

(19) United States

(12) Patent Application Publication (10) Pub. No.: US 2021/0335941 A1 ZHAO et al.

Oct. 28, 2021 (43) **Pub. Date:**

(54) OLED DISPLAY PANEL AND OLED DISPLAY DEVICE

(71) Applicant: Shenzhen China Star Optoelectronics Semiconductor Display Technology

Co., Ltd., Shenzhen, Guangdong (CN)

(72) Inventors: Shuning ZHAO, Shenzhen, Guangdong

(CN); Zhenguo LIN, Shenzhen,

Guangdong (CN)

(73) Assignee: Shenzhen China Star Optoelectronics Semiconductor Display Technology

Co., Ltd., Shenzhen, Guangdong (CN)

(21) Appl. No.: 16/980,913

(22) PCT Filed: May 27, 2020

(86) PCT No.: PCT/CN2020/092646

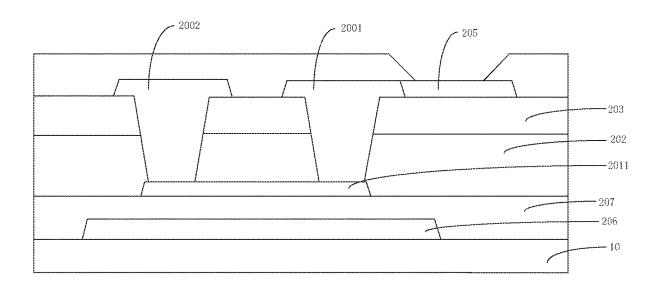
§ 371 (c)(1),

(2) Date: Sep. 15, 2020

(30)Foreign Application Priority Data

(CN) 202010332912.4 Apr. 24, 2020

Publication Classification


(51) Int. Cl. H01L 27/32 (2006.01)

(52) U.S. Cl.

CPC H01L 27/3248 (2013.01); H01L 27/1225 (2013.01); H01L 27/3262 (2013.01); H01L **27/3258** (2013.01)

(57)ABSTRACT

The present disclosure provides an OLED display panel including a substrate, and a gate electrode, an active layer, a source electrode, and a drain electrode of a TFT device disposed on the substrate, and an anode of an OLED device disposed on the substrate; wherein the source electrode, the drain electrode, and the anode are formed in a same layer, and the anode is connected to the source electrode. The source electrode, the drain electrode, and the anode are arranged in a same layer, so that the source electrode, the drain electrode, and the anode are formed through a single process, thereby simplifying a manufacturing process and saving costs.

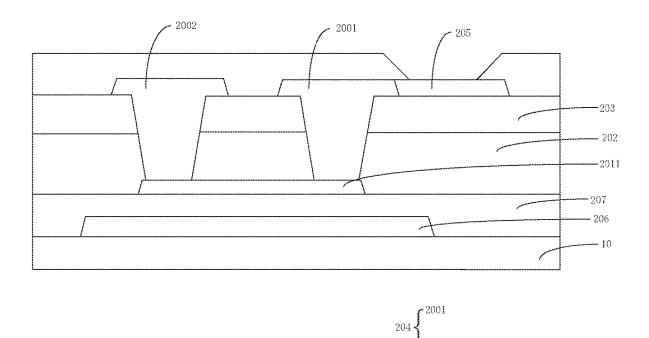


FIG. 1

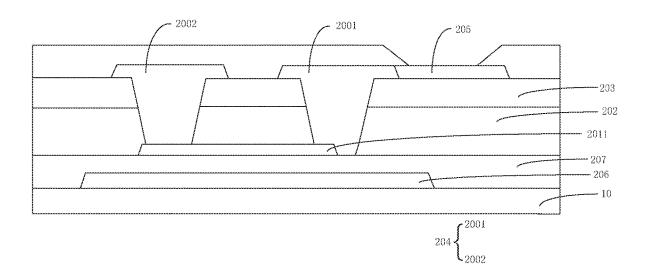


FIG. 2

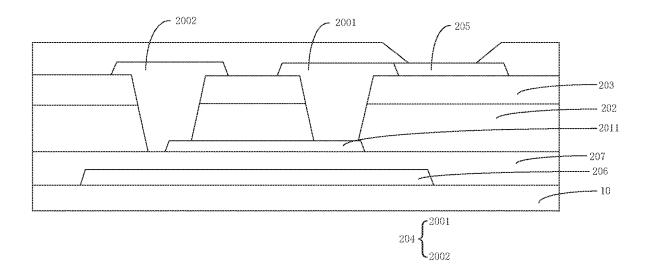


FIG. 3

OLED DISPLAY PANEL AND OLED DISPLAY DEVICE

FIELD OF INVENTION

[0001] The present disclosure relates to the field of organic light emitting diode (OLED) display technologies, and particularly relates to an OLED display panel and an OLED display device.

BACKGROUND OF INVENTION

[0002] In conventional OLED display panels, a source electrode, a drain electrode, and an anode are formed through two steps and two masks, respectively. The formation of the source electrode, the drain electrode, and the anode by the two masks increases production costs. At the same time, it also requires longer production time. Therefore, the conventional OLED display panels have a technical problem that multiple masks need to be used.

SUMMARY OF INVENTION

[0003] Embodiments of the present disclosure provides an OLED display panel and an OLED display device, which can relieve the technical problem that the conventional OLED display panels need to use multiple masks.

[0004] An embodiment of the present disclosure provides an OLED display panel, including:

[0005] a substrate, and a gate electrode, an active layer, a source electrode, and a drain electrode of a thin film transistor (TFT) device disposed on the substrate, and an anode of an OLED device disposed on the substrate;

[0006] wherein the source electrode, the drain electrode, and the anode are formed in a same layer, and the anode is connected to the source electrode.

[0007] In the OLED display panel provided by an embodiment of the present disclosure, the TFT device further includes:

[0008] a gate insulating layer at least covering the gate electrode, and the active layer being disposed on the gate insulating layer;

[0009] a passivation layer disposed on the gate insulating layer and covering the active layer;

[0010] a planarization layer disposed on the passivation layer;

[0011] a source via penetrating the passivation layer and the planarization layer to a first doped region of the active layer, wherein the source electrode is disposed on an upper surface of the planarization layer, and the source electrode is connected to the first doped region through the source via; and

[0012] a drain via penetrating the passivation layer and the planarization layer to a second doped region of the active layer, wherein the drain electrode is disposed on a surface of the planarization layer, and the drain electrode is connected to the second doped region through the drain via.

[0013] In the OLED display panel provided by an embodiment of the present disclosure, the source electrode is in contact with the first doped region of the active layer through the source via, and the drain electrode is in contact with the second doped area of the active layer through the drain via; wherein the source electrode includes a first source portion disposed above an etching stop layer and a second source portion disposed in the source via, and the drain electrode

includes a first drain portion disposed above the etching stop layer and a second drain portion disposed in the drain via. [0014] In the OLED display panel provided by an embodiment of the present disclosure, the active layer is disposed on the gate insulating layer, the second source portion is in contact with a side surface of the first doped region, and a contact portion of the second source portion is disposed on the gate insulating layer.

[0015] In the OLED display panel provided by an embodiment of the present disclosure, the active layer is disposed on the gate insulating layer, the second drain portion is in contact with a side surface of the second doped region, and a contact portion of the second drain portion is disposed on the gate insulating layer.

[0016] In the OLED display panel provided by an embodiment of the present disclosure, the active layer includes a channel region, the first doped region, and the second doped region, the first doped region and the second doped region are positioned at both ends of the channel region, and an area of an orthographic projection of the active layer of the first doped region on the substrate is equal to an area of an orthographic projection of the active layer of the second doped region on the substrate.

[0017] In the OLED display panel provided by an embodiment of the present disclosure, the active layer is made of at least one of indium gallium zinc oxide, indium tin zinc oxide, indium gallium tin oxide, and indium gallium zinc tin oxide.

[0018] In the OLED display panel provided by an embodiment of the present disclosure, a thickness of each of the source electrode, the drain electrode, and the anode is equal to any value ranging between 500 angstroms and 10000 angstroms.

[0019] In the OLED display panel provided by an embodiment of the present disclosure, the source electrode, the drain electrode, and the anode have a single-layer structure, and the source electrode, the drain electrode, and the anode are made of any one of molybdenum, aluminum, copper, and titanium

[0020] In the OLED display panel provided by an embodiment of the present disclosure, the source electrode, the drain electrode, and the anode have a multilayer structure, and the source electrode, the drain electrode, and the anode are made of any one of molybdenum/aluminum/molybdenum, aluminum/molybdenum, molybdenum/copper, and molybdenum titanium/copper.

[0021] An embodiment of the present disclosure provides an OLED display device including an OLED display panel, and the OLED display panel includes:

[0022] a substrate, and a gate electrode, an active layer, a source electrode, and a drain electrode of a thin film transistor (TFT) device disposed on the substrate, and an anode of an OLED device disposed on the substrate;

[0023] wherein the source electrode, the drain electrode, and the anode are formed in a same layer, and the anode is connected to the source electrode.

[0024] In the OLED display device provided by an embodiment of the present disclosure, the TFT device further includes:

[0025] a gate insulating layer at least covering the gate electrode, and the active layer being disposed on the gate insulating layer;

[0026] a passivation layer disposed on the gate insulating layer and covering the active layer;

[0027] a planarization layer disposed on the passivation layer;

[0028] a source via penetrating the passivation layer and the planarization layer to a first doped region of the active layer, wherein the source electrode is disposed on an upper surface of the planarization layer, and the source electrode is connected to the first doped region through the source via; and

[0029] a drain via penetrating the passivation layer and the planarization layer to a second doped region of the active layer, wherein the drain electrode is disposed on a surface of the planarization layer, and the drain electrode is connected to the second doped region through the drain via.

[0030] In the OLED display device provided by an embodiment of the present disclosure, the source electrode is in contact with the first doped region of the active layer through the source via, and the drain electrode is in contact with the second doped area of the active layer through the drain via; wherein the source electrode includes a first source portion disposed above an etching stop layer and a second source portion disposed in the source via, and the drain electrode includes a first drain portion disposed above the etching stop layer and a second drain portion disposed in the drain via.

[0031] In the OLED display device provided by an embodiment of the present disclosure, the active layer is disposed on the gate insulating layer, the second source portion is in contact with a side surface of the first doped region, and a contact portion of the second source portion is disposed on the gate insulating layer.

[0032] In the OLED display device provided by an embodiment of the present disclosure, the active layer is disposed on the gate insulating layer, the second drain portion is in contact with a side surface of the second doped region, and a contact portion of the second drain portion is disposed on the gate insulating layer.

[0033] In the OLED display device provided by an embodiment of the present disclosure, the active layer includes a channel region, the first doped region, and the second doped region are positioned at both ends of the channel region, and an area of an orthographic projection of the active layer of the first doped region on the substrate is equal to an area of an orthographic projection of the active layer of the second doped region on the substrate.

[0034] In the OLED display device provided by an embodiment of the present disclosure, the active layer is made of at least one of indium gallium zinc oxide, indium tin zinc oxide, indium gallium tin oxide, and indium gallium zinc tin oxide.

[0035] In the OLED display device provided by an embodiment of the present disclosure, a thickness of each of the source electrode, the drain electrode, and the anode is equal to any value ranging between 500 angstroms and 10000 angstroms.

[0036] In the OLED display device provided by an embodiment of the present disclosure, the source electrode, the drain electrode, and the anode have a single-layer structure, and the source electrode, the drain electrode, and the anode are made of any one of molybdenum, aluminum, copper, and titanium.

[0037] In the OLED display device provided by an embodiment of the present disclosure, the source electrode, the drain electrode, and the anode have a multilayer struc-

ture, and the source electrode, the drain electrode, and the anode are made of any one of molybdenum/aluminum/molybdenum, aluminum/molybdenum, molybdenum/copper, and molybdenum titanium/copper.

[0038] Beneficial effects: the OLED display panel provided by the embodiments of the present disclosure includes a substrate, and a gate electrode, an active layer, a source electrode, and a drain electrode of a thin film transistor (TFT) device disposed on the substrate, and an anode of an OLED device disposed on the substrate; wherein the source electrode, the drain electrode, and the anode are formed in a same layer, and the anode is connected to the source electrode. The source electrode, the drain electrode, and the anode are arranged in a same layer, and the source electrode and the drain electrode are respectively in contact with the active layer through the source via and the drain via. Under a premise of ensuring a normal switching function of the transistor, the source-drain electrodes and the anode are formed through a single process, which relieves the technical problem that the conventional OLED display panels need to use multiple masks.

DESCRIPTION OF DRAWINGS

[0039] Following describes specific implementations of the present disclosure in detail with reference to accompanying drawings, which will make the technical solutions and other beneficial effects of the present disclosure obvious.

[0040] FIG. 1 is a first schematic sectional view of an OLED display panel provided by an embodiment of the present disclosure.

[0041] FIG. 2 is a second schematic sectional view of the OLED display panel provided by an embodiment of the present disclosure.

[0042] FIG. 3 is a third schematic sectional view of the OLED display panel provided by an embodiment of the present disclosure.

DETAILED DESCRIPTION OF EMBODIMENTS

[0043] The technical solutions in the embodiments of the present disclosure will be clearly and completely described with reference to the accompanying drawings in the embodiments of the present disclosure. Obviously, the described embodiments are only a part of the embodiments of the present disclosure, but not all the embodiments. Based on the embodiments in the present disclosure, all other embodiments obtained by those skilled in the art without creative work fall into a protection scope of the present disclosure. [0044] In the description of the present disclosure, it should be understood that orientational or positional relationships indicated by terms, such as "center", "longitudinal", "transverse", "length", "width", "thickness", "upper", "lower", "front", "rear", "left", "right", "vertical", "horizontal", "top", "bottom", "inside", "outside", "clockwise", "counterclockwise", etc., are based on the orientational or positional relationships shown in the drawings, and are merely for the convenience of describing the present disclosure and simplifying the description, and does not indicate or imply that the device or element referred to must have a specific orientation, be constructed and operate in a specific orientation, and therefore cannot be understood as a limitation on the present disclosure. In addition, the terms "first" and "second" are used herein for purposes of description, and should not be interpreted as indication or implication of relative importance or implicitly indicating a number of technical features indicated. Thus, the features defined as "first" and "second" may explicitly or implicitly include one or more of the features. In the description of the present disclosure, the meaning of "plurality" is two or more, unless specifically defined otherwise.

[0045] In description of the present disclosure, it should be noted, the terms "install", "connect", and "couple" shall be understood broadly, unless otherwise explicitly stated and defined, and may be, for example, a fixed connection, a detachable connection, or an integral connection; a mechanical connection or an electrical connection; directly connected or indirectly connected through an intermediate medium; an internal connection of the two elements. The specific meanings of the above terms in the present disclosure can be understood in the specific circumstances for those skilled in the art.

[0046] In the present disclosure, unless specifically stated and defined otherwise, that a first feature is "on" or "under" a second feature may include: the first feature and the second feature are not in direct contact but are contacted by another feature between them. Furthermore, that the first feature is "on", "above", or "upon" the second feature includes that the first feature is directly above and obliquely above the second feature, or merely indicates that the first feature is higher in level than the second feature. That the first feature is "under" or "below" the second feature includes that the first feature is directly below and obliquely below the second feature, or merely indicates that the first feature is lower in level than the second feature.

[0047] Following disclosure provides various different implementations or examples for implementing different structures of the present disclosure. To simplify the disclosure of the present disclosure, components and settings of specific examples are described below. Of course, they are merely examples and are not intended to limit the present disclosure. In addition, the present disclosure may repeat reference numbers and/or reference letters in different examples, and such repetition is for purpose of simplicity and clarity, and does not indicate relationship between the various embodiments and/or settings discussed. In addition, examples of various specific processes and materials are provided in the present disclosure, but those of ordinary skill in the art may be aware of application of other processes and/or other materials.

[0048] As shown in FIG. 1, an OLED display panel provided by an embodiment of the present disclosure includes a substrate 10, and a gate electrode 206, an active layer 201, a source electrode 2001, and a drain electrode 2002 of a thin film transistor (TFT) device disposed on the substrate, and an anode 205 of an OLED device disposed on the substrate. Wherein the source electrode 2001, the drain electrode 2002, and the anode 205 are formed in a same layer, and the anode 205 is connected to the source electrode 2001.

[0049] In the embodiment, the OLED display panel includes the substrate 10, and the gate electrode 206, the active layer 201, the source electrode 2001, and the drain electrode 2002 of the thin film transistor (TFT) device disposed on the substrate, and the anode 205 of the OLED device disposed on the substrate; wherein the source electrode 2001, the drain electrode 2002, and the anode 205 are formed in a same layer, and the anode 205 is connected to the source electrode 2001. The source electrode 2001, the

drain electrode 2002, and the anode 205 are arranged in a same layer, and the source electrode 2001 and the drain electrode 2002 are respectively contacted with the active layer 201 through a source via and a drain via. Under a premise of ensuring a normal switching function of the transistor, the source-drain electrodes and the anode are formed through a single process, which relieves the technical problem that the conventional OLED display panels need to use multiple masks.

[0050] Wherein, the source via penetrates the passivation layer 203 and the planarization layer 202.

[0051] Wherein, the drain via also penetrates the passivation layer 203 and the planarization layer 202.

[0052] In an embodiment, the TFT device further includes a gate insulating layer 207, a passivation layer 202, a planarization layer 203, a source via, and a drain via. The gate insulating layer 207 at least covers the gate electrode 206. The active layer 201 is disposed on the gate insulating layer 207. The passivation layer 202 is disposed on the gate insulating layer 207 and covers the active layer 201. The planarization layer 203 is disposed on the passivation layer 202. The source via penetrates the passivation layer 202 and the planarization layer 203 to a first doped region of the active layer 201, the source electrode 2001 is disposed on an upper surface of the planarization layer 203, and the source electrode 2001 is connected to the first doped region through the source via. The drain via penetrates the passivation layer 203 and the planarization layer 202 to a second doped region of the active layer 201, the drain electrode 2002 is disposed on a surface of the planarization layer 203, and the drain electrode 2002 is connected to the second doped region through the drain via.

[0053] Wherein, the anode 205 may be arranged on a same plane as the source electrode 2001.

[0054] Wherein, the anode 205 may also be arranged on a different plane from the source electrode 2001.

[0055] Wherein, a shape of the anode 205 may be different from a shape of the source electrode 2001.

[0056] In an embodiment, the source electrode 2001 is in contact with the first doped region of the active layer 201 through the source via, and the drain electrode 2002 is in contact with the second doped area of the active layer 201 through the drain via. Wherein, the source electrode 2001 includes a first source portion disposed above the planarization layer 203 and a second source portion disposed in the source via, and the drain electrode 2002 includes a first drain portion disposed above the planarization layer 203 and a second drain portion disposed in the drain via.

[0057] Wherein, the first source portion is in contact with the first doped region of the active layer 201, and the first drain portion is in contact with the second doped region of the active layer 201,

[0058] In an embodiment, a source-drain layer 204 includes the source electrode 2001 and the drain electrode 2002, an anode layer includes the anode 205, and the source-drain layer 204 and the anode layer are arranged in a same layer.

[0059] In an embodiment, as shown in FIG. 2, the active layer 201 is disposed on the gate insulating layer 207, the second source portion is in contact with a side surface of the first doped region, and a contact portion of the second source portion is disposed on the gate insulating layer 207.

[0060] Wherein, the source electrode 2001 wraps an end of the active layer 201.

[0061] Wherein, the drain electrode 2002 may be in contact with the gate insulating layer 207 through the drain via. [0062] Wherein, the drain electrode 2002 may also directly contact the active layer 201 through the drain via, and not contact the gate insulating layer 207.

[0063] In an embodiment, as shown in FIG. 3, the active layer 201 is disposed on the gate insulating layer 207, the second drain portion is in contact with a side surface of the second doped region, and a contact portion of the second drain portion is disposed on the gate insulating layer 207.

[0064] Wherein, the drain electrode 2002 wraps an end of the active layer 201.

[0065] Wherein, the source electrode 2001 may be in contact with the gate insulating layer 207 through the drain

[0066] Wherein, the source electrode 2001 may also directly contact the active layer 201 through the source via, and not contact the gate insulating layer 207.

[0067] In an embodiment, a longitudinal cross-sectional shape of the source electrode and a longitudinal cross-sectional shape of the drain electrode are the same.

[0068] In an embodiment, as shown in FIG. 1, the active layer 201 includes a channel region, the first doped region, and the second doped region, and the first doped region and the second doped region are positioned at both ends of the channel region. An area of an orthographic projection of the active layer 201 of the first doped region on the substrate 10 is equal to an area of an orthographic projection of the active layer 201 of the second doped region on the substrate 10.

[0069] Wherein, the first doped region refers to a region where the source electrode 2001 contacts the active layer

[0070] Wherein, in a same pixel unit, the channel region is a region of the active layer 201 between the adjacent first doped region and the adjacent second doped region.

[0071] Wherein, the second doped region refers to a region where the drain electrode 2002 contacts the active layer 201. [0072] Wherein, the source electrode 2001 may be in contact with the gate insulating layer 207 through the source via

[0073] Wherein, the source electrode 2001 may also directly contact the active layer 201 through the source via, and not contact the gate insulating layer 207.

[0074] Wherein, the drain electrode 2002 may be in contact with the gate insulating layer 207 through the drain via. [0075] Wherein, the drain electrode 2002 may also directly contact the active layer 201 through the drain via, and not contact the gate insulating layer 207.

[0076] In an embodiment, as shown in FIG. 2, the active layer 201 includes a channel region, the first doped region, and the second doped region, and the first doped region and the second doped region are positioned at both ends of the channel region. An area of an orthographic projection of the active layer 201 of the first doped region on the substrate 10 is less than an area of an orthographic projection of the active layer 201 of the second doped region on the substrate 10.

[0077] Wherein, the first doped region refers to a region where the source electrode 2001 contacts the active layer 201.

[0078] Wherein, in a same pixel unit, the channel region is a region of the active layer 201 between the adjacent first doped region and the adjacent second doped region.

[0079] Wherein, the second doped region refers to a region where the drain electrode 2002 contacts the active layer 201. [0080] Wherein, the source electrode 2001 may be in contact with the gate insulating layer 207 through the source via.

[0081] Wherein, the source electrode 2001 may also directly contact the active layer 201 through the source via, and not contact the gate insulating layer 207.

[0082] Wherein, the drain electrode 2002 may be in contact with the gate insulating layer 207 through the drain via. [0083] Wherein, the drain electrode 2002 may also directly contact the active layer 201 through the drain via, and not contact the gate insulating layer 207.

[0084] In an embodiment, as shown in FIG. 3, the active layer 201 includes a channel region, the first doped region, and the second doped region, and the first doped region and the second doped region are positioned at both ends of the channel region. An area of an orthographic projection of the active layer 201 of the first doped region on the substrate 10 is greater than an area of an orthographic projection of the active layer 201 of the second doped region on the substrate 10

[0085] Wherein, the first doped region refers to a region where the source electrode 2001 contacts the active layer 201.

[0086] Wherein, in a same pixel unit, the channel region is a region of the active layer 201 between the adjacent first doped region and the adjacent second doped region.

[0087] Wherein, the second doped region refers to a region where the drain electrode 2002 contacts the active layer 201. [0088] Wherein, the source electrode 2001 may be in contact with the gate insulating layer 207 through the source via

[0089] Wherein, the source electrode 2001 may also directly contact the active layer 201 through the source via, and not contact the gate insulating layer 207.

[0090] Wherein, the drain electrode 2002 may be in contact with the gate insulating layer 207 through the drain via. [0091] Wherein, the drain electrode 2002 may also directly contact the active layer 201 through the drain via, and not contact the gate insulating layer 207.

[0092] In an embodiment, the active layer 201 is made of at least one of indium gallium zinc oxide, indium gallium tin oxide, and indium gallium zinc tin oxide.

[0093] In an embodiment, a thickness of each of the source electrode 2001, the drain electrode 2002, and the anode 205 is equal to any value ranging between 500 angstroms and 10000 angstroms.

[0094] In an embodiment, a longitudinal cross-sectional shape of the source via is the same as that of the drain via. [0095] In an embodiment, a shape of the source electrode 2001 and a shape of the drain electrode 2002 may be the same or different.

[0096] Wherein, the shape of the source electrode 2001 and the shape of the drain electrode 2002 may be the same. [0097] Wherein, the shape of the source electrode 2001 and the shape of the drain electrode 2002 are both trapezoidal

[0098] Wherein, the shape of the source electrode 2001 and the shape of the drain electrode 2002 are irregular geometric figures, and a width of an orthographic projection of the source electrode 2001 on the channel region is equal

to a width of an orthographic projection of the drain electrode 2002 on the channel region.

[0099] Wherein, the shape of the source electrode 2001 and the shape of the drain electrode 2002 may also be different.

[0100] In an embodiment, the source electrode, the drain electrode, and the anode have a single-layer structure, and the source electrode, the drain electrode, and the anode are made of any one of molybdenum, aluminum, copper, and titanium.

[0101] In an embodiment, the source electrode, the drain electrode, and the anode have a multilayer structure, and the source electrode, the drain electrode, and the anode are made of any one of molybdenum/aluminum/molybdenum, aluminum/molybdenum, molybdenum/copper, and molybdenum titanium/copper.

[0102] In an embodiment, a color resist layer disposed on the planarization layer 203 is also included, and a material of the color resist layer is color resist organic material.

[0103] In an embodiment, the planarization layer 203 is made of organic material, and the planarization layer 203 is covered and disposed on the color resist layer.

[0104] In an embodiment, the anode may be made of indium tin oxide, silver or indium tin oxide material, or other anode materials.

[0105] In an embodiment, the anode 205 is provided with a pixel electrode layer thereon.

[0106] Wherein, a material of the pixel electrode layer may be hydrophobic material.

[0107] In an embodiment, the OLED display panel further includes a cathode layer disposed above the pixel definition layer.

[0108] In an embodiment, the OLED display panel further includes a light-emitting function layer and an encapsulation layer.

[0109] Wherein, the light-emitting layer includes an electron injection layer, an electron transport layer, a hole injection layer, and a hole transport layer.

[0110] Wherein, the encapsulation layer may include a first inorganic layer, a first organic layer, and a second inorganic layer.

[0111] Wherein, the first inorganic layer is disposed above the cathode layer.

[0112] In an embodiment, a longitudinal cross-sectional shape of the source electrode 2001 is any one of a polygon, a rectangle, and an arc shape.

[0113] In an embodiment, a longitudinal cross-sectional shape of the drain electrode 2002 is any one of a polygon, a rectangle, and an arc shape.

[0114] In an embodiment, a manufacturing material of the active layer 201 includes indium.

[0115] In an embodiment, the manufacturing material of the active layer 201 further includes zinc.

[0116] In an embodiment, the longitudinal cross-sectional shape of the source electrode 2001 and the longitudinal cross-sectional shape of the drain electrode 2002 include trapezoidal.

[0117] In an embodiment, the gate layer 206 may be a single-layer structure.

[0118] Wherein, a manufacturing material of the gate layer 206 is molybdenum, aluminum, copper, titanium and the like

[0119] In an embodiment, the gate layer 206 may also be a multilayer structure.

[0120] Wherein, the manufacturing material of the gate layer 206 is a multilayer structure such as molybdenum/aluminum/molybdenum, aluminum/molybdenum, molybdenum/copper, and molybdenum titanium/copper.

[0121] In an embodiment, a thickness of the gate layer 206 is any value ranging between 500 angstroms and 10000 angstroms.

[0122] In an embodiment, the gate insulating layer 207 may be a single layer structure.

[0123] Wherein, a manufacturing material of the gate insulating layer 207 is a single layer of silicon nitride or a single layer of silicon dioxide

[0124] In an embodiment, the gate insulating layer 207 may also have a double-layer structure.

[0125] In an embodiment, a thickness of the gate layer 206 is any value ranging between 1000 angstroms and 5000 angstroms.

[0126] In an embodiment, a thickness of the active layer 201 is any value ranging between 100 angstroms and 1000 angstroms.

[0127] In an embodiment, the passivation layer 202 may be a single layer structure.

[0128] Wherein, a manufacturing material of the passivation layer 202 is aluminum oxide or silicon dioxide.

[0129] In an embodiment, the passivation layer 202 may also be a multilayer structure.

[0130] Wherein, the manufacturing material of the passivation layer 202 is a multilayer structure of silicon dioxide/silicon nitride, silicon dioxide/aluminum oxide, and aluminum oxide/silicon nitride.

[0131] In an embodiment, a thickness of the passivation layer 202 is any value ranging between 1000 angstroms and 5000 angstroms.

[0132] In an embodiment, a thickness of the planarization layer 203 is any value ranging between 10000 angstroms and 50000 angstroms.

[0133] In an embodiment, the source-drain layer 204 and the anode 205 are arranged in a same layer, and materials of the source-drain layer 204 and the anode 205 may be a single-layer structure.

[0134] Wherein, the source-drain layer 204 and the anode 205 are made of molybdenum, aluminum, copper, titanium, or indium tin oxide. The source-drain layer 204 and the anode 205 may also made of a multilayer structure of molybdenum/aluminum/molybdenum, aluminum/molybdenum, molybdenum/copper, and molybdenum titanium/copper.

[0135] In an embodiment, a thickness of the source-drain layer 204 and the anode 205 is any value ranging between 500 angstroms and 10000 angstroms.

[0136] Wherein, regions of the source electrode 2001, the drain electrode 2002, and the anode can be defined by using a yellow light process.

[0137] In an embodiment, a thickness of the pixel definition layer is any value ranging between 10000 angstroms and 50000 angstroms.

[0138] The OLED display panel provided by the embodiments of the present disclosure includes a substrate 10, and a gate electrode 206, an active layer 201, a source electrode 2001, and a drain electrode 2002 of a thin film transistor (TFT) device disposed on the substrate, and an anode 205 of an OLED device disposed on the substrate; wherein the source electrode 2001, the drain electrode 2002, and the anode 205 are formed in a same layer, and the anode 205 is

connected to the source electrode 2001. The source electrode 2001, the drain electrode 2002, and the anode 205 are arranged in a same layer, and the source electrode 2001 and the drain electrode 2002 are respectively contacted with the active layer 201 through the source via and the drain via. Under a premise of ensuring a normal switching function of the transistor, the source-drain electrodes and the anode are formed through a single process, which relieves the technical problem that the conventional OLED display panels need to use multiple masks.

[0139] Structures provided in the embodiments of the present disclosure have been described in detail above. Specific examples are used herein to explain principle and implementation of the present disclosure. The description of the above embodiments is only used to help understand the technical solution of the present disclosure and its core ideas; it will be understood by those of ordinary skill in the art that the technical solutions described in the foregoing embodiments may be modified or equivalently substituted for some or all of the technical features, and the modifications or substitutions do not depart from the scope of the technical solutions of the embodiments of the present disclosure

What is claimed is:

- 1. An organic light emitting diode (OLED) display panel, comprising:
 - a substrate, and
 - a gate electrode, an active layer, a source electrode, and a drain electrode of a thin film transistor (TFT) device disposed on the substrate; and
 - an anode of an OLED device disposed on the substrate; wherein the source electrode, the drain electrode, and the anode are formed in a same layer, and the anode is connected to the source electrode.
- 2. The OLED display panel in claim 1, wherein the TFT device further comprises:
 - a gate insulating layer at least covering the gate electrode, and the active layer being disposed on the gate insulating layer;
 - a passivation layer disposed on the gate insulating layer and covering the active layer;
 - a planarization layer disposed on the passivation layer;
 - a source via penetrating the passivation layer and the planarization layer to a first doped region of the active layer, wherein the source electrode is disposed on an upper surface of the planarization layer, and the source electrode is connected to the first doped region through the source via; and
 - a drain via penetrating the passivation layer and the planarization layer to a second doped region of the active layer, wherein the drain electrode is disposed on a surface of the planarization layer, and the drain electrode is connected to the second doped region through the drain via.
- 3. The OLED display panel in claim 2, wherein the source electrode is in contact with the first doped region of the active layer through the source via, and the drain electrode is in contact with the second doped area of the active layer through the drain via;
 - wherein the source electrode comprises a first source portion disposed above an etching stop layer and a second source portion disposed in the source via, and the drain electrode comprises a first drain portion

- disposed above the etching stop layer and a second drain portion disposed in the drain via.
- **4**. The OLED display panel in claim **3**, wherein the active layer is disposed on the gate insulating layer, the second source portion is in contact with a side surface of the first doped region, and a contact portion of the second source portion is disposed on the gate insulating layer.
- 5. The OLED display panel in claim 3, wherein the active layer is disposed on the gate insulating layer, the second drain portion is in contact with a side surface of the second doped region, and a contact portion of the second drain portion is disposed on the gate insulating layer.
- 6. The OLED display panel in claim 3, wherein the active layer comprises a channel region, the first doped region, and the second doped region, the first doped region and the second doped region are positioned at both ends of the channel region, and an area of an orthographic projection of the active layer of the first doped region on the substrate is equal to an area of an orthographic projection of the active layer of the second doped region on the substrate.
- 7. The OLED display panel in claim 2, wherein the active layer is made of at least one of indium gallium zinc oxide, indium tin zinc oxide, indium gallium tin oxide, and indium gallium zinc tin oxide.
- **8**. The OLED display panel in claim **2**, wherein a thickness of each of the source electrode, the drain electrode, and the anode is equal to any value ranging between 500 angstroms and 10000 angstroms.
- 9. The OLED display panel in claim 8, wherein the source electrode, the drain electrode, and the anode have a single-layer structure, and the source electrode, the drain electrode, and the anode are made of any one of molybdenum, aluminum, copper, and titanium.
- 10. The OLED display panel in claim 2, wherein the source electrode, the drain electrode, and the anode have a multilayer structure, and the source electrode, the drain electrode, and the anode are made of any one of molybdenum/aluminum/molybdenum, aluminum/molybdenum, molybdenum/copper, and molybdenum titanium/copper.
- 11. An OLED display device, comprising an OLED display panel, and the OLED display panel comprising:
 - a substrate, and
 - a gate electrode, an active layer, a source electrode, and a drain electrode of a TFT device disposed on the substrate; and
 - an anode of an OLED device disposed on the substrate; wherein the source electrode, the drain electrode, and the anode are manufactured in a same layer, and the anode is connected to the source electrode.
- 12. The OLED display device in claim 11, wherein the TFT device further comprises:
 - a gate insulating layer at least covering the gate electrode, and the active layer being disposed on the gate insulating layer;
 - a passivation layer disposed on the gate insulating layer and covering the active layer;
 - a planarization layer disposed on the passivation layer;
 - a source via penetrating the passivation layer and the planarization layer to a first doped region of the active layer, wherein the source electrode is disposed on an upper surface of the planarization layer, and the source electrode is connected to the first doped region through the source via; and

- a drain via penetrating the passivation layer and the planarization layer to a second doped region of the active layer, wherein the drain electrode is disposed on a surface of the planarization layer, and the drain electrode is connected to the second doped region through the drain via.
- 13. The OLED display device in claim 12, wherein the source electrode is in contact with the first doped region of the active layer through the source via, and the drain electrode is in contact with the second doped area of the active layer through the drain via;
 - wherein the source electrode comprises a first source portion disposed above an etching stop layer and a second source portion disposed in the source via, and the drain electrode comprises a first drain portion disposed above the etching stop layer and a second drain portion disposed in the drain via.
- 14. The OLED display device in claim 13, wherein the active layer is disposed on the gate insulating layer, the second source portion is in contact with a side surface of the first doped region, and a contact portion of the second source portion is disposed on the gate insulating layer.
- 15. The OLED display device in claim 13, wherein the active layer is disposed on the gate insulating layer, the second drain portion is in contact with a side surface of the second doped region, and a contact portion of the second drain portion is disposed on the gate insulating layer.

- 16. The OLED display device in claim 13, wherein the active layer comprises a channel region, the first doped region, and the second doped region, the first doped region and the second doped region are positioned at both ends of the channel region, and an area of an orthographic projection of the active layer of the first doped region on the substrate is equal to an area of an orthographic projection of the active layer of the second doped region on the substrate.
- 17. The OLED display device in claim 12, wherein the active layer is made of at least one of indium gallium zinc oxide, indium tin zinc oxide, indium gallium zinc tin oxide, and indium gallium zinc tin oxide.
- 18. The OLED display device in claim 12, wherein a thickness of each of the source electrode, the drain electrode, and the anode is equal to any value ranging between 500 angstroms and 10000 angstroms.
- 19. The OLED display device in claim 18, wherein the source electrode, the drain electrode, and the anode have a single-layer structure, and the source electrode, the drain electrode, and the anode are made of any one of molybdenum, aluminum, copper, and titanium.
- 20. The OLED display device in claim 12, wherein the source electrode, the drain electrode, and the anode have a multilayer structure, and the source electrode, the drain electrode, and the anode are made of any one of molybdenum/aluminum/molybdenum, aluminum/molybdenum, molybdenum/copper, and molybdenum titanium/copper.

* * * * *