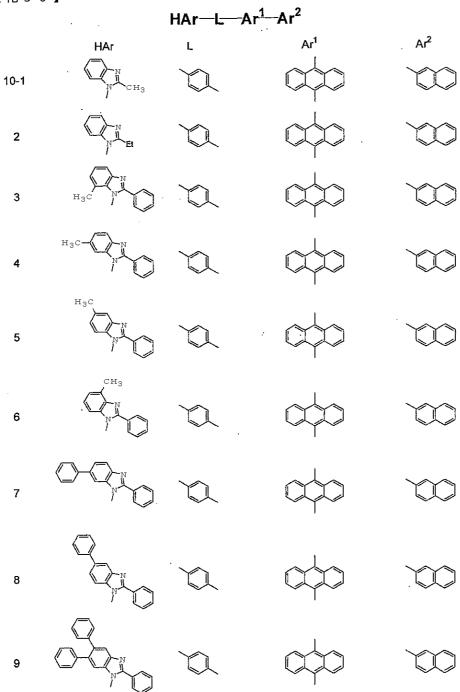
【化46】


[0177]

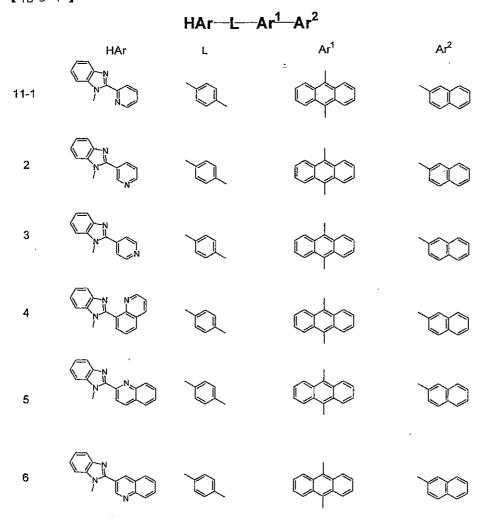
【化47】


[0178]

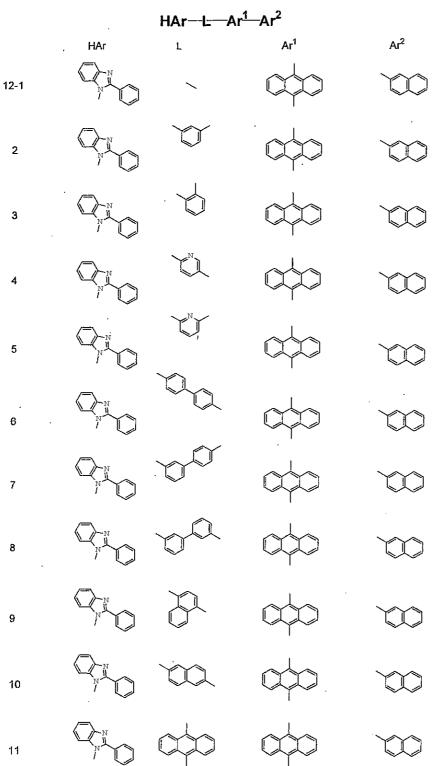
【化48】


[0179]

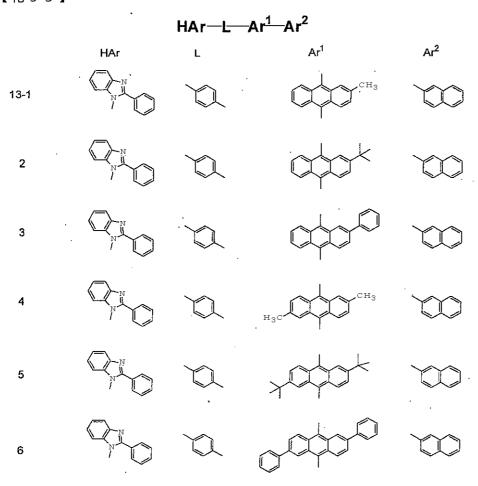
【化49】


[0180]

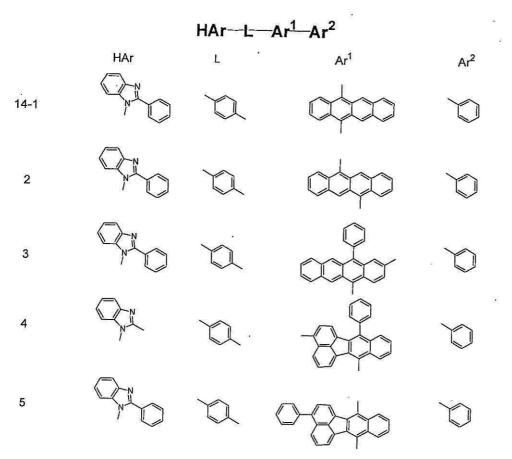
【化50】


[0181]

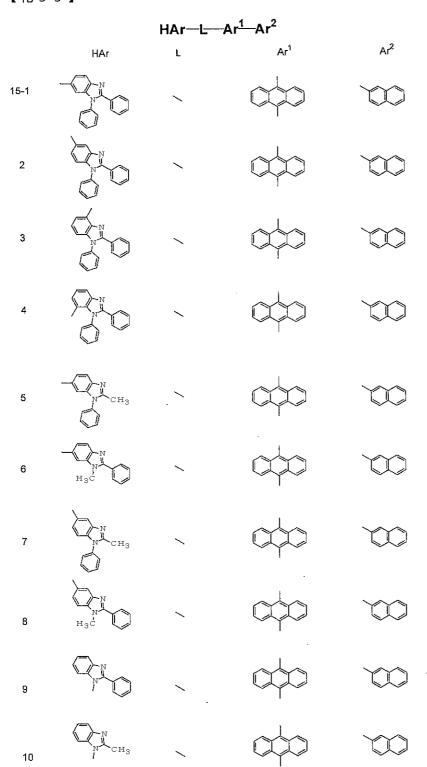
【化51】


[0 1 8 2]

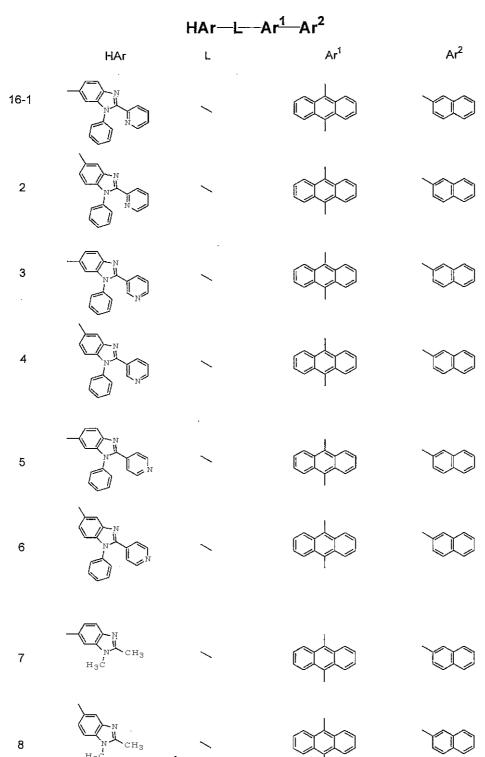
【化52】


[0183]

【化53】


[0184]

【化54】


[0185]

【化55】

[0186]

【化56】

[0187]

【化57】

$HAr-L-Ar^{1}-Ar^{2}$

[0188]

以上の具体例のうち、特に、(1-1)、(1-5)、(1-7)、(2-1)、(3-1)、(4-2)、(4-6)、(7-2)、(7-7)、(7-8)、(7-9)、(9-1)、(9-7)が好ましい。

[0189]

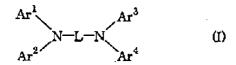
なお、電子注入層又は電子輸送層の膜厚は、特に限定されないが、好ましくは、 1 ~ 1 0 0 n m である。

[0190]

また、電子注入層の構成成分として、含窒素環誘導体の他に無機化合物として、絶縁体 又は半導体を使用することが好ましい。電子注入層が絶縁体や半導体で構成されていれば 、電流のリークを有効に防止して、電子注入性を向上させることができる。

このような絶縁体としては、アルカリ金属カルコゲニド、アルカリ土類金属カルコゲニド、アルカリ金属のハロゲン化物及びアルカリ土類金属のハロゲン化物からなる群から選択される少なくとも一つの金属化合物を使用するのが好ましい。電子注入層がこれらのアルカリ金属カルコゲニド等で構成されていれば、電子注入性をさらに向上させることができる点で好ましい。具体的に、好ましいアルカリ金属カルコゲニドとしては、例えば、Liz〇、 K₂O、 N a₂S、 N a₂S e 及び N a₂Oが挙げられ、好ましいアルカリ土類金属カルコゲニドとしては、例えば、CaO、BaO、SrO、BeO、BaS及びCaSeが挙げられる。また、好ましいアルカリ金属のハロゲン化物としては、例えば、LiF、NaF、KF、LiC1、KC1及びNaC1等が挙げられる。また、好ましいアルカリ土類金属のハロゲン化物としては、例えば、CaF₂、BaF₂、SrF₂、MgF₂及びBeF₂等のフッ化物や、フッ化物以外のハロゲン化物が挙げられる。

また、半導体としては、Ba、Ca、Sr、Yb、A1、Ga、In、Li、Na、Cd、Mg、Si、Ta、Sb及びZnの少なくとも一つの元素を含む酸化物、窒化物又は酸化窒化物等の一種単独又は二種以上の組み合わせが挙げられる。また、電子注入層を構成する無機化合物が、微結晶又は非晶質の絶縁性薄膜であることが好ましい。電子注入層がこれらの絶縁性薄膜で構成されていれば、より均質な薄膜が形成されるために、ダークスポット等の画素欠陥を減少させることができる。なお、このような無機化合物としては、アルカリ金属カルコゲニド、アルカリ土類金属カルコゲニド、アルカリ金属のハロゲン化物段びアルカリ土類金属のハロゲン化物等が挙げられる。


このような絶縁体又は半導体を使用する場合、その層の好ましい厚みは、0.1 nm~15 nm程度である。また、本発明における電子注入層は、前述の還元性ドーパントを含有していても好ましい。

[0191]

正孔注入層又は正孔輸送層(正孔注入輸送層も含む)には芳香族アミン化合物、例えば 、下記一般式(I)で表わされる芳香族アミン誘導体が好適に用いられる。

[0192]

【化58】

[0193]

前記一般式(I)において、Ar $^{'}$ ~Ar $^{'}$ は置換もしくは無置換の核炭素数6~50のアリール基または置換もしくは無置換の核原子数5~50のヘテロアリール基を表す。

[0194]

置換もしくは無置換の核炭素数 6 ~ 5 0 のアリール基としては、例えば、フェニル基、 1 - ナフチル基、 2 - ナフチル基、 1 - アントリル基、 2 - アントリル基、 9 - アントリル基、 1 - フェナントリル基、 2 - フェナントリル基、 4 - フェナントリル基、 9 - フェナントリル基、 1 - ナフタセニル基、 2 - ナフタセニル基、 9 - ナフタセニル基、 1 - ピレニル基、 2 - ピレニル基、 2 - ピフェニルイル基、 9 - ターフェニルイル基、 4 - ピレニル基、 2 - ビフェニルイル基、 p - ターフェニル - 4 - イル基、 p - ターフェニル - 3 - イル基、 m - ターフェニル - 2 - イル基、 m - ターフェニル - 3 - イル基、 m - ターフェニル - 2 - イル基、 p - トリル基、 p - トリル基、 p - トリル基、 p - (2 - フェニルプロピル)フェニル基、 3 - メチル - 2 - ナフチル基、 4 - メチル - 1 - ナフチル基、 4 - メチル - 1 - ナフチル基、 4 - メチル - 1 - アントリル基、 4 - メチルビフェニルイル基、 4 - ・ブチル - p - ター

10

20

30

40

30

40

50

フェニル - 4 - イル基、フルオランテニル基、フルオレニル基などが挙げられる。 【 0 1 9 5 】

置換もしくは無置換の核原子数5~50のヘテロアリール基としては、例えば、1-ピ ロリル基、2-ピロリル基、3-ピロリル基、ピラジニル基、2-ピリジニル基、3-ピ リジニル基、4-ピリジニル基、1-インドリル基、2-インドリル基、3-インドリル 基、4-インドリル基、5-インドリル基、6-インドリル基、7-インドリル基、1-イソインドリル基、2-イソインドリル基、3-イソインドリル基、4-イソインドリル 基、5-イソインドリル基、6-イソインドリル基、7-イソインドリル基、2-フリル 基、3-フリル基、2-ベンゾフラニル基、3-ベンゾフラニル基、4-ベンゾフラニル 基、5-ベンゾフラニル基、6-ベンゾフラニル基、7-ベンゾフラニル基、1-イソベ ンゾフラニル基、3-イソベンゾフラニル基、4-イソベンゾフラニル基、5-イソベン ゾフラニル基、6.イソベンゾフラニル基、7.イソベンゾフラニル基、キノリル基、3 キノリル基、4・キノリル基、5・キノリル基、6・キノリル基、7・キノリル基、8 - キノリル基、1-イソキノリル基、3-イソキノリル基、4-イソキノリル基、5-イ ソキノリル基、6.イソキノリル基、7.イソキノリル基、8.イソキノリル基、2.キ ノキサリニル基、5‐キノキサリニル基、6‐キノキサリニル基、1‐カルバゾリル基、 2 - カルバゾリル基、3 - カルバゾリル基、4 - カルバゾリル基、9 - カルバゾリル基、 1 - フェナンスリジニル基、2 - フェナンスリジニル基、3 - フェナンスリジニル基、4 - フェナンスリジニル基、6 - フェナンスリジニル基、7 - フェナンスリジニル基、8 -フェナンスリジニル基、9-フェナンスリジニル基、10-フェナンスリジニル基、1-アクリジニル基、2-アクリジニル基、3-アクリジニル基、4-アクリジニル基、9-アクリジニル基、1,7-フェナンスロリン-2-イル基、1,7-フェナンスロリン-3 - イル基、1,7-フェナンスロリン-4-イル基、1,7-フェナンスロリン-5-イル基、1,7-フェナンスロリン-6-イル基、1,7-フェナンスロリン-8-イル 基、1,7-フェナンスロリン-9-イル基、1,7-フェナンスロリン-10-イル基 、 1 , 8 - フェナンスロリン - 2 - イル基、 1 , 8 - フェナンスロリン - 3 - イル基、 1 , 8 - フェナンスロリン - 4 - イル基、 1 , 8 - フェナンスロリン - 5 - イル基、 1 , 8 - フェナンスロリン - 6 - イル基、 1 , 8 - フェナンスロリン - 7 - イル基、 1 , 8 - フ ェナンスロリン - 9 - イル基、 1 , 8 - フェナンスロリン - 1 0 - イル基、 1 , 9 - フェ ナンスロリン - 2 - イル基、 1 , 9 - フェナンスロリン - 3 - イル基、 1 , 9 - フェナン スロリン・4・イル基、1,9・フェナンスロリン・5・イル基、1,9・フェナンスロ リン・6 - イル基、1,9 - フェナンスロリン・7 - イル基、1,9 - フェナンスロリン - 8 - イル基、1,9 - フェナンスロリン - 10 - イル基、1,10 - フェナンスロリン - 2 - イル基、 1 , 1 0 - フェナンスロリン - 3 - イル基、 1 , 1 0 - フェナンスロリン - 4 - イル基、1,10-フェナンスロリン-5-イル基、2,9-フェナンスロリン-1 - イル基、 2 , 9 - フェナンスロリン - 3 - イル基、 2 , 9 - フェナンスロリン - 4 -イル基、2,9-フェナンスロリン-5-イル基、2,9-フェナンスロリン-6-イル 基、2,9-フェナンスロリン-7-イル基、2,9-フェナンスロリン-8-イル基、 2 , 9 - フェナンスロリン - 1 0 - イル基、 2 , 8 - フェナンスロリン - 1 - イル基、 2 , 8 - フェナンスロリン - 3 - イル基、 2 , 8 - フェナンスロリン - 4 - イル基、 2 , 8 - フェナンスロリン - 5 - イル基、 2 , 8 - フェナンスロリン - 6 - イル基、 2 , 8 - フ ェナンスロリン・7・イル基、2,8・フェナンスロリン・9・イル基、2,8・フェナ ンスロリン - 1 0 - イル基、 2 , 7 - フェナンスロリン - 1 - イル基、 2 , 7 - フェナン スロリン・3・イル基、2,7・フェナンスロリン・4・イル基、2,7・フェナンスロ リン・5・イル基、2,7・フェナンスロリン・6・イル基、2,7・フェナンスロリン - 8 - イル基、 2 , 7 - フェナンスロリン - 9 - イル基、 2 , 7 - フェナンスロリン - 1 0 - イル基、1 - フェナジニル基、2 - フェナジニル基、1 - フェノチアジニル基、2 -フェノチアジニル基、3‐フェノチアジニル基、4‐フェノチアジニル基、10‐フェノ チアジニル基、1-フェノキサジニル基、2-フェノキサジニル基、3-フェノキサジニ ル基、4‐フェノキサジニル基、10‐フェノキサジニル基、2‐オキサゾリル基、4‐

20

30

40

50

オキサゾリル基、5 - オキサゾリル基、2 - オキサジアゾリル基、5 - オキサジアゾリル基、3 - フラザニル基、2 - チエニル基、3 - チエニル基、2 - メチルピロール・1 - イル基、2 - メチルピロール・3 - イル基、2 - メチルピロール・4 - イル基、2 - メチルピロール・5 - イル基、3 - メチルピロール・5 - イル基、3 - メチルピロール・5 - イル基、2 - イル基、3 - メチルピロール・5 - イル基、2 - イル基、3 - メチルピロール・4 - イル基、3 - メチルピロール・5 - イル基、2 - イルピロール・4 - イル基、3 - (2 - フェニルプロピル)ピロール・1 - イル基、2 - メチル・1 - インドリル基、4 - メチル・3 - インドリル基、2 - メチル・3 - インドリル基、4 - オンドリル基、4 - オンドリル基、4 - オンドリル基、4 - オンドリル基、5 - オンドリル基、5 - オンドリル基、5 - オンドリル基、5 - オンドリル基、5 - オンドリル基、5 - オーサジアゾリル基、5 - オーサジアゾリル基、7 - オーサジアゾリル国、7 - オーサジアゾリル基、7 - オーサジアゾリル基、7 - オーサジアゾリル基、7 - オーサンドリル基、7 - オーサンドリル基、7 - オーサンドリル基、7 - オーサンドリル国、7 - オーサンドリル国の、7 - オーサンドリル国、7 - オーサンドリル国の、7 - オーサンドリーの、7 - オ

[0196]

Lは連結基である。具体的には置換もしくは無置換の核炭素数6~50のアリーレン基 置換もしくは無置換の核原子数5~50のヘテロアリーレン基、または、2個以上のア リーレン基もしくはヘテロアリーレン基を単結合、エーテル結合、チオエーテル結合、炭 素数1~20のアルキレン基、炭素数2~20のアルケニレン基、アミノ基で結合して得 られる2価の基である。核炭素数6~50のアリーレン基としては、例えば、1,4-フ ェニレン基、1,2-フェニレン基、1,3-フェニレン基、1,4-ナフチレン基、2 , 6 - ナフチレン基、 1 , 5 - ナフチレン基、 9 , 1 0 - アントラニレン基、 9 , 1 0 -フェナントレニレン基、3,6-フェナントレニレン基、1,6-ピレニレン基、2,7 - ピレニレン基、 6 , 1 2 - クリセニレン基、 4 , 4 ' - ビフェニレン基、 3 , 3 ' - ビ フェニレン基、2,2'-ビフェニレン基、2,7-フルオレニレン基等が挙げられる。 核原子数5~50のアリーレン基としては、例えば、2,5-チオフェニレン基、2,5 - シローリレン基、2,5-オキサジアゾーリレン基等が挙げられる。好ましくは1,4 - フェニレン基、 1 , 2 - フェニレン基、 1 , 3 - フェニレン基、 1 , 4 - ナフチレン基 、 9 , 1 0 - アントラニレン基、 6 , 1 2 - クリセニレン基、 4 , 4 ' - ビフェニレン基 3,3'-ビフェニレン基、2,2'-ビフェニレン基、2,7-フルオレニレン基で ある。

[0197]

Lが2個以上のアリーレン基またはヘテロアリーレン基からなる連結基である場合、隣り合うアリーレン基またはヘテロアリーレン基は2価の基を介して互いに結合して新たな環を形成してもよい。環を形成する2価基の例としては、テトラメチレン基、ペンタメチレン基、ヘキサメチレン基、ジフェニルメタン・2,2'・ジイル基、ジフェニルエタン・3,3'・ジイル基、ジフェニルプロパン・4,4'・ジイル基等が挙げられる。

[0198]

Ar「~Ar およびLの置換基としては、置換もしくは無置換の核炭素数6~50のアリール基、置換もしくは無置換の核原子数5~50のヘテロアリール基、置換もしくは無置換の炭素数1~50のアルキル基、置換もしくは無置換の炭素数3~50のシクロアルキル基、置換もしくは無置換の炭素数1~50のアルコキシ基、置換もしくは無置換の炭素数7~50のアラルキル基、置換もしくは無置換の核炭素数6~50のアリールオキシ基、置換もしくは無置換の核原子数5~50のヘテロアリールオキシ基、置換もしくは無置換の核原子数5~50のヘテロアリールチオ基、置換もしくは無置換の核原子数5~50のアルコキシカルボニル基、置換もしくは無置換の核炭素数6~50のアリール基または置換もしくは無置換の核原子数5~50のヘテロアリール基で置換されたアミノ基、ハロゲン基、シアノ基、ニトロ基、ヒドロキシル基等である。

[0199]

置換もしくは無置換の核炭素数6~50のアリール基の例としては、フェニル基、1-ナフチル基、2-ナフチル基、1-アントリル基、2-アントリル基、9-アントリル基

20

30

40

50

、1 - 7x ナントリル基、2 - 7x ナントリル基、3 - 7x ナントリル基、4 - 7x ナントリル基、9 - 7x ナントリル基、1 - 7x クセニル基、2 - 7x クセニル基、1 - 7x クセニル基、1 - 7x クセニル基、1 - 7x クレニル基、1 - 7x クレニル基、1 - 7x クーフェニルイル基、1 - 7x クーフェニルイル基、1 - 7x クーフェニル 1 - 7x クーフェール 1 - 7x ク

[0200] 置換もしくは無置換の核原子数5~50のヘテロアリール基の例としては、1・ピロリ ル基、 2 - ピロリル基、 3 - ピロリル基、ピラジニル基、 2 - ピリジニル基、 3 - ピリジ ニル基、4 - ピリジニル基、1 - インドリル基、2 - インドリル基、3 - インドリル基、 4 - インドリル基、5 - インドリル基、6 - インドリル基、7 - インドリル基、1 - イソ インドリル基、2-イソインドリル基、3-イソインドリル基、4-イソインドリル基、 5 - イソインドリル基、6 - イソインドリル基、7 - イソインドリル基、2 - フリル基、 3 - フリル基、2 - ベンゾフラニル基、3 - ベンゾフラニル基、4 - ベンゾフラニル基、 5 - ベンゾフラニル基、6 - ベンゾフラニル基、7 - ベンゾフラニル基、1 - イソベンゾ フラニル基、3-イソベンゾフラニル基、4-イソベンゾフラニル基、5-イソベンゾフ ラニル基、6-イソベンゾフラニル基、7-イソベンゾフラニル基、キノリル基、3-キ ノリル基、4-キノリル基、5-キノリル基、6-キノリル基、7-キノリル基、8-キ ノリル基、1-イソキノリル基、3-イソキノリル基、4-イソキノリル基、5-イソキ ノリル基、6-イソキノリル基、7-イソキノリル基、8-イソキノリル基、2-キノキ サリニル基、5-キノキサリニル基、6-キノキサリニル基、1-カルバゾリル基、2-カルバゾリル基、3‐カルバゾリル基、4‐カルバゾリル基、9‐カルバゾリル基、1‐ フェナンスリジニル基、2-フェナンスリジニル基、3-フェナンスリジニル基、4-フ ェナンスリジニル基、6-フェナンスリジニル基、7-フェナンスリジニル基、8-フェ ナンスリジニル基、9-フェナンスリジニル基、10-フェナンスリジニル基、1-アク リジニル基、2-アクリジニル基、3-アクリジニル基、4-アクリジニル基、9-アク リジニル基、1,7-フェナンスロリン-2-イル基、1,7-フェナンスロリン-3-イル基、1,7-フェナンスロリン・4-イル基、1,7-フェナンスロリン・5-イル 基、1,7-フェナンスロリン-6-イル基、1,7-フェナンスロリン-8-イル基、 1,7-フェナンスロリン-9-イル基、1,7-フェナンスロリン-10-イル基、1 , 8 - フェナンスロリン - 2 - イル基、 1 , 8 - フェナンスロリン - 3 - イル基、 1 , 8 - フェナンスロリン - 4 - イル基、1 , 8 - フェナンスロリン - 5 - イル基、1 , 8 - フ ェナンスロリン・6 - イル基、1,8-フェナンスロリン・7-イル基、1,8-フェナ ンスロリン - 9 - イル基、 1 , 8 - フェナンスロリン - 1 0 - イル基、 1 , 9 - フェナン スロリン・2 - イル基、1,9-フェナンスロリン・3-イル基、1,9-フェナンスロ リン・4 - イル基、1,9 - フェナンスロリン・5 - イル基、1,9 - フェナンスロリン - 6 - イル基、 1 , 9 - フェナンスロリン - 7 - イル基、 1 , 9 - フェナンスロリン - 8 - イル基、1,9-フェナンスロリン-10-イル基、1,10-フェナンスロリン-2 - イル基、1,10-フェナンスロリン-3-イル基、1,10-フェナンスロリン-4 - イル基、 1 , 1 0 - フェナンスロリン - 5 - イル基、 2 , 9 - フェナンスロリン - 1 -イル基、 2 , 9 - フェナンスロリン - 3 - イル基、 2 , 9 - フェナンスロリン - 4 - イル 基、2,9-フェナンスロリン-5-イル基、2,9-フェナンスロリン-6-イル基、 2 , 9 - フェナンスロリン - 7 - イル基、 2 , 9 - フェナンスロリン - 8 - イル基、 2 , 9 - フェナンスロリン - 1 0 - イル基、 2 , 8 - フェナンスロリン - 1 - イル基、 2 , 8 - フェナンスロリン - 3 - イル基、 2 , 8 - フェナンスロリン - 4 - イル基、 2 , 8 - フ ェナンスロリン・5 - イル基、2 , 8 - フェナンスロリン・6 - イル基、2 , 8 - フェナ

20

30

40

50

ンスロリン・7 - イル基、2 , 8 - フェナンスロリン・9 - イル基、2 , 8 - フェナンス ロリン - 10 - イル基、2,7-フェナンスロリン - 1 - イル基、2,7-フェナンスロ リン・3・イル基、2,7・フェナンスロリン・4・イル基、2,7・フェナンスロリン - 5 - イル基、 2 , 7 - フェナンスロリン - 6 - イル基、 2 , 7 - フェナンスロリン - 8 - イル基、 2 , 7 - フェナンスロリン - 9 - イル基、 2 , 7 - フェナンスロリン - 1 0 -イル基、1-フェナジニル基、2-フェナジニル基、1-フェノチアジニル基、2-フェ ノチアジニル基、3.フェノチアジニル基、4.フェノチアジニル基、10.フェノチア ジニル基、1.フェノキサジニル基、2.フェノキサジニル基、3.フェノキサジニル基 、4.フェノキサジニル基、10.フェノキサジニル基、2.オキサゾリル基、4.オキ サゾリル基、5-オキサゾリル基、2-オキサジアゾリル基、5-オキサジアゾリル基、 3.フラザニル基、2.チエニル基、3.チエニル基、2.メチルピロール・1.イル基 、2 - メチルピロール - 3 - イル基、2 - メチルピロール - 4 - イル基、2 - メチルピロ ール - 5 - イル基、3 - メチルピロール - 1 - イル基、3 - メチルピロール - 2 - イル基 、3-メチルピロール-4-イル基、3-メチルピロール-5-イル基、2-t-ブチル ピロール・4 - イル基、3 - (2 - フェニルプロピル)ピロール・1 - イル基、2 - メチ ル - 1 - インドリル基、 4 - メチル - 1 - インドリル基、 2 - メチル - 3 - インドリル基 、 4 - メチル - 3 - インドリル基、 2 - t - ブチル 1 - インドリル基、 4 - t - ブチル 1 インドリル基、2・t・ブチル3・インドリル基、4・t・ブチル3・インドリル基等 が挙げられる。

[0201]

置換又は無置換の炭素数1~50のアルキル基の例としては、メチル基、エチル基、プ ロピル基、イソプロピル基、n-ブチル基、s-ブチル基、イソブチル基、t-ブチル基 、n - ペンチル基、n - ヘキシル基、n - ヘプチル基、n - オクチル基、ヒドロキシメチ ル基、1-ヒドロキシエチル基、2-ヒドロキシエチル基、2-ヒドロキシイソブチル基 、 1 , 2 - ジヒドロキシエチル基、 1 , 3 - ジヒドロキシイソプロピル基、 2 , 3 - ジヒ ドロキシ・t・ブチル基、1,2,3・トリヒドロキシプロピル基、クロロメチル基、1 - クロロエチル基、 2 - クロロエチル基、 2 - クロロイソブチル基、 1 , 2 - ジクロロエ チル基、1,3-ジクロロイソプロピル基、2,3-ジクロロ-t-ブチル基、1,2, 3 - トリクロロプロピル基、ブロモメチル基、1 - ブロモエチル基、2 - ブロモエチル基 、2-ブロモイソブチル基、1,2-ジブロモエチル基、1,3-ジブロモイソプロピル 基、2,3-ジブロモ-t-ブチル基、1,2,3-トリブロモプロピル基、ヨードメチ ル基、1-ヨードエチル基、2-ヨードエチル基、2-ヨードイソプチル基、1,2-ジ ヨードエチル基、1,3-ジヨードイソプロピル基、2,3-ジヨード-t-ブチル基、 1,2,3-トリヨードプロピル基、アミノメチル基、1-アミノエチル基、2-アミノ エチル基、2-アミノイソブチル基、1,2-ジアミノエチル基、1,3-ジアミノイソ プロピル基、2,3-ジアミノ・t-ブチル基、1,2,3-トリアミノプロピル基、シ アノメチル基、1-シアノエチル基、2-シアノエチル基、2-シアノイソブチル基、1 , 2 - ジシアノエチル基、 1 , 3 - ジシアノイソプロピル基、 2 , 3 - ジシアノ-t-ブ チル基、1,2,3-トリシアノプロピル基、ニトロメチル基、1-ニトロエチル基、2 - ニトロエチル基、2 - ニトロイソブチル基、1,2 - ジニトロエチル基、1,3 - ジニ トロイソプロピル基、 2 , 3 - ジニトロ・t - ブチル基、 1 , 2 , 3 - トリニトロプロピ ル基等が挙げられる。

[0202]

置換もしくは無置換の炭素数3~50のシクロアルキル基の例としては、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、4・メチルシクロヘキシル基、1・アダマンチル基、2・アダマンチル基、1・ノルボルニル基、2・ノルボルニル基等が挙げられる。

[0203]

置換又は無置換の炭素数 1 ~ 5 0 のアルコキシ基は、 - O Y で表される基である。 Y の例としては、メチル基、エチル基、プロピル基、イソプロピル基、 n - ブチル基、 s - ブ

チル基、イソブチル基、 t - ブチル基、 n - ペンチル基、 n - ヘキシル基、 n - ヘプチル 基、n‐オクチル基、ヒドロキシメチル基、1‐ヒドロキシエチル基、2‐ヒドロキシエ チル基、2-ヒドロキシイソブチル基、1,2-ジヒドロキシエチル基、1,3-ジヒド ロキシイソプロピル基、2,3-ジヒドロキシ・t-ブチル基、1,2,3-トリヒドロ キシプロピル基、クロロメチル基、1-クロロエチル基、2-クロロエチル基、2-クロ ロイソブチル基、1,2-ジクロロエチル基、1,3-ジクロロイソプロピル基、2,3 - ジクロロ - t - ブチル基、1 , 2 , 3 - トリクロロプロピル基、ブロモメチル基、1 -ブロモエチル基、2‐ブロモエチル基、2‐ブロモイソブチル基、1,2‐ジブロモエチ ル基、1,3-ジブロモイソプロピル基、2,3-ジブロモ-t-ブチル基、1,2,3 - トリブロモプロピル基、ヨードメチル基、1 - ヨードエチル基、2 - ヨードエチル基、 2 - ヨードイソブチル基、1,2 - ジョードエチル基、1,3 - ジョードイソプロピル基 、 2 , 3 - ジヨード - t - ブチル基、 1 , 2 , 3 - トリヨードプロピル基、アミノメチル 基、1-アミノエチル基、2-アミノエチル基、2-アミノイソブチル基、1,2-ジア ミノエチル基、1,3‐ジアミノイソプロピル基、2,3‐ジアミノ‐t‐ブチル基、1 , 2 , 3 - トリアミノプロピル基、シアノメチル基、 1 - シアノエチル基、 2 - シアノエ チル基、2-シアノイソブチル基、1,2-ジシアノエチル基、1,3-ジシアノイソプ 口ピル基、2,3-ジシアノ-t-ブチル基、1,2,3-トリシアノプロピル基、ニト ロメチル基、1-二トロエチル基、2-二トロエチル基、2-二トロイソプチル基、1, 2 - ジニトロエチル基、1 , 3 - ジニトロイソプロピル基、2 , 3 - ジニトロ - t - ブチ ル基、1,2,3-トリニトロプロピル基等が挙げられる。

[0204]

置換又は無置換の炭素数7~50のアラルキル基の例としては、ベンジル基、1-フェ ニルエチル基、2-フェニルエチル基、1-フェニルイソプロピル基、2-フェニルイソ プロピル基、フェニル・t・ブチル基、 ・ナフチルメチル基、1・ ・ナフチルエチル 基、 2 - ・ナフチルエチル基、 1 - ・ナフチルイソプロピル基、 2 - ・ナフチルイ ソプロピル基、 - ナフチルメチル基、1- - ナフチルエチル基、2- - ナフチルエ チル基、1 - - ナフチルイソプロピル基、2 - - ナフチルイソプロピル基、1 - ピロ リルメチル基、2-(1-ピロリル)エチル基、p-メチルベンジル基、m-メチルベン ジル基、 o - メチルベンジル基、 p - クロロベンジル基、 m - クロロベンジル基、 o - ク ロロベンジル基、p - プロモベンジル基、m - ブロモベンジル基、 o - ブロモベンジル基 、p-ヨードベンジル基、m-ヨードベンジル基、o-ヨードベンジル基、p-ヒドロキ シベンジル基、m - ヒドロキシベンジル基、 o - ヒドロキシベンジル基、 p - アミノベ ンジル基、m-アミノベンジル基、o-アミノベンジル基、p-ニトロベンジル基、m-ニトロベンジル基、 o - ニトロベンジル基、 p - シアノベンジル基、 m - シアノベンジル 基、 o - シアノベンジル基、 1 - ヒドロキシ - 2 - フェニルイソプロピル基、 1 - クロロ - 2 - フェニルイソプロピル基等が挙げられる。

[0205]

置換又は無置換の核炭素数6~50のアリールオキシ基は、-〇Y'と表され、Y'の例としてはフェニル基、1・ナフチル基、2・ナフチル基、1・アントリル基、2・アントリル基、9・アントリル基、1・ナフタセニル基、3・フェナントリル基、4・フェナントリル基、1・ナフタセニル基、2・ナフタセニル基、9・ナフタセニル基、1・ピレニル基、2・ピレニル基、4・ピレニル基、2・ビフェニルイル基、5・グラーフェニル・2・イル基、5・グラーフェニル・2・イル基、6・イル基、6・イル基、6・イル基、6・イル基、6・イル基、7・フェニル・3・イル基、7・イル基、8・イル基、8・イル基、8・イル基、8・イル基、9・イル基、8・イル基、9・イル基、9・イル基、9・イル基、9・イル基、4・メチル・1・ナフチル基、4・メチル・1・アントリル基、4・メチル・フチル基、4・メチル・1・ブチル・p・ターフェニル・4・イル基等が挙げられる。

[0206]

40

10

20

30

40

50

置換もしくは無置換の核原子数5~50のヘテロアリールオキシ基は、-OZ'と表さ れ、2'の例としては2-ピロリル基、3-ピロリル基、ピラジニル基、2-ピリジニル 基、3-ピリジニル基、4-ピリジニル基、2-インドリル基、3-インドリル基、4-インドリル基、5-インドリル基、6-インドリル基、7-インドリル基、1-イソイン ドリル基、3-イソインドリル基、4-イソインドリル基、5-イソインドリル基、6-イソインドリル基、7-イソインドリル基、2-フリル基、3-フリル基、2-ベンゾフ ラニル基、3-ベンゾフラニル基、4-ベンゾフラニル基、5-ベンゾフラニル基、6-ベンゾフラニル基、7-ベンゾフラニル基、1-イソベンゾフラニル基、3-イソベンゾ フラニル基、4-イソベンゾフラニル基、5-イソベンゾフラニル基、6-イソベンゾフ ラニル基、7-イソベンゾフラニル基、2-キノリル基、3-キノリル基、4-キノリル 基、5-キノリル基、6-キノリル基、7-キノリル基、8-キノリル基、1-イソキノ リル基、3-イソキノリル基、4-イソキノリル基、5-イソキノリル基、6-イソキノ リル基、7-イソキノリル基、8-イソキノリル基、2-キノキサリニル基、5-キノキ サリニル基、6-キノキサリニル基、1-カルバゾリル基、2-カルバゾリル基、3-カ ルバゾリル基、4.カルバゾリル基、1.フェナンスリジニル基、2.フェナンスリジニ ル基、3-フェナンスリジニル基、4-フェナンスリジニル基、6-フェナンスリジニル 基、7-フェナンスリジニル基、8-フェナンスリジニル基、9-フェナンスリジニル基 10.フェナンスリジニル基、1.アクリジニル基、2.アクリジニル基、3.アクリ ジニル基、4-アクリジニル基、9-アクリジニル基、1,7-フェナンスロリン-2-イル基、1,7-フェナンスロリン-3-イル基、1,7-フェナンスロリン-4-イル 基、1,7-フェナンスロリン・5-イル基、1,7-フェナンスロリン・6-イル基、 1,7-フェナンスロリン・8-イル基、1,7-フェナンスロリン・9-イル基、1, 7 - フェナンスロリン - 1 0 - イル基、 1 , 8 - フェナンスロリン - 2 - イル基、 1 , 8 - フェナンスロリン - 3 - イル基、1 , 8 - フェナンスロリン - 4 - イル基、1 , 8 - フ ェナンスロリン - 5 - イル基、 1 , 8 - フェナンスロリン - 6 - イル基、 1 , 8 - フェナ ンスロリン・7 - イル基、1 , 8 - フェナンスロリン・9 - イル基、1 , 8 - フェナンス ロリン - 10 - イル基、1,9 - フェナンスロリン - 2 - イル基、1,9 - フェナンスロ リン・3-イル基、1,9-フェナンスロリン・4-イル基、1,9-フェナンスロリン - 5 - イル基、1,9 - フェナンスロリン - 6 - イル基、1,9 - フェナンスロリン - 7 - イル基、1,9-フェナンスロリン-8-イル基、1,9-フェナンスロリン-10-イル基、1,10-フェナンスロリン-2-イル基、1,10-フェナンスロリン-3-イル基、1,10-フェナンスロリン-4-イル基、1,10-フェナンスロリン-5-イル基、2,9-フェナンスロリン-1-イル基、2,9-フェナンスロリン-3-イル 基、2,9-フェナンスロリン-4-イル基、2,9-フェナンスロリン-5-イル基、 2,9-フェナンスロリン-6-イル基、2,9-フェナンスロリン-7-イル基、2, 9 - フェナンスロリン - 8 - イル基、2 , 9 - フェナンスロリン - 1 0 - イル基、2 , 8 - フェナンスロリン - 1 - イル基、 2 , 8 - フェナンスロリン - 3 - イル基、 2 , 8 - フ ェナンスロリン・4・イル基、2,8・フェナンスロリン・5・イル基、2,8・フェナ ンスロリン - 6 - イル基、2,8-フェナンスロリン - 7 - イル基、2,8-フェナンス ロリン - 9 - イル基、2 , 8 - フェナンスロリン - 10 - イル基、2 , 7 - フェナンスロ リン-1-イル基、2,7-フェナンスロリン-3-イル基、2,7-フェナンスロリン - 4 - イル基、 2 , 7 - フェナンスロリン - 5 - イル基、 2 , 7 - フェナンスロリン - 6 - イル基、 2 , 7 - フェナンスロリン - 8 - イル基、 2 , 7 - フェナンスロリン - 9 - イ ル基、 2 , 7 - フェナンスロリン - 1 0 - イル基、 1 - フェナジニル基、 2 - フェナジニ ル基、1-フェノチアジニル基、2-フェノチアジニル基、3-フェノチアジニル基、4 - フェノチアジニル基、1 - フェノキサジニル基、2 - フェノキサジニル基、3 - フェノ キサジニル基、4‐フェノキサジニル基、2‐オキサゾリル基、4‐オキサゾリル基、5 - オキサゾリル基、 2 - オキサジアゾリル基、 5 - オキサジアゾリル基、 3 - フラザニル 基、2-チエニル基、3-チエニル基、2-メチルピロール-1-イル基、2-メチルピ ロール・3 - イル基、2 - メチルピロール・4 - イル基、2 - メチルピロール・5 - イル

20

30

40

50

基、3-メチルピロール - 1-イル基、3-メチルピロール - 2-イル基、3-メチルピロール - 4-イル基、3-メチルピロール - 5-イル基、2-t-ブチルピロール - 4-イル基、3-(2-フェニルプロピル)ピロール - 1-イル基、2-メチル - 1-インドリル基、4-メチル - 1-インドリル基、4-メチル - 1-インドリル基、1-インドリル基、1-インドリル基、1-インドリル基、1-インドリル基、1-インドリル基、1-インドリル基、1-インドリル基等が挙げられる。

置換又は無置換の核炭素数6~50のアリールチオ基は、-SY"と表され、Y"の例としてはフェニル基、1・ナフチル基、2・ナフチル基、1・アントリル基、2・アントリル基、9・アントリル基、1・フェナントリル基、2・フェナントリル基、3・フェナントリル基、4・フェナントリル基、2・ピレニル基、2・ピレニル基、2・ピレニル基、3・ピフェニルイル基、4・ピレニル基、2・ピフェニルイル基、5・ターフェニルイル基、p・ターフェニル・2・イル基、p・ターフェニル・2・イル基、m・ターフェニル・3・イル基、m・ターフェニル・2・イル基、m・ターフェニル・2・イル基、p・トリル基、p・トリル基、p・t・ブチルフェニル基、p・フェニルが口ピル)フェニル基、3・メチル・2・ナフチル基、4・メチル・1・ブチル・p・ターフェニル・4・イル基等が挙げられる。

[0208]

置換もしくは無置換の核原子数5~50のヘテロアリールチオ基は、-SZ"と表され 、 Z " の例としては 2 - ピロリル基、 3 - ピロリル基、ピラジニル基、 2 - ピリジニル基 、3-ピリジニル基、4-ピリジニル基、2-インドリル基、3-インドリル基、4-イ ンドリル基、5-インドリル基、6-インドリル基、7-インドリル基、1-イソインド リル基、3-イソインドリル基、4-イソインドリル基、5-イソインドリル基、6-イ ソインドリル基、7-イソインドリル基、2-フリル基、3-フリル基、2-ベンゾフラ ニル基、3-ベンゾフラニル基、4-ベンゾフラニル基、5-ベンゾフラニル基、6-ベ ンゾフラニル基、7-ベンゾフラニル基、1-イソベンゾフラニル基、3-イソベンゾフ ラニル基、4-イソベンゾフラニル基、5-イソベンゾフラニル基、6-イソベンゾフラ ニル基、7-イソベンゾフラニル基、2-キノリル基、3-キノリル基、4-キノリル基 、5-キノリル基、6-キノリル基、7-キノリル基、8-キノリル基、1-イソキノリ ル基、3-イソキノリル基、4-イソキノリル基、5-イソキノリル基、6-イソキノリ ル基、7-イソキノリル基、8-イソキノリル基、2-キノキサリニル基、5-キノキサ リニル基、 6 - キノキサリニル基、 1 - カルバゾリル基、 2 - カルバゾリル基、 3 - カル バゾリル基、4.カルバゾリル基、1.フェナンスリジニル基、2.フェナンスリジニル 基、3.フェナンスリジニル基、4.フェナンスリジニル基、6.フェナンスリジニル基 、7.フェナンスリジニル基、8.フェナンスリジニル基、9.フェナンスリジニル基、 10-フェナンスリジニル基、1-アクリジニル基、2-アクリジニル基、3-アクリジ ニル基、4-アクリジニル基、9-アクリジニル基、1,7-フェナンスロリン-2-イ ル基、1,7-フェナンスロリン-3-イル基、1,7-フェナンスロリン-4-イル基 、 1 , 7 - フェナンスロリン - 5 - イル基、 1 , 7 - フェナンスロリン - 6 - イル基、 1 , 7 - フェナンスロリン - 8 - イル基、 1 , 7 - フェナンスロリン - 9 - イル基、 1 , 7 - フェナンスロリン - 1 0 - イル基、1 , 8 - フェナンスロリン - 2 - イル基、1 , 8 -フェナンスロリン・3-イル基、1,8-フェナンスロリン・4-イル基、1,8-フェ ナンスロリン - 5 - イル基、 1 , 8 - フェナンスロリン - 6 - イル基、 1 , 8 - フェナン スロリン・7・イル基、1,8・フェナンスロリン・9・イル基、1,8・フェナンスロ リン-10-イル基、1,9-フェナンスロリン-2-イル基、1,9-フェナンスロリ ン - 3 - イル基、 1 , 9 - フェナンスロリン - 4 - イル基、 1 , 9 - フェナンスロリン -5 - イル基、1,9 - フェナンスロリン - 6 - イル基、1,9 - フェナンスロリン - 7 -イル基、1,9-フェナンスロリン-8-イル基、1,9-フェナンスロリン-10-イ ル基、1,10-フェナンスロリン-2-イル基、1,10-フェナンスロリン-3-イ ル基、 1 , 1 0 - フェナンスロリン - 4 - イル基、 1 , 1 0 - フェナンスロリン - 5 - イ ル基、2,9-フェナンスロリン-1-イル基、2,9-フェナンスロリン-3-イル基 、 2 , 9 - フェナンスロリン - 4 - イル基、 2 , 9 - フェナンスロリン - 5 - イル基、 2 , 9 - フェナンスロリン - 6 - イル基、 2 , 9 - フェナンスロリン - 7 - イル基、 2 , 9 - フェナンスロリン - 8 - イル基、 2 , 9 - フェナンスロリン - 1 0 - イル基、 2 , 8 -フェナンスロリン・1・イル基、2,8・フェナンスロリン・3・イル基、2,8・フェ ナンスロリン・4 - イル基、2,8-フェナンスロリン・5 - イル基、2,8-フェナン スロリン - 6 - イル基、2,8-フェナンスロリン - 7 - イル基、2,8-フェナンスロ リン・9-イル基、2,8-フェナンスロリン・10-イル基、2,7-フェナンスロリ ン・1-イル基、2,7-フェナンスロリン・3-イル基、2,7-フェナンスロリン・ 4 - イル基、2,7-フェナンスロリン-5-イル基、2,7-フェナンスロリン-6-イル基、2,7-フェナンスロリン-8-イル基、2,7-フェナンスロリン-9-イル 基、2,7-フェナンスロリン-10-イル基、1-フェナジニル基、2-フェナジニル 基、1-フェノチアジニル基、2-フェノチアジニル基、3-フェノチアジニル基、4-フェノチアジニル基、1‐フェノキサジニル基、2‐フェノキサジニル基、3‐フェノキ サジニル基、4.フェノキサジニル基、2.オキサゾリル基、4.オキサゾリル基、5. オキサゾリル基、2・オキサジアゾリル基、5・オキサジアゾリル基、3・フラザニル基 、2-チエニル基、3-チエニル基、2-メチルピロール-1-イル基、2-メチルピロ ール・3 - イル基、2 - メチルピロール・4 - イル基、2 - メチルピロール・5 - イル基 、3-メチルピロール-1-イル基、3-メチルピロール-2-イル基、3-メチルピロ ール・4 - イル基、3 - メチルピロール・5 - イル基、2 - t - ブチルピロール・4 - イ ル基、 3 - (2 - フェニルプロピル) ピロール - 1 - イル基、 2 - メチル - 1 - インドリ ル基、4-メチル-1-インドリル基、2-メチル-3-インドリル基、4-メチル-3 - インドリル基、 2 - t - ブチル 1 - インドリル基、 4 - t - ブチル 1 - インドリル基、 2-t-ブチル3-インドリル基、4-t-ブチル3-インドリル基等が挙げられる。

[0209]

置換又は無置換の炭素数2~50のアルコキシカルボニル基は-COOZと表され、Z の例としてはメチル基、エチル基、プロピル基、イソプロピル基、 n - ブチル基、 s - ブ チル基、イソブチル基、t-ブチル基、n-ペンチル基、n-ヘキシル基、n-ヘプチル 基、n-オクチル基、ヒドロキシメチル基、1-ヒドロキシエチル基、2-ヒドロキシエ チル基、2-ヒドロキシイソブチル基、1,2-ジヒドロキシエチル基、1,3-ジヒド ロキシイソプロピル基、2,3-ジヒドロキシ・t-ブチル基、1,2,3-トリヒドロ キシプロピル基、クロロメチル基、1-クロロエチル基、2-クロロエチル基、2-クロ ロイソブチル基、1,2-ジクロロエチル基、1,3-ジクロロイソプロピル基、2,3 ジクロロ・t・ブチル基、1,2,3-トリクロロプロピル基、ブロモメチル基、1-ブロモエチル基、2-ブロモエチル基、2-ブロモイソブチル基、1,2-ジブロモエチ ル基、 1 , 3 - ジブロモイソプロピル基、 2 , 3 - ジブロモ - t - ブチル基、 1 , 2 , 3 - トリブロモプロピル基、ヨードメチル基、1 - ヨードエチル基、2 - ヨードエチル基、 2 - ヨードイソブチル基、1,2 - ジョードエチル基、1,3 - ジョードイソプロピル基 、 2 , 3 - ジョード - t - ブチル基、 1 , 2 , 3 - トリヨードプロピル基、アミノメチル 基、1-アミノエチル基、2-アミノエチル基、2-アミノイソブチル基、1,2-ジア ミノエチル基、1,3‐ジアミノイソプロピル基、2,3‐ジアミノ‐t‐ブチル基、1 , 2 , 3 .トリアミノプロピル基、シアノメチル基、 1 .シアノエチル基、 2 .シアノエ チル基、2-シアノイソブチル基、1,2-ジシアノエチル基、1,3-ジシアノイソプ ロピル基、2,3-ジシアノ-t-ブチル基、1,2,3-トリシアノプロピル基、ニト ロメチル基、1-ニトロエチル基、2-ニトロエチル基、2-ニトロイソプチル基、1, 2 - ジニトロエチル基、1 , 3 - ジニトロイソプロピル基、2 , 3 - ジニトロ - t - ブチ ル基、1,2,3-トリニトロプロピル基等が挙げられる。

[0210]

20

30

20

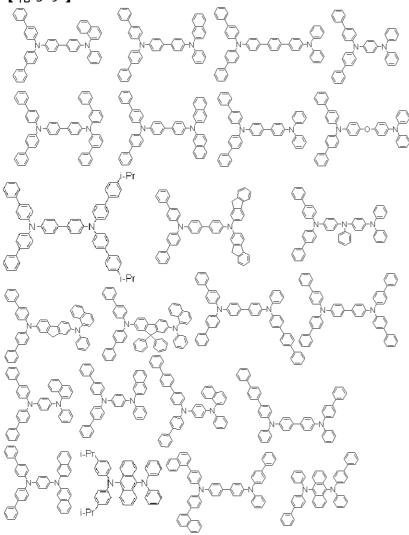
30

40

50

前記置換もしくは無置換の核炭素数6~50のアリール基または置換もしくは無置換の 核原子数5~50のヘテロアリール基で置換されたアミノ基は・NPQと表わされ、P、 Qの例としては、フェニル基、1-ナフチル基、2-ナフチル基、1-アントリル基、2 - アントリル基、9 - アントリル基、1 - フェナントリル基、2 - フェナントリル基、3 - フェナントリル基、 4 - フェナントリル基、 9 - フェナントリル基、 1 - ナフタセニル 基、2-ナフタセニル基、9-ナフタセニル基、1-ピレニル基、2-ピレニル基、4-ピレニル基、 2 - ビフェニルイル基、 3 - ビフェニルイル基、 4 - ビフェニルイル基、 p - ターフェニル - 4 - イル基、 p - ターフェニル - 3 - イル基、 p - ターフェニル - 2 -イル基、m-ターフェニル-4-イル基、m-ターフェニル-3-イル基、m-ターフェ ニル - 2 - イル基、 o - トリル基、 m - トリル基、 p - トリル基、 p - t - ブチルフェニ ル基、 p - (2 - フェニルプロピル) フェニル基、 3 - メチル - 2 - ナフチル基、 4 - メ チル・1・ナフチル基、4・メチル・1・アントリル基、4′・メチルビフェニルイル基 、 4 " - t - ブチル - p - ターフェニル - 4 - イル基、 2 - ピロリル基、 3 - ピロリル基 .ピラジニル基、2-ピリジニル基、3-ピリジニル基、4-ピリジニル基、2-インド リル基、3-インドリル基、4-インドリル基、5-インドリル基、6-インドリル基、 7 - インドリル基、1 - イソインドリル基、3 - イソインドリル基、4 - イソインドリル 基、5-イソインドリル基、6-イソインドリル基、7-イソインドリル基、2-フリル 基、3-フリル基、2-ベンゾフラニル基、3-ベンゾフラニル基、4-ベンゾフラニル 基、5-ベンゾフラニル基、6-ベンゾフラニル基、7-ベンゾフラニル基、1-イソベ ンゾフラニル基、3-イソベンゾフラニル基、4-イソベンゾフラニル基、5-イソベン ゾフラニル基、6-イソベンゾフラニル基、7-イソベンゾフラニル基、2-キノリル基 、3-キノリル基、4-キノリル基、5-キノリル基、6-キノリル基、7-キノリル基 、8-キノリル基、1-イソキノリル基、3-イソキノリル基、4-イソキノリル基、5 - イソキノリル基、6 - イソキノリル基、7 - イソキノリル基、8 - イソキノリル基、2 - キノキサリニル基、 5 - キノキサリニル基、 6 - キノキサリニル基、 1 - カルバゾリル 基、2-カルバゾリル基、3-カルバゾリル基、4-カルバゾリル基、1-フェナンスリ ジニル基、2-フェナンスリジニル基、3-フェナンスリジニル基、4-フェナンスリジ ニル基、6-フェナンスリジニル基、7-フェナンスリジニル基、8-フェナンスリジニ ル基、9-フェナンスリジニル基、10-フェナンスリジニル基、1-アクリジニル基、 2 - アクリジニル基、3 - アクリジニル基、4 - アクリジニル基、9 - アクリジニル基、 1,7-フェナンスロリン-2-イル基、1,7-フェナンスロリン-3-イル基、1, 7 - フェナンスロリン - 4 - イル基、1,7 - フェナンスロリン - 5 - イル基、1,7 -フェナンスロリン・6・イル基、1,7・フェナンスロリン・8・イル基、1,7・フェ ナンスロリン・9 - イル基、1,7-フェナンスロリン・10-イル基、1,8-フェナ ンスロリン - 2 - イル基、1,8-フェナンスロリン - 3 - イル基、1,8-フェナンス ロリン・4・イル基、1,8・フェナンスロリン・5・イル基、1,8・フェナンスロリ ン・6・イル基、1,8・フェナンスロリン・7・イル基、1,8・フェナンスロリン・ 9 - イル基、1 , 8 - フェナンスロリン - 1 0 - イル基、1 , 9 - フェナンスロリン - 2 - イル基、1,9-フェナンスロリン-3-イル基、1,9-フェナンスロリン-4-イ ル基、1,9-フェナンスロリン-5-イル基、1,9-フェナンスロリン-6-イル基 、 1 , 9 - フェナンスロリン - 7 - イル基、 1 , 9 - フェナンスロリン - 8 - イル基、 1 , 9 - フェナンスロリン - 1 0 - イル基、 1 , 1 0 - フェナンスロリン - 2 - イル基、 1 , 1 0 - フェナンスロリン - 3 - イル基、 1 , 1 0 - フェナンスロリン - 4 - イル基、 1 ,10-フェナンスロリン-5-イル基、2,9-フェナンスロリン-1-イル基、2, 9 - フェナンスロリン - 3 - イル基、2 , 9 - フェナンスロリン - 4 - イル基、2 , 9 -フェナンスロリン・5・イル基、2,9・フェナンスロリン・6・イル基、2,9・フェ ナンスロリン・7-イル基、2,9-フェナンスロリン・8-イル基、2,9-フェナン スロリン - 1 0 - イル基、2 , 8 - フェナンスロリン - 1 - イル基、2 , 8 - フェナンス ロリン・3・イル基、2,8・フェナンスロリン・4・イル基、2,8・フェナンスロリ ン - 5 - イル基、2,8 - フェナンスロリン - 6 - イル基、2,8 - フェナンスロリン -

20

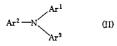

7 - イル基、2 , 8 - フェナンスロリン - 9 - イル基、2 , 8 - フェナンスロリン - 1 0 - イル基、 2 , 7 - フェナンスロリン - 1 - イル基、 2 , 7 - フェナンスロリン - 3 - イ ル基、2,7-フェナンスロリン-4-イル基、2,7-フェナンスロリン-5-イル基 、 2 , 7 - フェナンスロリン - 6 - イル基、 2 , 7 - フェナンスロリン - 8 - イル基、 2 , 7 - フェナンスロリン - 9 - イル基、 2 , 7 - フェナンスロリン - 1 0 - イル基、 1 -フェナジニル基、2‐フェナジニル基、1‐フェノチアジニル基、2‐フェノチアジニル 基、3-フェノチアジニル基、4-フェノチアジニル基、1-フェノキサジニル基、2-フェノキサジニル基、3-フェノキサジニル基、4-フェノキサジニル基、2-オキサゾ リル基、4-オキサゾリル基、5-オキサゾリル基、2-オキサジアゾリル基、5-オキ サジアゾリル基、3-フラザニル基、2-チエニル基、3-チエニル基、2-メチルピロ ール・1 - イル基、2 - メチルピロール・3 - イル基、2 - メチルピロール・4 - イル基 、2 - メチルピロール - 5 - イル基、3 - メチルピロール - 1 - イル基、3 - メチルピロ ール・2 - イル基、3 - メチルピロール・4 - イル基、3 - メチルピロール・5 - イル基 、2 - t - ブチルピロール - 4 - イル基、3 - (2 - フェニルプロピル)ピロール - 1 -イル基、2-メチル-1-インドリル基、4-メチル-1-インドリル基、2-メチル-3 - インドリル基、4 - メチル - 3 - インドリル基、2 - t - プチル1 - インドリル基、 4 - t - ブチル 1 - インドリル基、 2 - t - プチル 3 - インドリル基、 4 - t - ブチル 3 - インドリル基等が挙げられる。

[0211]

前記一般式(I)の化合物の具体例を以下に記すが、これらに限定されるものではない

[0212]

【化59】

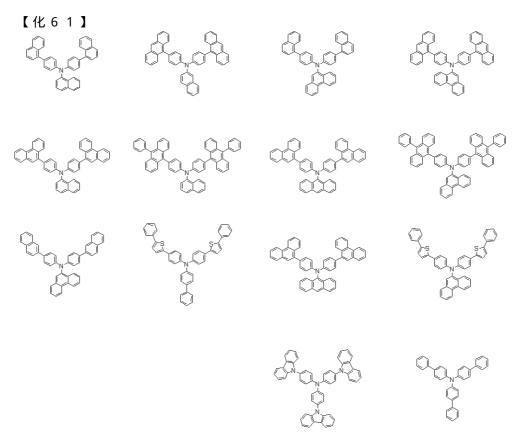


[0213]

また、下記一般式(川)の芳香族アミンも正孔注入層または正孔輸送層の形成に好適に 用いられる。

[0214]

【化60】



[0215]

前記一般式(II)において、Ar'~Ar³の定義は前記一般式(I)のAr'~Ar¹の 定義と同様である。以下に一般式(II)の化合物の具体例を記すがこれらに限定されるも のではない。

[0216]

30

[0217]

なお、本発明は、上記の説明に限られるものではなく、本発明の趣旨を逸脱しない範囲での変更は本発明に含まれる。

例えば次のような変更も本発明の好適な変形例である。

本発明では、前記発光層が電荷注入補助材を含有していることも好ましい。

エネルギーギャップが広いホスト材料を用いて発光層を形成した場合、ホスト材料のイオン化ポテンシャル(Ip)と正孔注入・輸送層等のIpとの差が大きくなり、発光層への正孔の注入が困難となり、十分な輝度を得るための駆動電圧が上昇するおそれがある。 【0218】

このような場合、発光層に、正孔注入・輸送性の電荷注入補助剤を含有させることで、 発光層への正孔注入を容易にし、駆動電圧を低下させることができる。

電荷注入補助剤としては、例えば、一般的な正孔注入・輸送材料等が利用できる。

具体例としては、トリアゾール誘導体(米国特許3,112,197号明細書等参照) 、オキサジアゾール誘導体(米国特許3,189,447号明細書等参照)、イミダゾー ル誘導体(特公昭37-16096号公報等参照)、ポリアリールアルカン誘導体(米国 特許 3 , 6 1 5 , 4 0 2 号明細書、同第 3 , 8 2 0 , 9 8 9 号明細書、同第 3 , 5 4 2 , 5 4 4 号明細書、特公昭 4 5 - 5 5 5 号公報、同 5 1 - 1 0 9 8 3 号公報、特開昭 5 1 -9 3 2 2 4 号公報、同 5 5 - 1 7 1 0 5 号公報、同 5 6 - 4 1 4 8 号公報、同 5 5 - 1 0 8 6 6 7 号公報、同 5 5 - 1 5 6 9 5 3 号公報、同 5 6 - 3 6 6 5 6 号公報等参照)、 ピラゾリン誘導体及びピラゾロン誘導体(米国特許第3,180,729号明細書、同第 4 , 2 7 8 , 7 4 6 号明細書、特開昭 5 5 - 8 8 0 6 4 号公報、同 5 5 - 8 8 0 6 5 号公 報、 同 4 9 - 1 0 5 5 3 7 号公報、 同 5 5 - 5 1 0 8 6 号公報、 同 5 6 - 8 0 0 5 1 号公 報、 同 5 6 - 8 8 1 4 1 号公報、 同 5 7 - 4 5 5 4 5 号公報、 同 5 4 - 1 1 2 6 3 7 号公 報、同55-74546号公報等参照)、フェニレンジアミン誘導体(米国特許第3,6 1 5 , 4 0 4 号明細書、特公昭 5 1 - 1 0 1 0 5 号公報、同 4 6 - 3 7 1 2 号公報、同 4 7 - 2 5 3 3 6 号公報、特開昭 5 4 - 5 3 4 3 5 号公報、同 5 4 - 1 1 0 5 3 6 号公報、 同54-119925号公報等参照)、アリールアミン誘導体(米国特許第3,567, 4 5 0 号明細書、同第 3 , 1 8 0 , 7 0 3 号明細書、同第 3 , 2 4 0 , 5 9 7 号明細書、

30

40

同第3,658,520号明細書、同第4,232,103号明細書、同第4,175, 9 6 1 号明細書、同第 4 , 0 1 2 , 3 7 6 号明細書、特公昭 4 9 - 3 5 7 0 2 号公報、同 3 9 - 2 7 5 7 7 号公報、特開昭 5 5 - 1 4 4 2 5 0 号公報、同 5 6 - 1 1 9 1 3 2 号公 報、同56-22437号公報、西独特許第1,110,518号明細書等参照)、アミ ノ置換カルコン誘導体(米国特許第3,526,501号明細書等参照)、オキサゾール 誘導体(米国特許第3,257,203号明細書等に開示のもの)、スチリルアントラセ ン誘導体(特開昭 5 6 - 4 6 2 3 4 号公報等参照)、フルオレノン誘導体(特開昭 5 4 -1 1 0 8 3 7 号公報等参照)、ヒドラゾン誘導体(米国特許第 3 , 7 1 7 , 4 6 2 号明細 書、特開昭 5 4 - 5 9 1 4 3 号公報、同 5 5 - 5 2 0 6 3 号公報、同 5 5 - 5 2 0 6 4 号 公報、同55-46760号公報、同55-85495号公報、同57-11350号公 報、同 5 7 - 1 4 8 7 4 9 号公報、特開平2 - 3 1 1 5 9 1 号公報等参照)、スチルベン 誘導体(特開昭 6 1 - 2 1 0 3 6 3 号公報、同第 6 1 - 2 2 8 4 5 1 号公報、同 6 1 - 1 4 6 4 2 号公報、同 6 1 - 7 2 2 5 5 号公報、同 6 2 - 4 7 6 4 6 号公報、同 6 2 - 3 6 6 7 4 号公報、同 6 2 - 1 0 6 5 2 号公報、同 6 2 - 3 0 2 5 5 号公報、同 6 0 - 9 3 4 5 5 号公報、同 6 0 - 9 4 4 6 2 号公報、同 6 0 - 1 7 4 7 4 9 号公報、同 6 0 - 1 7 5 052号公報等参照)、シラザン誘導体(米国特許第4,950,950号明細書)、ポ リシラン系(特開平2-204996号公報)、アニリン系共重合体(特開平2-282 263号公報)、特開平1-211399号公報に開示されている導電性高分子オリゴマ - (特にチオフェンオリゴマー)等を挙げることができる。

[0219]

正孔注入性の材料としては上記のものを挙げることができるが、ポルフィリン化合物(特開昭63-295695号公報等に開示のもの)、芳香族第三級アミン化合物及びスチリルアミン化合物(米国特許第4,127,412号明細書、特開昭53-27033号公報、同54-5845号公報、同54-64299号公報、同55-79450号公報、同55-144250号公報、同56-119132号公報、同61-29558号公報、同61-98353号公報、同63-295695号公報等参照)、特に芳香族第三級アミン化合物が好ましい。

[0220]

また、米国特許第5,061,569号に記載されている2個の縮合芳香族環を分子内に有する、例えば、4,4'‐ビス(N‐(1‐ナフチル)‐N‐フェニルアミノ)ビフェニル(以下NPDと略記する)、また特開平4‐308688号公報に記載されているトリフェニルアミンユニットが3つスターバースト型に連結された4,4',4"‐トリス(N‐(3‐メチルフェニル)・N‐フェニルアミノ)トリフェニルアミン(以下MTDATAと略記する)等を挙げることができる。

また、特許公報第3614405号、3571977号または米国特許4,780,5 36に記載されているヘキサアザトリフェニレン誘導体等も正孔注入性の材料として好適 に用いることができる。

[0221]

また、p型Si、p型SiC等の無機化合物も正孔注入材料として使用することができる。

[0222]

本発明の有機エレクトロルミネッセンス素子の各層の形成方法は特に限定されない。従来公知の真空蒸着法、スピンコーティング法等による形成方法を用いることができる。本発明の有機エレクトロルミネッセンス素子に用いる、前記式(1)で表される化合物を含有する有機薄膜層は、真空蒸着法、分子線蒸着法(MBE法)あるいは溶媒に解かした溶液のディッピング法、スピンコーティング法、キャスティング法、バーコート法、ロールコート法等の塗布法による公知の方法で形成することができる。

本発明の有機エレクトロルミネッセンス素子の各有機層の膜厚は特に制限されないが、 一般に膜厚が薄すぎるとピンホール等の欠陥が生じやすく、逆に厚すぎると高い印加電圧 が必要となり効率が悪くなるため、通常は数 n m から 1 μ m の範囲が好ましい。 10

20

30

40

[合成例]

本発明の化合物群においては、鈴木 - 宮浦クロスカップリング反応等を用いて合成することができる。例えば、以下の化学反応式に示すように合成される。

(79)

$$((Ra - B(OH)_2) + I - Ar^1 - Br) (Ra - Ar^1 - Br))$$

[0224]

次に、合成実施例を用いて本発明のホスト材料の製造方法を説明するが、本発明はこれらの記載内容に何ら制限されるものではない。

[0225]

[合成実施例1]化合物(A15)の合成

[0226]

【化62】

[0227]

アルゴン雰囲気下、 2 - ブロモ - 6 - (9 - フェナントリル)ナフタレン 8 . 0 g (2 1 m m o 1)、 3 - (9 - フェナントリル)フェニルボロン酸 6 . 2 g (2 1 m m o 1)、 7 - 7

マススペクトラム分析の結果、分子量556.69に対し、m/e=556であった。

[0228]

[合成実施例2]化合物(A16)の合成

[0229]

【化63】

[0230]

アルゴン雰囲気下、2 - ブロモ - 6 - (2 - ナフチル)ナフタレン10.0g(30mmol)、3 - (9 - フェナントリル)フェニルボロン酸8.9g(30mmol)、テトラキス(トリフェニルホスフィン)パラジウム(0)700mg(0.60mmol)、トルエン200ml、ジメトキシエタン65ml、2M炭酸ナトリウム水溶液 42mlを加え、90 にて、12時間攪拌した。反応混合物を室温まで放冷し、水を加え室温にて1時間攪拌後、トルエンで抽出した。分液後、有機相を飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥した。減圧下溶媒を留去し、残渣をシリカゲルカラムクロマトグラフィーにより精製し、トルエンで再結晶化することにより、化合物(A16)を7.8g(

10

30

収率51%)得た。

マススペクトラム分析の結果、分子量506.63に対し、m/e=506であった。

[0231]

[合成実施例3]化合物(A24)の合成

[0232]

【化64】

[0233]

アルゴン雰囲気下、2 - ブロモ-7 - (9 - フェナントリル)ナフタレン8 . 0g(2 1 m m o 1)、3 - (3 - フルオランテニル)フェニルボロン酸6 . 8g(2 1 m m o 1)、テトラキス(トリフェニルホスフィン)パラジウム(0)490 m g(0 . 42 m m o 1)、トルエン150 m 1、ジメトキシエタン50 m 1、2 M 炭酸ナトリウム水溶液30 m 1を加え、90 にて、12時間攪拌した。反応混合物を室温まで放冷し、水を加え室温にて1時間攪拌後、トルエンで抽出した。分液後、有機相を飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥した。減圧下溶媒を留去し、残渣をシリカゲルカラムクロマトグラフィーにより精製し、トルエンで再結晶化することにより、化合物(A 2 4)を4 . 9g(収率40%)得た。

マススペクトラム分析の結果、分子量580.71に対し、m/e=580であった。

[0234]

[合成実施例4]化合物(B2)の合成

[0235]

【化65】

[0236]

アルゴン雰囲気下、 2 - ブロモ - 6 - (9 - フェナントリル)ナフタレン 8 . 0 g (2 1 m m o 1)、 2 - (9 - フェナントリル) - 6 - ナフチルボロン酸 7 . 3 g (2 1 m m o 1)、 7 -

マススペクトラム分析の結果、分子量606.75に対し、m/e=606であった。

[0237]

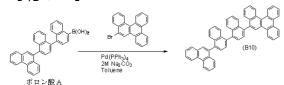
[合成実施例5]化合物(B8)の合成

[0238]

20

[0239]

アルゴン雰囲気下、 2 - ブロモ - 6 - (9 - フェナントリル)ナフタレン 8 . 0 g (2 1 m m o 1)、 1 - (2 - ナフチル) - 6 - ナフチルボロン酸 6 . 3 g (2 1 m m o 1)、 7 - 7 - 7 - 7 - 7 - 7 - 8


マススペクトラム分析の結果、分子量556.69に対し、m/e=556であった。

[0240]

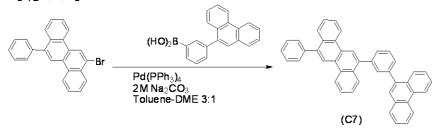
[合成実施例6]化合物(B10)の合成

[0241]

【化67】

[0242]

アルゴン雰囲気下、ボロン酸 A 6 . 4 g (1 3 m m o 1) 、上記臭化ベンゾクリセン 4 . 6 g (1 3 m m o 1) 、テトラキス(トリフェニルホスフィン)パラジウム(0) 3 0 0 m g (0 . 2 6 m m o 1) 、トルエン 1 5 0 m 1 、2 M 炭酸ナトリウム水溶液 2 0 m 1 を加え、 1 1 0 にて、 1 0 時間攪拌した。反応混合物を室温まで放冷し、水を加え室温にて 1 時間攪拌後、トルエンで抽出した。分液後、有機相を飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥した。減圧下溶媒を留去し、残渣をシリカゲルカラムクロマトグラフィーにより精製し、トルエンで再結晶化することにより、化合物(B 1 0)を 3 . 2 g (収率 3 5 %) 得た。


マススペクトラム分析の結果、分子量706.87に対し、m/e=706であった。

[0243]

[合成実施例7]化合物(C7)の合成

[0244]

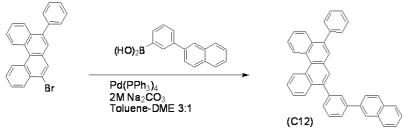
【化68】

10

20

30

アルゴン雰囲気下、 6 - ブロモ - 1 2 - フェニルクリセン 1 0 . 0 g (2 6 m m o 1) 、 3 - (9 - フェナントリル)フェニルボロン酸 7 . 8 g (2 6 m m o 1) 、 7 -


マススペクトラム分析の結果、分子量556.69に対し、m/e=556であった。

[0246]

[合成実施例8]化合物(C12)の合成

[0247]

【化69】

[0248]

アルゴン雰囲気下、 2 - プロモ - 9 - フェニルベンツ[c]フェナントレン 6 . 0 g (16 m m o 1) 、 3 - (2 - ナフチル) フェニルボロン酸 3 . 9 g (1 6 m m o 1) 、テトラキス (トリフェニルホスフィン) パラジウム (0) 3 8 0 m g (0 . 3 2 m m o 1) 、トルエン 1 5 0 m 1 、ジメトキシエタン 5 0 m 1 、 2 M 炭酸ナトリウム水溶液 2 5 m 1 を加え、 9 0 にて、 1 2 時間攪拌した。反応混合物を室温まで放冷し、水を加え室温にて1時間攪拌後、トルエンで抽出した。分液後、有機相を飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥した。減圧下溶媒を留去し、残渣をシリカゲルカラムクロマトグラフィーにより精製し、トルエンで再結晶化することにより、化合物(C 1 2)を 2 . 1 g (収率 2 6 %)得た。

マススペクトラム分析の結果、分子量 5 0 6 . 6 3 に対し、m / e = 5 0 6 であった。 【 0 2 4 9 】

なお、上記合成例においてマススペクトラム分析の測定に用いた装置及び測定条件を以下に示す。

装置: JSM - 700(日本電子社製)

条件:加速電圧 8 k V

スキャンレンジ m/z=50~3000

エミッタ種:カーボン

エミッタ電流: 0 m A 2 m A / 分 4 0 m A (10分保持)

【実施例】

[0250]

次に、実施例および比較例を挙げて本発明をさらに詳しく説明するが、本発明はこれらの実施例の記載内容に何ら制限されるものではない。

なお、下の表には、各材料の物性値を記載したところ、これら物性値は次のように測定 した。

三重項エネルギーギャップEgは、燐光発光スペクトルに基づいて規定した。

すなわち、各材料を EPA溶媒(容積比でジエチルエーテル:イソペンタン:エタノール = 5 : 5 : 2) に 1 0 μ m o 1 / L で溶解 し、燐光測定用試料とする。

そして、燐光測定用試料を石英セルに入れ、77Kに冷却し、励起光を照射し、放射さ

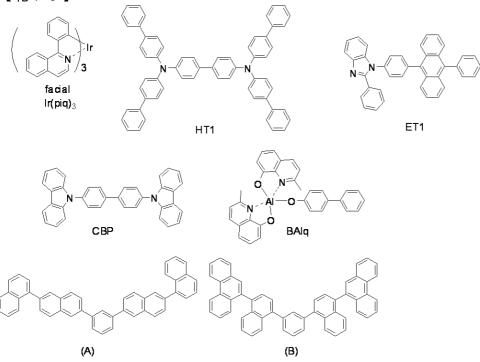
10

30

40

れる燐光を波長に対して測定する。

得られた燐光スペクトルの短波長側の立ちあがりに対して接線を引き、該波長値をエネルギーに換算した値を三重項エネルギーギャップEg(T)とする。


なお、測定には市販の測定装置 F-4500(日立製)を用いた。

[0251]

実施例及び比較例で使用した化合物の構造を以下に示す。

[0252]

【化70】

[0253]

[実施例1]

(有機エレクトロルミネッセンス素子の作製)

 $25\,\text{mm} \times 75\,\text{mm} \times 0$. $7\,\text{mm}$ 厚のITO透明電極付きガラス基板(旭硝子製)をイソプロピルアルコール中で超音波洗浄を5分間行なった後、UVオゾン洗浄を30分間行なった。洗浄後の透明電極ライン付きガラス基板を真空蒸着装置の基板ホルダーに装着し、まず透明電極ラインが形成されている側の面上に、前記透明電極を覆うようにして膜厚 $50\,\text{nm}$ のHT1を成膜した。該HT1膜は正孔注入輸送層として機能する。さらに、該正孔注入輸送層の成膜に続けて、この膜上に膜厚 $40\,\text{nm}$ の化合物(B 24)、および燐光発光性のドーパントとしてIr(pia)。を10質量%になるよう抵抗加熱により共蒸着膜成膜した。該膜は、発光層(燐光発光層)として機能する。該発光層成膜に続けて、膜厚 $40\,\text{nm}$ でET1を成膜した。該膜は電子輸送層として機能する。この後、LiFを電子注入性電極(陰極)として成膜速度 $0.1\,\text{nm}$ / minで膜厚 $0.5\,\text{nm}$ 形成した。このLiF層上に金属A1を蒸着させ、金属陰極を膜厚150nm形成し有機エレクトロルミネッセンス素子を形成した。

[0254]

[実施例2~17、比較例1~4]

化合物(B24)に代えて下記の表1に示した化合物をホスト材料として用いた以外は、実施例1と同様にして有機エレクトロルミネッセンス素子を作製した。

[0255]

「有機エレクトロルミネッセンス素子の発光性能評価 1

上記の実施例1~17、比較例1~4で作製した有機エレクトロルミネッセンス素子を 、直流電流駆動により発光させ、電流密度10mA/cm²における電圧、発光効率およ 30

40

び輝度半減寿命(初期輝度3000cd/m²)を測定した。また、70 駆動時における画素均一性を目視で確認し、均一な場合は「A」、不均一な部分が見られる場合は「B」とした。これらの評価の結果を表1に示す。

[0256]

【表1】

	ホスト材料	ホスト材料のEg(T) (eV)	電圧 (V)	発光効率 (cd/A)	輝度半減寿命 (時間)	70℃駆動時 画素均一性
実施例1	化合物(B24)	2. 45	4. 5	10. 0	7000	А
実施例2	化合物(B15)	2. 48	4. 3	9. 8	9000	Α
実施例3	化合物(A15)	2. 47	4. 3	12. 3	12500	Α
実施例4	化合物(A16)	2. 44	4. 7	10. 4	11500	Α
実施例5	化合物(A24)	2. 38	4. 4	10. 0	10500	Α
実施例6	化合物(B2)	2. 48	4. 4	9. 8	9500	А
実施例7	化合物(B8)	2. 48	4. 5	10. 6	10000	А
実施例8	化合物(B10)	2. 35	4. 8	11. 2	9000	Α
実施例9	化合物(C7)	2. 41	4. 8	9. 4	8800	Α
実施例10	化合物(C12)	2. 38	4. 7	9. 6	7800	А
実施例11	化合物(D3)	2. 50	4. 5	8. 7	5800	Α
実施例12	化合物(D12)	2. 46	4. 3	10. 5	7000	А
実施例13	化合物(D13)	2. 46	4. 5	8. 9	7200	Α
実施例14	化合物(E1)	2. 48	4. 5	9. 2	4800	А
実施例15	化合物(E2)	2. 51	4. 1	8. 6	5000	А
実施例16	化合物(E11)	2. 48	4. 5	8. 3	5500	А
実施例17	化合物(E12)	2. 47	4. 1	9. 2	5300	Α
比較例1	CBP	2. 81	5. 7	6. 3	1200	В
比較例2	BAlq	2. 28	5. 3	7. 0	2300	В
比較例3	化合物(A)	2. 51	5. 2	7. 5	3800	В
比較例4	化合物(B)	2. 65	5. 1	8. 7	3400	В

[0257]

表 1 から明らかなように、発光効率について、本発明のホスト材料を用いて構成した実施例 1 から実施例 1 7 の有機エレクトロルミネッセンス素子は、外部量子効率が高く、寿命が格段に長いことが示された。

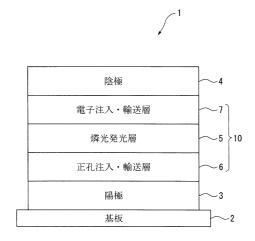
比較例1では、電圧が高く、寿命が非常に短い。

比較例2では、電圧は低めであるが寿命が短い。

比較例3および比較例4では、電圧は低めであるが、寿命が実施例1から実施例10と 比較して短い。

[0258]

本発明の組合せの特徴は、ホスト材料の3重項エネルギーギャップとドーパントの3重項エネルギーギャップが適切であるため発光効率が向上することと、ホスト材料に含窒素環、窒素原子等が置換されていないため、発光材料が正孔、電子に対し高い耐性を持っており、これにより、従来知られていた組合せよりも長寿命化することである。また、薄膜の熱安定性が良好なため、70 駆動時でも安定した素子が得られる。


【産業上の利用可能性】

[0259]

本発明は、高効率かつ長寿命な燐光発光性の有機エレクトロルミネッセンス素子、および高効率かつ長寿命な燐光発光性の有機エレクトロルミネッセンス素子を与える有機エレ

クトロルミネッセンス素子用材料として利用できる。

【図1】

【国際調査報告】

INTERNATIONAL SEARCH REPORT International application No. PCT/JP2008/059076 A. CLASSIFICATION OF SUBJECT MATTER H01L51/50(2006.01)i, C09K11/06(2006.01)i According to International Patent Classification (IPC) or to both national classification and IPC B. FIELDS SEARCHED Minimum documentation searched (classification system followed by classification symbols) H01L51/50, C09K11/06 Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Jitsuyo Shinan Koho 1922-1996 Jitsuyo Shinan Toroku Koho 1996-2008 1971-2008 Toroku Jitsuyo Shinan Koho Kokai Jitsuyo Shinan Koho 1994-2008 Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) C. DOCUMENTS CONSIDERED TO BE RELEVANT Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. Х JP 2005-71983 A (Fuji Photo Film Co., Ltd.), 1-4,6-11, 17 March, 2005 (17.03.05), Par. Nos. [0012] to [0014], [0018], [0037], 15-17 Y 12 [0038], [0100], [0102], [0111] 5,13,14 Α (Family: none) JP 2006-151966 A (Semiconductor Energy 1-4,7,11 X Laboratory Co., Ltd.), 15 June, 2006 (15.06.06), 8-10,12 Y Α 5,6,13-17 Par. Nos. [0056], [0063], [0077], [0080], [0084], [0086], [0088] to [0091]; Fig. 1 & US 2006/0093857 A1 & EP 1652902 A1 & CN 1769251 A X Further documents are listed in the continuation of Box C. See patent family annex. Special categories of cited documents: later document published after the international filing date or priority document defining the general state of the art which is not considered to be of particular relevance date and not in conflict with the application but cited to understand the principle or theory underlying the invention "A" document of particular relevance; the claimed invention cannot be earlier application or patent but published on or after the international filing "X" considered novel or cannot be considered to involve an inventive step when the document is taken alone document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination document referring to an oral disclosure, use, exhibition or other means being obvious to a person skilled in the art document published prior to the international filing date but later than the priority date claimed "&" document member of the same patent family Date of the actual completion of the international search Date of mailing of the international search report 29 May, 2008 (29.05.08) 10 June, 2008 (10.06.08) Name and mailing address of the ISA/ Authorized officer Japanese Patent Office

Telephone No.

Form PCT/ISA/210 (second sheet) (April 2007)

Facsimile No

INTERNATIONAL SEARCH REPORT

International application No.
PCT/JP2008/059076

		22008/059076
C (Continuation	i). DOCUMENTS CONSIDERED TO BE RELEVANT	<u> </u>
Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X Y A	JP 2005-222948 A (Xerox Corp.), 18 August, 2005 (18.08.05), Par. Nos. [0029], [0033], [0035], [0036], [0058]; Fig. 1 & US 2005/0175857 A1 & EP 1580250 A2	1-4,7,11 8-10,12 5,6,13-17
Y	WO 2005/084083 A1 (Idemitsu Kosan Co., Ltd.), 09 September, 2005 (09.09.05), Par. Nos. [0031] to [0037] & US 2007/0172698 A1 & EP 1722603 A1 & KR 2007/0004678 A & CN 1926925 A	8-10
Ą	WO 2007/069569 Al (Idemitsu Kosan Co., Ltd.), 21 June, 2007 (21.06.07), Par. Nos. [0059] to [0063] (Family: none)	12

Form PCT/ISA/210 (continuation of second sheet) (April 2007)

国際調査報告

国際出願番号 PCT/JP2008/059076

発明の属する分野の分類(国際特許分類(IPC)) Int.Cl. H01L51/50 (2006, 01) i, C09K11/06 (2006, 01) i

B. 調査を行った分野

調査を行った最小限資料(国際特許分類(IPC))

Int.Cl. H01L51/50, C09K11/06

最小限資料以外の資料で調査を行った分野に含まれるもの

日本国実用新案公報 1922-1996年 日本国公開実用新案公報 1971-2008年 1996-2008年 日本国実用新案登録公報 日本国登録実用新案公報 1994-2008年

国際調査で使用した電子データベース(データベースの名称、調査に使用した用語)

関連すると認められる文献

0. 関連すると配めり403人間					
引用文献の カテゴリー *	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号			
X	JP 2005-71983 A (富士写真フイルム株式会社) 2005.03.17,段落【0012】-【0014】,【001 8】,【0037】,【0038】,【0100】,【0102】,【011	1-4, 6-11, 15-17			
Y	1】 (ファミリーなし)	12			
A		5, 13, 14			

☑ C欄の続きにも文献が列挙されている。

パテントファミリーに関する別紙を参照。

- * 引用文献のカテゴリー
- 「A」特に関連のある文献ではなく、一般的技術水準を示す 「T」国際出願日又は優先日後に公表された文献であって 4,0
- 「E」国際出願日前の出願または特許であるが、国際出願日 以後に公表されたもの
- 「L」優先権主張に疑義を提起する文献又は他の文献の発行 日若しくは他の特別な理由を確立するために引用す る文献 (理由を付す)
- 「O」口頭による開示、使用、展示等に言及する文献
- 「P」国際出願目前で、かつ優先権の主張の基礎となる出願
- の日の後に公表された文献
- 出願と矛盾するものではなく、発明の原理又は理論 の理解のために引用するもの
- 「X」特に関連のある文献であって、当該文献のみで発明 の新規性又は進歩性がないと考えられるもの
- 「Y」特に関連のある文献であって、当該文献と他の1以 上の文献との、当業者にとって自明である組合せに よって進歩性がないと考えられるもの
- 「&」同一パテントファミリー文献

国際調査を完了した日 国際調査報告の発送日 29.05.2008 10.06.2008 2O2905国際調査機関の名称及びあて先 特許庁審査官 (権限のある職員) 日本国特許庁(ISA/JP) 本田 博幸 郵便番号100-8915 東京都千代田区霞が関三丁目4番3号 電話番号 03-3581-1101 内線 3271

様式PCT/ISA/210 (第2ページ) (2007年4月)

国際調査報告

国際出願番号 PCT/JP2008/059076

C(続き).	関連すると認められる文献	
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
X	JP 2006-151966 A (株式会社半導体エネルギー研究所) 2006.06.15,段落【0056】,【0063】,【0	1-4, 7, 11
Y	077], [0080], [0084], [0086], [0088] — [0 091], 第1図	8-10, 12
A	& US 2006/0093857 A1 & EP 1652902 A1 & CN 1769251 A	5, 6, 13-17
X	JP 2005-222948 A (ゼロックス コーポレイション) 2005.08.18, 段落【0029】,【0033】,【00	1-4, 7, 11
Y	35], 【0036], 【0058], 第1図 & US 2005/0175857 A1	8–10, 12
A	& EP 1580250 A2	5, 6, 13-17
Y	WO 2005/084083 A1 (出光興産株式会社) 2005.09.09,段落 [0031] — [0037] & US 2007/0172698 A1 & EP 1722603 A1 & KR 2007/0004678 A & CN 1926925 A	8-10
Y	WO 2007/069569 A1 (出光興産株式会社) 2007.06.21,段落 [0059] - [0063] (ファミリーなし)	12

様式PCT/ISA/210 (第2ページの続き) (2007年4月)

フロントページの続き

(51)Int.Cl. F I テーマコード (参考)

C 0 7 C 15/20

C 0 7 F 15/00 E

(81)指定国 AP(BW,GH,GM,KE,LS,MW,MZ,NA,SD,SL,SZ,TZ,UG,ZM,ZW),EA(AM,AZ,BY,KG,KZ,MD,RU,TJ,TM), EP(AT,BE,BG,CH,CY,CZ,DE,DK,EE,ES,FI,FR,GB,GR,HR,HU,IE,IS,IT,LT,LU,LV,MC,MT,NL,NO,PL,PT,RO,SE,SI,SK,T R),OA(BF,BJ,CF,CG,CI,CM,GA,GN,GQ,GW,ML,MR,NE,SN,TD,TG),AE,AG,AL,AM,AO,AT,AU,AZ,BA,BB,BG,BH,BR,BW,BY, BZ,CA,CH,CN,CO,CR,CU,CZ,DE,DK,DM,DO,DZ,EC,EE,EG,ES,FI,GB,GD,GE,GH,GM,GT,HN,HR,HU,ID,IL,IN,IS,JP,KE,K G,KM,KN,KP,KR,KZ,LA,LC,LK,LR,LS,LT,LU,LY,MA,MD,ME,MG,MK,MN,MW,MX,MY,MZ,NA,NG,NI,NO,NZ,OM,PG,PH,PL,PT ,RO,RS,RU,SC,SD,SE,SG,SK,SL,SM,SV,SY,TJ,TM,TN,TR,TT,TZ,UA,UG,US,UZ,VC,VN,ZA,ZM,ZW

(72)発明者 伊藤 光則

千葉県袖ケ浦市上泉1280番地

(72)発明者 高嶋 頼由

千葉県袖ケ浦市上泉1280番地

(72)発明者 荻原 俊成

千葉県袖ケ浦市上泉1280番地

F ターム(参考) 3K107 AA01 CC04 CC21 DD53 DD59 DD64 DD67 DD68 DD69 DD74

DD78 FF13 FF20

4H006 AA03 AB92

4H050 AA03 AB92 WB11 WB14 WB21

(注)この公表は、国際事務局(WIPO)により国際公開された公報を基に作成したものである。なおこの公表に係る日本語特許出願(日本語実用新案登録出願)の国際公開の効果は、特許法第184条の10第1項(実用新案法第48条の13第2項)により生ずるものであり、本掲載とは関係ありません。

专利名称(译)	用于有机电致发光器件和有机电致发光器件的材料				
公开(公告)号	JPWO2009008215A1	公开(公告)日	2010-09-02		
申请号	JP2009522549	申请日	2008-05-16		
[标]申请(专利权)人(译)	出光兴产株式会社				
申请(专利权)人(译)	出光兴产株式会社				
[标]发明人	西村和樹 岩隈俊裕 福岡川地潮 河藤 半則 高嶋頼由 荻原俊成				
发明人	西村 俊裕 福岡川村 大村 俊 賢一 田川村 日田 田川村 日田 田川村 日田 田田				
IPC分类号	H01L51/50 C09K11/06 C07C13/6	2 C07C15/20 C07F15/00			
CPC分类号	H01L51/0052 C09K11/06 C09K2211/1011 H01L51/0054 H01L51/0058 H01L51/0071 H01L51/0072 H01L51/0084 H01L51/0085 H01L51/5016 H01L51/5048 H01L51/5092 H01L2251/308 H05B33/14 H05B33/20				
FI分类号	H05B33/14.B H05B33/22.B C09K11/06.660 C09K11/06.690 C07C13/62 C07C15/20 C07F15/00.E				
F-TERM分类号	3K107/AA01 3K107/CC04 3K107/CC21 3K107/DD53 3K107/DD59 3K107/DD64 3K107/DD67 3K107/DD68 3K107/DD69 3K107/DD74 3K107/DD78 3K107/FF13 3K107/FF20 4H006/AA03 4H006/AB92 4H050/AA03 4H050/AB92 4H050/WB11 4H050/WB14 4H050/WB21				
优先权	PCT/JP2008/057837 2008-04-23 2007179109 2007-07-07 JP 2007179120 2007-07-07 JP 2007179121 2007-07-07 JP	WO			
其他公开文献	JP5307005B2				
外部链接	Espacenet				

摘要(译)

在阴极和阳极之间设置有由一层或多层构成的有机薄膜层,该有机薄膜层具有至少一个发光层,并且至少一个发光层表现出磷光发射。 一种有机电致发光器件,其包含以上至少一种和由下式(1)表示的主体材料。 Ra-Ar1-Ar2-Rb…(1) (其中,Ar1,Ar2,Ra,Rb是取代或未取代的苯环,或取代或未取代的萘环、,环,荧蒽环,三亚苯基环,菲环, 表示选自苯并菲环,二苯并菲环,苯并三苯并环,苯并ry环,a烯环和苯并[b]荧蒽环的稠合芳族烃基。