

US 20040074366A1

(19) **United States**

(12) **Patent Application Publication**

Choo et al.

(10) **Pub. No.: US 2004/0074366 A1**

(43) **Pub. Date: Apr. 22, 2004**

(54) **APPARATUS FOR CUTTING LIQUID CRYSTAL DISPLAY PANEL**

(30) **Foreign Application Priority Data**

(75) Inventors: **Hun-Jun Choo**, Kyongsangbuk-do (KR); **Ji-Heum Uh**, Seoul (KR); **Sang-Sun Shin**, Kyongsangbuk-do (KR); **Hwa-Seob Shim**, Kyongsangbuk-do (KR); **Jong-Go Lim**, Kyongsangbuk-do (KR)

Oct. 22, 2002 (KR) P2002-064677

Correspondence Address:

MORGAN LEWIS & BOCKIUS LLP
1111 PENNSYLVANIA AVENUE NW
WASHINGTON, DC 20004 (US)

Publication Classification

(51) **Int. Cl.⁷** **B31B 1/25**

(52) **U.S. Cl.** **83/886**

(73) Assignee: **LG.PHILIPS LCD CO., LTD.**

ABSTRACT

(21) Appl. No.: **10/455,718**

An apparatus for cutting liquid crystal display panels is disclosed in the present invention. The apparatus includes at least one table receiving bonded mother substrates having a plurality of unit liquid crystal display panels, at least one cutting wheel forming a scribing line on a surface of the bonded mother substrates, and a suction unit coupled to the at least one cutting wheel and sucking in glass debris on the surface of the bonded mother substrates.

(22) Filed: **Jun. 6, 2003**

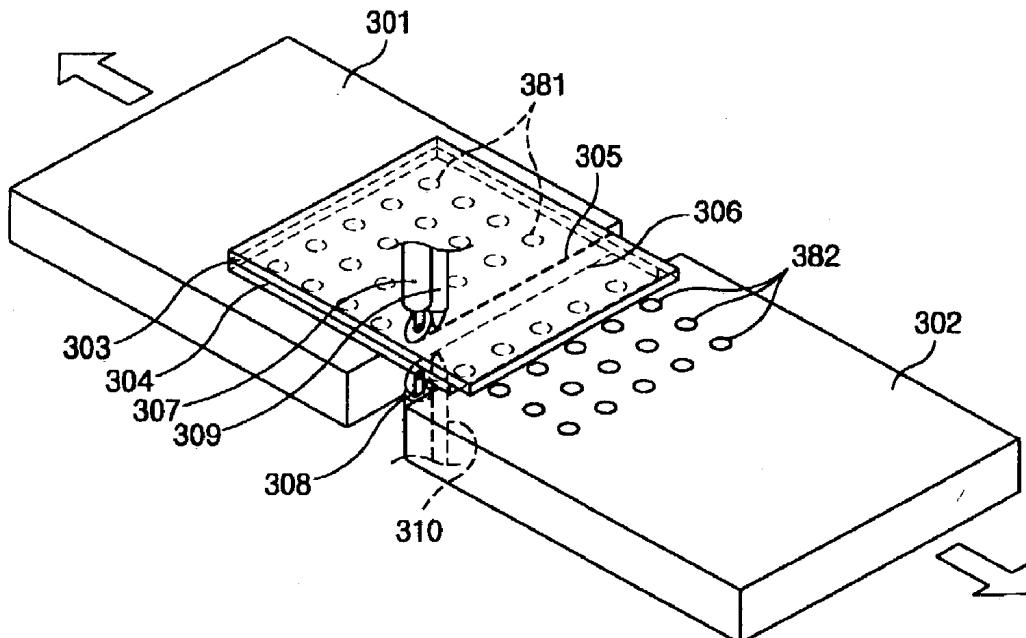
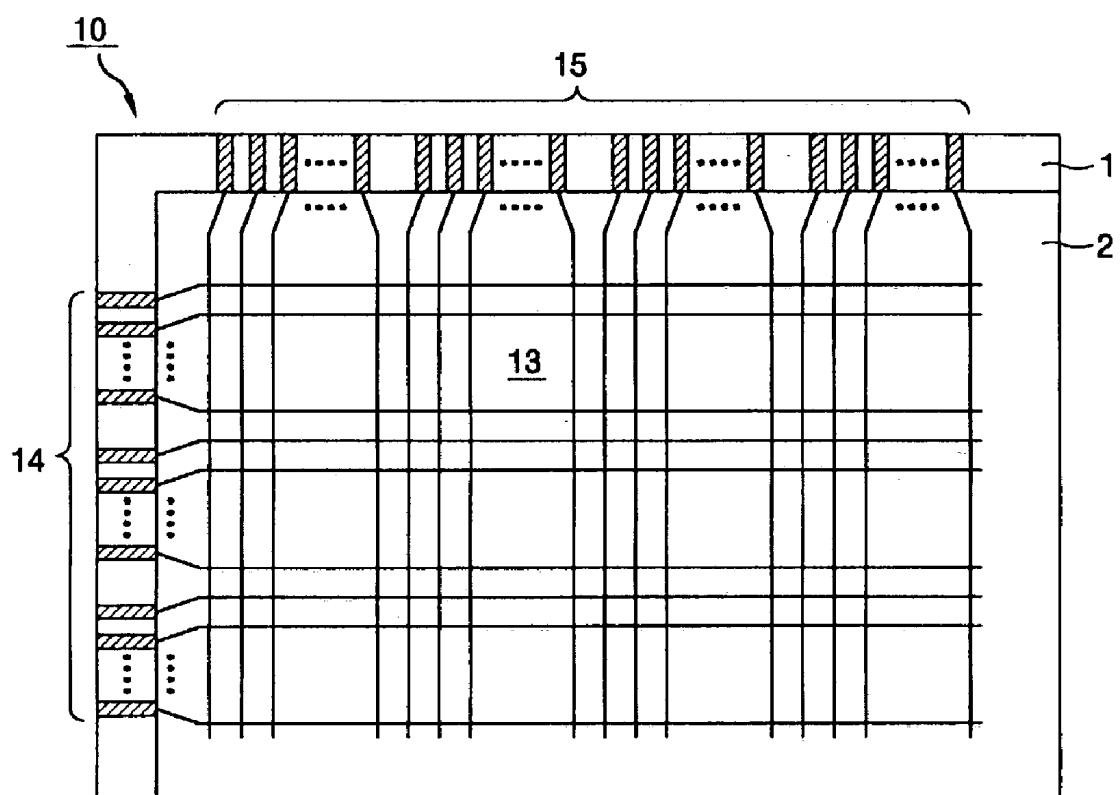
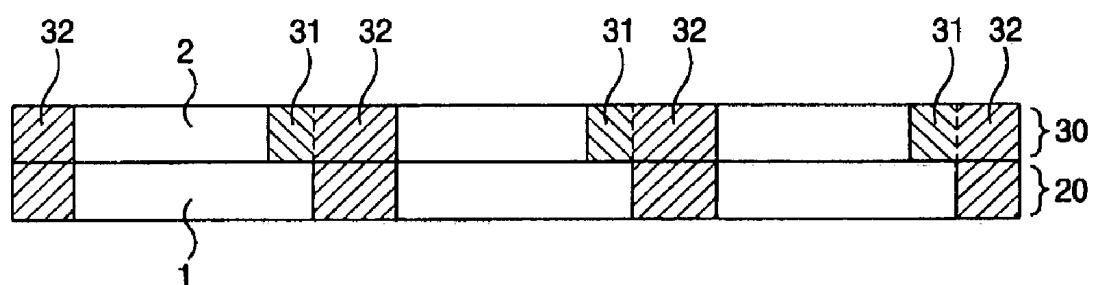
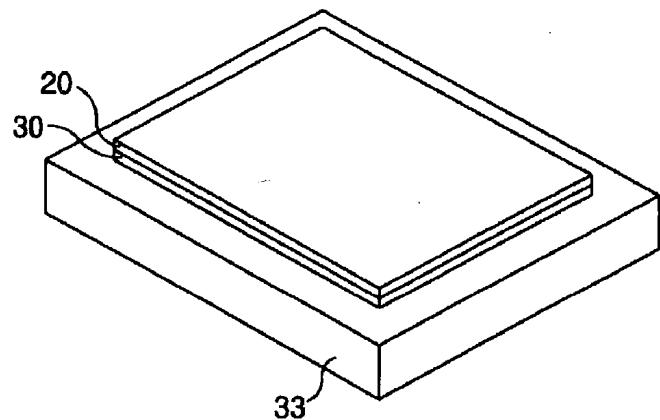
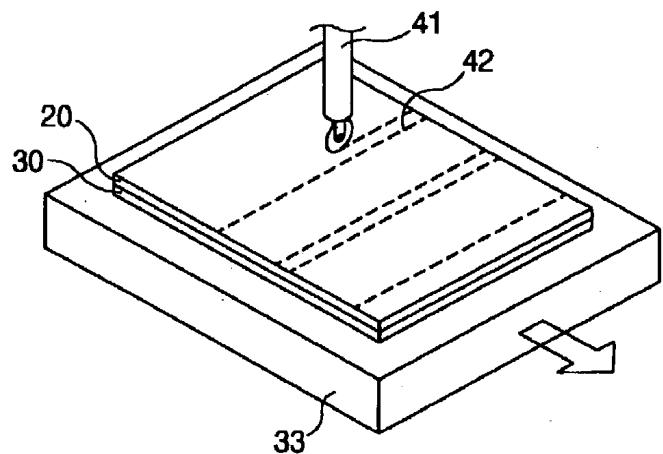
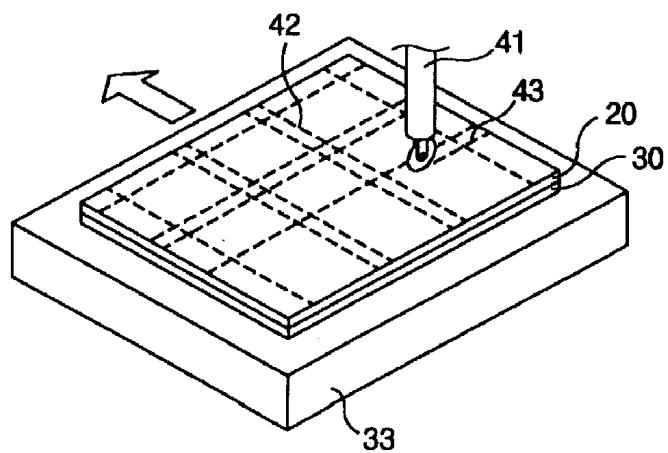
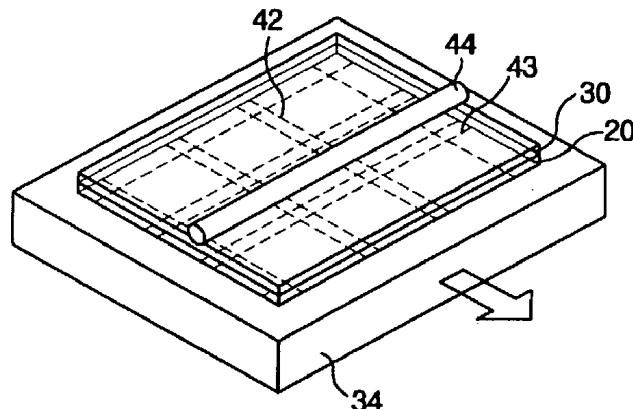


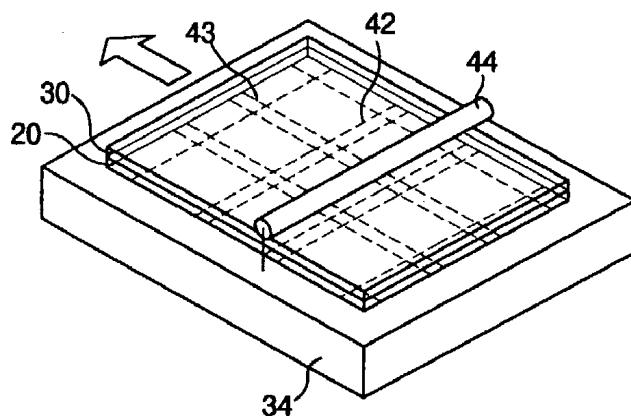
FIG.1
RELATED ART

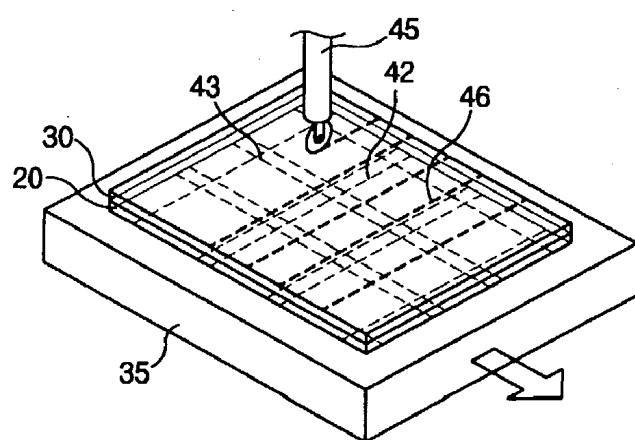




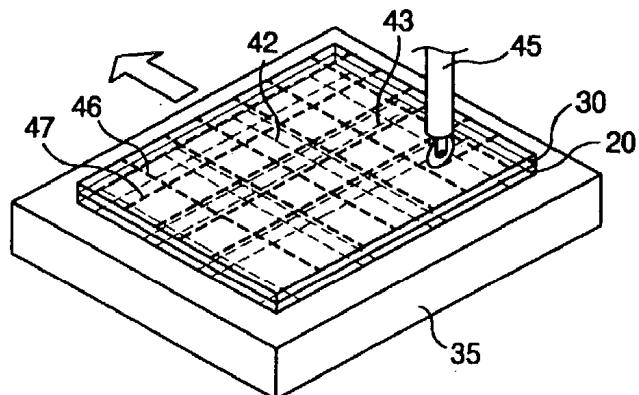

FIG.2
RELATED ART


FIG. 3A
RELATED ART


FIG. 3B
RELATED ART


FIG. 3C
RELATED ART


FIG. 3D
RELATED ART


FIG. 3E
RELATED ART

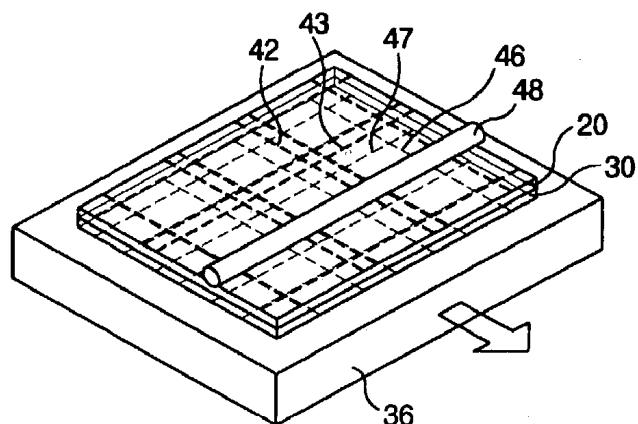

FIG. 3F
RELATED ART

FIG. 3G
RELATED ART

FIG. 3H
RELATED ART

FIG. 3I
RELATED ART

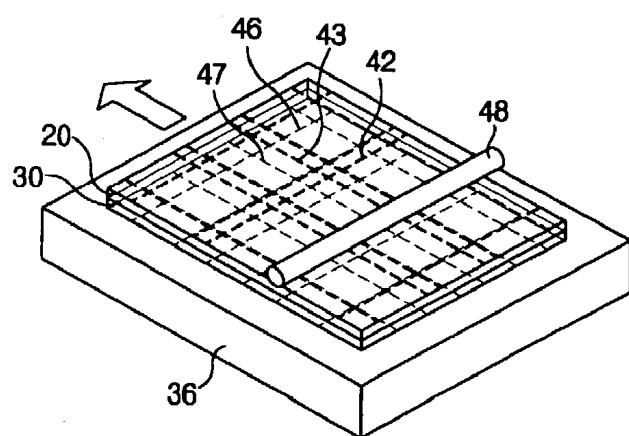


FIG.3J
RELATED ART

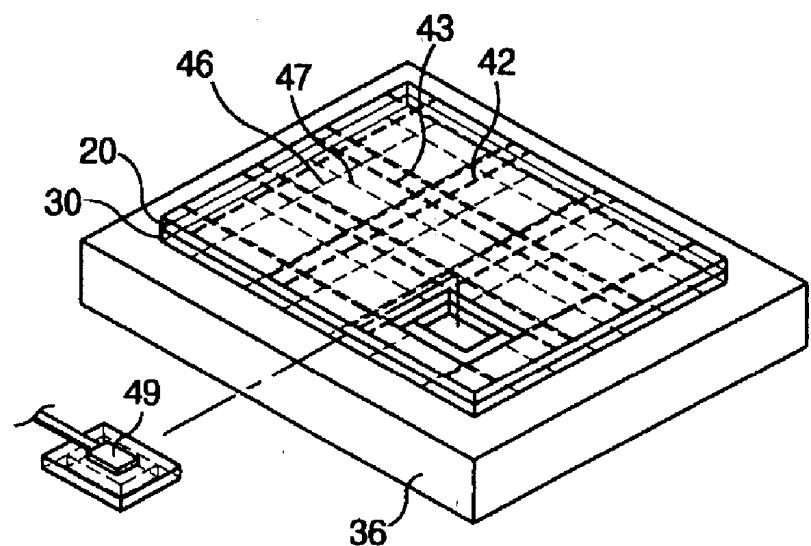


FIG.4

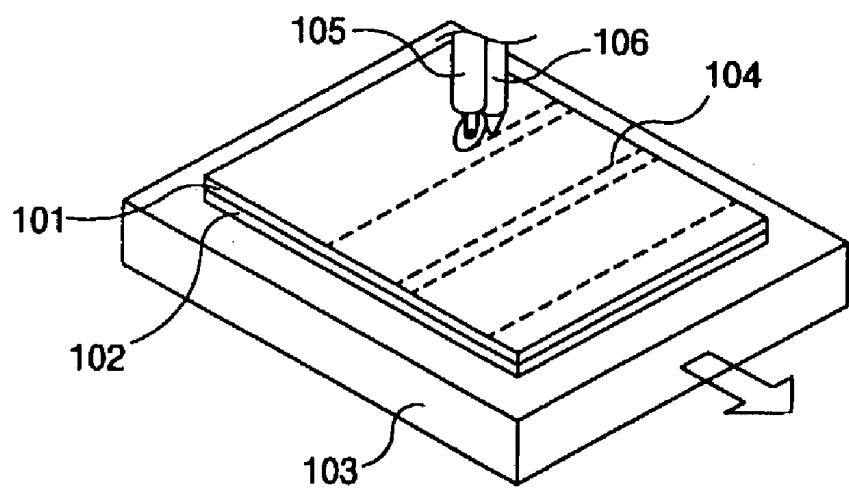


FIG. 5A

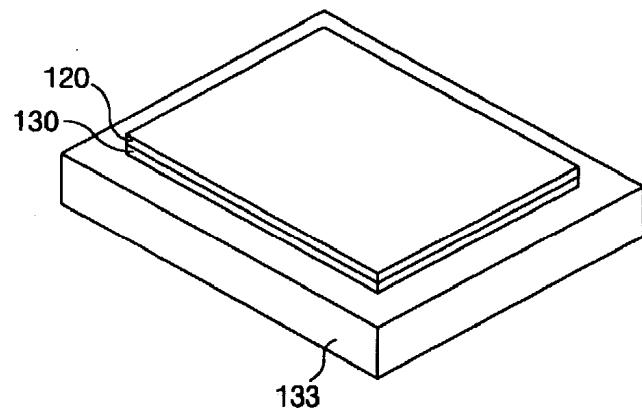


FIG. 5B

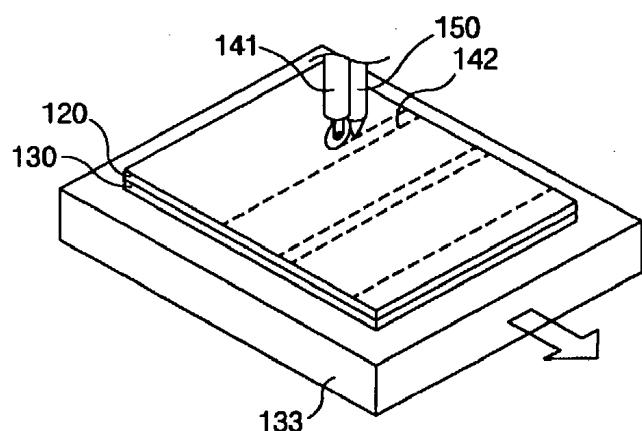


FIG. 5C

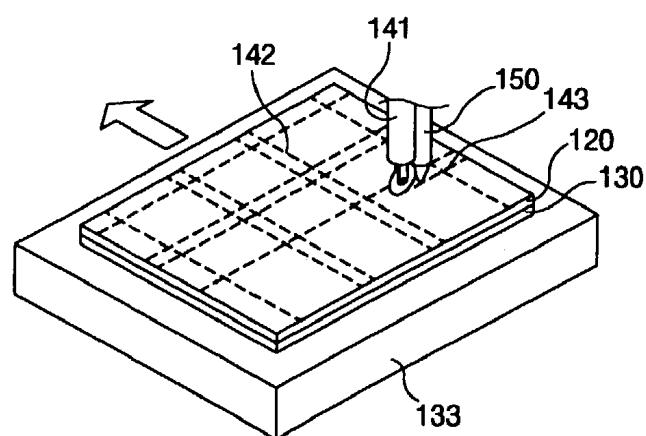


FIG. 5D

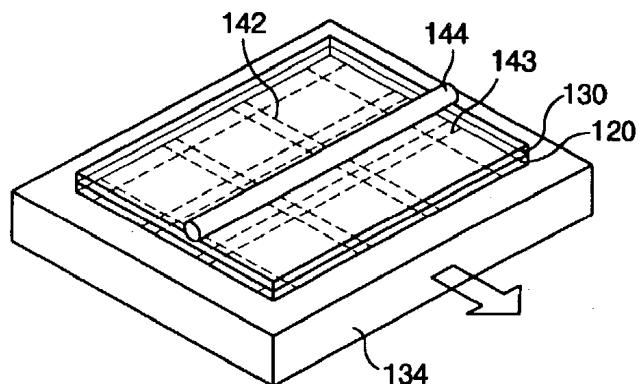


FIG. 5E

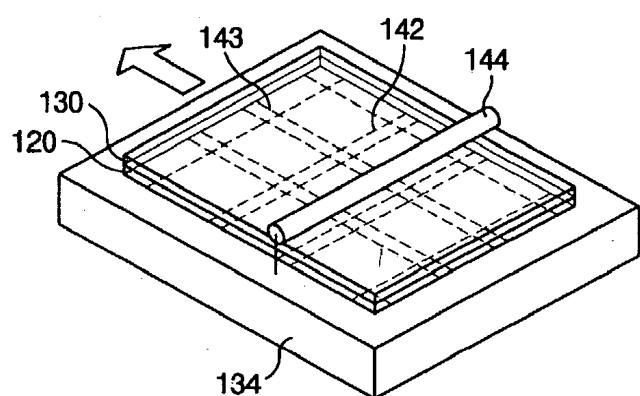


FIG. 5F

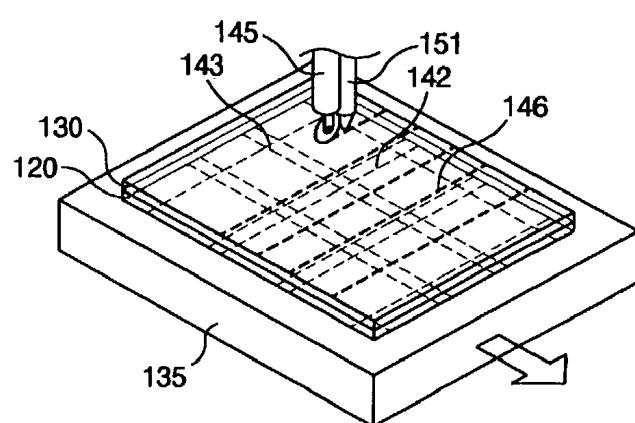


FIG. 5G

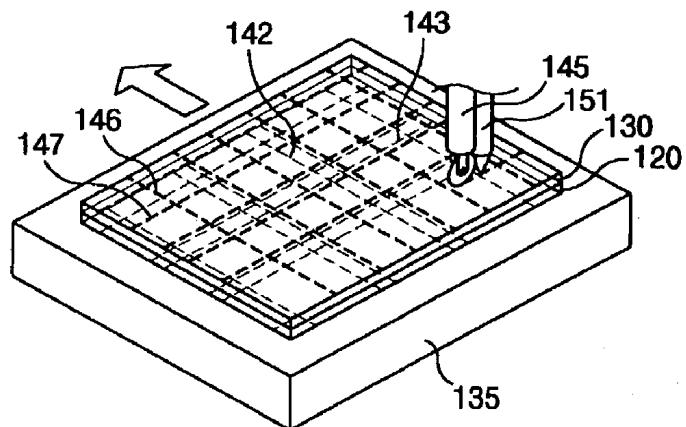


FIG. 5H

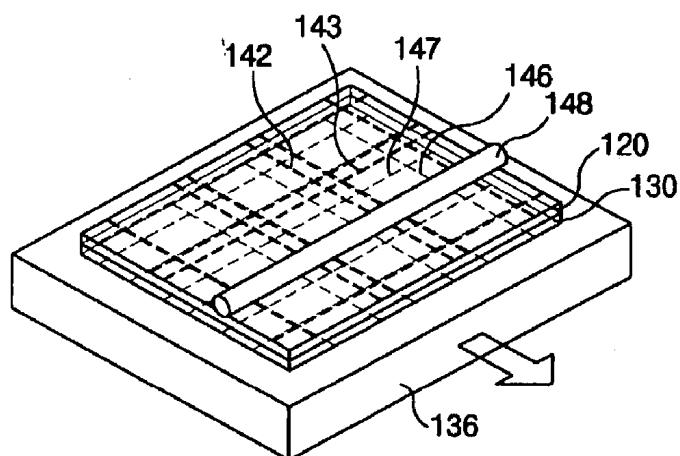


FIG. 5I

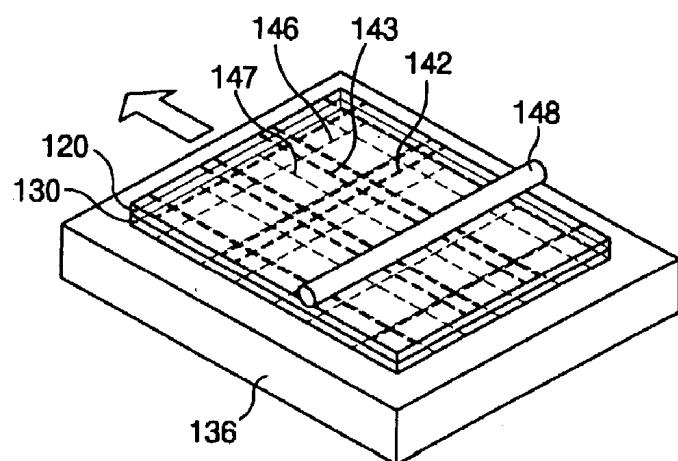


FIG.5J

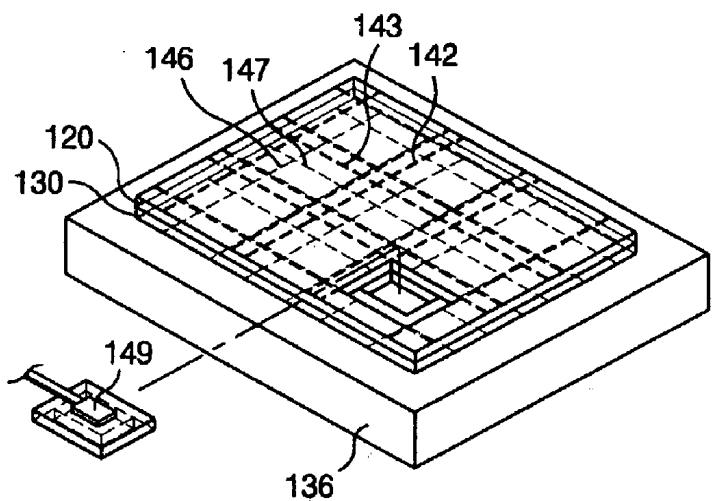


FIG.6

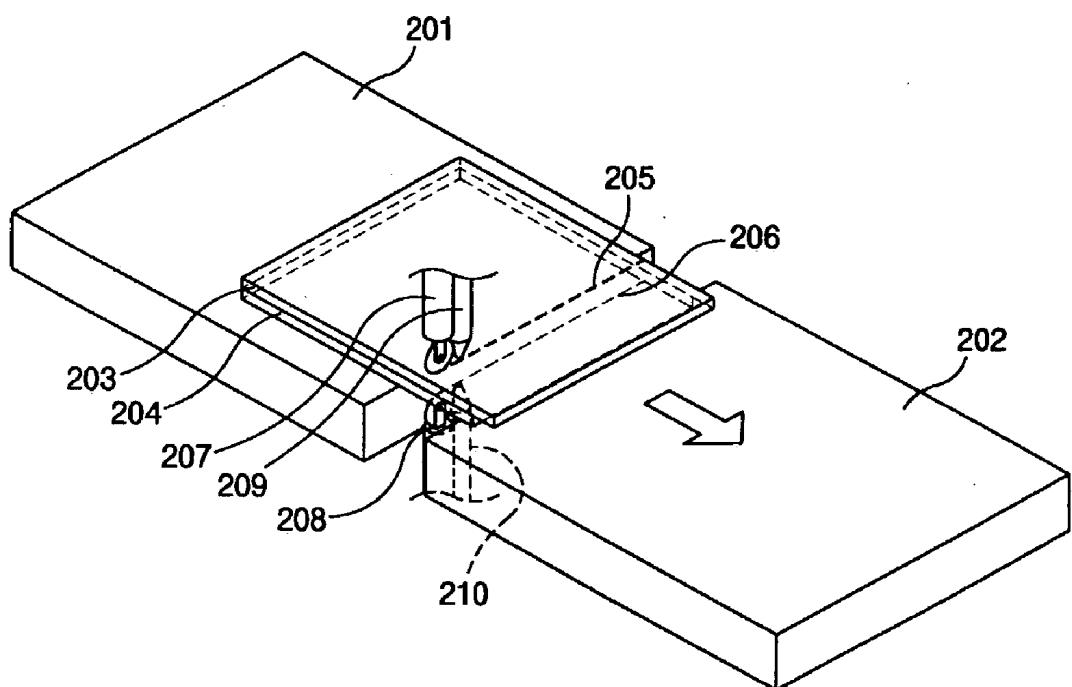


FIG.7A

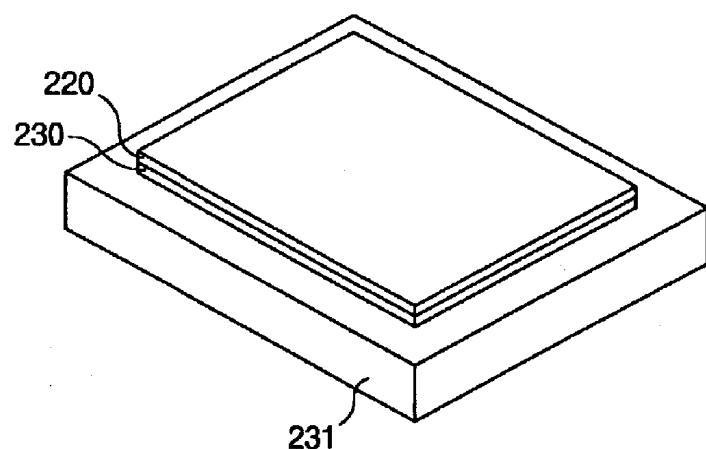


FIG.7B

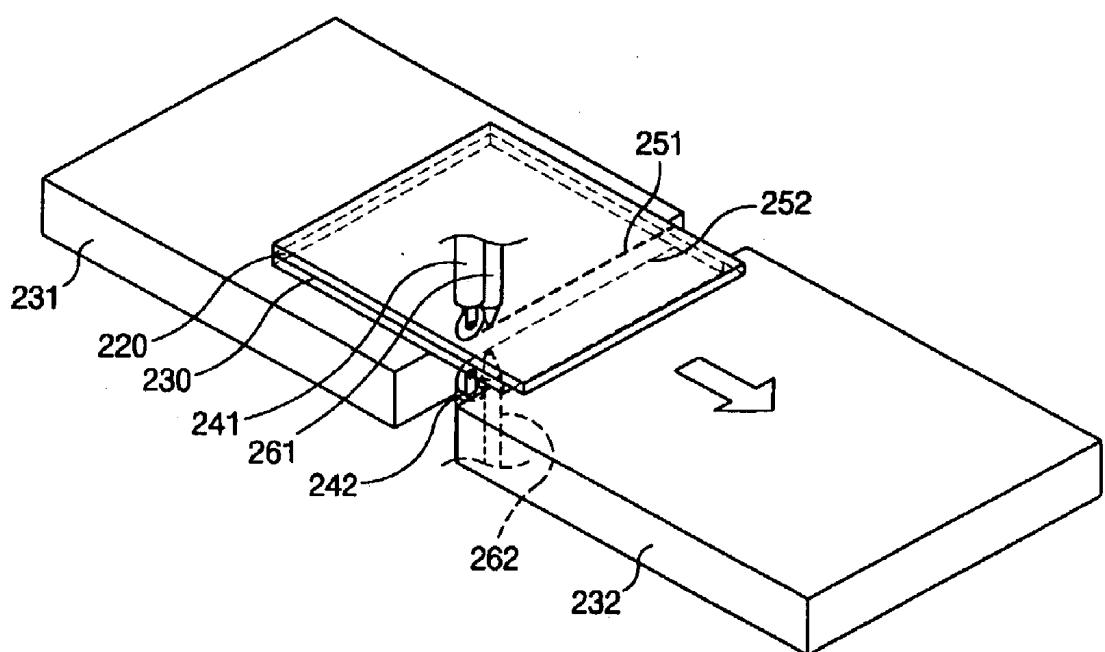


FIG.7C

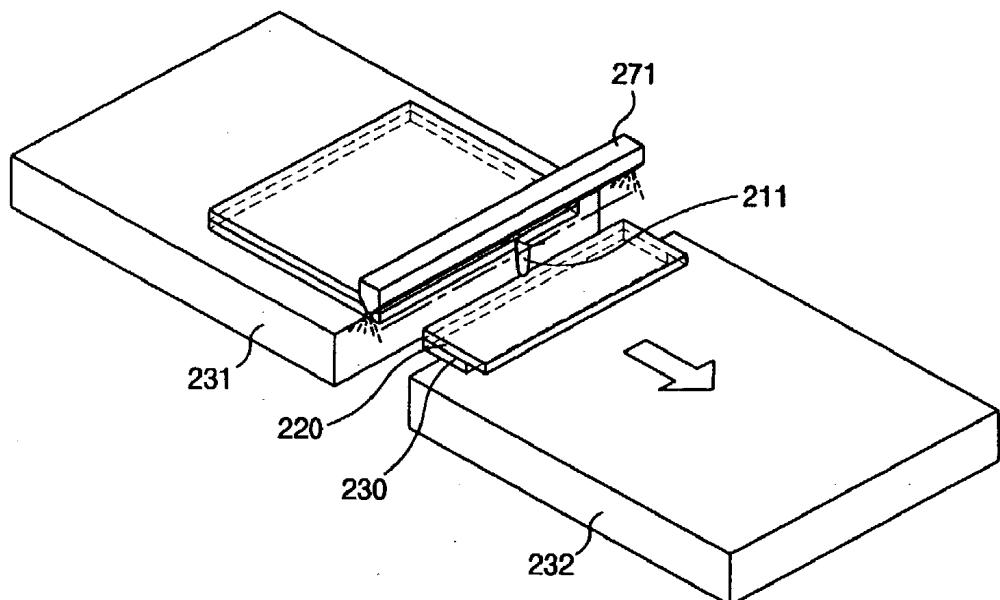


FIG.7D

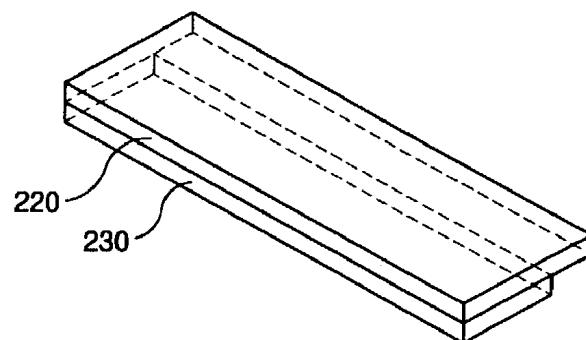


FIG. 7E

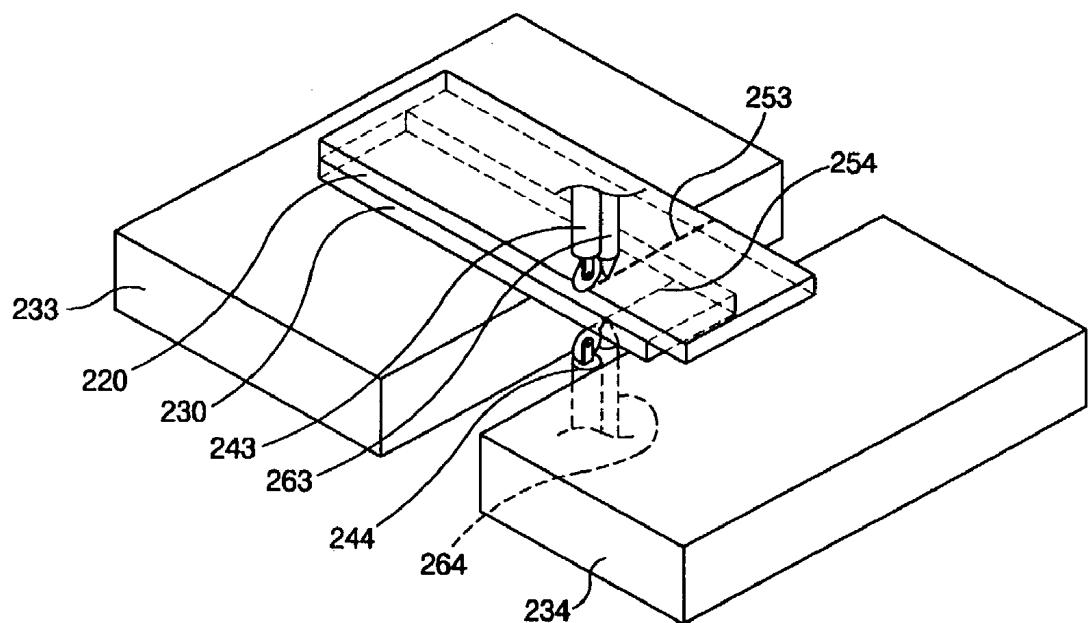


FIG. 7F

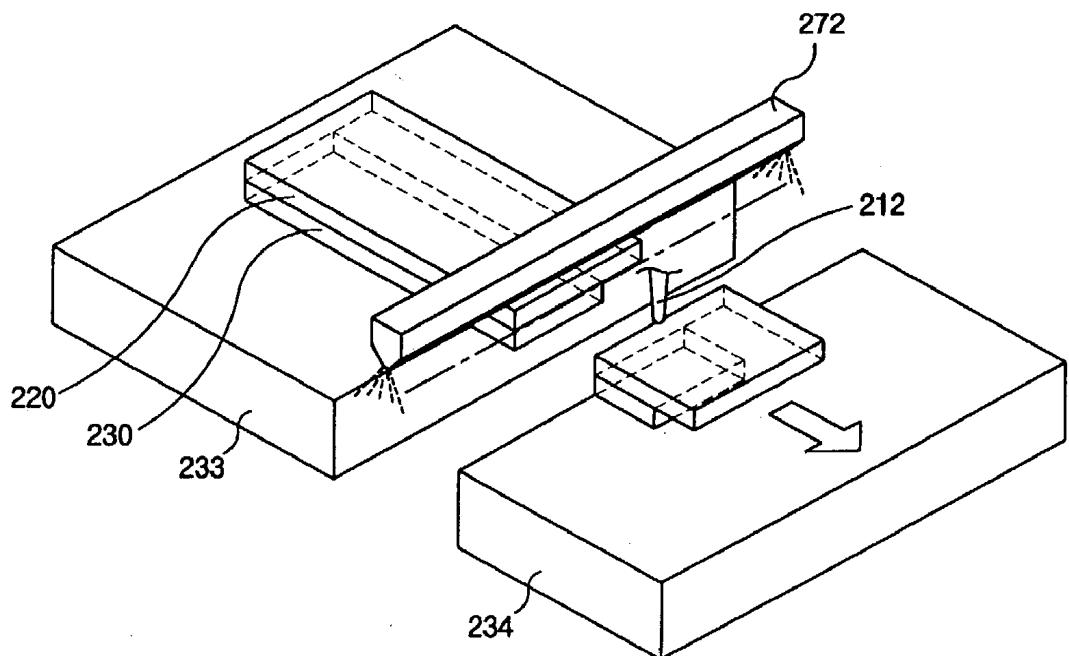


FIG.8

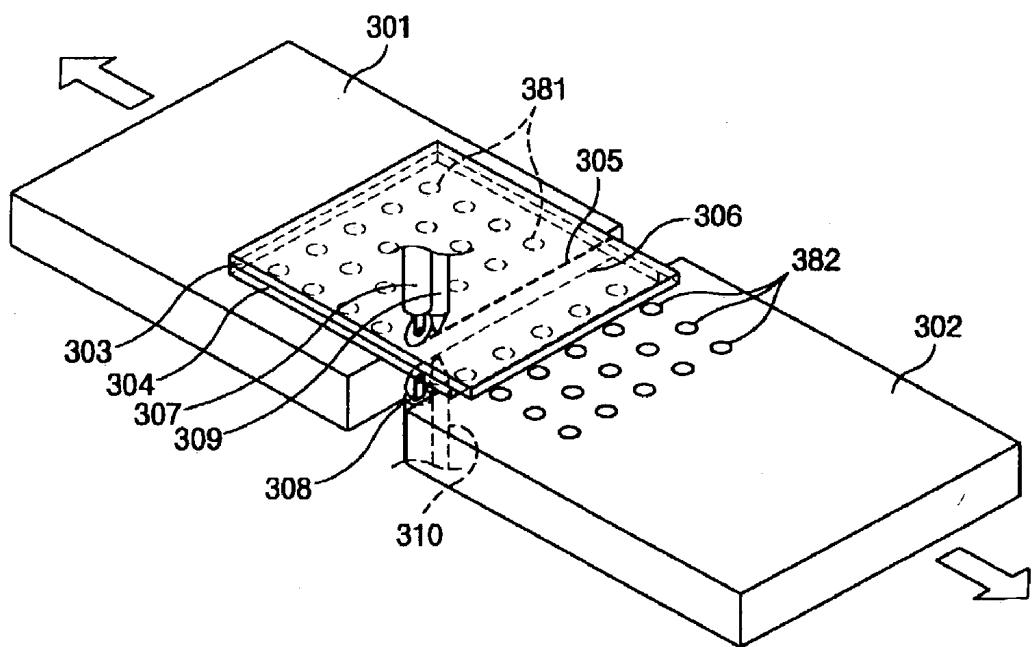


FIG. 9A

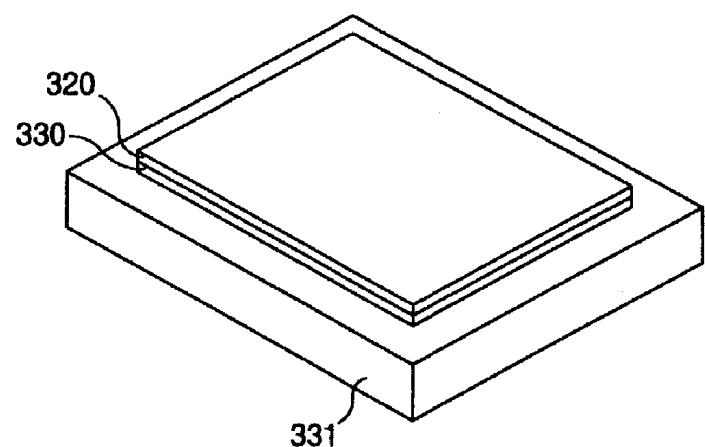


FIG. 9B

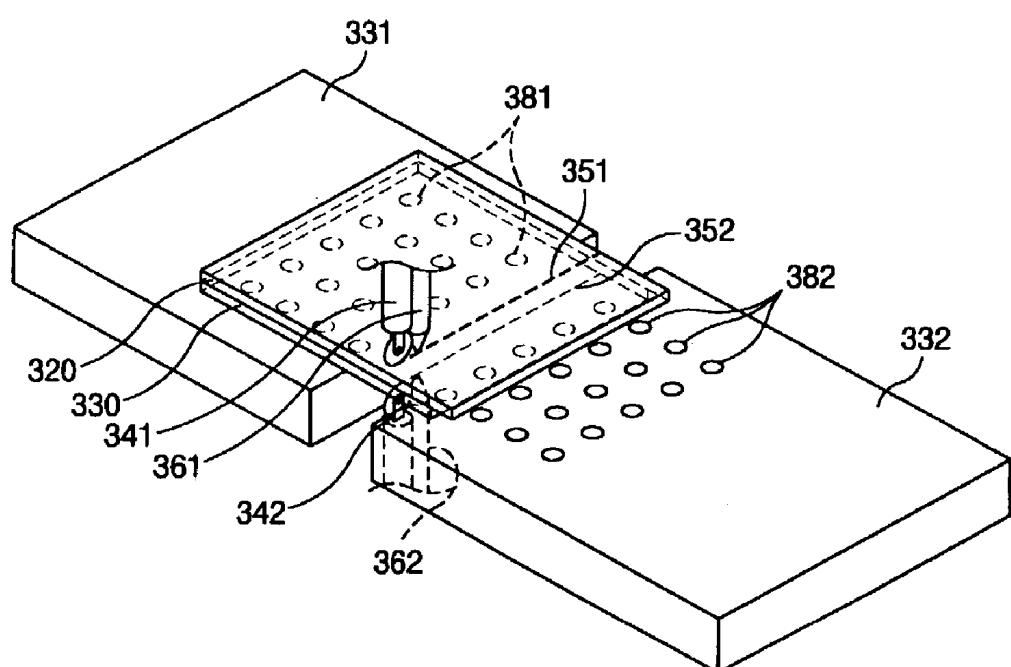


FIG.9C

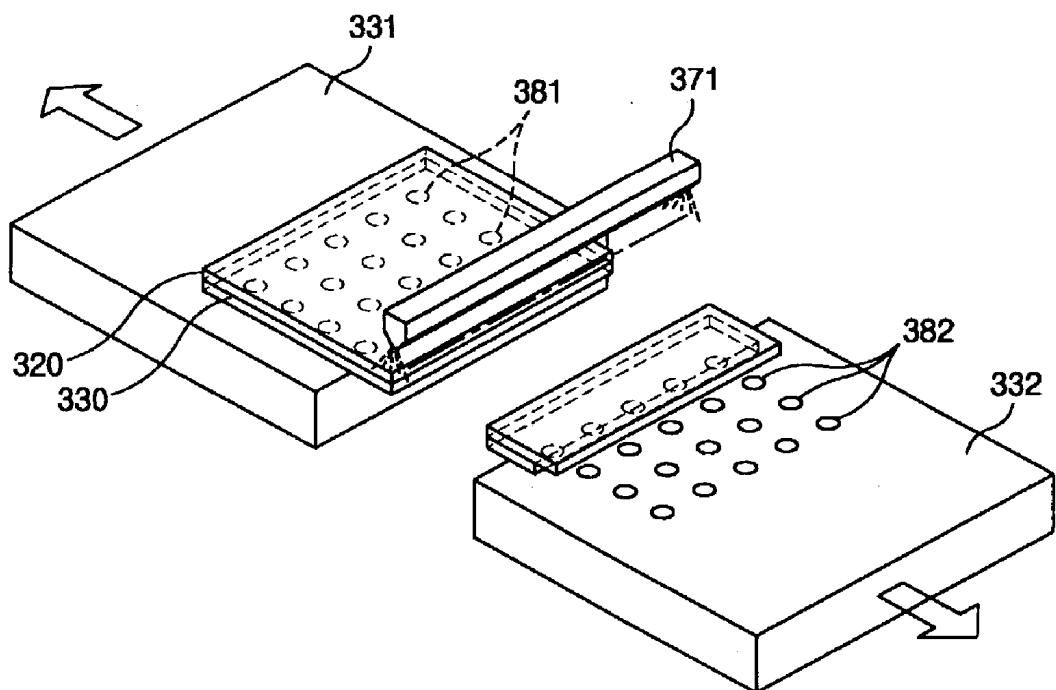


FIG.9D

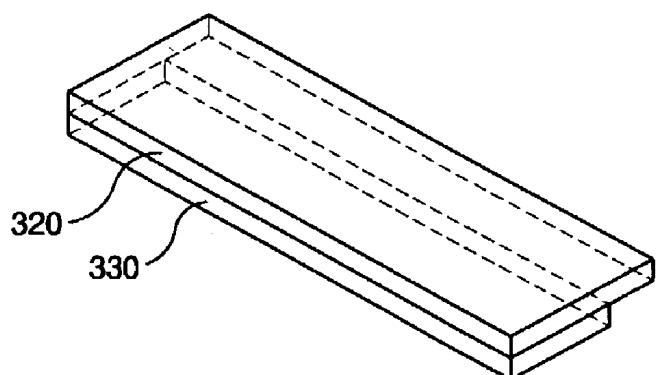


FIG. 9E

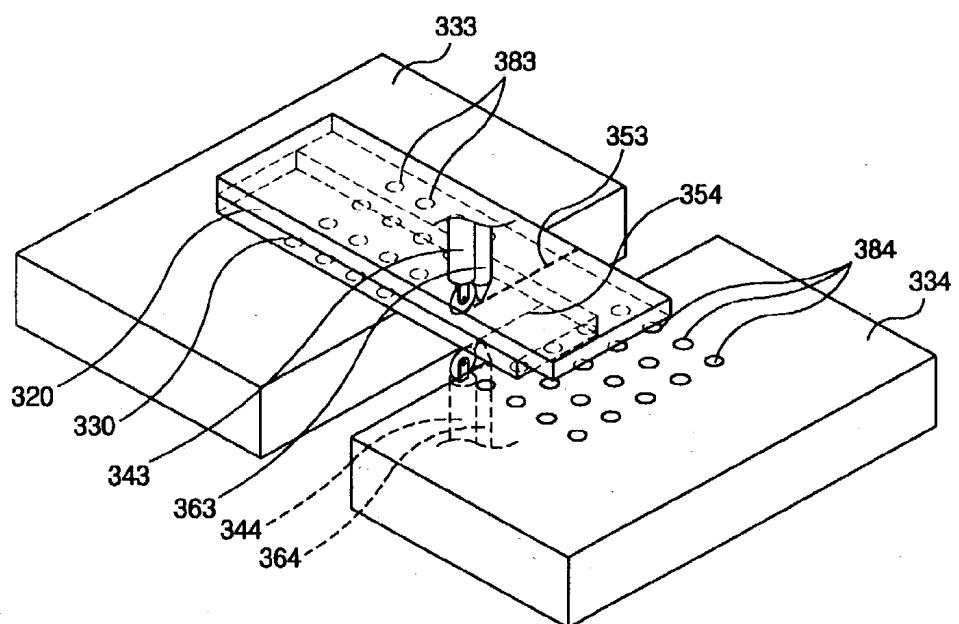


FIG. 9F

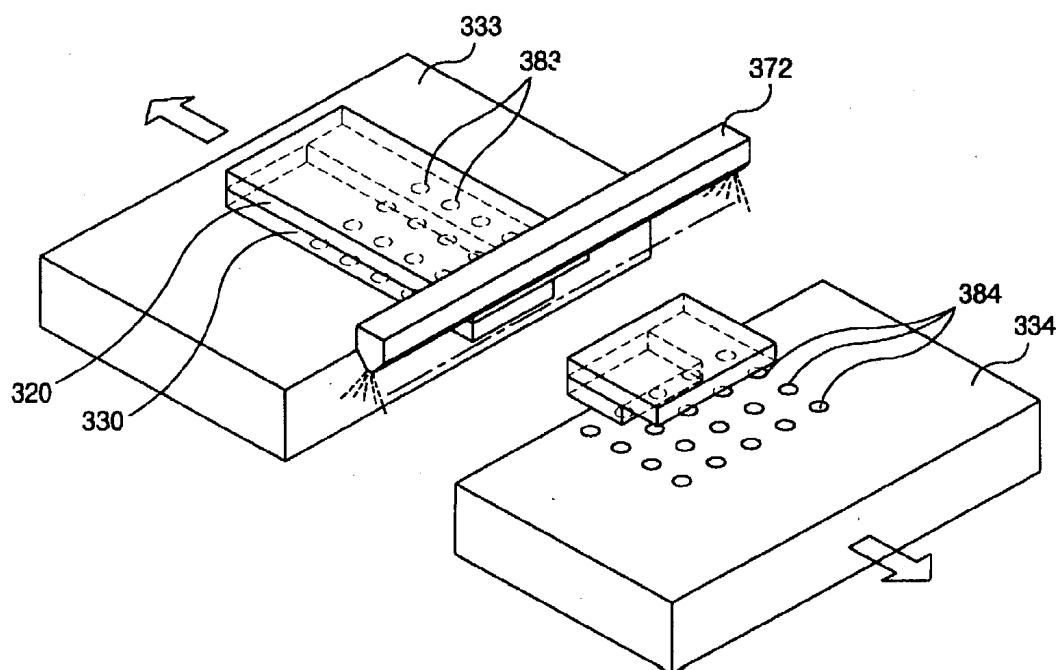


FIG.10A

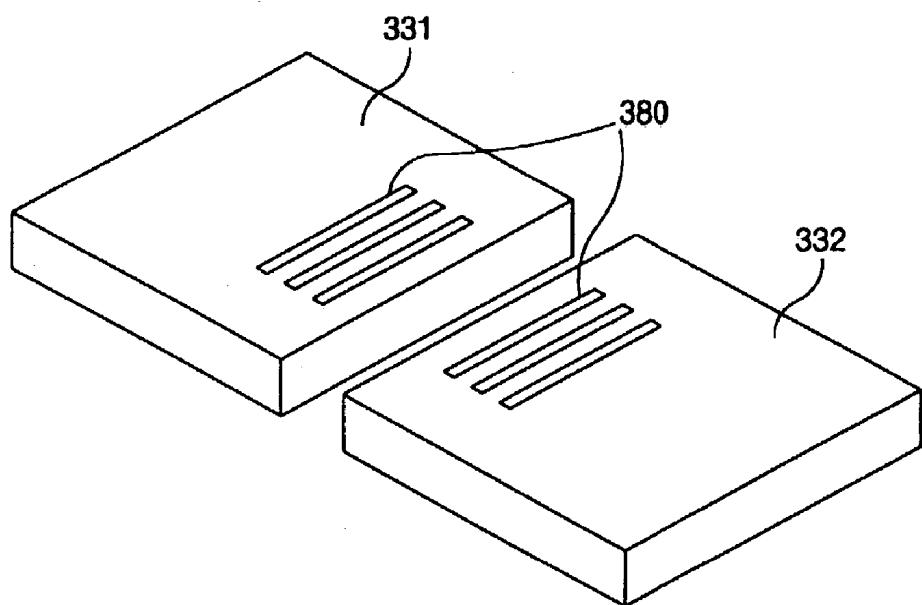


FIG.10B

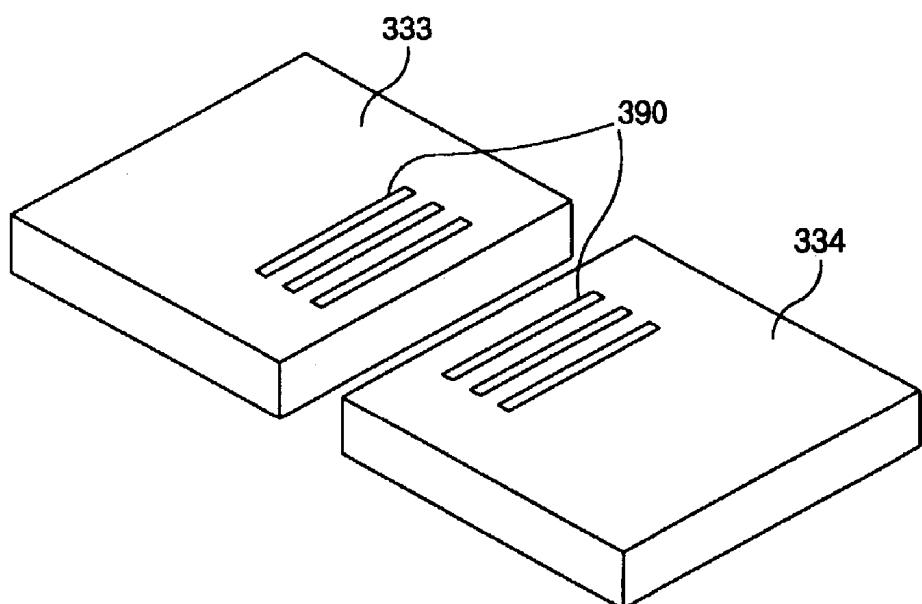


FIG.11A

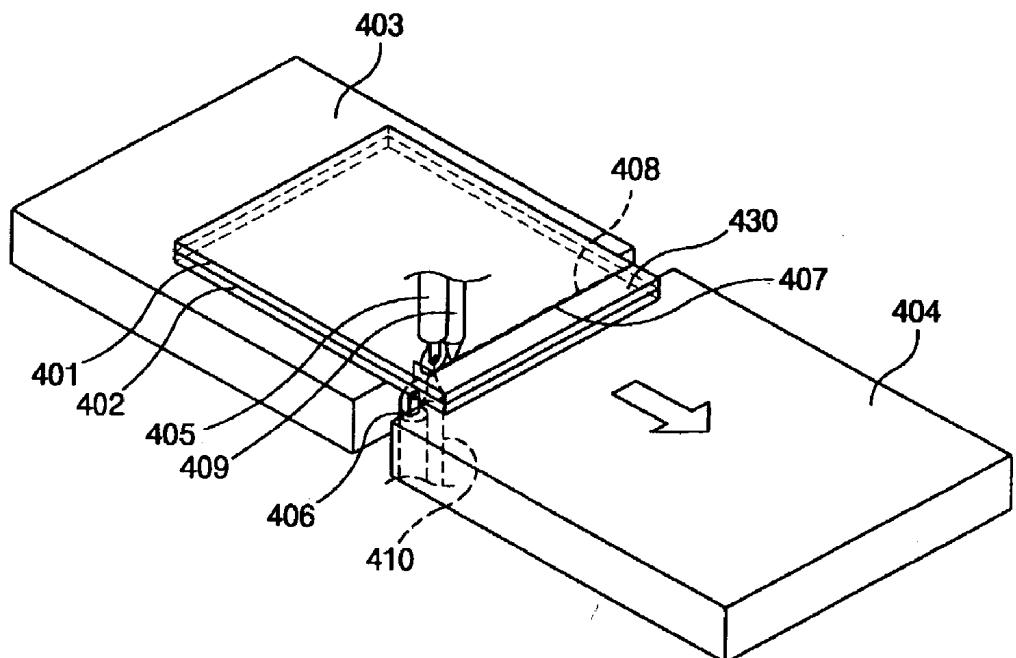


FIG.11B

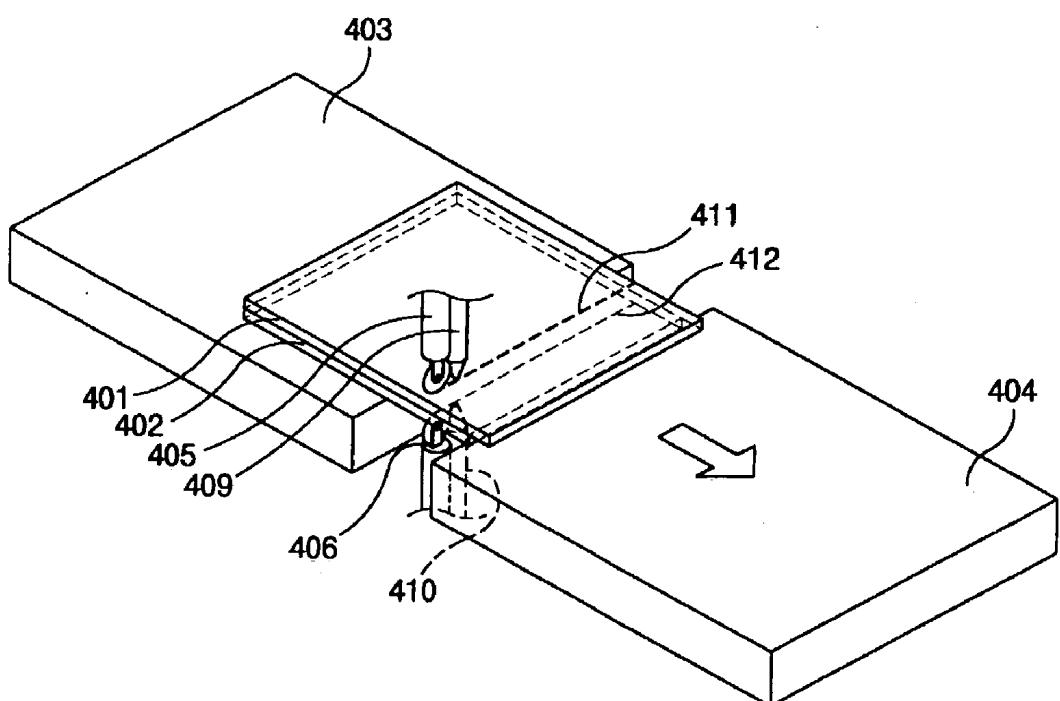
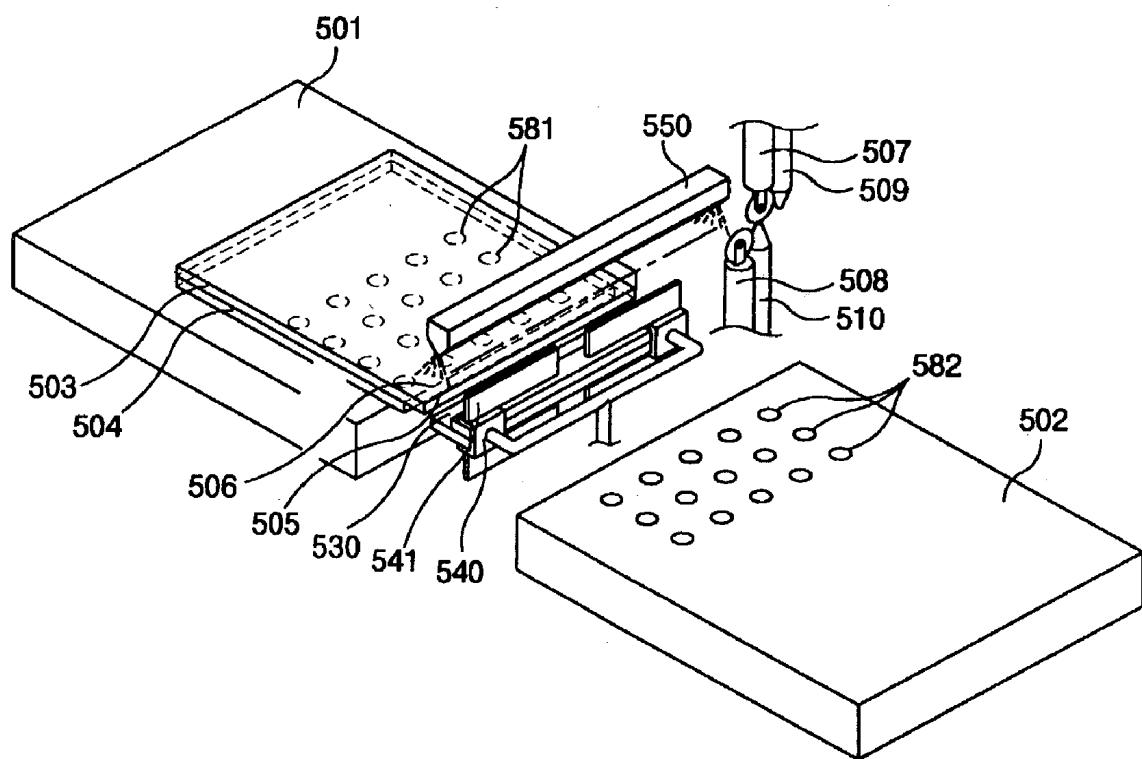



FIG.12

APPARATUS FOR CUTTING LIQUID CRYSTAL DISPLAY PANEL

[0001] This application claims the benefit of the Korean Application No. P2002-064677 filed on Oct. 22, 2002, which is hereby incorporated by reference.

BACKGROUND OF THE INVENTION

[0002] 1. Field of the Invention

[0003] The present invention relates to a liquid crystal display panel, and more particularly, to an apparatus for cutting a liquid crystal display panel to separate a plurality of unit liquid crystal display panels from a mother substrate.

[0004] 2. Discussion of the Related Art

[0005] Generally, a liquid crystal display device provides liquid crystal cells arranged in a matrix form with corresponding data signals according to image information in order to display a desired image by controlling light-transmittance of each liquid crystal cell.

[0006] Accordingly, the liquid crystal display device is provided with a liquid crystal display panel where a plurality of liquid crystal cells of a unit pixel are arranged in a matrix form, and a driver integrated circuit for driving the liquid crystal cells of the liquid crystal display panel.

[0007] The liquid crystal display panel is composed of a color filter substrate and a thin film transistor array substrate attached to face to each other, and a liquid crystal layer filled between the two substrates.

[0008] On the thin film transistor array substrate of the liquid crystal display panel, a plurality of data lines for transmitting data signals supplied from a data driver integrated circuit to the liquid crystal cells are perpendicular to a plurality of gate lines for transmitting scan signals supplied from a gate driver integrated circuit to the liquid crystal cells. Herein, the liquid crystal cells are arranged at each intersection of the data lines and the gate lines.

[0009] The gate driver integrated circuit sequentially supplies the scan signals to the plurality of gate lines so that the liquid crystal cells arranged in a matrix form can be sequentially selected line by line. Also, the data signals are supplied to the liquid crystal cells of the selected one line from the data driver integrated circuit through a plurality of data lines.

[0010] In the meantime, a common electrode and a pixel electrode are respectively formed at the inner sides of the color filter substrate and the thin film transistor array substrate facing into each other, thereby applying an electric field to the liquid crystal layer. At this time, as opposed to the pixel electrode, which is formed correspondingly to each liquid crystal cell formed on the thin film transistor array substrate, the common electrode is integrally formed on the entire surface of the color filter substrate. Accordingly, light-transmittance of the liquid crystal cells can be individually controlled by controlling a voltage applied to the pixel electrode when a voltage is applied to the common electrode.

[0011] Similarly, a thin film transistor used as a switching device is formed at the respective liquid crystal cells in order to control the voltage applied to the pixel electrode formed on each liquid crystal cell.

[0012] Meanwhile, the thin film transistor array substrates are formed on a large mother substrate and the color filter substrates are formed on another mother substrate. The two mother substrates are then bonded, so that a plurality of liquid crystal display panels are formed at the same time to improve yield. Herein, a process for cutting the bonded substrates into unit liquid crystal display panels is required.

[0013] Generally, the cutting process of the unit liquid crystal display panels includes forming a scribing line at a surface of the mother substrate by a diamond wheel having a hardness greater than that of glass, and breaking the substrate by applying a mechanical force thereto. Hereinafter, a typical liquid crystal display panel will be explained with reference to the accompanied drawings.

[0014] FIG. 1 is a schematic view showing a related art unit liquid crystal display panel prepared by bonding a thin film transistor array substrate and a color filter substrate of the liquid crystal display device.

[0015] As shown in FIG. 1, a liquid crystal display panel 10 includes an image display unit 13 having liquid crystal cells arranged in a matrix form, a gate pad unit 14 connected to gate lines of the image display unit 13, and a data pad unit 15 connected to data lines. At this time, the gate pad unit 14 and the data pad unit 15 are formed on the end portions of a thin film transistor array substrate 1 which does not overlap with a color filter substrate 2. The gate pad unit 14 provides a scan signal supplied from a gate driver integrated circuit to the gate lines of the image display unit 13, and the data pad unit 15 provides image information supplied from a data driver integrated circuit to the data lines of the image display unit 13.

[0016] On the thin film transistor array substrate 1 of the image display unit 13, the data lines are arranged to be perpendicular to the gate lines. Then, thin film transistors are formed at each intersection to switch the liquid crystal cells. Pixel electrodes are connected to the thin film transistors to drive the liquid crystal cells. A passivation layer is formed on the entire surface of the thin film transistor array substrate 1 to protect the electrodes and the thin film transistors.

[0017] Also, the color filters separated by a black matrix for each cell area are formed on the color filter substrate 2 of the pixel display unit 13. Additionally, a transparent common electrode as a counter electrode of the pixel electrode is formed on the color filter substrate 2.

[0018] A cell gap is provided between the thin film transistor array substrate 1 and the color filter substrate 2, which are bonded to each other by a sealant (not shown) formed at the periphery of the image display unit 13, so as to be spaced apart from each other. A liquid crystal layer (not shown) is formed in the space between the thin film transistor array substrate 1 and the color filter substrate 2.

[0019] FIG. 2 is a cross-sectional view showing a first mother substrate having thin film transistor array substrates 1 and a second mother substrate having color filter substrates 2, wherein the first and second mother substrates are bonded to each other to form a plurality of liquid crystal display panels.

[0020] As shown in FIG. 2, each unit liquid crystal display panel has the end portions of the thin film transistor array substrate 1 protruding longer than the color filter

substrate 2. This is because the gate pad unit 14 and the data pad unit 15 are formed at the end portions of the thin film transistor array substrate 1 which does not overlap with the color filter substrate 2.

[0021] Hence, the second mother substrate 30 and the color filter substrates 2 formed thereon are spaced apart from each other by a dummy region 31 corresponding to the protruding area of each thin film transistor array substrate 1 on the first mother substrate 20.

[0022] Moreover, the unit liquid crystal display panels are arranged so as to maximize the use of the first and second mother substrates 20 and 30. Although it may vary depending on the model, the unit liquid crystal display panels are generally spaced apart from each other at a distance corresponding to a second dummy region 32.

[0023] After the first mother substrate 20 having the thin film transistor array substrates 1 is bonded to the second mother substrate 30 having the color filter substrates 2, a scribing process and a breaking process are carried out to individually cut each of the liquid crystal display panels. In this case, the first dummy region 31 formed between each color filter substrate 2 of the second mother substrate 30 and the second dummy region 32 formed between each unit liquid crystal display panel are removed at the same time.

[0024] The related art cutting process of the unit liquid crystal display panels will be explained with reference to FIGS. 3A to 3J.

[0025] As shown in FIG. 3A, the first mother substrate 20 and the second mother substrate 30 bonded to each other are loaded on a first table 33.

[0026] Then, as shown in FIG. 3B, the first table 33 moves in one direction to a previously set distance to sequentially form a first scribing line 42 on the first mother substrate 20 through a cutting wheel 41.

[0027] Then, as shown in FIG. 3C, the first and second mother substrates 20 and 30 are turned by about 90°. The first table 33 moves back to its initial location at the previously set distance to sequentially form a second scribing line 43 on a surface of the first mother substrate 20 through the cutting wheel 41.

[0028] The cutting wheel 41 is bonded to the surface of the first mother substrate 20 with a constant pressure to be rotated, thereby forming the first and second scribing lines 42 and 43 having a groove on the surface of the first mother substrate 20.

[0029] Then, as shown in FIG. 3D, the first and second mother substrates 20 and 30 are overturned and are loaded on a second table 34. The second table 34 moves in one direction at a previously set distance, and propagates a crack on the first mother substrate 20 along the second scribing line 43 by pressing the second mother substrate 30 with a breaking rod 44.

[0030] As shown in FIG. 3E, after the second and first mother substrates 30 and 20 are turned by about 90°, the second table 34 moves back to its initial location at the previously set distance, and propagates a crack on the first mother substrate 20 along the first scribing line 42 by pressing the second mother substrate 30 with the breaking rod 44.

[0031] As shown in FIG. 3F, after the second and first mother substrates 30 and 20 are loaded on a third table 35, the third table 35 moves in one direction at a previously set distance to sequentially form a third scribing line 46 on the surface of the second mother substrate 30 through a cutting wheel 45.

[0032] As shown in FIG. 3G, the second and first mother substrates 30 and 20 are turned by about 90°, and the third table 35 moves back to the initial location at the previously set distance to sequentially form a fourth scribing line 47 on the surface of the second mother substrate 30 through the cutting wheel 45.

[0033] The cutting wheel 45 is bonded to the surface of the second mother substrate 30 with a constant pressure to be rotated, thereby forming the third and fourth scribing lines 46 and 47 having a groove on the surface of the second mother substrate 30.

[0034] As shown in FIG. 3H, the second and first mother substrates 30 and 20 are overturned to be loaded on a fourth table 36. The fourth table 36 moves in one direction at a previously set distance and propagates a crack on the second mother substrate 30 along the fourth scribing line 47 by pressing the first mother substrate 20 with a breaking rod 48.

[0035] As shown in FIG. 3I, after the first and second mother substrates 20 and 30 are turned by about 90°, the fourth table 36 moves back to the initial location at the previously set distance and propagates a crack on the second mother substrate 30 along the third scribing line 46 by pressing the first mother substrate 20 with the breaking rod 48.

[0036] As shown in FIG. 3J, the first and second mother substrates 20 and 30 are cut into unit liquid crystal display panels as the cracks are propagated along the first to fourth scribing lines 42, 43, 46, and 47 on the first and second mother substrates 20 and 30. The unit liquid crystal display panels are selectively unloaded using a suction plate 49 to be transferred to equipment for a later process.

[0037] In the related art apparatus for cutting liquid crystal display panels, when the scribing lines having a groove are formed on the surface of the substrate by bonding the cutting wheel to the surface of the substrate with a constant pressure and turning, glass debris are generated from a friction between the cutting wheel and the substrate.

[0038] When the glass debris are adhered to the surface of the substrate or the table on which the substrate is loaded, it causes a scratch or stain thereon.

[0039] The scratch or stain generated on the surface of the substrate deteriorates a picture quality of the liquid crystal display device, thereby increasing the defective proportions of a product and lowering productivity.

SUMMARY OF THE INVENTION

[0040] Accordingly, the present invention is directed to an apparatus for cutting a liquid crystal display panel that substantially obviates one or more of problems due to limitations and disadvantages of the related art.

[0041] Another object of the present invention is to provide an apparatus for cutting liquid crystal display panels, which prevents the glass debris generated by the friction

between a cutting wheel and a substrate from being adhered to the surface of the substrate or a table on which the substrate is loaded.

[0042] Additional features and advantages of the invention will be set forth in the description which follows and in part will be apparent from the description, or may be learned by practice of the invention. The objectives and other advantages of the invention will be realized and attained by the structure particularly pointed out in the written description and claims hereof as well as the appended drawings.

[0043] To achieve these and other advantages and in accordance with the purpose of the present invention, as embodied and broadly described, an apparatus for cutting liquid crystal display panels includes at least one table receiving bonded mother substrates having a plurality of unit liquid crystal display panels, at least one cutting wheel forming a scribing line on a surface of the bonded mother substrates, and a suction unit coupled to the at least one cutting wheel and sucking in glass debris on the surface of the bonded mother substrates.

[0044] It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory and are intended to provide further explanation of the invention as claimed.

BRIEF DESCRIPTION OF THE DRAWINGS

[0045] The accompanying drawings, which are included to provide a further understanding of the invention and are incorporated in and constitute a part of this application, illustrate embodiments of the invention and together with the description serve to explain the principle of the invention.

[0046] In the drawings:

[0047] FIG. 1 is a schematic plane view showing a related art unit liquid crystal display panel prepared by bonding a thin film transistor array substrate and a color filter substrate to each other;

[0048] FIG. 2 is a cross-sectional view showing a first mother substrate having thin film transistor array substrates and a second mother substrate having color filter substrates according to the related art;

[0049] FIGS. 3A to 3J are perspective views sequentially showing a process for cutting unit liquid crystal display panels according to the related art;

[0050] FIG. 4 is a schematic view showing an apparatus for cutting liquid crystal display panels according to a first embodiment of the present invention;

[0051] FIGS. 5A to 5J are perspective views sequentially showing a process for cutting liquid crystal display panels using the apparatus for cutting liquid crystal display panels according to the first embodiment of the present invention;

[0052] FIG. 6 is a schematic view showing an apparatus for cutting liquid crystal display panels according to a second embodiment of the present invention;

[0053] FIGS. 7A to 7F are perspective views sequentially showing a process for cutting the liquid crystal display panels using the apparatus for cutting liquid crystal display panels according to the second embodiment of the present invention;

[0054] FIG. 8 is a schematic view showing an apparatus for cutting liquid crystal display panels according to a third embodiment of the present invention;

[0055] FIGS. 9A to 9F are perspective views sequentially showing a process for cutting liquid crystal display panels by using the apparatus for cutting liquid crystal display panels according to the third embodiment of the present invention;

[0056] FIGS. 10A and 10B are schematic views showing another example of a suction hole used in the third embodiment of the present invention;

[0057] FIGS. 11A and 11B are perspective views showing a process for cutting liquid crystal display panels with the second or third embodiments of the present invention in more detail; and

[0058] FIG. 12 is a schematic view showing an apparatus for cutting liquid crystal display panels according to a fourth embodiment of the present invention.

DETAILED DESCRIPTION OF THE ILLUSTRATED EMBODIMENTS

[0059] Reference will now be made in detail to the illustrated embodiments of the present invention, examples of which are illustrated in the accompanying drawings. Wherever possible, the same reference numbers will be used throughout the drawings to refer to the same or like parts.

[0060] FIG. 4 is a schematic view showing an apparatus for cutting liquid crystal display panels according to a first embodiment of the present invention. As shown in FIG. 4, the apparatus for cutting liquid crystal display panels according to the first embodiment of the present invention includes a table 103 on which a first mother substrate 101 and a second mother substrate 102 are loaded, a cutting wheel 105 for forming a scribing line 104 on the surfaces of the first and second mother substrates 101 and 102, and a suction unit 106 provided at the cutting wheel 105 for sucking in glass debris generated from a friction between the cutting wheel 105 and the first mother substrate 101 or between the cutting wheel 105 and the second mother substrate 102.

[0061] In the apparatus for cutting liquid crystal display panels according to the first embodiment of the present invention, the cutting wheel 105 is rolled onto the surface of the first mother substrate 101 or the second mother substrate 102 with a constant pressure, thereby forming the scribing line 104 such as a groove on the surface of the first mother substrate or the second mother substrate 102. The suction unit 106 is connected with the cutting wheel 105, and the cutting wheel 105 sucks in glass debris generated on the surface of the first mother substrate 101 or the second mother substrate 102. The glass debris are generated from the friction between the cutting wheel 105 and the first mother substrate 101 or the second mother substrate 102.

[0062] Processes for cutting liquid crystal display panels by using the first embodiment of the present invention will be explained with reference to FIGS. 5A to 5J.

[0063] First, as shown in FIG. 5A, the first mother substrate 120 and the second mother substrate 130 are loaded on the first table 133.

[0064] The attached first and second mother substrates **120** and **130** are used to form the thin film transistor array substrate and the color filter substrate formed of glass.

[0065] On the thin film transistor array substrate, the data lines having image information applied thereto are arranged to perpendicularly cross the gate lines having scan signals applied thereto. Then, thin film transistors are formed at each intersection to switch liquid crystal cells. Pixel electrodes are connected to the thin film transistors to drive the liquid crystal cells. A passivation layer is formed on the entire surface of the thin film transistor array substrate to protect the electrodes and the thin film transistors.

[0066] Also, on the color filter substrate, color filters separated by a black matrix for each cell area are formed. Additionally, a transparent common electrode as a counter electrode of the pixel electrode is formed on the color filter substrate.

[0067] As shown in FIG. 5B, the first table **133** moves in one direction, and a cutting wheel **141** is rolled onto the surface of the first mother substrate **120** with a constant pressure, thereby sequentially forming a first scribing line **142** on the first mother substrate **120**. At this time, a suction unit **150** is connected with the cutting wheel **141** to suck in the glass debris generated on the surface of the first mother substrate **120** by the friction between the cutting wheel **141** and the first mother substrate **120**.

[0068] As shown in FIG. 5C, the first and second mother substrates **120** and **130** are turned by about 90° and the first table **133** moves back to the initial location. Subsequently, the cutting wheel **141** is rolled onto the surface of the first mother substrate **120** with applying a constant pressure, thereby sequentially forming a second scribing line **143** on the surface of the first mother substrate **120**. At this point, the suction unit **150** is connected with the cutting wheel **141** to suck in the glass debris generated on the surface of the first mother substrate **120** by the friction between the cutting wheel **141** and the first mother substrate **120**.

[0069] As shown in FIG. 5D, the first and second mother substrates **120** and **130** are overturned to be loaded on a second table **134**. Subsequently, the second table **134** moves in one direction, and propagates a crack in the first mother substrate **120** along the second scribing line **143** by pressing the second mother substrate **130** with a breaking rod **144**.

[0070] As shown in FIG. 5E, the second and first mother substrates **130** and **120** are turned by about 90°. The second table **134** moves back to the initial location, and propagates a crack on the first mother substrate **120** along the first scribing line **142** by pressing the second mother substrate **130** with the breaking rod **144**.

[0071] As shown in FIG. 5F, the second and first mother substrates **130** and **120** are loaded on a third table **135**, and the third table **135** moves in one direction. A cutting wheel **145** is rolled onto the surface of the second mother substrate **130** with applying a constant pressure, thereby sequentially forming a third scribing line **146** on the surface of the second mother substrate **130**. At this point, the suction unit **151** is connected with the cutting wheel **145** to suck in the glass debris generated on the surface of the second mother substrate **130** by the friction between the cutting wheel **145** and the second mother substrate **130**.

[0072] As shown in FIG. 5G, the second and first mother substrates **130** and **120** are turned by about 90° and the third table **135** moves back to the initial location. The cutting wheel **145** is rolled onto the surface of the second mother substrate **130** with applying a constant pressure, thereby sequentially forming a fourth scribing line **147** on the surface of the second mother substrate **130**. At this time, the suction unit **151** is connected with the cutting wheel **145** to suck in the glass debris generated on the surface of the second mother substrate **130** by the friction between the cutting wheel **145** and the second mother substrate **130**.

[0073] As shown in FIG. 5H, the second and first mother substrates **130** and **120** are overturned to be loaded on a fourth table **136**. Subsequently, the fourth table **136** moves in one direction, and propagates a crack on the second mother substrate **130** along the fourth scribing line **147** by pressing the first mother substrate **120** with a breaking rod **148**.

[0074] As shown in FIG. 5I, the first and second mother substrates **120** and **130** are turned by about 90°. The fourth table **136** moves back to the initial location, and propagates a crack on the second mother substrate **130** along the third scribing line **146** by sing the first mother substrate **120** with the breaking rod **148**.

[0075] As shown in FIG. 5J, the first and second mother substrates **120** and **130** are cut into a plurality of unit liquid crystal display panels as the cracks are propagated along the first to fourth scribing lines **142**, **143**, **146**, and **147** on the first and second mother substrates **120** and **130**. The unit liquid crystal display panels are selectively unloaded by using a suction plate **149** for transferring each unit liquid crystal display panel to equipment for a later process.

[0076] In the apparatus and method for cutting liquid crystal display panels according to the first embodiment of the present invention, the first and second mother substrates are turned four times and overturned twice, thereby performing the scribing process four times and the breaking process four times.

[0077] Accordingly, two scribing equipments each including a turning unit and two breaking equipments each including a turning unit and an overturning unit are required. This occupies many areas in a working field, thereby causing a waste in the installation cost of the equipment and in the installation space.

[0078] Moreover, too much time is taken to the scribing and breaking processes, which eventually decreases productivity.

[0079] Accordingly, upon consideration of such problems, the apparatus for cutting liquid crystal display panels according to the second embodiment of the present invention is illustrated in FIG. 6.

[0080] As shown in FIG. 6, the apparatus for cutting liquid crystal display panels according to the second embodiment of the present invention includes first and second tables **201** and **202** spaced apart from each other, first and second mother substrates **203** and **204** loaded on the first and second tables **201** and **202** while covering the space formed therebetween, first and second cutting wheels **207** and **208** for forming first and second scribing lines **205** and **206** on the surfaces of the first and second mother substrates

203 and **204**, and first and second suction units **209** and **210** respectively coupled to the first and second cutting wheels **207** and **208** for sucking in the glass debris generated by the friction between the first and second cutting wheels **207** and **208** and the first and second mother substrates **203** and **204**.

[0081] In the apparatus for cutting liquid crystal display panels according to the second embodiment of the present invention, the first and second mother substrates **203** and **204** are loaded on the first and second tables **201** and **202** to be placed across the space formed by the first and second tables. Then, the first and second cutting wheels **207** and **208** are rolled onto the first and second mother substrates **203** and **204** with applying a constant pressure in the space formed between the first table **201** and the second table **202**, thereby simultaneously forming the first and second scribing lines **205** and **206** having a groove on the surfaces of the first and second mother substrates **203** and **204**. The first and second suction units **209** and **210** suck in the glass debris generated on the surfaces of the first and second mother substrates **203** and **204** by the friction between the first and second cutting wheels **207** and **208** and the first and second mother substrates **203** and **204**.

[0082] Processes for cutting liquid crystal display panels according to the second embodiment of the present invention will be explained with reference to FIGS. 7A to 7F.

[0083] First, as shown in FIG. 7A, the attached first and second mother substrates **220** and **230** respectively having the thin film transistor array substrates and the color filter substrates are loaded on the first table **231**.

[0084] The first mother substrate **220** having the thin film transistor array substrates is loaded to be stacked on the second mother substrate **230** having the color filter substrates. Herein, unlike when the second mother substrate **230** is stacked on the first mother substrate **220**, an impact applied to the thin film transistor array substrates and the color filter substrates can be attenuated in the process for cutting the first and second mother substrates **220** and **230**.

[0085] As shown in FIG. 7B, the first and second mother substrates **220** and **230** are positioned on the first and second tables **231** and **232** to be placed across the space formed therebetween. First and second cutting wheels **241** and **242** are rolled onto the surfaces of the first and second mother substrates **220** and **230** with applying a constant pressure at the space formed between the first and second tables **231** and **232**, thereby sequentially forming first and second scribing lines **251** and **252** on the surfaces of the first and second mother substrates **220** and **230**. At this point, first and second suction units **261** and **262** are coupled to the first and second cutting wheels **241** and **242** to suck in the glass debris generated on the surfaces of the first and second mother substrates **220** and **230** by the friction between the first and second cutting wheels **241** and **242** and the first and second mother substrates **220** and **230**.

[0086] As shown in FIG. 7C, a pressure is applied to the first scribing line **251** or the second scribing line **252** through a first roll **211**, thereby sequentially cutting the first and second mother substrates **220** and **230**.

[0087] The first roll **211** simultaneously applies a pressure to a single part or a plurality of parts of the first scribing line **251** or the second scribing line **252**, so that a crack can be

propagated on the first and second mother substrates **220** and **230** along the first and second scribing lines **251** and **252**.

[0088] Additionally, the first roll **211** is coupled to the first cutting wheel **241** or the second cutting wheel **242** to apply a pressure along the first scribing line **251** or the second scribing line **252**, thereby applying the pressure to the first scribing line **251** or the second scribing line **252** with more efficiency.

[0089] In the meantime, an air curtain **271** is additionally provided above the space formed between the first table **231** and the second table **232**. Accordingly, in case that a vertical air current is formed at the space formed between the first table **231** and the second table **232**, the first roll **211** applies a pressure to the first scribing line **251** or the second scribing line **252**, so that glass debris generated by cutting the bonded first and second mother substrates **220** and **230** are prevented from being adhered to the first and second tables **231** and **232** or the first and second mother substrates **220** and **230**.

[0090] As shown in FIG. 7D, the cut first and second mother substrates **220** and **230** are turned by about 90°.

[0091] As shown in FIG. 7E, the turned first and second mother substrates **220** and **230** are positioned on third and fourth tables **233** and **234** to be placed across the space formed therebetween. Third and fourth cutting wheels **243** and **244** are bonded to the surfaces of the first and second mother substrates **220** and **230** at a constant pressure to be rotated at the space formed between the third and fourth tables **233** and **234**, thereby forming third and fourth scribing lines **253** and **254** on the surfaces of the first and second mother substrates **220** and **230**. At this time, third and fourth suction units **263** and **264** are connected with the third and fourth cutting wheels **243** and **244** to suck in the glass debris generated on the surfaces of the first and second mother substrates **220** and **230** by a friction between the third and fourth cutting wheels **243** and **244** and the first and second mother substrates **220** and **230**.

[0092] As shown in FIG. 7F, a pressure is applied to the third scribing line **253** or the fourth scribing line **254** through a second roll **212**, thereby sequentially cutting the first and second mother substrates **220** and **230**.

[0093] The second roll **212**, similar to the first roll **211** shown in FIG. 7C, simultaneously applies a pressure to a single part or a plurality of parts of the third scribing line **253** or the fourth scribing line **254**, so that a crack can be propagated on the first and second mother substrates **220** and **230** along the third and fourth scribing lines **253** and **254**. Also, it is possible that the second roll **212** is connected with the third cutting wheel **243** or the fourth cutting wheel **244** to apply a pressure along the third scribing line **253** or the fourth scribing line **254**, thereby applying a pressure to the third scribing line **253** or the fourth scribing line **254** with more efficiency.

[0094] In the meantime, an air curtain **272** is additionally provided above the space formed between the third table **233** and the fourth table **234**. Accordingly, in case that a vertical air current is formed at the space formed between the third table **233** and the fourth table **234**, the second roll **212** applies a pressure to the third scribing line **253** or the fourth scribing line **254**, so that the glass debris generated by cutting the bonded first and second mother substrates **220**

and 230 are prevented from being adhered to the third and fourth tables 233 and 234 or the first and second mother substrates 220 and 230.

[0095] The unit liquid crystal display panels cut along the first to fourth scribing lines 251 to 254 are transferred to equipment for a later process by an unloading unit.

[0096] In the apparatus and method for cutting liquid crystal display panels according to the second embodiment of the present invention, the first and second mother substrates are turned once and the first and second mother substrates are scribed twice at the same time, thereby forming the scribing lines. At this time, the glass debris generated on the surfaces of the mother substrates by the friction between the cutting wheel and the mother substrates are removed by a suction unit coupled to the cutting wheel, and a pressure is applied to at least one part of the scribing lines by the roll. Thus, the mother substrates are cut into unit liquid crystal display panels.

[0097] Accordingly, unlike in the first embodiment, in the apparatus and method for cutting liquid crystal display panels according to the second embodiment of the present invention, an apparatus is simplified to minimize the installation cost and the installation space, thereby reducing the time required to cut the unit liquid crystal display panels and increasing productivity.

[0098] In the meantime, the unit liquid crystal display panels of the thin film transistor array substrate and the color filter substrate bonded to each other are formed on the mother substrates with a predetermined interval. Also, a dummy seal pattern for preventing a distortion of the mother substrates is formed at the end portions of the first and second mother substrates where the unit liquid crystal display panels are not formed.

[0099] In case that the second embodiment of the present invention is applied to cut the mother substrates where the dummy seal pattern is formed, there is a problem in that the mother substrates may not be easily separated from the unit liquid crystal display panels.

[0100] Therefore, an apparatus for cutting liquid crystal display panels according to a third embodiment of the present invention is illustrated in FIG. 8, so as to cut the mother substrates where the dummy seal pattern is formed and separated more efficiently.

[0101] As shown in FIG. 8, the apparatus for cutting liquid crystal display panels according to the third embodiment of the present invention includes first and second tables 301 and 302 spaced apart from each other, first and second suction holes 381 and 382 disposed on the surfaces of the first and second tables 301 and 302, first and second mother substrates 303 and 304 loaded on the first and second tables 301 and 302 to be placed across the space formed therebetween, first and second cutting wheels 307 and 308 for forming first and second scribing lines 305 and 306 on the surfaces of the first and second mother substrates 303 and 304, and first and second suction units 309 and 310 respectively provided at the first and second cutting wheels 307 and 308 for sucking in the glass debris generated by the friction between the first and second cutting wheels 307 and 308 and the first and second mother substrates 303 and 304.

[0102] In the apparatus for cutting liquid crystal display panels according to the third embodiment of the present

invention, the first and second mother substrates 303 and 304 are loaded on the first and second tables 301 and 302 in order to be placed across the space formed therebetween. Then, the first and second cutting wheels 307 and 308 are rolled onto the surfaces of the first and second mother substrates 303 and 304 with applying a constant pressure to be rotated in the space formed between the first table 301 and the second table 302, thereby simultaneously forming the first and second scribing lines 305 and 306 having a groove. The first and second suction units 309 and 310 are coupled to the first and second cutting wheels 307 and 308, thereby sucking the glass debris generated on the surfaces of the first and second mother substrates 303 and 304 by the friction between the first and second cutting wheels 307 and 308 and the first and second mother substrates 303 and 304.

[0103] In the meantime, according to the apparatus and method for cutting liquid crystal display panels of the second embodiment of the present invention, a pressure is applied to the first scribing line 205 or the second scribing line 206 through the first and second rolls 211 and 212 in order to cut the first and second mother substrates 203 and 204 along the first and second scribing lines 205 and 206 formed on the surfaces of the first and second mother substrates 203 and 204.

[0104] In the apparatus and method for cutting liquid crystal display panels according to the third embodiment of the present invention, the first and second suction holes 381 and 382 disposed on the surfaces of the first and second tables 301 and 302 are used to hold the first and second mother substrates 303 and 304 in cutting them along the first and second scribing lines 305 and 306 formed at the surfaces of the first and second mother substrates 303 and 304.

[0105] More specifically, the first and second mother substrates 303 and 304 are held by the first and second suction holes 381 and 382 disposed on the surfaces of the first and second tables 301 and 302. Then, after forming the first and second scribing lines 305 and 306, the first and second tables 301 and 302 each move to a different direction to cut the first and second mother substrates 303 and 304 along the first and second scribing lines 305 and 306.

[0106] Processes for cutting liquid crystal display panels by applying the third embodiment of the present invention will be explained with reference to FIGS. 9A to 9F.

[0107] First, as shown in FIG. 9A, the attached first and second mother substrates 320 and 330 respectively having the thin film transistor array substrates and the color filter substrates are loaded on the first table 331.

[0108] The first mother substrate 320 having the thin film transistor array substrates is loaded to be stacked on the second mother substrate 330 having the color filter substrates. Accordingly, an impact applied to the thin film transistor array substrates or the color filter substrates can be more attenuated in the process for cutting the first and second mother substrates 320 and 330, as compared to when the second substrate 330 is stacked on the first mother substrate 320.

[0109] As shown in FIG. 9B, the first and second mother substrates 320 and 330 are positioned on the first and second tables 331 and 332 to be placed across the space formed therebetween. Then, the first and second mother substrates are held by the first and second suction holes 381 and 382

disposed on the surfaces of the first and second tables 331 and 332. Subsequently, first and second cutting wheels 341 and 342 are rolled onto the surfaces of the first and second mother substrates 320 and 330 with applying a constant pressure in the space formed between the first and second tables 331 and 332, thereby sequentially forming first and second scribing lines 351 and 352 at the surfaces of the first and second mother substrates 320 and 330. At this time, first and second suction units 361 and 362 are coupled to the first and second cutting wheels 341 and 342 to suck the glass debris generated on the surfaces of the first and second mother substrates 320 and 330 by the friction between the first and second cutting wheels 341 and 342 and the first and second mother substrates 320 and 330.

[0110] As shown in FIG. 9C, the first and second tables 331 and 332 loaded the first and second mother substrates 320 and 330 held by the first and second suction holes 381 and 382 each moves to the opposite directions, thereby sequentially cutting the first and second mother substrates 320 and 330 along the first and second scribing lines 351 and 352.

[0111] The first and second suction holes 381 and 382 suck the air in order to tightly hold the first and second mother substrates 320 and 330 onto the first and second tables 331 and 332. On the other hand, the first and second suction holes 381 and 382 inject the air to separate the first and second mother substrates 320 and 330 from the first and second tables 331 and 332, thereby transferring the first and second mother substrates 320 and 330. Also, the first and second suction holes 381 and 382, as shown in FIG. 10A, are formed in the same shape as the suction unit 380 at the surfaces of the first and second tables 331 and 332, thereby sucking the first and second mother substrates 320 and 330 more effectively. On the other hand, when a vacuum condition is maintained at a high state, the first and second suction holes 381 and 382 prevent black dot stains from being formed on the first and second mother substrates 320 and 330.

[0112] In the meantime, an air curtain 371 is additionally provided above the space formed between the first table 331 and the second table 332. Accordingly, in case that a vertical air current is formed at the space formed between the first table 331 and the second table 332, the first and second tables 331 and 332 move to different directions, thereby preventing the glass debris generated by cutting the bonded first and second mother substrates 320 and 330 from being adhered to the first and second tables 331 and 332 or the first and second mother substrates 320 and 330.

[0113] As shown in FIG. 9D, the separated first and second mother substrates 320 and 330 are turned by about 90°.

[0114] As shown in FIG. 9E, the turned first and second mother substrates 320 and 330 are positioned on third and fourth tables 333 and 334 in order to be placed across the space formed therebetween to be held by third and fourth suction holes 383 and 384 disposed on the surfaces of the third and fourth tables 333 and 334. Then, third and fourth cutting wheels 343 and 344 are rolled onto the surfaces of the first and second mother substrates 320 and 330 with applying a constant pressure in the space formed between the third table 333 and the fourth table 334, thereby sequentially forming third and fourth scribing lines 353 and 354 on

the surfaces of the first and second mother substrates 320 and 330. At this time, third and fourth suction units 363 and 364 are coupled to the third and fourth cutting wheels 343 and 344 to suck in the glass debris generated on the surfaces of the first and second mother substrates 320 and 330 by the friction between the third and fourth cutting wheels 343 and 344 and the first and second mother substrates 320 and 330.

[0115] As shown in FIG. 9F, the third and fourth tables 333 and 334 loaded the first and second mother substrates 320 and 330 held by the third and fourth suction holes 383 and 384 move to the opposite directions, thereby sequentially cutting the first and second mother substrates 320 and 330 and separating from each other along the third and fourth scribing lines 353 and 354.

[0116] The third and fourth suction holes 383 and 384, similar to the first and second suction holes 381 and 382 of FIG. 9C, suck in the air to tightly hold the first and second mother substrates 320 and 330 onto the third and fourth tables 333 and 334. On the other hand, the third and fourth suction holes 383 and 384 inject the air to separate the first and second mother substrates 320 and 330 from the third and fourth tables 333 and 334, thereby transferring the first and second mother substrates. Also, the third and fourth suction holes 383 and 384, as shown in FIG. 10B, are formed in the same shape as the suction unit 390 at the surfaces of the third and fourth tables 333 and 334, thereby sucking in the first and second mother substrates 320 and 330 more effectively. Besides, when a vacuum condition is maintained at a high state, the third and fourth suction holes 383 and 384 prevent black dot stains from being formed on the first and second mother substrates 320 and 330.

[0117] In the meantime, an air curtain 372 is additionally provided above the space formed between the third table 333 and the fourth table 334, similar to the air curtain 371 provided above the space formed between the first and second tables 331 and 332. Accordingly, in case that a vertical air current is formed at the space formed between the third table 333 and the fourth table 334, the third and fourth tables 333 and 334 move to the opposite directions, thereby preventing the glass debris generated by cutting the bonded first and second mother substrates 320 and 330 from being adhered to the third and fourth tables 333 and 334 or the first and second mother substrates 320 and 330.

[0118] The unit liquid crystal display panels, which are cut along the first to fourth scribing lines 351 to 354, are transferred to equipment for a later process.

[0119] In the apparatus and method for cutting liquid crystal display panels according to the third embodiment of the present invention, the first and second mother substrates are turned once and the first and second mother substrates are scribed twice at the same time, thereby forming the scribing lines. At this time, the glass debris generated on the surfaces of the mother substrates are removed by the suction unit connected to the cutting wheel, and the first and second tables or the third and fourth tables loaded on the mother substrates move to the opposite directions, thereby cutting the mother substrates into unit liquid crystal display panels.

[0120] Accordingly, in the apparatus and method for cutting liquid crystal display panels according to the third embodiment of the present invention, as compared to those of the first embodiment of the present invention, the appa-

ratus is simplified to minimize the installation cost and the installation space, thereby reducing the processing time taken to cut the unit liquid crystal display panels and increasing productivity.

[0121] Also, in the apparatus for cutting liquid crystal display panels according to the third embodiment of the present invention, the mother substrates having the dummy seal pattern can be cut and separated more efficiently.

[0122] In the meantime, the processes for cutting unit liquid crystal display panels from the mother substrates shown in the second and third embodiments of the present invention include a first cutting process for cutting and removing a dummy region where the unit liquid crystal display panels are not formed from the mother substrates, and a second cutting process for cutting a region where the unit liquid crystal display panels are formed from the mother substrates.

[0123] In the first cutting process, as shown in **FIG. 11A**, the first and second mother substrates **401** and **402** are positioned on the first and second tables **403** and **404** so as to be placed across the space formed therebetween, thereby forming first and second scribing lines **407** and **408** by first and second cutting wheels **405** and **406**. At this time, first and second suction units **409** and **410** are coupled to the first and second cutting wheels **405** and **406** to suck in the glass debris generated on the surfaces of the first and second mother substrates **401** and **402** by the friction between the first and second cutting wheels **405** and **406** and the first and second mother substrates **401** and **402**.

[0124] Similar to the second embodiment of the present invention, a pressure is applied to the first scribing line **407** or the second scribing line **408** through a roll (not shown). Alternatively, similar to the third embodiment of the present invention, the first and second tables **403** and **404** having the first and second mother substrates **401** and **402** move to the opposite directions, thereby cutting the dummy region **430** of a side where the unit liquid crystal display panels are not formed from the first and second mother substrates **401** and **402**.

[0125] Then, in the second cutting process, as shown in **FIG. 11B**, the first and second mother substrates **401** and **402**, in which the dummy region **430** is removed by the first cutting process, are positioned on the first and second tables **403** and **404** to be placed across the space formed therebetween, thereby forming third and fourth scribing lines **411** and **412** by the first and second cutting wheels **405** and **406**. Then, similar to the second embodiment of the present invention, a pressure is applied to the third scribing line **411** or the fourth scribing line **412** through a roll (not shown). Alternatively, similar to the third embodiment of the present invention, the first and second tables **403** and **404** having the first and second mother substrates **401** and **402** move to the opposite directions, thereby cutting the unit liquid crystal display panels from the first and second mother substrates **401** and **402**.

[0126] Subsequently, the first cutting process for cutting the dummy region **430** from the first and second mother substrates **401** and **402** is performed, and the second cutting process for cutting the unit liquid crystal display panels from the first and second mother substrates **401** and **402** is repeatedly performed.

[0127] However, when the second embodiment of the present invention is applied, the dummy region **430** or the unit liquid crystal display panels may not be separated from the first and second mother substrates **401** and **402** in the first cutting process or in the second cutting process due to the dummy seal pattern for preventing a distortion formed at the edge areas of the first and second mother substrates **401** and **402** where the unit liquid crystal display panels are not formed.

[0128] Also, when the third embodiment of the present invention is applied, in the second cutting process, areas of the unit liquid crystal display panels are wide enough to hold the first and second mother substrates **401** and **402** into the first and second tables **403** and **404** and separate from each other. However, in the first cutting process, since the area of the dummy area **430** may be too narrow, the dummy region **430** of the first and second mother substrates **401** and **402** cannot be stuck onto the first and second tables **403** and **404**.

[0129] An apparatus for cutting liquid crystal display panels according to a fourth embodiment of the present invention illustrated in **FIG. 12** is to solve such problems.

[0130] As shown in **FIG. 12**, the apparatus for cutting liquid crystal display panels according to the fourth embodiment of the present invention includes first and second tables **501** and **502** spaced apart from each other, first and second suction holes **581** and **582** disposed on the surfaces of the first and second tables **501** and **502**, first and second mother substrates **503** and **504** loaded on the first and second tables **501** and **502** to be placed across the space formed therebetween, first and second cutting wheels **507** and **508** for forming first and second scribing lines **505** and **506** at the surfaces of the first and second mother substrates **503** and **504**, first and second suction units **509** and **510** respectively provided at the first and second cutting wheels **507** and **508** for sucking in the glass debris generated by the friction between the first and second cutting wheels **507** and **508** and the first and second mother substrates **503** and **504**, and a robot grip **540** provided at the space formed between the first and second tables **501** and **502** for removing the dummy region **530** of the first and second mother substrates **503** and **504** along the first and second scribing lines **505** and **506**.

[0131] In the apparatus for cutting liquid crystal display panels according to the fourth embodiment of the present invention, the first and second mother substrates **503** and **504** are loaded on the first and second tables **501** and **502** to be placed across the space formed therebetween. Then, the first and second cutting wheels **507** and **508** are rolled onto the surfaces of the first and second mother substrates **503** and **504** at the space formed between the first table **501** and the second table **502**, thereby simultaneously forming the first and second scribing lines **505** and **506** having a groove. The first and second suction units **509** and **510** are coupled to the first and second cutting wheels **507** and **508** to suck in the glass debris generated on the surfaces of the first and second mother substrates **503** and **504**.

[0132] In the meantime, according to the apparatus and method for cutting liquid crystal display panels according to the third embodiment of the present invention, the first and second mother substrates **303** and **304** are held by the first and second suction holes **381** and **382** disposed on the surfaces of the first and second tables **301** and **302**. Then, forming the first and second scribing lines **305** and **306**, the

first and second tables **301** and **302** move to the opposite directions, thereby cutting the first and second mother substrates **303** and **304** along the first and second scribing lines **305** and **306**.

[0133] However, as explained with reference to **FIGS. 11A and 11B**, since the area of the dummy region **430** may be too narrow, the dummy region **430** of the first and second mother substrates **401** and **402** cannot be stuck on the first and second tables **403** and **404**.

[0134] In the meantime, according to the apparatus and method for cutting liquid crystal display panels according to the fourth embodiment of the present invention, as shown in **FIG. 12**, the robot grip **540** is provided at the space formed between the first table **501** and the second table **502**, thereby selectively separating the dummy region **530** from the first and second mother substrates **503** and **504**.

[0135] In order to easily separate the dummy region **530** from the first and second mother substrates **503** and **504** by the robot grip **540**, the first and second scribing lines **505** and **506** are formed by the first and second cutting wheels **507** and **508**, and then a pressure is applied to the first scribing line **505** or the second scribing line **506** by a roll to propagate a crack, as shown in the second embodiment.

[0136] The liquid crystal display panel may have a different size according to a model. Therefore, it is desirable to control the width of the robot grip **540** by using a sub motor and etc.

[0137] Also, in case that the first mother substrate **503** having the thin film transistor array substrates is stacked on the second mother substrate **504** having the color filter substrates, the thin film transistor substrates are protruded from the color filter substrates. Accordingly, the robot grip **540** is constructed to hold the dummy region **530** at a location lower than the first and second mother substrates **503** and **504**. On the other hand, the robot grip **540** has to grip the dummy region **530** at a location higher than the first and second mother substrates **503** and **504** to prevent an impact applied to the unit liquid crystal display panels in advance. To this end, the robot grip **540** may be fabricated to control the height thereof by using a servomotor.

[0138] In the meantime, when the robot grip **540** separates the dummy region **530** selectively from the first and second mother substrates **503** and **504** at the space formed between the first table **501** and the second table **502**, the glass debris may be generated and adhered to the surface of the second table **502**.

[0139] In case that the glass debris are adhered to the surface of the second table **502**, a scratch or stain may appear on the surface of the first mother substrate **503** when the cut liquid crystal display panels are loaded on the second table **502**.

[0140] Accordingly, a cover **541** is additionally coupled to the robot grip **540** to prevent the glass debris from being adhered to the second table **502**.

[0141] The cover **541** can be attached to the robot grip **540** by an adhesion method, or can be mounted thereon and detached therefrom by a pin insertion method. Also, the cover **541** can prevent a damage caused by collisions with other components by using a urethane or vinyl material. Also, the cover **541** may be formed to be divided into two

parts with respect to the middle location of the robot grip **540** having a separation margin so that a width of the robot grip **540** can be varied according to a size of the liquid crystal display panel.

[0142] In the meantime, the cover **541** is attached to the robot grip **540** and a vertical air current is additionally formed at the space formed between the first table **501** and the second table **502** by providing an air curtain **550** above the space formed between the first table **501** and the second table **502**, so that the glass debris, generated when the robot grip **540** separates the dummy region **530** selectively from the first and second mother substrates **503** and **504** at the space formed between the first table **501** and the second table **502**, is effectively prevented from being adhered to the surface of the second table **502**.

[0143] As aforementioned, in the apparatus for cutting liquid crystal display panels according to the present invention, the glass debris generated in the process for cutting the large mother substrates into the unit liquid crystal display panels can be prevented from being adhered to the surface of the mother substrate or the table on which the mother substrate is loaded.

[0144] Accordingly, a scratch or stain is prevented from being formed on the surface of the liquid crystal display panel, thereby increasing a picture quality of the liquid crystal display panel, reducing the defects of a product, and thus improving productivity.

[0145] It will be apparent to those skilled in the art that various modifications and variations can be made in the apparatus for cutting the liquid crystal display panel of the present invention without departing from the spirit or scope of the inventions. Thus, it is intended that the present invention covers the modifications and variations of this invention provided they come within the scope of the appended claims and their equivalents.

What is claimed is:

1. An apparatus for cutting liquid crystal display panels, comprising:

at least one table receiving bonded mother substrates having a plurality of unit liquid crystal display panels;

at least one cutting wheel forming a scribing line on a surface of the bonded mother substrates; and

a suction unit coupled to the at least one cutting wheel and sucking in glass debris on the surface of the bonded mother substrates.

2. The apparatus of claim 1, wherein the bonded mother substrates include a first mother substrate having a plurality of color filter substrates, and a second mother substrate having a plurality of thin film transistor substrates.

3. The apparatus of claim 1, wherein the suction unit is synchronized with a motion of the cutting wheel.

4. The apparatus of claim 1, further comprising at least one roll applying a pressure onto at least a part of the scribing line.

5. The apparatus of claim 4, wherein the roll is synchronized with a motion of the cutting wheel.

6. The apparatus of claim 1, wherein the at least one table includes a first table and a second table, and the bonded

mother substrates are loaded on the first and second tables to be placed across a space formed between the first and second tables.

7. The apparatus of claim 6, further comprising an air curtain above the space between the first table and the second table.

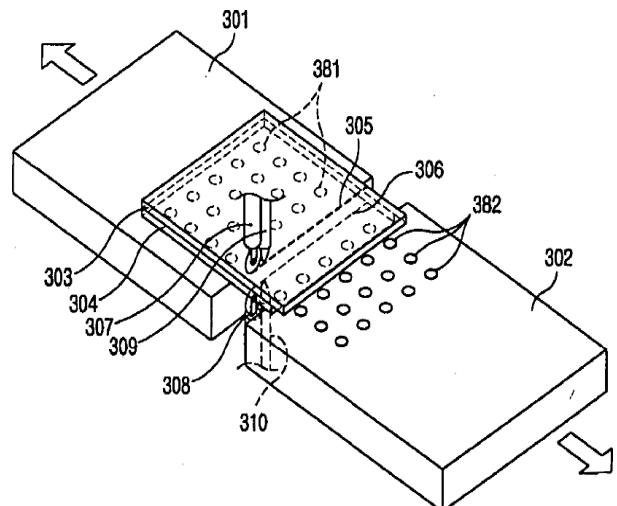
8. The apparatus of claim 1, wherein the at least one table has at least one suction hole to hold the bonded mother substrates.

9. The apparatus of claim 8, wherein the suction hole has a dot shape or a stripe shape.

10. The apparatus of claim 6, wherein the first and second tables move away from each other.

11. The apparatus of claim 6, further comprising a robot grip provided at the space formed between the first table and the second table for removing a dummy region from the bonded mother substrates.

12. The apparatus of claim 11, further comprising a cover bonded to the robot grip.


13. The apparatus of claim 12, wherein the cover is formed of one of urethane and vinyl.

* * * * *

专利名称(译)	用于切割液晶显示板的装置		
公开(公告)号	US20040074366A1	公开(公告)日	2004-04-22
申请号	US10/455718	申请日	2003-06-06
[标]申请(专利权)人(译)	乐金显示有限公司		
申请(专利权)人(译)	LG.PHILIPS LCD CO. , LTD.		
当前申请(专利权)人(译)	LG DISPLAY CO. , LTD.		
[标]发明人	CHOO HUN JUN UH JI HEUM SHIN SANG SUN SHIM HWA SEOB LIM JONG GO		
发明人	CHOO, HUN-JUN UH, JI-HEUM SHIN, SANG-SUN SHIM, HWA-SEOB LIM, JONG-GO		
IPC分类号	G02F1/13 B26F1/38 B28D5/00 C03B33/023 C03B33/03 C03B33/033 C03B33/07 G02F1/1333 B31B1/25		
CPC分类号	B65G2249/04 C03B33/03 G02F1/133351 C03B33/07 C03B33/033 Y02P40/57 Y10T83/0378 Y10T83/0385 Y10T83/207 Y10T225/12 Y10T225/325		
优先权	1020020064677 2002-10-22 KR		
外部链接	Espacenet USPTO		

摘要(译)

在本发明中公开了一种用于切割液晶显示板的装置。该装置包括至少一个接收粘合母基板的台，该基板具有多个单元液晶显示板，至少一个切割轮在粘合母基板的表面上形成划线，以及连接至该至少一个切割的抽吸单元在粘合的母基板表面上的玻璃碎片中汲取轮子并吸入。

