[12] 实用新型专利说明书

[21] ZL 专利号 00208617.4

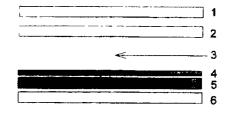
[45] 授权公告日 2001年2月7日

[11] 授权公告号 CN 2418497Y

[22]申请日 2000.4.20 [24]額证日 2000.12.29

[73] **专利权人** 中国科学院长春光学精密机械与物理研究所

地址 130022 吉林省长春市人民大街 140 号 [72]设计人 朱新羽 荆 海 郑陈伟 杨柏梁 宣 丽 凌志华 黄锡珉


[21]申请号 00208617.4

[74]专利代理机构 中国科学院长春专利事务所代理人 梁爱荣

权利要求书1页 说明书3页 附图页数2页

[54]实用新型名称 一种新型反射式液晶显示器 [57] 摘要

本发明属于光电子学技术领域,涉及一种对反射式液晶显示器的改进。解决色 散严重、视角窄、对比度低的问题,它由偏振片、玻璃基板、液晶层、驱动电极、光延迟膜和反射板组成,驱动电极采用共面电极,以实现液晶分子的共面 转换模式。本发明通过将光延迟膜放置在液晶层与反射板之间,从而使得反射 式显示器具有高对比度和低色散的优点。通过使用共面电极,实现了液晶分子的共面转换模式,从而获得宽视角显示,满足彩色和视频显示的要求。

权 利 要 求 书

1、一种新型反射式液晶显示器,它由偏振片(1)、玻璃基板(2)、液晶层(3)、驱动电极(4)、光延迟膜(5)和反射板(6)组成,其特征在于:在液晶层(3)和反射板(6)之间安置驱动电极(4)和光延迟膜(5),且驱动电极(4)和光延迟膜(5)的位置可以互换,驱动电极(4)采用共面电极,以实现液晶分子的共面转换模式。

一种新型反射式液晶显示器

本发明属于光电子学技术领域,涉及一种对反射式液晶显示器的 改进。

常规反射式液晶显示器 (如 TN 和 STN 型)都采用双偏振片结构,但是在反射式中由于入射光连续四次通过偏振片,使得入射光被大量吸收,导致光反射率很低。而常规的采用单偏振片结构的反射式液晶显示器,由于光延迟膜放置在偏振片之下、液晶层之上,使其色散严重、对比度低,不适合于彩色显示,另外电极在上下两块 ITO 玻璃表面,当外加电压时,由于液晶分子分布的非对称性,使得显示视角窄。

本发明的目的是解决已有技术上色散严重、视角窄、对比度低的问题,提供一种色散低、视角宽、对比度高和高反射率的新型反射式液晶显示器。

本发明的详细内容如图 1、图 2 所示,它由偏振片(1)、玻璃基板(2)、液晶层(3)、驱动电极(4)、光延迟膜(5)和反射板(6)组成,在液晶层(3)和反射板(6)之间安置驱动电极(4)和光延迟膜(5),且驱动电极(4)和光延迟膜(5)的位置可以互换,驱动电极(4)采用共面电极,以实现液晶分子的共面转换模式(In Plane Switching Mode)。

本发明的动态工作过程:在常白显示模式中,当共面电极不加电压时,外部入射光通过偏振片后变成线偏振光,线偏振光经过液晶层和光延迟膜后,被反射板反射,再依次经过光延迟膜和液晶层,此时光的偏振状态依然是线偏振的,并且偏振方向平行于偏振片的光透过方向,从而在常白模式中呈现亮态显示。当共面电极上外加电压逐渐增加并达到液晶显示器件的饱和电压时,外部入射光通过偏振片后变成线偏振光,线偏振光经过液晶层和光延迟膜后,被反射板反射,再依次经过光延迟膜和液晶层,此时光的偏振状态依然是线偏振的,但

是偏振方向垂直于偏振片的光透过方向,从而在常白模式中呈现暗态显示。

在常黑显示模式中,当共面电极不加电压时,外部入射光通过偏振片后变成线偏振光,线偏振光经过液晶层和光延迟膜后,被反射板反射,再依次经过光延迟膜和液晶层,此时光的偏振状态依然是线偏振的,但是偏振方向垂直于偏振片的光透过方向,从而在常黑模式中呈现暗态显示。当共面电极上外加电压逐渐增加并达到液晶显示器件的饱和电压时,外部入射光通过偏振片后变成线偏振光,线偏振光经过液晶层和光延迟膜后,被反射板反射,再依次经过光延迟膜和液晶层,此时光的偏振状态依然是线偏振的,并且偏振方向平行于偏振片的光透过方向,从而在常黑模式中呈现亮态显示。

本发明的积极效果:已有技术中光延迟膜放置在偏振片之下、液晶层之上,使其色散严重、对比度低,不适合于彩色显示,本发明通过将光延迟膜放置在液晶层与反射板之间,从而使得反射式显示器具有高对比度和低色散的优点。另外已有技术中,电极放置在上下两块ITO 玻璃表面,当外加电压时,由于液晶分子分布的非对称性,使得显示视角窄,本发明通过使用共面电极,实现了液晶分子的共面转换模式,从而获得宽视角显示。

本发明的附图说明:

- 图 1 是本发明的结构示意图
- 图 2 是本发明共面电极的俯视图
- 图 3 是本发明常白显示模式的第一种配置示意图
- 图 4 是本发明常白显示模式的第二种配置示意图
- 图 5 是本发明常黑显示模式的第一种配置示意图
- 图 6 是本发明常黑显示模式的第二种配置示意图 本发明的实施例:

对于常白显示模式,可选择两种方案:

第一种方案:如图 3 所示。初始时液晶层(3)无扭曲;偏振片(1)的透过方向(7)平行(实线箭头所示)或垂直(虚线箭头所示)于液晶分子排列方向(8);共面电极(4)的取向(9)与液晶分子排列方向(8)成

30至60度角;光延迟膜(5)的光轴方向(10)平行于液晶分子排列方向(8),光延迟膜(5)的光程差可选择四分之一波长;共面电极(4)与光延迟膜(5)置于反射板(6)上面,且共面电极(4)与光延迟膜(5)的位置可以互换。

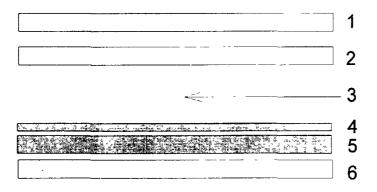
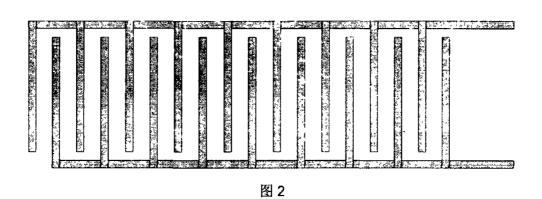
第二种方案:如图 4 所示。初始时液晶层(3)扭曲 30 至 60 度角;偏振片(1)的透过方向(7) 平行(实线箭头所示)或垂直(虚线箭头所示)于液晶层(3)上表面处液晶分子排列方向(11);共面电极(4)的取向(9)与液晶层(3)上表面处液晶分子排列方向(11)垂直;光延迟膜(5)的光轴方向(10)与液晶层(3)上表面处液晶分子排列方向(11)成 30 至 60 度角,光延迟膜(5)的光程差可选择四分之一波长;共面电极(4)与光延迟膜(5)置于反射板(6)上面。

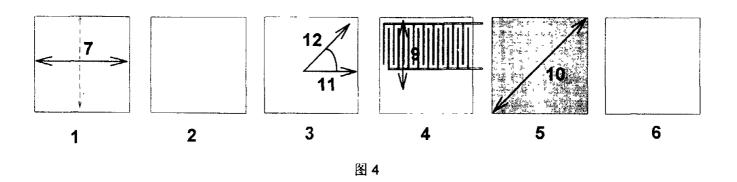
对于常黑显示模式,也可选择两种方案:

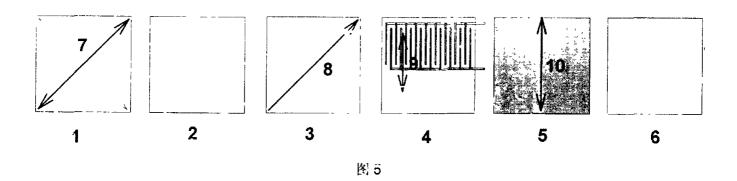
第一种方案:如图 5 所示。初始时液晶层(3)无扭曲;偏振片(1)的透过方向(7)平行(实线箭头所示)或垂直(虚线箭头所示)于液晶分子排列方向(8);共面电极(4)的取向(9)与液晶分子排列方向(8)成 30至 60度角;光延迟膜(5)的光轴方向(10)与液晶分子排列方向(8)成 30至 60度角,光延迟膜(5)的光程差可选择四分之一波长;共面电极(4)与光延迟膜(5)置于反射板(6)上面。

第二种方案:如图 6 所示。初始时液晶层(3)扭曲 30 至 60 度角;偏振片(1)的透过方向(7) 平行(实线箭头所示)或垂直(虚线箭头所示)于液晶层(3)上表面处液晶分子排列方向(11);共面电极(4)的取向(9)与液晶层(3)上表面处液晶分子排列方向(11)垂直;光延迟膜(5)的光轴方向(10)平行于液晶层(3)上表面处液晶分子排列方向(11),光延迟膜(5)的光程差可选择四分之一波长;共面电极(4)与光延迟膜(5)置于反射板(6)上面。

说明书附图


图 1



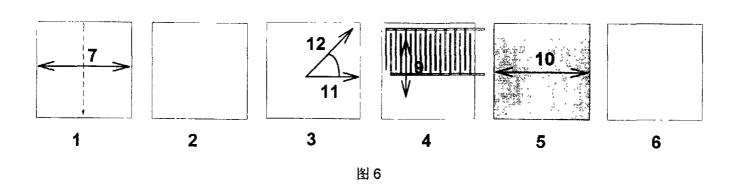

7 8 8 Fig. 1 2 3 4 5 6

图 3

说明书附图

一种新型反射式	液晶显示器		
CN2418497Y		公开(公告)日	2001-02-07
CN00208617.4		申请日	2000-04-20
中国科学院长春	光学精密机械与物理研究所		
中国科学院长春	光学精密机械与物理研究所		
中国科学院长春	光学精密机械与物理研究所		
朱新羽 荆海 郑陈伟 杨柏梁 宣丽 凌志华 黄锡珉			
朱新羽 荆海 郑陈伟 杨柏梁 宣丽 凌志华 黄锡珉			
G02F1/1335			
Espacenet S	SIPO .		
比度低的问题,它 有和反射板组成,驱 本发明通过将光 示器具有高对比度	语偏振片、玻璃基板、液晶 动电极采用共面电极,以实现液 延迟膜放置在液晶层与反射板 和低色散的优点。通过使用共		2 <
	CN2418497Y CN00208617.4 中中中中 朱荆郑杨宣凌黄 朱荆郑杨宣凌黄 CN00208617.4 中中中中 朱荆郑杨宣凌黄 朱荆郑杨宣凌黄 G02F1/1335 Espacenet	CN00208617.4 中国科学院长春光学精密机械与物理研究所 中国科学院长春光学精密机械与物理研究所 中国科学院长春光学精密机械与物理研究所 朱新羽 荆海 郑陈伟 杨柏梁 宣丽 凌志华 黄锡珉 朱新羽 東海 第時 第一 第一 第一 第一 第一 第一 第一 第一 第一	CN2418497Y 公开(公告)日 CN00208617.4 申请日 中国科学院长春光学精密机械与物理研究所 中国科学院长春光学精密机械与物理研究所 中国科学院长春光学精密机械与物理研究所 朱新羽 荆海 郑陈伟 杨柏梁 宣丽 凌志华 黄锡珉 朱新羽 荆海 郑陈伟 杨柏梁 宣丽 凌志华 黄锡珉 G02F1/1335 Espacenet SIPO