

US006614492B1

(12) **United States Patent**
Song

(10) **Patent No.:** US 6,614,492 B1
(45) **Date of Patent:** Sep. 2, 2003

(54) **VERTICAL ALIGNMENT MODE LIQUID CRYSTAL DISPLAY**

(75) Inventor: **Jang-Kun Song**, Seoul (KR)

(73) Assignee: **Samsung Electronics Co., Ltd.**, Suwon (KR)

(*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 48 days.

(21) Appl. No.: **09/697,153**

(22) Filed: **Oct. 27, 2000**

(30) **Foreign Application Priority Data**

Oct. 29, 1999 (KR) 99-47597

(51) **Int. Cl.⁷** G02F 1/1343; G02F 1/1337; H01L 29/04

(52) **U.S. Cl.** 349/38; 349/39; 349/130; 349/139; 257/59

(58) **Field of Search** 349/38, 39, 130, 349/139, 42; 257/59, 72

(56) **References Cited**

U.S. PATENT DOCUMENTS

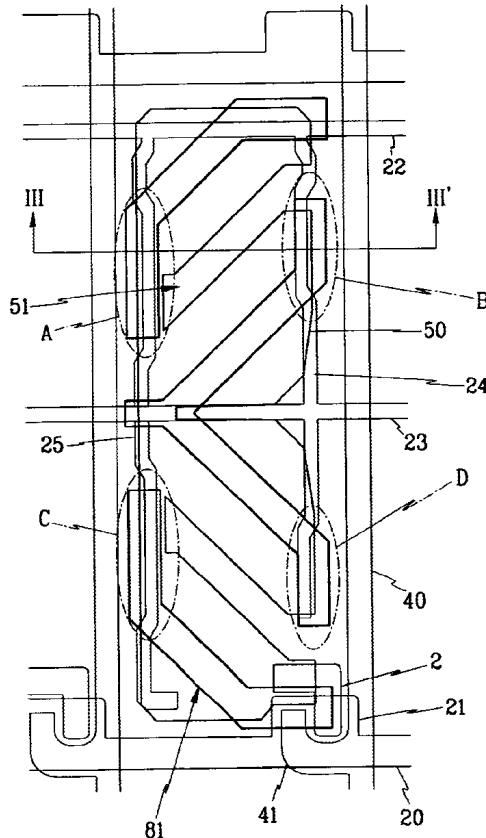
5,666,179 A * 9/1997 Koma 349/130

6,252,643 B1 * 6/2001 Song 349/139
6,285,431 B2 * 9/2001 Lyu et al. 349/129

FOREIGN PATENT DOCUMENTS

JP 10-288794 A * 10/1998

* cited by examiner


Primary Examiner—Tarifur R. Chowdhury

(74) Attorney, Agent, or Firm—McGuire Woods LLP

(57) **ABSTRACT**

A liquid crystal display includes a bottom insulating substrate. Gate lines and common electrode lines are formed on the substrate parallel to each other, and storage capacitor electrodes are branched from the common electrode lines. A gate insulating layer is formed on the gate lines, the common electrode lines, and the storage capacitor electrodes, data lines are formed on the gate insulating layer, and a protective layer is formed on the data lines. Pixel electrodes are formed on the protective layer with first opening patterns. A top insulating substrate faces the bottom substrate with a black matrix and a common electrode, and the common electrode is provided with second opening patterns. Each pixel electrode completely covers the storage capacitor electrodes at the regions where the second opening pattern is overlapped with the sides of the pixel electrode.

9 Claims, 2 Drawing Sheets

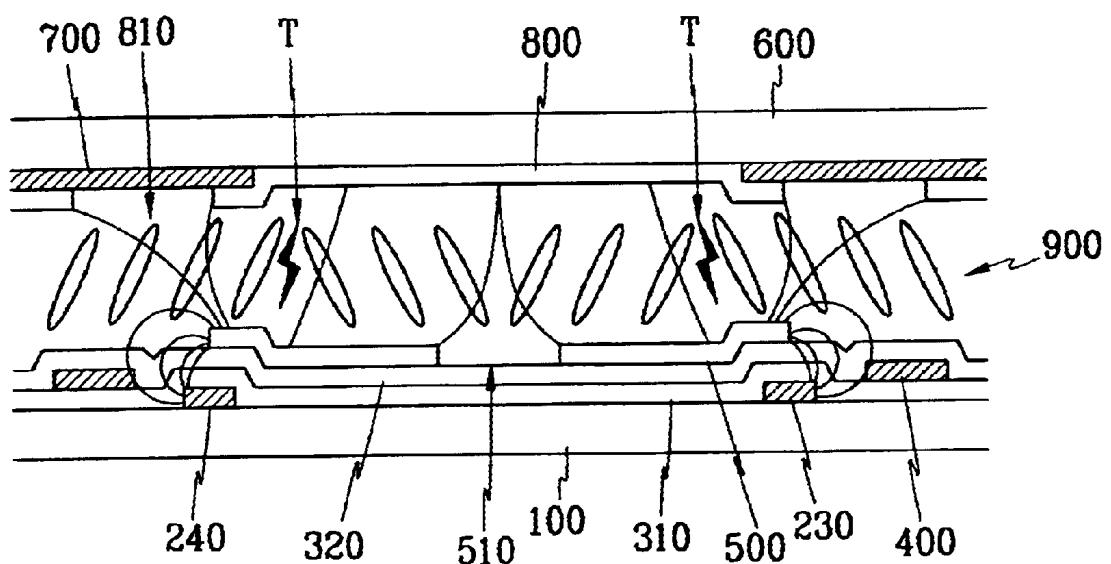
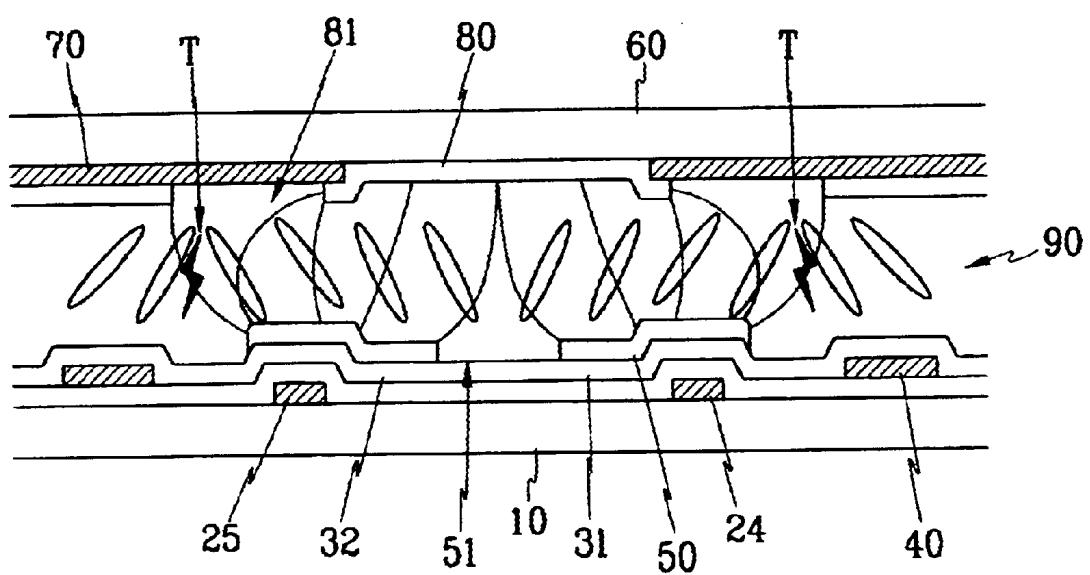
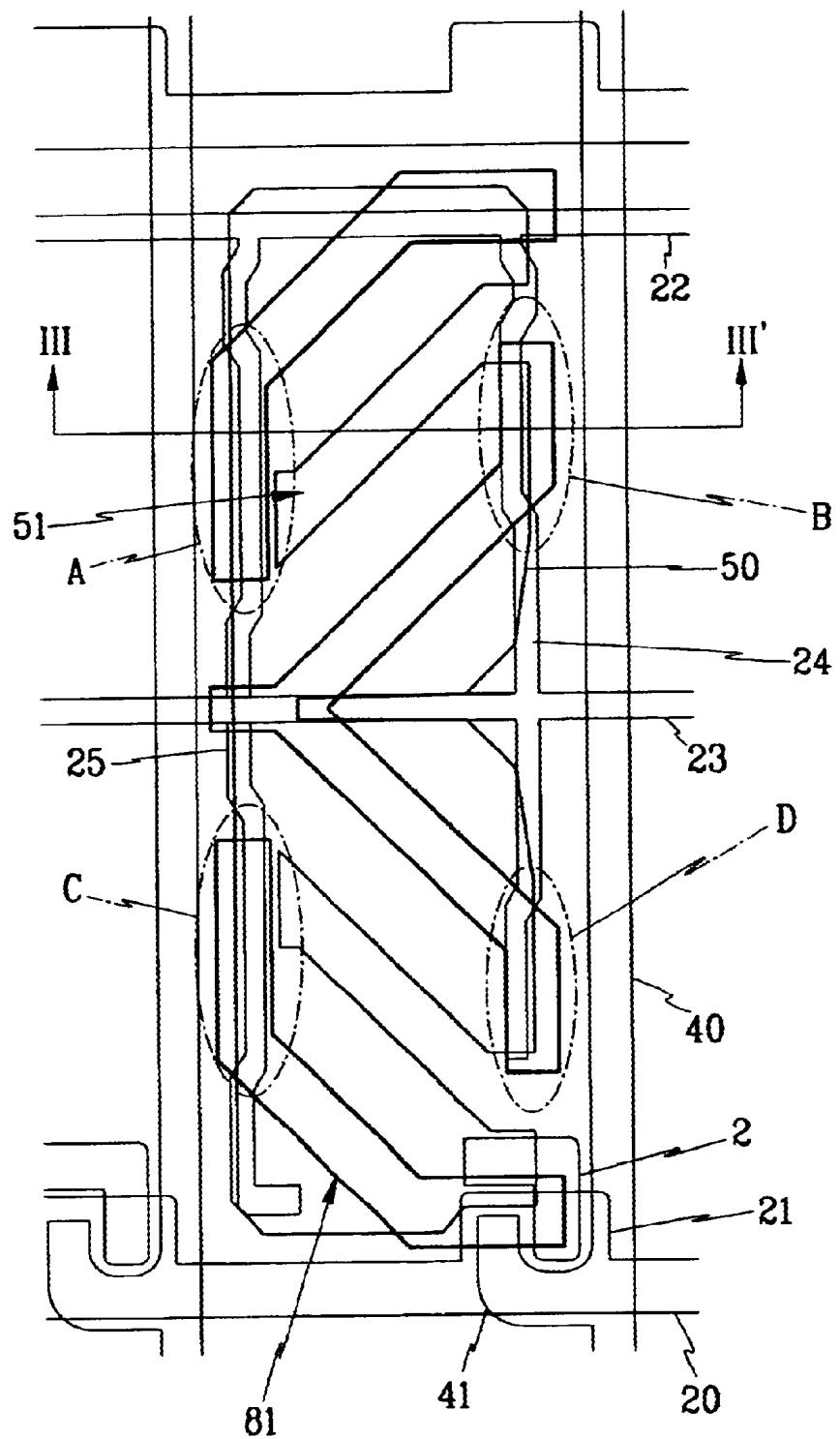



*FIG. 1 (Prior Art)**FIG. 3*

FIG. 2

VERTICAL ALIGNMENT MODE LIQUID CRYSTAL DISPLAY

BACKGROUND OF THE INVENTION

(a) Field of the Invention

The present invention relates to a vertical alignment mode liquid crystal display and, more particularly, to a vertical alignment mode liquid crystal display having an electrode with opening patterns such that it can accomplish a wide viewing angle.

(b) Description of the Related Art

Generally, a liquid crystal display has a liquid crystal layer sandwiched between two substrates. Electric field is applied to the liquid crystal layer to control light transmission, thereby producing display images.

Among them, the vertical alignment mode liquid crystal displays have been the choice of consumers because they bear a high contrast ratio and a wide viewing angle. The vertical alignment mode liquid crystal display has the directors of the liquid crystal molecules aligned normal to the substrates when the electric field is not applied.

In order to realize a wide viewing angle with such a mode, it has been proposed that opening patterns or protrusions may be formed at electrodes. The opening patterns or protrusions form fringe fields to thereby make the liquid crystal molecules lean in all different directions and accomplish a wide viewing angle.

FIG. 1 is a cross sectional view of a vertical alignment mode liquid crystal display with electrode opening patterns according to a prior art.

The liquid crystal display includes a bottom insulating substrate **100** and a top insulating substrate **600**.

Gate lines (not shown) are formed on the bottom insulating substrate **100** with gate electrodes in the horizontal direction. Common electrode lines (not shown) are formed on the bottom substrate **100** while proceeding parallel to the gate lines, and storage capacitor electrodes **230** and **240** are connected to the common electrode lines perpendicularly. A gate insulating layer **310** is formed on the entire surface of the bottom substrate **100** with the gate lines and the common electrode lines. Data lines **400** are formed on the gate insulating layer **310** in the vertical direction, and a protective layer **320** covers the data lines **400**. Pixel electrodes **500** are formed on the protective layer **320** with opening patterns **510**.

The outlines of the pixel electrodes **500** are partially overlapped with the storage capacitor electrodes **230** and **240** such that the storage capacitor electrodes **230** and **240** are partially exposed along the periphery of the pixel electrodes **240** when viewed from the top side.

In contrast, the top insulating substrate **600** is sequentially overlaid with a black matrix **700** and a transparent common electrode **800** having opening patterns **810**.

The liquid crystal display further includes several components that are not shown in the drawing for simplification and convenience in description. For instance, thin film transistor components such as source and drain electrodes, and a semiconductor layer are formed on the bottom substrate **100**. Color filters are formed on the top substrate **600**.

However, in the above-structured liquid crystal display, an unintended reverse turn in orienting directions of the liquid crystal molecules may occur at the pixel area, causing T textures in screen images that harm the picture quality.

SUMMARY OF THE INVENTION

It is an object of the present invention to provide a liquid crystal display, which bears improved picture quality.

This and other objects may be achieved by a liquid crystal display with a bottom insulating substrate. Common electrode lines are formed on the bottom substrate with branched electrodes. Pixel electrodes are insulated from the common electrode lines with first opening patterns. The pixel electrodes completely cover the branched electrodes of the common electrode lines at particular regions when viewed from the top side.

A top insulating substrate faces the bottom substrate with a common electrode. The common electrode is provided with second opening patterns, and the second opening patterns are overlapped with sides of the pixel electrodes at the particular regions where the pixel electrodes completely cover the branched electrodes of the common electrode lines.

The branched electrodes may be provided at left and right sides of each pixel electrode one by one, and the common electrode lines may be two separate lines.

Each first opening pattern has a horizontal opening portion formed at the boundary of the pixel electrode bisecting it into upper and lower regions, and inclined opening portions are formed at the upper and lower regions of the pixel electrode while proceeding perpendicular to each other. Each second opening pattern has inclined opening portions externally proceeding parallel to the upper and lower inclined opening portions of the pixel electrode, and linear opening portions are bent from the inclined opening portions while being overlapped with the sides of the pixel electrode. The linear opening portions of the second opening pattern are overlapped with the vertical sides of the pixel electrode at the particular regions where the pixel electrode completely covers the branched electrodes of the common electrode lines.

BRIEF DESCRIPTION OF THE DRAWINGS

A more complete appreciation of the invention, and many of the attendant advantages thereof, will be readily apparent as the same becomes better understood by reference to the following detailed description when considered in conjunction with the accompanying drawings in which like reference symbols indicate the same or similar components, wherein:

FIG. 1 is a cross sectional view of a vertical alignment mode liquid crystal display with electrode opening patterns according to a prior art;

FIG. 2 is a plan view of a vertical alignment mode liquid crystal display with electrode opening patterns according to a preferred embodiment of the present invention; and

FIG. 3 is a cross sectional view of the vertical alignment mode liquid crystal display taken along the III-III' line of FIG. 2.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

Preferred embodiments of this invention will be explained with reference to the accompanying drawings.

FIG. 2 schematically illustrates a vertical alignment mode liquid crystal display with electrode opening patterns according to a preferred embodiment of the present invention, and FIG. 3 is a cross sectional view of the vertical alignment mode liquid crystal display taken along the III-III' line of FIG. 2.

As shown in the drawings, the liquid crystal display includes a bottom insulating substrate **10** usually called the "thin film transistor (TFT) array substrate," and a top insulating substrate **60** usually called the "color filter substrate."

Gate lines **20** are formed on the bottom substrate **10** with gate electrodes **21** while proceeding in the horizontal direction. Common electrode lines **22** and **23** are formed on the bottom substrate **10** parallel to the gate lines **20**, they are connected to each other via storage capacitor lines **24** and **25** proceeding in the vertical direction and there may be one, three or more of them. The gate lines **20**, the gate electrodes **21**, the common electrode lines **22** and **23**, and the storage capacitor electrodes **24** and **25** may be formed with a metallic material such as aluminum or chrome while bearing either a single-layered structure or a double-layered structure sequentially formed with a chrome-based layer and an aluminum-based layer.

A silicon nitride-based gate insulating layer **31** is formed on the gate lines **20**, the common electrode lines **22** and **23**, and the storage capacitor electrodes **24** and **25**.

Data lines **40** are formed on the gate insulating layer **31** in the vertical direction. Source electrodes **41** are branched from the data lines **40**, and drain electrodes **42** are positioned close to the source electrodes **41** while being separated from them. The data lines **40**, the source electrodes **41**, and the drain electrodes **42** are formed with a metallic material such as chrome or aluminum, with either a single or multiple-layered structure.

A semiconductor layer (not shown) for the channel portion of the TFT, and an ohmic contact layer (not shown) for reducing contact resistance between the semiconductor layer and the source and drain electrodes **41** and **42** are formed under the source and drain electrodes **41** and **42**. The semiconductor layer is usually formed with amorphous silicon, and the ohmic contact layer is formed with amorphous silicon doped with n-type impurities in high concentration.

A protective layer **32** is formed on the data lines **40** with an inorganic insulating material such as silicon nitride or an organic insulating material such as resin. The protective layer **32** is provided with contact holes (not shown) opening the drain electrodes **42**.

Pixel electrodes **50** are formed on the protective layer **32** with opening patterns **51**. The pixel electrodes **50** are formed of a transparent conductive material such as indium tin oxide (ITO) or indium zinc oxide (IZO), or an opaque conductive material such as aluminum that exhibits a good light reflection property.

The opening pattern **51** of each pixel electrode **50** has a horizontal opening portion formed at the boundary of the pixel electrode **50** bisecting it into upper and lower regions, and inclined opening portions formed at the upper and lower regions of the pixel electrode **50** while proceeding perpendicular to each other, thereby uniformly distributing fringe fields in all directions.

The storage capacitor electrodes **24** and **25** are completely covered by the pixel electrode **50** at the A, B, C and D portions when viewed from the top side.

A black matrix **70** is formed at the top insulating substrate **60** to prevent leakage of light. A common electrode **80** is formed on the black matrix **70** with opening patterns **81**. The common electrode **80** is formed with a transparent material such as ITO or IZO. Color filters (not shown) are formed at the top substrate **60** while being surrounded by the black matrix **70**. Alternatively, the black matrix **70** and the color filters may be formed at the bottom substrate **10**.

The opening pattern **81** of the common electrode **80** at a pixel area has inclined opening portions that externally proceed parallel to the upper and lower inclined opening portions of the pixel electrode **50**, and linear opening portions bent from the inclined opening portions while being overlapped with the sides of the pixel electrode **50**. The linear opening portions are classified into horizontal and vertical linear opening portions. The sides of the pixel electrode **50** overlapped with the vertical linear opening portions completely cover the underlying storage capacitor electrodes **24** and **25**.

In the above-structured liquid crystal display, textures can be effectively prevented in the following way.

In the conventional liquid crystal display shown in FIG. 1, a strong electric field is formed between the pixel electrode **500** and the storage capacitor electrodes **230** and **240** while influencing the electric field formed at the periphery of the pixel area. Such an influence of the electric field is particularly prominent at the A, B, C and D portions of the pixel area where the common electrode **80** is removed and the opening pattern **81** is formed. For that reason, the fringe field formed at the periphery of the pixel area is inclined in a direction opposite to the direction of the fringe field formed at the center of the pixel area. Therefore, the orienting directions of the liquid crystal molecules are reverse-turned at the region T between the periphery and the center of the pixel area. Such a region T is displayed at the screen as a texture.

By contrast, in the inventive liquid crystal display shown in FIG. 3, the pixel electrode **50** completely covers the storage capacitor electrodes **24** and **25**. Therefore, most of the electric lines of force formed between the pixel electrode **50** and the storage capacitor electrodes **24** and **25** are connected to the bottom surface of the pixel electrode **50**. Consequently, the electric field between the pixel electrode **50** and the storage capacitor electrodes **24** and **25** does not influence the liquid crystal molecules. The fringe fields that are not influenced by the storage capacitor electrodes **24** and **25** are kept in a predetermined direction within the pixel area, and vary in direction out of the pixel area (while being covered by the black matrix). As the region T where the orienting direction of the liquid crystal molecules is reverse-turned falls out of the pixel area and is covered by the black matrix, hiding textures from the screen.

As described above, the inventive liquid crystal display prevents occurrence of textures in an effective manner so that picture quality can be significantly improved.

While the present invention has been described in detail with reference to the preferred embodiments, those skilled in the art will appreciate that various modifications and substitutions can be made thereto without departing from the spirit and scope of the present invention as set forth in the appended claims.

What is claimed is:

1. A thin film transistor array substrate for a liquid crystal display, comprising:
 - an insulating substrate;
 - a gate line formed on the substrate;
 - a common electrode line proceeding parallel to the gate line;
 - a storage capacitor electrode connected to the common electrode line;
 - a gate insulating layer formed on the gate line, the common electrode line, and the storage capacitor electrode;

a data line formed on the gate insulating layer;
 a protective layer formed on the data line; and
 a pixel electrode formed on the protective layer with
 opening patterns,
 wherein the pixel electrode covers entire width of the
 storage capacitor electrodes at particular regions, and
 wherein each opening pattern comprises a horizontal
 5 opening portion formed at the boundary of the pixel
 electrode bisecting the pixel electrode into an upper
 region and a lower region, and inclined opening por-
 tions formed at the upper region and the lower region
 10 of the pixel electrode while proceeding perpendicular
 to each other.

2. The thin film transistor array substrate of claim 1,
 wherein the storage capacitor electrode is respectively pro-
 vided at left side and right side of each pixel electrode.

3. The thin film transistor array substrate of claim 1,
 wherein the common electrode line comprises two separate
 lines.

4. A thin film transistor array substrate, comprising:
 an insulating substrate;
 a common electrode line with branched electrodes, said
 common electrode line being formed on the insulating
 substrate; and
 a pixel electrode insulated from the common electrode
 line and having first opening patterns,
 wherein the pixel electrodes cover entire width of the
 branched electrodes of the common electrode lines at
 particular regions when viewed from a top side, and
 wherein each opening pattern comprises a horizontal
 15 opening portion formed at the boundary of the pixel
 electrode bisecting the pixel electrode into an upper
 region and a lower region, and inclined opening por-
 tions formed at the upper region and the lower region
 of the pixel electrode while proceeding perpendicular
 to each other.

5. A liquid crystal display, comprising:
 a bottom insulating substrate;

a common electrode line with branched electrodes, said
 common electrode line being formed on the bottom
 insulating substrate;
 a pixel electrode insulated from the common electrode
 line and having first opening patterns, the pixel elec-
 trodes completely covering the branched electrodes of
 the common electrode line at particular regions when
 viewed from the top side;
 a top insulating substrate facing the bottom substrate; and
 a common electrode formed on the top substrate with
 second opening patterns,
 wherein the second opening patterns are overlapped with
 sides of the pixel electrode at the particular regions
 where the pixel electrode completely cover the
 branched electrodes of the common electrode lines.

6. The liquid crystal display of claim 5, wherein the
 branched electrodes are respectively provided at a left side
 and a right side of each pixel electrode.

7. The liquid crystal display of claim 5, wherein the
 common electrode line comprises two separate lines.

8. The liquid crystal display of claim 5, wherein each first
 opening pattern comprises a horizontal opening portion
 formed at the boundary of the pixel electrode bisecting the
 pixel electrode into an upper region and a lower region, with
 25 inclined opening portions formed at the upper region and the
 lower regions of the pixel electrode while proceeding per-
 pendicular to each other, each second opening pattern com-
 prising inclined opening portions externally proceeding par-
 allel to the upper and lower inclined opening portions of the
 30 pixel electrode, and linear opening portions bent from the
 inclined opening portions while being overlapped with the
 sides of the pixel electrode.

9. The liquid crystal display of claim 8, wherein the linear
 opening portions of the second opening pattern are over-
 35 lapped with the vertical sides of the pixel electrode at the
 particular regions where the pixel electrode completely
 covers the branched electrodes of the common electrode
 lines.

* * * * *

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. : 6,614,492 B1
DATED : September 2, 2003
INVENTOR(S) : Jang-Kun Song

Page 1 of 1

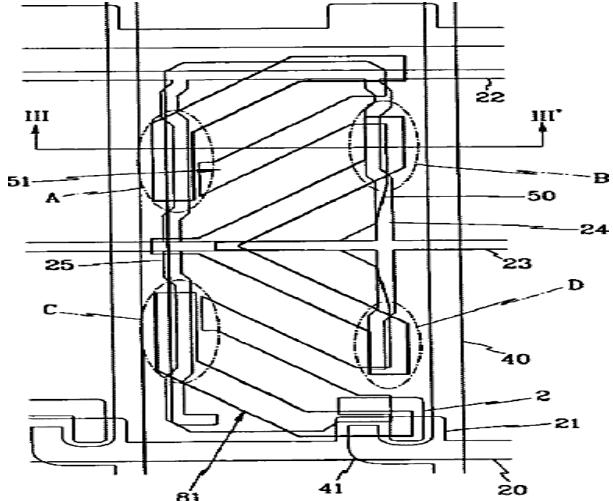
It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

Title page,

Item [30], **Foreign Application Priority Data**, change "99-47597" to -- 99-47567 --.

Signed and Sealed this

Twenty-third Day of December, 2003



JAMES E. ROGAN
Director of the United States Patent and Trademark Office

专利名称(译)	垂直对准模式液晶显示器		
公开(公告)号	US6614492	公开(公告)日	2003-09-02
申请号	US09/697153	申请日	2000-10-27
[标]申请(专利权)人(译)	三星电子株式会社		
申请(专利权)人(译)	SAMSUNG ELECTRONICS CO. , LTD.		
当前申请(专利权)人(译)	三星DISPLAY CO. , LTD.		
[标]发明人	SONG JANG KUN		
发明人	SONG, JANG-KUN		
IPC分类号	G02F1/13 G02F1/1362 G02F1/139 G02F1/1337 G02F1/1343 G02F1/136 G02F1/1368 G09F9/30 H01L21/336 H01L29/786 G02F1/133 H01L29/04		
CPC分类号	G02F1/136213 G02F1/1393		
优先权	1019990047567 1999-10-29 KR		
外部链接	Espacenet USPTO		

摘要(译)

液晶显示器包括底部绝缘基板。栅极线和公共电极线形成在彼此平行的基板上，并且存储电容器电极从公共电极线分支。在栅极线，公共电极线和存储电容器电极上形成栅极绝缘层，在栅极绝缘层上形成数据线，并在数据线上形成保护层。像素电极在第一开口图案的保护层上形成。顶部绝缘基板面对底部基板，具有黑矩阵和公共电极，并且公共电极设置有第二开口图案。每个像素电极在第二开口图案与像素电极的侧面重叠的区域处完全覆盖存储电容器电极。

