

US 20050007516A1

(19) **United States**

(12) **Patent Application Publication** (10) **Pub. No.: US 2005/0007516 A1**

Hong et al.

(43) **Pub. Date: Jan. 13, 2005**

(54) **LIQUID CRYSTAL DISPLAY MODULE AND
DRIVING METHOD THEREOF**

(75) Inventors: **Hee Jung Hong**, Seoul (KR); **Tae Ho You**, Incheon (KR)

Correspondence Address:
MORGAN LEWIS & BOCKIUS LLP
1111 PENNSYLVANIA AVENUE NW
WASHINGTON, DC 20004 (US)

(73) Assignee: **LG.Philips LCD Co., Ltd.**

(21) Appl. No.: **10/876,723**

(22) Filed: **Jun. 28, 2004**

(30) **Foreign Application Priority Data**

Jul. 7, 2003 (KR) P-2003-45694

Publication Classification

(51) **Int. Cl. 7** G02F 1/1335

(52) **U.S. Cl.** 349/64

(57) **ABSTRACT**

A liquid crystal display module includes a liquid crystal display panel, a light source for irradiating light onto the liquid crystal display panel, a diffuser for diffusing the light irradiated from the light source. A plurality of holes is provided at a rear side of the diffuser to insert a portion of the light source therein.

FIG.1
RELATED ART

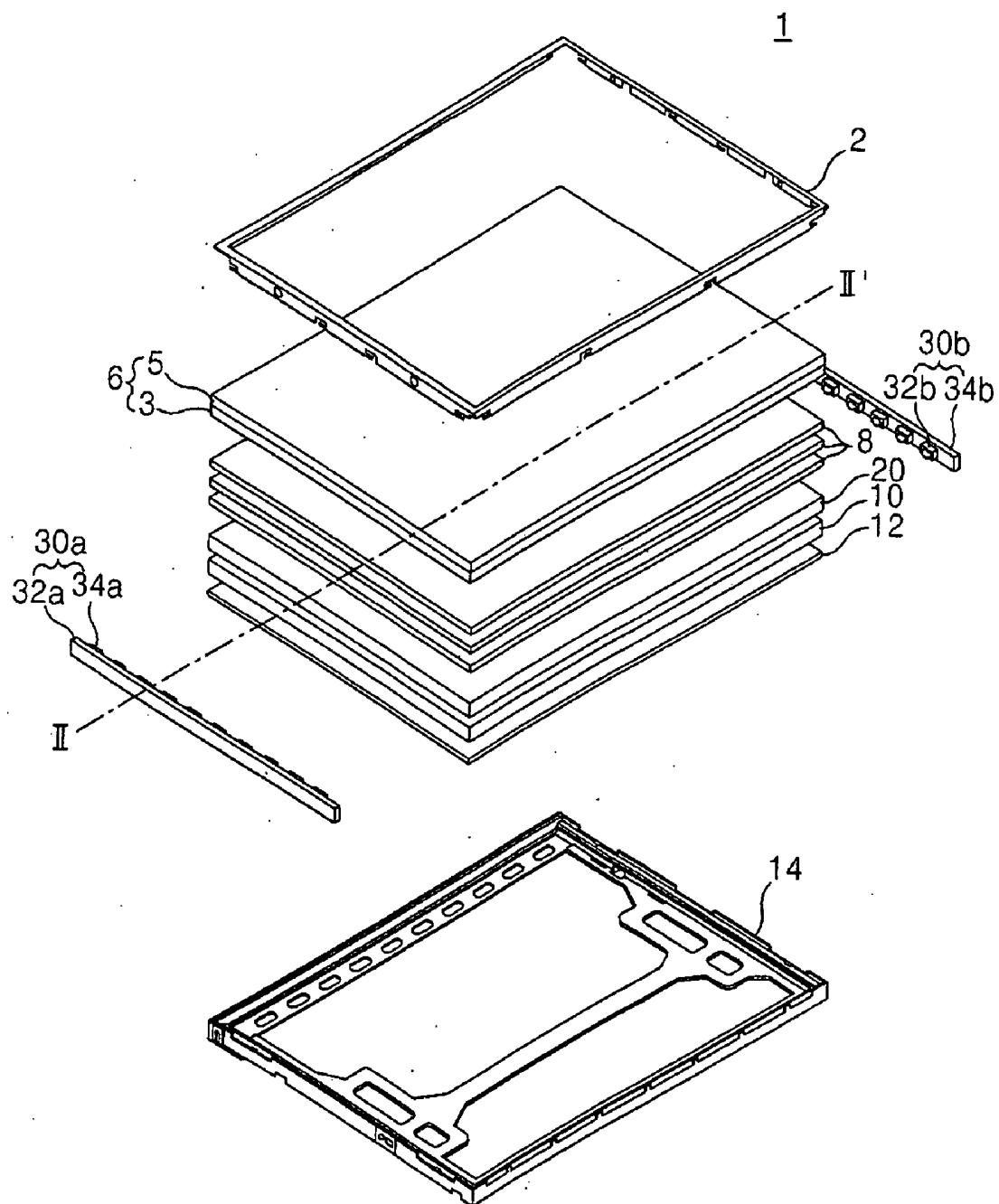


FIG. 2
RELATED ART

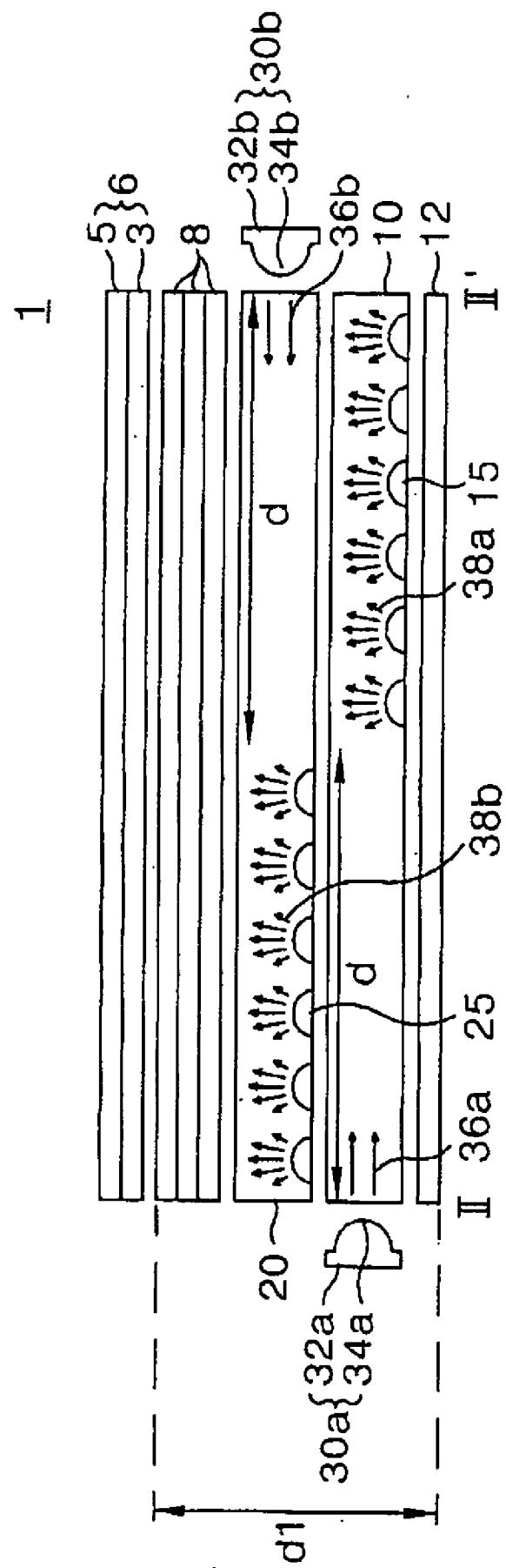


FIG. 3
RELATED ART

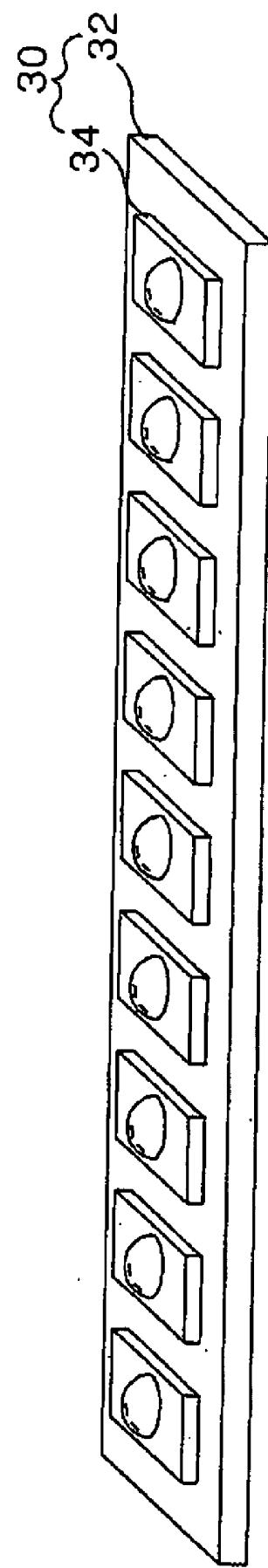
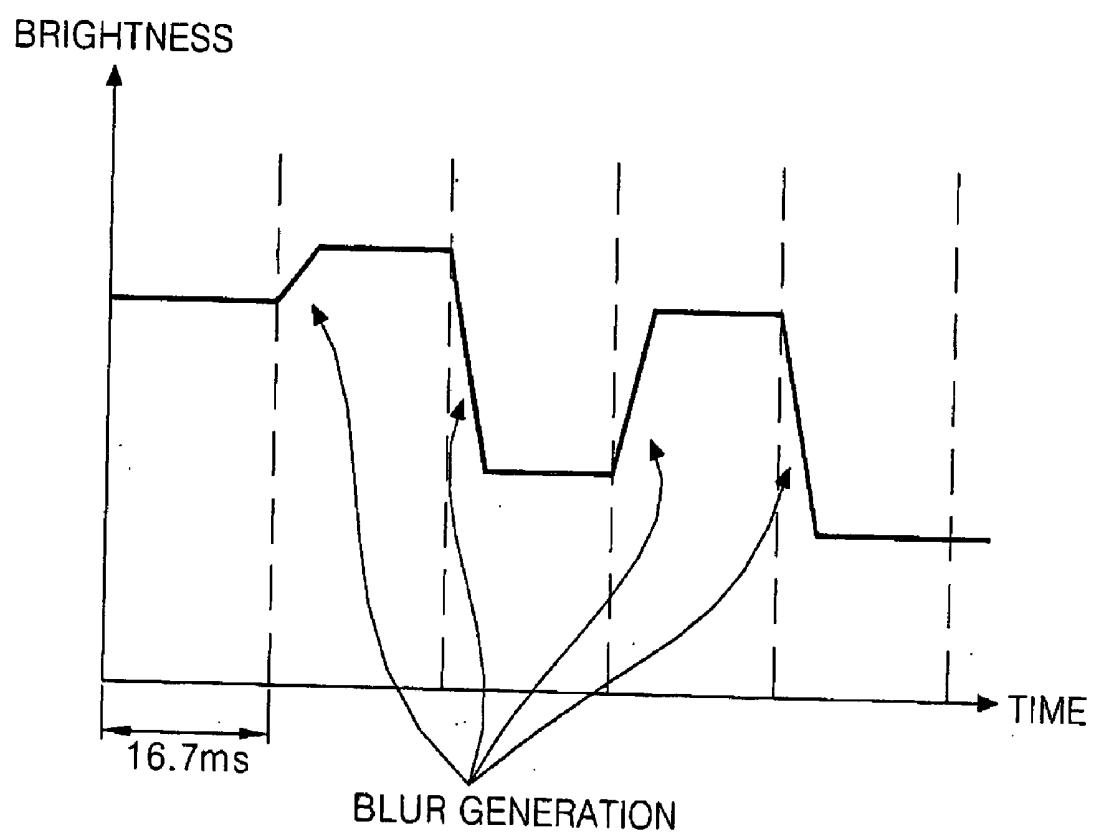
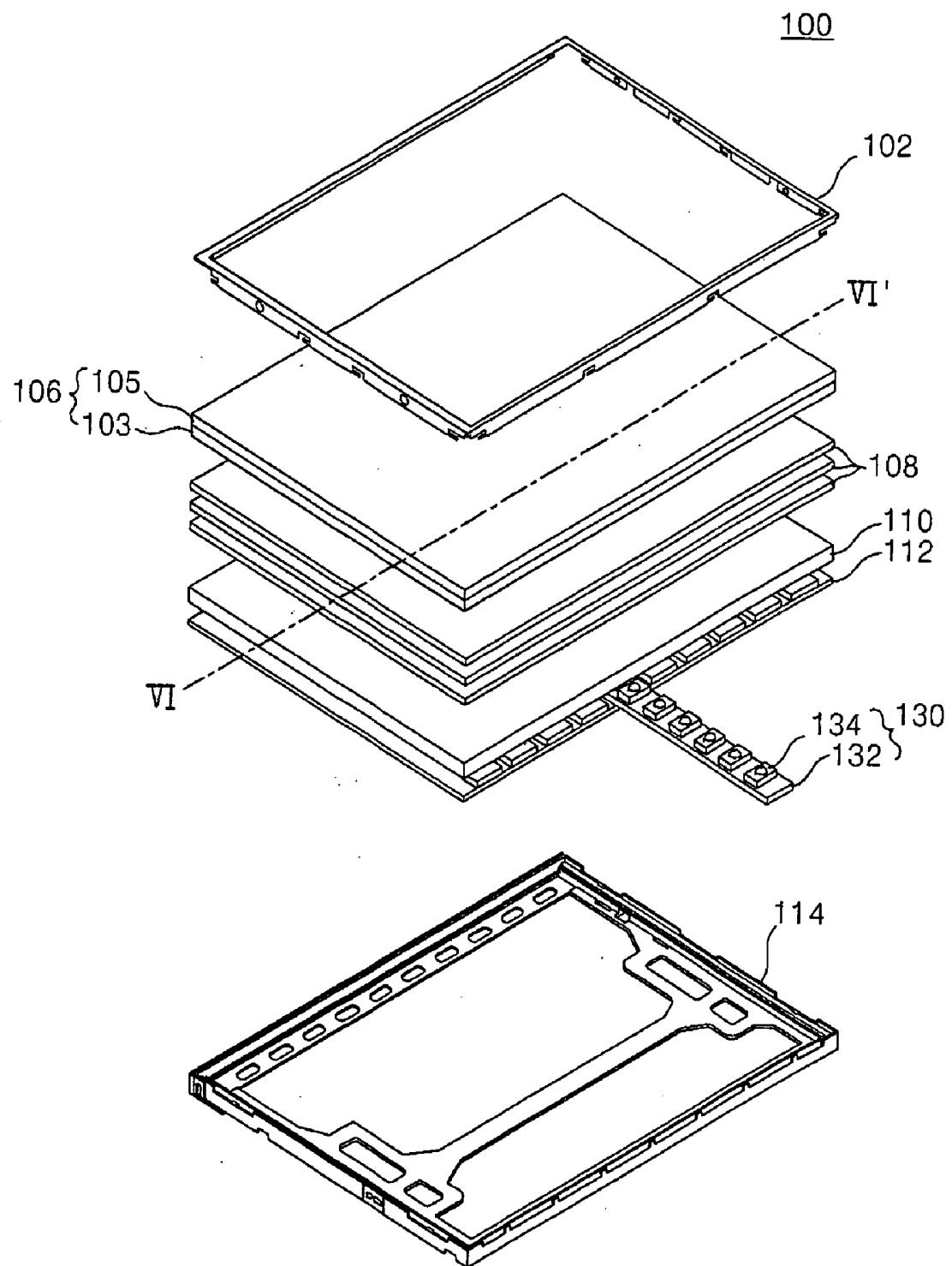


FIG. 4
RELATED ART

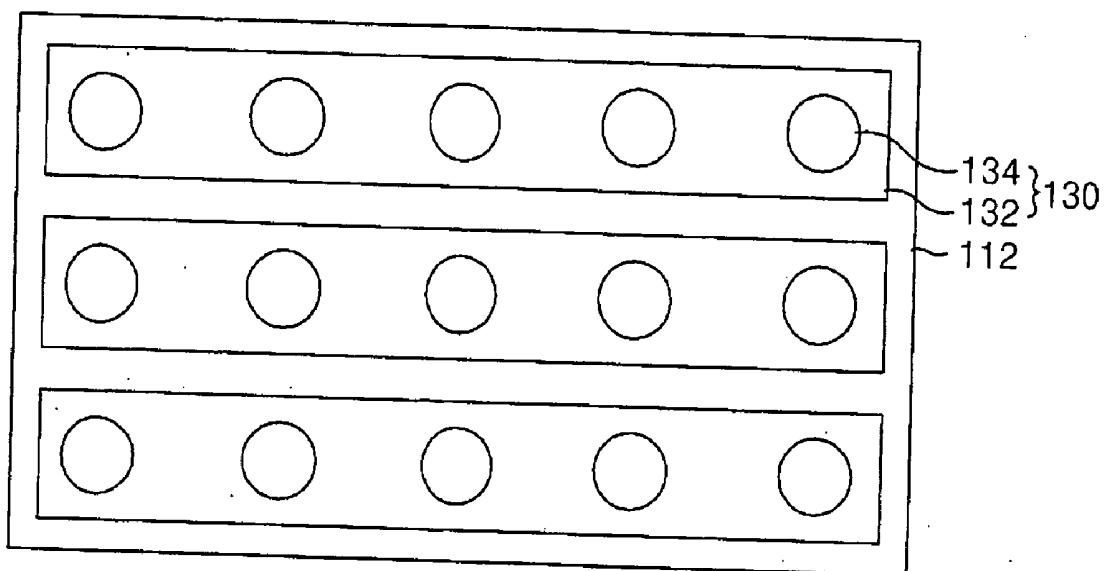

FIG.5

FIG. 6

FIG. 7

FIG. 8

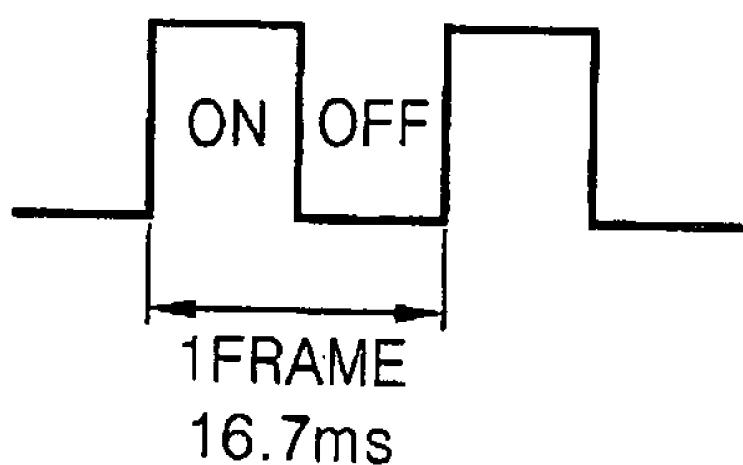


FIG. 9

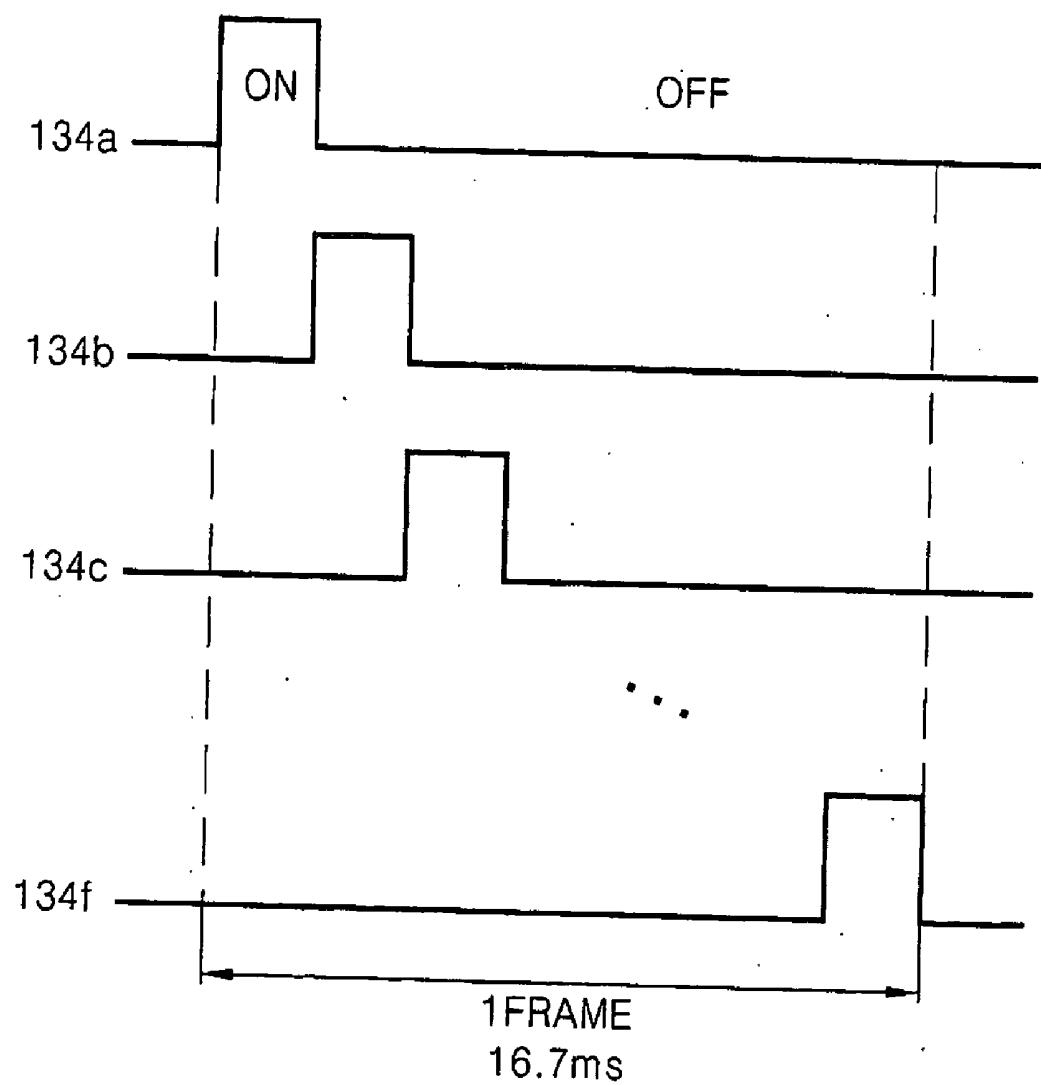


FIG.10

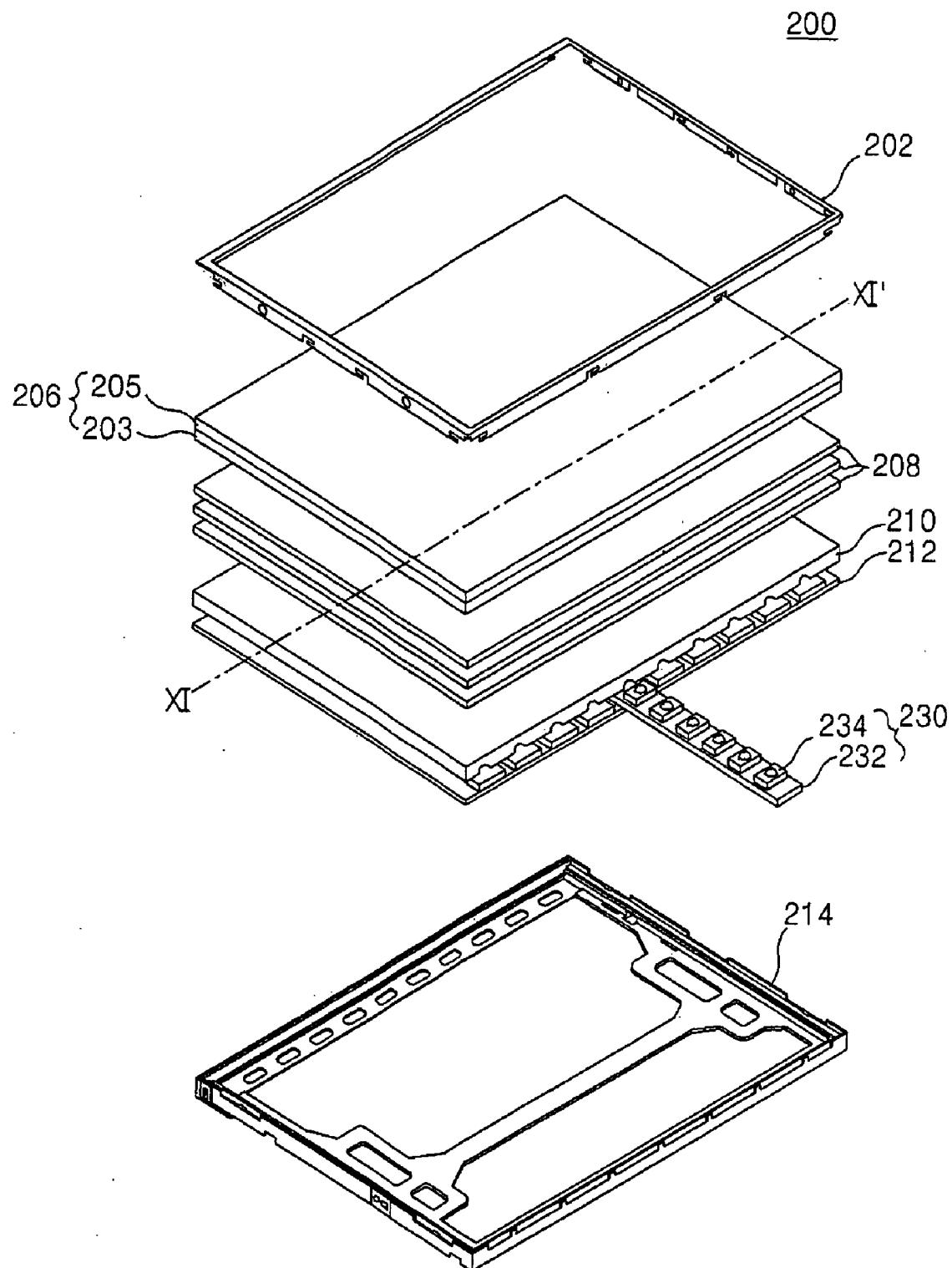


FIG.11

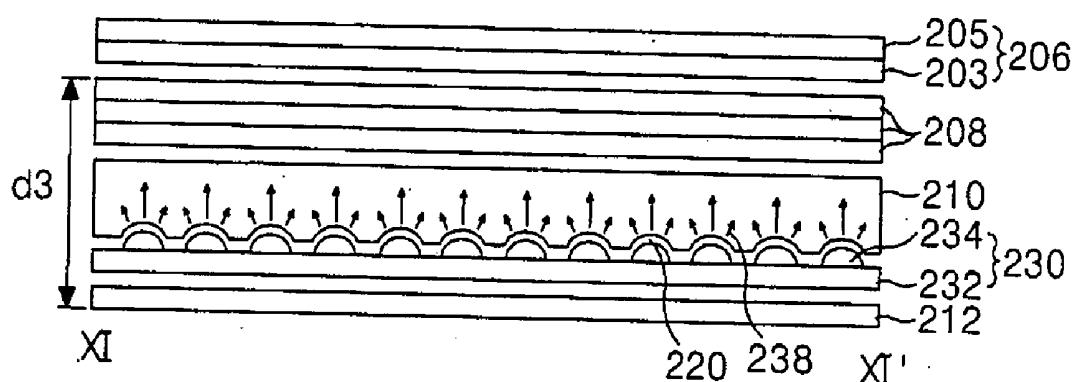
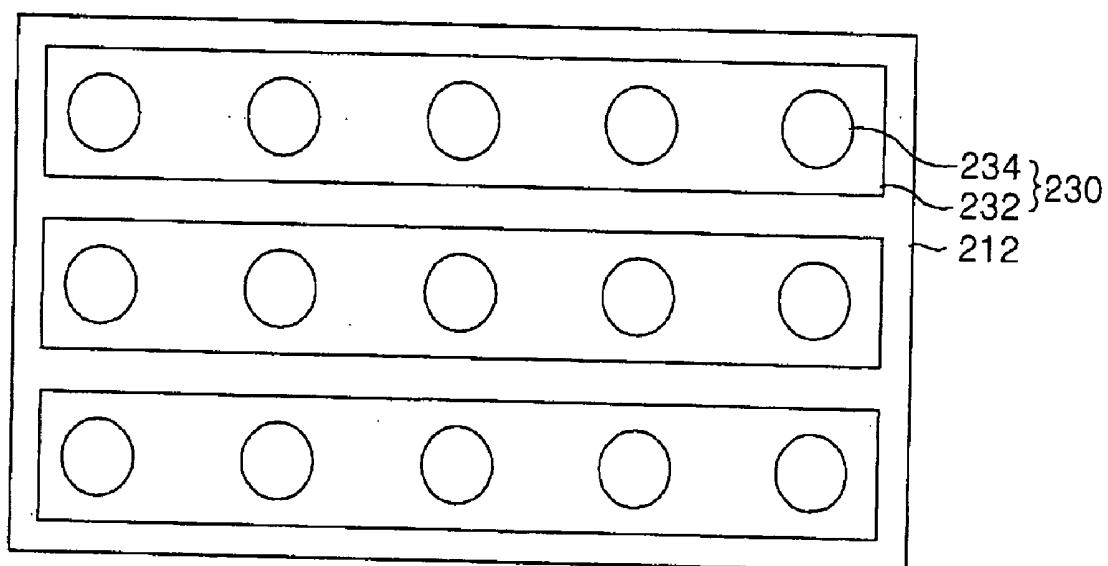



FIG.12

LIQUID CRYSTAL DISPLAY MODULE AND DRIVING METHOD THEREOF

[0001] The present invention claims the benefit of Korean Patent Application No. P2003-045694 filed in Korea on Jul. 7, 2003, which is hereby incorporated by reference.

BACKGROUND OF THE INVENTION

[0002] 1. Field of the Invention

[0003] This invention relates to a liquid crystal display module, and more particularly to a liquid crystal display module and a driving method thereof that reduce the thickness and the weight of the module and improve the picture quality of the liquid crystal display.

[0004] 2. Description of the Related Art

[0005] Generally, a liquid crystal display (LCD) includes a liquid crystal display module, and a driving circuitry for driving the liquid crystal display module.

[0006] The liquid crystal display module consists of a liquid crystal display panel having liquid crystal cells arranged in a matrix between two glass substrates, and a backlight unit for irradiating a light onto the liquid crystal display panel. The liquid crystal display module includes optical sheets for vertically raising a light propagating from the backlight unit toward the liquid crystal display panel.

[0007] In the related art liquid crystal display panel, the backlight unit and the optical sheets must be integrally engaged with each other to prevent loss of light, and to protect from damage caused by an external impact. To this end, the LCD panel includes a case that encloses the back light unit and the optical sheets, including the edge of the liquid crystal display panel.

[0008] FIG. 1 is a perspective view of a structure of a liquid crystal display module according to related art. FIG. 2 is a section view of the liquid crystal display module taken along the II-II' line in FIG. 1. Referring to FIG. 1 and FIG. 2, the related art liquid crystal display module 1 includes a main support 14, a backlight unit, a liquid crystal display panel 6, and a top case 2. The liquid crystal display panel 6 is disposed at the inside of the main support 14. The top case 2 encloses the edge of the liquid crystal display panel 6 and the main support 14.

[0009] A liquid crystal is injected between an upper substrate 5 and a lower substrate 3 of the liquid crystal display panel 6. The liquid crystal display panel 6 includes a spacer (not shown) to maintain a constant gap between the upper substrate 5 and the lower substrate 3. The upper substrate 5 of the liquid crystal display panel 6 is provided with a color filter, a common electrode and a black matrix, etc (not shown). A signal wiring such as a data line and a gate line, etc. (not shown) is formed at the lower substrate 3 of the liquid crystal display panel 6, and a thin film transistor (TFT) is formed at an intersection between the data line and the gate line.

[0010] The TFT switches a data signal to be transmitted from the data line into the liquid crystal cell in response to a scanning pulse (i.e., a gate pulse) from the gate line. A pixel electrode is formed at a pixel area between the data line and the gate line. One side of the lower substrate 3 includes pad areas connected to the data lines and the gate lines. A

tape carrier package (not shown) is attached onto the pad area. The tape carrier package includes a driver integrated circuit for applying a driving signal to the TFT. This tape carrier package applies data signals from the driver integrated circuit to the data lines. The tape carrier package also applies scanning signals to the gate lines.

[0011] An upper polarizing sheet is attached onto the upper substrate 5 of the liquid crystal display panel 6. A lower polarizing sheet is attached onto of the rear side of the lower substrate 3 of the liquid crystal display panel 6.

[0012] The main support 14 is a molded product. An inner side wall surface of the main support is molded into a stepped coverage face. This stepped coverage face is provided with a securing part to which a plurality of optical sheets 8 is safely secured. A back light unit, first and second light guide plates 10 and 20, a reflective sheet 12, and a plurality of optical sheets 8 are disposed at the inner side layer of the main support 14. The backlight unit comprises light emitting diode (LED) arrays 30a and 30b for irradiating a light onto the liquid crystal display panel 6. The reflective sheet 12 is arranged at the rear side of the first light guide plate 10. The optical sheets 8 are disposed between the second light guide plate 20 and the liquid crystal display panel.

[0013] FIG. 3 is a perspective view of a general light emitting diode array. As shown in FIG. 3, the LED array 30 of the related art backlight unit includes a plurality of LED's for generating lights, and a printed circuit board (PCB) including a circuit for controlling an emission of the plurality of LED's 34. The LED 34 is a point light source that emits a red light, a green light and a blue light. The PCB 32 supports the LED 34 and controls an emission of the LED 34 by a circuit configured thereon. A light generated from the LED 34 is incident upon the first and second light guide plates 10 and 20 through the incidence faces of the first and second light guide plates 10 and 20.

[0014] The light propagated into the bottom and the side of the LED array 30 is reflected by the reflective sheet 12 to be progressed toward the output face. The light output via the first and second light guide plates 10 and 20 is incident, via the plurality of optical sheets 8, to the liquid crystal display panel 6.

[0015] The reflective sheet 12 is located at the rear side of the first light guide plate 10, and reflects a light incident thereto through the rear side of the first light guide plate 10 into the light guide plate 10, thereby reducing loss of light. In other words, when light from the LED 34 is incident onto the light guide plates 10 and 20, then light propagated toward the bottoms and the sides of the light guide plates 10 and 20 is reflected by the reflective sheet 12 toward the liquid crystal display panel 6.

[0016] The first and second light guide plates 10 and 20 convert a straight line of light input from the LED arrays 30a and 30b into a surface light to thereby guide the light into the liquid crystal display panel 6. The bottoms of the first and second light guide plates 10 and 20 include printed patterns 15 and 25. The printed patterns have a convex shape. The patterns are printed at positions separated by a desired distance from the incidence faces of the first and second light guide plates 10 and 20.

[0017] A light beam going through the light input part is reflected at a desired incline angle from the rear side

provided with the printed patterns **15** and **25** to propagate uniformly toward the output face. The above-mentioned arrangement of the printed patterns insures that a distance "d" is adequate for combining red, green and blue lights emitted from the LED arrays **30a** and **30b** to generate white light.

[0018] A light incident onto the liquid crystal display panel **6** has a higher light efficiency when it forms a right angle. The plurality of optical sheets **8** vertically raises a light output from the first light guide plate **10** to thereby improve light efficiency. To this end, the liquid crystal display module includes a lower diffusing sheet for diffusing light output from the first and second light guide plates **10** and **20** into the entire area, first and second prism sheets for raising a propagation angle of the light diffused by the lower diffusing sheets vertically with respect to the liquid crystal display panel **6**, and an upper diffusing sheet for diffusing light going through the first and second prism sheets. Thus, light output from the first and second light guide plates **10** and **20** is incident onto the liquid crystal display panel **6** via the plurality of optical sheets **8**.

[0019] The top case **2** is shaped into a square band having a plane part and a side part, each of which is bent perpendicularly. The top case **2** encloses the edge of the liquid crystal display panel **6** and the main support **14**.

[0020] Typically, the backlight unit is small, thin and lightweight. Accordingly, such LED arrays **30a** and **30b**, as shown in **FIG. 2**, are convenient light sources for a general backlight unit because of their low power consumption, thin shape, light weight and brightness, etc. as compared to a lamp.

[0021] The LED arrays **30a** and **30b** include a plurality of LED's **34a** and **34b** for generating lights **36a** and **36b**, respectively, and PCB's **32a** and **32b** mounted with a circuit controlling an emission of the plurality of LED's **34a** and **34b**, respectively. The plurality of LED's **34a** and **34b** are point light sources that emit a red light, a green light and a blue light. Such LED's **34a** and **34b** are arranged at the sides of the first and second light guide plates **10** and **20** to be responsible for light sources.

[0022] The lights **36a** and **36b** generated from the plurality of LED's **34a** and **34b** are incident onto the first and second light guide plates **10** and **20** via the incidence faces of the first and second light guide plates **10** and **20**. As mentioned above, since the plurality of LED's **34a** and **34b** generates red, green and blue lights, a desired distance "d" is required for combining the red, green and blue lights to convert them into a white light. For this reason, scattering patterns **15** and **25** provided at the first and second light guide plates **10** and **20** are formed at a desired distance "d" for combining red, green and blue lights emitted from the LED's **34a** and **34b** to convert them into a white light from the incidence faces of the first and second light guide plates **10** and **20**.

[0023] The lights **36a** and **36b** emitted from the plurality of LED's **34a** and **34b** are scattered by the scattering patterns **15** and **25** provided at the first and second light guide plates **10** and **20** to have a propagation direction towards the liquid crystal display panel **6**. If the plurality of LED's **34a** and **34b** emitting red, green and blue lights are used as light sources, then a partial area of the first and second light guide plates **10** and **20** is used as a region in which the red, green and blue

lights are combined to be converted into a white light and the brightness of lights output from the first and second light guide plates **10** and **20** is scattered only at the remaining area.

[0024] In order to solve this problem, the first and the second light guide plates **10** and **20** are used to distribute uniformly a brightness of a light irradiated onto the liquid crystal display panel **6**, as depicted in **FIG. 2**. In other words, a light **36a** emitted from the LED **34a** arranged at the side of the first light guide plate **10** is scattered by the scattering pattern **15** provided at the first light guide plate **10**. A propagation direction of the scattered light **38b** is changed towards the liquid crystal display panel **6**.

[0025] The above-mentioned backlight unit of the liquid crystal display module suffers from the following drawbacks. The backlight unit has a large thickness "d1" because the light guide plates **10** and **20** are used to uniformly distribute the brightness. Thus, a weight of the backlight unit increases accordingly. Furthermore, a brightness of the light **38a** output from the first light guide plate **10** is reduced accordingly because of the propagation through the second light guide plate **20**. Such a brightness reduction phenomenon deteriorates the display quality of the liquid crystal display module **1**.

[0026] Moreover, the performance of above-mentioned backlight unit of the liquid crystal display module **1** is affected by the driving of a light source, for example LED **34**, in a hold-type driving method. In the hold-type driving method, the light source is continuously turned on, thereby causing large power consumption. Hence, LED **34** dissipates heat, thus causing a reduction in the life of the LED **34**. In addition, the LCD suffers from a blur phenomenon due to such a hold-type driving of the LED **34**. As depicted in **FIG. 4**, a picture becomes cloudy, thereby deteriorating the display quality of the liquid crystal display module **1**.

SUMMARY OF THE INVENTION

[0027] Accordingly, the present invention is directed to a liquid crystal display module and a driving method thereof that substantially obviate one or more of the problems due to limitations and disadvantages of the related art.

[0028] An object of the present invention is to provide a liquid crystal display panel with a reduced thickness, a lower weight and an improved picture quality.

[0029] Another object of the present invention is to provide a method for driving a liquid crystal display panel having a reduced thickness, a lower weight and an improved picture quality.

[0030] Additional features and advantages of the invention will be set forth in the description which follows, and in part will be apparent from the description, or may be learned by practice of the invention. These and other advantages of the invention will be realized and attained by the structure particularly pointed out in the written description and claims hereof as well as the appended drawings.

[0031] To achieve these and other advantages, and in accordance with the purpose of the present invention, as embodied and broadly described, the liquid crystal display module includes a liquid crystal display panel, a light source for irradiating light onto the liquid crystal display panel, a

diffuser for diffusing the light irradiated from the light source, and a plurality of holes provided at a rear side of the diffuser to insert a portion of the light source therein.

[0032] In another aspect, the liquid crystal display module includes a liquid crystal display panel, a light emitting diode array for irradiating a white light, and a diffuser for diffusing light irradiated from the light emitting diode array into the liquid crystal display panel.

[0033] In another aspect, the method of driving a liquid crystal display module, which includes a liquid crystal display panel, a light source for irradiating lights to the liquid crystal display panel, a diffuser for diffusing the lights input from the light source, and a plurality of holes provided at the rear side of the diffuser to insert a portion of the light source therein, includes turning on the light source during a desired time duration, and turning off the light source during a remaining time duration.

[0034] In another aspect, the method of driving a liquid crystal display module, which includes a liquid crystal display panel, a light emitting diode array for irradiating a white light and a diffuser for diffusing the light input from the light emitting diode array into the liquid crystal display panel, includes sequentially turning on light emitting diodes in accordance with a scanning direction of the liquid crystal display panel.

[0035] It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory and are intended to provide further explanation of the invention as claimed.

BRIEF DESCRIPTION OF THE DRAWINGS

[0036] The accompanying drawings, which are included to provide a further understanding of the invention and are incorporated in and constitute a part of this specification, illustrate embodiments of the present invention and together with the description serve to explain the principles of that invention. In the drawings:

[0037] FIG. 1 is a perspective view of a structure of a liquid crystal display module according to related art;

[0038] FIG. 2 is a section view of the liquid crystal display module taken along the II-II' line in FIG. 1;

[0039] FIG. 3 is a perspective view of a general light emitting diode array;

[0040] FIG. 4 is a graph depicting a blur phenomenon in the liquid crystal display module according to a hold-type driving of the light emitting diode shown in FIG. 3;

[0041] FIG. 5 is a perspective view of a structure of an exemplary liquid crystal display module according to a first embodiment of the present invention;

[0042] FIG. 6 is a section view of an exemplary liquid crystal display module taken along the VI-VI' line in FIG. 5;

[0043] FIG. 7 is a plan view of an exemplary light emitting diode array according to the first embodiment of the present invention;

[0044] FIG. 8 is a waveform diagram representing an exemplary flashing driving method for driving the exemplary light emitting diode shown in FIG. 7;

[0045] FIG. 9 is a waveform diagram of a scanning backlight driving method of the exemplary light emitting diode shown in FIG. 7;

[0046] FIG. 10 is a perspective view of a structure of an exemplary liquid crystal display module according to a second embodiment of the present invention;

[0047] FIG. 11 is a section view of an exemplary liquid crystal display module taken along the XI-XI' line in FIG. 10; and

[0048] FIG. 12 is a plan view of an exemplary light emitting diode array according to the second embodiment of the present invention.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

[0049] FIG. 5 is a perspective view of a structure of an exemplary liquid crystal display module according to a first embodiment of the present invention. FIG. 6 is a section view of an exemplary liquid crystal display module taken along the VI-VI' line in FIG. 5.

[0050] Referring to FIG. 5 and FIG. 6, a liquid crystal display module according to the first embodiment of the present invention includes a main support 114, a backlight unit, a liquid crystal display panel 106 and a top case 102. The liquid crystal display panel 106 is disposed at an inside of the main support 114. The top case 102 encloses an edge of the liquid crystal display panel 106 and a side surface of the main support 114.

[0051] In the liquid crystal display panel 106, a liquid crystal is injected between an upper substrate 105 and the lower substrate 103. The liquid crystal display panel 106 is provided with a spacer (not shown) maintaining a constant gap between an upper substrate 105 and a lower substrate 103 of the liquid crystal display panel. The upper substrate 105 of the liquid crystal display panel 106 is provided with a color filter, a common electrode and a black matrix, etc. (not shown). A signal wiring such as a data line and a gate line, etc. (not shown) is formed at the lower substrate 103 of the liquid crystal display panel 106. A thin film transistor (TFT) (not shown) is formed at an intersection between the data line and the gate line. The TFT switches a data signal to be transmitted from the data line into the liquid crystal cell in response to a scanning pulse (i.e., a gate pulse) from the gate line. A pixel electrode (not shown) is formed at a pixel area between the data line and the gate line. One side of the lower substrate is provided with pad areas connected to the data lines and the gate lines. A tape carrier package (not shown), which includes a driver integrated circuit for applying a driving signal to the TFT, is attached onto the pad area. This tape carrier package applies data signals from the driver integrated circuit to the data lines. Also, the tape carrier package applies scanning signals to the gate lines.

[0052] An upper polarizing sheet is attached onto the upper substrate 105 of the liquid crystal display panel 106. A lower polarizing sheet is attached onto the rear side of the lower substrate 103 of the liquid crystal display panel 106.

[0053] The main support 114 is a molded product. An inner side wall surface of the main support 114 is molded into a stepped coverage face. This stepped coverage face

includes a securing part to which a plurality of optical sheets **108** is safely secured. A backlight unit, a diffusion plate **110**, a reflective sheet **112**, and a plurality of optical sheets **108** are disposed at the inner side layer of the main support **114**. The backlight unit includes a light emitting diode (LED) array **130** for irradiating a light onto the liquid crystal display panel **106**. The diffusion plate **110** diffuses a light input from the LED array **130** to irradiate the light onto the liquid crystal display panel **106**. The reflective sheet **112** is disposed at a rear side of the LED array **130**. The optical sheets **108** are disposed on the diffusion plate **110**.

[0054] FIG. 7 is a plan view of an exemplary light emitting diode array according to the first embodiment of the present invention. As shown in FIG. 7, the LED array **130** of the liquid crystal display module **100** according to the first embodiment of the present invention includes a plurality of LED's **134** for generating lights, and a printed circuit board (PCB) **132** mounted with a circuit for controlling an emission of the plurality of LED's **134**. The LED **134** is a point light source and which emits a white light. The PCB **132** supports the LED **134** and controls an emission of the LED **134** by a circuit configured thereon. A light generated from the LED **134** is incident onto the diffusion plate **110**.

[0055] The diffusion plate **110** propagates a light input from the LED array **134** in a front direction of the liquid crystal display panel **106**, and diffuses the light in such a manner to have a large range of uniform distribution. Thus, the diffusion plate irradiates light onto the liquid crystal display panel **106**. A coating of light-diffusing member may be applied to both sides of the diffusing plate **110**. The light-diffusing member may include a film made of a transparent resin.

[0056] The reflective sheet **112** is located at the rear side of the LED array **130**. Light propagated toward the bottom of the LED array **130** is reflected by the reflective sheet **112** toward the output face, which is the liquid crystal display panel **106**. Light output through the diffusion plate **110** is incident onto the liquid crystal display panel **106** via the plurality of optical sheets **108**.

[0057] Light output from the diffusion plate **110** is diffused and has a large viewing angle. To this end, the optical sheets **108** are arranged on the diffusion plate **110**. The plurality of optical sheets **108** vertically raises light output from the diffusion plate **110** to thereby improve light efficiency. Thus, the light output from the diffusion plate **110** is incident onto the liquid crystal display panel **106** through the plurality of optical sheets **108**.

[0058] The top case **102** has a square band shape having a plane part and a side part, each of which is bent perpendicularly. The top case **102** encloses the edge of the liquid crystal display panel **106** and the main support **114**.

[0059] In the liquid crystal display module **100** according to the first embodiment of the present invention, the LED array **130** is located at the rear side of the diffusion plate **110**. The backlight unit consists of a single diffusion plate **110**. Furthermore, it becomes possible to apply the LED array **130** emitting a white light, thereby reducing a gap between the diffusion plate **110** and the LED array **130**. A thickness of the backlight unit also is reduced in accordance with the reduction of the gap between the diffusion plate **110** and the LED array **130**. Specifically, the LED array **130** inherently

emits a white light to thereby eliminate a requirement of the desired distance for combining the red, green and blue light to generate a white light.

[0060] Due to the above-mentioned structure, a thickness "d2" of the backlight unit of the liquid crystal display module **100** according to the first embodiment of the present invention is reduced compared to the thickness "d1" of the backlight unit of the related art liquid crystal display module **1**.

[0061] The LCD suffers from a blur phenomenon in which a picture screen becomes cloudy when displaying a moving picture due to a slow response characteristic and a sustaining characteristic of the liquid crystal. It is difficult to completely overcome such a deterioration of picture quality in the moving picture even when a response speed of the liquid crystal is faster than one frame interval (i.e., 16.7 ms).

[0062] FIG. 8 is a waveform diagram representing an exemplary flashing driving method for driving the light emitting diode shown in FIG. 7. Referring to FIG. 8, the liquid crystal display module **100** according to the first embodiment of the present invention drives the LED array **130** in a flashing method in order to prevent the blur phenomenon.

[0063] According to the flashing driving method, LED array **130** is driven during a certain time **T1** of one frame interval to thereby turn on the LED **134**. LED **134** remains off in the remaining time interval excluding the time **T1**. Thus, in the flashing driving method, the LED array **130** is driven in an impulse manner to eliminate the blur phenomenon.

[0064] If the LED **134** of the liquid crystal display module **100** according to the first embodiment of the present invention is driven in the flashing method, then heat generated from the LED **134** can be reduced. As the heat generated from the LED **134** is reduced, it becomes possible to prevent breakage of the LED caused by the heat and thus prevent a reduction in the life of the LED **134**. Furthermore, if the LED **134** is driven in the flashing method, the previous field has no affect on the next field, thereby improving a display quality of the liquid crystal display module by preventing the blur phenomenon.

[0065] FIG. 9 is a waveform diagram of a scanning backlight driving method of the light emitting diode shown in FIG. 7. Referring to FIG. 9, the liquid crystal display module **100** according to the first embodiment of the present invention drives the LED array **130** in the scanning backlight method in order to prevent the blur phenomenon. In the scanning backlight method, LED arrays **130a**, **130b**, **130c**, **130d**, **130e** and **130f** of the backlight unit are sequentially driven. More specifically, the LED's **134a** to **134f** are sequentially turned on in the scanning direction.

[0066] In accordance with the scanning backlight method, the LED's **134a** to **134f** of the liquid crystal display module **100** are sequentially turned on and off to emit a light at an initial time of one frame interval while shutting off the light in the remaining time interval. Thus, LED's **134a** to **134f** of the liquid crystal display module **100** are driven in a quasi-impulse scheme. Accordingly, the scanning backlight method prevents the blur phenomenon by eliminating the effect of the previous field on the next field, thereby improving a display quality of the liquid crystal display module.

[0067] **FIG. 10** is a perspective view of a structure of an exemplary liquid crystal display module according to a second embodiment of the present invention. **FIG. 11** is a section view of an exemplary liquid crystal display module taken along the XI-XI' line in **FIG. 10**. Referring to **FIG. 10** and **FIG. 11**, a backlight unit of the liquid crystal display module **200** according to the second embodiment of the present invention includes a light emitting diode (LED) array **230**, a diffusion plate **210**, a reflective sheet **212** and a plurality of optical sheets **208**. The light emitting diode (LED) array **230** irradiates a light onto the liquid crystal display panel **206**. The diffusion plate **210** diffuses a light input from the LED array **230** and irradiates the diffused light onto the liquid crystal display panel **206**. The reflective sheet **212** is disposed at the rear side of the LED array **230**. The optical sheets **208** are disposed on the diffusion plate **210**.

[0068] **FIG. 12** is a plan view of an exemplary light emitting diode array according to the second embodiment of the present invention. As depicted in **FIG. 12**, the LED array **230** includes a plurality of LED's **234** for generating lights, and a printed circuit board (PCB) **232** including a circuit for controlling an emission of the plurality of LED's **234**. The LED **234** is a point light source that emits a white light. The PCB **232** supports the LED **234** and controls an emission of the LED **234** by a circuit configured thereon. A light generated from the LED **234** is incident onto the diffusion plate **210**.

[0069] The diffusion plate **210** transmits a light input from the LED array **230** in a front direction of the liquid crystal display panel **206**, and diffuses the light in such a manner as to have a large range of uniform distribution, thereby irradiating light onto the liquid crystal display panel **206**. A coating of a light-diffusing member may be applied to both sides of the diffusing plate **210**. The light-diffusing member may include a film made of a transparent resin.

[0070] The reflective sheet **212** is located at the rear side of the LED array **230**. A light propagated toward the bottom of the diffusion plate **210** is reflected by the reflective sheet **212** toward the output face, which includes the liquid crystal display panel **206**. A light output via the diffusion plate **210** is incident onto the liquid crystal display panel **206** through the plurality of optical sheets **208**.

[0071] A light output from the diffusion plate **210** is diffused and has a large viewing angle. The light incident onto the liquid crystal display panel **206** has a highest efficiency when it forms a right angle. To this end, the optical sheets **208** are arranged on the diffusion plate **210**. The plurality of optical sheets **208** vertically raises a light output from the diffusion plate **210** to thereby improve the light efficiency. Thus, the light output from the diffusion plate **210** is incident onto the liquid crystal display panel **206** through the plurality of optical sheets **208**.

[0072] In contrast with the above-mentioned related art liquid display device, the LED array **230**, according to the second embodiment of the present invention, inherently emits a white light without a need for a desired distance to combine the red, green and blue light to generate a white light.

[0073] In the liquid crystal display module according to the second embodiment of the present invention, the LED

array **230** is disposed at a rear side of a single of diffusion plate **210**, thereby reducing a thickness of the backlight unit. Furthermore, the liquid crystal display module **200** according to the second embodiment of the present invention employs the emitting LED array **230**, which reduces a gap between the diffusion plate **210** and the LED array **230**.

[0074] **FIG. 11** is a section view of an exemplary liquid crystal display module taken along the XI-XI' line in **FIG. 10**. In accordance with the second embodiment of the present invention, the liquid crystal display module **200** includes a plurality of holes **220** provided at the rear side of the diffusion plate **210**. As shown in **FIG. 11**, a plurality of LED's **234** can be inserted into these holes in order to further reduce a thickness of the backlight unit.

[0075] A portion of the LEDs **234** arranged at the rear side of the diffusion plate **210** is inserted into the plurality of holes **220**. In this case, the holes **220** are concave with a circular or polygonal shape. Thus, an LED **234** is inserted into a hole **220** provided at the diffusion plate **210**, thereby reducing a gap between the diffusion plate **210** and the LED array **230**. Accordingly, a thickness of the backlight unit can be further reduced in the liquid crystal display module **200** according to the second embodiment of the present invention. Thus, a thickness "d3" of the backlight unit of the liquid crystal display module **200** is reduced compared to the thickness "d1" of the backlight unit of the related art liquid crystal display module 1.

[0076] Further, lights emitted from the LED **234** are scattered by the holes **220** provided at the diffusion plate **210**. The lights are diffused across the entire area of the diffusion plate **210** in a uniform distribution due to the scattered lights **238**. Thus, the backlight unit has a uniform brightness and the liquid crystal display module has an improved display quality.

[0077] The liquid crystal display module **200** according to the second embodiment of the present invention can be driven in the same flashing driving method or the same scanning backlight driving method as the liquid crystal display module **100** according to the first embodiment of the present invention in order to prevent the blur phenomenon.

[0078] As described above, the liquid crystal display module according to the present invention uses the LED array emitting a white light as a light source. The backlight unit consists of a single diffusion plate and is disposed at the rear side of the diffusion plate. In contrast with the related art LCD module, which uses two diffusion plates, the backlight unit of the LCD module according to the second embodiment of the present invention has a reduced thickness and a lower weight.

[0079] Furthermore, concave circular or polygonal holes are provided at the rear side of the diffusion plate such that the LED's can be inserted thereto, thereby reducing a thickness of the backlight unit. Moreover, the holes are provided at the diffusion plate to scatter a light emitted from the LED and then the scattered light is diffused through the diffusion plate, thereby presenting a uniform brightness and thus improving a display quality of the liquid crystal display module. In addition, the LED array is driven in the flashing method or the scanning backlight method, thereby reducing power consumption as well as eliminating the blur phenomenon to improve a display quality of the liquid crystal display module.

[0080] It will be apparent to those skilled in the art that various modifications and variations can be made in embodiments the present invention without departing from the spirit or scope of the invention. Thus, it is intended that the present invention cover the modifications and variations of this invention provided they come within the scope of the appended claims and their equivalents.

What is claimed is:

1. A liquid crystal display module, comprising:
 - a liquid crystal display panel;
 - a light source for irradiating light onto the liquid crystal display panel;
 - a diffuser for diffusing the light irradiated from the light source; and
 - a plurality of holes provided at a rear side of the diffuser to insert a portion of the light source therein.
2. The liquid crystal display module according to claim 1, wherein the light source includes a light emitting diode array including a plurality of light emitting diodes.
3. The liquid crystal display module according to claim 2, wherein the light emitting diodes emit a white light.
4. The liquid crystal display module according to claim 1, wherein a shape of each of the plurality of holes is one of a circular shape and a polygonal shape.
5. The liquid crystal display module according to claim 2, wherein the light emitting diode array includes a printed circuit board comprising a circuit for controlling the light emitting diodes.
6. The liquid crystal display module according to claim 1, further comprising:
 - a reflective sheet arranged at the rear side of the light source; and
 - at least one optical sheet arranged on the diffuser.
7. A liquid crystal display module, comprising:
 - a liquid crystal display panel;
 - a light emitting diode array for irradiating a white light;
 - a diffuser for diffusing light irradiated from the light emitting diode array into the liquid crystal display panel; and
 - a plurality of holes provided at a rear side of the diffuser to insert a portion of the light source therein.

8. The liquid crystal display module according to claim 7, wherein the light emitting diode array includes:

a light emitting diode for generating the white light; and
a printed circuit board including a circuit for controlling the light emitting diode.

9. The liquid crystal display module according to claim 7, wherein a shape of each of the plurality of holes is one of a circular shape and a polygonal shape.

10. The liquid crystal display module according to claim 7, further comprising:

a reflective sheet arranged at the rear side of the light source; and

at least one optical sheet arranged on the diffuser.

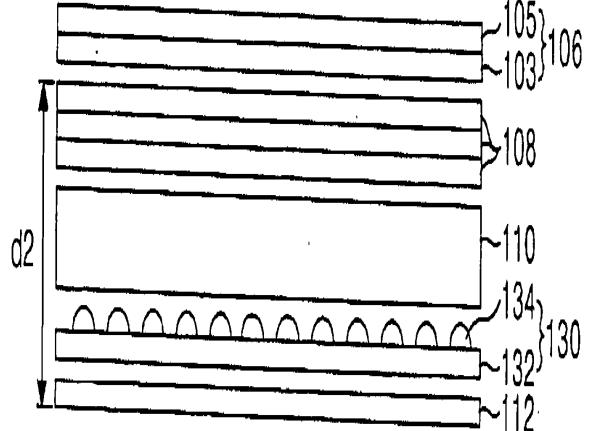
11. A method of driving a liquid crystal display module including a liquid crystal display panel, a light source for irradiating lights to the liquid crystal display panel, a diffuser for diffusing the lights input from the light source, and a plurality of holes provided at the rear side of the diffuser to insert a portion of the light source therein, the method comprising the steps of:

turning on the light source during a desired time duration;
and

turning off the light source during a remaining time duration.

12. The method according to claim 11, wherein the step of turning on the light source during a desired time duration includes generating a white light using a white light emitting diode.

13. The method according to claim 12, wherein the step of turning on the light source during a desired time duration includes sequentially turning on the white light emitting diode in accordance with a scanning direction of the liquid crystal display panel.


14. A method of driving a liquid crystal display module including a liquid crystal display panel, a light emitting diode array for irradiating a white light and a diffuser for diffusing the light input from the light emitting diode array into the liquid crystal display panel, the method comprising the step of sequentially turning on light emitting diodes in accordance with a scanning direction of the liquid crystal display panel.

* * * * *

专利名称(译)	液晶显示模块及其驱动方法		
公开(公告)号	US20050007516A1	公开(公告)日	2005-01-13
申请号	US10/876723	申请日	2004-06-28
[标]申请(专利权)人(译)	乐金显示有限公司		
申请(专利权)人(译)	LG.PHILIPS LCD CO. , LTD.		
当前申请(专利权)人(译)	LG DISPLAY CO. , LTD.		
[标]发明人	HONG HEE JUNG YOU TAE HO		
发明人	HONG, HEE JUNG YOU, TAE HO		
IPC分类号	G02F1/1335 G02F1/13357 G09G3/34		
CPC分类号	G02F1/133603 G09G2310/024 G09G3/342 G02F1/133606		
优先权	1020030045694 2003-07-07 KR		
其他公开文献	US7538832		
外部链接	Espacenet USPTO		

摘要(译)

液晶显示模块包括液晶显示面板，用于将光照射到液晶显示面板上的光源，用于漫射从光源照射的光的漫射器。多个孔设置在漫射器的后侧，以将光源的一部分插入其中。

