(19) **日本国特許庁(JP)**

(12)特許公報(B2)

(11)特許番号

特許第6915014号 (P6915014)

(45) 発行日 令和3年8月4日(2021.8.4)

(24) 登録日 令和3年7月16日 (2021.7.16)

(51) Int.Cl. F 1

HO1L 51/50 (2006.01) CO9K 11/06 (2006.01) HO5B 33/14 B CO9K 11/06 69O

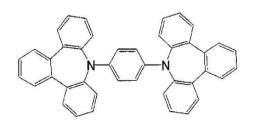
請求項の数 5 (全 49 頁)

(21) 出願番号	特願2019-186828 (P2019-186828)	(73) 特許権者	† 000153878			
(22) 出願日	令和1年10月10日 (2019.10.10)		株式会社半導体エネルギー研究所	Î		
(62) 分割の表示	特願2018-203719 (P2018-203719)		神奈川県厚木市長谷398番地			
	の分割	(72) 発明者	瀬尾 哲史			
原出願日	平成24年3月20日 (2012.3.20)		神奈川県厚木市長谷398番地	株式会社		
(65) 公開番号	特開2020-77863 (P2020-77863A)		半導体エネルギー研究所内			
(43) 公開日	令和2年5月21日 (2020.5.21)	(72) 発明者	下垣 智子			
審査請求日	令和1年10月31日 (2019.10.31)		神奈川県厚木市長谷398番地	株式会社		
(31) 優先権主張番号	特願2011-64553 (P2011-64553)		半導体エネルギー研究所内			
(32) 優先日	平成23年3月23日 (2011.3.23)	(72) 発明者	大澤 信晴			
(33) 優先権主張国・均	地域又は機関		神奈川県厚木市長谷398番地	株式会社		
	日本国(JP)		半導体エネルギー研究所内			
		(72) 発明者	吉住 英子			
			神奈川県厚木市長谷398番地	株式会社		
			半導体エネルギー研究所内			
			最終頁に続く			

(54) 【発明の名称】材料

(57)【特許請求の範囲】

【請求項1】


第1の有機化合物と第2の有機化合物とを含み、

前記第1の有機化合物及び前記第2の有機化合物は、励起錯体を形成しうる組み合わせであり、

前記第2の有機化合物は芳香族アミン化合物であり、

前記第2の有機化合物のHOMO準位は、-5.42 e V以上-5.15 e V以下である、材料(ただし、前記第2の有機化合物が正孔輸送ホスト2である場合、前記第2の有機化合物がTAPCである場合、及び前記第1の有機化合物がPBDであり前記第2の有機化合物がTPDである場合を除く)。

【化1】

正孔輸送ホスト2

第1の有機化合物と第2の有機化合物とを含み、

前記第1の有機化合物及び前記第2の有機化合物は、励起錯体を形成しうる組み合わせであり、

前記第2の有機化合物は芳香族アミン化合物であり、

前記第2の有機化合物のHOMO準位は、-5.42 e V以上-5.15 e V以下である、材料<u>(ただし、前記第2の有機化合物が</u>ベンゾアゼピン構造を有する芳香族アミン化合物である場合、前記第2の有機化合物がTAPCである場合、及び前記第1の有機化合物がTPDである場合を除く)。

【請求項3】

第1の有機化合物と第2の有機化合物とを含み、

前記第1の有機化合物及び前記第2の有機化合物は、励起錯体を形成しうる組み合わせであり、

前記第2の有機化合物は芳香族アミン化合物であり、

前記第2の有機化合物のHOMO準位は、-5.35eV以上-5.15eV以下である、材料(ただし、前記第1の有機化合物がPBDであり、前記第2の有機化合物がTPDである場合を除く)。

【請求項4】

前記第1の有機化合物及び前記第2の有機化合物の少なくとも一方が、蛍光性化合物である、

請求項1乃至請求項3のいずれか一項に記載の材料。

【請求項5】

前記第1の有機化合物が複素芳香族化合物である、

請求項1乃至請求項4のいずれか一項に記載の材料。

【発明の詳細な説明】

【技術分野】

[0001]

有機エレクトロルミネッセンス(EL:Electroluminescence)現象を利用した発光素子(以下、有機EL素子とも記す)に関する。

【背景技術】

[0002]

有機 E L 素子の研究開発が盛んに行われている。有機 E L 素子の基本的な構成は、一対の電極間に発光性の有機化合物を含む層(以下、発光層とも記す)を挟んだものであり、薄型軽量化できる、入力信号に高速に応答できる、直流低電圧駆動が可能であるなどの特性から、次世代のフラットパネルディスプレイ素子として注目されている。また、このような発光素子を用いたディスプレイは、コントラストや画質に優れ、視野角が広いという特徴も有している。さらに、有機 E L 素子は面光源であるため、液晶ディスプレイのバックライトや照明等の光源としての応用も考えられている。

[0003]

有機 E L 素子の発光機構は、キャリア注入型である。すなわち、電極間に発光層を挟んで電圧を印加することにより、電極から注入された電子およびホール(正孔)が再結合して発光物質が励起状態となり、その励起状態が基底状態に戻る際に発光する。そして、励起状態の種類としては、一重項励起状態(S *)と三重項励起状態(T *)が可能である。また、発光素子におけるその統計的な生成比率は、S * : T * = 1 : 3 であると考えられている。

[0004]

発光性の有機化合物は通常、基底状態が一重項状態である。したがって、一重項励起状態(S^{*})からの発光は、同じスピン多重度間の電子遷移であるため蛍光と呼ばれる。一方、三重項励起状態(T^{*})からの発光は、異なるスピン多重度間の電子遷移であるため燐

10

20

30

40

光と呼ばれる。ここで、蛍光を発する化合物(以下、蛍光性化合物と記す)は室温において、通常、燐光は観測されず蛍光のみが観測される。したがって、蛍光性化合物を用いた発光素子における内部量子効率(注入したキャリアに対して発生するフォトンの割合)の理論的限界は、 $S^*: T^*=1:3$ であることを根拠に2.5%とされている。

[0005]

一方、燐光を発する化合物(以下、燐光性化合物と記す)を用いれば、内部量子効率は100%にまで理論上は可能となる。つまり、蛍光性化合物に比べて高い発光効率を得ることが可能になる。このような理由から、高効率な発光素子を実現するために、燐光性化合物を用いた発光素子の開発が近年盛んに行われている。特に、燐光性化合物としては、その燐光量子収率の高さゆえに、イリジウム等を中心金属とする有機金属錯体が済光材料として開示されている。

[0006]

上述した燐光性化合物を用いて発光素子の発光層を形成する場合、燐光性化合物の濃度消光や三重項 - 三重項消滅による消光を抑制するために、他の化合物からなるマトリクス中に該燐光性化合物が分散するようにして形成することが多い。この時、マトリクスとなる化合物はホスト材料、燐光性化合物のようにマトリクス中に分散される化合物はゲスト材料と呼ばれる。

【先行技術文献】

【特許文献】

[0007]

【特許文献1】国際公開第00/70655号パンフレット

【発明の概要】

【発明が解決しようとする課題】

[00008]

しかし、一般に、有機 E L 素子における光取り出し効率は 2 0 % ~ 3 0 % 程度と言われている。したがって、反射電極や透明電極による光の吸収を考慮すると、燐光性化合物を用いた発光素子の外部量子効率の限界は、 2 5 % 程度と考えられている。

[0009]

また、前述の通り、有機EL素子は、ディスプレイや照明への応用が考えられている。このとき、課題の一つとして、消費電力の低減が挙げられる。消費電力を低くするためには、有機EL素子の駆動電圧を低くすることが重要である。

[0010]

そこで、本発明の一態様は、外部量子効率が高い発光素子を提供することを課題の一とする。また、本発明の一態様は、駆動電圧の低い発光素子を提供することを課題の一とする

[0011]

なお、以下に開示する発明は、上記課題の少なくともいずれか一つを解決することを目的 とする。

【課題を解決するための手段】

[0012]

本発明の一態様は、燐光性化合物、第1の有機化合物、及び第2の有機化合物を含む発光層を一対の電極間に有し、第1の有機化合物及び第2の有機化合物が、励起錯体を形成する組み合わせであり、励起錯体の発光スペクトルが、燐光性化合物の吸収スペクトルの最も長波長側に位置する吸収帯と重なり、励起錯体の発光スペクトルのピーク波長が、燐光性化合物の吸収スペクトルの最も長波長側に位置する吸収帯のピーク波長以上である発光素子である。

[0013]

また、本発明の一態様は、燐光性化合物、第1の有機化合物、及び第2の有機化合物を含む発光層を一対の電極間に有し、第1の有機化合物及び第2の有機化合物が、励起錯体を

10

20

30

40

形成する組み合わせであり、励起錯体の発光スペクトルが、燐光性化合物の吸収スペクトルの最も長波長側に位置する吸収帯と重なり、励起錯体の発光スペクトルのピーク波長と、燐光性化合物の発光スペクトルのピーク波長との差が30 n m以下である発光素子である。

[0014]

また、本発明の一態様は、燐光性化合物、第1の有機化合物、及び第2の有機化合物を含む発光層を一対の電極間に有し、第1の有機化合物及び第2の有機化合物が、励起錯体を形成する組み合わせであり、励起錯体の発光スペクトルが、燐光性化合物の吸収スペクトルの最も長波長側に位置する吸収帯と重なり、励起錯体の発光スペクトルのピーク波長が、燐光性化合物の吸収スペクトルの最も長波長側に位置する吸収帯のピーク波長以上、燐光性化合物の発光スペクトルのピーク波長以下である発光素子である。さらに、励起錯体の発光スペクトルのピーク波長と、燐光性化合物の発光スペクトルのピーク波長との差が30nm以下であることが好ましい。

[0015]

また、本発明の一態様は、第1の有機化合物の一重項励起子から、励起錯体が形成される 上記発光素子である。

[0016]

また、本発明の一態様は、第1の有機化合物のアニオン及び第2の有機化合物のカチオンから、励起錯体が形成される上記発光素子である。

[0017]

上記発光素子において、励起錯体の励起エネルギーが燐光性化合物に移動して、該燐光性 化合物が燐光を発することが好ましい。

[0018]

上記発光素子において、第1の有機化合物及び第2の有機化合物の少なくとも一方が蛍光 性化合物であることが好ましい。

[0019]

上記発光素子において、燐光性化合物は、有機金属錯体であることが好ましい。

[0020]

本発明の一態様の発光素子は、発光装置、電子機器、及び照明装置に適用することができる。

【発明の効果】

[0021]

本発明の一態様では、外部量子効率が高い発光素子を提供することができる。また、本発明の一態様では、駆動電圧の低い発光素子を提供することができる。

【図面の簡単な説明】

[0022]

- 【図1】実施例1に係る吸収スペクトル及び発光スペクトルを示す図。
- 【図2】実施例1に係る吸収スペクトル及び発光スペクトルを示す図。
- 【図3】実施例1に係る吸収スペクトル及び発光スペクトルを示す図。
- 【図4】実施例1に係る吸収スペクトル及び発光スペクトルを示す図。
- 【図5】本発明の一態様の概念を説明する図。
- 【図6】本発明の一態様で適用する励起錯体のエネルギー準位を説明する図。
- 【図7】本発明の一態様の発光素子を示す図。
- 【図8】実施例2の発光素子の構成を示す図。
- 【図9】実施例2の発光素子の電圧-輝度特性を示す図。
- 【図10】実施例2の発光素子の電圧・電流特性を示す図。
- 【図11】実施例2の発光素子の輝度-電力効率特性を示す図。
- 【図12】実施例2の発光素子の輝度・外部量子効率特性を示す図。
- 【図13】実施例2の発光素子の発光スペクトルを示す図。
- 【図14】実施例2の発光素子の信頼性試験の結果を示す図。

10

20

30

30

40

【図15】実施例3に係る励起錯体の発光スペクトルのピーク波長と物質XのHOMO準位の関係を示す図。

【図16】実施例3に係る励起錯体の発光スペクトルのピーク波長と発光素子の外部量子 効率の関係を示す図。

【図17】本発明の一態様に係る計算結果を示す図。

【図18】本発明の一態様に係る計算結果を示す図。

【発明を実施するための形態】

[0023]

実施の形態について、図面を用いて詳細に説明する。但し、本発明は以下の説明に限定されず、本発明の趣旨及びその範囲から逸脱することなくその形態及び詳細を様々に変更し得ることは当業者であれば容易に理解される。従って、本発明は以下に示す実施の形態の記載内容に限定して解釈されるものではない。なお、以下に説明する発明の構成において、同一部分又は同様な機能を有する部分には同一の符号を異なる図面間で共通して用い、その繰り返しの説明は省略する。

[0024]

(実施の形態1)

本実施の形態では、本発明の一態様の発光素子について説明する。

[0025]

本実施の形態の発光素子は、発光物質であるゲスト材料と、第1の有機化合物と、第2の有機化合物とを発光層に有する。具体的には、ゲスト材料として燐光性化合物を用いる。 なお、本明細書においては、第1の有機化合物及び第2の有機化合物のうち、発光層に含まれる割合が多い材料をホスト材料と言う。

[0026]

ゲスト材料をホスト材料に分散させた構成とすることにより、発光層の結晶化を抑制することができる。また、ゲスト材料の濃度が高いことによる濃度消光を抑制し、発光素子の発光効率を高くすることができる。

[0027]

なお、本実施の形態において、第1の有機化合物及び第2の有機化合物のそれぞれの三重項励起エネルギーの準位(T_1 準位)は、ゲスト材料の T_1 準位よりも高いことが好ましい。第1の有機化合物(又は第2の有機化合物)の T_1 準位がゲスト材料の T_1 準位よりも低いと、発光に寄与するゲスト材料の三重項励起エネルギーを第1の有機化合物(又は第2の有機化合物)が消光(クエンチ)してしまい、発光効率の低下を招くためである。

[0028]

<発光の素過程>

まず、燐光性化合物をゲスト材料として用いる発光素子における発光の一般的な素過程を 説明する。

[0029]

(1)電子及びホールがゲスト分子において再結合し、ゲスト分子が励起状態となる場合 (直接再結合過程)。

(1-1)ゲスト分子の励起状態が三重項励起状態のとき ゲスト分子は燐光を発する。

(1-2)ゲスト分子の励起状態が一重項励起状態のとき

一重項励起状態のゲスト分子は三重項励起状態に項間交差し、燐光を発する。

[0030]

つまり、上記(1)の直接再結合過程においては、ゲスト分子の項間交差効率、及び燐光量子収率さえ高ければ、高い発光効率が得られることになる。なお、上述した通り、ホスト分子のT₁準位よりも高いことが好ましい。

[0031]

(2)電子及びホールがホスト分子において再結合し、ホスト分子が励起状態となる場合 (エネルギー移動過程)。 10

20

30

30

40

(2-1)ホスト分子の励起状態が三重項励起状態のとき

ホスト分子のT」準位がゲスト分子のT」準位よりも高い場合、ホスト分子からゲスト分子に励起エネルギーが移動し、ゲスト分子が三重項励起状態となる。三重項励起状態となったゲスト分子は燐光を発する。なお、ゲスト分子の一重項励起エネルギーの準位(S」準位)へのエネルギー移動も形式上あり得るが、多くの場合ゲスト分子のS」準位の方がホスト分子のT」準位よりも高エネルギー側に位置しており、主たるエネルギー移動過程になりにくいため、ここでは割愛する。

(2-2)ホスト分子の励起状態が一重項励起状態のとき

ホスト分子の S_1 準位がゲスト分子の S_1 準位および T_1 準位よりも高い場合、ホスト分子からゲスト分子に励起エネルギーが移動し、ゲスト分子が一重項励起状態又は三重項励起状態となる。三重項励起状態となったゲスト分子は燐光を発する。また、一重項励起状態となったゲスト分子は、三重項励起状態に項間交差し、燐光を発する。

[0032]

つまり、上記(2)のエネルギー移動過程においては、ホスト分子の三重項励起エネルギー及び一重項励起エネルギーの双方が、いかにゲスト分子に効率良く移動できるかが重要となる。

[0033]

このエネルギー移動過程を鑑みれば、ホスト分子からゲスト分子に励起エネルギーが移動する前に、ホスト分子自体がその励起エネルギーを光又は熱として放出して失活してしまうと、発光効率が低下することになる。ここで本発明者等は、ホスト分子が一重項励起状態である場合(上記(2-1))に比べて、燐光性化合物であるゲスト分子へのエネルギー移動が起こりにくく、発光効率が低下しやすいことを見出し、課題として着目した。その理由は、以下の通り、より詳細にエネルギー移動過程を考慮することで導き出された。

[0034]

<エネルギー移動過程>

以下では、分子間のエネルギー移動過程について詳述する。

[0035]

まず、分子間のエネルギー移動の機構として、以下の2つの機構が提唱されている。ここで、励起エネルギーを与える側の分子をホスト分子、励起エネルギーを受け取る側の分子をゲスト分子と記す。

[0036]

フェルスター機構(双極子-双極子相互作用)

フェルスター機構は、エネルギー移動に、分子間の直接的接触を必要としない。ホスト分子及びゲスト分子間の双極子振動の共鳴現象を通じてエネルギー移動が起こる。双極子振動の共鳴現象によってホスト分子がゲスト分子にエネルギーを受け渡し、ホスト分子が基底状態になり、ゲスト分子が励起状態になる。フェルスター機構の速度定数 k _n * g を数式 (1)に示す。

[0037]

【数1】

 $k_{h^* \to g} = \frac{9000c^4 K^2 \phi \ln 10}{128\pi^5 n^4 N \tau R^6} \int \frac{f'_h(\nu) \varepsilon_g(\nu)}{\nu^4} d\nu \cdot \cdot \cdot (1)$

[0038]

数式(1)において、は、振動数を表し、f 'h ()は、ホスト分子の規格化された発光スペクトル(一重項励起状態からのエネルギー移動を論じる場合は蛍光スペクトル、三重項励起状態からのエネルギー移動を論じる場合は燐光スペクトル)を表し、g()は、ゲスト分子のモル吸光係数を表し、Nは、アボガドロ数を表し、nは、媒体の屈折

10

20

30

40

20

30

40

50

率を表し、Rは、ホスト分子とゲスト分子の分子間距離を表し、 は、実測される励起状態の寿命(蛍光寿命や燐光寿命)を表し、cは、光速を表し、 は、発光量子収率(一重項励起状態からのエネルギー移動を論じる場合は蛍光量子収率、三重項励起状態からのエネルギー移動を論じる場合は燐光量子収率)を表し、K²は、ホスト分子とゲスト分子の遷移双極子モーメントの配向を表す係数(0~4)である。なお、ランダム配向の場合は K² = 2/3である。

[0039]

デクスター機構(電子交換相互作用)

デクスター機構では、ホスト分子とゲスト分子が軌道の重なりを生じる接触有効距離に近づき、励起状態のホスト分子の電子と基底状態のゲスト分子の電子の交換を通じてエネルギー移動が起こる。デクスター機構の速度定数 k _h * g を数式(2)に示す。

[0040]

【数2】

$$k_{h^* \to g} = \left(\frac{2\pi}{h}\right) K^2 \exp\left(-\frac{2R}{L}\right) \int f'_h(v) \varepsilon'_g(v) dv \cdot \cdot \cdot (2)$$

[0041]

数式(2)において、hは、プランク定数であり、Kは、エネルギーの次元を持つ定数であり、 は、振動数を表し、f'h()は、ホスト分子の規格化された発光スペクトル(一重項励起状態からのエネルギー移動を論じる場合は蛍光スペクトル、三重項励起状態からのエネルギー移動を論じる場合は燐光スペクトル)を表し、 'g()は、ゲスト分子の規格化された吸収スペクトルを表し、Lは、実効分子半径を表し、Rは、ホスト分子とゲスト分子の分子間距離を表す。

[0042]

ここで、ホスト分子からゲスト分子へのエネルギー移動効率 E_T は、数式(3)で表されると考えられる。 k_T は、ホスト分子の発光過程(一重項励起状態からのエネルギー移動を論じる場合は蛍光、三重項励起状態からのエネルギー移動を論じる場合は燐光)の速度定数を表し、 k_T は、ホスト分子の非発光過程(熱失活や項間交差)の速度定数を表し、 は、実測されるホスト分子の励起状態の寿命を表す。

[0043]

【数3】

$$\Phi_{ET} = \frac{kh^* \rightarrow g}{k_r + k_n + kh^* \rightarrow g} = \frac{kh^* \rightarrow g}{\left(\frac{1}{\tau}\right) + kh^* \rightarrow g} \cdot \cdot \cdot (3)$$

[0044]

[0045]

ここで、本発明者等は、ホスト分子の発光スペクトルとゲスト分子の吸収スペクトルとの 重なりを考える上で、ゲスト分子の吸収スペクトルにおける最も長波長(低エネルギー) 側の吸収帯が重要であると考えた。

[0046]

本実施の形態では、ゲスト材料として燐光性化合物を用いる。燐光性化合物の吸収スペクトルにおいて、最も発光に強く寄与すると考えられている吸収帯は、一重項基底状態から三重項励起状態への直接遷移に相当する吸収波長とその近傍であり、それは最も長波長側に現れる吸収帯である。このことから、ホスト材料の発光スペクトル(蛍光スペクトル及び燐光スペクトル)は、燐光性化合物の吸収スペクトルの最も長波長側の吸収帯と重なることが好ましいと考えられる。

[0047]

例えば、有機金属錯体、特に発光性のイリジウム錯体において、最も長波長側の吸収帯は、500~600nm付近にプロードな吸収帯が現れる場合が多い(無論、発光波長によっては、より短波長側やより長波長側に現れる場合もある)。この吸収帯は、主として、三重項MLCT(Metal to Ligand Charge Transfer) 遷移に由来する。ただし、該吸収帯には三重項 - * 遷移や一重項MLCT遷移に由来する吸収も一部含まれ、これらが重なって、吸収スペクトルの最も長波長側にブロードな吸収帯を形成していると考えられる。換言すれば、最低一重項励起状態と最低三重項励起状態の差は小さく、これらに由来する吸収が重なって、吸収スペクトルの最も長波長側にブロードな吸収帯を形成していると考えられる。したがって、ゲスト材料に、有機金属錯体(特にイリジウム錯体)を用いるときは、このように最も長波長側に存在するブロードな吸収帯と、ホスト材料の発光スペクトルが大きく重なる状態が好ましい。

[0048]

ここでまず、ホスト材料の三重項励起状態からのエネルギー移動を考えてみる。上述の議論から、三重項励起状態からのエネルギー移動においては、ホスト材料の燐光スペクトルとゲスト材料の最も長波長側の吸収帯との重なりが大きくなればよい。

[0049]

なお、通常、ホスト材料には蛍光性化合物を用いるため、燐光寿命()はミリ秒以上と非常に長い($k_r + k_n$ が小さい)。これは、三重項励起状態から基底状態(一重項)への遷移が禁制遷移だからである。数式(3)から、このことはエネルギー移動効率 $_{E_T}$ に対して有利に働く。このことも考慮すると、ホスト材料の三重項励起状態からゲスト材料の三重項励起状態へのエネルギー移動は、総じて起こりやすい傾向にある。

[0050]

しかしながら、このとき問題となるのは、ホスト材料の一重項励起状態からのエネルギー移動である。三重項励起状態からのエネルギー移動に加え、一重項励起状態からのエネルギー移動も効率よく行おうとすると、上述の議論から、ホスト材料の燐光スペクトルだけでなく、蛍光スペクトルをもゲスト材料の最も長波長側の吸収帯と重ねるように設計しなければならない。換言すれば、ホスト材料の蛍光スペクトルが、燐光スペクトルと同じような位置に来るようにホスト材料を設計しなければ、ホスト材料の一重項励起状態及び三重項励起状態の双方からのエネルギー移動を効率よく行うことはできないということになる。

[0051]

ところが、一般に、S₁準位とT₁準位は大きく異なる(S₁準位>T₁準位)ため、蛍光の発光波長と燐光の発光波長も大きく異なる(蛍光の発光波長く燐光の発光波長)。例えば、燐光性化合物を用いた発光素子において、ホスト材料として良く用いられる4,4,-ジ(N-カルバゾリル)ビフェニル(略称:CBP)は、500nm付近に燐光スペクトルを有するが、一方で蛍光スペクトルは400nm付近であり、100nmもの隔たりがある。この例から考えてみても、ホスト材料の蛍光スペクトルが燐光スペクトルと同じような位置に来るようにホスト材料を設計することは、極めて困難である。したがって、ホスト材料の一重項励起状態からのゲスト材料へのエネルギー移動効率の向上は、大きな課題であると本発明者等は考えた。

[0052]

なお、ホスト材料として用いられる蛍光性化合物の蛍光寿命()はナノ秒レベルと非常

10

20

30

40

に短い($k_r + k_n$ が大きい)。これは、一重項励起状態から基底状態(一重項)への遷移が許容遷移だからである。数式(3)から、このことはエネルギー移動効率 ϵ_r に対して不利に働く。このことも考慮すると、ホスト材料の一重項励起状態からゲスト材料へのエネルギー移動は、総じて起こりにくい傾向にある。

[0053]

本発明の一態様は、このようなホスト材料の一重項励起状態からのゲスト材料へのエネルギー移動効率に関する問題点を克服できる、有用な手法である。

[0054]

なおこれまで、燐光性化合物は、項間交差を利用すれば、一重項励起状態及び三重項励起状態の双方を発光に変換できるため(上述の「(1)直接再結合過程」参照)、燐光性化合物を用いた発光素子の内部量子効率は、理論的に100%が可能であるとされてきた。そして、光取り出し効率が20%という仮定の下に、外部量子効率が20%に達する発光素子は、内部量子効率もほぼ100%が達成できているという議論がなされてきた経緯がある。しかし、これら従来の発光素子においては、上述したホスト材料の一重項励起状態からのエネルギー移動が看過されてきたため、実は内部量子効率100%には達して、本発明者等は外部量子効率27%以上が達成できているためである(図12、実施例2参照り、これは外部量子効率の従来の理論限界と同等以上の値であると言える。つまり、少な制度は、それを達成するのに有用な手法である。なお、このことから、従来の外部量子効率20%というのは、内部量子効率にして75%以下に相当すると見積もられる。

[0055]

このように、本発明の一態様を適用することで、外部量子効率の高い発光素子を実現する ことができる。

[0056]

< 本発明の一態様 >

本発明の一態様は、燐光性化合物、第1の有機化合物、及び第2の有機化合物を含む発光層を一対の電極間に有し、第1の有機化合物及び第2の有機化合物が、励起錯体を形成する組み合わせであり、励起錯体の発光スペクトルが、燐光性化合物の吸収スペクトルの最も長波長側の吸収帯と重なり、励起錯体の発光スペクトルのピーク波長が、燐光性化合物の吸収スペクトルの最も長波長側に位置する吸収帯のピーク波長以上である発光素子である。

[0057]

第1の有機化合物と第2の有機化合物は、キャリア(電子及びホール)の再結合(又は一重項励起子)によって、励起錯体(エキサイプレックスとも言う)が形成される。形成された励起錯体が発光する場合、その発光波長は、第1の有機化合物と第2の有機化合物のそれぞれの発光波長(蛍光波長)に比べて、長波長側に存在する。換言すれば、励起錯体を形成することで、第1の有機化合物の蛍光スペクトルや第2の有機化合物の蛍光スペクトルを、より長波長側に位置する発光スペクトルに変換することができる。

[0058]

したがって、図5に示すように、第1の有機化合物(又は第2の有機化合物)の蛍光スペクトルが、たとえ燐光性化合物の最も長波長側に位置する吸収帯に比べて短波長側に位置し、該吸収帯との重なりがなかったとしても、励起錯体を形成することで、長波長の発光スペクトルが得られ、該吸収帯との重なりを大きくすることができる。本発明の一態様の発光素子は、この励起錯体の発光スペクトルと燐光性化合物の吸収スペクトルとの重なりを利用して、エネルギー移動をするため、エネルギー移動効率が高い。したがって、本発明の一態様では、外部量子効率が高い発光素子を実現することができる。

[0059]

また、励起錯体は励起状態でのみ存在するため、エネルギーを吸収できる基底状態が存在しない。したがって、燐光性化合物の一重項励起状態及び三重項励起状態が該励起錯体に

10

20

30

40

20

30

40

50

逆エネルギー移動してしまい、燐光性化合物が発光する前に失活する(すなわち発光効率 を損なう)という現象は、原理的に生じないと考えられる。このことも、外部量子効率を 高くできる一因である。

[0060]

また、励起錯体は一重項励起エネルギーと三重項励起エネルギーの差が極めて小さいと考えられる。換言すれば、励起錯体の一重項状態からの発光スペクトルと三重項状態からの発光スペクトルは、極めて近接することになる。したがって、上述したように励起錯体の発光スペクトル(一般には、励起錯体の一重項状態からの発光スペクトル)を燐光性化合物の最も長波長側に位置する吸収帯に重ねるよう設計した場合、励起錯体の三重項状態からの発光スペクトル(常温では観測されず、低温でも観測されない場合が多い)も、燐光性化合物の最も長波長側に位置する吸収帯に重なることになる。このことはすなわち、励起錯体の一重項状態、及び三重項状態の双方から、燐光性化合物に対して効率よくエネルギー移動できることを意味する。

[0061]

実際に励起錯体がこのような特性を有しているかどうかに関し、以下では、分子軌道計算を用いて検証した。一般に、複素芳香族化合物と芳香族アミンとの組み合わせは、芳香族アミンの最低空分子軌道(LUMO:Lowest Unoccupied Molecular Orbital)準位に比べて深い複素芳香族化合物のLUMO準位(電子が入りやすい性質)と複素芳香族化合物の最高被占有軌道(HOMO:Hightest Occupied Molecular Orbital)準位に比べて浅い芳香族アミンのHOMO準位(ホールが入りやすい性質)の影響で、励起錯体を形成することが多い。そこで、複素芳香族化合物のLUMOを構成する代表的な骨格のジベンゾ[f,h]キノキサリン(略称:DBq)と、芳香族アミンのHOMOを構成する代表的な骨格のトリフェニルアミン(略称:TPA)との組み合わせを用いて計算した。

[0062]

まず、DBQ単体とTPA単体の最低励起一重項状態(S1)と最低励起三重項状態(T1)における最適分子構造及び励起エネルギーを、時間依存密度汎関数法(TD-DFT)を用いて計算した。さらに、DBQとTPAの二量体についても励起エネルギーを計算した。DFTの全エネルギーはポテンシャルエネルギー、電子間静電エネルギーの和で表である。DFTでは、交換相関相互作用を全て含む交換相関エネルギーの和で表される。DFTでは、交換相関相互作用を電子密度で表現された一電子ポテンシャルの汎関数の関数の意)で近似しているため、計算は高速かつ高精度である。ここでは、混合汎関数であるB3LYPを用いて、交換と相関エネルギーに係る各パラメータの短縮関数にした。また、基底関数として、6-311(それぞれの原子価軌道に三つの短縮関数を用いたtriple split valence基底系の基底関数)を全ての原子に適用した。上述の基底関数により、例えば、水素原子であれば、1s~3sの軌道が考慮され、また、炭素原子であれば、1s~4s、2p~4pの軌道が考慮されることになる。さらに、計算精度向上のため、分極基底系として、水素原子にはp関数を、水素原子以外にはd関数を加えた。

[0063]

なお、量子化学計算プログラムとしては、 G a u s s i a n 0 9 を使用した。計算は、 ハイパフォーマンスコンピュータ(S G I 社製、 A 1 t i x 4 7 0 0)を用いて行った。 【 0 0 6 4 】

まず、DBq単体、TPA単体、及びDBqとTPAの二量体に関し、HOMO準位及び LUMO準位を算出した。HOMO準位及びLUMO準位を図17に、HOMO及びLU MOの分布を図18に、それぞれ示す。

[0065]

図 1 8 (A 1) に、 D B q 単体の L U M O の 分布を示し、 図 1 8 (A 2) に、 D B q 単体の H O M O の 分布を示し、 図 1 8 (B 1) に、 T P A 単体の L U M O の 分布を示し、 図 1 8 (B 2) に、 T P A 単体の H O M O の 分布を示し、 図 1 8 (C 1) に、 D B q と T P A

の二量体の L U M O の分布を示し、図 1 8 (C 2) に、 D B q と T P A の二量体の H O M O の分布を示す。

[0066]

図 1 7 に示すように、 D B q と T P A の二量体は、 T P A の L U M O 準位に比べて深い (低い) D B q の L U M O 準位(- 1 . 9 9 e V) と D B q の H O M O 準位に比べて浅い (高い) T P A の H O M O 準位(- 5 . 2 1 e V) の影響で、 D B q と T P A の励起錯体を形成することが示唆される。 実際、 図 1 8 からわかるように、 D B q と T P A の二量体の L U M O は D B q 側に、 H O M O は T P A 側に分布している。

[0067]

次に、DBq単体のS₁とT₁における最適分子構造から得られた励起エネルギーを示す。ここで、S₁とT₁の励起エネルギーは、DBq単体が発する蛍光と燐光の波長にそれぞれ相当する。DBq単体のS₁の励起エネルギーは、3.294eVであり、蛍光波長は、376.4nmであった。また、DBq単体のT₁の励起エネルギーは、2.460eVであり、燐光波長は、504.1nmであった。

[0068]

また、TPA単体のS $_1$ とT $_1$ における最適分子構造から得られた励起エネルギーを示す。ここで、S $_1$ とT $_1$ の励起エネルギーは、TPA単体が発する蛍光と燐光の波長にそれぞれ相当する。TPA単体のS $_1$ の励起エネルギーは、3.508eVであり、蛍光波長は、353.4nmであった。また、TPA単体のT $_1$ の励起エネルギーは、2.610eVであり、燐光波長は、474.7nmであった。

[0069]

さらに、DBqとTPAの二量体のS₁とT₁における最適分子構造から得られた励起エネルギーを示す。S₁とT₁の励起エネルギーは、DBqとTPAの二量体が発する蛍光と燐光の波長にそれぞれ相当する。DBqとTPAの二量体のS₁の励起エネルギーは、2.036eVであり、蛍光波長は、609.1nmであった。また、DBqとTPAの二量体のT₁の励起エネルギーは、2.030eVであり、燐光波長は、610.0nmであった。

[0070]

以上のことから、DBq単体、TPA単体のいずれにおいても、蛍光波長に比べて燐光波長が100nm近く長波長シフトしていることがわかる。これは、上述したCBP(実測値)と同様の傾向であり、計算の妥当性を支持する結果である。

[0071]

一方、 D B q と T P A の二量体の蛍光波長は、 D B q 単体や T P A 単体の蛍光波長に比べ、より長波長側に存在することがわかる。これは、後述する実施例(実測値)でも同様の傾向であり、計算の妥当性を支持する結果である。そして、 D B q と T P A の二量体の蛍光波長と燐光波長の差はわずか 0 . 9 n m であり、ほぼ同じ波長であることがわかる。

[0072]

この結果から、励起錯体は一重項励起エネルギーと三重項励起エネルギーをほぼ同じエネルギーに集約することができると言える。したがって、上述したように、励起錯体はその一重項状態、及び三重項状態の双方から、燐光性化合物に対して効率よくエネルギー移動できることが示唆された。

[0073]

このような効果は、励起錯体をエネルギー移動の媒体に用いることによる特異な効果である。一般的には、ホスト材料の一重項励起状態あるいは三重項励起状態から、燐光性化合物へのエネルギー移動が考慮されている。一方、本発明の一態様では、ホスト材料と他の材料との励起錯体(第1の有機化合物と第2の有機化合物との励起錯体)をまず形成させ、その励起錯体からのエネルギー移動を用いている点で従来と大きく異なる。そして、この相違点により、従来にない高い発光効率が得られているのである。

[0074]

なお、一般に、励起錯体を発光素子の発光層に用いると、発光色を制御できるなどの利用

20

10

40

30

20

30

40

50

価値はあるものの、発光効率は大きく低下するのが常である。したがって、励起錯体を用いた発光素子は、高効率な発光素子を得るには適さないと従来は考えられてきた。しかしながら、本発明の一態様で示すように、励起錯体を燐光性化合物へのエネルギー移動の媒体に用いることで、逆に極限まで発光効率を高めることができることを本発明者等は見出した。これは、従来の固定概念とは相反する技術思想である。

[0075]

また、本発明の一態様の発光素子において、キャリアの再結合(又は一重項励起子)によって励起錯体が形成される電圧のしきい値は、該励起錯体の発光スペクトルのピークのエネルギーによって決まる。例えば、励起錯体の発光スペクトルのピークが620nm(2.0eV)であれば、その励起錯体を電気エネルギーで形成するのに必要な電圧のしきい値も2.0V程度である。

[0076]

ここで、励起錯体の発光スペクトルのピークのエネルギーが高すぎる(波長が短すぎる) と、励起錯体が形成される電圧のしきい値も増大してしまう。この場合、励起錯体から燐 光性化合物にエネルギー移動して燐光性化合物を発光させるために、より大きな電圧を要 することになり、余分なエネルギーを消費してしまうため、好ましくない。

[0077]

この観点から、励起錯体の発光スペクトルのピークのエネルギーが低い(波長が長い)ほど、該電圧のしきい値は小さくなり好ましい。すなわち、本発明の一態様の発光素子は、励起錯体の発光スペクトルのピーク波長が、燐光性化合物の吸収スペクトルの最も長波長側に位置する吸収帯のピーク波長以上であるため、駆動電圧の低い発光素子を得ることができる。しかも、本発明の一態様の発光素子は、励起錯体の発光スペクトルのピーク波長が、燐光性化合物の吸収スペクトルのピーク波長以上であっても、励起錯体の発光スペクトルと燐光性化合物の吸収スペクトルの最も長波長側に位置する吸収帯との重なりを利用してエネルギー移動が可能であるため、高い発光効率を得ることができる。このように、駆動電圧を低減しつつ、高い発光効率(外部量子効率)が得られることにより、高い電力効率が実現できる。

[0078]

上記発光素子は、励起錯体の発光スペクトルのピーク波長が特に長波長であるため、より 駆動電圧の低い発光素子を得ることができる。これは以下のように説明できる。

[0079]

本発明の一態様には、励起錯体の発光スペクトルのピーク波長が、燐光性化合物の吸収スペクトルの最も長波長側に位置する吸収帯のピーク波長以上(すなわち、励起錯体の発光のピークのエネルギーが、燐光性化合物の吸収のピークのエネルギー以下)である発光素子が含まれる。したがって、該発光素子は、キャリアの再結合によって燐光性化合物が発光を始める電圧の値よりも、キャリアの再結合によって励起錯体が形成される電圧の値の方が小さい。

[0800]

つまり、発光素子に印加される電圧が、燐光性化合物が発光を始める値未満であっても、 キャリアが再結合し励起錯体を形成することで、発光素子に再結合電流が流れ始める。し たがって、より駆動電圧の低い(電圧 - 電流特性の良い)発光素子を実現することができ る。

[0081]

また、これにより、燐光性化合物が発光を始める値に電圧が達した頃には、発光層中に十分な数のキャリアが存在し、燐光性化合物の発光に寄与できるキャリアの再結合が円滑に、かつ数多く行われる。よって、燐光性化合物のしきい値電圧(発光開始電圧)付近において、輝度は急激に高くなる。つまり、電圧・輝度特性の発光開始電圧付近の立ち上がりを急峻にすることができるため、所望の輝度に要する駆動電圧も低くすることができる。また、実用的な輝度を得るためには、燐光性化合物のしきい値電圧(発光開始電圧)以上の電圧で駆動するため、燐光性化合物の発光が支配的であり、発光素子は高い電流効率を

実現することもできる。

[0082]

なお、本発明の一態様で用いる燐光性化合物は、一重項吸収スペクトルと三重項吸収スペクトルが近い位置に存在する。また、本発明の一態様で形成する励起錯体は、一重項状態からの発光スペクトルのピークと、三重項状態からの発光スペクトルのピークが近い位置に存在すると考えられる。したがって、励起錯体の発光スペクトル(通常は一重項状態からの発光スペクトル)のピークが、燐光性化合物の発光スペクトルのピークに近い位置に存在しても、三重項状態の励起錯体が、燐光性化合物の三重項励起エネルギーを消光することが抑制することができる。また、そもそも、励起錯体には吸収スペクトルが存在しないので、燐光性化合物の三重項励起エネルギーが励起錯体にエネルギー移動し、消光するという現象自体が起こりにくい。このことからも、本発明の一態様の発光素子は外部量子効率が高い値を示すと言える。これも、励起錯体を用いる利点の一つである。

[0083]

また、本発明の一態様は、燐光性化合物、第1の有機化合物、及び第2の有機化合物を含む発光層を一対の電極間に有し、第1の有機化合物及び第2の有機化合物が、励起錯体を形成する組み合わせであり、励起錯体の発光スペクトルが、燐光性化合物の吸収スペクトルの最も長波長側に位置する吸収帯と重なり、励起錯体の発光スペクトルのピーク波長と、燐光性化合物の発光スペクトルのピーク波長との差が30nm以下である発光素子である。

[0084]

上述した通り、励起錯体の発光スペクトル(通常は一重項状態からの発光スペクトル)のピークが、燐光性化合物の発光スペクトルのピークに近い位置に存在することで、駆動電圧が低く、発光効率も十分に高い発光素子が得られる。低電圧化の効果は、励起錯体の発光スペクトルのピークが、燐光性化合物の発光スペクトルのピーク + 30 n m 以内の領域で顕著に見られる。また、励起錯体の発光スペクトルのピークが、燐光性化合物の発光スペクトルのピーク・30 n m 以内の領域であれば、比較的高い発光効率も保てる。

[0085]

しかし、励起錯体の発光スペクトルのピークが、燐光性化合物の発光スペクトルのピークよりも長波長側に存在すると、発光素子の外部量子効率が低下することがある。この条件下においては、励起錯体の発光スペクトルと燐光性化合物の吸収スペクトルの最も長波長側に位置する吸収帯との重なりが小さくなってくるため、励起錯体から燐光性化合物への励起エネルギーの移動が起こりにくく、励起錯体自体がその励起エネルギーを光又は熱として放出して失活してしまいやすくなるからである。

[0086]

したがって、極めて高い発光効率を得ることを考慮すると、本発明の別の態様は、燐光性化合物、第1の有機化合物、及び第2の有機化合物を含む発光層を一対の電極間に有し、第1の有機化合物及び第2の有機化合物が、励起錯体を形成する組み合わせであり、励起錯体の発光スペクトルが、燐光性化合物の吸収スペクトルの最も長波長側に位置する吸収帯と重なり、励起錯体の発光スペクトルのピーク波長が、燐光性化合物の吸収スペクトルのピーク波長以上、燐光性化合物の発光スペクトルのピーク波長以下である発光素子である。

[0087]

上記発光素子は、励起錯体の発光スペクトルのピーク波長が、燐光性化合物の発光スペクトルのピーク波長以下であるため、励起錯体の発光スペクトルと燐光性化合物の吸収スペクトルの最も長波長側に位置する吸収帯との重なりが大きくなってくる。したがって、励起錯体から励起エネルギーを燐光性化合物に効率よく移動させることができる。よって、エネルギーの失活を抑制することができる。よって、駆動電圧が低く、外部量子効率が高い発光素子を実現することができる。

[0088]

特に、励起錯体の発光スペクトルのピーク波長と、燐光性化合物の発光スペクトルのピー

10

20

30

40

ク波長の差が30nm以内であると好ましい。

[0089]

また、本発明の一態様において、第1の有機化合物又は第2の有機化合物の一重項励起子から、励起錯体が形成される。

[0090]

本発明の一態様の発光素子では、第1の有機化合物及び第2の有機化合物の一方が一重項励起子を形成した後、基底状態の他方と相互作用することで励起錯体を形成する素過程が考えられる。上述した通り、励起錯体の発光スペクトルと、燐光性化合物の吸収スペクトルを大きく重ねることができるため、エネルギー移動効率を高くすることができる。よって、外部量子効率が高い発光素子を実現することができる。

[0091]

[0092]

また、本発明の一態様の発光素子において、励起錯体の励起エネルギーは燐光性化合物に十分にエネルギー移動し、励起錯体からの発光は実質的に観察されないことが好ましい。したがって、励起錯体を介して燐光性化合物にエネルギーを移動して、該燐光性化合物が、燐光を発することが好ましい。

[0093]

また、上述したエネルギー移動の概念から、第1の有機化合物および第2の有機化合物の 少なくとも一方が蛍光性化合物(すなわち、一重項励起状態から発光や熱失活が起こりや すい化合物)である場合に、本発明の一態様が有効となる。したがって、第1の有機化合 物および第2の有機化合物の少なくとも一方が蛍光性化合物であることが好ましい。

[0094]

なお、ホスト材料に用いる有機化合物に燐光性化合物を用いると、該有機化合物自体が発光しやすくなり、ゲスト材料にエネルギー移動されにくくなる。この場合、該有機化合物が効率よく発光すればよいが、ホスト材料である該有機化合物は濃度消光の問題が発生するため、高い発光効率を達成するのは困難である。したがって、該有機化合物は、蛍光性化合物であり、上述の構成によりエネルギー移動することが好ましい。

[0095]

また、本発明の一態様において、燐光性化合物が、有機金属錯体であることが好ましい。

[0096]

以下に、本発明の一態様で利用する励起錯体に関して詳説する。

[0097]

<励起錯体>

励起錯体(エキサイプレックス、exciplex)は、励起状態における異種分子間の相互作用によって形成される。励起錯体は、比較的深いLUMO準位をもつ材料と、浅いHOMO準位をもつ材料との間で形成しやすいことが一般に知られている。

[0098]

発光波長は、HOMO準位とLUMO準位間のエネルギー差に依存する。エネルギー差が大きいと発光波長は短くなり、エネルギー差が小さいと発光波長は長くなる。

[0099]

ここで、本発明の一態様で適用する第1の有機化合物と第2の有機化合物のHOMO準位

10

20

30

40

及びLUMO準位は異なる。具体的には、エネルギー準位は、第1の有機化合物のHOMO準位〈第2の有機化合物のHOMO準位〈第1の有機化合物のLUMO準位〈第2の有機化合物のLUMO準位という順で高い(図6参照)。

[0100]

そして、この2つの有機化合物により励起錯体が形成された場合、励起錯体のLUMO準位は、第1の有機化合物に由来し、HOMO準位は、第2の有機化合物に由来する(図6参照)。したがって、励起錯体のエネルギー差は、第1の有機化合物のエネルギー差、及び第2の有機化合物のエネルギー差よりも小さくなる。つまり、第1の有機化合物と第2の有機化合物のそれぞれの発光波長に比べて、励起錯体の発光波長は長波長となる。

[0101]

本発明の一態様で利用する励起錯体の形成過程は大きく分けて2つの過程が考えられる。

[0102]

本明細書において、エレクトロプレックスとは、基底状態の第1の有機化合物及び基底状態の第2の有機化合物から、直接、励起錯体が形成されることを指す。

[0103]

前述の通り、一般には、電子及びホールがホスト材料中で再結合した場合、励起状態のホスト材料からゲスト材料に励起エネルギーが移動し、ゲスト材料が励起状態に至り、発光する。

[0104]

ここで、ホスト材料からゲスト材料に励起エネルギーが移動する前に、ホスト材料自体が発光する、又は励起エネルギーが熱エネルギーとなることで、励起エネルギーの一部を失活する。特に、ホスト材料が一重項励起状態である場合は、三重項励起状態である場合に比べて励起寿命が短いため、一重項励起エネルギーの失活が起こりやすい。励起エネルギーの失活は、発光素子の寿命の低下につながる要因の一つである。

[0105]

しかし、本発明の一態様では、第1の有機化合物及び第2の有機化合物がキャリアを持った状態(カチオン又はアニオン)から、エレクトロプレックスを形成するため、励起寿命の短い一重項励起子の形成を抑制することができる。つまり、一重項励起子を形成することなく、直接励起錯体を形成する過程が存在しうる。これにより、上記一重項励起エネルギーの失活も抑制することができる。したがって、寿命が長い発光素子を実現することができる。

[0106]

例えば、第1の有機化合物が電子トラップ性の化合物であり、第2の有機化合物がホールトラップ性の化合物である場合、第1の有機化合物のアニオンと第2の有機化合物のカチオンから、直接エレクトロプレックスが形成されることになる。このようにしてホスト材料の一重項励起状態の発生を抑制し、エレクトロプレックスからゲスト材料にエネルギー移動を行って発光効率が高い発光素子を得る概念は、従前にない。なお、ホスト材料の三重項励起状態の発生も同様に抑制され、直接エレクトロプレックスが形成されるため、該エレクトロプレックスからゲスト材料にエネルギー移動すると考えられる。この機構も従前にはない。

[0107]

また、形成されたエレクトロプレックスの発光スペクトルは、第 1 の有機化合物と第 2 の有機化合物のそれぞれの発光波長に比べて、長波長側に存在する。

[0108]

第 1 の有機化合物(又は第 2 の有機化合物)の発光スペクトルと燐光性化合物の吸収スペクトルとの重なりよりも、エレクトロプレックスの発光スペクトルと燐光性化合物の吸収スペクトルとの重なりは大きくなる。本発明の一態様の発光素子は、エレクトロプレックスの発光スペクトルと燐光性化合物の吸収スペクトルとの重なりを利用して、エネルギー移動をするため、エネルギー移動効率が高い。したがって、本発明の一態様では、外部量

10

20

30

40

子効率が高い発光素子を実現することができる。

[0109]

励起子による励起錯体の形成

もう一つの過程としては、第1の有機化合物及び第2の有機化合物の一方が一重項励起子を形成した後、基底状態の他方と相互作用して励起錯体を形成する素過程が考えられる。エレクトロプレックスとは異なり、この場合は一旦、第1の有機化合物又は第2の有機化合物の一重項励起状態が生成してしまうが、これは速やかに励起錯体に変換されるため、やはり一重項励起エネルギーの失活を抑制することができる。したがって、第1の有機化合物又は第2の有機化合物が励起エネルギーを失活することを抑制することができる。このため、本発明の一態様では、寿命の長い発光素子を実現することができる。なお、ホスト材料の三重項励起状態についても、速やかに励起錯体に変換され、該励起錯体からゲスト材料にエネルギー移動すると考えられる。

[0110]

また、形成された励起錯体の発光スペクトルは、第1の有機化合物と第2の有機化合物のそれぞれの発光波長に比べて、長波長側に存在する。

[0111]

第1の有機化合物(又は第2の有機化合物)の発光スペクトルと燐光性化合物の吸収スペクトルとの重なりよりも、励起錯体の発光スペクトルと燐光性化合物の吸収スペクトルとの重なりは大きくなる。本発明の一態様の発光素子は、励起錯体の発光スペクトルと燐光性化合物の吸収スペクトルとの重なりを利用して、エネルギー移動をするため、エネルギー移動効率が高い。したがって、本発明の一態様では、外部量子効率が高い発光素子を実現することができる。

[0112]

例えば、第1の有機化合物が電子トラップ性の化合物であり、一方で第2の有機化合物がホールトラップ性の化合物であり、これら化合物のHOMO準位の差、及びLUMO準位の差が大きい場合(具体的には差が0.3eV以上)、電子は選択的に第1の有機化合物に入り、ホールは選択的に第2の有機化合物に入る。この場合、一重項励起子を経て励起錯体が形成される過程よりも、エレクトロプレックスが形成される過程の方が優先されると考えられる。

[0113]

本実施の形態は、他の実施の形態と適宜組み合わせることができる。

[0114]

(実施の形態2)

本実施の形態では、本発明の一態様の発光素子について図7を用いて説明する。

[0115]

図7(A)は、第1の電極103と第2の電極108との間にEL層102を有する発光素子を示した図である。図7(A)における発光素子は、第1の電極103の上に順に積層した正孔注入層701、正孔輸送層702、発光層703、電子輸送層704、電子注入層705と、さらにその上に設けられた第2の電極108から構成されている。

[0116]

第1の電極103としては、仕事関数の大きい(具体的には4.0eV以上)金属、合金、導電性化合物、及びこれらの混合物などを用いることが好ましい。具体的には、例えば、酸化インジウム・酸化スズ(ITO:Indium Tin Oxide)、珪素又は酸化珪素を含有した酸化インジウム・酸化スズ、酸化インジウム・酸化亜鉛(Indium Zinc Oxide)、酸化タングステン及び酸化亜鉛を含有した酸化インジウム(IWZO)等が挙げられる。これらの導電性金属酸化物膜は、通常スパッタリング法により成膜されるが、ゾル・ゲル法などを応用して作製しても構わない。例えば、酸化インジウム・酸化亜鉛膜は、酸化インジウムに対し1~20wt%の酸化亜鉛を加えたターゲットを用いてスパッタリング法により形成することができる。また、IWZO膜は、酸化インジウムに対し酸化タングステンを0.5~5wt%、酸化亜鉛を0.1~1wt%含

10

20

30

40

有したターゲットを用いてスパッタリング法により形成することができる。この他、グラフェン、金、白金、ニッケル、タングステン、クロム、モリブデン、鉄、コバルト、銅、パラジウム、又は金属材料の窒化物(例えば、窒化チタン)等が挙げられる。

[0117]

但し、EL層102のうち、第1の電極103に接して形成される層が、後述する有機化合物と電子受容体(アクセプター)とを混合してなる複合材料を用いて形成される場合には、第1の電極103に用いる物質は、仕事関数の大小に関わらず、様々な金属、合金、電気伝導性化合物、およびこれらの混合物などを用いることができる。例えば、アルミニウム、銀、アルミニウムを含む合金(例えば、A1-Si)等も用いることもできる。

[0118]

第1の電極103は、例えばスパッタリング法や蒸着法(真空蒸着法を含む)等により形成することができる。

[0119]

第2の電極108は、仕事関数の小さい(好ましくは3.8eV以下)金属、合金、電気伝導性化合物、及びこれらの混合物などを用いて形成することが好ましい。具体的には、元素周期表の第1族または第2族に属する元素、すなわちリチウムやセシウム等のアルカリ金属、カルシウム、ストロンチウム等のアルカリ土類金属、マグネシウム、およびこれらを含む合金(例えば、Mg-Ag、Al-Li)、ユーロピウム、イッテルビウム等の希土類金属およびこれらを含む合金の他、アルミニウムや銀などを用いることができる。

[0120]

但し、EL層102のうち、第2の電極108に接して形成される層が、後述する有機化合物と電子供与体(ドナー)とを混合してなる複合材料を用いる場合には、仕事関数の大小に関わらず、A1、Ag、ITO、珪素若しくは酸化珪素を含有した酸化インジウム・酸化スズ等様々な導電性材料を用いることができる。

[0121]

なお、第2の電極108を形成する場合には、真空蒸着法やスパッタリング法を用いることができる。また、銀ペーストなどを用いる場合には、塗布法やインクジェット法などを用いることができる。

[0122]

EL層102は、少なくとも発光層703を有する。EL層102の一部には公知の物質を用いることもでき、低分子系化合物および高分子系化合物のいずれを用いることもできる。なお、EL層102を形成する物質には、有機化合物のみからなるものだけでなく、無機化合物を一部に含む構成も含めるものとする。

[0123]

E L 層 1 0 2 は、発光層 7 0 3 の他、図 7 (A) に示すように正孔注入性の高い物質を含んでなる正孔注入層 7 0 1、正孔輸送性の高い物質を含んでなる正孔輸送層 7 0 2、電子輸送性の高い物質を含んでなる電子輸送層 7 0 4、電子注入性の高い物質を含んでなる電子注入層 7 0 5 などを適宜組み合わせて積層することにより形成される。

[0124]

正孔注入層701は、正孔注入性の高い物質を含む層である。正孔注入性の高い物質としては、モリブデン酸化物、チタン酸化物、バナジウム酸化物、レニウム酸化物、ルテニウム酸化物、クロム酸化物、ジルコニウム酸化物、ハフニウム酸化物、タンタル酸化物、銀酸化物、タングステン酸化物、マンガン酸化物等の金属酸化物を用いることができる。また、フタロシアニン(略称:H2Pc)、銅(II)フタロシアニン(略称:CuPc)等のフタロシアニン系の化合物を用いることができる。

[0125]

また、低分子の有機化合物である 4 , 4 ' , 4 ' ' - トリス(N, N - ジフェニルアミノ) トリフェニルアミン(略称: TDATA)、 4 , 4 ' , 4 ' ' - トリス[N - (3 - メチルフェニル) - N - フェニルアミノ] トリフェニルアミン(略称: MTDATA)、 4 , 4 ' - ビス[N - (4 - ジフェニルアミノフェニル) - N - フェニルアミノ] ビフェニ

10

20

30

40

20

30

40

50

ル(略称: D P A B)、 4 , 4 ' - ビス(N - $\{4 - [N' - (3 - メチルフェニル) - N' - フェニルアミノ] フェニル<math>\}$ - N - フェニルアミノ)ビフェニル(略称: D N T P D)、 1 , 3 , 5 - トリス [N - (4 - ジフェニルアミノフェニル) - N - フェニルアミノ] ベンゼン(略称: D P A 3 B)、 3 - [N - (9 - フェニルカルバゾール - 3 - イル)) - N - フェニルアミノ] - 9 - フェニルカルバゾール(略称: P C z P C A 1)、 3 , 6 - ビス [N - (9 - フェニルカルバゾール - 3 - イル) - N - フェニルカルバゾール(略称: P C z P C A 2)、 3 - [N - (1 - ナフチル) - N - (9 - フェニルカルバゾール(略称: P C z P C N 1)等の芳香族アミン化合物等を用いることができる。

[0 1 2 6]

さらに、高分子化合物(オリゴマー、デンドリマー、ポリマー等)を用いることもできる。例えば、ポリ(N・ビニルカルバゾール)(略称:PVK)、ポリ(4・ビニルトリフェニルアミン)(略称:PVTPA)、ポリ[N・(4・{N'・[4・(4・ジフェニルアミノ)フェニル]フェニル・N'・フェニルアミノ}フェニル)メタクリルアミド](略称:PTPDMA)、ポリ[N,N'・ビス(4・ブチルフェニル)・N,N'・ビス(フェニル)ベンジジン](略称:Poly・TPD)などの高分子化合物が挙げられる。また、ポリ(3,4・エチレンジオキシチオフェン)/ポリ(スチレンスルホン酸)(PEDOT/PSS)、ポリアニリン/ポリ(スチレンスルホン酸)(PEDOT/PSS)、ポリアニリン/ポリ(スチレンスルホン酸)(PAni/PSS)等の酸を添加した高分子化合物を用いることができる。

[0127]

また、正孔注入層701として、有機化合物と電子受容体(アクセプター)とを混合してなる複合材料を用いてもよい。このような複合材料は、電子受容体によって有機化合物に正孔が発生するため、正孔注入性および正孔輸送性に優れている。この場合、有機化合物としては、発生した正孔の輸送に優れた材料(正孔輸送性の高い物質)であることが好ましい。

[0128]

複合材料に用いる有機化合物としては、芳香族アミン化合物、カルバゾール誘導体、芳香族炭化水素、高分子化合物(オリゴマー、デンドリマー、ポリマー等)など、種々の化合物を用いることができる。なお、複合材料に用いる有機化合物としては、正孔輸送性の高い有機化合物であることが好ましい。具体的には、10 ° 6 c m²/V s 以上の正孔移動度を有する物質であることが好ましい。但し、電子よりも正孔の輸送性の高い物質であれば、これら以外のものを用いてもよい。以下では、複合材料に用いることのできる有機化合物を具体的に列挙する。

[0129]

複合材料に用いることのできる有機化合物としては、例えば、TDATA、MTDATA、DPAB、DNTPD、DPA3B、PCzPCA1、PCzPCA2、PCzPCN1、4,4'-ビス[N-(1-ナフチル)-N-フェニルアミノ]ビフェニル(略称:NPBまたは -NPD)、N,N'-ビス(3-メチルフェニル)-N,N'-ジフェニル - [1,1'-ビフェニル]-4,4'-ジアミン(略称:TPD)、4-フェニル-4'-(9-フェニルフルオレン-9-イル)トリフェニルアミン(略称:BPAFLP)等の芳香族アミン化合物や、4,4'-ジ(N-カルバゾリル)ビフェニル(略称:CBP)、1,3,5-トリス[4-(N-カルバゾリル)フェニル]ベンゼン(略称:TCPB)、9-[4-(N-カルバゾリル)]フェニル-10-フェニルアントラセン(略称:CzPA)、9-フェニル-3-[4-(10-フェニル-9-アントリル)フェニル]-9H-カルバゾール(略称:PCzPA)、1,4-ビス[4-(N-カルバゾリル)フェニル]-9H-カルバゾール(略称:PCzPA)、1,4-ビス[4-(N-カルバゾリル)フェニル]-2,3,5,6-テトラフェニルベンゼン等のカルバゾール誘導体を用いることができる。

[0130]

また、 2 - t e r t - $\vec{\textit{J}}$ $\vec{\textit{J}}$ $\vec{\textit{J}}$ $\vec{\textit{L}}$ - $\vec{\textit{J}}$ $\vec{\textit{L}}$ - $\vec{\textit{L}}$ - $\vec{\textit{J}}$ $\vec{\textit{L}}$ - $\vec{$

,10‐ビス(3,5‐ジフェニルフェニル)アントラセン(略称:DPPA)、2‐tert‐ブチル‐9,10‐ビス(4‐フェニルフェニル)アントラセン(略称:t‐BuDBA)、9,10‐ジ(2‐ナフチル)アントラセン(略称:DNA)、9,10‐ジフェニルアントラセン(略称:DPAnth)、2‐tert‐ブチルアントラセン(略称:T-BuAnth)、9,10‐ビス(4‐メチル‐1‐ナフチル)アントラセン(略称:DMNA)、9,10‐ビス[2‐(1‐ナフチル)フェニル]・2‐tert‐ブチルアントラセン、9,10‐ビス[2‐(1‐ナフチル)アントラセン、2,3,6,7‐テトラメチル‐9,10‐ジ(1‐ナフチル)アントラセン等の芳香族炭化水素化合物を用いることができる。

[0131]

さらに、2, 3, 6, 7-テトラメチル-9, 10-ジ(2-ナフチル) アントラセン、9, 9'-ビアントリル、10, 10'-ジフェニル-9, 9'-ビアントリル、10, 10'-ビス(2-フェニルフェニル) - 9, 9'-ビアントリル、10, 10'-ビス [(2,3,4,5,6-ペンタフェニル) フェニル] - <math>9, 9'-ビアントリル、アントラセン、アトラセン、ルブレン、ペリレン、2, 5, 8, 11-テトラ(tert-ブチル) ペリレン、ペンタセン、コロネン、4, 4'-ビス(2, 2-ジフェニルビニル) ビフェニル(略称:DPVBi)、2, 10-ビス[4-(2, 2-ジフェニルビニル) フェニル] アントラセン(略称:DPVPA) 等の芳香族炭化水素化合物を用いることができる。

[0132]

また、電子受容体としては、 7 , 7 , 8 , 8 - 7 - 7 - 9 -

[0133]

なお、上述したPVK、PVTPA、PTPDMA、Poly-TPD等の高分子化合物と、上述した電子受容体を用いて複合材料を形成し、正孔注入層701に用いてもよい。

[0134]

正孔輸送層702は、正孔輸送性の高い物質を含む層である。正孔輸送性の高い物質としては、NPB、TPD、BPAFLP、4,4,-ビス[N-(9,9-ジメチルフルオレン-2-イル)-N-フェニルアミノ]ビフェニル(略称:DFLDPBi)、4,4,-ビス[N-(スピロ-9,9,-ビフルオレン-2-イル)-N-フェニルアミノ]ビフェニル(略称:BSPB)などの芳香族アミン化合物を用いることができる。ここに述べた物質は、主に10~6cm²/Vs以上の正孔移動度を有する物質である。但し、電子よりも正孔の輸送性の高い物質であれば、これら以外のものを用いてもよい。なお、正孔輸送性の高い物質を含む層は、単層のものだけでなく、上記物質からなる層が二層以上積層したものとしてもよい。

[0135]

また、正孔輸送層702には、CBP、CzPA、PCzPAのようなカルバゾール誘導体や、t-BuDNA、DNA、DPAnthのようなアントラセン誘導体を用いても良い。

[0136]

また、正孔輸送層702には、PVK、PVTPA、PTPDMA、Poly・TPDなどの高分子化合物を用いることもできる。

[0137]

発光層 7 0 3 は、発光物質を含む層である。本実施の形態の発光層 7 0 3 は、燐光性化合物と、第 1 の有機化合物と、第 2 の有機化合物とを有する。燐光性化合物は、発光物質(

10

20

30

40

20

30

40

50

ゲスト材料)である。第1の有機化合物及び第2の有機化合物のうち、発光層703に含まれる量が多い方が、ホスト材料である。具体的には実施の形態1を参照することができる。

[0138]

燐光性化合物としては、有機金属錯体が好ましく、イリジウム錯体が特に好ましい。なお、上述のフェルスター機構によるエネルギー移動を考慮すると、燐光性化合物の最も長波長側に位置する吸収帯のモル吸光係数は、 $2000M^{-1} \cdot cm^{-1}$ 以上が好ましく、 $5000M^{-1} \cdot cm^{-1}$ 以上が特に好ましい。このような大きなモル吸光係数を有する化合物としては、例えば、ビス(3, 5-ジメチル-2-フェニルピラジナト)(ジピバロイルメタナト)イリジウム(III)(略称:[Ir(mppr-Me)₂(dpm)])や、(アセチルアセトナト)ビス(4, 6-ジフェニルピリミジナト)イリジウム(III)(略称:[Ir(dppm)。(acac)))などが挙げられる。

[0139]

第1の有機化合物及び第2の有機化合物としては、電子を受け取りやすい化合物(電子トラップ性化合物)と、ホールを受け取りやすい化合物(正孔トラップ性化合物)とを組み合わせることが好ましい。このような構成とすることで、励起錯体からのエネルギー移動による発光効率及び寿命の向上の効果だけでなく、発光層内でのホール輸送と電子輸送のキャリアバランスを整えることによる発光効率及び寿命の向上の効果も得られる。

[0140]

電子を受け取りやすい化合物としては、代表的には、複素芳香族化合物が挙げられ、例えば、 $2 - [3 - ({\it i} {\it$

[0141]

ホールを受け取りやすい化合物としては、代表的には、芳香族アミン化合物やカルバゾー ル化合物が挙げられ、例えば、4-フェニル-4'-(9-フェニル-9H-カルバゾー ル - 3 - イル)トリフェニルアミン(略称:PCBA1BP)、3 - [N - (1 - ナフチ ル) - N - (9 - フェニルカルバゾール - 3 - イル)アミノ] - 9 - フェニルカルバゾー ル(略称: PCzPCN1)、4,4',4''-トリス[N-(1-ナフチル)-N-フェニルアミノ]トリフェニルアミン(略称:1 '-TNATA、もしくは1-TNAT A)、2,7-ビス[N-(4-ジフェニルアミノフェニル)-N-フェニルアミノ]-スピロ-9,9'-ビフルオレン(略称:DPA2SF)、N,N'-ビス(9-フェニ ルカルバゾール・3 - イル) - N,N' - ジフェニルベンゼン - 1,3 - ジアミン(略称 : P C A 2 B) 、 N - (9 , 9 - ジメチル - 2 - N ' , N ' - ジフェニルアミノ - 9 H -フルオレン・7・イル)ジフェニルアミン(略称:DPNF)、N,N',N''・トリ フェニル・N,N',N''-トリス(9-フェニルカルバゾール・3-イル)ベンゼン - 1 , 3 , 5 - トリアミン(略称: P C A 3 B) 、 2 - [N - (9 - フェニルカルバゾー ル - 3 - イル) - N - フェニルアミノ 1 スピロ - 9 , 9 ' - ビフルオレン(略称: P C A SF)、2 - [N - (4 - ジフェニルアミノフェニル) - N - フェニルアミノ]スピロ -9,9'-ビフルオレン(略称:DPASF)、N,N'-ビス[4-(カルバゾール-9 - イル)フェニル] - N , N ' - ジフェニル - 9 , 9 - ジメチルフルオレン - 2 , 7 -ジアミン(略称:YGA2F)、N,N' - ビス(3 - メチルフェニル) - N,N' - ジ フェニル - [1 , 1 ' - ビフェニル] - 4 , 4 ' - ジアミン(略称:TPD)、4 , 4 ' - ビス [N - (4 - ジフェニルアミノフェニル) - N - フェニルアミノ] ビフェニル(略 称:DPAB)、N-(9,9-ジメチル-9H-フルオレン-2-イル)-N-{9, 9 - ジメチル - 2 - [N ' - フェニル - N ' - (9 , 9 - ジメチル - 9 H - フルオレン -

20

30

40

50

 $2- 4 \mu$) アミノ] - 9 H - フルオレン - 7 - 4 μ - フェニルアミン (略称: DFLADFL)、3 - [N - (9 - フェニルカルバゾール - 3 - 4 μ) - N - フェニルアミノ] - 9 - フェニルカルバゾール (略称: PCzPCA1)、3 - [N - (4 - ジフェニルアミノ] - 9 - フェニル) - N - フェニルアミノ] - 9 - フェニルカルバゾール (略称: PCzDPA1)、3 , 6 - ビス[N - (4 - ジフェニルアミノ] - 9 - フェニルカルバゾール (略称: PCzDPA2)、4 , 4 ' - ビス(N - {4 - [N' - (3 - メチルフェニル) - N' - フェニルアミノ] フェニル - N - フェニルアミノ) ビフェニル (略称: DNTPD)、3 , 6 - ビス[N - (4 - ジフェニルアミノフェニル) - N - (1 - ナフチル) アミノ] - 9 - フェニルカルバゾール (略称: PCzTPN2)、3 , 6 - ビス[N - (9 - フェニルカルバゾール - 3 - 4 μ) - N - フェニルアミノ] - 9 - フェニルカルバゾール (略称: PCzPCA2) が挙げられる。

[0142]

ただし、第1の有機化合物及び第2の有機化合物は、これらに限定されることなく、励起 錯体を形成できる組み合わせであり、該励起錯体の発光スペクトルが、燐光性化合物の吸 収スペクトルと重なり、該励起錯体の発光スペクトルのピークが、燐光性化合物の吸収ス ペクトルのピークよりも長波長であればよい。

[0143]

なお、電子を受け取りやすい化合物とホールを受け取りやすい化合物で第1の有機化合物と第2の有機化合物を構成する場合、その混合比によってキャリアバランスを制御することができる。つまり、その混合比によって、発光層内の正孔と電子の再結合確率を高め、発光効率を高める最適なバランスを設計することができる点も、本発明の一態様の特徴の一つである。このキャリアバランスの観点と、励起錯体を形成させる観点から、第1の有機化合物と第2の有機化合物の割合は極端に違わないことが好ましい。具体的には、第1の有機化合物:第2の有機化合物=1:9~9:1の範囲が好ましい。

[0144]

また、励起錯体は、二層の界面において形成されていても良い。例えば、第2の有機化合物を含む層と第1の有機化合物を含む層を積層すれば、その界面近傍では励起錯体が形成されるが、この二層をもって本発明の一態様における発光層としても良い。この場合、燐光性化合物は、該界面近傍に添加されていれば良い。また、二層のうち、少なくともいずれか一方、または双方に添加されていれば良い。

[0145]

電子輸送層704は、電子輸送性の高い物質を含む層である。電子輸送性の高い物質とし ては、Alaa、トリス(4-メチル-8-キノリノラト)アルミニウム(略称:Alm q ₃) 、ビス(10 - ヒドロキシベンゾ [h] キノリナト) ベリリウム(略称:BeBa 2)、BAlq、Zn(BOX) 2、ビス[2-(2-ヒドロキシフェニル) ベンゾチア ゾラト]亜鉛(略称: Zn(BTZ)。)などの金属錯体が挙げられる。また、2-(4 - ビフェニリル) - 5 - (4 - t e r t - ブチルフェニル) - 1 , 3 , 4 - オキサジアゾ ール(略称: PBD)、1,3-ビス[5-(p-tert-ブチルフェニル)-1,3 , 4 - オキサジアゾール - 2 - イル] ベンゼン(略称: O X D - 7) 、 3 - (4 - ter t‐ブチルフェニル)‐4‐フェニル‐5‐(4‐ビフェニリル)‐1,2,4‐トリア ゾール(略称:TAZ)、3‐(4‐tert‐ブチルフェニル)‐4‐(4‐エチルフ ェニル) - 5 - (4 - ビフェニリル) - 1 , 2 , 4 - トリアゾール(略称: p - E t T A Z)、バソフェナントロリン(略称: B P h e n)、バソキュプロイン(略称: B C P) 、 4 , 4 ' - ビス(5 -メチルベンゾオキサゾール - 2 -イル)スチルベン(略称: B z Os)などの複素芳香族化合物も用いることができる。また、ポリ(2,5-ピリジン-ジイル)(略称:PPy)、ポリ [(9,9-ジヘキシルフルオレン-2,7-ジイル) - c o - (ピリジン - 3 , 5 - ジイル)] (略称: P F - P y)、ポリ [(9 , 9 - ジオ クチルフルオレン - 2 , 7 - ジイル) - c o - (2 , 2 ' - ビピリジン - 6 , 6 ' - ジイ ル)] (略称:PF-BPy) のような高分子化合物を用いることもできる。ここに述べ た物質は、主に 10^{-6} c m 2 / V s 以上の電子移動度を有する物質である。なお、正孔 よりも電子の輸送性の高い物質であれば、上記以外の物質を電子輸送層として用いてもよい。

[0146]

また、電子輸送層は、単層のものだけでなく、上記物質からなる層が二層以上積層したものとしてもよい。

[0147]

電子注入層705は、電子注入性の高い物質を含む層である。電子注入層705には、リチウム、セシウム、カルシウム、フッ化リチウム、フッ化セシウム、フッ化カルシウム、リチウム酸化物等のようなアルカリ金属、アルカリ土類金属、またはそれらの化合物を用いることができる。また、フッ化エルビウムのような希土類金属化合物を用いることができる。また、上述した電子輸送層704を構成する物質を用いることもできる。

[0148]

あるいは、電子注入層705に、有機化合物と電子供与体(ドナー)とを混合してなる複合材料を用いてもよい。このような複合材料は、電子供与体によって有機化合物に電子が発生するため、電子注入性および電子輸送性に優れている。この場合、有機化合物としては、発生した電子の輸送に優れた材料であることが好ましく、具体的には、例えば上述できる。電子供与体としては、有機化合物に対し電子供与性を示す物質であればよい。具体的には、アルカリ金属やアルカリ土類金属や希土類金属が好ましく、リチウム、セシウム、マグネシウム、カルシウム、エルビウム、イッテルビウム等が挙げられる。また、アルカリ金属酸化物やアルカリ土類金属酸化物が好ましく、リチウム酸化物、カルシウム酸化物、バリウム酸化物等が挙げられる。また、酸化マグネシウムのようなルイス塩基を用いることもできる。また、テトラチアフルバレン(略称:TTF)等の有機化合物を用いることもできる。

[0149]

なお、上述した正孔注入層701、正孔輸送層702、発光層703、電子輸送層704、電子注入層705は、それぞれ、蒸着法(真空蒸着法を含む)、インクジェット法、塗布法等の方法で形成することができる。

[0150]

E L 層は、図7(B)に示すように、第1の電極103と第2の電極108との間に複数積層されていても良い。この場合、積層された第1のEL層800と第2のEL層801との間には、電荷発生層803を設けることが好ましい。電荷発生層803は上述の複合材料で形成することができる。また、電荷発生層803は複合材料からなる層と他の材料からなる層との積層構造でもよい。この場合、他の材料からなる層としては、電子供与性物質と電子輸送性の高い物質とを含む層や、透明導電膜からなる層などを用いることができる。このような構成を有する発光素子は、エネルギーの移動や消光などの問題が起こり難く、材料の選択の幅が広がることで高い発光効率と長い寿命とを併せ持つ発光素子とすることが容易である。また、一方のEL層で燐光発光、他方で蛍光発光を得ることも容易である。この構造は上述のEL層の構造と組み合わせて用いることができる。

[0151]

また、それぞれのEL層の発光色を異なるものにすることで、発光素子全体として、所望の色の発光を得ることができる。例えば、2つのEL層を有する発光素子において、第1のEL層の発光色と第2のEL層の発光色を補色の関係になるようにすることで、発光素子全体として白色発光する発光素子を得ることも可能である。また、3つ以上のEL層を有する発光素子の場合でも同様である。

[0152]

E L 層 1 0 2 は、図 7 (C) に示すように、第 1 の電極 1 0 3 と第 2 の電極 1 0 8 との間に、正孔注入層 7 0 1、正孔輸送層 7 0 2、発光層 7 0 3、電子輸送層 7 0 4、電子注入バッファー層 7 0 6、電子リレー層 7 0 7、及び第 2 の電極 1 0 8 と接する複合材料層 7 0 8 を有していても良い。

10

20

30

20

30

40

[0153]

第2の電極108と接する複合材料層708を設けることで、特にスパッタリング法を用いて第2の電極108を形成する際に、EL層102が受けるダメージを低減することができるため、好ましい。複合材料層708は、前述の、正孔輸送性の高い有機化合物にアクセプター性物質を含有させた複合材料を用いることができる。

[0154]

さらに、電子注入バッファー層706を設けることで、複合材料層708と電子輸送層704との間の注入障壁を緩和することができるため、複合材料層708で生じた電子を電子輸送層704に容易に注入することができる。

[0 1 5 5]

電子注入バッファー層706には、アルカリ金属、アルカリ土類金属、希土類金属、およびこれらの化合物(アルカリ金属化合物(酸化リチウム等の酸化物、ハロゲン化物、炭酸リチウムや炭酸セシウム等の炭酸塩を含む)、アルカリ土類金属化合物(酸化物、ハロゲン化物、炭酸塩を含む)、または希土類金属の化合物(酸化物、ハロゲン化物、炭酸塩を含む))等の電子注入性の高い物質を用いることが可能である。

[0156]

また、電子注入バッファー層706が、電子輸送性の高い物質とドナー性物質を含んで形成される場合には、電子輸送性の高い物質に対して質量比で、0.001以上0.1以下の比率でドナー性物質を添加することが好ましい。なお、ドナー性物質としては、アルカリ金属、アルカリ土類金属、希土類金属、およびこれらの化合物(アルカリ金属化合物(酸化リチウム等の酸化物、ハロゲン化物、炭酸リチウムや炭酸セシウム等の炭酸塩を含む)、アルカリ土類金属化合物(酸化物、ハロゲン化物、炭酸塩を含む)、または希土類金属の化合物(酸化物、ハロゲン化物、炭酸塩を含む))の他、テトラチアナフタセン(略称:TTN)、ニッケロセン、デカメチルニッケロセン等の有機化合物を用いることもできる。なお、電子輸送性の高い物質としては、先に説明した電子輸送層704の材料と同様の材料を用いて形成することができる。

[0 1 5 7]

さらに、電子注入バッファー層706と複合材料層708との間に、電子リレー層707を形成することが好ましい。電子リレー層707は、必ずしも設ける必要は無いが、電子輸送性の高い電子リレー層707を設けることで、電子注入バッファー層706へ電子を速やかに送ることが可能となる。

[0158]

複合材料層708と電子注入バッファー層706との間に電子リレー層707が挟まれた構造は、複合材料層708に含まれるアクセプター性物質と、電子注入バッファー層706に含まれるドナー性物質とが相互作用を受けにくく、互いの機能を阻害しにくい構造である。したがって、駆動電圧の上昇を防ぐことができる。

[0159]

電子リレー層707は、電子輸送性の高い物質を含み、該電子輸送性の高い物質のLUMO準位は、複合材料層708に含まれるアクセプター性物質のLUMO準位と、電子輸送層704に含まれる電子輸送性の高い物質のLUMO準位との間となるように形成する。また、電子リレー層707がドナー性物質を含む場合には、当該ドナー性物質のドナー準位も複合材料層708に含まれるアクセプター性物質のLUMO準位と、電子輸送層704に含まれる電子輸送性の高い物質のLUMO準位との間となるようにする。具体的なエネルギー準位の数値としては、電子リレー層707に含まれる電子輸送性の高い物質のLUMO準位は・5.0eV以上、好ましくは・5.0eV以上・3.0eV以下とするとよい。

[0160]

電子リレー層707に含まれる電子輸送性の高い物質としてはフタロシアニン系の材料又は金属-酸素結合と芳香族配位子を有する金属錯体を用いることが好ましい。

[0161]

20

30

40

50

電子リレー層 7 0 7 に含まれるフタロシアニン系材料としては、具体的にはCuPc、SnPc(Phthalocyanine tin(II) complex)、ZnPc(Phthalocyanine zinc complex)、CoPc(Cobalt(II)) phthalocyanine, - form)、FePc(Phthalocyanine Iron)及びPhO-VOPc(Vanadyl 2,9,16,23-tetraphenoxy-29H,31H-phthalocyanine)のいずれかを用いることが好ましい。

[0162]

電子リレー層707に含まれる金属・酸素結合と芳香族配位子を有する金属錯体としては、金属・酸素の二重結合を有する金属錯体を用いることが好ましい。金属・酸素の二重結合はアクセプター性(電子を受容しやすい性質)を有するため、電子の移動(授受)がより容易になる。また、金属・酸素の二重結合を有する金属錯体は安定であると考えられる。したがって、金属・酸素の二重結合を有する金属錯体を用いることにより発光素子を低電圧でより安定に駆動することが可能になる。

[0163]

金属・酸素結合と芳香族配位子を有する金属錯体としてはフタロシアニン系材料が好ましい。具体的には、VOPc(Vanadyl phthalocyanine)、SnOPc(Phthalocyanine tin(IV) oxide complex)及びTiOPc(Phthalocyanine titanium oxide complex)のいずれかは、分子構造的に金属・酸素の二重結合が他の分子に対して作用しやすく、アクセプター性が高いため好ましい。

[0164]

なお、上述したフタロシアニン系材料としては、フェノキシ基を有するものが好ましい。 具体的にはPhO-VOPcのような、フェノキシ基を有するフタロシアニン誘導体が好ましい。フェノキシ基を有するフタロシアニン誘導体は、溶媒に可溶である。そのため、 発光素子を形成する上で扱いやすいという利点を有する。また、溶媒に可溶であるため、 成膜に用いる装置のメンテナンスが容易になるという利点を有する。

[0165]

電子リレー層707はさらにドナー性物質を含んでいても良い。ドナー性物質としては、アルカリ金属、アルカリ土類金属、希土類金属及びこれらの化合物(アルカリ金属化合物(酸化リチウムなどの酸化物、ハロゲン化物、炭酸リチウムや炭酸セシウムなどの炭酸塩を含む)、アルカリ土類金属化合物(酸化物、ハロゲン化物、炭酸塩を含む)、又は希土類金属の化合物(酸化物、ハロゲン化物、炭酸塩を含む))の他、テトラチアナフタセン(略称:TTN)、ニッケロセン、デカメチルニッケロセンなどの有機化合物を用いることができる。電子リレー層707にこれらドナー性物質を含ませることによって、電子の移動が容易となり、発光素子をより低電圧で駆動することが可能になる。

[0166]

電子リレー層707にドナー性物質を含ませる場合、電子輸送性の高い物質としては上記した材料の他、複合材料層708に含まれるアクセプター性物質のアクセプター準位より高いLUMO準位を有する物質を用いることができる。具体的なエネルギー準位としては、・5.0eV以上、好ましくは・5.0eV以上・3.0eV以下の範囲にLUMO準位を有する物質を用いることが好ましい。このような物質としては例えば、ペリレン誘導体や、含窒素縮合芳香族化合物などが挙げられる。なお、含窒素縮合芳香族化合物は、安定であるため、電子リレー層707を形成する為に用いる材料として、好ましい材料である。

[0167]

ペリレン誘導体の具体例としては、3,4,9,10-ペリレンテトラカルボン酸二無水物(略称:PTCDA)、3,4,9,10-ペリレンテトラカルボキシリックビスベンゾイミダゾール(略称:PTCBI)、N,N'-ジオクチル-3,4,9,10-ペリレンテトラカルボン酸ジイミド(略称:PTCDI-C8H)、N,N'-ジヘキシル-

20

30

40

3 , 4 , 9 , 1 0 - ペリレンテトラカルボン酸ジイミド(略称:Hex PTC)等が挙げられる。

[0168]

また、含窒素縮合芳香族化合物の具体例としては、ピラジノ[2 ,3 - f][1 ,10]フェナントロリン -2 ,3 - ジカルボニトリル(略称:PPDN)、2 ,3 ,6 ,7 ,1 0 ,1 1 - ヘキサシアノ -1 ,4 ,5 ,8 ,9 ,1 2 - ヘキサアザトリフェニレン(略称:HAT(CN)₆)、2 ,3 - ジフェニルピリド[2 ,3 - b]ピラジン(略称:2 PYPR)、2 ,3 - ビス(4 - フルオロフェニル)ピリド[2 ,3 - b]ピラジン(略称:F2PYPR)等が挙げられる。

[0169]

[0170]

なお、電子リレー層 7 0 7 にドナー性物質を含ませる場合、電子輸送性の高い物質とドナー性物質との共蒸着などの方法によって電子リレー層 7 0 7 を形成すれば良い。

[0171]

正孔注入層701、正孔輸送層702、発光層703、及び電子輸送層704は前述の材料を用いてそれぞれ形成すれば良い。

[0172]

以上により、本実施の形態のEL層102を作製することができる。

[0173]

上述した発光素子は、第1の電極103と第2の電極108との間に生じた電位差により電流が流れ、EL層102において正孔と電子とが再結合することにより発光する。そして、この発光は、第1の電極103または第2の電極108のいずれか一方または両方を通って外部に取り出される。従って、第1の電極103または第2の電極108のいずれか一方、または両方が可視光に対する透光性を有する電極となる。

[0174]

なお、第1の電極103と第2の電極108との間に設けられる層の構成は、上記のものに限定されない。発光領域と金属とが近接することによって生じる消光を防ぐように、第1の電極103及び第2の電極108から離れた部位に正孔と電子とが再結合する発光領域を設けた構成であれば上記以外のものでもよい。

[0175]

つまり、層の積層構造については特に限定されず、電子輸送性の高い物質、正孔輸送性の高い物質、電子注入性の高い物質、正孔注入性の高い物質、バイポーラ性の物質(電子及び正孔の輸送性の高い物質)、又は正孔ブロック材料等から成る層を、発光層と自由に組み合わせて構成すればよい。

[0176]

以上のように、本発明の一態様の発光素子を作製することができる。

[0177]

本実施の形態で示した発光素子を用いて、パッシブマトリクス型の発光装置や、トランジスタによって発光素子の駆動が制御されたアクティブマトリクス型の発光装置を作製することができる。また、該発光装置を電子機器又は照明装置等に適用することができる。

[0178]

本実施の形態は、他の実施の形態と適宜組み合わせることができる。

【実施例1】

[0179]

本実施例では、本発明の一態様の発光素子に適用することができる、第1の有機化合物、第2の有機化合物、及び燐光性化合物の組み合わせの一例について図1乃至図4を用いて説明する。

[0180]

本実施例の構成例 1 乃至 4 で用いる燐光性化合物は、(アセチルアセトナト)ビス(4 , 6 - ジフェニルピリミジナト)イリジウム(I I I I)(略称: [I r (d p p m) $_2$ (a c a c)])である。また、本実施例の構成例 1 乃至 4 で用いる第 1 の有機化合物は、 2 - [3 - (ジベンゾチオフェン - 4 - イル)フェニル] ジベンゾ [f , h] キノキサリン(略称: 2 m D B T P D B q - I I)である。また、本実施例で用いる第 2 の有機化合物は、構成例 1 が、 4 - フェニル - 4 ' - (9 - フェニル - 9 H - カルバゾール - 3 - イル)トリフェニルアミン(略称: P C B A 1 B P)、構成例 2 が、 3 - [N - (1 - ナフチル) - N - (9 - フェニルカルバゾール - 3 - イル)アミノ] - 9 - フェニルカルバゾール(略称: P C z P C N 1)、構成例 3 が、 4 , 4 ' , 4 ' ' - トリス [N - (1 - ナフチル) - N - フェニルアミノ] トリフェニルアミン(略称: 1 ' - T N A T A 、もしくは 1 - T N A T A)、構成例 4 が、 2 , 7 - ビス [N - (4 - ジフェニルアミノフェニル) - N - フェニルアミノ] - スピロ - 9 , 9 ' - ビフルオレン(略称: D P A 2 S F)である。

[0181]

本実施例で用いた材料の化学式を以下に示す。

[0182]

10

20

30

40

【化1】

[Ir(dppm)2(acac)]

[ii(uppiii)2(acac)]

2mDBTPDBq-II

1'-TNATA

[0183]

(構成例1)

図1に、第1の有機化合物である2mDBTPDBq-IIの薄膜の発光スペクトル(発光スペクトル1a)、第2の有機化合物であるPCBA1BPの薄膜の発光スペクトル(発光スペクトル2a)、及び2mDBTPDBq-IIとPCBA1BPの混合材料の薄膜の発光スペクトル(発光スペクトル3a)を示す。また、燐光性化合物である[Ir(dppm)₂(acac)]のジクロロメタン溶液の紫外可視吸収スペクトル(以下、単に吸収スペクトルと記す)及び発光スペクトル(発光スペクトル4a)を示す。

[0184]

なお、本実施例において、 [$Ir(dppm)_2(acac)$] の吸収スペクトルの測定には、紫外可視分光光度計((株)日本分光製 V550型)を用い、ジクロロメタン溶液(0.093mmol/L)を石英セルに入れ、室温で測定を行った。

[0185]

図 1 において、横軸は、波長(nm)を示し、縦軸は、モル吸光係数 (M⁻¹・cm⁻⁵⁰

1)及び発光強度(任意単位)を示す。

[0186]

図1の吸収スペクトルから、 [Ir(dppm) $_2$ (acac)]が、510nm付近にプロードな吸収帯を有することがわかる。この吸収帯が、発光に強く寄与する吸収帯であると考えられる。

[0187]

発光スペクトル3 a は、発光スペクトル1 a、2 a よりも長波長側にピークを有する。そして、発光スペクトル3 a のピークは、発光スペクトル1 a、2 a のピークに比べて、該吸収帯と近い位置に存在する。図1より、吸収スペクトルの発光に強く寄与する吸収帯と最も重なりが大きい発光スペクトルは、発光スペクトル3 a であることがわかった。

[0188]

2mDBTPDBq-II及びPCBA1BPの混合材料の発光スペクトルは、単体の発光スペクトルよりも長波長側にピークを有することがわかった。このことから、2mDBTPDBq-IIとPCBA1BPを混合することで、励起錯体が形成されることが示唆された。

[0189]

発光スペクトル3aのピークは、吸収スペクトルにおいて発光に強く寄与すると考えられる吸収帯と重なりが大きいことがわかった。よって、2mDBTPDBQ-IIとPCBA1BPの混合材料、及び[Ir(dppm)₂(acac)]を用いた発光素子は、該混合材料の発光スペクトルと燐光性化合物の吸収スペクトルとの大きな重なりを利用して、エネルギー移動をするため、エネルギー移動効率が特に高いことが示唆された。したがって、外部量子効率が特に高い発光素子を得られることが示唆された。

[0190]

また、発光スペクトル3 aのピークは、吸収スペクトルのピークより長波長、かつ、発光スペクトル4 aのピークより短波長の位置にある。

[0191]

混合材料の発光スペクトルのピークが長波長側にあることから、該混合材料を用いることで、駆動電圧が低い発光素子を得られることが示唆された。

[0192]

(構成例2)

図 2 に、第 1 の有機化合物である 2 m D B T P D B q - I I の薄膜の発光スペクトル(発光スペクトル1 b)、第 2 の有機化合物である P C z P C N 1 の薄膜の発光スペクトル(発光スペクトル2 b)、及び 2 m D B T P D B q - I I と P C z P C N 1 の混合材料の薄膜の発光スペクトル(発光スペクトル(発光スペクトル3 b)を示す。また、燐光性化合物である [I r (d p p m) $_2$ (a c a c)] のジクロロメタン溶液の吸収スペクトル及び発光スペクトル(発光スペクトル 4 b)を示す。

[0193]

図 2 において、横軸は、波長(nm)を示し、縦軸は、モル吸光係数 (M⁻¹・cm⁻¹)及び発光強度(任意単位)を示す。

[0194]

図 2 の吸収スペクトルから、 [I r (d p p m) $_2$ (a c a c)] が、 5 1 0 n m 付近に ブロードな吸収帯を有することがわかる。この吸収帯が、発光に強く寄与する吸収帯であると考えられる。

[0195]

発光スペクトル3 b は、発光スペクトル1 b、 2 b よりも長波長側にピークを有する。つまり、 2 m D B T P D B q - I I 及び P C z P C N 1 の混合材料の発光スペクトルは、単体の発光スペクトルよりも長波長側にピークを有することがわかった。このことから、 2 m D B T P D B q - I I と P C z P C N 1 を混合することで、励起錯体が形成されることが示唆された。

[0196]

10

20

30

40

また、発光スペクトル3 bのピークは、吸収スペクトルと重なりを有する。よって、2 m D B T P D B q - I I と P C z P C N 1 の混合材料、及び [I r (d p p m) $_2$ (a c a c)]を用いた発光素子は、該混合材料の発光スペクトルと燐光性化合物の吸収スペクトルとの重なりを利用して、エネルギー移動をするため、エネルギー移動効率が高いことが示唆された。したがって、外部量子効率が高い発光素子を得られることが示唆された。

[0197]

また、発光スペクトル3bのピークは、吸収スペクトルのピークより長波長、かつ、発光スペクトル4bのピークより短波長の位置にある。また、発光スペクトル3bのピークは、発光スペクトル4bのピークとの差が21nmであり、とても小さい。

[0198]

混合材料の発光スペクトルのピークが特に長波長側にあることから、該混合材料を用いることで、特に駆動電圧が低い発光素子を得られることが示唆された。

[0199]

(構成例3)

図3に、第1の有機化合物である2mDBTPDBq-IIの薄膜の発光スペクトル(発光スペクトル1c)、第2の有機化合物である1'-TNATAの薄膜の発光スペクトル(発光スペクトル2c)、及び2mDBTPDBq-IIと1'-TNATAの混合材料の薄膜の発光スペクトル(発光スペクトル3c)を示す。また、燐光性化合物である[Ir(dppm)2(acac)]のジクロロメタン溶液の吸収スペクトル及び発光スペクトル(発光スペクトル4c)を示す。

[0200]

図3において、横軸は、波長(nm)を示し、縦軸は、モル吸光係数 (M⁻¹・cm⁻¹)及び発光強度(任意単位)を示す。

[0 2 0 1]

図3の吸収スペクトルから、[Ir(dppm) $_2$ (acac)]が、510nm付近にブロードな吸収帯を有することがわかる。この吸収帯が、発光に強く寄与する吸収帯であると考えられる。

[0202]

発光スペクトル3cは、発光スペクトル1c、2cよりも長波長側にピークを有する。つまり、2mDBTPDB q - II及び1′- TNATAの混合材料の発光スペクトルは、単体の発光スペクトルよりも長波長側にピークを有することがわかった。このことから、2mDBTPDB q - IIと1′- TNATAを混合することで、励起錯体が形成されることが示唆された。

[0203]

また、発光スペクトル3cのピークは、吸収スペクトルと重なりを有する。よって、2m DBTPDBq-IIと1'-TNATAの混合材料、及び[Ir(dppm) $_2$ (acac)]を用いた発光素子は、該混合材料の発光スペクトルと燐光性化合物の吸収スペクトルとの重なりを利用して、エネルギー移動をするため、エネルギー移動効率が高いことが示唆された。したがって、外部量子効率が高い発光素子を得られることが示唆された。

[0204]

また、発光スペクトル 3 c のピークは、吸収スペクトルのピークより長波長の位置にある。また、発光スペクトル 3 c のピークは、発光スペクトル 4 c のピークとの差が 2 4 n m であり、とても小さい。

[0205]

該混合材料を用いた発光素子では、キャリアの再結合によって燐光性化合物が発光を始める電圧の値よりも、キャリアの再結合によって励起錯体が形成される電圧の値の方が小さいと考えられる。つまり、発光素子に印加される電圧が、燐光性化合物が発光を始める値未満であっても、キャリアが再結合し励起錯体を形成することで、発光素子に電流が流れ始める。したがって、特に駆動電圧が低い発光素子を得られることが示唆された。

[0206]

20

10

30

(構成例4)

図4に、第1の有機化合物である2mDBTPDBq-IIの薄膜の発光スペクトル(発光スペクトル1d)、第2の有機化合物であるDPA2SFの薄膜の発光スペクトル(発光スペクトル2d)、及び2mDBTPDBq-IIとDPA2SFの混合材料の薄膜の発光スペクトル(発光スペクトル3d)を示す。また、燐光性化合物である[Ir(dppm)₂(acac)]のジクロロメタン溶液の吸収スペクトル及び発光スペクトル(発光スペクトル4d)を示す。

[0207]

図4において、横軸は、波長(nm)を示し、縦軸は、モル吸光係数 (M⁻¹・cm⁻¹)及び発光強度(任意単位)を示す。

[0208]

図 4 の吸収スペクトルから、 [Ir(dppm) $_2$ (acac)]が、 5 1 0 nm付近にプロードな吸収帯を有することがわかる。この吸収帯が、発光に強く寄与する吸収帯であると考えられる。

[0209]

発光スペクトル3 d は、発光スペクトル1 d、2 d よりも長波長側にピークを有する。つまり、2 m D B T P D B q - I I 及び D P A 2 S F の混合材料の発光スペクトルは、単体の発光スペクトルよりも長波長側にピークを有することがわかった。このことから、2 m D B T P D B q - I I と D P A 2 S F を混合することで、励起錯体が形成されることが示唆された。

[0210]

また、発光スペクトル3dのピークは、吸収スペクトルと重なりを有する。よって、2mDBTPDBa‐IIとDPA2SFの混合材料、及び[Ir(dppm)₂(acac)]を用いた発光素子は、該混合材料の発光スペクトルと燐光性化合物の吸収スペクトルとの重なりを利用して、エネルギー移動をするため、エネルギー移動効率が高いことが示唆された。したがって、外部量子効率が高い発光素子を得られることが示唆された。

[0 2 1 1]

また、発光スペクトル 3 d のピークは、吸収スペクトルのピークより長波長の位置にある。また、発光スペクトル 3 d のピークと、発光スペクトル 4 d のピークとの差が 1 3 n m であり、とても小さい。

[0212]

混合材料の発光スペクトルのピークが特に長波長側にあることから、該混合材料を用いることで、特に駆動電圧が低い発光素子を得られることが示唆された。

【実施例2】

[0213]

本実施例では、本発明の一態様の発光素子について図8を用いて説明する。本実施例で用いた材料の化学式を以下に示す。なお、先の実施例で用いた材料の化学式は省略する。

[0214]

10

20

【化2】

DBT3P-II

[0215]

以下に、本実施例の発光素子1乃至発光素子4の作製方法を示す。

[0216]

(発光素子1)

まず、ガラス基板1100上に、酸化珪素を含むインジウム錫酸化物(ITSO)をスパ ッタリング法にて成膜し、陽極として機能する第1の電極1101を形成した。なお、そ の膜厚は110nmとし、電極面積は2mm×2mmとした。

[0217]

次に、基板1100上に発光素子を形成するための前処理として、基板表面を水で洗浄し 、200 で1時間焼成した後、UVオゾン処理を370秒行った。

[0218]

その後、10^{・4}Pa程度まで内部が減圧された真空蒸着装置に基板を導入し、真空蒸着 装置内の加熱室において、170 で30分間の真空焼成を行った後、基板1100を3 0 分程度放冷した。

[0219]

次に、第1の電極1101が形成された面が下方となるように、第1の電極1101が形 成された基板1100を真空蒸着装置内に設けられた基板ホルダーに固定し、10⁻⁴P a 程度まで減圧した後、第1の電極1101上に、4,4',4',-(1,3,5-ベ ンゼントリイル)トリ(ジベンゾチオフェン)(略称:DBT3P-II)と酸化モリブ デン(VI)を共蒸着することで、正孔注入層1111を形成した。その膜厚は、40n mとし、DBT3P-IIと酸化モリブデンの比率は、質量比で1:0.5(=DBT3 P-II:酸化モリブデン)となるように調節した。

[0220]

次に、正孔注入層1111上に、PCBA1BPを20nmの膜厚となるように成膜し、 正孔輸送層1112を形成した。

[0221]

さらに、2mDBTPDBq-II、PCBA1BP、及び[Ir(dppm)っ(ac ac)]を共蒸着し、正孔輸送層1112上に発光層1113を形成した。ここで、2m DBTPDBq-II、PCBA1BP及び[Ir(dppm),(acac)]の重量 比は、0.7:0.3:0.05(=2mDBTPDBq-II:PCBA1BP:[I r (dppm) ゥ (acac)])となるように調節した。また、発光層1113の膜厚 は40nmとした。

[0222]

次に、発光層1113上に2mDBTPDBa-IIを膜厚10nmとなるよう成膜し、 第1の電子輸送層1114aを形成した。

[0223]

次に、第1の電子輸送層1114a上に、バソフェナントロリン(略称:BPhen)を

10

20

30

40

膜厚20nmとなるように成膜し、第2の電子輸送層1114bを形成した。

[0224]

さらに、第2の電子輸送層1114b上に、フッ化リチウム(LiF)を1nmの膜厚で 蒸着し、電子注入層1115を形成した。

[0225]

最後に、陰極として機能する第2の電極1103として、アルミニウムを200nmの膜 厚となるように蒸着することで、本実施例の発光素子1を作製した。

[0226]

(発光素子2)

発光素子2の正孔輸送層1112は、PCzPCN1を膜厚20nmとなるように成膜す ることで形成した。

[0227]

また、発光素子2の発光層1113は、2mDBTPDBq-II、PCzPCN1及び [Ir(dppm)っ(acac)]を共蒸着することで形成した。ここで、2mDBT PDBq-II、PCzPCN1及び[Ir(dppm)っ(acac)]の重量比は、 0 . 7 : 0 . 3 : 0 . 0 5 (= 2 m D B T P D B q - I I : P C z P C N 1 : [I r (d ppm)。(acac)])となるように調節した。また、発光層1113の膜厚は40 nmとした。発光層1113以外は、発光素子1と同様に作製した。

[0228]

(発光素子3)

発光素子3の正孔輸送層1112は、1′-TNATAを膜厚20nmとなるように成膜 することで形成した。

[0229]

また、発光素子3の発光層1113は、2mDBTPDBq-II、1'-TNATA及 び[Ir(dppm)っ(acac)]を共蒸着することで形成した。ここで、2mDB TPDBq-II、1'-TNATA及び[Ir(dppm)っ(acac)]の重量比 は、0.7:0.3:0.05(=2mDBTPDBg-II:1'-TNATA:[I r (d p p m) ₂ (a c a c)]) となるように調節した。また、発光層1113の膜厚 は40nmとした。発光層1113以外は、発光素子1と同様に作製した。

[0230]

(発光素子4)

発光素子4の正孔輸送層1112は、DPA2SFを膜厚20nmとなるように成膜する ことで形成した。

[0231]

また、発光素子4の発光層1113は、2mDBTPDBq-II、DPA2SF及び[Ir(dppm)。(acac)]を共蒸着することで形成した。ここで、2mDBTP DBq-II、DPA2SF及び[Ir(dppm),(acac)]の重量比は、0. 7:0.3:0.05(=2mDBTPDBq-II:DPA2SF:[Ir(dppm) 。 (a c a c)]) となるように調節した。また、発光層1113の膜厚は40n m と した。発光層1113以外は、発光素子1と同様に作製した。

[0232]

なお、上述した蒸着過程において、蒸着は全て抵抗加熱法を用いた。

[0 2 3 3]

以上により得られた発光素子1乃至発光素子4の素子構造を表1に示す。

[0234]

30

10

20

【表1】

	第1の 電極	正孔注入層	正孔 輸送層	発光層	第1の 電子 輸送層	第2の 電子 輸送層	電子注入層	第2の 電極
発光 素子 1	ITSO 110nm	DBT3P-II:MoOx (=1:0.5) 40nm	PCBA1BP 20nm	2mDBTPDBq-II:PCBA1BP:[$Ir(dppm)_2(acac)$] (=0.7:0.3:0.05) 40nm	2mDBTPDBq-II 10nm	BPhen 20nm	LiF 1nm	Al 200nm
発光 素子 2	ITSO 110nm	DBT3P-II:MoOx (=1:0.5) 40nm	PCzPCN1 20nm	2 mDBTPDBq-II:PCzPCN1:[I r(d ppm) $_2$ (a cac)] (=0.7:0.3:0.05) 40nm	2mDBTPDBq-II 10nm	BPhen 20nm	LiF 1nm	Al 200nm
発光 素子 3	ITSO 110nm	DBT3P-II:MoOx (=1:0.5) 40nm	1'-TNATA 20nm	2mDBTPDBq-II:1'-TNATA:[Ir(dppm) ₂ (acac)] (=0.7:0.3:0.05) 40nm	2mDBTPDBq-II 10nm	BPhen 20nm	LiF 1nm	Al 200nm
発光 素子 4	ITSO 110nm	DBT3P-II:MoOx (=1:0.5) 40nm	DPA2SF 20nm	2mDBTPDBq-II:DPA2SF:[Ir(dppm) ₂ (acac)] (=0.7:0.3:0.05) 40nm	2mDBTPDBq-II 10nm	BPhen 20nm	LiF 1nm	Al 200nm

10

[0235]

これらの発光素子を、窒素雰囲気のグローブボックス内において、発光素子が大気に曝されないように封止する作業を行った後、発光素子の動作特性について測定を行った。なお、測定は室温(25 に保たれた雰囲気)で行った。

[0236]

[0237]

また、発光素子 1 乃至発光素子 4 における輝度 1 0 0 0 c d / m 2 付近のときの電圧 (V) 、電流密度 (m A / c m 2) 、 C I E 色度座標 (x 、 y) 、電流効率 (c d / A) 、電力効率 (1 m / W) 、外部量子効率 (%) を表 2 に示す。

[0238]

【表2】

	電圧(V)	電流密度 (mA/cm²)	色度 (x, y)	輝度 (cd/m²)	電流効率 (cd/A)	電力効率 (Im/W)	外部 量子効率 (%)
発光素子1	2.7	1.5	(0.56, 0.44)	1000	68	79	27
発光素子2	2.5	1.6	(0.56, 0.43)	1000	67	84	26
発光素子3	2.7	2.3	(0.56, 0.43)	780	34	39	14
発光素子4	2.4	1.3	(0.56, 0.43)	800	62	81	25

30

20

[0239]

また、発光素子 1 乃至発光素子 4 に 0 . 1 m A の電流を流した際の発光スペクトルを、図 1 3 に示す。図 1 3 において、横軸は波長 (n m)、縦軸は発光強度(任意単位)を表す。また、表 2 に示す通り、 1 0 0 0 c d / m 2 の輝度の時の発光素子 1 の C I E 色度座標は (x,y) = (0.56,0.44)であり、 1 0 0 0 c d / m 2 の輝度の時の発光素子 2 の C I E 色度座標は (x,y) = (0.56,0.43)であり、 7 8 0 c d / m 2 の輝度の時の発光素子 3 の C I E 色度座標は (x,y) = (0.56,0.43)であり、 8 0 0 c d / m 2 の輝度の時の発光素子 4 の C I E 色度座標は (x,y) = (0.56,0.43)であり、 8 0 0 c d / m 2 の輝度の時の発光素子 4 の C I E 色度座標は (x,y) = (0.56,0.43)であり、 8 0 0 c d / m 2 の輝度の時の発光素子 4 の C I E 色度座標は (x,y) = (0.56,0.43)であり、 8 0 c d / m 2 の輝度の時の発光素子 4 の C I E 色度座標は (x,y) = (0.56,0.43)であり、 1 に由来する橙色発光が得られたことがわかった。

[0240]

表2、図11、及び図12からわかるように、発光素子1乃至発光素子4は、電流効率、 電力効率、外部量子効率がそれぞれ高い値を示した。

[0241]

50

本実施例の発光素子では、実施例1に示した第1の有機化合物、第2の有機化合物及びゲスト材料を発光層に用いた。実施例1より、2mDBTPDBq-IIと第2の有機化合物の混合材料の発光スペクトル(励起錯体の発光スペクトル)は、 $[Ir(dppm)_2(acac)]$ の吸収スペクトルと重なる。本実施例の発光素子は、該重なりを利用してエネルギー移動をするため、エネルギー移動効率が高く、外部量子効率が高いと考えられる。

[0242]

本実施例において、発光素子 1、2、4は、発光素子 3に比べて外部量子効率が高かった(図 1 2 参照)。これは、発光素子 1、2、4は、発光素子 3に比べて、励起錯体の発光スペクトルと [Ir(dppm) $_2$ (acac)]の吸収スペクトルの重なりが大きいためであると考えられる(図 1 乃至図 4、実施例 1 参照)。

10

[0243]

図9及び図10からわかるように、発光素子1乃至発光素子4は、発光開始電圧が低い。 橙色の有機 EL素子の発光開始電圧の理論値は2.1 V程度と言われているが、本発明の 一態様の発光素子は、それに極めて近い値を示すことがわかった。

[0244]

本実施例において、発光素子2乃至発光素子4は、発光素子1に比べて発光開始電圧が低かった(図10及び図11参照)。これは、発光素子2乃至発光素子4は、発光素子1に比べて、励起錯体の発光スペクトルのピークが長波長側に存在するためであると考えられる(図1乃至図4、実施例1参照)。

20

[0245]

以上の結果から、本発明の一態様を適用することで、外部量子効率の高い素子を実現できることが示された。また、本発明の一態様を適用することで、駆動電圧の低い素子を実現することが示された。

[0246]

次に、発光素子4の信頼性試験を行った。信頼性試験の結果を図14に示す。図14において、縦軸は初期輝度を100%とした時の規格化輝度(%)を示し、横軸は素子の駆動時間(h)を示す。

[0247]

信頼性試験は、初期輝度を 5 0 0 0 c d / m ² に設定し、電流密度一定の条件で発光素子 4 を駆動した。

[0248]

発光素子4は、260時間後の輝度が、初期輝度の93%であった。この結果から、発光素子4は、寿命の長い素子であることがわかった。

[0249]

以上の結果から、本発明の一態様を適用することで、駆動電圧が低く、信頼性の高い素子を実現できることが示された。

【実施例3】

[0250]

本実施例では、本発明の一態様の発光素子について説明する。本実施例で用いた材料の化 40 学式を以下に示す。なお、先の実施例で用いた材料の化学式は省略する。

[0251]

【化3】

[0 2 5 2]

30

【化4】

DFLADFL

PCzDPA1

[0253]

40

【化5】

$$H_3C$$
 N
 CH_3
 H_3C
 N
 CH_3

DNTPD

PCzDPA2

PCzTPN2

[0254]

本実施例で作製した発光素子は、構成例 a 乃至構成例 s である。構成例 a 乃至構成例 s の素子構造を表 3 に示す。なお、構成例 a 乃至構成例 s の違いは、正孔輸送層と、発光層に用いる物質 X である。以下に、それぞれの構成例における物質 X の材料名を記す。さらに、それぞれの構成例に用いた物質 X の H O M O 準位(e V)、及びそれぞれの構成例で形成される励起錯体の発光ピーク波長(n m)を表 4 に記す。なお、本実施例において、 H O M O 準位の測定には、光電子分光装置(理研計器社製、 A C - 2)を用いた。

[0255]

【表3】

	第1の 電極	正孔注入層	正孔 輸送層	発光層	第1の 電子 輸送層	第2の 電子 輸送層	電子 注入層	第2の 電極
発光 素子	ITSO 110nm	DBT3P-II:MoOx (=1:0.5) 40nm	物質X 20nm	2mDBTPDBq-II:物質X:[Ir(dppm) ₂ (acac)] (=0.7:0.3:0.05) 40nm	2mDBTPDBq-II 10nm	BPhen 20nm	LiF 1nm	Al 200nm

[0256]

【表4】

構成例	物質X	物質Xの HOMO準位(eV)	励起錯体の 発光スペクトルの ピーク波長(nm)
а	PCBA1BP	-5.42	519
b	PCA2B	-5.40	546
С	DPNF	-5.35	555
d	PCA3B	-5.31	553
е	PCASF	-5.30	543
f	DPASF	-5.30	571
g	YGA2F	-5.27	540
h	TPD	-5.25	537
i	DPAB	-5.23	573
j	DFLADFL	-5.20	557
k	PCzPCA1	-5.17	571
1	PCzDPA1	-5.16	581
m	PCzDPA2	-5.16	586
n	PCzPCN1	-5.15	571
0	DNTPD	-5.14	573
р	PCzTPN2	-5.13	582
q	DPA2SF	-5.09	579
r	1'-TNATA	-5.09	616
S	PCzPCA2	-5.08	575

[0257]

(構成例a)

構成例aは、実施例2に示した発光素子1である。物質Xとして、PCBA1BPを用いた。

[0258]

(構成例b)

物質 X として、N , N ' - ビス(9 - フェニルカルバゾール - 3 - イル) - N , N ' - ジフェニルベンゼン - 1 , 3 - ジアミン(略称: P C A B B) を用いた。

[0259]

(構成例 c)

物質 X として、 N - (9 , 9 - ジメチル - 2 - N ' , N ' - ジフェニルアミノ - 9 H - フルオレン - 7 - イル)ジフェニルアミン(略称: D P N F)を用いた。

[0260]

(構成例d)

物質 X として、 N , N ' , N ' ' - トリフェニル - N , N ' , N ' ' - トリス(9 - フェニルカルバゾール - 3 - イル)ベンゼン - 1 , 3 , 5 - トリアミン(略称: P C A 3 B)を用いた。

[0261]

(構成例e)

物質 X として、 2 - [N -(9 -フェニルカルバゾール- 3 -イル)- N -フェニルアミ ノ] スピロ- 9 , 9 '-ビフルオレン(略称: P C A S F)を用いた。

[0262]

10

20

30

(構成例f)

物質 X として、 2 - [N - (4 - \forall D Y -

[0263]

(構成例g)

物質 X として、 N , N ' - ビス [4 - (カルバゾール- 9 - イル)フェニル] - N , N ' - ジフェニル- 9 , 9 - ジメチルフルオレン- 2 , 7 - ジアミン(略称: Y G A 2 F)を 用いた。

[0264]

(構成例 h)

10

20

[0265]

(構成例i)

物質 X として、 4 , 4 ' - ビス [N - (4 - ジフェニルアミノフェニル) - N - フェニルアミノ [ビフェニル(略称: D P A B) を用いた。

[0266]

(構成例i)

物質 X として、 N - (9 , 9 - ジメチル - 9 H - フルオレン - 2 - イル) - N - { 9 , 9 - ジメチル - 2 - [N ' - フェニル - N ' - (9 , 9 - ジメチル - 9 H - フルオレン - 2 - イル)アミノ] - 9 H - フルオレン - 7 - イル } フェニルアミン(略称: D F L A D F L)を用いた。

[0267]

(構成例k)

物質 X として、 3 - [N -(9 -フェニルカルバゾール- 3 -イル)- N -フェニルアミ ノ]- 9 -フェニルカルバゾール(略称: P C z P C A 1)を用いた。

[0268]

(構成例1)

30

[0269]

(構成例m)

物質 X として、 3 , 6 - ビス [N - (4 - ジフェニルアミノフェニル) - N - フェニルア ミノ] - 9 - フェニルカルバゾール(略称: P C z D P A 2)を用いた。

[0270]

(構成例n)

構成例nは、実施例2に示した発光素子2である。物質Xとして、PCzPCN1を用いた。

[0271]

(構成例 0)

40

物質 X として、 4 , 4 ' - ビス(N - $\{$ 4 - [N ' - (3 - メチルフェニル) - N ' - フェニルアミノ] フェニル $\}$ - N - フェニルアミノ) ビフェニル(略称: D N T P D) を用いた。

[0272]

(構成例p)

物質 X として、 3 , 6 - ビス [N - (4 - ジフェニルアミノフェニル) - N - (1 - ナフ チル)アミノ] - 9 - フェニルカルバゾール(略称: P C z T P N 2)を用いた。

[0273]

(構成例q)

構成例 q は、実施例 2 に示した発光素子 4 である。物質 X として、 D P A 2 S F を用いた

[0274]

(構成例r)

構成例 r は、実施例 2 に示した発光素子 3 である。物質 X として、 1 '- T N A T A を用いた。

[0275]

(構成例 s)

物質 X として、 3 , 6 - ビス [N - (9 - フェニルカルバゾール - 3 - イル) - N - フェニルアミノ] - 9 - フェニルカルバゾール(略称: P C z P C A 2)を用いた。

[0276]

図15に、各構成例における励起錯体の発光スペクトルのピーク波長と、物質 X の H O M O 準位の関係を示す。図15において、横軸は、ピーク波長(n m)を、縦軸は H O M O 準位(e V)を示す。また、図16に、各構成例における励起錯体の発光スペクトルのピーク波長と、相対外部量子効率の関係を示す。図16において、横軸は、ピーク波長(n m)を、縦軸は相対外部量子効率(任意単位)を示す。なお、図16における相対外部量子効率は、構成例aの発光素子の外部量子効率を1とした相対的な値として示す。ただし、図16では、構成例e及び構成例hについては示していない。

[0277]

図15から、物質 X の H O M O 準位が高いほど、2mDBTPDB q ・IIと物質 X から 形成される励起錯体の発光スペクトルのピークは長波長側に存在することが示された。したがって、物質 X の H O M O 準位が高いほど、また励起錯体の発光スペクトルのピークが 長波長側に存在するほど、発光素子の発光開始電圧を低くすることができる。これにより、発光素子の駆動電圧を低くすることができる。

[0 2 7 8]

図16から、励起錯体の発光スペクトルのピーク波長が長すぎると、発光素子の外部量子効率は低下するということがわかる。したがって、外部量子効率が高く、駆動電圧が低い発光素子を得るためには、励起錯体の発光スペクトルのピーク波長の好ましい範囲があることが示唆された。具体的には、低い駆動電圧と高い外部量子効率を両立するには、励起錯体の発光スペクトルのピーク波長が、燐光性化合物の吸収スペクトルの最も長波長側に位置する吸収帯のピーク波長(本実施例の場合、溶液の吸収スペクトルで約510nm)以上、燐光性化合物の発光スペクトルのピーク波長(本実施例の場合、ELの発光スペクトルで約580nm)以下であることが好ましいことが示唆された。

[0279]

(参考例1)

上記実施例で用いた有機金属錯体、(アセチルアセトナト)ビス(4, 6-ジフェニルピリミジナト)イリジウム(III)(別名:ビス [2-(6-フェニル-4-ピリミジニル- N3)フェニル- C](2, 4-ペンタンジオナト- 2 O, O')イリジウム(III)(略称:[Ir(dppm) $_2$ (acac)]の合成例を示す。なお、[Ir(dppm) $_2$ (acac)]の構造を以下に示す。

[0280]

40

10

20

【化6】

$$\begin{array}{c|c}
CH_3 \\
N \\
CH_3
\end{array}$$

[lr(dppm)2(acac)]

10

20

30

[0281]

<ステップ1;4,6‐ジフェニルピリミジン(略称:Hdppm)の合成>まず、4,6‐ジクロロピリミジン5.02g、フェニルボロン酸8.29g、炭酸ナトリウム7.19g、ビス(トリフェニルホスフィン)パラジウム(II)ジクロリド(略称:Pd(PPh₃)₂ C1₂)0.29g、水20mL、アセトニトリル20mLを、還流管を付けたナスフラスコに入れ、内部をアルゴン置換した。この反応容器にマイクロ波(2.45GHz 100W)を60分間照射することで加熱した。ここで更にフェニルボロン酸2.08g、炭酸ナトリウム1.79g、Pd(PPh₃)₂ C1₂ 0.070g、水5mL、アセトニトリル5mLをフラスコに入れ、再度マイクロ波(2.45GHz 100W)を60分間照射することで加熱した。その後この溶液に水を加え、ジクロリメタンにて有機層を抽出した。得られた抽出液を水で洗浄し、硫酸マグネシウムにで乾燥させた。乾燥した後の溶液を濾過した。この溶液の溶媒を留去した後、得られた残でり、ジクロロメタンを展開溶媒とするシリカゲルカラムクロマトグラフィーで精製してりまジン誘導体Hdppmを得た(黄白色粉末、収率38%)。なお、マイクロ波の照射は、マイクロ波合成装置(CEM社製 Discover)を用いた。以下にステップ1の合成スキーム(a‐1)を示す。

[0282]

【化7】

 $\begin{array}{c} \text{Na}_2\text{CO}_3 \\ \text{Pd}(\text{PPh}_3)_2\text{Cl}_2 \\ \hline \text{CH}_3\text{CN} \, / \, \text{H}_2\text{O} \end{array} \qquad \begin{array}{c} \text{N} \\ \text{N} \end{array} \qquad \text{(a-1)}$

Hdppm

[0283]

【化8】

Hdppm

[Ir(dppm)₂Cl]₂

[0285]

[0286]

20

30

20

【化9】

[lr(dppm)2Cl]2

$$\begin{array}{c|c} & \text{Na}_2\text{CO}_3 \\ \hline & \text{2-ethoxyethanol} \end{array} \qquad 2 \qquad \begin{array}{c} & \text{CH}_3 \\ & \text{N} & \text{CH}_3 \\ & \text{CH}_3 \end{array}$$

[lr(dppm)2(acac)]

[0287]

上記ステップ 3 で得られた橙色粉末の核磁気共鳴分光法(1 H NMR)による分析結果を下記に示す。この結果から、有機金属錯体 [Ir(dppm) $_2$ (acac)]が得られたことがわかった。

[0288]

¹ H NMR. (CDCl₃): 1.83(s,6H),5.29(s,1H),6 30 .48(d,2H),6.80(t,2H),6.90(t,2H),7.55-7.6 3(m,6H),7.77(d,2H),8.17(s,2H),8.24(d,4H),9.17(s,2H).

[0289]

(参考例2)

上記実施例で用いた 2-[3-(ジベンゾチオフェン-4-イル)フェニル]ジベンゾ[f,h]キノキサリン(略称:<math>2mDBTPDBq-II)の合成方法について説明する

[0290]

【化10】

2mDBTPDBq-II

[0291]

50

30

40

50

2 - [3 - (ジベンゾチオフェン - 4 - イル)フェニル]ジベンゾ[f,h]キノキサリン(略称:2mDBTPDBq-II)の合成

2 - [3 - (ジベンゾチオフェン - 4 - イル)フェニル]ジベンゾ[f,h]キノキサリン(略称: 2 m D B T P D B q - I I)の合成スキームを(b - 1)に示す。

【0292】 【化11】

$$\begin{array}{c} CI \\ N \\ N \\ N \\ + \\ S \\ \hline \\ Pd(PPh_3)_4 \\ 2M \ K_2CO_3 \ aq. \\ \hline \\ Toluene, \ Ethanol \\ \end{array}$$

2mDBTPDBq-II

[0293]

2 L 三口フラスコに2 - クロロジベンゾ[f,h]キノキサリン5 . 3 g (2 0 mmol)、3 - (ジベンゾチオフェン - 4 - イル)フェニルボロン酸6 . 1 g (2 0 mmol)、テトラキス(トリフェニルホスフィン)パラジウム(0)460mg(0 . 4 mmol)、トルエン300mL、エタノール20mL、2 Mの炭酸カリウム水溶液20mLを加えた。この混合物を、減圧下で攪拌することで脱気し、三口フラスコ内を窒素置換した。この混合物を窒素気流下、100で7.5時間攪拌した。室温まで冷ました後、得られた混合物を濾過して白色の濾物を得た。得られた濾物を水、エタノールの順で洗浄した後、乾燥させた。得られた固体を約600mLの熱トルエンに溶かし、セライト(和光純薬工業株式会社、カタログ番号:531-16855)、フロリジール(和光純薬工業株式会社、カタログ番号:531-16855)、フロリジール(和光純薬工業株式会社、カタログ番号:531-16855)を通して吸引濾過し、無色透明の濾液を得た。得られた濾液を濃縮し、約700mLのシリカゲルカラムクロマトグラフィーで精製した。クロマトグラフィーは、熱トルエンを展開溶媒に用いて行った。ここで得られた固体にアセトンとエタノールを加えて超音波を照射した後、生じた懸濁物を濾取して乾燥させたところ、白色粉末を収量7.85g、収率80%で得た。

[0294]

上記目的物は、熱トルエンには比較的可溶であったが、冷めると析出しやすい材料であった。また、アセトン、エタノールなど他の有機溶剤には難溶であった。そのため、この溶解性の差を利用して、上記の様に、簡便な方法で収率よく合成することができた。具体的には、反応終了後、室温に戻して析出させた固体を濾取することで、大部分の不純物を簡便に除くことができた。また、熱トルエンを展開溶媒とした、カラムクロマトグラフィーにより、析出しやすい目的物も簡便に精製することができた。

[0295]

得られた白色粉末4.0gをトレインサブリメーション法により昇華精製した。昇華精製は、圧力5.0Pa、アルゴン流量5mL/minの条件で、白色粉末を300 で加熱して行った。昇華精製後、目的物の白色粉末を収量3.5g、収率88%で得た。

[0296]

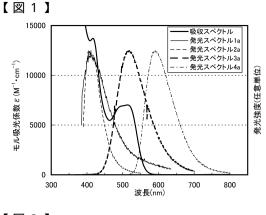
核磁気共鳴分光法 (1 H NMR) によって、この化合物が目的物である 2 - [3 - (ジベンゾチオフェン - 4 - イル) フェニル] ジベンゾ [f , h] キノキサリン (略称: 2 m

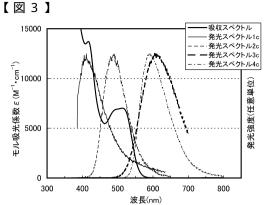
```
DBTPDBq - II) であることを確認した。
[0297]
得られた物質の<sup>1</sup> H NMRデータを以下に示す。
 ^{1} H NMR(CDCl<sub>3</sub>, 300MHz): (ppm) = 7.45-7.52 (m
, 2 H) 、 7 . 5 9 - 7 . 6 5 (m, 2 H) 、 7 . 7 1 - 7 . 9 1 (m, 7 H) 、 8 . 2
0 - 8 . 2 5 (m, 2 H) 、 8 . 4 1 (d, J = 7 . 8 Hz, 1 H) 、 8 . 6 5 (d, J
= 7 . 5 H z , 2 H ) 、 8 . 7 7 - 8 . 7 8 (m , 1 H ) 、 9 . 2 3 (dd , J = 7 . 2
Hz, 1.5 Hz, 1 H), 9.42 (dd, J = 7.8 Hz, 1.5 Hz, 1 H), 9
.48(s,1H)。
                                                                10
【符号の説明】
[0298]
1 0 2
       E L 層
1 0 3
       第1の電極
1 0 8
      第2の電極
7 0 1
       正孔注入層
7 0 2
       正孔輸送層
7 0 3
       発光層
7 0 4
       電子輸送層
7 0 5
       電子注入層
                                                                20
7 0 6
       電子注入バッファー層
7 0 7
       電子リレー層
7 0 8
       複合材料層
8 0 0
       第1のEL層
8 0 1
       第2のEL層
8 0 3
       電荷発生層
1 1 0 0
         基板
1 1 0 1
        第1の電極
1 1 0 3
         第2の電極
1 1 1 1
        正孔注入層
                                                                30
1 1 1 2
         正孔輸送層
1 1 1 3
        発光層
1 1 1 4 a
         第1の電子輸送層
```

1 1 1 4 b

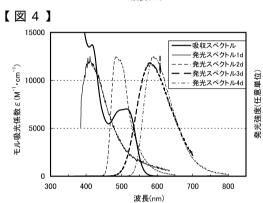
1 1 1 5

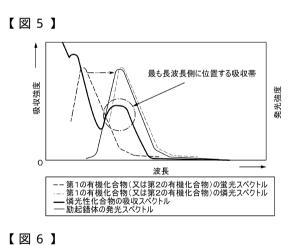
第2の電子輸送層

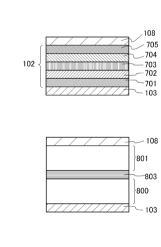

電子注入層

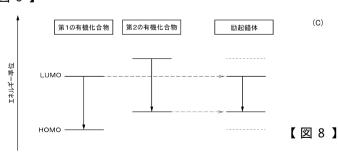

【図7】

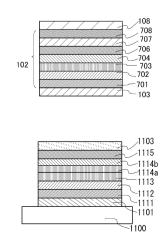
(A)

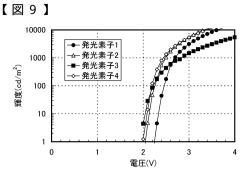

(B)

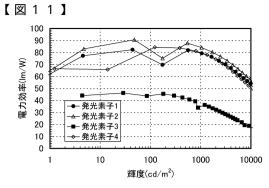

(C)

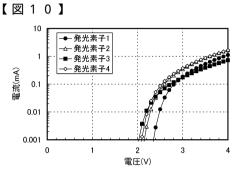


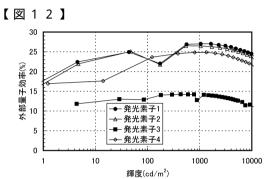


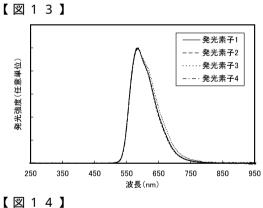


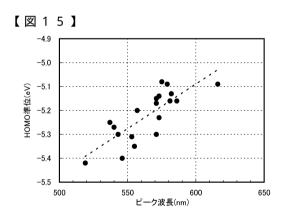


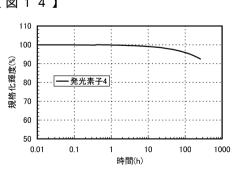


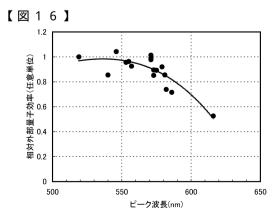


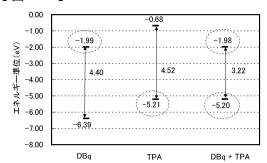


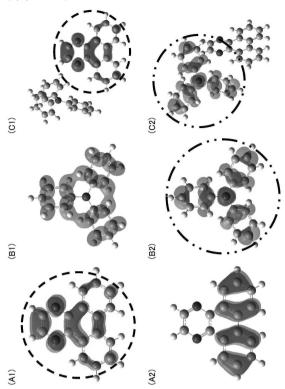












【図17】

【図18】

フロントページの続き

(72)発明者 鈴木 邦彦

神奈川県厚木市長谷398番地 株式会社半導体エネルギー研究所内

審査官 渡邊 吉喜

(56)参考文献 特開平07-085972(JP,A)

特表2007-515788(JP,A)

特開2012-195517(JP,A)

米国特許出願公開第2008/0074038(US,A1)

特開平11-087067(JP,A)

特開2004-228002(JP,A)

米国特許出願公開第2010/0184942(US,A1)

特開2006-203172(JP,A)

特開平10-059943(JP,A)

(58)調査した分野(Int.CI., DB名)

H05B 33/00-33/28

H01L 27/32, 51/50