

US 20030016328A1

(19) **United States**

(12) Patent Application Publication

Chung et al.

(10) Pub. No.: US 2003/0016328 A1

(43) Pub. Date: Jan. 23, 2003

(54) LIQUID CRYSTAL DISPLAY

Publication Classification

(75) Inventors: **Woo-Suk Chung**, Anyang-city (KR); **Chi-Woo Kim**, Seoul (KR); **Bo-Young An**, Daeku-city (KR); **Hyong-Gon Lee**, Yongin-city (KR); **Sung-Hee Cho**, Yongin-city (KR)

(51) Int. Cl.⁷ G02F 1/1345

(52) U.S. Cl. 349/149

(57) **ABSTRACT**

Correspondence Address:

Correspondent
Frank Chau

F. CHAU & ASSOCIATES, LLP
Suite 501
1900 Hempstead Turnpike
East Meadow, NY 11554 (US)

(73) Assignee: **Samsung Electronics Co., Ltd**

(21) Appl. No.: 10/178,016

(22) Filed: Jun. 20, 2002

(30) **Foreign Application Priority Data**

Jul. 18, 2001 (KR) 2001-0043031
Aug. 21, 2001 (KR) 2001-0050420

In a liquid crystal display, a plurality of gate lines and data lines are provided on a first substrate including a display area as a screen, and a peripheral area external to the display area wherein a plurality of pixel electrodes are electrically connected to the gate lines and to the data lines, and some of the pixel electrodes extend to be located in the peripheral area; and optionally, a black matrix is formed on a second substrate disposed opposite to the first substrate for screening the extended portions of the pixel electrodes located in the peripheral area, a rubbing direction of aligning films is formed on the first and the second substrates towards the extended portions of the pixel electrodes located in the peripheral area so that impurity ions on the surface of the aligning film travel along the rubbing direction to stop at the extended portions of the pixel electrodes, and an image defect area caused by the impurity ions is screened with the black matrix.

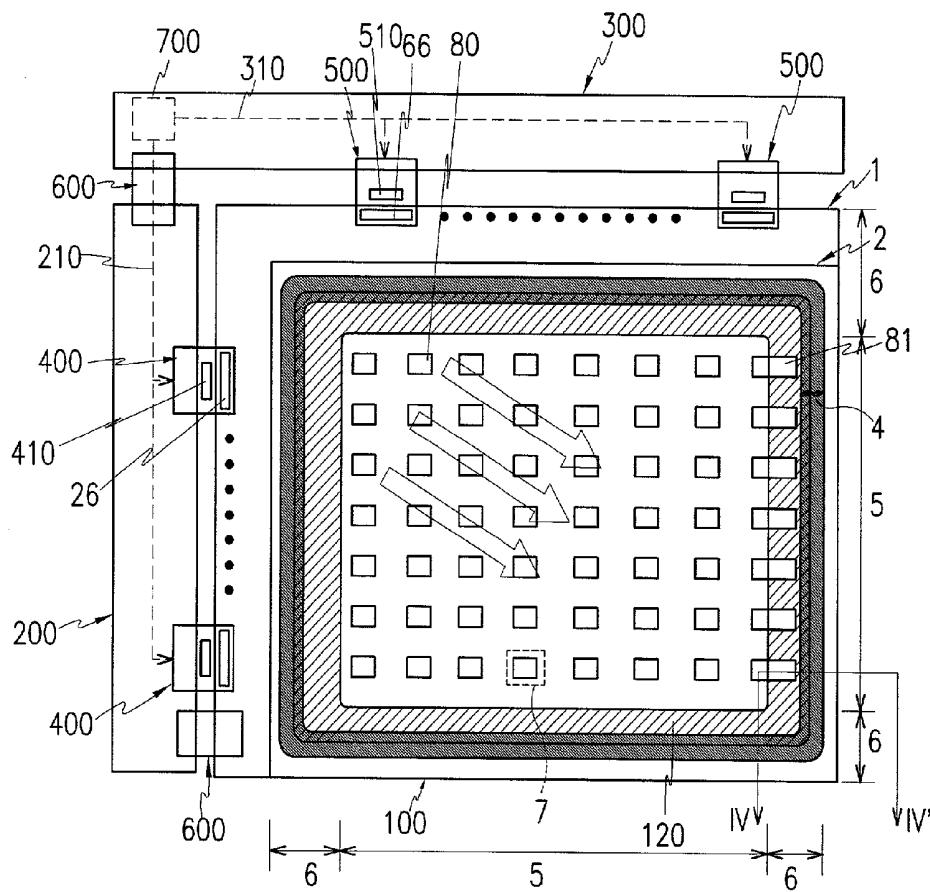


Fig.1

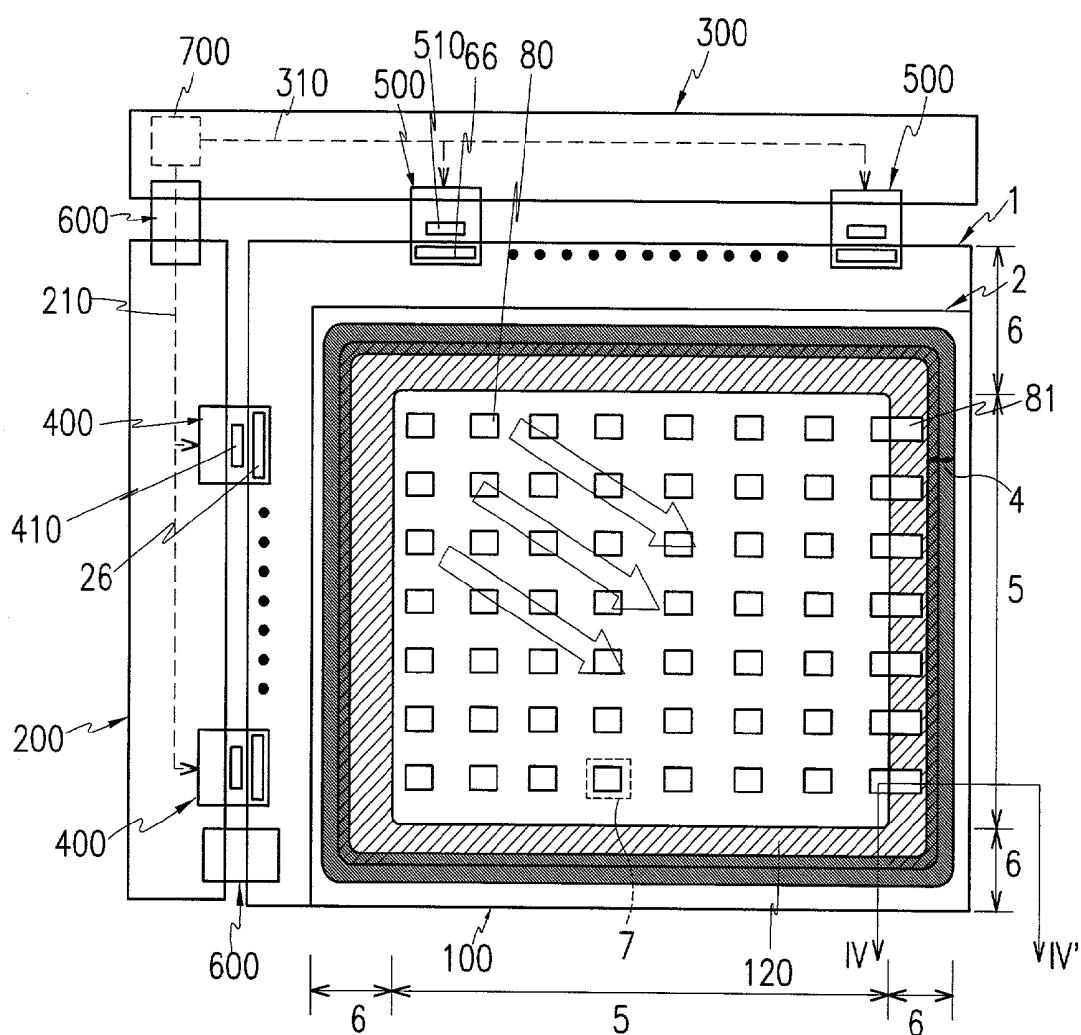


Fig.2

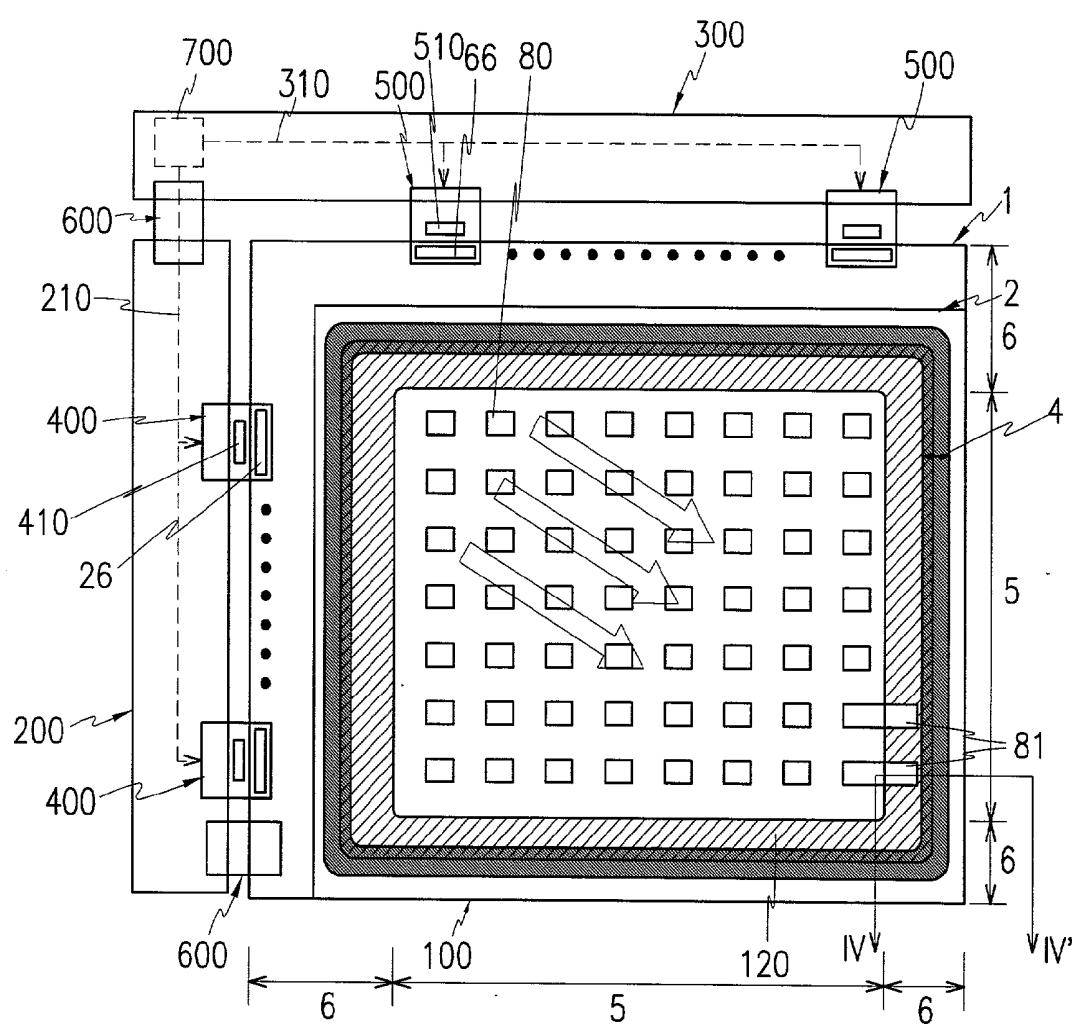


Fig.3A

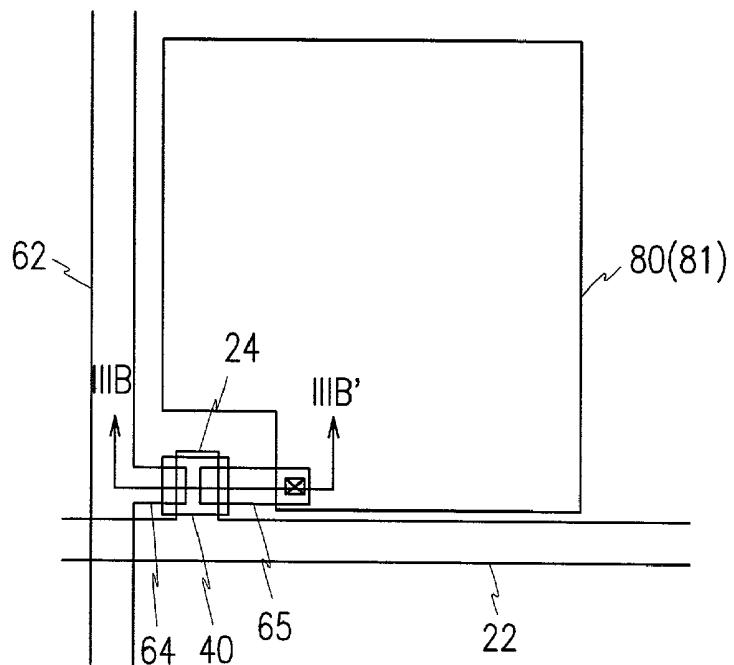


Fig.3B

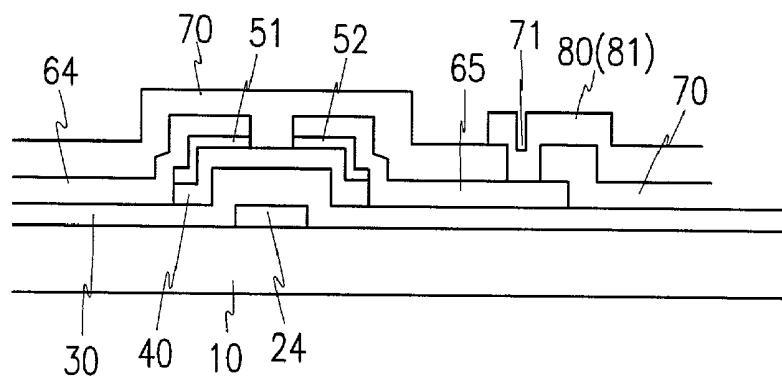


Fig.4

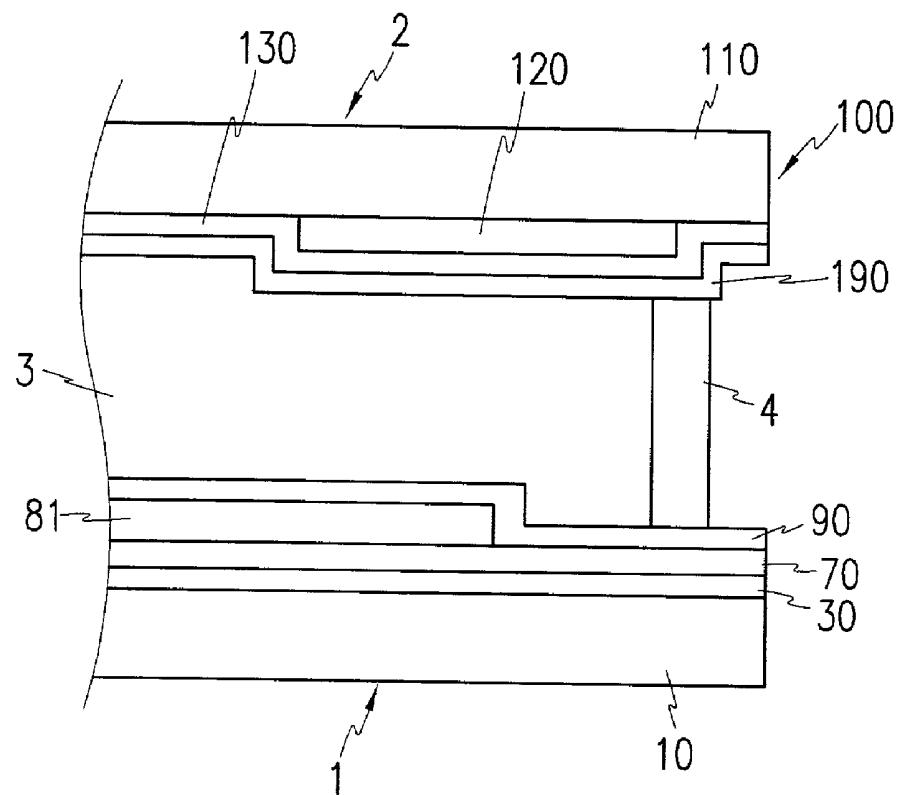


Fig.5

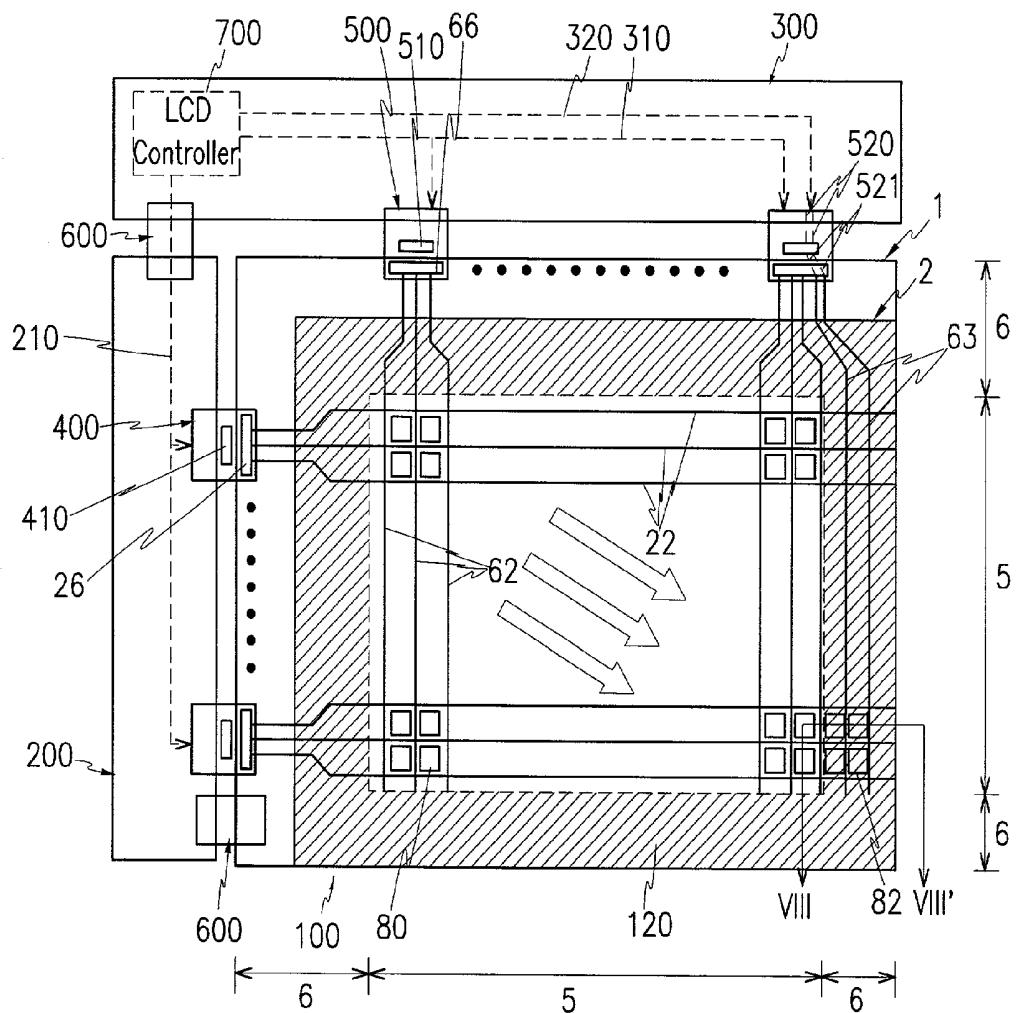


Fig. 6

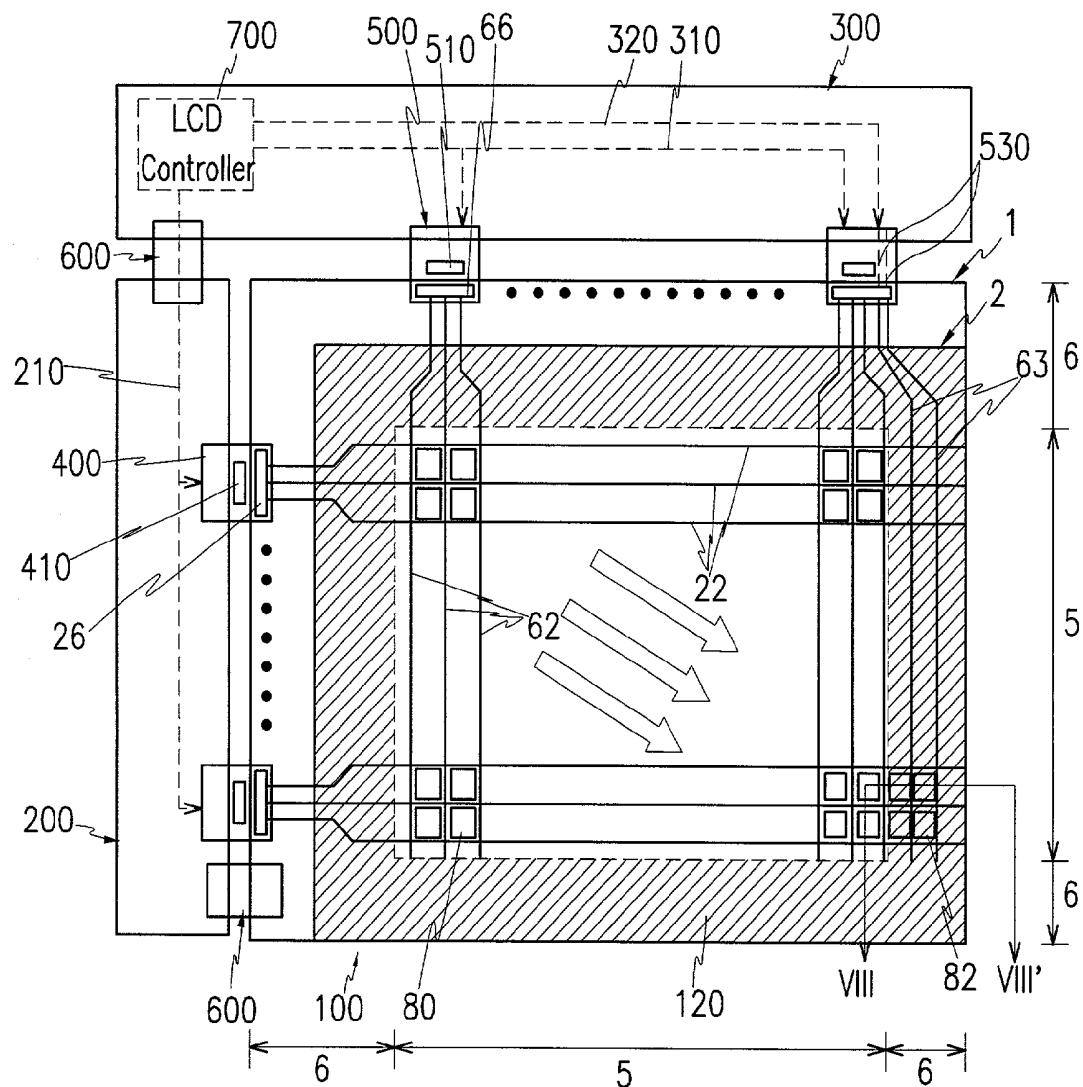


Fig.7

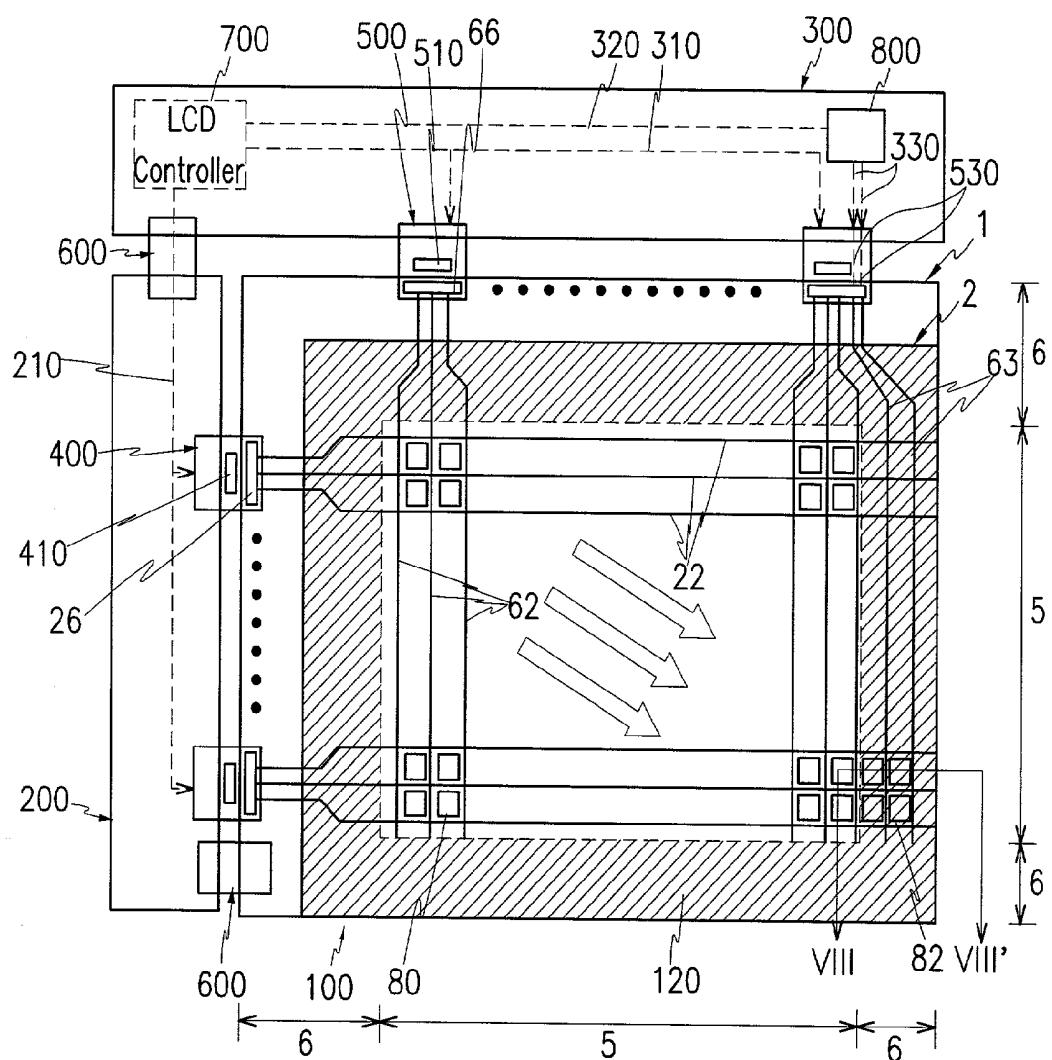


Fig.8

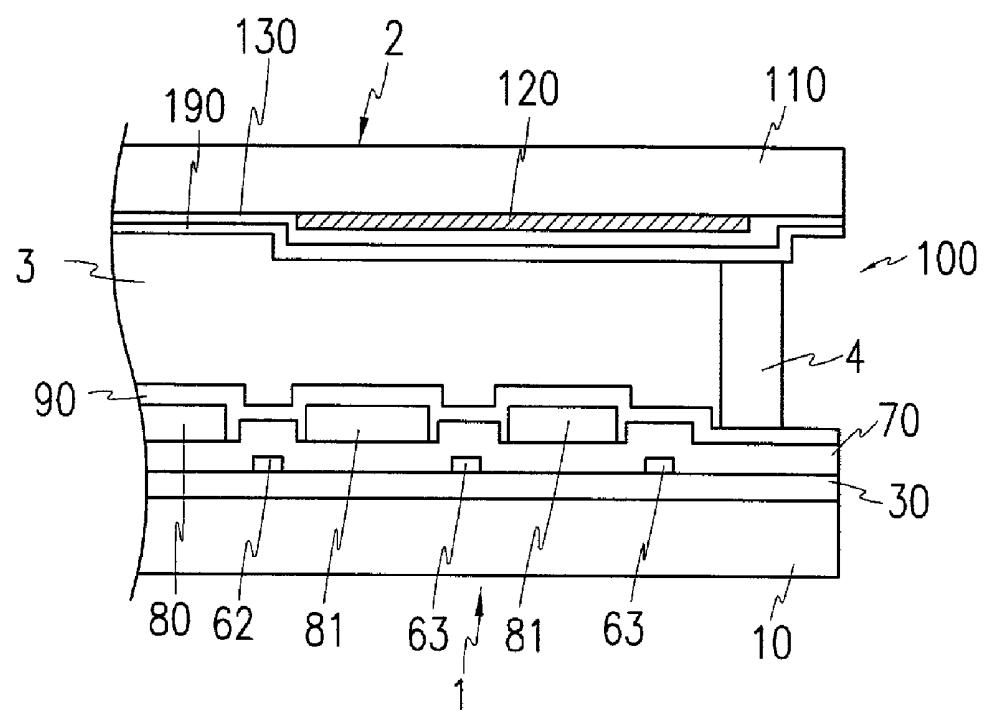


Fig.9

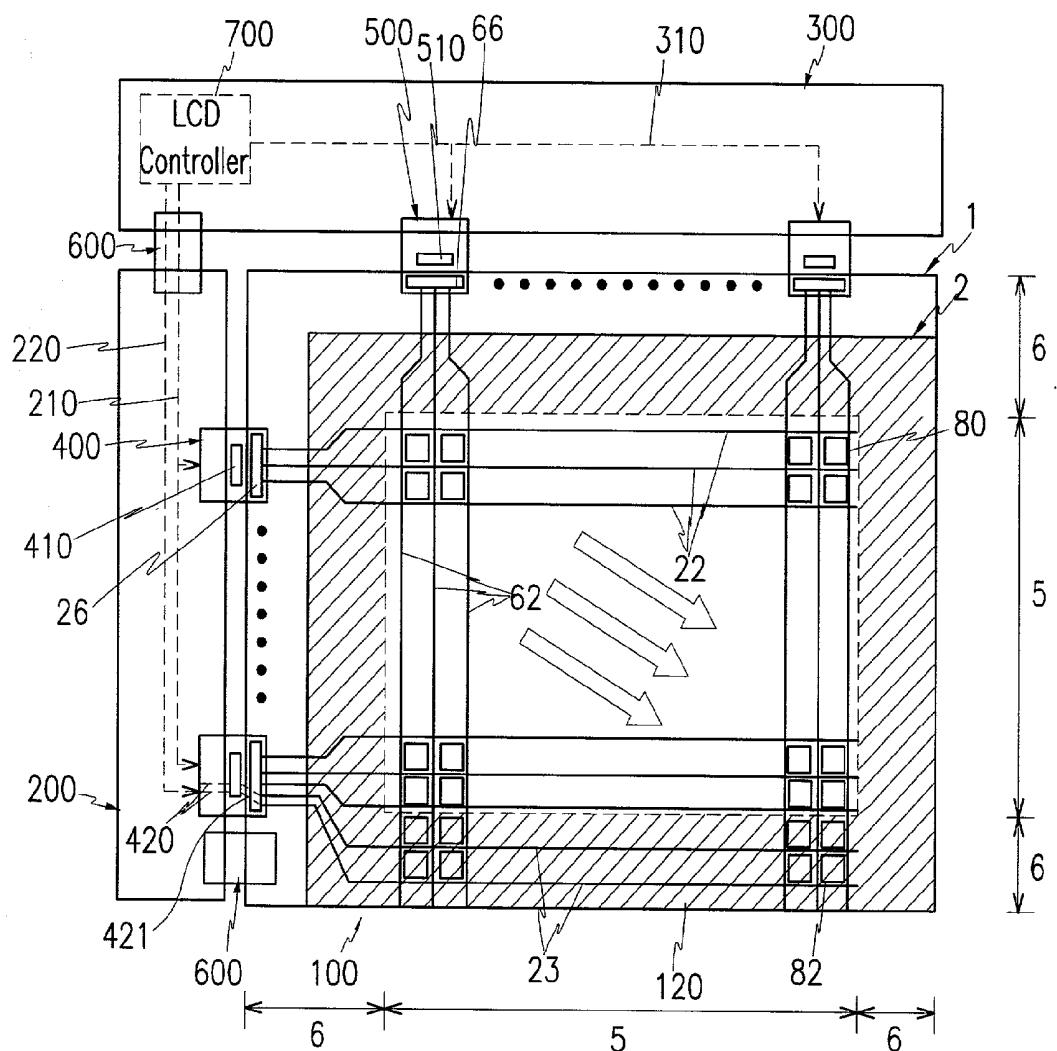


Fig.10

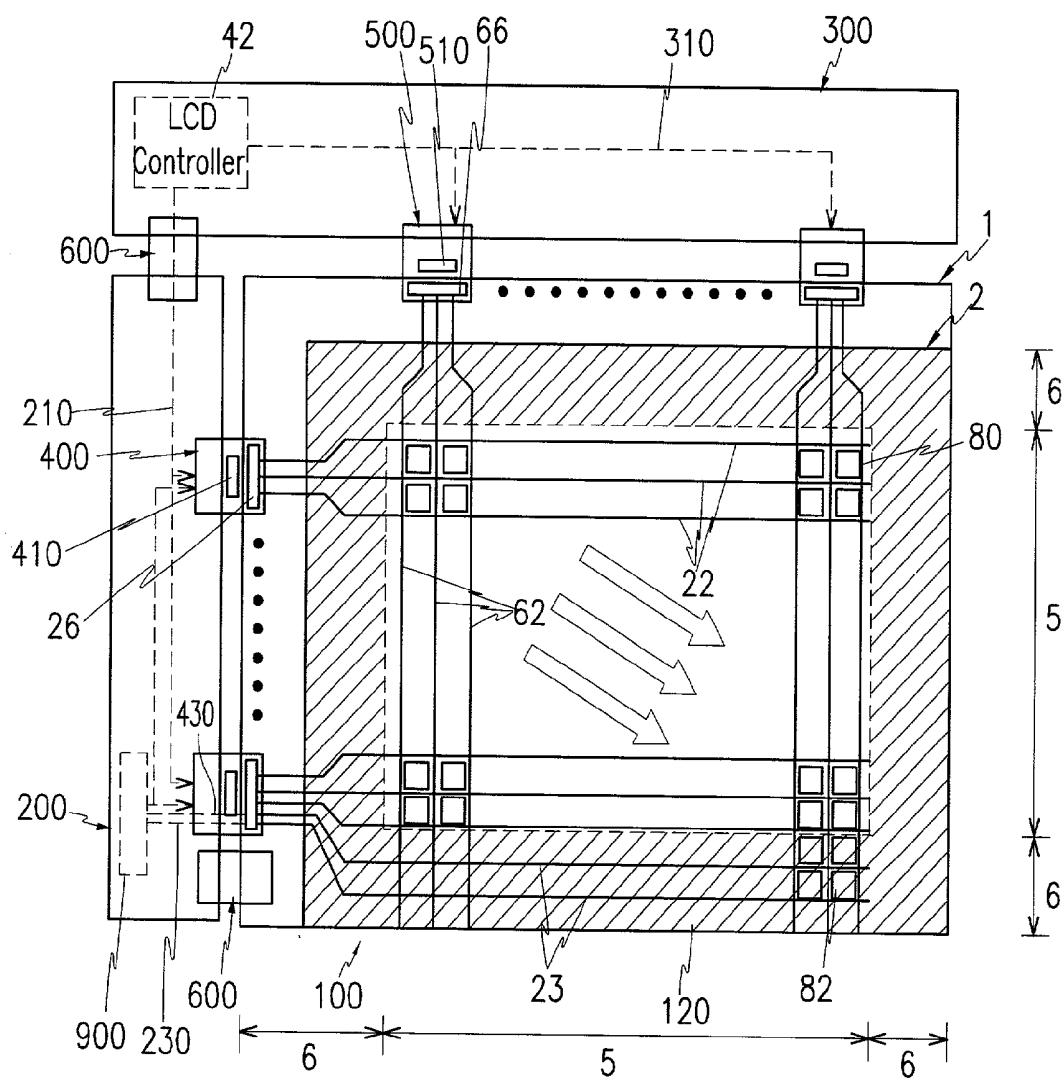
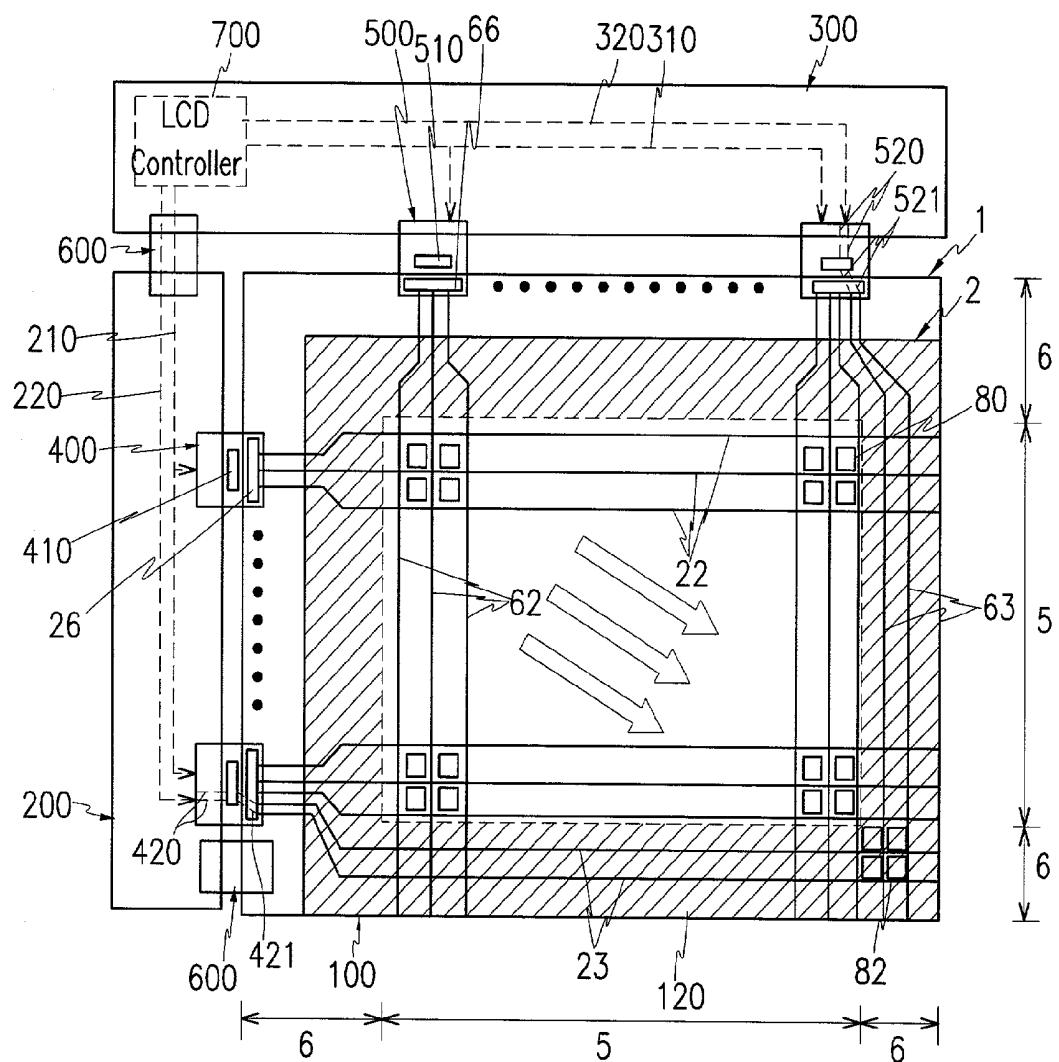



Fig.11

LIQUID CRYSTAL DISPLAY

BACKGROUND OF THE INVENTION

[0001] (a) Field of the Invention

[0002] The present invention relates to a liquid crystal display.

[0003] (b) Description of the Related Art

[0004] A typical liquid crystal display ("LCD") includes an upper panel having a common electrode and an array of color filters, and a lower panel having a plurality of pixel electrodes and thin film transistors ("TFT's"). A pair of aligning films are coated on the upper and the lower panels, and a liquid crystal layer is interposed between the aligning films of the upper and the lower panels. The orientations of molecules of the liquid crystal layer are changed by adjusting an electric field generated by the potential difference between the pixel electrodes and the common electrode, which are applied with appropriate voltages. The change of the orientations of the liquid crystal molecules causes the transmittance of light passing through the LCD to be varied, thereby obtaining desired images.

[0005] During the fabricating process of such a conventional LCD, impurity ions are often generated and remained on the surface of the aligning films. When the fabricated LCD operates for a time, these impurity ions travel along an alignment direction formed by rubbing the aligning films, to gather at one corner of the liquid crystal display. As a result, this causes a defect that one corner of a display area is bright when displaying dark images.

SUMMARY OF THE INVENTION

[0006] Embodiments of the present invention provide for liquid crystal displays having improved image qualities. According to an embodiment of the present invention, at least one portion of at least one pixel electrode is located in a peripheral area external to a display area.

[0007] A liquid crystal display is provided, which includes: a first insulating substrate including a display area as a screen and a peripheral area external to the display area; a plurality of signal lines provided on the first substrate; and a plurality of pixel electrodes electrically connected to the signal lines, wherein the plurality of pixel electrodes include at least one first electrode having a first portion located in the peripheral area and at least one second electrode located in the display area.

[0008] Preferably, the liquid crystal display further includes a second insulating substrate disposed opposite the first substrate and a black matrix provided on the second substrate, wherein the black matrix screens the first portion of the at least one first electrode.

[0009] It is preferable that the liquid crystal display further includes a common electrode provided on the second substrate and disposed opposite the plurality of pixel electrodes, wherein the plurality of pixel electrodes and the common electrode are applied with signals having periodically inverting polarity, respectively.

[0010] An aligning layer is preferably provided on the first substrate, and the rubbing direction preferably head toward the first portion of the at least one first electrode.

[0011] According to an embodiment of the present invention, the at least one first electrode further includes a second portion located in the display area. The area of the at least one first electrode is preferably larger than the area of the at least one second electrode.

[0012] According to another embodiment of the present invention, the first portion of the at least one first electrode forms an entire portion of the at least one first electrode.

[0013] According to an embodiment of the present invention, the plurality of pixel electrodes are arranged in a matrix, and the plurality of the signal lines include a plurality of gate lines substantially parallel to each other and extending in a row direction and a plurality of data lines substantially parallel to each other and extending in a column direction, and the liquid crystal display further includes a plurality of switching elements transmitting first signals from the plurality of data lines to the plurality of pixel electrodes in response to second signals from the plurality of gate lines.

[0014] Preferably, the at least one first electrode is located at an edge column or an edge row of the matrix.

[0015] According to an embodiment of the present invention, the liquid crystal display further includes a controller controlling the liquid crystal display.

[0016] According to an embodiment of the present invention, the plurality of data lines include at least one first data line electrically connected to the at least one first electrode and at least one second data line electrically connected to the at least one second electrode, and the at least one first data line and the at least one second data line are electrically connected to the controller via different paths.

[0017] According to another embodiment of the present invention, the plurality of gate lines include at least one first gate line electrically connected to the at least one first electrode and at least one second gate line electrically connected to the at least one second electrode, and the at least one first gate line and the at least one second gate line are electrically connected to the controller via different paths.

[0018] According to an embodiment of the present invention, the liquid crystal display further includes a printed circuit board ("PCB") having the controller therein or electrically connected to the controller, wherein the PCB includes a first signal path electrically connecting the at least one first data line or the at least one first gate line to the controller and a second signal path electrically connecting the at least one second data line or the at least one first gate line to the controller.

[0019] According to an embodiment of the present invention, the liquid crystal display further includes a tape carrier package connecting the PCB to the first substrate, and a driving circuit transmitting the first signals or the second signals to the at least one second data line or the at least one second gate line in response to a control signal from the controller. The driving circuit is preferably mounted as an integrated circuit chip on the tape carrier package or on the first substrate, or is directly formed on the first substrate with the same layers as the plurality of data lines, the plurality of gate lines and the plurality of switching elements.

[0020] According to an embodiment of the present invention, the driving circuit has at least one first terminal electrically connected to the at least one first data line or the at least one first gate line and a second terminal electrically connected to the first signal path so that the at least one first data line or the at least one gate line is electrically connected to the first signal path.

[0021] According to another embodiment of the present invention, the tape carrier package has at least one lead wire electrically connected between the first signal path and the at least one first data line or the at least one gate line. Preferably, the liquid crystal display further includes a voltage level shifter increasing voltage level from the controller, wherein the at least one first data line or the at least one first gate line is electrically connected to the controller via the lead wire of the tape carrier package and the voltage level shifter.

[0022] According to an embodiment of the present invention, the liquid crystal display further includes a driving voltage generator provided on the PCB and generating a gate-on voltage, wherein the tape carrier package has at least one lead wire electrically connected between the at least one first gate line and the driving voltage generator.

[0023] According to an embodiment of the present invention, an edge column and an edge row of the matrix include the at least one first electrode.

BRIEF DESCRIPTION OF THE DRAWINGS

[0024] The above and other objects and advantages of the present invention will become more apparent by describing preferred embodiments thereof in detail with reference to the accompanying drawings, in which:

[0025] FIGS. 1 and 2 are schematic plan views of LCDs according to embodiments of the present invention, respectively;

[0026] FIG. 3A is an enlarged layout view of a pixel area shown in FIGS. 1 and 2;

[0027] FIG. 3B is a cross-sectional view taken along the line IIIB-IIIB' in FIG. 3A;

[0028] FIG. 4 is a cross-sectional view of an LCD taken along the line IV-IV' in FIGS. 1 and 2;

[0029] FIGS. 5 to 7 are schematic plan views of LCDs according to embodiments of the present invention, respectively;

[0030] FIG. 8 is a cross-sectional view of an LCD taken along the line VIII-VIII' in FIGS. 5 to 7; and

[0031] FIGS. 9 to 11 are schematic plan view of LCDs according to embodiments of the present invention, respectively.

DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS

[0032] The present invention will be described hereinafter with reference to the accompanying drawings, in which preferred embodiments of the invention are shown. This invention may, however, be embodied in many different forms and should not be construed as limited to the embodiments set forth herein. In the drawings, the thickness of

layers and regions are exaggerated for clarity. Like numerals refer to like elements throughout. It will be understood that when an element such as a layer, film, region, substrate or panel is referred to as being "on" another element, it can be directly on the other element or intervening elements may also be present. In contrast, when an element is referred to as being "directly on" another element, there are no intervening elements present. Then, liquid crystal displays according to embodiments of the present invention will be described with reference to the drawings.

[0033] With reference to FIGS. 1 to 4, the structures of LCDs according to embodiments of the present invention will be described.

[0034] FIGS. 1 and 2 are schematic plan views of LCDs according to embodiments of the present invention, respectively. FIG. 3A is an enlarged layout view of a pixel area shown in FIGS. 1 and 2, FIG. 3B is a cross-sectional view taken along the line IIIB-IIIB' in FIG. 3A, and FIG. 4 is a cross-sectional view of LCDs taken along the line IV-IV' in FIGS. 1 and 2.

[0035] As shown in FIGS. 1 and 2, each of LCDs according to the embodiments of the present invention includes a liquid crystal panel assembly 100, a gate printed circuit board ("PCB") 200, a data PCB 300, a plurality of gate tape carrier packages ("TCP's") 400, a plurality of data TCPs 500, and two flexible printed circuit ("FPC") films 600. The gate TCPs 400 are attached to the panel assembly 100 and the gate PCB 200, and the data TCPs 500 are attached to the panel assembly 100 and the data PCB 300. The FPC films 600 connect the panel assembly 100 to the gate PCB 200 and connect the gate PCB 200 to the data PCB 300. The gate PCB 200 and the data PCB 300 are disposed external to the left and the right edges of the panel assembly 100, respectively.

[0036] As shown in FIGS. 1 to 4, the panel assembly 100 includes a thin film transistor (TFT) array panel 1 and a color filter panel 2, opposite each other. The panel assembly 100 further includes a liquid crystal layer 3 of liquid crystal material disposed in a gap between the two panels 1 and 2, and a sealant 4 supporting the two panels 1 and 2 and sealing the liquid crystal material.

[0037] With reference to FIGS. 1 to 4, the TFT array panel 1 will be described in detail.

[0038] A gate wire transmitting scanning signals or gate signals is formed on an insulating substrate 10 preferably made of transparent glass. The gate wire includes a plurality of gate lines 22 extending in a row direction, a plurality of gate electrodes 24 connected thereto, and a plurality of gate pads 26 connected to one ends of the gate lines 22.

[0039] The gate wire 22, 24 and 26 is covered with a gate insulating film 30, and a semiconductor layer 40 preferably made of amorphous silicon or polysilicon is formed on the gate insulating film 30 opposite the gate electrode 24. An ohmic contact layer having two separated portions 51 and 52 is formed on the semiconductor layer 40. The ohmic contact layer 51 and 52 is preferably made of amorphous silicon doped with high concentration N-type impurity such as phosphorous.

[0040] A data wire transmitting image signals or data signals is formed on the gate insulating film 30 and the

ohmic contact layer **51** and **52**. The data wire includes a plurality of data lines **62** extending in a column direction, a plurality of source electrodes **64** connected thereto, a plurality of drain electrodes **65** separated from the data lines **62** and the source electrodes **64**, and a plurality of data pads **66** connected to one ends of the data lines **62**.

[0041] One gate electrode **24**, one source electrode **64** and one drain electrode **65** serve as three terminals of a TFT, and an exposed portion of the semiconductor layer **40** interposed between the source electrode **64** and the drain electrode **65** acts as a channel layer of the TFT.

[0042] Adjacent two gate lines **22** and adjacent two data lines **62** define a pixel area **7** as shown in **FIGS. 1 and 3A**.

[0043] The data wire **62**, **64**, **65** and **66**, and exposed portions of the semiconductor layer **40** and the gate insulating film **30** are covered with a passivation layer **70**, which has contact holes **71** exposing the drain electrodes **65**.

[0044] A plurality of pixel electrodes **80** and **81**, preferably made of transparent conducting material or opaque conducting material with high reflectivity, are disposed on the passivation layer **70**. The pixel electrodes **80** and **81** are connected to the drain electrodes **65** through the contact holes **71** of the passivation layer **70** so that the TFTs provide the image signals from the data lines **62** to the pixel electrodes **80** and **81** in response to the scanning signals from the gate lines **22**. All the pixel electrodes **81** in the rightmost column as shown in **FIG. 1**, or some pixel electrodes **81** near the lower right corner in the rightmost column as shown in **FIG. 2**, are elongated in the row direction compared with other pixel electrodes **80**.

[0045] An aligning film **90** forms an uppermost layer of the TFT array panel **1** as shown in **FIG. 4**, and the aligning film **90** is rubbed in a direction indicated by arrows shown in **FIGS. 1 and 2**, i.e., in the direction from the upper left to the lower right.

[0046] The TFT array panel **1** is divided into a display area **5** seen as a screen to a user of an LCD and a peripheral area **6** surrounding the display area. The pixel electrodes **81** in the rightmost column extend from the display area **5** to the peripheral area **6**, while the other pixel electrodes **80** are remained within the display area **5**. Most portions of the TFTs, the gate lines **22** and the data lines **66** are disposed in the display area **5**, while the gate pads **26** and the data pads **66** are located in the peripheral area **6**.

[0047] Next, the color filter panel **2** will be described with reference to **FIGS. 1, 2 and 4**.

[0048] A black matrix **120** preferably made of an organic material is formed on an insulating substrate **110** preferably made of transparent glass. The black matrix **120** surrounds and defines the display area **5**. The black matrix **120** overlaps the extended right portions of the pixel electrodes **81** in the rightmost column. Although it is not shown, the black matrix **120** screens the borders between the pixel electrodes **80** and **81** to define pixel areas. Red, green and blue color filters (not shown) are formed in respective pixel areas of the display area **5**. A common electrode **130** preferably made of transparent conducting material is formed on the color filters and the black matrix **120** and covers the entire area of the substrate **110**. An aligning film **190** forms an uppermost

layer of the color filter panel **2**, and the rubbing direction thereof is the same as that of the aligning film **90** of the TFT array panel **1**.

[0049] As can be seen in **FIGS. 1 and 2**, since the TFT array panel **1** is larger than the color filter panel **2**, the gate pads **26** and the data pads **66** protrude from the color filter panel **2**. The sealant **4** is located external to the display area **5** and interposed between the two panels **1** and **2**. The sealant **4** partly overlaps the black matrix **120**.

[0050] The gate PCB **200** and the data PCB **300** are electrically connected via the FPC film **600** therebetween for signal transmission. Signal paths **210** and **310** preferably made of conducting wires for transmitting signals are provided on the PCBs **200** and **300** and the FPC film **600** therebetween. An LCD controller **700** is provided on the data PCB **300** but it may be provided on the gate PCB **200**. A driving voltage generator (**900** in **FIG. 10**) is also provided on the gate PCB **200**. The driving voltage generator **900** generates a gate-on voltage, a gate-off voltage and a common voltage as a reference voltage. A gray voltage generator (not shown) generating gray voltages is provided on the data PCB **300**. At least one of the gate PCB **200** and the data PCB **300** may be omitted, and then the associated circuits and signal paths may be formed in the TFT array panel **1**.

[0051] A plurality of gate driving integrated circuits (ICs) **410** and the data driving ICs **510**, preferably made in chips, are mounted on the gate TCPs **400** and the data TCPs **500**, respectively. A plurality of lead wires (not shown) connected between the gate driving ICs **410** and the signal path **210** and between the gate driving ICs and the gate pads **26** are formed on the gate TCPs **410**. Another plurality of lead wires (not shown) connected between the data driving ICs **510** and the data pads **66** and between the gate driving ICs **410** and the gate pads **26** are formed on the data TCPs **500**.

[0052] The gate TCPs **410** and the data TCPs **510** are respectively attached to the gate PCB **200** and the data PCB **300** to be electrically connected thereto, and are attached to the panel assembly **100** to be electrically connected to the gate pads **26** and the data pads **66**, respectively. Alternatively, the gate driving ICs **410** and/or the data driving ICs **510** are mounted on the TFT array panel **1**, which is called a COG (chip on glass) type. Alternatively, the gate driving ICs **410** and/or the data driving ICs **510** are substituted with driving circuits formed in the TFT array panel **1**, which are made of the same layers as the gate lines **22**, the data lines **62** and the TFTs. These alternatives may be applicable to subsequent embodiments. The LCD controller **700** provides a plurality of red, green and blue gray signals for the data driving ICs **510** and a plurality of control signals for the driving ICs **410** and **510** via the signal paths **210** and **310** on the PCBs **200** and **300** and the FPC film **600** to control the driving ICs **410** and **510**. The gate driving ICs **410** generate the scanning signals based on the gate-on voltage and the gate-off voltage from the driving voltage generator **900** to apply to the gate lines **22** via the gate pads **26** in synchronization with the control signals from the LCD controller **700**. The data driving ICs **510** select the gray voltages from the gray voltage generator based on the gray signals from the LCD controller **700** to apply as the image signals to the appropriate data lines **62** via the data pads **66** in synchronization with the control signals from the LCD controller **700**.

[0053] In this LCD, the impurity ions on the surface of the aligning films 90 and 190 travel along the rubbing direction, and gather at the right portions of the pixel electrodes 81 in the rightmost column, in particular, near the lower right corner. As described above, since the pixel electrodes 81 in the rightmost column overlap the black matrix 120, the area with defect image caused by such ions is screened by the black matrix 120.

[0054] The size of the pixel electrodes 81 is varied depending on the size of the image defected area.

[0055] Since the number of the pixel electrodes 81 having larger size shown in **FIG. 2** is smaller than that shown in **FIG. 1**, the former has an advantage that the load of the entire driving circuits is reduced. However, since most of the load of the entire driving circuits is caused by signal wires and the load caused by the pixel electrodes 81 is very small, for example, about a hundredth of the wire load, it is also a good choice to adopt the structure of the latter embodiment.

[0056] The following embodiments of the present invention introduce a plurality of additional pixel electrodes external to a display area, which induce the image defect area to be generated out of the display area. These embodiments will be described in detail with reference to FIGS. 5 to 11.

[0057] FIGS. 5 to 7 are plan views of LCDs according to embodiments of the present invention, and **FIG. 8** is a cross-sectional view of LCDs taken along the line VIII-VIII' in FIGS. 5 to 7. **FIGS. 9 and 11** are plan views of LCDs according to other embodiments of the present invention.

[0058] As shown in FIGS. 5 to 11, LCDs according to these embodiments have the same structures as those shown in FIGS. 1-4 except for pixel electrodes, additional gate lines, additional data lines and some signal paths and connections.

[0059] As shown in FIGS. 5 to 11, a plurality of additional pixel electrodes 82 as well as a plurality of normal pixel electrodes 80, preferably, both having the same shapes are formed on a TFT array panel 1, preferably by using the same method. The normal pixel electrodes 80 are located within a display area 5, while the additional pixel electrodes 82 are located in a peripheral area 6 out of the display area 5 to overlap a black matrix 120 on a color filter panel 2. The additional pixel electrodes 82 are disposed near the locations where the rubbing of an aligning film 90 finishes. In these embodiments, since the aligning film 90 is rubbed in a direction from the upper left side to the lower right side indicated by arrows as shown in FIGS. 5 to 7 and 9 to 11, the additional pixel electrodes 82 are disposed at the right edge as shown in FIGS. 5-7, at the lower edge as shown in **FIGS. 9 and 10**, or both at the right edge and the lower edge as shown in **FIG. 11**.

[0060] In order to supply signals to the additional pixel electrodes 82, a plurality of additional signal lines such as a plurality of additional data lines 63 and a plurality of additional gate lines 23 are provided. Two additional data lines 63 and their pads are provided near the additional pixel electrodes 82 disposed at the right side as shown in FIGS. 5-8, or two additional gate lines 23 and their pads are provided near the additional pixel electrodes 82 located at the lower side as shown in **FIGS. 9 and 10**. In particular, two additional gate lines 23 and two additional data lines 63

as well as their pads are provided when the additional pixel electrodes 82 are located at both the right side and the lower side, as shown in **FIG. 11**.

[0061] The additional data lines 63 are parallel to normal data lines 62 electrically connected to the normal pixel electrodes 80, while the additional gate lines 23 are parallel to normal gate lines 22 electrically connected to the normal pixel electrodes 82. Preferably, the additional gate lines 23, the additional data lines 63 and their pads have the same shapes and are formed by the same method as the normal gate lines 22, the normal data lines 62 and their pads 26 and 66.

[0062] A plurality of additional TFTs (not shown) are also provided in the TFT array panel 1 for electrically connecting the additional pixel electrodes 82 to the additional gate lines 23 and/or the additional data lines 63. Preferably, the additional TFTs have the same shapes and are formed by the same method as normal TFTs connected to the normal pixel electrodes 80.

[0063] Each additional TFT has a source electrode connected to one of the additional data lines 63 and the normal data lines 62, a drain electrode connected to one of the additional pixel electrodes 82 and a gate electrode connected to one of the normal gate lines 22 and the additional gate lines 23. The additional TFTs supply signals from the additional data lines 63 or the normal data lines 62 to the additional pixel electrodes 82 in response to signals from the normal gate lines 22 or the additional gate lines 23.

[0064] As shown in FIGS. 5-9 and 11, an additional signal path or signal paths such as 320 and 220 preferably made of conducting wires for electrically connecting the additional signal lines 63 and/or 23 to an LCD controller 700 are provided on a data PCB 300 and/or a gate PCB 200 and/or an FPC film 600. FIGS. 5-11 illustrates the LCD controller 700 provided at the data PCB 200.

[0065] As shown in FIGS. 5-7, an additional signal path 320 is provided on the data PCB 300 to electrically connect the additional data lines 63 and the LCD controller 700. On the contrary, an additional signal path 220 is provided on a gate PCB 200, the data PCB 300 and a FPC film 600 to electrically connect the additional gate lines 63 and the LCD controller 700, as shown in **FIG. 9**. In the meantime, **FIG. 11** shows two additional signal paths 320 and 220 shown in FIGS. 5-7 and 9, respectively.

[0066] Referring to **FIGS. 5 and 11**, a plurality of additional input/output terminals are provided at one of the data driving ICs 510, and a plurality of additional lead wires 520 and 521 connected to the additional input/output terminals of the data driving IC 510 are provided on one of the data TCPs 500, which carries the data driving IC 510 with the additional input/output terminals. Two additional input/output terminals are electrically connected to the additional signal path 320, which in turn is connected to the LCD controller 700, via the additional lead wires 520, and other two additional input/output terminals are electrically connected to the additional data pads via the additional lead wires 521.

[0067] Referring to **FIGS. 6 and 7**, a plurality of additional lead wires 530 are provided on one of the data TCPs 500. The additional lead wires 530 shown in **FIG. 6** are directly connected between the additional data pads and the

additional signal path **320**, which in turn is connected to the LCD controller. Referring to **FIG. 7**, a voltage level shifter **800** and two connections **330** connected to output terminals of the voltage level shifter **800** are further provided at the data PCB **300**. The additional signal path **320** is connected between the LCD controller **700** and the voltage level shifter **800**, and the connections **330** are connected between the voltage level shifter **800** and the additional lead wires **530**, which in turn are connected to the additional data pads. The voltage level shifter **800** increases the voltage level of signals from the LCD controller **700**, and may be substituted with other external circuits.

[0068] Referring to **FIGS. 9 and 11**, a plurality of additional input/output terminals **420** are provided at one of the gate driving ICs **410**, and a plurality of additional lead wires **420** and **421** connected to the additional input/output terminals of the gate driving IC **410** are provided on one of the gate TCPs **400**, which carries the gate driving IC **410** with the additional input/output terminals. Two additional input/output terminals are electrically connected to the additional signal path **220** via the additional lead wires **420**, and other two additional input/output terminals electrically connected to the additional gate pads via the additional lead wires **421**. Since the LCD controller **700** is provided on the data PCB **300**, the additional signal path **220** includes conducting wires formed on the data PCB **300**, on the FPC film **600** disposed between the gate PCB **200** and the data PCB **300**, and on the gate PCB **200**.

[0069] According to another embodiment of the present invention, lead wires directly connecting the additional signal path **220** and the additional gate pad **430** are provided on one of the gate TCPs **400**.

[0070] According to still another embodiment of the present invention, a voltage level shifter having an input terminal connected to the additional signal path **220** and a plurality of connections connected between output terminals of the voltage level shifter and the lead wires of the gate TCP **400** are provided on the gate PCB **200**. In this manner, a voltage level of a signal provided from the LCD controller **700** for the additional gate lines **23** can be increased to turn on the additional TFTs.

[0071] In the meantime, an LCD shown in **FIG. 10** has no signal path between an LCD controller **700** and the additional gate lines **23**. Instead, a driving voltage generator **900** and two connections **230** connected to the driving voltage generator **900** is provided at a gate PCB **200**. Two additional lead wires **430** connected between the connections **230** and the additional gate lines **23** are provided on one of the gate TCPs **400**. The driving voltage generator **900** provides a gate-on voltage and a gate-off voltage for the additional gate lines **23**.

[0072] The LCDs shown in **FIGS. 5-11** cause the impurity ions on the surface of the aligning layers **90** and **100** to travel along the alignment direction (along the direction indicated by the arrows shown in **FIGS. 5 to 7 and 9 to 11**) and to stay at the additional pixel electrodes **82** external to the display area **5**. Therefore, the image defect area formed by such impurity ions is screened by the black matrix **120**.

[0073] On the other hand, a constant DC signal or an alternating signal periodically inverting its polarity may be applied to the common electrode **130**. Periodically inverting

the polarity of the signal applied to the common electrode **130** as well as those of image signals enables a liquid crystal layer associated with the normal pixel electrodes and the additional pixel electrodes to be driven with a low voltage less than **5V**. Such an alternating signal may be provided by using the LCD controller **700** or the voltage level shifter **800**.

[0074] Although preferred embodiments of the present invention have been described in detail hereinabove, it shall be clearly understood that many embodiments having variations and/or modifications of the basic inventive concepts herein taught are possible, which may appear to those of ordinary skill in the pertinent art based on the teachings herein. Such embodiments will fall within the spirit and scope of the present invention, as defined in the appended claims.

What is claimed is:

1. A liquid crystal display comprising:

a first insulating substrate including a display area as a screen and a peripheral area external to the display area;

a plurality of signal lines provided on the first substrate; and

a plurality of pixel electrodes electrically connected to the signal lines,

wherein the plurality of pixel electrodes include at least one first electrode having a first portion located in the peripheral area and at least one second electrode located in the display area.

2. The liquid crystal display of claim 1 further comprising a second insulating substrate disposed opposite the first substrate and a black matrix provided on the second substrate, wherein the black matrix screens the first portion of the at least one first electrode.

3. The liquid crystal display of claim 2 further comprising a common electrode provided on the second substrate and disposed opposite the plurality of pixel electrodes, wherein the plurality of pixel electrodes and the common electrode are applied with signals having periodically inverting polarity, respectively.

4. The liquid crystal display of claim 1 further comprising an aligning film on the first substrate, wherein the aligning film is rubbed, and a rubbing direction of the aligning film is directed to the first portion of the at least one first electrode.

5. The liquid crystal display of claim 1, wherein the at least one first electrode further includes a second portion located in the display area.

6. The liquid crystal display of claim 5, wherein an area of the at least one first electrode is larger than an area of the at least one second electrode.

7. The liquid crystal display of claim 6, wherein the plurality of pixel electrodes are arranged in a matrix, and the plurality of the signal lines include a plurality of gate lines substantially parallel to each other and extending in a row direction and a plurality of data lines substantially parallel to each other and extending in a column direction, and

the liquid crystal display further comprises a plurality of switching elements transmitting first signals from the

plurality of data lines to the plurality of pixel electrodes in response to second signals from the plurality of gate lines.

8. The liquid crystal display of claim 7, wherein the at least one first electrode is located at an edge column of the matrix.

9. The liquid crystal display of claim 1, wherein the first portion of the at least one first electrode forms an entire portion of the at least one first electrode.

10. The liquid crystal display of claim 9, wherein the plurality of pixel electrodes are arranged in a matrix, and the plurality of the signal lines include a plurality of gate lines substantially parallel to each other and extending in a row direction and a plurality of data lines substantially parallel to each other and extending in a column direction, and

the liquid crystal display further comprises a plurality of switching elements transmitting first signals from the plurality of data lines to the pixel electrodes in response to second signals from the plurality of gate lines.

11. The liquid crystal display of claim 10, wherein the at least one first electrode forms an edge column of the matrix.

12. The liquid crystal display of claim 11 further comprising a controller for controlling the liquid crystal display, wherein the plurality of data lines include at least one first data line electrically connected to the at least one first electrode and at least one second data line electrically connected to the at least one second electrode, and the at least one first data line and the at least one second data line are electrically connected to the controller via different paths.

13. The liquid crystal display of claim 12 further comprising a printed circuit board ("PCB") having the controller therein or electrically connected to the controller, wherein the PCB comprises a first signal path electrically connecting the at least one first data line to the controller and a second signal path electrically connecting the at least one second data line to the controller.

14. The liquid crystal display of claim 13 further comprising a tape carrier package connecting the PCB to the first substrate, and a driving circuit providing the first signals to the at least one second data line in response to a control signal from the controller,

wherein the driving circuit is mounted as an integrated circuit chip on the tape carrier package or on the first substrate, or is directly formed on the first substrate with the same layers as the plurality of data lines, the plurality of gate lines and the plurality of switching elements.

15. The liquid crystal display of claim 14, wherein the driving circuit has at least one first terminal electrically connected to the at least one first data line and a second terminal electrically connected to the first signal path so that the at least one first data line is electrically connected to the first signal path.

16. The liquid crystal display of claim 14, wherein the tape carrier package has at least one lead wire electrically connected between the at least one first data line and the first signal path.

17. The liquid crystal display of claim 16 further comprising a voltage level shifter for increasing a voltage level of a signal from the controller,

wherein the at least one first data line is electrically connected to the controller via the at least one lead wire of the tape carrier package and the voltage level shifter.

18. The liquid crystal display of claim 10, wherein the at least one first electrode forms an edge row of the matrix.

19. The liquid crystal display of claim 18 further comprising a controller for controlling the liquid crystal display, wherein the plurality of gate lines include at least one first gate line electrically connected to the at least one first electrode and at least one second gate line electrically connected to the at least one second electrode, and the at least one first gate line and the at least one second gate line are electrically connected to the controller via different paths.

20. The liquid crystal display of claim 19 further comprising a printed circuit board ("PCB") in signal communication with the controller, wherein the PCB comprises a first signal path electrically connecting the at least one first gate line to the controller and a second signal path electrically connecting the at least one second gate line to the controller.

21. The liquid crystal display of claim 20 further comprising a tape carrier package connecting the PCB to the first substrate, and a driving circuit providing the first signals to the at least one second gate line in response to a control signal from the controller,

wherein the driving circuit is mounted as an integrated circuit chip on the tape carrier package or on the first substrate, or is directly formed on the first substrate with the same layers as the plurality of data lines, the plurality of gate lines and the plurality of switching elements.

22. The liquid crystal display of claim 21, wherein the driving circuit has at least one first terminal electrically connected to the at least one first gate line and a second terminal electrically connected to the first signal path so that the at least one first gate line is electrically connected to the first signal path.

23. The liquid crystal display of claim 21, wherein the tape carrier package has at least one lead wire electrically connected between the at least one first gate line and the first signal path.

24. The liquid crystal display of claim 23 further comprising a voltage level shifter increasing voltage level of a signal from the controller,

wherein the at least one first gate line is electrically connected to the controller via the at least one lead wire of the tape carrier package and the voltage level shifter.

25. The liquid crystal display of claim 18 further comprising:

a controller for controlling the liquid crystal display;
a printed circuit board ("PCB") having the controller therein or electrically connected to the controller;
a tape carrier package connecting the PCB to the first substrate; and
a driving voltage generator, provided on the PCB, generating a gate-on voltage; and
a driving circuit transmitting the second signals in response to a control signal from the controller,
wherein the plurality of gate lines include at least one first gate line electrically connected between the at least one

first electrode and the driving voltage generator, and at least one second gate line electrically connected between the at least one second electrode and the controller, and

the tape carrier package has at least one lead wire electrically connected between the at least one first gate line and the driving voltage generator.

26. The liquid crystal display of claim 10, wherein an edge column and an edge row of the matrix include the at least one first electrode.

27. The liquid crystal display of claim 9, wherein the plurality of the signal lines comprise at least one first signal line electrically connected to the at least one first electrode and at least one second signal line electrically connected to the at least one second electrode, and

the liquid crystal display further comprising:

a controller controlling the liquid crystal display;

a printed circuit board ("PCB") including a plurality of signal paths electrically connecting the plurality of signal lines to the controller;

a tape carrier package connecting the PCB to the first substrate; and

a driving circuit transmitting a signal to the at least one second signal line under control of the controller, and mounted as an integrated circuit chip on the tape carrier package or on the first substrate, or is directly formed on the first substrate with the same layers as the plurality of data lines, the plurality of gate lines and the plurality of switching elements,

wherein the at least one first signal line is electrically connected to at least one of the plurality of signal paths via the driving circuit or a lead wire provided on the tape carrier package.

28. A method for forming a liquid crystal display, the method comprising:

providing a first insulating substrate having a display area and a peripheral area;

locating at least one first pixel electrode with a first portion thereof in the peripheral area; and

locating at least one second pixel electrode in the display area.

29. A method as defined in claim 28, further comprising providing a second insulating substrate disposed opposite to the first insulating substrate wherein the second insulating substrate comprises a black matrix that screens the first portion of the at least one first pixel electrode.

30. A method as defined in claim 28 wherein the first insulating substrate comprises an aligning film, the method further comprising rubbing the aligning film in a rubbing direction directed to the first portion of the at least one first electrode.

31. A method as defined in claim 28, further comprising:

arranging a plurality of pixel electrodes comprising the at least one first pixel electrode and the at least one second pixel electrode into a matrix;

aligning a plurality of gate signal lines substantially parallel to each other and extending in a row direction of the matrix; and

aligning a plurality of data signal lines substantially parallel to each other and extending in a column direction of the matrix.

32. A liquid crystal display comprising:

first insulating means for providing a first insulating substrate having a display area and a peripheral area;

first locating means for locating at least one first pixel electrode with a first portion thereof in the peripheral area; and

second locating means for locating at least one second pixel electrode in the display area.

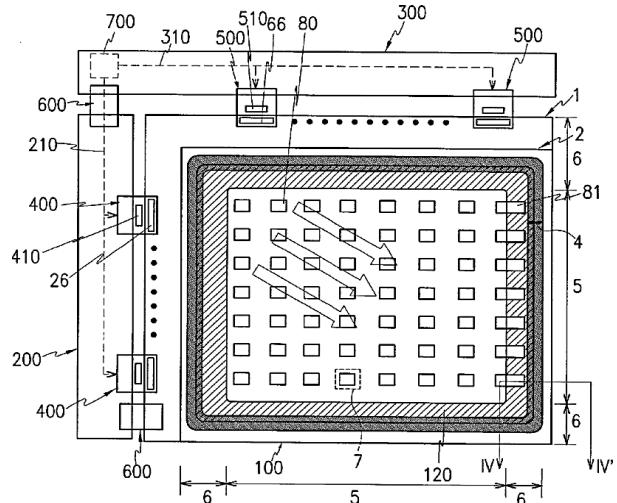
33. A liquid crystal display as defined in claim 32, further comprising second insulating means for providing a second insulating substrate disposed opposite to the first insulating substrate wherein the second insulating substrate comprises a black matrix that screens the first portion of the at least one first pixel electrode.

34. A liquid crystal display as defined in claim 32 wherein the first insulating means comprises aligning means for rubbing in a direction towards the first portion of the at least one first electrode.

35. A liquid crystal display as defined in claim 32, further comprising:

matrix means for arranging a plurality of pixel electrodes comprising the at least one first pixel electrode and the at least one second pixel electrode into a matrix;

gate means for aligning a plurality of gate signal lines substantially parallel to each other and extending in a row direction of the matrix; and


data means for aligning a plurality of data signal lines substantially parallel to each other and extending in a column direction of the matrix.

* * * * *

专利名称(译)	液晶显示器		
公开(公告)号	US20030016328A1	公开(公告)日	2003-01-23
申请号	US10/178016	申请日	2002-06-20
[标]申请(专利权)人(译)	三星电子株式会社		
申请(专利权)人(译)	三星电子有限公司		
当前申请(专利权)人(译)	三星DISPLAY CO. , LTD.		
[标]发明人	CHUNG WOO SUK KIM CHI WOO AN BO YOUNG LEE HYONG GON CHO SUNG HEE		
发明人	CHUNG, WOO-SUK KIM, CHI-WOO AN, BO-YOUNG LEE, HYONG-GON CHO, SUNG-HEE		
IPC分类号	G02F1/1337 G02F1/1333 G02F1/1335 G02F1/1343 G02F1/1345 G02F1/1362		
CPC分类号	G02F1/133512 G02F1/134336 G02F1/1345 G02F2001/133337 G02F2001/133388 G02F2001/133397 G09G3/3648 G09G2330/08 G09G2330/10		
优先权	1020010043031 2001-07-18 KR 1020010050420 2001-08-21 KR		
其他公开文献	US6927830		
外部链接	Espacenet USPTO		

摘要(译)

在液晶显示器中，多条栅极线和数据线设置在包括作为屏幕的显示区域的第一基板上，以及在显示区域外部的外围区域中，其中多个像素电极电连接到栅极线数据线和一些像素电极延伸到外围区域；任选地，在与第一基板相对设置的第二基板上形成黑矩阵，用于屏蔽位于周边区域的像素电极的延伸部分，在第一基板和第二基板上形成对准膜的摩擦方向朝向位于周边区域的像素电极的延伸部分使得对准膜表面上的杂质离子沿着摩擦方向行进而停止在像素电极的延伸部分处，并且筛选由杂质离子引起的图像缺陷区域用黑色矩阵。

